[AMDGPU][AsmParser][NFC] Get rid of custom default operand handlers.
[llvm-project.git] / clang / lib / CodeGen / CGExprScalar.cpp
blob48643106416bb9eea8076277384fc1a1be721ca5
1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //===----------------------------------------------------------------------===//
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/FixedPointBuilder.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsPowerPC.h"
41 #include "llvm/IR/MatrixBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/Support/TypeSize.h"
44 #include <cstdarg>
45 #include <optional>
47 using namespace clang;
48 using namespace CodeGen;
49 using llvm::Value;
51 //===----------------------------------------------------------------------===//
52 // Scalar Expression Emitter
53 //===----------------------------------------------------------------------===//
55 namespace {
57 /// Determine whether the given binary operation may overflow.
58 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
59 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
60 /// the returned overflow check is precise. The returned value is 'true' for
61 /// all other opcodes, to be conservative.
62 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
63 BinaryOperator::Opcode Opcode, bool Signed,
64 llvm::APInt &Result) {
65 // Assume overflow is possible, unless we can prove otherwise.
66 bool Overflow = true;
67 const auto &LHSAP = LHS->getValue();
68 const auto &RHSAP = RHS->getValue();
69 if (Opcode == BO_Add) {
70 Result = Signed ? LHSAP.sadd_ov(RHSAP, Overflow)
71 : LHSAP.uadd_ov(RHSAP, Overflow);
72 } else if (Opcode == BO_Sub) {
73 Result = Signed ? LHSAP.ssub_ov(RHSAP, Overflow)
74 : LHSAP.usub_ov(RHSAP, Overflow);
75 } else if (Opcode == BO_Mul) {
76 Result = Signed ? LHSAP.smul_ov(RHSAP, Overflow)
77 : LHSAP.umul_ov(RHSAP, Overflow);
78 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
79 if (Signed && !RHS->isZero())
80 Result = LHSAP.sdiv_ov(RHSAP, Overflow);
81 else
82 return false;
84 return Overflow;
87 struct BinOpInfo {
88 Value *LHS;
89 Value *RHS;
90 QualType Ty; // Computation Type.
91 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
92 FPOptions FPFeatures;
93 const Expr *E; // Entire expr, for error unsupported. May not be binop.
95 /// Check if the binop can result in integer overflow.
96 bool mayHaveIntegerOverflow() const {
97 // Without constant input, we can't rule out overflow.
98 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
99 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
100 if (!LHSCI || !RHSCI)
101 return true;
103 llvm::APInt Result;
104 return ::mayHaveIntegerOverflow(
105 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
108 /// Check if the binop computes a division or a remainder.
109 bool isDivremOp() const {
110 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
111 Opcode == BO_RemAssign;
114 /// Check if the binop can result in an integer division by zero.
115 bool mayHaveIntegerDivisionByZero() const {
116 if (isDivremOp())
117 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
118 return CI->isZero();
119 return true;
122 /// Check if the binop can result in a float division by zero.
123 bool mayHaveFloatDivisionByZero() const {
124 if (isDivremOp())
125 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
126 return CFP->isZero();
127 return true;
130 /// Check if at least one operand is a fixed point type. In such cases, this
131 /// operation did not follow usual arithmetic conversion and both operands
132 /// might not be of the same type.
133 bool isFixedPointOp() const {
134 // We cannot simply check the result type since comparison operations return
135 // an int.
136 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
137 QualType LHSType = BinOp->getLHS()->getType();
138 QualType RHSType = BinOp->getRHS()->getType();
139 return LHSType->isFixedPointType() || RHSType->isFixedPointType();
141 if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
142 return UnOp->getSubExpr()->getType()->isFixedPointType();
143 return false;
147 static bool MustVisitNullValue(const Expr *E) {
148 // If a null pointer expression's type is the C++0x nullptr_t, then
149 // it's not necessarily a simple constant and it must be evaluated
150 // for its potential side effects.
151 return E->getType()->isNullPtrType();
154 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
155 static std::optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
156 const Expr *E) {
157 const Expr *Base = E->IgnoreImpCasts();
158 if (E == Base)
159 return std::nullopt;
161 QualType BaseTy = Base->getType();
162 if (!Ctx.isPromotableIntegerType(BaseTy) ||
163 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
164 return std::nullopt;
166 return BaseTy;
169 /// Check if \p E is a widened promoted integer.
170 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
171 return getUnwidenedIntegerType(Ctx, E).has_value();
174 /// Check if we can skip the overflow check for \p Op.
175 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
176 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
177 "Expected a unary or binary operator");
179 // If the binop has constant inputs and we can prove there is no overflow,
180 // we can elide the overflow check.
181 if (!Op.mayHaveIntegerOverflow())
182 return true;
184 // If a unary op has a widened operand, the op cannot overflow.
185 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
186 return !UO->canOverflow();
188 // We usually don't need overflow checks for binops with widened operands.
189 // Multiplication with promoted unsigned operands is a special case.
190 const auto *BO = cast<BinaryOperator>(Op.E);
191 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
192 if (!OptionalLHSTy)
193 return false;
195 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
196 if (!OptionalRHSTy)
197 return false;
199 QualType LHSTy = *OptionalLHSTy;
200 QualType RHSTy = *OptionalRHSTy;
202 // This is the simple case: binops without unsigned multiplication, and with
203 // widened operands. No overflow check is needed here.
204 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
205 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
206 return true;
208 // For unsigned multiplication the overflow check can be elided if either one
209 // of the unpromoted types are less than half the size of the promoted type.
210 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
211 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
212 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
215 class ScalarExprEmitter
216 : public StmtVisitor<ScalarExprEmitter, Value*> {
217 CodeGenFunction &CGF;
218 CGBuilderTy &Builder;
219 bool IgnoreResultAssign;
220 llvm::LLVMContext &VMContext;
221 public:
223 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
224 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
225 VMContext(cgf.getLLVMContext()) {
228 //===--------------------------------------------------------------------===//
229 // Utilities
230 //===--------------------------------------------------------------------===//
232 bool TestAndClearIgnoreResultAssign() {
233 bool I = IgnoreResultAssign;
234 IgnoreResultAssign = false;
235 return I;
238 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
239 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
240 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
241 return CGF.EmitCheckedLValue(E, TCK);
244 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
245 const BinOpInfo &Info);
247 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
248 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
251 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
252 const AlignValueAttr *AVAttr = nullptr;
253 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
254 const ValueDecl *VD = DRE->getDecl();
256 if (VD->getType()->isReferenceType()) {
257 if (const auto *TTy =
258 VD->getType().getNonReferenceType()->getAs<TypedefType>())
259 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
260 } else {
261 // Assumptions for function parameters are emitted at the start of the
262 // function, so there is no need to repeat that here,
263 // unless the alignment-assumption sanitizer is enabled,
264 // then we prefer the assumption over alignment attribute
265 // on IR function param.
266 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
267 return;
269 AVAttr = VD->getAttr<AlignValueAttr>();
273 if (!AVAttr)
274 if (const auto *TTy = E->getType()->getAs<TypedefType>())
275 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
277 if (!AVAttr)
278 return;
280 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
281 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
282 CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
285 /// EmitLoadOfLValue - Given an expression with complex type that represents a
286 /// value l-value, this method emits the address of the l-value, then loads
287 /// and returns the result.
288 Value *EmitLoadOfLValue(const Expr *E) {
289 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
290 E->getExprLoc());
292 EmitLValueAlignmentAssumption(E, V);
293 return V;
296 /// EmitConversionToBool - Convert the specified expression value to a
297 /// boolean (i1) truth value. This is equivalent to "Val != 0".
298 Value *EmitConversionToBool(Value *Src, QualType DstTy);
300 /// Emit a check that a conversion from a floating-point type does not
301 /// overflow.
302 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
303 Value *Src, QualType SrcType, QualType DstType,
304 llvm::Type *DstTy, SourceLocation Loc);
306 /// Known implicit conversion check kinds.
307 /// Keep in sync with the enum of the same name in ubsan_handlers.h
308 enum ImplicitConversionCheckKind : unsigned char {
309 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
310 ICCK_UnsignedIntegerTruncation = 1,
311 ICCK_SignedIntegerTruncation = 2,
312 ICCK_IntegerSignChange = 3,
313 ICCK_SignedIntegerTruncationOrSignChange = 4,
316 /// Emit a check that an [implicit] truncation of an integer does not
317 /// discard any bits. It is not UB, so we use the value after truncation.
318 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
319 QualType DstType, SourceLocation Loc);
321 /// Emit a check that an [implicit] conversion of an integer does not change
322 /// the sign of the value. It is not UB, so we use the value after conversion.
323 /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
324 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
325 QualType DstType, SourceLocation Loc);
327 /// Emit a conversion from the specified type to the specified destination
328 /// type, both of which are LLVM scalar types.
329 struct ScalarConversionOpts {
330 bool TreatBooleanAsSigned;
331 bool EmitImplicitIntegerTruncationChecks;
332 bool EmitImplicitIntegerSignChangeChecks;
334 ScalarConversionOpts()
335 : TreatBooleanAsSigned(false),
336 EmitImplicitIntegerTruncationChecks(false),
337 EmitImplicitIntegerSignChangeChecks(false) {}
339 ScalarConversionOpts(clang::SanitizerSet SanOpts)
340 : TreatBooleanAsSigned(false),
341 EmitImplicitIntegerTruncationChecks(
342 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
343 EmitImplicitIntegerSignChangeChecks(
344 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
346 Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
347 llvm::Type *SrcTy, llvm::Type *DstTy,
348 ScalarConversionOpts Opts);
349 Value *
350 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
351 SourceLocation Loc,
352 ScalarConversionOpts Opts = ScalarConversionOpts());
354 /// Convert between either a fixed point and other fixed point or fixed point
355 /// and an integer.
356 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
357 SourceLocation Loc);
359 /// Emit a conversion from the specified complex type to the specified
360 /// destination type, where the destination type is an LLVM scalar type.
361 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
362 QualType SrcTy, QualType DstTy,
363 SourceLocation Loc);
365 /// EmitNullValue - Emit a value that corresponds to null for the given type.
366 Value *EmitNullValue(QualType Ty);
368 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
369 Value *EmitFloatToBoolConversion(Value *V) {
370 // Compare against 0.0 for fp scalars.
371 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
372 return Builder.CreateFCmpUNE(V, Zero, "tobool");
375 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
376 Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
377 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
379 return Builder.CreateICmpNE(V, Zero, "tobool");
382 Value *EmitIntToBoolConversion(Value *V) {
383 // Because of the type rules of C, we often end up computing a
384 // logical value, then zero extending it to int, then wanting it
385 // as a logical value again. Optimize this common case.
386 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
387 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
388 Value *Result = ZI->getOperand(0);
389 // If there aren't any more uses, zap the instruction to save space.
390 // Note that there can be more uses, for example if this
391 // is the result of an assignment.
392 if (ZI->use_empty())
393 ZI->eraseFromParent();
394 return Result;
398 return Builder.CreateIsNotNull(V, "tobool");
401 //===--------------------------------------------------------------------===//
402 // Visitor Methods
403 //===--------------------------------------------------------------------===//
405 Value *Visit(Expr *E) {
406 ApplyDebugLocation DL(CGF, E);
407 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
410 Value *VisitStmt(Stmt *S) {
411 S->dump(llvm::errs(), CGF.getContext());
412 llvm_unreachable("Stmt can't have complex result type!");
414 Value *VisitExpr(Expr *S);
416 Value *VisitConstantExpr(ConstantExpr *E) {
417 // A constant expression of type 'void' generates no code and produces no
418 // value.
419 if (E->getType()->isVoidType())
420 return nullptr;
422 if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
423 if (E->isGLValue())
424 return CGF.Builder.CreateLoad(Address(
425 Result, CGF.ConvertTypeForMem(E->getType()),
426 CGF.getContext().getTypeAlignInChars(E->getType())));
427 return Result;
429 return Visit(E->getSubExpr());
431 Value *VisitParenExpr(ParenExpr *PE) {
432 return Visit(PE->getSubExpr());
434 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
435 return Visit(E->getReplacement());
437 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
438 return Visit(GE->getResultExpr());
440 Value *VisitCoawaitExpr(CoawaitExpr *S) {
441 return CGF.EmitCoawaitExpr(*S).getScalarVal();
443 Value *VisitCoyieldExpr(CoyieldExpr *S) {
444 return CGF.EmitCoyieldExpr(*S).getScalarVal();
446 Value *VisitUnaryCoawait(const UnaryOperator *E) {
447 return Visit(E->getSubExpr());
450 // Leaves.
451 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
452 return Builder.getInt(E->getValue());
454 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
455 return Builder.getInt(E->getValue());
457 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
458 return llvm::ConstantFP::get(VMContext, E->getValue());
460 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
461 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
463 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
464 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
466 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
467 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
469 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
470 if (E->getType()->isVoidType())
471 return nullptr;
473 return EmitNullValue(E->getType());
475 Value *VisitGNUNullExpr(const GNUNullExpr *E) {
476 return EmitNullValue(E->getType());
478 Value *VisitOffsetOfExpr(OffsetOfExpr *E);
479 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
480 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
481 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
482 return Builder.CreateBitCast(V, ConvertType(E->getType()));
485 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
486 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
489 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
490 return CGF.EmitPseudoObjectRValue(E).getScalarVal();
493 Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
495 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
496 if (E->isGLValue())
497 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
498 E->getExprLoc());
500 // Otherwise, assume the mapping is the scalar directly.
501 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
504 // l-values.
505 Value *VisitDeclRefExpr(DeclRefExpr *E) {
506 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
507 return CGF.emitScalarConstant(Constant, E);
508 return EmitLoadOfLValue(E);
511 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
512 return CGF.EmitObjCSelectorExpr(E);
514 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
515 return CGF.EmitObjCProtocolExpr(E);
517 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
518 return EmitLoadOfLValue(E);
520 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
521 if (E->getMethodDecl() &&
522 E->getMethodDecl()->getReturnType()->isReferenceType())
523 return EmitLoadOfLValue(E);
524 return CGF.EmitObjCMessageExpr(E).getScalarVal();
527 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
528 LValue LV = CGF.EmitObjCIsaExpr(E);
529 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
530 return V;
533 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
534 VersionTuple Version = E->getVersion();
536 // If we're checking for a platform older than our minimum deployment
537 // target, we can fold the check away.
538 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
539 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
541 return CGF.EmitBuiltinAvailable(Version);
544 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
545 Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
546 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
547 Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
548 Value *VisitMemberExpr(MemberExpr *E);
549 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
550 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
551 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
552 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
553 // literals aren't l-values in C++. We do so simply because that's the
554 // cleanest way to handle compound literals in C++.
555 // See the discussion here: https://reviews.llvm.org/D64464
556 return EmitLoadOfLValue(E);
559 Value *VisitInitListExpr(InitListExpr *E);
561 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
562 assert(CGF.getArrayInitIndex() &&
563 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
564 return CGF.getArrayInitIndex();
567 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
568 return EmitNullValue(E->getType());
570 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
571 CGF.CGM.EmitExplicitCastExprType(E, &CGF);
572 return VisitCastExpr(E);
574 Value *VisitCastExpr(CastExpr *E);
576 Value *VisitCallExpr(const CallExpr *E) {
577 if (E->getCallReturnType(CGF.getContext())->isReferenceType())
578 return EmitLoadOfLValue(E);
580 Value *V = CGF.EmitCallExpr(E).getScalarVal();
582 EmitLValueAlignmentAssumption(E, V);
583 return V;
586 Value *VisitStmtExpr(const StmtExpr *E);
588 // Unary Operators.
589 Value *VisitUnaryPostDec(const UnaryOperator *E) {
590 LValue LV = EmitLValue(E->getSubExpr());
591 return EmitScalarPrePostIncDec(E, LV, false, false);
593 Value *VisitUnaryPostInc(const UnaryOperator *E) {
594 LValue LV = EmitLValue(E->getSubExpr());
595 return EmitScalarPrePostIncDec(E, LV, true, false);
597 Value *VisitUnaryPreDec(const UnaryOperator *E) {
598 LValue LV = EmitLValue(E->getSubExpr());
599 return EmitScalarPrePostIncDec(E, LV, false, true);
601 Value *VisitUnaryPreInc(const UnaryOperator *E) {
602 LValue LV = EmitLValue(E->getSubExpr());
603 return EmitScalarPrePostIncDec(E, LV, true, true);
606 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
607 llvm::Value *InVal,
608 bool IsInc);
610 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
611 bool isInc, bool isPre);
614 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
615 if (isa<MemberPointerType>(E->getType())) // never sugared
616 return CGF.CGM.getMemberPointerConstant(E);
618 return EmitLValue(E->getSubExpr()).getPointer(CGF);
620 Value *VisitUnaryDeref(const UnaryOperator *E) {
621 if (E->getType()->isVoidType())
622 return Visit(E->getSubExpr()); // the actual value should be unused
623 return EmitLoadOfLValue(E);
626 Value *VisitUnaryPlus(const UnaryOperator *E,
627 QualType PromotionType = QualType());
628 Value *VisitPlus(const UnaryOperator *E, QualType PromotionType);
629 Value *VisitUnaryMinus(const UnaryOperator *E,
630 QualType PromotionType = QualType());
631 Value *VisitMinus(const UnaryOperator *E, QualType PromotionType);
633 Value *VisitUnaryNot (const UnaryOperator *E);
634 Value *VisitUnaryLNot (const UnaryOperator *E);
635 Value *VisitUnaryReal(const UnaryOperator *E,
636 QualType PromotionType = QualType());
637 Value *VisitReal(const UnaryOperator *E, QualType PromotionType);
638 Value *VisitUnaryImag(const UnaryOperator *E,
639 QualType PromotionType = QualType());
640 Value *VisitImag(const UnaryOperator *E, QualType PromotionType);
641 Value *VisitUnaryExtension(const UnaryOperator *E) {
642 return Visit(E->getSubExpr());
645 // C++
646 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
647 return EmitLoadOfLValue(E);
649 Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
650 auto &Ctx = CGF.getContext();
651 APValue Evaluated =
652 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
653 return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
654 SLE->getType());
657 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
658 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
659 return Visit(DAE->getExpr());
661 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
662 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
663 return Visit(DIE->getExpr());
665 Value *VisitCXXThisExpr(CXXThisExpr *TE) {
666 return CGF.LoadCXXThis();
669 Value *VisitExprWithCleanups(ExprWithCleanups *E);
670 Value *VisitCXXNewExpr(const CXXNewExpr *E) {
671 return CGF.EmitCXXNewExpr(E);
673 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
674 CGF.EmitCXXDeleteExpr(E);
675 return nullptr;
678 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
679 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
682 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
683 return Builder.getInt1(E->isSatisfied());
686 Value *VisitRequiresExpr(const RequiresExpr *E) {
687 return Builder.getInt1(E->isSatisfied());
690 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
691 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
694 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
695 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
698 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
699 // C++ [expr.pseudo]p1:
700 // The result shall only be used as the operand for the function call
701 // operator (), and the result of such a call has type void. The only
702 // effect is the evaluation of the postfix-expression before the dot or
703 // arrow.
704 CGF.EmitScalarExpr(E->getBase());
705 return nullptr;
708 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
709 return EmitNullValue(E->getType());
712 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
713 CGF.EmitCXXThrowExpr(E);
714 return nullptr;
717 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
718 return Builder.getInt1(E->getValue());
721 // Binary Operators.
722 Value *EmitMul(const BinOpInfo &Ops) {
723 if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
724 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
725 case LangOptions::SOB_Defined:
726 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
727 case LangOptions::SOB_Undefined:
728 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
729 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
730 [[fallthrough]];
731 case LangOptions::SOB_Trapping:
732 if (CanElideOverflowCheck(CGF.getContext(), Ops))
733 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
734 return EmitOverflowCheckedBinOp(Ops);
738 if (Ops.Ty->isConstantMatrixType()) {
739 llvm::MatrixBuilder MB(Builder);
740 // We need to check the types of the operands of the operator to get the
741 // correct matrix dimensions.
742 auto *BO = cast<BinaryOperator>(Ops.E);
743 auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
744 BO->getLHS()->getType().getCanonicalType());
745 auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
746 BO->getRHS()->getType().getCanonicalType());
747 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
748 if (LHSMatTy && RHSMatTy)
749 return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
750 LHSMatTy->getNumColumns(),
751 RHSMatTy->getNumColumns());
752 return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
755 if (Ops.Ty->isUnsignedIntegerType() &&
756 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
757 !CanElideOverflowCheck(CGF.getContext(), Ops))
758 return EmitOverflowCheckedBinOp(Ops);
760 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
761 // Preserve the old values
762 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
763 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
765 if (Ops.isFixedPointOp())
766 return EmitFixedPointBinOp(Ops);
767 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
769 /// Create a binary op that checks for overflow.
