[AMDGPU][AsmParser][NFC] Get rid of custom default operand handlers.
[llvm-project.git] / clang / lib / CodeGen / CGExprComplex.cpp
blob7a14a418c7b65f59ba82bd95b3f5b7cf78d72e97
1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with complex types as LLVM code.
11 //===----------------------------------------------------------------------===//
13 #include "CGOpenMPRuntime.h"
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "ConstantEmitter.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/MDBuilder.h"
22 #include "llvm/IR/Metadata.h"
23 #include <algorithm>
24 using namespace clang;
25 using namespace CodeGen;
27 //===----------------------------------------------------------------------===//
28 // Complex Expression Emitter
29 //===----------------------------------------------------------------------===//
31 typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
33 /// Return the complex type that we are meant to emit.
34 static const ComplexType *getComplexType(QualType type) {
35 type = type.getCanonicalType();
36 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
37 return comp;
38 } else {
39 return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
43 namespace {
44 class ComplexExprEmitter
45 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
46 CodeGenFunction &CGF;
47 CGBuilderTy &Builder;
48 bool IgnoreReal;
49 bool IgnoreImag;
50 public:
51 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
52 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
56 //===--------------------------------------------------------------------===//
57 // Utilities
58 //===--------------------------------------------------------------------===//
60 bool TestAndClearIgnoreReal() {
61 bool I = IgnoreReal;
62 IgnoreReal = false;
63 return I;
65 bool TestAndClearIgnoreImag() {
66 bool I = IgnoreImag;
67 IgnoreImag = false;
68 return I;
71 /// EmitLoadOfLValue - Given an expression with complex type that represents a
72 /// value l-value, this method emits the address of the l-value, then loads
73 /// and returns the result.
74 ComplexPairTy EmitLoadOfLValue(const Expr *E) {
75 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
78 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
80 /// EmitStoreOfComplex - Store the specified real/imag parts into the
81 /// specified value pointer.
82 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
84 /// Emit a cast from complex value Val to DestType.
85 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
86 QualType DestType, SourceLocation Loc);
87 /// Emit a cast from scalar value Val to DestType.
88 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
89 QualType DestType, SourceLocation Loc);
91 //===--------------------------------------------------------------------===//
92 // Visitor Methods
93 //===--------------------------------------------------------------------===//
95 ComplexPairTy Visit(Expr *E) {
96 ApplyDebugLocation DL(CGF, E);
97 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
100 ComplexPairTy VisitStmt(Stmt *S) {
101 S->dump(llvm::errs(), CGF.getContext());
102 llvm_unreachable("Stmt can't have complex result type!");
104 ComplexPairTy VisitExpr(Expr *S);
105 ComplexPairTy VisitConstantExpr(ConstantExpr *E) {
106 if (llvm::Constant *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E))
107 return ComplexPairTy(Result->getAggregateElement(0U),
108 Result->getAggregateElement(1U));
109 return Visit(E->getSubExpr());
111 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
112 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
113 return Visit(GE->getResultExpr());
115 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
116 ComplexPairTy
117 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
118 return Visit(PE->getReplacement());
120 ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) {
121 return CGF.EmitCoawaitExpr(*S).getComplexVal();
123 ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) {
124 return CGF.EmitCoyieldExpr(*S).getComplexVal();
126 ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) {
127 return Visit(E->getSubExpr());
130 ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant,
131 Expr *E) {
132 assert(Constant && "not a constant");
133 if (Constant.isReference())
134 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
135 E->getExprLoc());
137 llvm::Constant *pair = Constant.getValue();
138 return ComplexPairTy(pair->getAggregateElement(0U),
139 pair->getAggregateElement(1U));
142 // l-values.
143 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
144 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
145 return emitConstant(Constant, E);
146 return EmitLoadOfLValue(E);
148 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
149 return EmitLoadOfLValue(E);
151 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
152 return CGF.EmitObjCMessageExpr(E).getComplexVal();
154 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
155 ComplexPairTy VisitMemberExpr(MemberExpr *ME) {
156 if (CodeGenFunction::ConstantEmission Constant =
157 CGF.tryEmitAsConstant(ME)) {
158 CGF.EmitIgnoredExpr(ME->getBase());
159 return emitConstant(Constant, ME);
161 return EmitLoadOfLValue(ME);
163 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
164 if (E->isGLValue())
165 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
166 E->getExprLoc());
167 return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal();
170 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
171 return CGF.EmitPseudoObjectRValue(E).getComplexVal();
174 // FIXME: CompoundLiteralExpr
176 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
177 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
178 // Unlike for scalars, we don't have to worry about function->ptr demotion
179 // here.
180 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
182 ComplexPairTy VisitCastExpr(CastExpr *E) {
183 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
184 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
185 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
187 ComplexPairTy VisitCallExpr(const CallExpr *E);
188 ComplexPairTy VisitStmtExpr(const StmtExpr *E);
190 // Operators.
