1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //===----------------------------------------------------------------------===//
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/FixedPointBuilder.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsPowerPC.h"
41 #include "llvm/IR/MatrixBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/Support/TypeSize.h"
47 using namespace clang
;
48 using namespace CodeGen
;
51 //===----------------------------------------------------------------------===//
52 // Scalar Expression Emitter
53 //===----------------------------------------------------------------------===//
57 /// Determine whether the given binary operation may overflow.
58 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
59 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
60 /// the returned overflow check is precise. The returned value is 'true' for
61 /// all other opcodes, to be conservative.
62 bool mayHaveIntegerOverflow(llvm::ConstantInt
*LHS
, llvm::ConstantInt
*RHS
,
63 BinaryOperator::Opcode Opcode
, bool Signed
,
64 llvm::APInt
&Result
) {
65 // Assume overflow is possible, unless we can prove otherwise.
67 const auto &LHSAP
= LHS
->getValue();
68 const auto &RHSAP
= RHS
->getValue();
69 if (Opcode
== BO_Add
) {
70 Result
= Signed
? LHSAP
.sadd_ov(RHSAP
, Overflow
)
71 : LHSAP
.uadd_ov(RHSAP
, Overflow
);
72 } else if (Opcode
== BO_Sub
) {
73 Result
= Signed
? LHSAP
.ssub_ov(RHSAP
, Overflow
)
74 : LHSAP
.usub_ov(RHSAP
, Overflow
);
75 } else if (Opcode
== BO_Mul
) {
76 Result
= Signed
? LHSAP
.smul_ov(RHSAP
, Overflow
)
77 : LHSAP
.umul_ov(RHSAP
, Overflow
);
78 } else if (Opcode
== BO_Div
|| Opcode
== BO_Rem
) {
79 if (Signed
&& !RHS
->isZero())
80 Result
= LHSAP
.sdiv_ov(RHSAP
, Overflow
);
90 QualType Ty
; // Computation Type.
91 BinaryOperator::Opcode Opcode
; // Opcode of BinOp to perform
93 const Expr
*E
; // Entire expr, for error unsupported. May not be binop.
95 /// Check if the binop can result in integer overflow.
96 bool mayHaveIntegerOverflow() const {
97 // Without constant input, we can't rule out overflow.
98 auto *LHSCI
= dyn_cast
<llvm::ConstantInt
>(LHS
);
99 auto *RHSCI
= dyn_cast
<llvm::ConstantInt
>(RHS
);
100 if (!LHSCI
|| !RHSCI
)
104 return ::mayHaveIntegerOverflow(
105 LHSCI
, RHSCI
, Opcode
, Ty
->hasSignedIntegerRepresentation(), Result
);
108 /// Check if the binop computes a division or a remainder.
109 bool isDivremOp() const {
110 return Opcode
== BO_Div
|| Opcode
== BO_Rem
|| Opcode
== BO_DivAssign
||
111 Opcode
== BO_RemAssign
;
114 /// Check if the binop can result in an integer division by zero.
115 bool mayHaveIntegerDivisionByZero() const {
117 if (auto *CI
= dyn_cast
<llvm::ConstantInt
>(RHS
))
122 /// Check if the binop can result in a float division by zero.
123 bool mayHaveFloatDivisionByZero() const {
125 if (auto *CFP
= dyn_cast
<llvm::ConstantFP
>(RHS
))
126 return CFP
->isZero();
130 /// Check if at least one operand is a fixed point type. In such cases, this
131 /// operation did not follow usual arithmetic conversion and both operands
132 /// might not be of the same type.
133 bool isFixedPointOp() const {
134 // We cannot simply check the result type since comparison operations return
136 if (const auto *BinOp
= dyn_cast
<BinaryOperator
>(E
)) {
137 QualType LHSType
= BinOp
->getLHS()->getType();
138 QualType RHSType
= BinOp
->getRHS()->getType();
139 return LHSType
->isFixedPointType() || RHSType
->isFixedPointType();
141 if (const auto *UnOp
= dyn_cast
<UnaryOperator
>(E
))
142 return UnOp
->getSubExpr()->getType()->isFixedPointType();
147 static bool MustVisitNullValue(const Expr
*E
) {
148 // If a null pointer expression's type is the C++0x nullptr_t, then
149 // it's not necessarily a simple constant and it must be evaluated
150 // for its potential side effects.