770 /// Currently only supports +, - and *.
771 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
773 // Check for undefined division and modulus behaviors.
774 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
775 llvm::Value *Zero,bool isDiv);
776 // Common helper for getting how wide LHS of shift is.
777 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
779 // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
780 // non powers of two.
781 Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
783 Value *EmitDiv(const BinOpInfo &Ops);
784 Value *EmitRem(const BinOpInfo &Ops);
785 Value *EmitAdd(const BinOpInfo &Ops);
786 Value *EmitSub(const BinOpInfo &Ops);
787 Value *EmitShl(const BinOpInfo &Ops);
788 Value *EmitShr(const BinOpInfo &Ops);
789 Value *EmitAnd(const BinOpInfo &Ops) {
790 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
792 Value *EmitXor(const BinOpInfo &Ops) {
793 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
795 Value *EmitOr (const BinOpInfo &Ops) {
796 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
799 // Helper functions for fixed point binary operations.
800 Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
802 BinOpInfo EmitBinOps(const BinaryOperator *E,
803 QualType PromotionTy = QualType());
805 Value *EmitPromotedValue(Value *result, QualType PromotionType);
806 Value *EmitUnPromotedValue(Value *result, QualType ExprType);
807 Value *EmitPromoted(const Expr *E, QualType PromotionType);
809 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
810 Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
811 Value *&Result);
813 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
814 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
816 QualType getPromotionType(QualType Ty) {
817 const auto &Ctx = CGF.getContext();
818 if (auto *CT = Ty->getAs<ComplexType>()) {
819 QualType ElementType = CT->getElementType();
820 if (ElementType.UseExcessPrecision(Ctx))
821 return Ctx.getComplexType(Ctx.FloatTy);
824 if (Ty.UseExcessPrecision(Ctx)) {
825 if (auto *VT = Ty->getAs<VectorType>()) {
826 unsigned NumElements = VT->getNumElements();
827 return Ctx.getVectorType(Ctx.FloatTy, NumElements, VT->getVectorKind());
829 return Ctx.FloatTy;
832 return QualType();
835 // Binary operators and binary compound assignment operators.
836 #define HANDLEBINOP(OP) \
837 Value *VisitBin##OP(const BinaryOperator *E) { \
838 QualType promotionTy = getPromotionType(E->getType()); \
839 auto result = Emit##OP(EmitBinOps(E, promotionTy)); \
840 if (result && !promotionTy.isNull()) \
841 result = EmitUnPromotedValue(result, E->getType()); \
842 return result; \
844 Value *VisitBin##OP##Assign(const CompoundAssignOperator *E) { \
845 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit##OP); \
847 HANDLEBINOP(Mul)
848 HANDLEBINOP(Div)
849 HANDLEBINOP(Rem)
850 HANDLEBINOP(Add)
851 HANDLEBINOP(Sub)
852 HANDLEBINOP(Shl)
853 HANDLEBINOP(Shr)
854 HANDLEBINOP(And)
855 HANDLEBINOP(Xor)
856 HANDLEBINOP(Or)
857 #undef HANDLEBINOP
859 // Comparisons.
860 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
861 llvm::CmpInst::Predicate SICmpOpc,
862 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
863 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
864 Value *VisitBin##CODE(const BinaryOperator *E) { \
865 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
866 llvm::FCmpInst::FP, SIG); }
867 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
868 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
869 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
870 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
871 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
872 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
873 #undef VISITCOMP
875 Value *VisitBinAssign (const BinaryOperator *E);
877 Value *VisitBinLAnd (const BinaryOperator *E);
878 Value *VisitBinLOr (const BinaryOperator *E);
879 Value *VisitBinComma (const BinaryOperator *E);
881 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
882 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
884 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
885 return Visit(E->getSemanticForm());
888 // Other Operators.
889 Value *VisitBlockExpr(const BlockExpr *BE);
890 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
891 Value *VisitChooseExpr(ChooseExpr *CE);
892 Value *VisitVAArgExpr(VAArgExpr *VE);
893 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
894 return CGF.EmitObjCStringLiteral(E);
896 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
897 return CGF.EmitObjCBoxedExpr(E);
899 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
900 return CGF.EmitObjCArrayLiteral(E);
902 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
903 return CGF.EmitObjCDictionaryLiteral(E);
905 Value *VisitAsTypeExpr(AsTypeExpr *CE);
906 Value *VisitAtomicExpr(AtomicExpr *AE);
908 } // end anonymous namespace.
910 //===----------------------------------------------------------------------===//
911 // Utilities
912 //===----------------------------------------------------------------------===//
914 /// EmitConversionToBool - Convert the specified expression value to a
915 /// boolean (i1) truth value. This is equivalent to "Val != 0".
916 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
917 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
919 if (SrcType->isRealFloatingType())
920 return EmitFloatToBoolConversion(Src);
922 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
923 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
925 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
926 "Unknown scalar type to convert");
928 if (isa<llvm::IntegerType>(Src->getType()))
929 return EmitIntToBoolConversion(Src);
931 assert(isa<llvm::PointerType>(Src->getType()));
932 return EmitPointerToBoolConversion(Src, SrcType);
935 void ScalarExprEmitter::EmitFloatConversionCheck(
936 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
937 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
938 assert(SrcType->isFloatingType() && "not a conversion from floating point");
939 if (!isa<llvm::IntegerType>(DstTy))
940 return;
942 CodeGenFunction::SanitizerScope SanScope(&CGF);
943 using llvm::APFloat;
944 using llvm::APSInt;
946 llvm::Value *Check = nullptr;
947 const llvm::fltSemantics &SrcSema =
948 CGF.getContext().getFloatTypeSemantics(OrigSrcType);
950 // Floating-point to integer. This has undefined behavior if the source is
951 // +-Inf, NaN, or doesn't fit into the destination type (after truncation
952 // to an integer).
953 unsigned Width = CGF.getContext().getIntWidth(DstType);
954 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
956 APSInt Min = APSInt::getMinValue(Width, Unsigned);
957 APFloat MinSrc(SrcSema, APFloat::uninitialized);
958 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
959 APFloat::opOverflow)
960 // Don't need an overflow check for lower bound. Just check for
961 // -Inf/NaN.
962 MinSrc = APFloat::getInf(SrcSema, true);
963 else
964 // Find the largest value which is too small to represent (before
965 // truncation toward zero).
966 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
968 APSInt Max = APSInt::getMaxValue(Width, Unsigned);
969 APFloat MaxSrc(SrcSema, APFloat::uninitialized);
970 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
971 APFloat::opOverflow)
972 // Don't need an overflow check for upper bound. Just check for
973 // +Inf/NaN.
974 MaxSrc = APFloat::getInf(SrcSema, false);
975 else
976 // Find the smallest value which is too large to represent (before
977 // truncation toward zero).
978 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
980 // If we're converting from __half, convert the range to float to match
981 // the type of src.
982 if (OrigSrcType->isHalfType()) {
983 const llvm::fltSemantics &Sema =
984 CGF.getContext().getFloatTypeSemantics(SrcType);
985 bool IsInexact;
986 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
987 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
990 llvm::Value *GE =
991 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
992 llvm::Value *LE =
993 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
994 Check = Builder.CreateAnd(GE, LE);
996 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
997 CGF.EmitCheckTypeDescriptor(OrigSrcType),
998 CGF.EmitCheckTypeDescriptor(DstType)};
999 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
1000 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
1003 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1004 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
1005 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1006 std::pair<llvm::Value *, SanitizerMask>>
1007 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1008 QualType DstType, CGBuilderTy &Builder) {
1009 llvm::Type *SrcTy = Src->getType();
1010 llvm::Type *DstTy = Dst->getType();
1011 (void)DstTy; // Only used in assert()
1013 // This should be truncation of integral types.
1014 assert(Src != Dst);
1015 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
1016 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1017 "non-integer llvm type");
1019 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1020 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1022 // If both (src and dst) types are unsigned, then it's an unsigned truncation.
1023 // Else, it is a signed truncation.
1024 ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1025 SanitizerMask Mask;
1026 if (!SrcSigned && !DstSigned) {
1027 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1028 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
1029 } else {
1030 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1031 Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
1034 llvm::Value *Check = nullptr;
1035 // 1. Extend the truncated value back to the same width as the Src.
1036 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1037 // 2. Equality-compare with the original source value
1038 Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1039 // If the comparison result is 'i1 false', then the truncation was lossy.
1040 return std::make_pair(Kind, std::make_pair(Check, Mask));
1043 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1044 QualType SrcType, QualType DstType) {
1045 return SrcType->isIntegerType() && DstType->isIntegerType();
1048 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1049 Value *Dst, QualType DstType,
1050 SourceLocation Loc) {
1051 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1052 return;
1054 // We only care about int->int conversions here.
1055 // We ignore conversions to/from pointer and/or bool.
1056 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1057 DstType))
1058 return;
1060 unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1061 unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1062 // This must be truncation. Else we do not care.
1063 if (SrcBits <= DstBits)
1064 return;
1066 assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1068 // If the integer sign change sanitizer is enabled,
1069 // and we are truncating from larger unsigned type to smaller signed type,
1070 // let that next sanitizer deal with it.
1071 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1072 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1073 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1074 (!SrcSigned && DstSigned))
1075 return;
1077 CodeGenFunction::SanitizerScope SanScope(&CGF);
1079 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1080 std::pair<llvm::Value *, SanitizerMask>>
1081 Check =
1082 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1083 // If the comparison result is 'i1 false', then the truncation was lossy.
1085 // Do we care about this type of truncation?
1086 if (!CGF.SanOpts.has(Check.second.second))
1087 return;
1089 llvm::Constant *StaticArgs[] = {
1090 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1091 CGF.EmitCheckTypeDescriptor(DstType),
1092 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1093 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1094 {Src, Dst});
1097 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1098 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1099 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1100 std::pair<llvm::Value *, SanitizerMask>>
1101 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1102 QualType DstType, CGBuilderTy &Builder) {
1103 llvm::Type *SrcTy = Src->getType();
1104 llvm::Type *DstTy = Dst->getType();
1106 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1107 "non-integer llvm type");
1109 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1110 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1111 (void)SrcSigned; // Only used in assert()
1112 (void)DstSigned; // Only used in assert()
1113 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1114 unsigned DstBits = DstTy->getScalarSizeInBits();
1115 (void)SrcBits; // Only used in assert()
1116 (void)DstBits; // Only used in assert()
1118 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1119 "either the widths should be different, or the signednesses.");
1121 // NOTE: zero value is considered to be non-negative.
1122 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1123 const char *Name) -> Value * {
1124 // Is this value a signed type?
1125 bool VSigned = VType->isSignedIntegerOrEnumerationType();
1126 llvm::Type *VTy = V->getType();
1127 if (!VSigned) {
1128 // If the value is unsigned, then it is never negative.
1129 // FIXME: can we encounter non-scalar VTy here?
1130 return llvm::ConstantInt::getFalse(VTy->getContext());
1132 // Get the zero of the same type with which we will be comparing.
1133 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1134 // %V.isnegative = icmp slt %V, 0
1135 // I.e is %V *strictly* less than zero, does it have negative value?
1136 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1137 llvm::Twine(Name) + "." + V->getName() +
1138 ".negativitycheck");
1141 // 1. Was the old Value negative?
1142 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1143 // 2. Is the new Value negative?
1144 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1145 // 3. Now, was the 'negativity status' preserved during the conversion?
1146 // NOTE: conversion from negative to zero is considered to change the sign.
1147 // (We want to get 'false' when the conversion changed the sign)
1148 // So we should just equality-compare the negativity statuses.
1149 llvm::Value *Check = nullptr;
1150 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1151 // If the comparison result is 'false', then the conversion changed the sign.
1152 return std::make_pair(
1153 ScalarExprEmitter::ICCK_IntegerSignChange,
1154 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1157 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1158 Value *Dst, QualType DstType,
1159 SourceLocation Loc) {
1160 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1161 return;
1163 llvm::Type *SrcTy = Src->getType();
1164 llvm::Type *DstTy = Dst->getType();
1166 // We only care about int->int conversions here.
1167 // We ignore conversions to/from pointer and/or bool.
1168 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1169 DstType))
1170 return;
1172 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1173 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1174 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1175 unsigned DstBits = DstTy->getScalarSizeInBits();
1177 // Now, we do not need to emit the check in *all* of the cases.
1178 // We can avoid emitting it in some obvious cases where it would have been
1179 // dropped by the opt passes (instcombine) always anyways.
1180 // If it's a cast between effectively the same type, no check.
1181 // NOTE: this is *not* equivalent to checking the canonical types.
1182 if (SrcSigned == DstSigned && SrcBits == DstBits)
1183 return;
1184 // At least one of the values needs to have signed type.
1185 // If both are unsigned, then obviously, neither of them can be negative.
1186 if (!SrcSigned && !DstSigned)
1187 return;
1188 // If the conversion is to *larger* *signed* type, then no check is needed.
1189 // Because either sign-extension happens (so the sign will remain),
1190 // or zero-extension will happen (the sign bit will be zero.)
1191 if ((DstBits > SrcBits) && DstSigned)
1192 return;
1193 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1194 (SrcBits > DstBits) && SrcSigned) {
1195 // If the signed integer truncation sanitizer is enabled,
1196 // and this is a truncation from signed type, then no check is needed.
1197 // Because here sign change check is interchangeable with truncation check.
1198 return;
1200 // That's it. We can't rule out any more cases with the data we have.
1202 CodeGenFunction::SanitizerScope SanScope(&CGF);
1204 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1205 std::pair<llvm::Value *, SanitizerMask>>
1206 Check;
1208 // Each of these checks needs to return 'false' when an issue was detected.
1209 ImplicitConversionCheckKind CheckKind;
1210 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1211 // So we can 'and' all the checks together, and still get 'false',
1212 // if at least one of the checks detected an issue.
1214 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1215 CheckKind = Check.first;
1216 Checks.emplace_back(Check.second);
1218 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1219 (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1220 // If the signed integer truncation sanitizer was enabled,
1221 // and we are truncating from larger unsigned type to smaller signed type,
1222 // let's handle the case we skipped in that check.
1223 Check =
1224 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1225 CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1226 Checks.emplace_back(Check.second);
1227 // If the comparison result is 'i1 false', then the truncation was lossy.
1230 llvm::Constant *StaticArgs[] = {
1231 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1232 CGF.EmitCheckTypeDescriptor(DstType),
1233 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1234 // EmitCheck() will 'and' all the checks together.
1235 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1236 {Src, Dst});
1239 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1240 QualType DstType, llvm::Type *SrcTy,
1241 llvm::Type *DstTy,
1242 ScalarConversionOpts Opts) {
1243 // The Element types determine the type of cast to perform.
1244 llvm::Type *SrcElementTy;
1245 llvm::Type *DstElementTy;
1246 QualType SrcElementType;
1247 QualType DstElementType;
1248 if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1249 SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1250 DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1251 SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1252 DstElementType = DstType->castAs<MatrixType>()->getElementType();
1253 } else {
1254 assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1255 "cannot cast between matrix and non-matrix types");
1256 SrcElementTy = SrcTy;
1257 DstElementTy = DstTy;
1258 SrcElementType = SrcType;
1259 DstElementType = DstType;
1262 if (isa<llvm::IntegerType>(SrcElementTy)) {
1263 bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1264 if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1265 InputSigned = true;
1268 if (isa<llvm::IntegerType>(DstElementTy))
1269 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1270 if (InputSigned)
1271 return Builder.CreateSIToFP(Src, DstTy, "conv");
1272 return Builder.CreateUIToFP(Src, DstTy, "conv");
1275 if (isa<llvm::IntegerType>(DstElementTy)) {
1276 assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1277 bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType();
1279 // If we can't recognize overflow as undefined behavior, assume that
1280 // overflow saturates. This protects against normal optimizations if we are
1281 // compiling with non-standard FP semantics.
1282 if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) {
1283 llvm::Intrinsic::ID IID =
1284 IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat;
1285 return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src);
1288 if (IsSigned)
1289 return Builder.CreateFPToSI(Src, DstTy, "conv");
1290 return Builder.CreateFPToUI(Src, DstTy, "conv");
1293 if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1294 return Builder.CreateFPTrunc(Src, DstTy, "conv");
1295 return Builder.CreateFPExt(Src, DstTy, "conv");
1298 /// Emit a conversion from the specified type to the specified destination type,
1299 /// both of which are LLVM scalar types.
1300 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1301 QualType DstType,
1302 SourceLocation Loc,
1303 ScalarConversionOpts Opts) {
1304 // All conversions involving fixed point types should be handled by the
1305 // EmitFixedPoint family functions. This is done to prevent bloating up this
1306 // function more, and although fixed point numbers are represented by
1307 // integers, we do not want to follow any logic that assumes they should be
1308 // treated as integers.
1309 // TODO(leonardchan): When necessary, add another if statement checking for
1310 // conversions to fixed point types from other types.
1311 if (SrcType->isFixedPointType()) {
1312 if (DstType->isBooleanType())
1313 // It is important that we check this before checking if the dest type is
1314 // an integer because booleans are technically integer types.
1315 // We do not need to check the padding bit on unsigned types if unsigned
1316 // padding is enabled because overflow into this bit is undefined
1317 // behavior.
1318 return Builder.CreateIsNotNull(Src, "tobool");
1319 if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1320 DstType->isRealFloatingType())
1321 return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1323 llvm_unreachable(
1324 "Unhandled scalar conversion from a fixed point type to another type.");
1325 } else if (DstType->isFixedPointType()) {
1326 if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1327 // This also includes converting booleans and enums to fixed point types.
1328 return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1330 llvm_unreachable(
1331 "Unhandled scalar conversion to a fixed point type from another type.");
1334 QualType NoncanonicalSrcType = SrcType;
1335 QualType NoncanonicalDstType = DstType;
1337 SrcType = CGF.getContext().getCanonicalType(SrcType);
1338 DstType = CGF.getContext().getCanonicalType(DstType);
1339 if (SrcType == DstType) return Src;
1341 if (DstType->isVoidType()) return nullptr;
1343 llvm::Value *OrigSrc = Src;
1344 QualType OrigSrcType = SrcType;
1345 llvm::Type *SrcTy = Src->getType();
1347 // Handle conversions to bool first, they are special: comparisons against 0.
1348 if (DstType->isBooleanType())
1349 return EmitConversionToBool(Src, SrcType);
1351 llvm::Type *DstTy = ConvertType(DstType);
1353 // Cast from half through float if half isn't a native type.
1354 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1355 // Cast to FP using the intrinsic if the half type itself isn't supported.
1356 if (DstTy->isFloatingPointTy()) {
1357 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1358 return Builder.CreateCall(
1359 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1360 Src);
1361 } else {
1362 // Cast to other types through float, using either the intrinsic or FPExt,
1363 // depending on whether the half type itself is supported
1364 // (as opposed to operations on half, available with NativeHalfType).
1365 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1366 Src = Builder.CreateCall(
1367 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1368 CGF.CGM.FloatTy),
1369 Src);
1370 } else {
1371 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1373 SrcType = CGF.getContext().FloatTy;
1374 SrcTy = CGF.FloatTy;
1378 // Ignore conversions like int -> uint.
1379 if (SrcTy == DstTy) {
1380 if (Opts.EmitImplicitIntegerSignChangeChecks)
1381 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1382 NoncanonicalDstType, Loc);
1384 return Src;
1387 // Handle pointer conversions next: pointers can only be converted to/from
1388 // other pointers and integers. Check for pointer types in terms of LLVM, as
1389 // some native types (like Obj-C id) may map to a pointer type.
1390 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1391 // The source value may be an integer, or a pointer.
1392 if (isa<llvm::PointerType>(SrcTy))
1393 return Builder.CreateBitCast(Src, DstTy, "conv");
1395 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1396 // First, convert to the correct width so that we control the kind of
1397 // extension.
1398 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1399 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1400 llvm::Value* IntResult =
1401 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1402 // Then, cast to pointer.
1403 return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1406 if (isa<llvm::PointerType>(SrcTy)) {
1407 // Must be an ptr to int cast.