191 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
192 bool isInc, bool isPre) {
193 LValue LV = CGF.EmitLValue(E->getSubExpr());
194 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
196 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
197 return VisitPrePostIncDec(E, false, false);
199 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
200 return VisitPrePostIncDec(E, true, false);
202 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
203 return VisitPrePostIncDec(E, false, true);
205 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
206 return VisitPrePostIncDec(E, true, true);
208 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
210 ComplexPairTy VisitUnaryPlus(const UnaryOperator *E,
211 QualType PromotionType = QualType());
212 ComplexPairTy VisitPlus(const UnaryOperator *E, QualType PromotionType);
213 ComplexPairTy VisitUnaryMinus(const UnaryOperator *E,
214 QualType PromotionType = QualType());
215 ComplexPairTy VisitMinus(const UnaryOperator *E, QualType PromotionType);
216 ComplexPairTy VisitUnaryNot (const UnaryOperator *E);
217 // LNot,Real,Imag never return complex.
218 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
219 return Visit(E->getSubExpr());
221 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
222 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
223 return Visit(DAE->getExpr());
225 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
226 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
227 return Visit(DIE->getExpr());
229 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
230 CodeGenFunction::RunCleanupsScope Scope(CGF);
231 ComplexPairTy Vals = Visit(E->getSubExpr());
232 // Defend against dominance problems caused by jumps out of expression
233 // evaluation through the shared cleanup block.
234 Scope.ForceCleanup({&Vals.first, &Vals.second});
235 return Vals;
237 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
238 assert(E->getType()->isAnyComplexType() && "Expected complex type!");
239 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
240 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
241 return ComplexPairTy(Null, Null);
243 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
244 assert(E->getType()->isAnyComplexType() && "Expected complex type!");
245 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
246 llvm::Constant *Null =
247 llvm::Constant::getNullValue(CGF.ConvertType(Elem));
248 return ComplexPairTy(Null, Null);
251 struct BinOpInfo {
252 ComplexPairTy LHS;
253 ComplexPairTy RHS;
254 QualType Ty; // Computation Type.
255 FPOptions FPFeatures;
258 BinOpInfo EmitBinOps(const BinaryOperator *E,
259 QualType PromotionTy = QualType());
260 ComplexPairTy EmitPromoted(const Expr *E, QualType PromotionTy);
261 ComplexPairTy EmitPromotedComplexOperand(const Expr *E, QualType PromotionTy);
262 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
263 ComplexPairTy (ComplexExprEmitter::*Func)
264 (const BinOpInfo &),
265 RValue &Val);
266 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
267 ComplexPairTy (ComplexExprEmitter::*Func)
268 (const BinOpInfo &));
270 ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
271 ComplexPairTy EmitBinSub(const BinOpInfo &Op);
272 ComplexPairTy EmitBinMul(const BinOpInfo &Op);
273 ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
275 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
276 const BinOpInfo &Op);
278 QualType getPromotionType(QualType Ty) {
279 if (auto *CT = Ty->getAs<ComplexType>()) {
280 QualType ElementType = CT->getElementType();
281 if (ElementType.UseExcessPrecision(CGF.getContext()))
282 return CGF.getContext().getComplexType(CGF.getContext().FloatTy);
284 if (Ty.UseExcessPrecision(CGF.getContext()))
285 return CGF.getContext().FloatTy;
286 return QualType();
289 #define HANDLEBINOP(OP) \
290 ComplexPairTy VisitBin##OP(const BinaryOperator *E) { \
291 QualType promotionTy = getPromotionType(E->getType()); \
292 ComplexPairTy result = EmitBin##OP(EmitBinOps(E, promotionTy)); \
293 if (!promotionTy.isNull()) \
294 result = \
295 CGF.EmitUnPromotedValue(result, E->getType()); \
296 return result; \
299 HANDLEBINOP(Mul)
300 HANDLEBINOP(Div)
301 HANDLEBINOP(Add)
302 HANDLEBINOP(Sub)
303 #undef HANDLEBINOP
305 ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
306 return Visit(E->getSemanticForm());
309 // Compound assignments.
310 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
311 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
313 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
314 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
316 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
317 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
319 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
320 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
323 // GCC rejects rem/and/or/xor for integer complex.
324 // Logical and/or always return int, never complex.
326 // No comparisons produce a complex result.
328 LValue EmitBinAssignLValue(const BinaryOperator *E,
329 ComplexPairTy &Val);
330 ComplexPairTy VisitBinAssign (const BinaryOperator *E);
331 ComplexPairTy VisitBinComma (const BinaryOperator *E);
334 ComplexPairTy
335 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
336 ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
338 ComplexPairTy VisitInitListExpr(InitListExpr *E);
340 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
341 return EmitLoadOfLValue(E);
344 ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
346 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
347 return CGF.EmitAtomicExpr(E).getComplexVal();
350 } // end anonymous namespace.
352 //===----------------------------------------------------------------------===//
353 // Utilities
354 //===----------------------------------------------------------------------===//
356 Address CodeGenFunction::emitAddrOfRealComponent(Address addr,
357 QualType complexType) {
358 return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp");
361 Address CodeGenFunction::emitAddrOfImagComponent(Address addr,
362 QualType complexType) {
363 return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp");
366 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
367 /// load the real and imaginary pieces, returning them as Real/Imag.
368 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
369 SourceLocation loc) {
370 assert(lvalue.isSimple() && "non-simple complex l-value?");
371 if (lvalue.getType()->isAtomicType())
372 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
374 Address SrcPtr = lvalue.getAddress(CGF);
375 bool isVolatile = lvalue.isVolatileQualified();
377 llvm::Value *Real = nullptr, *Imag = nullptr;
379 if (!IgnoreReal || isVolatile) {
380 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
381 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
384 if (!IgnoreImag || isVolatile) {
385 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
386 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
389 return ComplexPairTy(Real, Imag);
392 /// EmitStoreOfComplex - Store the specified real/imag parts into the
393 /// specified value pointer.