151 return E
->getType()->isNullPtrType();
154 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
155 static std::optional
<QualType
> getUnwidenedIntegerType(const ASTContext
&Ctx
,
157 const Expr
*Base
= E
->IgnoreImpCasts();
161 QualType BaseTy
= Base
->getType();
162 if (!Ctx
.isPromotableIntegerType(BaseTy
) ||
163 Ctx
.getTypeSize(BaseTy
) >= Ctx
.getTypeSize(E
->getType()))
169 /// Check if \p E is a widened promoted integer.
170 static bool IsWidenedIntegerOp(const ASTContext
&Ctx
, const Expr
*E
) {
171 return getUnwidenedIntegerType(Ctx
, E
).has_value();
174 /// Check if we can skip the overflow check for \p Op.
175 static bool CanElideOverflowCheck(const ASTContext
&Ctx
, const BinOpInfo
&Op
) {
176 assert((isa
<UnaryOperator
>(Op
.E
) || isa
<BinaryOperator
>(Op
.E
)) &&
177 "Expected a unary or binary operator");
179 // If the binop has constant inputs and we can prove there is no overflow,
180 // we can elide the overflow check.
181 if (!Op
.mayHaveIntegerOverflow())
184 // If a unary op has a widened operand, the op cannot overflow.
185 if (const auto *UO
= dyn_cast
<UnaryOperator
>(Op
.E
))
186 return !UO
->canOverflow();
188 // We usually don't need overflow checks for binops with widened operands.
189 // Multiplication with promoted unsigned operands is a special case.
190 const auto *BO
= cast
<BinaryOperator
>(Op
.E
);
191 auto OptionalLHSTy
= getUnwidenedIntegerType(Ctx
, BO
->getLHS());
195 auto OptionalRHSTy
= getUnwidenedIntegerType(Ctx
, BO
->getRHS());
199 QualType LHSTy
= *OptionalLHSTy
;
200 QualType RHSTy
= *OptionalRHSTy
;
202 // This is the simple case: binops without unsigned multiplication, and with
203 // widened operands. No overflow check is needed here.
204 if ((Op
.Opcode
!= BO_Mul
&& Op
.Opcode
!= BO_MulAssign
) ||
205 !LHSTy
->isUnsignedIntegerType() || !RHSTy
->isUnsignedIntegerType())
208 // For unsigned multiplication the overflow check can be elided if either one
209 // of the unpromoted types are less than half the size of the promoted type.
210 unsigned PromotedSize
= Ctx
.getTypeSize(Op
.E
->getType());
211 return (2 * Ctx
.getTypeSize(LHSTy
)) < PromotedSize
||
212 (2 * Ctx
.getTypeSize(RHSTy
)) < PromotedSize
;
215 class ScalarExprEmitter
216 : public StmtVisitor
<ScalarExprEmitter
, Value
*> {
217 CodeGenFunction
&CGF
;
218 CGBuilderTy
&Builder
;
219 bool IgnoreResultAssign
;
220 llvm::LLVMContext
&VMContext
;
223 ScalarExprEmitter(CodeGenFunction
&cgf
, bool ira
=false)
224 : CGF(cgf
), Builder(CGF
.Builder
), IgnoreResultAssign(ira
),
225 VMContext(cgf
.getLLVMContext()) {
228 //===--------------------------------------------------------------------===//
230 //===--------------------------------------------------------------------===//
232 bool TestAndClearIgnoreResultAssign() {
233 bool I
= IgnoreResultAssign
;
234 IgnoreResultAssign
= false;
238 llvm::Type
*ConvertType(QualType T
) { return CGF
.ConvertType(T
); }
239 LValue
EmitLValue(const Expr
*E
) { return CGF
.EmitLValue(E
); }
240 LValue
EmitCheckedLValue(const Expr
*E
, CodeGenFunction::TypeCheckKind TCK
) {
241 return CGF
.EmitCheckedLValue(E
, TCK
);
244 void EmitBinOpCheck(ArrayRef
<std::pair
<Value
*, SanitizerMask
>> Checks
,
245 const BinOpInfo
&Info
);
247 Value
*EmitLoadOfLValue(LValue LV
, SourceLocation Loc
) {
248 return CGF
.EmitLoadOfLValue(LV
, Loc
).getScalarVal();
251 void EmitLValueAlignmentAssumption(const Expr
*E
, Value
*V
) {
252 const AlignValueAttr
*AVAttr
= nullptr;
253 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(E
)) {
254 const ValueDecl
*VD
= DRE
->getDecl();
256 if (VD
->getType()->isReferenceType()) {
257 if (const auto *TTy
=
258 VD
->getType().getNonReferenceType()->getAs
<TypedefType
>())
259 AVAttr
= TTy
->getDecl()->getAttr
<AlignValueAttr
>();
261 // Assumptions for function parameters are emitted at the start of the
262 // function, so there is no need to repeat that here,
263 // unless the alignment-assumption sanitizer is enabled,
264 // then we prefer the assumption over alignment attribute
265 // on IR function param.