1408 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1409 return Builder.CreatePtrToInt(Src, DstTy, "conv");
1412 // A scalar can be splatted to an extended vector of the same element type
1413 if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1414 // Sema should add casts to make sure that the source expression's type is
1415 // the same as the vector's element type (sans qualifiers)
1416 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1417 SrcType.getTypePtr() &&
1418 "Splatted expr doesn't match with vector element type?");
1420 // Splat the element across to all elements
1421 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1422 return Builder.CreateVectorSplat(NumElements, Src, "splat");
1425 if (SrcType->isMatrixType() && DstType->isMatrixType())
1426 return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1428 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1429 // Allow bitcast from vector to integer/fp of the same size.
1430 llvm::TypeSize SrcSize = SrcTy->getPrimitiveSizeInBits();
1431 llvm::TypeSize DstSize = DstTy->getPrimitiveSizeInBits();
1432 if (SrcSize == DstSize)
1433 return Builder.CreateBitCast(Src, DstTy, "conv");
1435 // Conversions between vectors of different sizes are not allowed except
1436 // when vectors of half are involved. Operations on storage-only half
1437 // vectors require promoting half vector operands to float vectors and
1438 // truncating the result, which is either an int or float vector, to a
1439 // short or half vector.
1441 // Source and destination are both expected to be vectors.
1442 llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1443 llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1444 (void)DstElementTy;
1446 assert(((SrcElementTy->isIntegerTy() &&
1447 DstElementTy->isIntegerTy()) ||
1448 (SrcElementTy->isFloatingPointTy() &&
1449 DstElementTy->isFloatingPointTy())) &&
1450 "unexpected conversion between a floating-point vector and an "
1451 "integer vector");
1453 // Truncate an i32 vector to an i16 vector.
1454 if (SrcElementTy->isIntegerTy())
1455 return Builder.CreateIntCast(Src, DstTy, false, "conv");
1457 // Truncate a float vector to a half vector.
1458 if (SrcSize > DstSize)
1459 return Builder.CreateFPTrunc(Src, DstTy, "conv");
1461 // Promote a half vector to a float vector.
1462 return Builder.CreateFPExt(Src, DstTy, "conv");
1465 // Finally, we have the arithmetic types: real int/float.
1466 Value *Res = nullptr;
1467 llvm::Type *ResTy = DstTy;
1469 // An overflowing conversion has undefined behavior if either the source type
1470 // or the destination type is a floating-point type. However, we consider the
1471 // range of representable values for all floating-point types to be
1472 // [-inf,+inf], so no overflow can ever happen when the destination type is a
1473 // floating-point type.
1474 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1475 OrigSrcType->isFloatingType())
1476 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1477 Loc);
1479 // Cast to half through float if half isn't a native type.
1480 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1481 // Make sure we cast in a single step if from another FP type.
1482 if (SrcTy->isFloatingPointTy()) {
1483 // Use the intrinsic if the half type itself isn't supported
1484 // (as opposed to operations on half, available with NativeHalfType).
1485 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1486 return Builder.CreateCall(
1487 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1488 // If the half type is supported, just use an fptrunc.
1489 return Builder.CreateFPTrunc(Src, DstTy);
1491 DstTy = CGF.FloatTy;
1494 Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1496 if (DstTy != ResTy) {
1497 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1498 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1499 Res = Builder.CreateCall(
1500 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1501 Res);
1502 } else {
1503 Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1507 if (Opts.EmitImplicitIntegerTruncationChecks)
1508 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1509 NoncanonicalDstType, Loc);
1511 if (Opts.EmitImplicitIntegerSignChangeChecks)
1512 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1513 NoncanonicalDstType, Loc);
1515 return Res;
1518 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1519 QualType DstTy,
1520 SourceLocation Loc) {
1521 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1522 llvm::Value *Result;
1523 if (SrcTy->isRealFloatingType())
1524 Result = FPBuilder.CreateFloatingToFixed(Src,
1525 CGF.getContext().getFixedPointSemantics(DstTy));
1526 else if (DstTy->isRealFloatingType())
1527 Result = FPBuilder.CreateFixedToFloating(Src,
1528 CGF.getContext().getFixedPointSemantics(SrcTy),
1529 ConvertType(DstTy));
1530 else {
1531 auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1532 auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1534 if (DstTy->isIntegerType())
1535 Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1536 DstFPSema.getWidth(),
1537 DstFPSema.isSigned());
1538 else if (SrcTy->isIntegerType())
1539 Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1540 DstFPSema);
1541 else
1542 Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1544 return Result;
1547 /// Emit a conversion from the specified complex type to the specified
1548 /// destination type, where the destination type is an LLVM scalar type.
1549 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1550 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1551 SourceLocation Loc) {
1552 // Get the source element type.
1553 SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1555 // Handle conversions to bool first, they are special: comparisons against 0.
1556 if (DstTy->isBooleanType()) {
1557 // Complex != 0 -> (Real != 0) | (Imag != 0)
1558 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1559 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1560 return Builder.CreateOr(Src.first, Src.second, "tobool");
1563 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1564 // the imaginary part of the complex value is discarded and the value of the
1565 // real part is converted according to the conversion rules for the
1566 // corresponding real type.
1567 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1570 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1571 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1574 /// Emit a sanitization check for the given "binary" operation (which
1575 /// might actually be a unary increment which has been lowered to a binary
1576 /// operation). The check passes if all values in \p Checks (which are \c i1),
1577 /// are \c true.
1578 void ScalarExprEmitter::EmitBinOpCheck(
1579 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1580 assert(CGF.IsSanitizerScope);
1581 SanitizerHandler Check;
1582 SmallVector<llvm::Constant *, 4> StaticData;
1583 SmallVector<llvm::Value *, 2> DynamicData;
1585 BinaryOperatorKind Opcode = Info.Opcode;
1586 if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1587 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1589 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1590 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1591 if (UO && UO->getOpcode() == UO_Minus) {
1592 Check = SanitizerHandler::NegateOverflow;
1593 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1594 DynamicData.push_back(Info.RHS);
1595 } else {
1596 if (BinaryOperator::isShiftOp(Opcode)) {
1597 // Shift LHS negative or too large, or RHS out of bounds.
1598 Check = SanitizerHandler::ShiftOutOfBounds;
1599 const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1600 StaticData.push_back(
1601 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1602 StaticData.push_back(
1603 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1604 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1605 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1606 Check = SanitizerHandler::DivremOverflow;
1607 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1608 } else {
1609 // Arithmetic overflow (+, -, *).
1610 switch (Opcode) {
1611 case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1612 case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1613 case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1614 default: llvm_unreachable("unexpected opcode for bin op check");
1616 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1618 DynamicData.push_back(Info.LHS);
1619 DynamicData.push_back(Info.RHS);
1622 CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1625 //===----------------------------------------------------------------------===//
1626 // Visitor Methods
1627 //===----------------------------------------------------------------------===//
1629 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1630 CGF.ErrorUnsupported(E, "scalar expression");
1631 if (E->getType()->isVoidType())
1632 return nullptr;
1633 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1636 Value *
1637 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
1638 ASTContext &Context = CGF.getContext();
1639 unsigned AddrSpace =
1640 Context.getTargetAddressSpace(CGF.CGM.GetGlobalConstantAddressSpace());
1641 llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
1642 E->ComputeName(Context), "__usn_str", AddrSpace);
1644 llvm::Type *ExprTy = ConvertType(E->getType());
1645 return Builder.CreatePointerBitCastOrAddrSpaceCast(GlobalConstStr, ExprTy,
1646 "usn_addr_cast");
1649 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1650 // Vector Mask Case
1651 if (E->getNumSubExprs() == 2) {
1652 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1653 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1654 Value *Mask;
1656 auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1657 unsigned LHSElts = LTy->getNumElements();
1659 Mask = RHS;
1661 auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1663 // Mask off the high bits of each shuffle index.
1664 Value *MaskBits =
1665 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1666 Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1668 // newv = undef
1669 // mask = mask & maskbits
1670 // for each elt
1671 // n = extract mask i
1672 // x = extract val n
1673 // newv = insert newv, x, i
1674 auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1675 MTy->getNumElements());
1676 Value* NewV = llvm::PoisonValue::get(RTy);
1677 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1678 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1679 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1681 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1682 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1684 return NewV;
1687 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1688 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1690 SmallVector<int, 32> Indices;
1691 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1692 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1693 // Check for -1 and output it as undef in the IR.
1694 if (Idx.isSigned() && Idx.isAllOnes())
1695 Indices.push_back(-1);
1696 else
1697 Indices.push_back(Idx.getZExtValue());
1700 return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1703 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1704 QualType SrcType = E->getSrcExpr()->getType(),
1705 DstType = E->getType();
1707 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
1709 SrcType = CGF.getContext().getCanonicalType(SrcType);
1710 DstType = CGF.getContext().getCanonicalType(DstType);
1711 if (SrcType == DstType) return Src;
1713 assert(SrcType->isVectorType() &&
1714 "ConvertVector source type must be a vector");
1715 assert(DstType->isVectorType() &&
1716 "ConvertVector destination type must be a vector");
1718 llvm::Type *SrcTy = Src->getType();
1719 llvm::Type *DstTy = ConvertType(DstType);
1721 // Ignore conversions like int -> uint.
1722 if (SrcTy == DstTy)
1723 return Src;
1725 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1726 DstEltType = DstType->castAs<VectorType>()->getElementType();
1728 assert(SrcTy->isVectorTy() &&
1729 "ConvertVector source IR type must be a vector");
1730 assert(DstTy->isVectorTy() &&
1731 "ConvertVector destination IR type must be a vector");
1733 llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1734 *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1736 if (DstEltType->isBooleanType()) {
1737 assert((SrcEltTy->isFloatingPointTy() ||
1738 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1740 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1741 if (SrcEltTy->isFloatingPointTy()) {
1742 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1743 } else {
1744 return Builder.CreateICmpNE(Src, Zero, "tobool");
1748 // We have the arithmetic types: real int/float.
1749 Value *Res = nullptr;
1751 if (isa<llvm::IntegerType>(SrcEltTy)) {
1752 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1753 if (isa<llvm::IntegerType>(DstEltTy))
1754 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1755 else if (InputSigned)
1756 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1757 else
1758 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1759 } else if (isa<llvm::IntegerType>(DstEltTy)) {
1760 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1761 if (DstEltType->isSignedIntegerOrEnumerationType())
1762 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1763 else
1764 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1765 } else {
1766 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1767 "Unknown real conversion");
1768 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1769 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1770 else
1771 Res = Builder.CreateFPExt(Src, DstTy, "conv");
1774 return Res;
1777 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1778 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1779 CGF.EmitIgnoredExpr(E->getBase());
1780 return CGF.emitScalarConstant(Constant, E);
1781 } else {
1782 Expr::EvalResult Result;
1783 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1784 llvm::APSInt Value = Result.Val.getInt();
1785 CGF.EmitIgnoredExpr(E->getBase());
1786 return Builder.getInt(Value);
1790 return EmitLoadOfLValue(E);
1793 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1794 TestAndClearIgnoreResultAssign();
1796 // Emit subscript expressions in rvalue context's. For most cases, this just
1797 // loads the lvalue formed by the subscript expr. However, we have to be
1798 // careful, because the base of a vector subscript is occasionally an rvalue,
1799 // so we can't get it as an lvalue.
1800 if (!E->getBase()->getType()->isVectorType() &&
1801 !E->getBase()->getType()->isVLSTBuiltinType())
1802 return EmitLoadOfLValue(E);
1804 // Handle the vector case. The base must be a vector, the index must be an
1805 // integer value.
1806 Value *Base = Visit(E->getBase());
1807 Value *Idx = Visit(E->getIdx());
1808 QualType IdxTy = E->getIdx()->getType();
1810 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1811 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1813 return Builder.CreateExtractElement(Base, Idx, "vecext");
1816 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1817 TestAndClearIgnoreResultAssign();
1819 // Handle the vector case. The base must be a vector, the index must be an
1820 // integer value.
1821 Value *RowIdx = Visit(E->getRowIdx());
1822 Value *ColumnIdx = Visit(E->getColumnIdx());
1824 const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>();
1825 unsigned NumRows = MatrixTy->getNumRows();
1826 llvm::MatrixBuilder MB(Builder);
1827 Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows);
1828 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0)
1829 MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened());
1831 Value *Matrix = Visit(E->getBase());
1833 // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1834 return Builder.CreateExtractElement(Matrix, Idx, "matrixext");
1837 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1838 unsigned Off) {
1839 int MV = SVI->getMaskValue(Idx);
1840 if (MV == -1)
1841 return -1;
1842 return Off + MV;
1845 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1846 assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1847 "Index operand too large for shufflevector mask!");
1848 return C->getZExtValue();
1851 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1852 bool Ignore = TestAndClearIgnoreResultAssign();
1853 (void)Ignore;
1854 assert (Ignore == false && "init list ignored");
1855 unsigned NumInitElements = E->getNumInits();
1857 if (E->hadArrayRangeDesignator())
1858 CGF.ErrorUnsupported(E, "GNU array range designator extension");
1860 llvm::VectorType *VType =
1861 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1863 if (!VType) {
1864 if (NumInitElements == 0) {
1865 // C++11 value-initialization for the scalar.
1866 return EmitNullValue(E->getType());
1868 // We have a scalar in braces. Just use the first element.
1869 return Visit(E->getInit(0));
1872 unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1874 // Loop over initializers collecting the Value for each, and remembering
1875 // whether the source was swizzle (ExtVectorElementExpr). This will allow
1876 // us to fold the shuffle for the swizzle into the shuffle for the vector
1877 // initializer, since LLVM optimizers generally do not want to touch
1878 // shuffles.
1879 unsigned CurIdx = 0;
1880 bool VIsUndefShuffle = false;
1881 llvm::Value *V = llvm::UndefValue::get(VType);
1882 for (unsigned i = 0; i != NumInitElements; ++i) {
1883 Expr *IE = E->getInit(i);
1884 Value *Init = Visit(IE);
1885 SmallVector<int, 16> Args;
1887 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1889 // Handle scalar elements. If the scalar initializer is actually one
1890 // element of a different vector of the same width, use shuffle instead of
1891 // extract+insert.
1892 if (!VVT) {
1893 if (isa<ExtVectorElementExpr>(IE)) {
1894 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1896 if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1897 ->getNumElements() == ResElts) {
1898 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1899 Value *LHS = nullptr, *RHS = nullptr;
1900 if (CurIdx == 0) {
1901 // insert into undef -> shuffle (src, undef)
1902 // shufflemask must use an i32
1903 Args.push_back(getAsInt32(C, CGF.Int32Ty));
1904 Args.resize(ResElts, -1);
1906 LHS = EI->getVectorOperand();
1907 RHS = V;
1908 VIsUndefShuffle = true;
1909 } else if (VIsUndefShuffle) {
1910 // insert into undefshuffle && size match -> shuffle (v, src)
1911 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1912 for (unsigned j = 0; j != CurIdx; ++j)
1913 Args.push_back(getMaskElt(SVV, j, 0));
1914 Args.push_back(ResElts + C->getZExtValue());
1915 Args.resize(ResElts, -1);
1917 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1918 RHS = EI->getVectorOperand();
1919 VIsUndefShuffle = false;
1921 if (!Args.empty()) {
1922 V = Builder.CreateShuffleVector(LHS, RHS, Args);
1923 ++CurIdx;
1924 continue;
1928 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1929 "vecinit");
1930 VIsUndefShuffle = false;
1931 ++CurIdx;
1932 continue;
1935 unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1937 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1938 // input is the same width as the vector being constructed, generate an
1939 // optimized shuffle of the swizzle input into the result.
1940 unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1941 if (isa<ExtVectorElementExpr>(IE)) {
1942 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1943 Value *SVOp = SVI->getOperand(0);
1944 auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1946 if (OpTy->getNumElements() == ResElts) {
1947 for (unsigned j = 0; j != CurIdx; ++j) {
1948 // If the current vector initializer is a shuffle with undef, merge
1949 // this shuffle directly into it.
1950 if (VIsUndefShuffle) {
1951 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1952 } else {
1953 Args.push_back(j);
1956 for (unsigned j = 0, je = InitElts; j != je; ++j)
1957 Args.push_back(getMaskElt(SVI, j, Offset));
1958 Args.resize(ResElts, -1);
1960 if (VIsUndefShuffle)
1961 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1963 Init = SVOp;
1967 // Extend init to result vector length, and then shuffle its contribution
1968 // to the vector initializer into V.
1969 if (Args.empty()) {
1970 for (unsigned j = 0; j != InitElts; ++j)
1971 Args.push_back(j);
1972 Args.resize(ResElts, -1);
1973 Init = Builder.CreateShuffleVector(Init, Args, "vext");
1975 Args.clear();
1976 for (unsigned j = 0; j != CurIdx; ++j)
1977 Args.push_back(j);
1978 for (unsigned j = 0; j != InitElts; ++j)
1979 Args.push_back(j + Offset);
1980 Args.resize(ResElts, -1);
1983 // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1984 // merging subsequent shuffles into this one.
1985 if (CurIdx == 0)
1986 std::swap(V, Init);
1987 V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1988 VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1989 CurIdx += InitElts;
1992 // FIXME: evaluate codegen vs. shuffling against constant null vector.
1993 // Emit remaining default initializers.
1994 llvm::Type *EltTy = VType->getElementType();
1996 // Emit remaining default initializers
1997 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1998 Value *Idx = Builder.getInt32(CurIdx);
1999 llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
2000 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
2002 return V;
2005 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
2006 const Expr *E = CE->getSubExpr();
2008 if (CE->getCastKind() == CK_UncheckedDerivedToBase)
2009 return false;
2011 if (isa<CXXThisExpr>(E->IgnoreParens())) {
2012 // We always assume that 'this' is never null.
2013 return false;
2016 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2017 // And that glvalue casts are never null.
2018 if (ICE->isGLValue())
2019 return false;
2022 return true;
2025 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
2026 // have to handle a more broad range of conversions than explicit casts, as they
2027 // handle things like function to ptr-to-function decay etc.
2028 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
2029 Expr *E = CE->getSubExpr();
2030 QualType DestTy = CE->getType();
2031 CastKind Kind = CE->getCastKind();
2032 CodeGenFunction::CGFPOptionsRAII FPOptions(CGF, CE);
2034 // These cases are generally not written to ignore the result of
2035 // evaluating their sub-expressions, so we clear this now.
2036 bool Ignored = TestAndClearIgnoreResultAssign();
2038 // Since almost all cast kinds apply to scalars, this switch doesn't have
2039 // a default case, so the compiler will warn on a missing case. The cases
2040 // are in the same order as in the CastKind enum.
2041 switch (Kind) {
2042 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2043 case CK_BuiltinFnToFnPtr:
2044 llvm_unreachable("builtin functions are handled elsewhere");
2046 case CK_LValueBitCast:
2047 case CK_ObjCObjectLValueCast: {
2048 Address Addr = EmitLValue(E).getAddress(CGF);
2049 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2050 LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2051 return EmitLoadOfLValue(LV, CE->getExprLoc());
2054 case CK_LValueToRValueBitCast: {
2055 LValue SourceLVal = CGF.EmitLValue(E);
2056 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
2057 CGF.ConvertTypeForMem(DestTy));
2058 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2059 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2060 return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2063 case CK_CPointerToObjCPointerCast:
2064 case CK_BlockPointerToObjCPointerCast:
2065 case CK_AnyPointerToBlockPointerCast:
2066 case CK_BitCast: {
2067 Value *Src = Visit(const_cast<Expr*>(E));
2068 llvm::Type *SrcTy = Src->getType();
2069 llvm::Type *DstTy = ConvertType(DestTy);
2070 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2071 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2072 llvm_unreachable("wrong cast for pointers in different address spaces"
2073 "(must be an address space cast)!");
2076 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2077 if (auto *PT = DestTy->getAs<PointerType>()) {
2078 CGF.EmitVTablePtrCheckForCast(
2079 PT->getPointeeType(),
2080 Address(Src,
2081 CGF.ConvertTypeForMem(
2082 E->getType()->castAs<PointerType>()->getPointeeType()),
2083 CGF.getPointerAlign()),
2084 /*MayBeNull=*/true, CodeGenFunction::CFITCK_UnrelatedCast,
2085 CE->getBeginLoc());
2089 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2090 const QualType SrcType = E->getType();
2092 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2093 // Casting to pointer that could carry dynamic information (provided by
2094 // invariant.group) requires launder.
2095 Src = Builder.CreateLaunderInvariantGroup(Src);
2096 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2097 // Casting to pointer that does not carry dynamic information (provided
2098 // by invariant.group) requires stripping it. Note that we don't do it
2099 // if the source could not be dynamic type and destination could be
2100 // dynamic because dynamic information is already laundered. It is
2101 // because launder(strip(src)) == launder(src), so there is no need to
2102 // add extra strip before launder.