394 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
395 bool isInit) {
396 if (lvalue.getType()->isAtomicType() ||
397 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
398 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
400 Address Ptr = lvalue.getAddress(CGF);
401 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
402 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
404 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
405 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
410 //===----------------------------------------------------------------------===//
411 // Visitor Methods
412 //===----------------------------------------------------------------------===//
414 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
415 CGF.ErrorUnsupported(E, "complex expression");
416 llvm::Type *EltTy =
417 CGF.ConvertType(getComplexType(E->getType())->getElementType());
418 llvm::Value *U = llvm::UndefValue::get(EltTy);
419 return ComplexPairTy(U, U);
422 ComplexPairTy ComplexExprEmitter::
423 VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
424 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
425 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
429 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
430 if (E->getCallReturnType(CGF.getContext())->isReferenceType())
431 return EmitLoadOfLValue(E);
433 return CGF.EmitCallExpr(E).getComplexVal();
436 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
437 CodeGenFunction::StmtExprEvaluation eval(CGF);
438 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
439 assert(RetAlloca.isValid() && "Expected complex return value");
440 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
441 E->getExprLoc());
444 /// Emit a cast from complex value Val to DestType.
445 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
446 QualType SrcType,
447 QualType DestType,
448 SourceLocation Loc) {
449 // Get the src/dest element type.
450 SrcType = SrcType->castAs<ComplexType>()->getElementType();
451 DestType = DestType->castAs<ComplexType>()->getElementType();
453 // C99 6.3.1.6: When a value of complex type is converted to another
454 // complex type, both the real and imaginary parts follow the conversion
455 // rules for the corresponding real types.
456 if (Val.first)
457 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
458 if (Val.second)
459 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
460 return Val;
463 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
464 QualType SrcType,
465 QualType DestType,
466 SourceLocation Loc) {
467 // Convert the input element to the element type of the complex.
468 DestType = DestType->castAs<ComplexType>()->getElementType();
469 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
471 // Return (realval, 0).
472 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
475 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
476 QualType DestTy) {
477 switch (CK) {
478 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
480 // Atomic to non-atomic casts may be more than a no-op for some platforms and
481 // for some types.
482 case CK_AtomicToNonAtomic:
483 case CK_NonAtomicToAtomic:
484 case CK_NoOp:
485 case CK_LValueToRValue:
486 case CK_UserDefinedConversion:
487 return Visit(Op);
489 case CK_LValueBitCast: {
490 LValue origLV = CGF.EmitLValue(Op);
491 Address V = origLV.getAddress(CGF);
492 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy));
493 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
496 case CK_LValueToRValueBitCast: {
497 LValue SourceLVal = CGF.EmitLValue(Op);
498 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
499 CGF.ConvertTypeForMem(DestTy));
500 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
501 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
502 return EmitLoadOfLValue(DestLV, Op->getExprLoc());
505 case CK_BitCast:
506 case CK_BaseToDerived:
507 case CK_DerivedToBase:
508 case CK_UncheckedDerivedToBase:
509 case CK_Dynamic:
510 case CK_ToUnion:
511 case CK_ArrayToPointerDecay:
512 case CK_FunctionToPointerDecay:
513 case CK_NullToPointer:
514 case CK_NullToMemberPointer:
515 case CK_BaseToDerivedMemberPointer:
516 case CK_DerivedToBaseMemberPointer:
517 case CK_MemberPointerToBoolean:
518 case CK_ReinterpretMemberPointer:
519 case CK_ConstructorConversion:
520 case CK_IntegralToPointer:
521 case CK_PointerToIntegral:
522 case CK_PointerToBoolean:
523 case CK_ToVoid:
524 case CK_VectorSplat:
525 case CK_IntegralCast:
526 case CK_BooleanToSignedIntegral:
527 case CK_IntegralToBoolean:
528 case CK_IntegralToFloating:
529 case CK_FloatingToIntegral:
530 case CK_FloatingToBoolean:
531 case CK_FloatingCast:
532 case CK_CPointerToObjCPointerCast:
533 case CK_BlockPointerToObjCPointerCast:
534 case CK_AnyPointerToBlockPointerCast:
535 case CK_ObjCObjectLValueCast:
536 case CK_FloatingComplexToReal:
537 case CK_FloatingComplexToBoolean:
538 case CK_IntegralComplexToReal:
539 case CK_IntegralComplexToBoolean:
540 case CK_ARCProduceObject:
541 case CK_ARCConsumeObject:
542 case CK_ARCReclaimReturnedObject:
543 case CK_ARCExtendBlockObject:
544 case CK_CopyAndAutoreleaseBlockObject:
545 case CK_BuiltinFnToFnPtr:
546 case CK_ZeroToOCLOpaqueType:
547 case CK_AddressSpaceConversion:
548 case CK_IntToOCLSampler:
549 case CK_FloatingToFixedPoint:
550 case CK_FixedPointToFloating:
551 case CK_FixedPointCast:
552 case CK_FixedPointToBoolean:
553 case CK_FixedPointToIntegral:
554 case CK_IntegralToFixedPoint:
555 case CK_MatrixCast:
556 llvm_unreachable("invalid cast kind for complex value");
558 case CK_FloatingRealToComplex:
559 case CK_IntegralRealToComplex: {
560 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op);
561 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
562 DestTy, Op->getExprLoc());
565 case CK_FloatingComplexCast:
566 case CK_FloatingComplexToIntegralComplex:
567 case CK_IntegralComplexCast:
568 case CK_IntegralComplexToFloatingComplex: {
569 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op);
570 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
571 Op->getExprLoc());
575 llvm_unreachable("unknown cast resulting in complex value");
578 ComplexPairTy ComplexExprEmitter::VisitUnaryPlus(const UnaryOperator *E,
579 QualType PromotionType) {
580 QualType promotionTy = PromotionType.isNull()
581 ? getPromotionType(E->getSubExpr()->getType())
582 : PromotionType;
583 ComplexPairTy result = VisitPlus(E, promotionTy);
584 if (!promotionTy.isNull())
585 return CGF.EmitUnPromotedValue(result, E->getSubExpr()->getType());
586 return result;
589 ComplexPairTy ComplexExprEmitter::VisitPlus(const UnaryOperator *E,
590 QualType PromotionType) {
591 TestAndClearIgnoreReal();
592 TestAndClearIgnoreImag();
593 if (!PromotionType.isNull())
594 return CGF.EmitPromotedComplexExpr(E->getSubExpr(), PromotionType);
595 return Visit(E->getSubExpr());
598 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E,
599 QualType PromotionType) {
600 QualType promotionTy = PromotionType.isNull()
601 ? getPromotionType(E->getSubExpr()->getType())
602 : PromotionType;
603 ComplexPairTy result = VisitMinus(E, promotionTy);
604 if (!promotionTy.isNull())
605 return CGF.EmitUnPromotedValue(result, E->getSubExpr()->getType());
606 return result;
608 ComplexPairTy ComplexExprEmitter::VisitMinus(const UnaryOperator *E,
609 QualType PromotionType) {
610 TestAndClearIgnoreReal();
611 TestAndClearIgnoreImag();
612 ComplexPairTy Op;
613 if (!PromotionType.isNull())
614 Op = CGF.EmitPromotedComplexExpr(E->getSubExpr(), PromotionType);
615 else
616 Op = Visit(E->getSubExpr());
618 llvm::Value *ResR, *ResI;
619 if (Op.first->getType()->isFloatingPointTy()) {
620 ResR = Builder.CreateFNeg(Op.first, "neg.r");
621 ResI = Builder.CreateFNeg(Op.second, "neg.i");
622 } else {
623 ResR = Builder.CreateNeg(Op.first, "neg.r");
624 ResI = Builder.CreateNeg(Op.second, "neg.i");
626 return ComplexPairTy(ResR, ResI);
629 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
630 TestAndClearIgnoreReal();
631 TestAndClearIgnoreImag();
632 // ~(a+ib) = a + i*-b
633 ComplexPairTy Op = Visit(E->getSubExpr());
634 llvm::Value *ResI;
635 if (Op.second->getType()->isFloatingPointTy())
636 ResI = Builder.CreateFNeg(Op.second, "conj.i");
637 else
638 ResI = Builder.CreateNeg(Op.second, "conj.i");
640 return ComplexPairTy(Op.first, ResI);
643 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
644 llvm::Value *ResR, *ResI;
646 if (Op.LHS.first->getType()->isFloatingPointTy()) {
647 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures);
648 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r");
649 if (Op.LHS.second && Op.RHS.second)
650 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
651 else
652 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
653 assert(ResI && "Only one operand may be real!");
654 } else {
655 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r");
656 assert(Op.LHS.second && Op.RHS.second &&
657 "Both operands of integer complex operators must be complex!");
658 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
660 return ComplexPairTy(ResR, ResI);
663 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
664 llvm::Value *ResR, *ResI;
665 if (Op.LHS.first->getType()->isFloatingPointTy()) {
666 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures);
667 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
668 if (Op.LHS.second && Op.RHS.second)
669 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
670 else
671 ResI = Op.LHS.second ? Op.LHS.second
672 : Builder.CreateFNeg(Op.RHS.second, "sub.i");
673 assert(ResI && "Only one operand may be real!");
674 } else {
675 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
676 assert(Op.LHS.second && Op.RHS.second &&
677 "Both operands of integer complex operators must be complex!");
678 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
680 return ComplexPairTy(ResR, ResI);
683 /// Emit a libcall for a binary operation on complex types.
684 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
685 const BinOpInfo &Op) {
686 CallArgList Args;
687 Args.add(RValue::get(Op.LHS.first),
688 Op.Ty->castAs<ComplexType>()->getElementType());
689 Args.add(RValue::get(Op.LHS.second),
690 Op.Ty->castAs<ComplexType>()->getElementType());
691 Args.add(RValue::get(Op.RHS.first),
692 Op.Ty->castAs<ComplexType>()->getElementType());
693 Args.add(RValue::get(Op.RHS.second),
694 Op.Ty->castAs<ComplexType>()->getElementType());
696 // We *must* use the full CG function call building logic here because the
697 // complex type has special ABI handling. We also should not forget about
698 // special calling convention which may be used for compiler builtins.