2103 Src = Builder.CreateStripInvariantGroup(Src);
2107 // Update heapallocsite metadata when there is an explicit pointer cast.
2108 if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2109 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE) &&
2110 !isa<CastExpr>(E)) {
2111 QualType PointeeType = DestTy->getPointeeType();
2112 if (!PointeeType.isNull())
2113 CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2114 CE->getExprLoc());
2118 // If Src is a fixed vector and Dst is a scalable vector, and both have the
2119 // same element type, use the llvm.vector.insert intrinsic to perform the
2120 // bitcast.
2121 if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2122 if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2123 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
2124 // vector, use a vector insert and bitcast the result.
2125 bool NeedsBitCast = false;
2126 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2127 llvm::Type *OrigType = DstTy;
2128 if (ScalableDst == PredType &&
2129 FixedSrc->getElementType() == Builder.getInt8Ty()) {
2130 DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2131 ScalableDst = cast<llvm::ScalableVectorType>(DstTy);
2132 NeedsBitCast = true;
2134 if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
2135 llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
2136 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2137 llvm::Value *Result = Builder.CreateInsertVector(
2138 DstTy, UndefVec, Src, Zero, "castScalableSve");
2139 if (NeedsBitCast)
2140 Result = Builder.CreateBitCast(Result, OrigType);
2141 return Result;
2146 // If Src is a scalable vector and Dst is a fixed vector, and both have the
2147 // same element type, use the llvm.vector.extract intrinsic to perform the
2148 // bitcast.
2149 if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2150 if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2151 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2152 // vector, bitcast the source and use a vector extract.
2153 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2154 if (ScalableSrc == PredType &&
2155 FixedDst->getElementType() == Builder.getInt8Ty()) {
2156 SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2157 ScalableSrc = cast<llvm::ScalableVectorType>(SrcTy);
2158 Src = Builder.CreateBitCast(Src, SrcTy);
2160 if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
2161 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2162 return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve");
2167 // Perform VLAT <-> VLST bitcast through memory.
2168 // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
2169 // require the element types of the vectors to be the same, we
2170 // need to keep this around for bitcasts between VLAT <-> VLST where
2171 // the element types of the vectors are not the same, until we figure
2172 // out a better way of doing these casts.
2173 if ((isa<llvm::FixedVectorType>(SrcTy) &&
2174 isa<llvm::ScalableVectorType>(DstTy)) ||
2175 (isa<llvm::ScalableVectorType>(SrcTy) &&
2176 isa<llvm::FixedVectorType>(DstTy))) {
2177 Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
2178 LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
2179 CGF.EmitStoreOfScalar(Src, LV);
2180 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
2181 "castFixedSve");
2182 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2183 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2184 return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2186 return Builder.CreateBitCast(Src, DstTy);
2188 case CK_AddressSpaceConversion: {
2189 Expr::EvalResult Result;
2190 if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2191 Result.Val.isNullPointer()) {
2192 // If E has side effect, it is emitted even if its final result is a
2193 // null pointer. In that case, a DCE pass should be able to
2194 // eliminate the useless instructions emitted during translating E.
2195 if (Result.HasSideEffects)
2196 Visit(E);
2197 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2198 ConvertType(DestTy)), DestTy);
2200 // Since target may map different address spaces in AST to the same address
2201 // space, an address space conversion may end up as a bitcast.
2202 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2203 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2204 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2206 case CK_AtomicToNonAtomic:
2207 case CK_NonAtomicToAtomic:
2208 case CK_UserDefinedConversion:
2209 return Visit(const_cast<Expr*>(E));
2211 case CK_NoOp: {
2212 llvm::Value *V = Visit(const_cast<Expr *>(E));
2213 if (V) {
2214 // CK_NoOp can model a pointer qualification conversion, which can remove
2215 // an array bound and change the IR type.
2216 // FIXME: Once pointee types are removed from IR, remove this.
2217 llvm::Type *T = ConvertType(DestTy);
2218 if (T != V->getType())
2219 V = Builder.CreateBitCast(V, T);
2221 return V;
2224 case CK_BaseToDerived: {
2225 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2226 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2228 Address Base = CGF.EmitPointerWithAlignment(E);
2229 Address Derived =
2230 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2231 CE->path_begin(), CE->path_end(),
2232 CGF.ShouldNullCheckClassCastValue(CE));
2234 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2235 // performed and the object is not of the derived type.
2236 if (CGF.sanitizePerformTypeCheck())
2237 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2238 Derived.getPointer(), DestTy->getPointeeType());
2240 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2241 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
2242 /*MayBeNull=*/true,
2243 CodeGenFunction::CFITCK_DerivedCast,
2244 CE->getBeginLoc());
2246 return Derived.getPointer();
2248 case CK_UncheckedDerivedToBase:
2249 case CK_DerivedToBase: {
2250 // The EmitPointerWithAlignment path does this fine; just discard
2251 // the alignment.
2252 return CGF.EmitPointerWithAlignment(CE).getPointer();
2255 case CK_Dynamic: {
2256 Address V = CGF.EmitPointerWithAlignment(E);
2257 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2258 return CGF.EmitDynamicCast(V, DCE);
2261 case CK_ArrayToPointerDecay:
2262 return CGF.EmitArrayToPointerDecay(E).getPointer();
2263 case CK_FunctionToPointerDecay:
2264 return EmitLValue(E).getPointer(CGF);
2266 case CK_NullToPointer:
2267 if (MustVisitNullValue(E))
2268 CGF.EmitIgnoredExpr(E);
2270 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2271 DestTy);
2273 case CK_NullToMemberPointer: {
2274 if (MustVisitNullValue(E))
2275 CGF.EmitIgnoredExpr(E);
2277 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2278 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2281 case CK_ReinterpretMemberPointer:
2282 case CK_BaseToDerivedMemberPointer:
2283 case CK_DerivedToBaseMemberPointer: {
2284 Value *Src = Visit(E);
2286 // Note that the AST doesn't distinguish between checked and
2287 // unchecked member pointer conversions, so we always have to
2288 // implement checked conversions here. This is inefficient when
2289 // actual control flow may be required in order to perform the
2290 // check, which it is for data member pointers (but not member
2291 // function pointers on Itanium and ARM).
2292 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2295 case CK_ARCProduceObject:
2296 return CGF.EmitARCRetainScalarExpr(E);
2297 case CK_ARCConsumeObject:
2298 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2299 case CK_ARCReclaimReturnedObject:
2300 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2301 case CK_ARCExtendBlockObject:
2302 return CGF.EmitARCExtendBlockObject(E);
2304 case CK_CopyAndAutoreleaseBlockObject:
2305 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2307 case CK_FloatingRealToComplex:
2308 case CK_FloatingComplexCast:
2309 case CK_IntegralRealToComplex:
2310 case CK_IntegralComplexCast:
2311 case CK_IntegralComplexToFloatingComplex:
2312 case CK_FloatingComplexToIntegralComplex:
2313 case CK_ConstructorConversion:
2314 case CK_ToUnion:
2315 llvm_unreachable("scalar cast to non-scalar value");
2317 case CK_LValueToRValue:
2318 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2319 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2320 return Visit(const_cast<Expr*>(E));
2322 case CK_IntegralToPointer: {
2323 Value *Src = Visit(const_cast<Expr*>(E));
2325 // First, convert to the correct width so that we control the kind of
2326 // extension.
2327 auto DestLLVMTy = ConvertType(DestTy);
2328 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2329 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2330 llvm::Value* IntResult =
2331 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2333 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2335 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2336 // Going from integer to pointer that could be dynamic requires reloading
2337 // dynamic information from invariant.group.
2338 if (DestTy.mayBeDynamicClass())
2339 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2341 return IntToPtr;
2343 case CK_PointerToIntegral: {
2344 assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2345 auto *PtrExpr = Visit(E);
2347 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2348 const QualType SrcType = E->getType();
2350 // Casting to integer requires stripping dynamic information as it does
2351 // not carries it.
2352 if (SrcType.mayBeDynamicClass())
2353 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2356 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2358 case CK_ToVoid: {
2359 CGF.EmitIgnoredExpr(E);
2360 return nullptr;
2362 case CK_MatrixCast: {
2363 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2364 CE->getExprLoc());
2366 case CK_VectorSplat: {
2367 llvm::Type *DstTy = ConvertType(DestTy);
2368 Value *Elt = Visit(const_cast<Expr *>(E));
2369 // Splat the element across to all elements
2370 llvm::ElementCount NumElements =
2371 cast<llvm::VectorType>(DstTy)->getElementCount();
2372 return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2375 case CK_FixedPointCast:
2376 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2377 CE->getExprLoc());
2379 case CK_FixedPointToBoolean:
2380 assert(E->getType()->isFixedPointType() &&
2381 "Expected src type to be fixed point type");
2382 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2383 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2384 CE->getExprLoc());
2386 case CK_FixedPointToIntegral:
2387 assert(E->getType()->isFixedPointType() &&
2388 "Expected src type to be fixed point type");
2389 assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2390 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2391 CE->getExprLoc());
2393 case CK_IntegralToFixedPoint:
2394 assert(E->getType()->isIntegerType() &&
2395 "Expected src type to be an integer");
2396 assert(DestTy->isFixedPointType() &&
2397 "Expected dest type to be fixed point type");
2398 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2399 CE->getExprLoc());
2401 case CK_IntegralCast: {
2402 ScalarConversionOpts Opts;
2403 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2404 if (!ICE->isPartOfExplicitCast())
2405 Opts = ScalarConversionOpts(CGF.SanOpts);
2407 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2408 CE->getExprLoc(), Opts);
2410 case CK_IntegralToFloating:
2411 case CK_FloatingToIntegral:
2412 case CK_FloatingCast:
2413 case CK_FixedPointToFloating:
2414 case CK_FloatingToFixedPoint: {
2415 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2416 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2417 CE->getExprLoc());
2419 case CK_BooleanToSignedIntegral: {
2420 ScalarConversionOpts Opts;
2421 Opts.TreatBooleanAsSigned = true;
2422 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2423 CE->getExprLoc(), Opts);
2425 case CK_IntegralToBoolean:
2426 return EmitIntToBoolConversion(Visit(E));
2427 case CK_PointerToBoolean:
2428 return EmitPointerToBoolConversion(Visit(E), E->getType());
2429 case CK_FloatingToBoolean: {
2430 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2431 return EmitFloatToBoolConversion(Visit(E));
2433 case CK_MemberPointerToBoolean: {
2434 llvm::Value *MemPtr = Visit(E);
2435 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2436 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2439 case CK_FloatingComplexToReal:
2440 case CK_IntegralComplexToReal:
2441 return CGF.EmitComplexExpr(E, false, true).first;
2443 case CK_FloatingComplexToBoolean:
2444 case CK_IntegralComplexToBoolean: {
2445 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2447 // TODO: kill this function off, inline appropriate case here
2448 return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2449 CE->getExprLoc());
2452 case CK_ZeroToOCLOpaqueType: {
2453 assert((DestTy->isEventT() || DestTy->isQueueT() ||
2454 DestTy->isOCLIntelSubgroupAVCType()) &&
2455 "CK_ZeroToOCLEvent cast on non-event type");
2456 return llvm::Constant::getNullValue(ConvertType(DestTy));
2459 case CK_IntToOCLSampler:
2460 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2462 } // end of switch
2464 llvm_unreachable("unknown scalar cast");
2467 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2468 CodeGenFunction::StmtExprEvaluation eval(CGF);
2469 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2470 !E->getType()->isVoidType());
2471 if (!RetAlloca.isValid())
2472 return nullptr;
2473 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2474 E->getExprLoc());
2477 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2478 CodeGenFunction::RunCleanupsScope Scope(CGF);
2479 Value *V = Visit(E->getSubExpr());
2480 // Defend against dominance problems caused by jumps out of expression
2481 // evaluation through the shared cleanup block.
2482 Scope.ForceCleanup({&V});
2483 return V;
2486 //===----------------------------------------------------------------------===//
2487 // Unary Operators
2488 //===----------------------------------------------------------------------===//
2490 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2491 llvm::Value *InVal, bool IsInc,
2492 FPOptions FPFeatures) {
2493 BinOpInfo BinOp;
2494 BinOp.LHS = InVal;
2495 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2496 BinOp.Ty = E->getType();
2497 BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2498 BinOp.FPFeatures = FPFeatures;
2499 BinOp.E = E;
2500 return BinOp;
2503 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2504 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2505 llvm::Value *Amount =
2506 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2507 StringRef Name = IsInc ? "inc" : "dec";
2508 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2509 case LangOptions::SOB_Defined:
2510 return Builder.CreateAdd(InVal, Amount, Name);
2511 case LangOptions::SOB_Undefined:
2512 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2513 return Builder.CreateNSWAdd(InVal, Amount, Name);
2514 [[fallthrough]];
2515 case LangOptions::SOB_Trapping:
2516 if (!E->canOverflow())
2517 return Builder.CreateNSWAdd(InVal, Amount, Name);
2518 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2519 E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2521 llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2524 namespace {
2525 /// Handles check and update for lastprivate conditional variables.
2526 class OMPLastprivateConditionalUpdateRAII {
2527 private:
2528 CodeGenFunction &CGF;
2529 const UnaryOperator *E;
2531 public:
2532 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2533 const UnaryOperator *E)
2534 : CGF(CGF), E(E) {}
2535 ~OMPLastprivateConditionalUpdateRAII() {
2536 if (CGF.getLangOpts().OpenMP)
2537 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2538 CGF, E->getSubExpr());
2541 } // namespace
2543 llvm::Value *
2544 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2545 bool isInc, bool isPre) {
2546 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2547 QualType type = E->getSubExpr()->getType();
2548 llvm::PHINode *atomicPHI = nullptr;
2549 llvm::Value *value;
2550 llvm::Value *input;
2552 int amount = (isInc ? 1 : -1);
2553 bool isSubtraction = !isInc;
2555 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2556 type = atomicTy->getValueType();
2557 if (isInc && type->isBooleanType()) {
2558 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2559 if (isPre) {
2560 Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2561 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2562 return Builder.getTrue();
2564 // For atomic bool increment, we just store true and return it for
2565 // preincrement, do an atomic swap with true for postincrement
2566 return Builder.CreateAtomicRMW(
2567 llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2568 llvm::AtomicOrdering::SequentiallyConsistent);
2570 // Special case for atomic increment / decrement on integers, emit
2571 // atomicrmw instructions. We skip this if we want to be doing overflow
2572 // checking, and fall into the slow path with the atomic cmpxchg loop.
2573 if (!type->isBooleanType() && type->isIntegerType() &&
2574 !(type->isUnsignedIntegerType() &&
2575 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2576 CGF.getLangOpts().getSignedOverflowBehavior() !=
2577 LangOptions::SOB_Trapping) {
2578 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2579 llvm::AtomicRMWInst::Sub;
2580 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2581 llvm::Instruction::Sub;
2582 llvm::Value *amt = CGF.EmitToMemory(
2583 llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2584 llvm::Value *old =
2585 Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2586 llvm::AtomicOrdering::SequentiallyConsistent);
2587 return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2589 value = EmitLoadOfLValue(LV, E->getExprLoc());
2590 input = value;
2591 // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2592 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2593 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2594 value = CGF.EmitToMemory(value, type);
2595 Builder.CreateBr(opBB);
2596 Builder.SetInsertPoint(opBB);
2597 atomicPHI = Builder.CreatePHI(value->getType(), 2);
2598 atomicPHI->addIncoming(value, startBB);
2599 value = atomicPHI;
2600 } else {
2601 value = EmitLoadOfLValue(LV, E->getExprLoc());
2602 input = value;
2605 // Special case of integer increment that we have to check first: bool++.
2606 // Due to promotion rules, we get:
2607 // bool++ -> bool = bool + 1
2608 // -> bool = (int)bool + 1
2609 // -> bool = ((int)bool + 1 != 0)
2610 // An interesting aspect of this is that increment is always true.
2611 // Decrement does not have this property.
2612 if (isInc && type->isBooleanType()) {
2613 value = Builder.getTrue();
2615 // Most common case by far: integer increment.
2616 } else if (type->isIntegerType()) {
2617 QualType promotedType;
2618 bool canPerformLossyDemotionCheck = false;
2619 if (CGF.getContext().isPromotableIntegerType(type)) {
2620 promotedType = CGF.getContext().getPromotedIntegerType(type);
2621 assert(promotedType != type && "Shouldn't promote to the same type.");
2622 canPerformLossyDemotionCheck = true;
2623 canPerformLossyDemotionCheck &=
2624 CGF.getContext().getCanonicalType(type) !=
2625 CGF.getContext().getCanonicalType(promotedType);
2626 canPerformLossyDemotionCheck &=
2627 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2628 type, promotedType);
2629 assert((!canPerformLossyDemotionCheck ||
2630 type->isSignedIntegerOrEnumerationType() ||
2631 promotedType->isSignedIntegerOrEnumerationType() ||
2632 ConvertType(type)->getScalarSizeInBits() ==
2633 ConvertType(promotedType)->getScalarSizeInBits()) &&
2634 "The following check expects that if we do promotion to different "
2635 "underlying canonical type, at least one of the types (either "
2636 "base or promoted) will be signed, or the bitwidths will match.");
2638 if (CGF.SanOpts.hasOneOf(
2639 SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2640 canPerformLossyDemotionCheck) {
2641 // While `x += 1` (for `x` with width less than int) is modeled as
2642 // promotion+arithmetics+demotion, and we can catch lossy demotion with
2643 // ease; inc/dec with width less than int can't overflow because of
2644 // promotion rules, so we omit promotion+demotion, which means that we can
2645 // not catch lossy "demotion". Because we still want to catch these cases
2646 // when the sanitizer is enabled, we perform the promotion, then perform
2647 // the increment/decrement in the wider type, and finally
2648 // perform the demotion. This will catch lossy demotions.
2650 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2651 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2652 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2653 // Do pass non-default ScalarConversionOpts so that sanitizer check is
2654 // emitted.
2655 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2656 ScalarConversionOpts(CGF.SanOpts));
2658 // Note that signed integer inc/dec with width less than int can't
2659 // overflow because of promotion rules; we're just eliding a few steps
2660 // here.
2661 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2662 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2663 } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2664 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2665 value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2666 E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2667 } else {
2668 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2669 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2672 // Next most common: pointer increment.
2673 } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2674 QualType type = ptr->getPointeeType();
2676 // VLA types don't have constant size.
2677 if (const VariableArrayType *vla
2678 = CGF.getContext().getAsVariableArrayType(type)) {
2679 llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2680 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2681 llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
2682 if (CGF.getLangOpts().isSignedOverflowDefined())
2683 value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc");
2684 else
2685 value = CGF.EmitCheckedInBoundsGEP(
2686 elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction,
2687 E->getExprLoc(), "vla.inc");
2689 // Arithmetic on function pointers (!) is just +-1.
2690 } else if (type->isFunctionType()) {
2691 llvm::Value *amt = Builder.getInt32(amount);
2693 value = CGF.EmitCastToVoidPtr(value);
2694 if (CGF.getLangOpts().isSignedOverflowDefined())
2695 value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr");
2696 else
2697 value = CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt,
2698 /*SignedIndices=*/false,
2699 isSubtraction, E->getExprLoc(),
2700 "incdec.funcptr");
2701 value = Builder.CreateBitCast(value, input->getType());
2703 // For everything else, we can just do a simple increment.
2704 } else {
2705 llvm::Value *amt = Builder.getInt32(amount);
2706 llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
2707 if (CGF.getLangOpts().isSignedOverflowDefined())
2708 value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr");
2709 else
2710 value = CGF.EmitCheckedInBoundsGEP(
2711 elemTy, value, amt, /*SignedIndices=*/false, isSubtraction,
2712 E->getExprLoc(), "incdec.ptr");
2715 // Vector increment/decrement.
2716 } else if (type->isVectorType()) {
2717 if (type->hasIntegerRepresentation()) {
2718 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2720 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2721 } else {
2722 value = Builder.CreateFAdd(
2723 value,
2724 llvm::ConstantFP::get(value->getType(), amount),
2725 isInc ? "inc" : "dec");
2728 // Floating point.
2729 } else if (type->isRealFloatingType()) {
2730 // Add the inc/dec to the real part.
2731 llvm::Value *amt;
2732 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
2734 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2735 // Another special case: half FP increment should be done via float
2736 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2737 value = Builder.CreateCall(
2738 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2739 CGF.CGM.FloatTy),
2740 input, "incdec.conv");
2741 } else {
2742 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2746 if (value->getType()->isFloatTy())
2747 amt = llvm::ConstantFP::get(VMContext,
2748 llvm::APFloat(static_cast<float>(amount)));
2749 else if (value->getType()->isDoubleTy())
2750 amt = llvm::ConstantFP::get(VMContext,
2751 llvm::APFloat(static_cast<double>(amount)));
2752 else {
2753 // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert
2754 // from float.