700 // We create a function qualified type to state that this call does not have
701 // any exceptions.
702 FunctionProtoType::ExtProtoInfo EPI;
703 EPI = EPI.withExceptionSpec(
704 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept));
705 SmallVector<QualType, 4> ArgsQTys(
706 4, Op.Ty->castAs<ComplexType>()->getElementType());
707 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
708 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
709 Args, cast<FunctionType>(FQTy.getTypePtr()), false);
711 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
712 llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction(
713 FTy, LibCallName, llvm::AttributeList(), true);
714 CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>());
716 llvm::CallBase *Call;
717 RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call);
718 Call->setCallingConv(CGF.CGM.getRuntimeCC());
719 return Res.getComplexVal();
722 /// Lookup the libcall name for a given floating point type complex
723 /// multiply.
724 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
725 switch (Ty->getTypeID()) {
726 default:
727 llvm_unreachable("Unsupported floating point type!");
728 case llvm::Type::HalfTyID:
729 return "__mulhc3";
730 case llvm::Type::FloatTyID:
731 return "__mulsc3";
732 case llvm::Type::DoubleTyID:
733 return "__muldc3";
734 case llvm::Type::PPC_FP128TyID:
735 return "__multc3";
736 case llvm::Type::X86_FP80TyID:
737 return "__mulxc3";
738 case llvm::Type::FP128TyID:
739 return "__multc3";
743 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
744 // typed values.
745 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
746 using llvm::Value;
747 Value *ResR, *ResI;
748 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
750 if (Op.LHS.first->getType()->isFloatingPointTy()) {
751 // The general formulation is:
752 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
754 // But we can fold away components which would be zero due to a real
755 // operand according to C11 Annex G.5.1p2.
756 // FIXME: C11 also provides for imaginary types which would allow folding
757 // still more of this within the type system.
759 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures);
760 if (Op.LHS.second && Op.RHS.second) {
761 // If both operands are complex, emit the core math directly, and then
762 // test for NaNs. If we find NaNs in the result, we delegate to a libcall
763 // to carefully re-compute the correct infinity representation if
764 // possible. The expectation is that the presence of NaNs here is
765 // *extremely* rare, and so the cost of the libcall is almost irrelevant.
766 // This is good, because the libcall re-computes the core multiplication
767 // exactly the same as we do here and re-tests for NaNs in order to be
768 // a generic complex*complex libcall.
770 // First compute the four products.
771 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
772 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
773 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
774 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
776 // The real part is the difference of the first two, the imaginary part is
777 // the sum of the second.
778 ResR = Builder.CreateFSub(AC, BD, "mul_r");
779 ResI = Builder.CreateFAdd(AD, BC, "mul_i");
781 // Emit the test for the real part becoming NaN and create a branch to
782 // handle it. We test for NaN by comparing the number to itself.
783 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
784 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
785 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
786 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
787 llvm::BasicBlock *OrigBB = Branch->getParent();
789 // Give hint that we very much don't expect to see NaNs.
790 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
791 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
792 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
794 // Now test the imaginary part and create its branch.
795 CGF.EmitBlock(INaNBB);
796 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
797 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
798 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
799 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
801 // Now emit the libcall on this slowest of the slow paths.
802 CGF.EmitBlock(LibCallBB);
803 Value *LibCallR, *LibCallI;
804 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
805 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
806 Builder.CreateBr(ContBB);
808 // Finally continue execution by phi-ing together the different
809 // computation paths.
810 CGF.EmitBlock(ContBB);
811 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
812 RealPHI->addIncoming(ResR, OrigBB);
813 RealPHI->addIncoming(ResR, INaNBB);
814 RealPHI->addIncoming(LibCallR, LibCallBB);
815 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
816 ImagPHI->addIncoming(ResI, OrigBB);
817 ImagPHI->addIncoming(ResI, INaNBB);
818 ImagPHI->addIncoming(LibCallI, LibCallBB);
819 return ComplexPairTy(RealPHI, ImagPHI);
821 assert((Op.LHS.second || Op.RHS.second) &&
822 "At least one operand must be complex!");
824 // If either of the operands is a real rather than a complex, the
825 // imaginary component is ignored when computing the real component of the
826 // result.
827 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
829 ResI = Op.LHS.second
830 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
831 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
832 } else {
833 assert(Op.LHS.second && Op.RHS.second &&
834 "Both operands of integer complex operators must be complex!");
835 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
836 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
837 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
839 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
840 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
841 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
843 return ComplexPairTy(ResR, ResI);
846 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
847 // typed values.
848 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
849 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
850 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
852 llvm::Value *DSTr, *DSTi;
853 if (LHSr->getType()->isFloatingPointTy()) {
854 // If we have a complex operand on the RHS and FastMath is not allowed, we
855 // delegate to a libcall to handle all of the complexities and minimize
856 // underflow/overflow cases. When FastMath is allowed we construct the
857 // divide inline using the same algorithm as for integer operands.
859 // FIXME: We would be able to avoid the libcall in many places if we
860 // supported imaginary types in addition to complex types.