2755 llvm::APFloat F(static_cast<float>(amount));
2756 bool ignored;
2757 const llvm::fltSemantics *FS;
2758 // Don't use getFloatTypeSemantics because Half isn't
2759 // necessarily represented using the "half" LLVM type.
2760 if (value->getType()->isFP128Ty())
2761 FS = &CGF.getTarget().getFloat128Format();
2762 else if (value->getType()->isHalfTy())
2763 FS = &CGF.getTarget().getHalfFormat();
2764 else if (value->getType()->isPPC_FP128Ty())
2765 FS = &CGF.getTarget().getIbm128Format();
2766 else
2767 FS = &CGF.getTarget().getLongDoubleFormat();
2768 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2769 amt = llvm::ConstantFP::get(VMContext, F);
2771 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2773 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2774 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2775 value = Builder.CreateCall(
2776 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2777 CGF.CGM.FloatTy),
2778 value, "incdec.conv");
2779 } else {
2780 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2784 // Fixed-point types.
2785 } else if (type->isFixedPointType()) {
2786 // Fixed-point types are tricky. In some cases, it isn't possible to
2787 // represent a 1 or a -1 in the type at all. Piggyback off of
2788 // EmitFixedPointBinOp to avoid having to reimplement saturation.
2789 BinOpInfo Info;
2790 Info.E = E;
2791 Info.Ty = E->getType();
2792 Info.Opcode = isInc ? BO_Add : BO_Sub;
2793 Info.LHS = value;
2794 Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2795 // If the type is signed, it's better to represent this as +(-1) or -(-1),
2796 // since -1 is guaranteed to be representable.
2797 if (type->isSignedFixedPointType()) {
2798 Info.Opcode = isInc ? BO_Sub : BO_Add;
2799 Info.RHS = Builder.CreateNeg(Info.RHS);
2801 // Now, convert from our invented integer literal to the type of the unary
2802 // op. This will upscale and saturate if necessary. This value can become
2803 // undef in some cases.
2804 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2805 auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2806 Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2807 value = EmitFixedPointBinOp(Info);
2809 // Objective-C pointer types.
2810 } else {
2811 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2812 value = CGF.EmitCastToVoidPtr(value);
2814 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2815 if (!isInc) size = -size;
2816 llvm::Value *sizeValue =
2817 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2819 if (CGF.getLangOpts().isSignedOverflowDefined())
2820 value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr");
2821 else
2822 value = CGF.EmitCheckedInBoundsGEP(
2823 CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction,
2824 E->getExprLoc(), "incdec.objptr");
2825 value = Builder.CreateBitCast(value, input->getType());
2828 if (atomicPHI) {
2829 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2830 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2831 auto Pair = CGF.EmitAtomicCompareExchange(
2832 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2833 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2834 llvm::Value *success = Pair.second;
2835 atomicPHI->addIncoming(old, curBlock);
2836 Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2837 Builder.SetInsertPoint(contBB);
2838 return isPre ? value : input;
2841 // Store the updated result through the lvalue.
2842 if (LV.isBitField())
2843 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2844 else
2845 CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2847 // If this is a postinc, return the value read from memory, otherwise use the
2848 // updated value.
2849 return isPre ? value : input;
2853 Value *ScalarExprEmitter::VisitUnaryPlus(const UnaryOperator *E,
2854 QualType PromotionType) {
2855 QualType promotionTy = PromotionType.isNull()
2856 ? getPromotionType(E->getSubExpr()->getType())
2857 : PromotionType;
2858 Value *result = VisitPlus(E, promotionTy);
2859 if (result && !promotionTy.isNull())
2860 result = EmitUnPromotedValue(result, E->getType());
2861 return result;
2864 Value *ScalarExprEmitter::VisitPlus(const UnaryOperator *E,
2865 QualType PromotionType) {
2866 // This differs from gcc, though, most likely due to a bug in gcc.
2867 TestAndClearIgnoreResultAssign();
2868 if (!PromotionType.isNull())
2869 return CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
2870 return Visit(E->getSubExpr());
2873 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E,
2874 QualType PromotionType) {
2875 QualType promotionTy = PromotionType.isNull()
2876 ? getPromotionType(E->getSubExpr()->getType())
2877 : PromotionType;
2878 Value *result = VisitMinus(E, promotionTy);
2879 if (result && !promotionTy.isNull())
2880 result = EmitUnPromotedValue(result, E->getType());
2881 return result;
2884 Value *ScalarExprEmitter::VisitMinus(const UnaryOperator *E,
2885 QualType PromotionType) {
2886 TestAndClearIgnoreResultAssign();
2887 Value *Op;
2888 if (!PromotionType.isNull())
2889 Op = CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
2890 else
2891 Op = Visit(E->getSubExpr());
2893 // Generate a unary FNeg for FP ops.
2894 if (Op->getType()->isFPOrFPVectorTy())
2895 return Builder.CreateFNeg(Op, "fneg");
2897 // Emit unary minus with EmitSub so we handle overflow cases etc.
2898 BinOpInfo BinOp;
2899 BinOp.RHS = Op;
2900 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2901 BinOp.Ty = E->getType();
2902 BinOp.Opcode = BO_Sub;
2903 BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2904 BinOp.E = E;
2905 return EmitSub(BinOp);
2908 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2909 TestAndClearIgnoreResultAssign();
2910 Value *Op = Visit(E->getSubExpr());
2911 return Builder.CreateNot(Op, "not");
2914 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2915 // Perform vector logical not on comparison with zero vector.
2916 if (E->getType()->isVectorType() &&
2917 E->getType()->castAs<VectorType>()->getVectorKind() ==
2918 VectorType::GenericVector) {
2919 Value *Oper = Visit(E->getSubExpr());
2920 Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2921 Value *Result;
2922 if (Oper->getType()->isFPOrFPVectorTy()) {
2923 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2924 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2925 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2926 } else
2927 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2928 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2931 // Compare operand to zero.
2932 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2934 // Invert value.
2935 // TODO: Could dynamically modify easy computations here. For example, if
2936 // the operand is an icmp ne, turn into icmp eq.
2937 BoolVal = Builder.CreateNot(BoolVal, "lnot");
2939 // ZExt result to the expr type.
2940 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2943 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2944 // Try folding the offsetof to a constant.
2945 Expr::EvalResult EVResult;
2946 if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2947 llvm::APSInt Value = EVResult.Val.getInt();
2948 return Builder.getInt(Value);
2951 // Loop over the components of the offsetof to compute the value.
2952 unsigned n = E->getNumComponents();
2953 llvm::Type* ResultType = ConvertType(E->getType());
2954 llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2955 QualType CurrentType = E->getTypeSourceInfo()->getType();
2956 for (unsigned i = 0; i != n; ++i) {
2957 OffsetOfNode ON = E->getComponent(i);
2958 llvm::Value *Offset = nullptr;
2959 switch (ON.getKind()) {
2960 case OffsetOfNode::Array: {
2961 // Compute the index
2962 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2963 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2964 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2965 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2967 // Save the element type
2968 CurrentType =
2969 CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2971 // Compute the element size
2972 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2973 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2975 // Multiply out to compute the result
2976 Offset = Builder.CreateMul(Idx, ElemSize);
2977 break;
2980 case OffsetOfNode::Field: {
2981 FieldDecl *MemberDecl = ON.getField();
2982 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2983 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2985 // Compute the index of the field in its parent.
2986 unsigned i = 0;
2987 // FIXME: It would be nice if we didn't have to loop here!
2988 for (RecordDecl::field_iterator Field = RD->field_begin(),
2989 FieldEnd = RD->field_end();
2990 Field != FieldEnd; ++Field, ++i) {
2991 if (*Field == MemberDecl)
2992 break;
2994 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2996 // Compute the offset to the field
2997 int64_t OffsetInt = RL.getFieldOffset(i) /
2998 CGF.getContext().getCharWidth();
2999 Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
3001 // Save the element type.
3002 CurrentType = MemberDecl->getType();
3003 break;
3006 case OffsetOfNode::Identifier:
3007 llvm_unreachable("dependent __builtin_offsetof");
3009 case OffsetOfNode::Base: {
3010 if (ON.getBase()->isVirtual()) {
3011 CGF.ErrorUnsupported(E, "virtual base in offsetof");
3012 continue;
3015 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
3016 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
3018 // Save the element type.
3019 CurrentType = ON.getBase()->getType();
3021 // Compute the offset to the base.
3022 auto *BaseRT = CurrentType->castAs<RecordType>();
3023 auto *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
3024 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
3025 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
3026 break;
3029 Result = Builder.CreateAdd(Result, Offset);
3031 return Result;
3034 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
3035 /// argument of the sizeof expression as an integer.
3036 Value *
3037 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
3038 const UnaryExprOrTypeTraitExpr *E) {
3039 QualType TypeToSize = E->getTypeOfArgument();
3040 if (E->getKind() == UETT_SizeOf) {
3041 if (const VariableArrayType *VAT =
3042 CGF.getContext().getAsVariableArrayType(TypeToSize)) {
3043 if (E->isArgumentType()) {
3044 // sizeof(type) - make sure to emit the VLA size.
3045 CGF.EmitVariablyModifiedType(TypeToSize);
3046 } else {
3047 // C99 6.5.3.4p2: If the argument is an expression of type
3048 // VLA, it is evaluated.
3049 CGF.EmitIgnoredExpr(E->getArgumentExpr());
3052 auto VlaSize = CGF.getVLASize(VAT);
3053 llvm::Value *size = VlaSize.NumElts;
3055 // Scale the number of non-VLA elements by the non-VLA element size.
3056 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
3057 if (!eltSize.isOne())
3058 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
3060 return size;
3062 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
3063 auto Alignment =
3064 CGF.getContext()
3065 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
3066 E->getTypeOfArgument()->getPointeeType()))
3067 .getQuantity();
3068 return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
3071 // If this isn't sizeof(vla), the result must be constant; use the constant
3072 // folding logic so we don't have to duplicate it here.
3073 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
3076 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E,
3077 QualType PromotionType) {
3078 QualType promotionTy = PromotionType.isNull()
3079 ? getPromotionType(E->getSubExpr()->getType())
3080 : PromotionType;
3081 Value *result = VisitReal(E, promotionTy);
3082 if (result && !promotionTy.isNull())
3083 result = EmitUnPromotedValue(result, E->getType());
3084 return result;
3087 Value *ScalarExprEmitter::VisitReal(const UnaryOperator *E,
3088 QualType PromotionType) {
3089 Expr *Op = E->getSubExpr();
3090 if (Op->getType()->isAnyComplexType()) {
3091 // If it's an l-value, load through the appropriate subobject l-value.
3092 // Note that we have to ask E because Op might be an l-value that
3093 // this won't work for, e.g. an Obj-C property.
3094 if (E->isGLValue()) {
3095 if (!PromotionType.isNull()) {
3096 CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr(
3097 Op, /*IgnoreReal*/ IgnoreResultAssign, /*IgnoreImag*/ true);
3098 if (result.first)
3099 result.first = CGF.EmitPromotedValue(result, PromotionType).first;
3100 return result.first;
3101 } else {
3102 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3103 .getScalarVal();
3106 // Otherwise, calculate and project.
3107 return CGF.EmitComplexExpr(Op, false, true).first;
3110 if (!PromotionType.isNull())
3111 return CGF.EmitPromotedScalarExpr(Op, PromotionType);
3112 return Visit(Op);
3115 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E,
3116 QualType PromotionType) {
3117 QualType promotionTy = PromotionType.isNull()
3118 ? getPromotionType(E->getSubExpr()->getType())
3119 : PromotionType;
3120 Value *result = VisitImag(E, promotionTy);
3121 if (result && !promotionTy.isNull())
3122 result = EmitUnPromotedValue(result, E->getType());
3123 return result;
3126 Value *ScalarExprEmitter::VisitImag(const UnaryOperator *E,
3127 QualType PromotionType) {
3128 Expr *Op = E->getSubExpr();
3129 if (Op->getType()->isAnyComplexType()) {
3130 // If it's an l-value, load through the appropriate subobject l-value.
3131 // Note that we have to ask E because Op might be an l-value that
3132 // this won't work for, e.g. an Obj-C property.
3133 if (Op->isGLValue()) {
3134 if (!PromotionType.isNull()) {
3135 CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr(
3136 Op, /*IgnoreReal*/ true, /*IgnoreImag*/ IgnoreResultAssign);
3137 if (result.second)
3138 result.second = CGF.EmitPromotedValue(result, PromotionType).second;
3139 return result.second;
3140 } else {
3141 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3142 .getScalarVal();
3145 // Otherwise, calculate and project.
3146 return CGF.EmitComplexExpr(Op, true, false).second;
3149 // __imag on a scalar returns zero. Emit the subexpr to ensure side
3150 // effects are evaluated, but not the actual value.
3151 if (Op->isGLValue())
3152 CGF.EmitLValue(Op);
3153 else if (!PromotionType.isNull())
3154 CGF.EmitPromotedScalarExpr(Op, PromotionType);
3155 else
3156 CGF.EmitScalarExpr(Op, true);
3157 if (!PromotionType.isNull())
3158 return llvm::Constant::getNullValue(ConvertType(PromotionType));
3159 return llvm::Constant::getNullValue(ConvertType(E->getType()));
3162 //===----------------------------------------------------------------------===//
3163 // Binary Operators
3164 //===----------------------------------------------------------------------===//
3166 Value *ScalarExprEmitter::EmitPromotedValue(Value *result,
3167 QualType PromotionType) {
3168 return CGF.Builder.CreateFPExt(result, ConvertType(PromotionType), "ext");
3171 Value *ScalarExprEmitter::EmitUnPromotedValue(Value *result,
3172 QualType ExprType) {
3173 return CGF.Builder.CreateFPTrunc(result, ConvertType(ExprType), "unpromotion");
3176 Value *ScalarExprEmitter::EmitPromoted(const Expr *E, QualType PromotionType) {
3177 E = E->IgnoreParens();
3178 if (auto BO = dyn_cast<BinaryOperator>(E)) {
3179 switch (BO->getOpcode()) {
3180 #define HANDLE_BINOP(OP) \
3181 case BO_##OP: \
3182 return Emit##OP(EmitBinOps(BO, PromotionType));
3183 HANDLE_BINOP(Add)
3184 HANDLE_BINOP(Sub)
3185 HANDLE_BINOP(Mul)
3186 HANDLE_BINOP(Div)
3187 #undef HANDLE_BINOP
3188 default:
3189 break;
3191 } else if (auto UO = dyn_cast<UnaryOperator>(E)) {
3192 switch (UO->getOpcode()) {
3193 case UO_Imag:
3194 return VisitImag(UO, PromotionType);
3195 case UO_Real:
3196 return VisitReal(UO, PromotionType);
3197 case UO_Minus:
3198 return VisitMinus(UO, PromotionType);
3199 case UO_Plus:
3200 return VisitPlus(UO, PromotionType);
3201 default:
3202 break;
3205 auto result = Visit(const_cast<Expr *>(E));
3206 if (result) {
3207 if (!PromotionType.isNull())
3208 return EmitPromotedValue(result, PromotionType);
3209 else
3210 return EmitUnPromotedValue(result, E->getType());
3212 return result;
3215 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E,
3216 QualType PromotionType) {
3217 TestAndClearIgnoreResultAssign();
3218 BinOpInfo Result;
3219 Result.LHS = CGF.EmitPromotedScalarExpr(E->getLHS(), PromotionType);
3220 Result.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionType);
3221 if (!PromotionType.isNull())
3222 Result.Ty = PromotionType;
3223 else
3224 Result.Ty = E->getType();
3225 Result.Opcode = E->getOpcode();
3226 Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3227 Result.E = E;
3228 return Result;
3231 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
3232 const CompoundAssignOperator *E,
3233 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
3234 Value *&Result) {
3235 QualType LHSTy = E->getLHS()->getType();
3236 BinOpInfo OpInfo;
3238 if (E->getComputationResultType()->isAnyComplexType())
3239 return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
3241 // Emit the RHS first. __block variables need to have the rhs evaluated
3242 // first, plus this should improve codegen a little.
3244 QualType PromotionTypeCR;
3245 PromotionTypeCR = getPromotionType(E->getComputationResultType());
3246 if (PromotionTypeCR.isNull())
3247 PromotionTypeCR = E->getComputationResultType();
3248 QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType());
3249 QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType());
3250 if (!PromotionTypeRHS.isNull())
3251 OpInfo.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS);
3252 else
3253 OpInfo.RHS = Visit(E->getRHS());
3254 OpInfo.Ty = PromotionTypeCR;
3255 OpInfo.Opcode = E->getOpcode();
3256 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3257 OpInfo.E = E;
3258 // Load/convert the LHS.
3259 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3261 llvm::PHINode *atomicPHI = nullptr;
3262 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3263 QualType type = atomicTy->getValueType();
3264 if (!type->isBooleanType() && type->isIntegerType() &&
3265 !(type->isUnsignedIntegerType() &&
3266 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3267 CGF.getLangOpts().getSignedOverflowBehavior() !=
3268 LangOptions::SOB_Trapping) {
3269 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3270 llvm::Instruction::BinaryOps Op;
3271 switch (OpInfo.Opcode) {
3272 // We don't have atomicrmw operands for *, %, /, <<, >>
3273 case BO_MulAssign: case BO_DivAssign:
3274 case BO_RemAssign:
3275 case BO_ShlAssign:
3276 case BO_ShrAssign:
3277 break;
3278 case BO_AddAssign:
3279 AtomicOp = llvm::AtomicRMWInst::Add;
3280 Op = llvm::Instruction::Add;
3281 break;
3282 case BO_SubAssign:
3283 AtomicOp = llvm::AtomicRMWInst::Sub;
3284 Op = llvm::Instruction::Sub;
3285 break;
3286 case BO_AndAssign:
3287 AtomicOp = llvm::AtomicRMWInst::And;
3288 Op = llvm::Instruction::And;
3289 break;
3290 case BO_XorAssign:
3291 AtomicOp = llvm::AtomicRMWInst::Xor;
3292 Op = llvm::Instruction::Xor;
3293 break;
3294 case BO_OrAssign:
3295 AtomicOp = llvm::AtomicRMWInst::Or;
3296 Op = llvm::Instruction::Or;
3297 break;
3298 default:
3299 llvm_unreachable("Invalid compound assignment type");
3301 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3302 llvm::Value *Amt = CGF.EmitToMemory(
3303 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3304 E->getExprLoc()),
3305 LHSTy);
3306 Value *OldVal = Builder.CreateAtomicRMW(
3307 AtomicOp, LHSLV.getPointer(CGF), Amt,
3308 llvm::AtomicOrdering::SequentiallyConsistent);
3310 // Since operation is atomic, the result type is guaranteed to be the
3311 // same as the input in LLVM terms.
3312 Result = Builder.CreateBinOp(Op, OldVal, Amt);
3313 return LHSLV;
3316 // FIXME: For floating point types, we should be saving and restoring the
3317 // floating point environment in the loop.
3318 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3319 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3320 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3321 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3322 Builder.CreateBr(opBB);
3323 Builder.SetInsertPoint(opBB);
3324 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3325 atomicPHI->addIncoming(OpInfo.LHS, startBB);
3326 OpInfo.LHS = atomicPHI;
3328 else
3329 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3331 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3332 SourceLocation Loc = E->getExprLoc();
3333 if (!PromotionTypeLHS.isNull())
3334 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, PromotionTypeLHS,
3335 E->getExprLoc());
3336 else
3337 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
3338 E->getComputationLHSType(), Loc);
3340 // Expand the binary operator.
3341 Result = (this->*Func)(OpInfo);
3343 // Convert the result back to the LHS type,
3344 // potentially with Implicit Conversion sanitizer check.
3345 Result = EmitScalarConversion(Result, PromotionTypeCR, LHSTy, Loc,
3346 ScalarConversionOpts(CGF.SanOpts));
3348 if (atomicPHI) {
3349 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3350 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3351 auto Pair = CGF.EmitAtomicCompareExchange(
3352 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3353 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3354 llvm::Value *success = Pair.second;
3355 atomicPHI->addIncoming(old, curBlock);
3356 Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3357 Builder.SetInsertPoint(contBB);
3358 return LHSLV;
3361 // Store the result value into the LHS lvalue. Bit-fields are handled
3362 // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3363 // 'An assignment expression has the value of the left operand after the
3364 // assignment...'.
3365 if (LHSLV.isBitField())
3366 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3367 else
3368 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3370 if (CGF.getLangOpts().OpenMP)
3371 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3372 E->getLHS());
3373 return LHSLV;
3376 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3377 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3378 bool Ignore = TestAndClearIgnoreResultAssign();
3379 Value *RHS = nullptr;
3380 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3382 // If the result is clearly ignored, return now.
3383 if (Ignore)
3384 return nullptr;
3386 // The result of an assignment in C is the assigned r-value.
3387 if (!CGF.getLangOpts().CPlusPlus)
3388 return RHS;
3390 // If the lvalue is non-volatile, return the computed value of the assignment.
3391 if (!LHS.isVolatileQualified())
3392 return RHS;
3394 // Otherwise, reload the value.
3395 return EmitLoadOfLValue(LHS, E->getExprLoc());
3398 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3399 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3400 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3402 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3403 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3404 SanitizerKind::IntegerDivideByZero));
3407 const auto *BO = cast<BinaryOperator>(Ops.E);
3408 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3409 Ops.Ty->hasSignedIntegerRepresentation() &&
3410 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3411 Ops.mayHaveIntegerOverflow()) {
3412 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3414 llvm::Value *IntMin =
3415 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3416 llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3418 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3419 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3420 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3421 Checks.push_back(
3422 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3425 if (Checks.size() > 0)
3426 EmitBinOpCheck(Checks, Ops);
3429 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3431 CodeGenFunction::SanitizerScope SanScope(&CGF);
3432 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3433 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3434 Ops.Ty->isIntegerType() &&
3435 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3436 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3437 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3438 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3439 Ops.Ty->isRealFloatingType() &&
3440 Ops.mayHaveFloatDivisionByZero()) {
3441 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3442 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3443 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3444 Ops);
3448 if (Ops.Ty->isConstantMatrixType()) {
3449 llvm::MatrixBuilder MB(Builder);
3450 // We need to check the types of the operands of the operator to get the
3451 // correct matrix dimensions.
3452 auto *BO = cast<BinaryOperator>(Ops.E);
3453 (void)BO;
3454 assert(
3455 isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3456 "first operand must be a matrix");
3457 assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3458 "second operand must be an arithmetic type");
3459 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3460 return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3461 Ops.Ty->hasUnsignedIntegerRepresentation());
3464 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3465 llvm::Value *Val;
3466 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3467 Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3468 if ((CGF.getLangOpts().OpenCL &&
3469 !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
3470 (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice &&
3471 !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
3472 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3473 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3474 // build option allows an application to specify that single precision
3475 // floating-point divide (x/y and 1/x) and sqrt used in the program
3476 // source are correctly rounded.
3477 llvm::Type *ValTy = Val->getType();
3478 if (ValTy->isFloatTy() ||
3479 (isa<llvm::VectorType>(ValTy) &&
3480 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3481 CGF.SetFPAccuracy(Val, 2.5);
3483 return Val;
3485 else if (Ops.isFixedPointOp())
3486 return EmitFixedPointBinOp(Ops);
3487 else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3488 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3489 else
3490 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3493 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3494 // Rem in C can't be a floating point type: C99 6.5.5p2.
3495 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3496 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3497 Ops.Ty->isIntegerType() &&
3498 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3499 CodeGenFunction::SanitizerScope SanScope(&CGF);
3500 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3501 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3504 if (Ops.Ty->hasUnsignedIntegerRepresentation())
3505 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3506 else
3507 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3510 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3511 unsigned IID;
3512 unsigned OpID = 0;
3513 SanitizerHandler OverflowKind;
3515 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3516 switch (Ops.Opcode) {
3517 case BO_Add:
3518 case BO_AddAssign:
3519 OpID = 1;
3520 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3521 llvm::Intrinsic::uadd_with_overflow;
3522 OverflowKind = SanitizerHandler::AddOverflow;
3523 break;
3524 case BO_Sub:
3525 case BO_SubAssign:
3526 OpID = 2;
3527 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3528 llvm::Intrinsic::usub_with_overflow;
3529 OverflowKind = SanitizerHandler::SubOverflow;
3530 break;
3531 case BO_Mul:
3532 case BO_MulAssign:
3533 OpID = 3;
3534 IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3535 llvm::Intrinsic::umul_with_overflow;
3536 OverflowKind = SanitizerHandler::MulOverflow;
3537 break;
3538 default:
3539 llvm_unreachable("Unsupported operation for overflow detection");
3541 OpID <<= 1;
3542 if (isSigned)
3543 OpID |= 1;
3545 CodeGenFunction::SanitizerScope SanScope(&CGF);
3546 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3548 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3550 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3551 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3552 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3554 // Handle overflow with llvm.trap if no custom handler has been specified.
3555 const std::string *handlerName =
3556 &CGF.getLangOpts().OverflowHandler;
3557 if (handlerName->empty()) {
3558 // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3559 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3560 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3561 llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3562 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3563 : SanitizerKind::UnsignedIntegerOverflow;
3564 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3565 } else
3566 CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3567 return result;
3570 // Branch in case of overflow.
3571 llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3572 llvm::BasicBlock *continueBB =
3573 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3574 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3576 Builder.CreateCondBr(overflow, overflowBB, continueBB);
3578 // If an overflow handler is set, then we want to call it and then use its
3579 // result, if it returns.
3580 Builder.SetInsertPoint(overflowBB);
3582 // Get the overflow handler.
3583 llvm::Type *Int8Ty = CGF.Int8Ty;
3584 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3585 llvm::FunctionType *handlerTy =
3586 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3587 llvm::FunctionCallee handler =
3588 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3590 // Sign extend the args to 64-bit, so that we can use the same handler for
3591 // all types of overflow.
3592 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3593 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3595 // Call the handler with the two arguments, the operation, and the size of
3596 // the result.
3597 llvm::Value *handlerArgs[] = {
3598 lhs,
3599 rhs,
3600 Builder.getInt8(OpID),
3601 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3603 llvm::Value *handlerResult =
3604 CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3606 // Truncate the result back to the desired size.
3607 handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3608 Builder.CreateBr(continueBB);
3610 Builder.SetInsertPoint(continueBB);
3611 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3612 phi->addIncoming(result, initialBB);
3613 phi->addIncoming(handlerResult, overflowBB);
3615 return phi;
3618 /// Emit pointer + index arithmetic.
3619 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3620 const BinOpInfo &op,
3621 bool isSubtraction) {
3622 // Must have binary (not unary) expr here. Unary pointer
3623 // increment/decrement doesn't use this path.
3624 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3626 Value *pointer = op.LHS;
3627 Expr *pointerOperand = expr->getLHS();
3628 Value *index = op.RHS;
3629 Expr *indexOperand = expr->getRHS();
3631 // In a subtraction, the LHS is always the pointer.
3632 if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3633 std::swap(pointer, index);
3634 std::swap(pointerOperand, indexOperand);
3637 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3639 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3640 auto &DL = CGF.CGM.getDataLayout();
3641 auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3643 // Some versions of glibc and gcc use idioms (particularly in their malloc
3644 // routines) that add a pointer-sized integer (known to be a pointer value)
3645 // to a null pointer in order to cast the value back to an integer or as
3646 // part of a pointer alignment algorithm. This is undefined behavior, but
3647 // we'd like to be able to compile programs that use it.
3649 // Normally, we'd generate a GEP with a null-pointer base here in response
3650 // to that code, but it's also UB to dereference a pointer created that
3651 // way. Instead (as an acknowledged hack to tolerate the idiom) we will
3652 // generate a direct cast of the integer value to a pointer.
3654 // The idiom (p = nullptr + N) is not met if any of the following are true:
3656 // The operation is subtraction.
3657 // The index is not pointer-sized.
3658 // The pointer type is not byte-sized.
3660 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3661 op.Opcode,
3662 expr->getLHS(),
3663 expr->getRHS()))
3664 return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3666 if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3667 // Zero-extend or sign-extend the pointer value according to
3668 // whether the index is signed or not.
3669 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3670 "idx.ext");
3673 // If this is subtraction, negate the index.
3674 if (isSubtraction)
3675 index = CGF.Builder.CreateNeg(index, "idx.neg");
3677 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3678 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3679 /*Accessed*/ false);
3681 const PointerType *pointerType
3682 = pointerOperand->getType()->getAs<PointerType>();
3683 if (!pointerType) {
3684 QualType objectType = pointerOperand->getType()
3685 ->castAs<ObjCObjectPointerType>()
3686 ->getPointeeType();
3687 llvm::Value *objectSize
3688 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3690 index = CGF.Builder.CreateMul(index, objectSize);
3692 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3693 result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3694 return CGF.Builder.CreateBitCast(result, pointer->getType());
3697 QualType elementType = pointerType->getPointeeType();
3698 if (const VariableArrayType *vla
3699 = CGF.getContext().getAsVariableArrayType(elementType)) {
3700 // The element count here is the total number of non-VLA elements.
3701 llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3703 // Effectively, the multiply by the VLA size is part of the GEP.
3704 // GEP indexes are signed, and scaling an index isn't permitted to
3705 // signed-overflow, so we use the same semantics for our explicit
3706 // multiply. We suppress this if overflow is not undefined behavior.
3707 llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
3708 if (CGF.getLangOpts().isSignedOverflowDefined()) {
3709 index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3710 pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
3711 } else {
3712 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3713 pointer = CGF.EmitCheckedInBoundsGEP(
3714 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
3715 "add.ptr");
3717 return pointer;
3720 // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3721 // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3722 // future proof.
3723 if (elementType->isVoidType() || elementType->isFunctionType()) {
3724 Value *result = CGF.EmitCastToVoidPtr(pointer);
3725 result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3726 return CGF.Builder.CreateBitCast(result, pointer->getType());
3729 llvm::Type *elemTy = CGF.ConvertTypeForMem(elementType);
3730 if (CGF.getLangOpts().isSignedOverflowDefined())
3731 return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
3733 return CGF.EmitCheckedInBoundsGEP(
3734 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
3735 "add.ptr");
3738 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3739 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3740 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3741 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3742 // efficient operations.
3743 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3744 const CodeGenFunction &CGF, CGBuilderTy &Builder,
3745 bool negMul, bool negAdd) {
3746 Value *MulOp0 = MulOp->getOperand(0);
3747 Value *MulOp1 = MulOp->getOperand(1);
3748 if (negMul)
3749 MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3750 if (negAdd)
3751 Addend = Builder.CreateFNeg(Addend, "neg");
3753 Value *FMulAdd = nullptr;
3754 if (Builder.getIsFPConstrained()) {
3755 assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3756 "Only constrained operation should be created when Builder is in FP "
3757 "constrained mode");
3758 FMulAdd = Builder.CreateConstrainedFPCall(
3759 CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3760 Addend->getType()),
3761 {MulOp0, MulOp1, Addend});
3762 } else {
3763 FMulAdd = Builder.CreateCall(
3764 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3765 {MulOp0, MulOp1, Addend});
3767 MulOp->eraseFromParent();
3769 return FMulAdd;
3772 // Check whether it would be legal to emit an fmuladd intrinsic call to
3773 // represent op and if so, build the fmuladd.
3775 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3776 // Does NOT check the type of the operation - it's assumed that this function
3777 // will be called from contexts where it's known that the type is contractable.
3778 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3779 const CodeGenFunction &CGF, CGBuilderTy &Builder,
3780 bool isSub=false) {
3782 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3783 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3784 "Only fadd/fsub can be the root of an fmuladd.");
3786 // Check whether this op is marked as fusable.
3787 if (!op.FPFeatures.allowFPContractWithinStatement())
3788 return nullptr;
3790 Value *LHS = op.LHS;
3791 Value *RHS = op.RHS;
3793 // Peek through fneg to look for fmul. Make sure fneg has no users, and that
3794 // it is the only use of its operand.
3795 bool NegLHS = false;
3796 if (auto *LHSUnOp = dyn_cast<llvm::UnaryOperator>(LHS)) {
3797 if (LHSUnOp->getOpcode() == llvm::Instruction::FNeg &&
3798 LHSUnOp->use_empty() && LHSUnOp->getOperand(0)->hasOneUse()) {
3799 LHS = LHSUnOp->getOperand(0);
3800 NegLHS = true;
3804 bool NegRHS = false;
3805 if (auto *RHSUnOp = dyn_cast<llvm::UnaryOperator>(RHS)) {
3806 if (RHSUnOp->getOpcode() == llvm::Instruction::FNeg &&
3807 RHSUnOp->use_empty() && RHSUnOp->getOperand(0)->hasOneUse()) {
3808 RHS = RHSUnOp->getOperand(0);
3809 NegRHS = true;
3813 // We have a potentially fusable op. Look for a mul on one of the operands.
3814 // Also, make sure that the mul result isn't used directly. In that case,
3815 // there's no point creating a muladd operation.
3816 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(LHS)) {
3817 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3818 (LHSBinOp->use_empty() || NegLHS)) {
3819 // If we looked through fneg, erase it.
3820 if (NegLHS)
3821 cast<llvm::Instruction>(op.LHS)->eraseFromParent();
3822 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub);
3825 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(RHS)) {
3826 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3827 (RHSBinOp->use_empty() || NegRHS)) {
3828 // If we looked through fneg, erase it.
3829 if (NegRHS)
3830 cast<llvm::Instruction>(op.RHS)->eraseFromParent();
3831 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false);
3835 if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(LHS)) {
3836 if (LHSBinOp->getIntrinsicID() ==
3837 llvm::Intrinsic::experimental_constrained_fmul &&
3838 (LHSBinOp->use_empty() || NegLHS)) {
3839 // If we looked through fneg, erase it.
3840 if (NegLHS)
3841 cast<llvm::Instruction>(op.LHS)->eraseFromParent();
3842 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub);
3845 if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(RHS)) {
3846 if (RHSBinOp->getIntrinsicID() ==
3847 llvm::Intrinsic::experimental_constrained_fmul &&
3848 (RHSBinOp->use_empty() || NegRHS)) {
3849 // If we looked through fneg, erase it.
3850 if (NegRHS)
3851 cast<llvm::Instruction>(op.RHS)->eraseFromParent();
3852 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false);
3856 return nullptr;
3859 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3860 if (op.LHS->getType()->isPointerTy() ||
3861 op.RHS->getType()->isPointerTy())
3862 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3864 if (op.Ty->isSignedIntegerOrEnumerationType()) {
3865 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3866 case LangOptions::SOB_Defined:
3867 return Builder.CreateAdd(op.LHS, op.RHS, "add");
3868 case LangOptions::SOB_Undefined:
3869 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3870 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3871 [[fallthrough]];
3872 case LangOptions::SOB_Trapping:
3873 if (CanElideOverflowCheck(CGF.getContext(), op))
3874 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3875 return EmitOverflowCheckedBinOp(op);
3879 if (op.Ty->isConstantMatrixType()) {
3880 llvm::MatrixBuilder MB(Builder);
3881 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3882 return MB.CreateAdd(op.LHS, op.RHS);
3885 if (op.Ty->isUnsignedIntegerType() &&
3886 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3887 !CanElideOverflowCheck(CGF.getContext(), op))
3888 return EmitOverflowCheckedBinOp(op);
3890 if (op.LHS->getType()->isFPOrFPVectorTy()) {
3891 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3892 // Try to form an fmuladd.
3893 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3894 return FMulAdd;
3896 return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3899 if (op.isFixedPointOp())
3900 return EmitFixedPointBinOp(op);
3902 return Builder.CreateAdd(op.LHS, op.RHS, "add");
3905 /// The resulting value must be calculated with exact precision, so the operands
3906 /// may not be the same type.
3907 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3908 using llvm::APSInt;
3909 using llvm::ConstantInt;
3911 // This is either a binary operation where at least one of the operands is
3912 // a fixed-point type, or a unary operation where the operand is a fixed-point
3913 // type. The result type of a binary operation is determined by
3914 // Sema::handleFixedPointConversions().
3915 QualType ResultTy = op.Ty;
3916 QualType LHSTy, RHSTy;
3917 if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3918 RHSTy = BinOp->getRHS()->getType();
3919 if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3920 // For compound assignment, the effective type of the LHS at this point
3921 // is the computation LHS type, not the actual LHS type, and the final
3922 // result type is not the type of the expression but rather the
3923 // computation result type.
3924 LHSTy = CAO->getComputationLHSType();
3925 ResultTy = CAO->getComputationResultType();
3926 } else
3927 LHSTy = BinOp->getLHS()->getType();
3928 } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3929 LHSTy = UnOp->getSubExpr()->getType();
3930 RHSTy = UnOp->getSubExpr()->getType();
3932 ASTContext &Ctx = CGF.getContext();
3933 Value *LHS = op.LHS;
3934 Value *RHS = op.RHS;
3936 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3937 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3938 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3939 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3941 // Perform the actual operation.
3942 Value *Result;
3943 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3944 switch (op.Opcode) {
3945 case BO_AddAssign:
3946 case BO_Add:
3947 Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3948 break;
3949 case BO_SubAssign:
3950 case BO_Sub:
3951 Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3952 break;
3953 case BO_MulAssign:
3954 case BO_Mul:
3955 Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3956 break;
3957 case BO_DivAssign:
3958 case BO_Div:
3959 Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3960 break;
3961 case BO_ShlAssign:
3962 case BO_Shl:
3963 Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3964 break;
3965 case BO_ShrAssign:
3966 case BO_Shr:
3967 Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3968 break;
3969 case BO_LT:
3970 return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3971 case BO_GT:
3972 return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3973 case BO_LE:
3974 return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3975 case BO_GE:
3976 return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3977 case BO_EQ:
3978 // For equality operations, we assume any padding bits on unsigned types are
3979 // zero'd out. They could be overwritten through non-saturating operations
3980 // that cause overflow, but this leads to undefined behavior.
3981 return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3982 case BO_NE:
3983 return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3984 case BO_Cmp:
3985 case BO_LAnd:
3986 case BO_LOr:
3987 llvm_unreachable("Found unimplemented fixed point binary operation");
3988 case BO_PtrMemD:
3989 case BO_PtrMemI:
3990 case BO_Rem:
3991 case BO_Xor:
3992 case BO_And:
3993 case BO_Or:
3994 case BO_Assign:
3995 case BO_RemAssign:
3996 case BO_AndAssign:
3997 case BO_XorAssign:
3998 case BO_OrAssign:
3999 case BO_Comma:
4000 llvm_unreachable("Found unsupported binary operation for fixed point types.");
4003 bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
4004 BinaryOperator::isShiftAssignOp(op.Opcode);
4005 // Convert to the result type.
4006 return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
4007 : CommonFixedSema,
4008 ResultFixedSema);
4011 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
4012 // The LHS is always a pointer if either side is.
4013 if (!op.LHS->getType()->isPointerTy()) {
4014 if (op.Ty->isSignedIntegerOrEnumerationType()) {
4015 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
4016 case LangOptions::SOB_Defined:
4017 return Builder.CreateSub(op.LHS, op.RHS, "sub");
4018 case LangOptions::SOB_Undefined:
4019 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4020 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
4021 [[fallthrough]];
4022 case LangOptions::SOB_Trapping:
4023 if (CanElideOverflowCheck(CGF.getContext(), op))
4024 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
4025 return EmitOverflowCheckedBinOp(op);
4029 if (op.Ty->isConstantMatrixType()) {
4030 llvm::MatrixBuilder MB(Builder);
4031 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4032 return MB.CreateSub(op.LHS, op.RHS);
4035 if (op.Ty->isUnsignedIntegerType() &&
4036 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
4037 !CanElideOverflowCheck(CGF.getContext(), op))
4038 return EmitOverflowCheckedBinOp(op);
4040 if (op.LHS->getType()->isFPOrFPVectorTy()) {
4041 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4042 // Try to form an fmuladd.
4043 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
4044 return FMulAdd;
4045 return Builder.CreateFSub(op.LHS, op.RHS, "sub");
4048 if (op.isFixedPointOp())
4049 return EmitFixedPointBinOp(op);
4051 return Builder.CreateSub(op.LHS, op.RHS, "sub");
4054 // If the RHS is not a pointer, then we have normal pointer
4055 // arithmetic.
4056 if (!op.RHS->getType()->isPointerTy())
4057 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
4059 // Otherwise, this is a pointer subtraction.
4061 // Do the raw subtraction part.
4062 llvm::Value *LHS
4063 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
4064 llvm::Value *RHS
4065 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
4066 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
4068 // Okay, figure out the element size.