861 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures);
862 if (RHSi && !CGF.getLangOpts().FastMath) {
863 BinOpInfo LibCallOp = Op;
864 // If LHS was a real, supply a null imaginary part.
865 if (!LHSi)
866 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
868 switch (LHSr->getType()->getTypeID()) {
869 default:
870 llvm_unreachable("Unsupported floating point type!");
871 case llvm::Type::HalfTyID:
872 return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
873 case llvm::Type::FloatTyID:
874 return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
875 case llvm::Type::DoubleTyID:
876 return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
877 case llvm::Type::PPC_FP128TyID:
878 return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
879 case llvm::Type::X86_FP80TyID:
880 return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
881 case llvm::Type::FP128TyID:
882 return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
884 } else if (RHSi) {
885 if (!LHSi)
886 LHSi = llvm::Constant::getNullValue(RHSi->getType());
888 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
889 llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c
890 llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d
891 llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd
893 llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c
894 llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d
895 llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd
897 llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c
898 llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d
899 llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad
901 DSTr = Builder.CreateFDiv(ACpBD, CCpDD);
902 DSTi = Builder.CreateFDiv(BCmAD, CCpDD);
903 } else {
904 assert(LHSi && "Can have at most one non-complex operand!");
906 DSTr = Builder.CreateFDiv(LHSr, RHSr);
907 DSTi = Builder.CreateFDiv(LHSi, RHSr);
909 } else {
910 assert(Op.LHS.second && Op.RHS.second &&
911 "Both operands of integer complex operators must be complex!");
912 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
913 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
914 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
915 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
917 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
918 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
919 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
921 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
922 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
923 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
925 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
926 DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
927 DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
928 } else {
929 DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
930 DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
934 return ComplexPairTy(DSTr, DSTi);
937 ComplexPairTy CodeGenFunction::EmitUnPromotedValue(ComplexPairTy result,
938 QualType UnPromotionType) {
939 llvm::Type *ComplexElementTy =
940 ConvertType(UnPromotionType->castAs<ComplexType>()->getElementType());
941 if (result.first)
942 result.first =
943 Builder.CreateFPTrunc(result.first, ComplexElementTy, "unpromotion");
944 if (result.second)
945 result.second =
946 Builder.CreateFPTrunc(result.second, ComplexElementTy, "unpromotion");
947 return result;
950 ComplexPairTy CodeGenFunction::EmitPromotedValue(ComplexPairTy result,
951 QualType PromotionType) {
952 llvm::Type *ComplexElementTy =
953 ConvertType(PromotionType->castAs<ComplexType>()->getElementType());
954 if (result.first)
955 result.first = Builder.CreateFPExt(result.first, ComplexElementTy, "ext");
956 if (result.second)
957 result.second = Builder.CreateFPExt(result.second, ComplexElementTy, "ext");
959 return result;
962 ComplexPairTy ComplexExprEmitter::EmitPromoted(const Expr *E,
963 QualType PromotionType) {
964 E = E->IgnoreParens();
965 if (auto BO = dyn_cast<BinaryOperator>(E)) {
966 switch (BO->getOpcode()) {
967 #define HANDLE_BINOP(OP) \
968 case BO_##OP: \
969 return EmitBin##OP(EmitBinOps(BO, PromotionType));
970 HANDLE_BINOP(Add)
971 HANDLE_BINOP(Sub)
972 HANDLE_BINOP(Mul)
973 HANDLE_BINOP(Div)
974 #undef HANDLE_BINOP
975 default:
976 break;
978 } else if (auto UO = dyn_cast<UnaryOperator>(E)) {
979 switch (UO->getOpcode()) {
980 case UO_Minus:
981 return VisitMinus(UO, PromotionType);
982 case UO_Plus:
983 return VisitPlus(UO, PromotionType);
984 default:
985 break;
988 auto result = Visit(const_cast<Expr *>(E));
989 if (!PromotionType.isNull())
990 return CGF.EmitPromotedValue(result, PromotionType);
991 else
992 return result;
995 ComplexPairTy CodeGenFunction::EmitPromotedComplexExpr(const Expr *E,
996 QualType DstTy) {
997 return ComplexExprEmitter(*this).EmitPromoted(E, DstTy);
1000 ComplexPairTy
1001 ComplexExprEmitter::EmitPromotedComplexOperand(const Expr *E,
1002 QualType OverallPromotionType) {
1003 if (E->getType()->isAnyComplexType()) {
1004 if (!OverallPromotionType.isNull())
1005 return CGF.EmitPromotedComplexExpr(E, OverallPromotionType);
1006 else
1007 return Visit(const_cast<Expr *>(E));
1008 } else {
1009 if (!OverallPromotionType.isNull()) {
1010 QualType ComplexElementTy =
1011 OverallPromotionType->castAs<ComplexType>()->getElementType();
1012 return ComplexPairTy(CGF.EmitPromotedScalarExpr(E, ComplexElementTy),
1013 nullptr);
1014 } else {
1015 return ComplexPairTy(CGF.EmitScalarExpr(E), nullptr);
1020 ComplexExprEmitter::BinOpInfo
1021 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E,
1022 QualType PromotionType) {
1023 TestAndClearIgnoreReal();
1024 TestAndClearIgnoreImag();
1025 BinOpInfo Ops;
1027 Ops.LHS = EmitPromotedComplexOperand(E->getLHS(), PromotionType);
1028 Ops.RHS = EmitPromotedComplexOperand(E->getRHS(), PromotionType);
1029 if (!PromotionType.isNull())
1030 Ops.Ty = PromotionType;
1031 else
1032 Ops.Ty = E->getType();
1033 Ops.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
1034 return Ops;
1038 LValue ComplexExprEmitter::
1039 EmitCompoundAssignLValue(const CompoundAssignOperator *E,
1040 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
1041 RValue &Val) {
1042 TestAndClearIgnoreReal();
1043 TestAndClearIgnoreImag();
1044 QualType LHSTy = E->getLHS()->getType();
1045 if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
1046 LHSTy = AT->getValueType();
1048 BinOpInfo OpInfo;
1049 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
1050 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
1052 // Load the RHS and LHS operands.