4069 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
4070 QualType elementType = expr->getLHS()->getType()->getPointeeType();
4072 llvm::Value *divisor = nullptr;
4074 // For a variable-length array, this is going to be non-constant.
4075 if (const VariableArrayType *vla
4076 = CGF.getContext().getAsVariableArrayType(elementType)) {
4077 auto VlaSize = CGF.getVLASize(vla);
4078 elementType = VlaSize.Type;
4079 divisor = VlaSize.NumElts;
4081 // Scale the number of non-VLA elements by the non-VLA element size.
4082 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
4083 if (!eltSize.isOne())
4084 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
4086 // For everything elese, we can just compute it, safe in the
4087 // assumption that Sema won't let anything through that we can't
4088 // safely compute the size of.
4089 } else {
4090 CharUnits elementSize;
4091 // Handle GCC extension for pointer arithmetic on void* and
4092 // function pointer types.
4093 if (elementType->isVoidType() || elementType->isFunctionType())
4094 elementSize = CharUnits::One();
4095 else
4096 elementSize = CGF.getContext().getTypeSizeInChars(elementType);
4098 // Don't even emit the divide for element size of 1.
4099 if (elementSize.isOne())
4100 return diffInChars;
4102 divisor = CGF.CGM.getSize(elementSize);
4105 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
4106 // pointer difference in C is only defined in the case where both operands
4107 // are pointing to elements of an array.
4108 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
4111 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
4112 llvm::IntegerType *Ty;
4113 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4114 Ty = cast<llvm::IntegerType>(VT->getElementType());
4115 else
4116 Ty = cast<llvm::IntegerType>(LHS->getType());
4117 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
4120 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
4121 const Twine &Name) {
4122 llvm::IntegerType *Ty;
4123 if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4124 Ty = cast<llvm::IntegerType>(VT->getElementType());
4125 else
4126 Ty = cast<llvm::IntegerType>(LHS->getType());
4128 if (llvm::isPowerOf2_64(Ty->getBitWidth()))
4129 return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
4131 return Builder.CreateURem(
4132 RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
4135 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
4136 // TODO: This misses out on the sanitizer check below.
4137 if (Ops.isFixedPointOp())
4138 return EmitFixedPointBinOp(Ops);
4140 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4141 // RHS to the same size as the LHS.
4142 Value *RHS = Ops.RHS;
4143 if (Ops.LHS->getType() != RHS->getType())
4144 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4146 bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
4147 Ops.Ty->hasSignedIntegerRepresentation() &&
4148 !CGF.getLangOpts().isSignedOverflowDefined() &&
4149 !CGF.getLangOpts().CPlusPlus20;
4150 bool SanitizeUnsignedBase =
4151 CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
4152 Ops.Ty->hasUnsignedIntegerRepresentation();
4153 bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
4154 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
4155 // OpenCL 6.3j: shift values are effectively % word size of LHS.
4156 if (CGF.getLangOpts().OpenCL)
4157 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
4158 else if ((SanitizeBase || SanitizeExponent) &&
4159 isa<llvm::IntegerType>(Ops.LHS->getType())) {
4160 CodeGenFunction::SanitizerScope SanScope(&CGF);
4161 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
4162 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
4163 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
4165 if (SanitizeExponent) {
4166 Checks.push_back(
4167 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
4170 if (SanitizeBase) {
4171 // Check whether we are shifting any non-zero bits off the top of the
4172 // integer. We only emit this check if exponent is valid - otherwise
4173 // instructions below will have undefined behavior themselves.
4174 llvm::BasicBlock *Orig = Builder.GetInsertBlock();
4175 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4176 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
4177 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
4178 llvm::Value *PromotedWidthMinusOne =
4179 (RHS == Ops.RHS) ? WidthMinusOne
4180 : GetWidthMinusOneValue(Ops.LHS, RHS);
4181 CGF.EmitBlock(CheckShiftBase);
4182 llvm::Value *BitsShiftedOff = Builder.CreateLShr(
4183 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
4184 /*NUW*/ true, /*NSW*/ true),
4185 "shl.check");
4186 if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
4187 // In C99, we are not permitted to shift a 1 bit into the sign bit.
4188 // Under C++11's rules, shifting a 1 bit into the sign bit is
4189 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
4190 // define signed left shifts, so we use the C99 and C++11 rules there).
4191 // Unsigned shifts can always shift into the top bit.
4192 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
4193 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
4195 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
4196 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
4197 CGF.EmitBlock(Cont);
4198 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
4199 BaseCheck->addIncoming(Builder.getTrue(), Orig);
4200 BaseCheck->addIncoming(ValidBase, CheckShiftBase);
4201 Checks.push_back(std::make_pair(
4202 BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
4203 : SanitizerKind::UnsignedShiftBase));
4206 assert(!Checks.empty());
4207 EmitBinOpCheck(Checks, Ops);
4210 return Builder.CreateShl(Ops.LHS, RHS, "shl");
4213 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
4214 // TODO: This misses out on the sanitizer check below.
4215 if (Ops.isFixedPointOp())
4216 return EmitFixedPointBinOp(Ops);
4218 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4219 // RHS to the same size as the LHS.
4220 Value *RHS = Ops.RHS;
4221 if (Ops.LHS->getType() != RHS->getType())
4222 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4224 // OpenCL 6.3j: shift values are effectively % word size of LHS.
4225 if (CGF.getLangOpts().OpenCL)
4226 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
4227 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
4228 isa<llvm::IntegerType>(Ops.LHS->getType())) {
4229 CodeGenFunction::SanitizerScope SanScope(&CGF);
4230 llvm::Value *Valid =
4231 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
4232 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
4235 if (Ops.Ty->hasUnsignedIntegerRepresentation())
4236 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
4237 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
4240 enum IntrinsicType { VCMPEQ, VCMPGT };
4241 // return corresponding comparison intrinsic for given vector type
4242 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
4243 BuiltinType::Kind ElemKind) {
4244 switch (ElemKind) {
4245 default: llvm_unreachable("unexpected element type");
4246 case BuiltinType::Char_U:
4247 case BuiltinType::UChar:
4248 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4249 llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
4250 case BuiltinType::Char_S:
4251 case BuiltinType::SChar:
4252 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4253 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
4254 case BuiltinType::UShort:
4255 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4256 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
4257 case BuiltinType::Short:
4258 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4259 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
4260 case BuiltinType::UInt:
4261 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4262 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
4263 case BuiltinType::Int:
4264 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4265 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
4266 case BuiltinType::ULong:
4267 case BuiltinType::ULongLong:
4268 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4269 llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
4270 case BuiltinType::Long:
4271 case BuiltinType::LongLong:
4272 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4273 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
4274 case BuiltinType::Float:
4275 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
4276 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
4277 case BuiltinType::Double:
4278 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
4279 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
4280 case BuiltinType::UInt128:
4281 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4282 : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
4283 case BuiltinType::Int128:
4284 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4285 : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
4289 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
4290 llvm::CmpInst::Predicate UICmpOpc,
4291 llvm::CmpInst::Predicate SICmpOpc,
4292 llvm::CmpInst::Predicate FCmpOpc,
4293 bool IsSignaling) {
4294 TestAndClearIgnoreResultAssign();
4295 Value *Result;
4296 QualType LHSTy = E->getLHS()->getType();
4297 QualType RHSTy = E->getRHS()->getType();
4298 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4299 assert(E->getOpcode() == BO_EQ ||
4300 E->getOpcode() == BO_NE);
4301 Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4302 Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4303 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
4304 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4305 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4306 BinOpInfo BOInfo = EmitBinOps(E);
4307 Value *LHS = BOInfo.LHS;
4308 Value *RHS = BOInfo.RHS;
4310 // If AltiVec, the comparison results in a numeric type, so we use
4311 // intrinsics comparing vectors and giving 0 or 1 as a result
4312 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4313 // constants for mapping CR6 register bits to predicate result
4314 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4316 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4318 // in several cases vector arguments order will be reversed
4319 Value *FirstVecArg = LHS,
4320 *SecondVecArg = RHS;
4322 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4323 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4325 switch(E->getOpcode()) {
4326 default: llvm_unreachable("is not a comparison operation");
4327 case BO_EQ:
4328 CR6 = CR6_LT;
4329 ID = GetIntrinsic(VCMPEQ, ElementKind);
4330 break;
4331 case BO_NE:
4332 CR6 = CR6_EQ;
4333 ID = GetIntrinsic(VCMPEQ, ElementKind);
4334 break;
4335 case BO_LT:
4336 CR6 = CR6_LT;
4337 ID = GetIntrinsic(VCMPGT, ElementKind);
4338 std::swap(FirstVecArg, SecondVecArg);
4339 break;
4340 case BO_GT:
4341 CR6 = CR6_LT;
4342 ID = GetIntrinsic(VCMPGT, ElementKind);
4343 break;
4344 case BO_LE:
4345 if (ElementKind == BuiltinType::Float) {
4346 CR6 = CR6_LT;
4347 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4348 std::swap(FirstVecArg, SecondVecArg);
4350 else {
4351 CR6 = CR6_EQ;
4352 ID = GetIntrinsic(VCMPGT, ElementKind);
4354 break;
4355 case BO_GE:
4356 if (ElementKind == BuiltinType::Float) {
4357 CR6 = CR6_LT;
4358 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4360 else {
4361 CR6 = CR6_EQ;
4362 ID = GetIntrinsic(VCMPGT, ElementKind);
4363 std::swap(FirstVecArg, SecondVecArg);
4365 break;
4368 Value *CR6Param = Builder.getInt32(CR6);
4369 llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4370 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4372 // The result type of intrinsic may not be same as E->getType().
4373 // If E->getType() is not BoolTy, EmitScalarConversion will do the
4374 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4375 // do nothing, if ResultTy is not i1 at the same time, it will cause
4376 // crash later.
4377 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4378 if (ResultTy->getBitWidth() > 1 &&
4379 E->getType() == CGF.getContext().BoolTy)
4380 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4381 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4382 E->getExprLoc());
4385 if (BOInfo.isFixedPointOp()) {
4386 Result = EmitFixedPointBinOp(BOInfo);
4387 } else if (LHS->getType()->isFPOrFPVectorTy()) {
4388 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4389 if (!IsSignaling)
4390 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4391 else
4392 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4393 } else if (LHSTy->hasSignedIntegerRepresentation()) {
4394 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4395 } else {
4396 // Unsigned integers and pointers.
4398 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4399 !isa<llvm::ConstantPointerNull>(LHS) &&
4400 !isa<llvm::ConstantPointerNull>(RHS)) {
4402 // Dynamic information is required to be stripped for comparisons,
4403 // because it could leak the dynamic information. Based on comparisons
4404 // of pointers to dynamic objects, the optimizer can replace one pointer
4405 // with another, which might be incorrect in presence of invariant
4406 // groups. Comparison with null is safe because null does not carry any
4407 // dynamic information.
4408 if (LHSTy.mayBeDynamicClass())
4409 LHS = Builder.CreateStripInvariantGroup(LHS);
4410 if (RHSTy.mayBeDynamicClass())
4411 RHS = Builder.CreateStripInvariantGroup(RHS);
4414 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4417 // If this is a vector comparison, sign extend the result to the appropriate
4418 // vector integer type and return it (don't convert to bool).
4419 if (LHSTy->isVectorType())
4420 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4422 } else {
4423 // Complex Comparison: can only be an equality comparison.
4424 CodeGenFunction::ComplexPairTy LHS, RHS;
4425 QualType CETy;
4426 if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4427 LHS = CGF.EmitComplexExpr(E->getLHS());
4428 CETy = CTy->getElementType();
4429 } else {
4430 LHS.first = Visit(E->getLHS());
4431 LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4432 CETy = LHSTy;
4434 if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4435 RHS = CGF.EmitComplexExpr(E->getRHS());
4436 assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4437 CTy->getElementType()) &&
4438 "The element types must always match.");
4439 (void)CTy;
4440 } else {
4441 RHS.first = Visit(E->getRHS());
4442 RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4443 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4444 "The element types must always match.");
4447 Value *ResultR, *ResultI;
4448 if (CETy->isRealFloatingType()) {
4449 // As complex comparisons can only be equality comparisons, they
4450 // are never signaling comparisons.
4451 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4452 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4453 } else {
4454 // Complex comparisons can only be equality comparisons. As such, signed
4455 // and unsigned opcodes are the same.
4456 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4457 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4460 if (E->getOpcode() == BO_EQ) {
4461 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4462 } else {
4463 assert(E->getOpcode() == BO_NE &&
4464 "Complex comparison other than == or != ?");
4465 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4469 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4470 E->getExprLoc());
4473 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4474 bool Ignore = TestAndClearIgnoreResultAssign();
4476 Value *RHS;
4477 LValue LHS;
4479 switch (E->getLHS()->getType().getObjCLifetime()) {
4480 case Qualifiers::OCL_Strong:
4481 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4482 break;
4484 case Qualifiers::OCL_Autoreleasing:
4485 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4486 break;
4488 case Qualifiers::OCL_ExplicitNone:
4489 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4490 break;
4492 case Qualifiers::OCL_Weak:
4493 RHS = Visit(E->getRHS());
4494 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4495 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4496 break;
4498 case Qualifiers::OCL_None:
4499 // __block variables need to have the rhs evaluated first, plus
4500 // this should improve codegen just a little.
4501 RHS = Visit(E->getRHS());
4502 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4504 // Store the value into the LHS. Bit-fields are handled specially
4505 // because the result is altered by the store, i.e., [C99 6.5.16p1]
4506 // 'An assignment expression has the value of the left operand after
4507 // the assignment...'.
4508 if (LHS.isBitField()) {
4509 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4510 } else {
4511 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4512 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4516 // If the result is clearly ignored, return now.
4517 if (Ignore)
4518 return nullptr;
4520 // The result of an assignment in C is the assigned r-value.
4521 if (!CGF.getLangOpts().CPlusPlus)
4522 return RHS;
4524 // If the lvalue is non-volatile, return the computed value of the assignment.
4525 if (!LHS.isVolatileQualified())
4526 return RHS;
4528 // Otherwise, reload the value.
4529 return EmitLoadOfLValue(LHS, E->getExprLoc());
4532 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4533 // Perform vector logical and on comparisons with zero vectors.
4534 if (E->getType()->isVectorType()) {
4535 CGF.incrementProfileCounter(E);
4537 Value *LHS = Visit(E->getLHS());
4538 Value *RHS = Visit(E->getRHS());
4539 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4540 if (LHS->getType()->isFPOrFPVectorTy()) {
4541 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4542 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4543 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4544 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4545 } else {
4546 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4547 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4549 Value *And = Builder.CreateAnd(LHS, RHS);
4550 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4553 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4554 llvm::Type *ResTy = ConvertType(E->getType());
4556 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4557 // If we have 1 && X, just emit X without inserting the control flow.
4558 bool LHSCondVal;
4559 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4560 if (LHSCondVal) { // If we have 1 && X, just emit X.
4561 CGF.incrementProfileCounter(E);
4563 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4565 // If we're generating for profiling or coverage, generate a branch to a
4566 // block that increments the RHS counter needed to track branch condition
4567 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4568 // "FalseBlock" after the increment is done.
4569 if (InstrumentRegions &&
4570 CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4571 llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4572 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4573 Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4574 CGF.EmitBlock(RHSBlockCnt);
4575 CGF.incrementProfileCounter(E->getRHS());
4576 CGF.EmitBranch(FBlock);
4577 CGF.EmitBlock(FBlock);
4580 // ZExt result to int or bool.
4581 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4584 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4585 if (!CGF.ContainsLabel(E->getRHS()))
4586 return llvm::Constant::getNullValue(ResTy);
4589 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4590 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
4592 CodeGenFunction::ConditionalEvaluation eval(CGF);
4594 // Branch on the LHS first. If it is false, go to the failure (cont) block.
4595 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4596 CGF.getProfileCount(E->getRHS()));
4598 // Any edges into the ContBlock are now from an (indeterminate number of)
4599 // edges from this first condition. All of these values will be false. Start
4600 // setting up the PHI node in the Cont Block for this.
4601 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4602 "", ContBlock);
4603 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4604 PI != PE; ++PI)
4605 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4607 eval.begin(CGF);
4608 CGF.EmitBlock(RHSBlock);
4609 CGF.incrementProfileCounter(E);
4610 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4611 eval.end(CGF);
4613 // Reaquire the RHS block, as there may be subblocks inserted.
4614 RHSBlock = Builder.GetInsertBlock();
4616 // If we're generating for profiling or coverage, generate a branch on the
4617 // RHS to a block that increments the RHS true counter needed to track branch
4618 // condition coverage.
4619 if (InstrumentRegions &&
4620 CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4621 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4622 Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
4623 CGF.EmitBlock(RHSBlockCnt);
4624 CGF.incrementProfileCounter(E->getRHS());
4625 CGF.EmitBranch(ContBlock);
4626 PN->addIncoming(RHSCond, RHSBlockCnt);
4629 // Emit an unconditional branch from this block to ContBlock.
4631 // There is no need to emit line number for unconditional branch.
4632 auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4633 CGF.EmitBlock(ContBlock);
4635 // Insert an entry into the phi node for the edge with the value of RHSCond.
4636 PN->addIncoming(RHSCond, RHSBlock);
4638 // Artificial location to preserve the scope information
4640 auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4641 PN->setDebugLoc(Builder.getCurrentDebugLocation());
4644 // ZExt result to int.
4645 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4648 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4649 // Perform vector logical or on comparisons with zero vectors.
4650 if (E->getType()->isVectorType()) {
4651 CGF.incrementProfileCounter(E);
4653 Value *LHS = Visit(E->getLHS());
4654 Value *RHS = Visit(E->getRHS());
4655 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4656 if (LHS->getType()->isFPOrFPVectorTy()) {
4657 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4658 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4659 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4660 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4661 } else {
4662 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4663 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4665 Value *Or = Builder.CreateOr(LHS, RHS);
4666 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4669 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4670 llvm::Type *ResTy = ConvertType(E->getType());
4672 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4673 // If we have 0 || X, just emit X without inserting the control flow.
4674 bool LHSCondVal;
4675 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4676 if (!LHSCondVal) { // If we have 0 || X, just emit X.
4677 CGF.incrementProfileCounter(E);
4679 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4681 // If we're generating for profiling or coverage, generate a branch to a
4682 // block that increments the RHS counter need to track branch condition
4683 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4684 // "FalseBlock" after the increment is done.
4685 if (InstrumentRegions &&
4686 CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4687 llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
4688 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4689 Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
4690 CGF.EmitBlock(RHSBlockCnt);
4691 CGF.incrementProfileCounter(E->getRHS());
4692 CGF.EmitBranch(FBlock);
4693 CGF.EmitBlock(FBlock);
4696 // ZExt result to int or bool.
4697 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4700 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4701 if (!CGF.ContainsLabel(E->getRHS()))
4702 return llvm::ConstantInt::get(ResTy, 1);
4705 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4706 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4708 CodeGenFunction::ConditionalEvaluation eval(CGF);
4710 // Branch on the LHS first. If it is true, go to the success (cont) block.
4711 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4712 CGF.getCurrentProfileCount() -
4713 CGF.getProfileCount(E->getRHS()));
4715 // Any edges into the ContBlock are now from an (indeterminate number of)
4716 // edges from this first condition. All of these values will be true. Start
4717 // setting up the PHI node in the Cont Block for this.
4718 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4719 "", ContBlock);
4720 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4721 PI != PE; ++PI)
4722 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4724 eval.begin(CGF);
4726 // Emit the RHS condition as a bool value.
4727 CGF.EmitBlock(RHSBlock);
4728 CGF.incrementProfileCounter(E);
4729 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4731 eval.end(CGF);
4733 // Reaquire the RHS block, as there may be subblocks inserted.
4734 RHSBlock = Builder.GetInsertBlock();
4736 // If we're generating for profiling or coverage, generate a branch on the
4737 // RHS to a block that increments the RHS true counter needed to track branch
4738 // condition coverage.
4739 if (InstrumentRegions &&
4740 CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4741 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4742 Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
4743 CGF.EmitBlock(RHSBlockCnt);
4744 CGF.incrementProfileCounter(E->getRHS());
4745 CGF.EmitBranch(ContBlock);
4746 PN->addIncoming(RHSCond, RHSBlockCnt);
4749 // Emit an unconditional branch from this block to ContBlock. Insert an entry
4750 // into the phi node for the edge with the value of RHSCond.
4751 CGF.EmitBlock(ContBlock);
4752 PN->addIncoming(RHSCond, RHSBlock);
4754 // ZExt result to int.
4755 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4758 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4759 CGF.EmitIgnoredExpr(E->getLHS());
4760 CGF.EnsureInsertPoint();
4761 return Visit(E->getRHS());
4764 //===----------------------------------------------------------------------===//
4765 // Other Operators
4766 //===----------------------------------------------------------------------===//
4768 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4769 /// expression is cheap enough and side-effect-free enough to evaluate
4770 /// unconditionally instead of conditionally. This is used to convert control
4771 /// flow into selects in some cases.
4772 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4773 CodeGenFunction &CGF) {
4774 // Anything that is an integer or floating point constant is fine.
4775 return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4777 // Even non-volatile automatic variables can't be evaluated unconditionally.
4778 // Referencing a thread_local may cause non-trivial initialization work to
4779 // occur. If we're inside a lambda and one of the variables is from the scope
4780 // outside the lambda, that function may have returned already. Reading its
4781 // locals is a bad idea. Also, these reads may introduce races there didn't
4782 // exist in the source-level program.
4786 Value *ScalarExprEmitter::
4787 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4788 TestAndClearIgnoreResultAssign();
4790 // Bind the common expression if necessary.
4791 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4793 Expr *condExpr = E->getCond();
4794 Expr *lhsExpr = E->getTrueExpr();
4795 Expr *rhsExpr = E->getFalseExpr();
4797 // If the condition constant folds and can be elided, try to avoid emitting
4798 // the condition and the dead arm.
4799 bool CondExprBool;
4800 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4801 Expr *live = lhsExpr, *dead = rhsExpr;
4802 if (!CondExprBool) std::swap(live, dead);
4804 // If the dead side doesn't have labels we need, just emit the Live part.
4805 if (!CGF.ContainsLabel(dead)) {
4806 if (CondExprBool)
4807 CGF.incrementProfileCounter(E);
4808 Value *Result = Visit(live);
4810 // If the live part is a throw expression, it acts like it has a void
4811 // type, so evaluating it returns a null Value*. However, a conditional
4812 // with non-void type must return a non-null Value*.
4813 if (!Result && !E->getType()->isVoidType())
4814 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4816 return Result;
4820 // OpenCL: If the condition is a vector, we can treat this condition like
4821 // the select function.
4822 if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4823 condExpr->getType()->isExtVectorType()) {
4824 CGF.incrementProfileCounter(E);
4826 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4827 llvm::Value *LHS = Visit(lhsExpr);
4828 llvm::Value *RHS = Visit(rhsExpr);
4830 llvm::Type *condType = ConvertType(condExpr->getType());
4831 auto *vecTy = cast<llvm::FixedVectorType>(condType);
4833 unsigned numElem = vecTy->getNumElements();
4834 llvm::Type *elemType = vecTy->getElementType();
4836 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4837 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4838 llvm::Value *tmp = Builder.CreateSExt(
4839 TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4840 llvm::Value *tmp2 = Builder.CreateNot(tmp);
4842 // Cast float to int to perform ANDs if necessary.
4843 llvm::Value *RHSTmp = RHS;
4844 llvm::Value *LHSTmp = LHS;
4845 bool wasCast = false;
4846 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4847 if (rhsVTy->getElementType()->isFloatingPointTy()) {
4848 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4849 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4850 wasCast = true;
4853 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4854 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4855 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4856 if (wasCast)
4857 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4859 return tmp5;
4862 if (condExpr->getType()->isVectorType() ||
4863 condExpr->getType()->isVLSTBuiltinType()) {
4864 CGF.incrementProfileCounter(E);
4866 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4867 llvm::Value *LHS = Visit(lhsExpr);
4868 llvm::Value *RHS = Visit(rhsExpr);
4870 llvm::Type *CondType = ConvertType(condExpr->getType());
4871 auto *VecTy = cast<llvm::VectorType>(CondType);
4872 llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4874 CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4875 return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4878 // If this is a really simple expression (like x ? 4 : 5), emit this as a
4879 // select instead of as control flow. We can only do this if it is cheap and
4880 // safe to evaluate the LHS and RHS unconditionally.
4881 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4882 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4883 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4884 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4886 CGF.incrementProfileCounter(E, StepV);
4888 llvm::Value *LHS = Visit(lhsExpr);
4889 llvm::Value *RHS = Visit(rhsExpr);
4890 if (!LHS) {
4891 // If the conditional has void type, make sure we return a null Value*.
4892 assert(!RHS && "LHS and RHS types must match");
4893 return nullptr;
4895 return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4898 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4899 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4900 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4902 CodeGenFunction::ConditionalEvaluation eval(CGF);
4903 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4904 CGF.getProfileCount(lhsExpr));
4906 CGF.EmitBlock(LHSBlock);
4907 CGF.incrementProfileCounter(E);
4908 eval.begin(CGF);
4909 Value *LHS = Visit(lhsExpr);
4910 eval.end(CGF);
4912 LHSBlock = Builder.GetInsertBlock();
4913 Builder.CreateBr(ContBlock);
4915 CGF.EmitBlock(RHSBlock);
4916 eval.begin(CGF);
4917 Value *RHS = Visit(rhsExpr);
4918 eval.end(CGF);
4920 RHSBlock = Builder.GetInsertBlock();
4921 CGF.EmitBlock(ContBlock);
4923 // If the LHS or RHS is a throw expression, it will be legitimately null.
4924 if (!LHS)
4925 return RHS;
4926 if (!RHS)
4927 return LHS;
4929 // Create a PHI node for the real part.
4930 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4931 PN->addIncoming(LHS, LHSBlock);
4932 PN->addIncoming(RHS, RHSBlock);
4933 return PN;
4936 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4937 return Visit(E->getChosenSubExpr());
4940 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4941 QualType Ty = VE->getType();
4943 if (Ty->isVariablyModifiedType())
4944 CGF.EmitVariablyModifiedType(Ty);
4946 Address ArgValue = Address::invalid();
4947 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4949 llvm::Type *ArgTy = ConvertType(VE->getType());
4951 // If EmitVAArg fails, emit an error.
4952 if (!ArgPtr.isValid()) {
4953 CGF.ErrorUnsupported(VE, "va_arg expression");
4954 return llvm::UndefValue::get(ArgTy);
4957 // FIXME Volatility.
4958 llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4960 // If EmitVAArg promoted the type, we must truncate it.
4961 if (ArgTy != Val->getType()) {
4962 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4963 Val = Builder.CreateIntToPtr(Val, ArgTy);
4964 else
4965 Val = Builder.CreateTrunc(Val, ArgTy);
4968 return Val;
4971 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4972 return CGF.EmitBlockLiteral(block);
4975 // Convert a vec3 to vec4, or vice versa.
4976 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4977 Value *Src, unsigned NumElementsDst) {
4978 static constexpr int Mask[] = {0, 1, 2, -1};
4979 return Builder.CreateShuffleVector(Src, llvm::ArrayRef(Mask, NumElementsDst));
4982 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4983 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4984 // but could be scalar or vectors of different lengths, and either can be
4985 // pointer.
4986 // There are 4 cases:
4987 // 1. non-pointer -> non-pointer : needs 1 bitcast
4988 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast
4989 // 3. pointer -> non-pointer
4990 // a) pointer -> intptr_t : needs 1 ptrtoint
4991 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast
4992 // 4. non-pointer -> pointer
4993 // a) intptr_t -> pointer : needs 1 inttoptr
4994 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr
4995 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4996 // allow casting directly between pointer types and non-integer non-pointer
4997 // types.
4998 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4999 const llvm::DataLayout &DL,
5000 Value *Src, llvm::Type *DstTy,
5001 StringRef Name = "") {
5002 auto SrcTy = Src->getType();
5004 // Case 1.
5005 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
5006 return Builder.CreateBitCast(Src, DstTy, Name);
5008 // Case 2.
5009 if (SrcTy->isPointerTy() && DstTy->isPointerTy())
5010 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
5012 // Case 3.
5013 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
5014 // Case 3b.
5015 if (!DstTy->isIntegerTy())
5016 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
5017 // Cases 3a and 3b.
5018 return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
5021 // Case 4b.
5022 if (!SrcTy->isIntegerTy())
5023 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
5024 // Cases 4a and 4b.
5025 return Builder.CreateIntToPtr(Src, DstTy, Name);
5028 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
5029 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
5030 llvm::Type *DstTy = ConvertType(E->getType());
5032 llvm::Type *SrcTy = Src->getType();
5033 unsigned NumElementsSrc =
5034 isa<llvm::VectorType>(SrcTy)
5035 ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
5036 : 0;
5037 unsigned NumElementsDst =
5038 isa<llvm::VectorType>(DstTy)
5039 ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
5040 : 0;
5042 // Use bit vector expansion for ext_vector_type boolean vectors.
5043 if (E->getType()->isExtVectorBoolType())
5044 return CGF.emitBoolVecConversion(Src, NumElementsDst, "astype");
5046 // Going from vec3 to non-vec3 is a special case and requires a shuffle
5047 // vector to get a vec4, then a bitcast if the target type is different.
5048 if (NumElementsSrc == 3 && NumElementsDst != 3) {
5049 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
5050 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
5051 DstTy);
5053 Src->setName("astype");
5054 return Src;
5057 // Going from non-vec3 to vec3 is a special case and requires a bitcast
5058 // to vec4 if the original type is not vec4, then a shuffle vector to
5059 // get a vec3.
5060 if (NumElementsSrc != 3 && NumElementsDst == 3) {
5061 auto *Vec4Ty = llvm::FixedVectorType::get(
5062 cast<llvm::VectorType>(DstTy)->getElementType(), 4);
5063 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
5064 Vec4Ty);
5066 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
5067 Src->setName("astype");
5068 return Src;
5071 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
5072 Src, DstTy, "astype");
5075 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
5076 return CGF.EmitAtomicExpr(E).getScalarVal();
5079 //===----------------------------------------------------------------------===//
5080 // Entry Point into this File
5081 //===----------------------------------------------------------------------===//
5083 /// Emit the computation of the specified expression of scalar type, ignoring
5084 /// the result.
5085 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
5086 assert(E && hasScalarEvaluationKind(E->getType()) &&
5087 "Invalid scalar expression to emit");
5089 return ScalarExprEmitter(*this, IgnoreResultAssign)
5090 .Visit(const_cast<Expr *>(E));
5093 /// Emit a conversion from the specified type to the specified destination type,
5094 /// both of which are LLVM scalar types.
5095 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
5096 QualType DstTy,
5097 SourceLocation Loc) {
5098 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
5099 "Invalid scalar expression to emit");
5100 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
5103 /// Emit a conversion from the specified complex type to the specified
5104 /// destination type, where the destination type is an LLVM scalar type.
5105 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
5106 QualType SrcTy,
5107 QualType DstTy,
5108 SourceLocation Loc) {
5109 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
5110 "Invalid complex -> scalar conversion");
5111 return ScalarExprEmitter(*this)
5112 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
5116 Value *
5117 CodeGenFunction::EmitPromotedScalarExpr(const Expr *E,
5118 QualType PromotionType) {
5119 if (!PromotionType.isNull())
5120 return ScalarExprEmitter(*this).EmitPromoted(E, PromotionType);
5121 else
5122 return ScalarExprEmitter(*this).Visit(const_cast<Expr *>(E));
5126 llvm::Value *CodeGenFunction::
5127 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
5128 bool isInc, bool isPre) {
5129 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
5132 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
5133 // object->isa or (*object).isa
5134 // Generate code as for: *(Class*)object
5136 Expr *BaseExpr = E->getBase();
5137 Address Addr = Address::invalid();
5138 if (BaseExpr->isPRValue()) {
5139 llvm::Type *BaseTy =
5140 ConvertTypeForMem(BaseExpr->getType()->getPointeeType());
5141 Addr = Address(EmitScalarExpr(BaseExpr), BaseTy, getPointerAlign());
5142 } else {
5143 Addr = EmitLValue(BaseExpr).getAddress(*this);
5146 // Cast the address to Class*.
5147 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
5148 return MakeAddrLValue(Addr, E->getType());
5152 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
5153 const CompoundAssignOperator *E) {
5154 ScalarExprEmitter Scalar(*this);
5155 Value *Result = nullptr;
5156 switch (E->getOpcode()) {
5157 #define COMPOUND_OP(Op) \
5158 case BO_##Op##Assign: \
5159 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
5160 Result)
5161 COMPOUND_OP(Mul);
5162 COMPOUND_OP(Div);
5163 COMPOUND_OP(Rem);
5164 COMPOUND_OP(Add);
5165 COMPOUND_OP(Sub);
5166 COMPOUND_OP(Shl);
5167 COMPOUND_OP(Shr);
5168 COMPOUND_OP(And);
5169 COMPOUND_OP(Xor);
5170 COMPOUND_OP(Or);
5171 #undef COMPOUND_OP
5173 case BO_PtrMemD:
5174 case BO_PtrMemI:
5175 case BO_Mul:
5176 case BO_Div:
5177 case BO_Rem:
5178 case BO_Add:
5179 case BO_Sub:
5180 case BO_Shl:
5181 case BO_Shr:
5182 case BO_LT:
5183 case BO_GT:
5184 case BO_LE:
5185 case BO_GE:
5186 case BO_EQ:
5187 case BO_NE:
5188 case BO_Cmp:
5189 case BO_And:
5190 case BO_Xor:
5191 case BO_Or:
5192 case BO_LAnd:
5193 case BO_LOr:
5194 case BO_Assign:
5195 case BO_Comma:
5196 llvm_unreachable("Not valid compound assignment operators");
5199 llvm_unreachable("Unhandled compound assignment operator");
5202 struct GEPOffsetAndOverflow {
5203 // The total (signed) byte offset for the GEP.
5204 llvm::Value *TotalOffset;
5205 // The offset overflow flag - true if the total offset overflows.
5206 llvm::Value *OffsetOverflows;
5209 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
5210 /// and compute the total offset it applies from it's base pointer BasePtr.
5211 /// Returns offset in bytes and a boolean flag whether an overflow happened
5212 /// during evaluation.
5213 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
5214 llvm::LLVMContext &VMContext,
5215 CodeGenModule &CGM,
5216 CGBuilderTy &Builder) {
5217 const auto &DL = CGM.getDataLayout();
5219 // The total (signed) byte offset for the GEP.
5220 llvm::Value *TotalOffset = nullptr;
5222 // Was the GEP already reduced to a constant?
5223 if (isa<llvm::Constant>(GEPVal)) {
5224 // Compute the offset by casting both pointers to integers and subtracting:
5225 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
5226 Value *BasePtr_int =
5227 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
5228 Value *GEPVal_int =
5229 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
5230 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
5231 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
5234 auto *GEP = cast<llvm::GEPOperator>(GEPVal);
5235 assert(GEP->getPointerOperand() == BasePtr &&
5236 "BasePtr must be the base of the GEP.");
5237 assert(GEP->isInBounds() && "Expected inbounds GEP");
5239 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
5241 // Grab references to the signed add/mul overflow intrinsics for intptr_t.
5242 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5243 auto *SAddIntrinsic =
5244 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
5245 auto *SMulIntrinsic =
5246 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
5248 // The offset overflow flag - true if the total offset overflows.
5249 llvm::Value *OffsetOverflows = Builder.getFalse();
5251 /// Return the result of the given binary operation.
5252 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
5253 llvm::Value *RHS) -> llvm::Value * {
5254 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
5256 // If the operands are constants, return a constant result.
5257 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
5258 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
5259 llvm::APInt N;
5260 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
5261 /*Signed=*/true, N);
5262 if (HasOverflow)
5263 OffsetOverflows = Builder.getTrue();
5264 return llvm::ConstantInt::get(VMContext, N);
5268 // Otherwise, compute the result with checked arithmetic.
5269 auto *ResultAndOverflow = Builder.CreateCall(
5270 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
5271 OffsetOverflows = Builder.CreateOr(
5272 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
5273 return Builder.CreateExtractValue(ResultAndOverflow, 0);
5276 // Determine the total byte offset by looking at each GEP operand.
5277 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
5278 GTI != GTE; ++GTI) {
5279 llvm::Value *LocalOffset;
5280 auto *Index = GTI.getOperand();
5281 // Compute the local offset contributed by this indexing step:
5282 if (auto *STy = GTI.getStructTypeOrNull()) {
5283 // For struct indexing, the local offset is the byte position of the
5284 // specified field.
5285 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
5286 LocalOffset = llvm::ConstantInt::get(
5287 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
5288 } else {
5289 // Otherwise this is array-like indexing. The local offset is the index
5290 // multiplied by the element size.
5291 auto *ElementSize = llvm::ConstantInt::get(
5292 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
5293 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
5294 LocalOffset = eval(BO_Mul, ElementSize, IndexS);
5297 // If this is the first offset, set it as the total offset. Otherwise, add
5298 // the local offset into the running total.
5299 if (!TotalOffset || TotalOffset == Zero)
5300 TotalOffset = LocalOffset;
5301 else
5302 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
5305 return {TotalOffset, OffsetOverflows};
5308 Value *
5309 CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr,
5310 ArrayRef<Value *> IdxList,
5311 bool SignedIndices, bool IsSubtraction,
5312 SourceLocation Loc, const Twine &Name) {
5313 llvm::Type *PtrTy = Ptr->getType();
5314 Value *GEPVal = Builder.CreateInBoundsGEP(ElemTy, Ptr, IdxList, Name);
5316 // If the pointer overflow sanitizer isn't enabled, do nothing.
5317 if (!SanOpts.has(SanitizerKind::PointerOverflow))
5318 return GEPVal;
5320 // Perform nullptr-and-offset check unless the nullptr is defined.
5321 bool PerformNullCheck = !NullPointerIsDefined(
5322 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
5323 // Check for overflows unless the GEP got constant-folded,
5324 // and only in the default address space
5325 bool PerformOverflowCheck =
5326 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
5328 if (!(PerformNullCheck || PerformOverflowCheck))
5329 return GEPVal;
5331 const auto &DL = CGM.getDataLayout();
5333 SanitizerScope SanScope(this);
5334 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
5336 GEPOffsetAndOverflow EvaluatedGEP =
5337 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
5339 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5340 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5341 "If the offset got constant-folded, we don't expect that there was an "
5342 "overflow.");
5344 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5346 // Common case: if the total offset is zero, and we are using C++ semantics,
5347 // where nullptr+0 is defined, don't emit a check.
5348 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
5349 return GEPVal;
5351 // Now that we've computed the total offset, add it to the base pointer (with
5352 // wrapping semantics).
5353 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
5354 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
5356 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
5358 if (PerformNullCheck) {
5359 // In C++, if the base pointer evaluates to a null pointer value,
5360 // the only valid pointer this inbounds GEP can produce is also
5361 // a null pointer, so the offset must also evaluate to zero.
5362 // Likewise, if we have non-zero base pointer, we can not get null pointer
5363 // as a result, so the offset can not be -intptr_t(BasePtr).
5364 // In other words, both pointers are either null, or both are non-null,
5365 // or the behaviour is undefined.
5367 // C, however, is more strict in this regard, and gives more
5368 // optimization opportunities: in C, additionally, nullptr+0 is undefined.
5369 // So both the input to the 'gep inbounds' AND the output must not be null.
5370 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5371 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5372 auto *Valid =
5373 CGM.getLangOpts().CPlusPlus
5374 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
5375 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
5376 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
5379 if (PerformOverflowCheck) {
5380 // The GEP is valid if:
5381 // 1) The total offset doesn't overflow, and
5382 // 2) The sign of the difference between the computed address and the base
5383 // pointer matches the sign of the total offset.
5384 llvm::Value *ValidGEP;
5385 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5386 if (SignedIndices) {
5387 // GEP is computed as `unsigned base + signed offset`, therefore:
5388 // * If offset was positive, then the computed pointer can not be
5389 // [unsigned] less than the base pointer, unless it overflowed.
5390 // * If offset was negative, then the computed pointer can not be
5391 // [unsigned] greater than the bas pointere, unless it overflowed.
5392 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5393 auto *PosOrZeroOffset =
5394 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5395 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5396 ValidGEP =
5397 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5398 } else if (!IsSubtraction) {
5399 // GEP is computed as `unsigned base + unsigned offset`, therefore the
5400 // computed pointer can not be [unsigned] less than base pointer,
5401 // unless there was an overflow.
5402 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5403 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5404 } else {
5405 // GEP is computed as `unsigned base - unsigned offset`, therefore the
5406 // computed pointer can not be [unsigned] greater than base pointer,
5407 // unless there was an overflow.
5408 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5409 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5411 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5412 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5415 assert(!Checks.empty() && "Should have produced some checks.");
5417 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5418 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5419 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5420 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5422 return GEPVal;