1053 // __block variables need to have the rhs evaluated first, plus this should
1054 // improve codegen a little.
1055 QualType PromotionTypeCR;
1056 PromotionTypeCR = getPromotionType(E->getComputationResultType());
1057 if (PromotionTypeCR.isNull())
1058 PromotionTypeCR = E->getComputationResultType();
1059 OpInfo.Ty = PromotionTypeCR;
1060 QualType ComplexElementTy =
1061 OpInfo.Ty->castAs<ComplexType>()->getElementType();
1062 QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType());
1064 // The RHS should have been converted to the computation type.
1065 if (E->getRHS()->getType()->isRealFloatingType()) {
1066 if (!PromotionTypeRHS.isNull())
1067 OpInfo.RHS = ComplexPairTy(
1068 CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS), nullptr);
1069 else {
1070 assert(CGF.getContext().hasSameUnqualifiedType(ComplexElementTy,
1071 E->getRHS()->getType()));
1073 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
1075 } else {
1076 if (!PromotionTypeRHS.isNull()) {
1077 OpInfo.RHS = ComplexPairTy(
1078 CGF.EmitPromotedComplexExpr(E->getRHS(), PromotionTypeRHS));
1079 } else {
1080 assert(CGF.getContext().hasSameUnqualifiedType(OpInfo.Ty,
1081 E->getRHS()->getType()));
1082 OpInfo.RHS = Visit(E->getRHS());
1086 LValue LHS = CGF.EmitLValue(E->getLHS());
1088 // Load from the l-value and convert it.
1089 SourceLocation Loc = E->getExprLoc();
1090 QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType());
1091 if (LHSTy->isAnyComplexType()) {
1092 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
1093 if (!PromotionTypeLHS.isNull())
1094 OpInfo.LHS =
1095 EmitComplexToComplexCast(LHSVal, LHSTy, PromotionTypeLHS, Loc);
1096 else
1097 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
1098 } else {
1099 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
1100 // For floating point real operands we can directly pass the scalar form
1101 // to the binary operator emission and potentially get more efficient code.
1102 if (LHSTy->isRealFloatingType()) {
1103 QualType PromotedComplexElementTy;
1104 if (!PromotionTypeLHS.isNull()) {
1105 PromotedComplexElementTy =
1106 cast<ComplexType>(PromotionTypeLHS)->getElementType();
1107 if (!CGF.getContext().hasSameUnqualifiedType(PromotedComplexElementTy,
1108 PromotionTypeLHS))
1109 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy,
1110 PromotedComplexElementTy, Loc);
1111 } else {
1112 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
1113 LHSVal =
1114 CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
1116 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
1117 } else {
1118 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
1122 // Expand the binary operator.
1123 ComplexPairTy Result = (this->*Func)(OpInfo);
1125 // Truncate the result and store it into the LHS lvalue.
1126 if (LHSTy->isAnyComplexType()) {
1127 ComplexPairTy ResVal =
1128 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
1129 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
1130 Val = RValue::getComplex(ResVal);
1131 } else {
1132 llvm::Value *ResVal =
1133 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
1134 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
1135 Val = RValue::get(ResVal);
1138 return LHS;
1141 // Compound assignments.
1142 ComplexPairTy ComplexExprEmitter::
1143 EmitCompoundAssign(const CompoundAssignOperator *E,
1144 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
1145 RValue Val;
1146 LValue LV = EmitCompoundAssignLValue(E, Func, Val);
1148 // The result of an assignment in C is the assigned r-value.
1149 if (!CGF.getLangOpts().CPlusPlus)
1150 return Val.getComplexVal();
1152 // If the lvalue is non-volatile, return the computed value of the assignment.
1153 if (!LV.isVolatileQualified())
1154 return Val.getComplexVal();
1156 return EmitLoadOfLValue(LV, E->getExprLoc());
1159 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
1160 ComplexPairTy &Val) {
1161 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1162 E->getRHS()->getType()) &&
1163 "Invalid assignment");
1164 TestAndClearIgnoreReal();
1165 TestAndClearIgnoreImag();
1167 // Emit the RHS. __block variables need the RHS evaluated first.
1168 Val = Visit(E->getRHS());
1170 // Compute the address to store into.
1171 LValue LHS = CGF.EmitLValue(E->getLHS());
1173 // Store the result value into the LHS lvalue.
1174 EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
1176 return LHS;
1179 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1180 ComplexPairTy Val;
1181 LValue LV = EmitBinAssignLValue(E, Val);
1183 // The result of an assignment in C is the assigned r-value.
1184 if (!CGF.getLangOpts().CPlusPlus)
1185 return Val;
1187 // If the lvalue is non-volatile, return the computed value of the assignment.
1188 if (!LV.isVolatileQualified())
1189 return Val;
1191 return EmitLoadOfLValue(LV, E->getExprLoc());
1194 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
1195 CGF.EmitIgnoredExpr(E->getLHS());
1196 return Visit(E->getRHS());
1199 ComplexPairTy ComplexExprEmitter::
1200 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1201 TestAndClearIgnoreReal();
1202 TestAndClearIgnoreImag();
1203 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1204 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1205 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1207 // Bind the common expression if necessary.
1208 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1211 CodeGenFunction::ConditionalEvaluation eval(CGF);
1212 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1213 CGF.getProfileCount(E));
1215 eval.begin(CGF);
1216 CGF.EmitBlock(LHSBlock);
1217 CGF.incrementProfileCounter(E);
1218 ComplexPairTy LHS = Visit(E->getTrueExpr());
1219 LHSBlock = Builder.GetInsertBlock();
1220 CGF.EmitBranch(ContBlock);
1221 eval.end(CGF);
1223 eval.begin(CGF);
1224 CGF.EmitBlock(RHSBlock);
1225 ComplexPairTy RHS = Visit(E->getFalseExpr());
1226 RHSBlock = Builder.GetInsertBlock();
1227 CGF.EmitBlock(ContBlock);
1228 eval.end(CGF);
1230 // Create a PHI node for the real part.
1231 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
1232 RealPN->addIncoming(LHS.first, LHSBlock);
1233 RealPN->addIncoming(RHS.first, RHSBlock);
1235 // Create a PHI node for the imaginary part.
1236 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
1237 ImagPN->addIncoming(LHS.second, LHSBlock);
1238 ImagPN->addIncoming(RHS.second, RHSBlock);
1240 return ComplexPairTy(RealPN, ImagPN);
1243 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1244 return Visit(E->getChosenSubExpr());
1247 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
1248 bool Ignore = TestAndClearIgnoreReal();
1249 (void)Ignore;
1250 assert (Ignore == false && "init list ignored");
1251 Ignore = TestAndClearIgnoreImag();
1252 (void)Ignore;
1253 assert (Ignore == false && "init list ignored");
1255 if (E->getNumInits() == 2) {
1256 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
1257 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
1258 return ComplexPairTy(Real, Imag);
1259 } else if (E->getNumInits() == 1) {
1260 return Visit(E->getInit(0));
1263 // Empty init list initializes to null
1264 assert(E->getNumInits() == 0 && "Unexpected number of inits");
1265 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
1266 llvm::Type* LTy = CGF.ConvertType(Ty);
1267 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1268 return ComplexPairTy(zeroConstant, zeroConstant);
1271 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1272 Address ArgValue = Address::invalid();
1273 Address ArgPtr = CGF.EmitVAArg(E, ArgValue);
1275 if (!ArgPtr.isValid()) {
1276 CGF.ErrorUnsupported(E, "complex va_arg expression");
1277 llvm::Type *EltTy =
1278 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
1279 llvm::Value *U = llvm::UndefValue::get(EltTy);
1280 return ComplexPairTy(U, U);
1283 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
1284 E->getExprLoc());
1287 //===----------------------------------------------------------------------===//
1288 // Entry Point into this File
1289 //===----------------------------------------------------------------------===//
1291 /// EmitComplexExpr - Emit the computation of the specified expression of
1292 /// complex type, ignoring the result.
1293 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
1294 bool IgnoreImag) {
1295 assert(E && getComplexType(E->getType()) &&
1296 "Invalid complex expression to emit");
1298 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1299 .Visit(const_cast<Expr *>(E));
1302 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
1303 bool isInit) {
1304 assert(E && getComplexType(E->getType()) &&
1305 "Invalid complex expression to emit");
1306 ComplexExprEmitter Emitter(*this);
1307 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
1308 Emitter.EmitStoreOfComplex(Val, dest, isInit);
1311 /// EmitStoreOfComplex - Store a complex number into the specified l-value.
1312 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
1313 bool isInit) {
1314 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1317 /// EmitLoadOfComplex - Load a complex number from the specified address.
1318 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
1319 SourceLocation loc) {
1320 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1323 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
1324 assert(E->getOpcode() == BO_Assign);
1325 ComplexPairTy Val; // ignored
1326 LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1327 if (getLangOpts().OpenMP)
1328 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1329 E->getLHS());
1330 return LVal;
1333 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
1334 const ComplexExprEmitter::BinOpInfo &);
1336 static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
1337 switch (Op) {
1338 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1339 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1340 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1341 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1342 default:
1343 llvm_unreachable("unexpected complex compound assignment");
1347 LValue CodeGenFunction::
1348 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
1349 CompoundFunc Op = getComplexOp(E->getOpcode());
1350 RValue Val;
1351 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1354 LValue CodeGenFunction::
1355 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
1356 llvm::Value *&Result) {
1357 CompoundFunc Op = getComplexOp(E->getOpcode());
1358 RValue Val;
1359 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1360 Result = Val.getScalarVal();
1361 return Ret;