266 if (isa
<ParmVarDecl
>(VD
) && !CGF
.SanOpts
.has(SanitizerKind::Alignment
))
269 AVAttr
= VD
->getAttr
<AlignValueAttr
>();
274 if (const auto *TTy
= E
->getType()->getAs
<TypedefType
>())
275 AVAttr
= TTy
->getDecl()->getAttr
<AlignValueAttr
>();
280 Value
*AlignmentValue
= CGF
.EmitScalarExpr(AVAttr
->getAlignment());
281 llvm::ConstantInt
*AlignmentCI
= cast
<llvm::ConstantInt
>(AlignmentValue
);
282 CGF
.emitAlignmentAssumption(V
, E
, AVAttr
->getLocation(), AlignmentCI
);
285 /// EmitLoadOfLValue - Given an expression with complex type that represents a
286 /// value l-value, this method emits the address of the l-value, then loads
287 /// and returns the result.
288 Value
*EmitLoadOfLValue(const Expr
*E
) {
289 Value
*V
= EmitLoadOfLValue(EmitCheckedLValue(E
, CodeGenFunction::TCK_Load
),
292 EmitLValueAlignmentAssumption(E
, V
);
296 /// EmitConversionToBool - Convert the specified expression value to a
297 /// boolean (i1) truth value. This is equivalent to "Val != 0".
298 Value
*EmitConversionToBool(Value
*Src
, QualType DstTy
);
300 /// Emit a check that a conversion from a floating-point type does not
302 void EmitFloatConversionCheck(Value
*OrigSrc
, QualType OrigSrcType
,
303 Value
*Src
, QualType SrcType
, QualType DstType
,
304 llvm::Type
*DstTy
, SourceLocation Loc
);
306 /// Known implicit conversion check kinds.
307 /// Keep in sync with the enum of the same name in ubsan_handlers.h
308 enum ImplicitConversionCheckKind
: unsigned char {
309 ICCK_IntegerTruncation
= 0, // Legacy, was only used by clang 7.
310 ICCK_UnsignedIntegerTruncation
= 1,
311 ICCK_SignedIntegerTruncation
= 2,
312 ICCK_IntegerSignChange
= 3,
313 ICCK_SignedIntegerTruncationOrSignChange
= 4,
316 /// Emit a check that an [implicit] truncation of an integer does not
317 /// discard any bits. It is not UB, so we use the value after truncation.
318 void EmitIntegerTruncationCheck(Value
*Src
, QualType SrcType
, Value
*Dst
,
319 QualType DstType
, SourceLocation Loc
);
321 /// Emit a check that an [implicit] conversion of an integer does not change
322 /// the sign of the value. It is not UB, so we use the value after conversion.
323 /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
324 void EmitIntegerSignChangeCheck(Value
*Src
, QualType SrcType
, Value
*Dst
,
325 QualType DstType
, SourceLocation Loc
);
327 /// Emit a conversion from the specified type to the specified destination
328 /// type, both of which are LLVM scalar types.
329 struct ScalarConversionOpts
{
330 bool TreatBooleanAsSigned
;
331 bool EmitImplicitIntegerTruncationChecks
;
332 bool EmitImplicitIntegerSignChangeChecks
;
334 ScalarConversionOpts()
335 : TreatBooleanAsSigned(false),
336 EmitImplicitIntegerTruncationChecks(false),
337 EmitImplicitIntegerSignChangeChecks(false) {}
339 ScalarConversionOpts(clang::SanitizerSet SanOpts
)
340 : TreatBooleanAsSigned(false),
341 EmitImplicitIntegerTruncationChecks(
342 SanOpts
.hasOneOf(SanitizerKind::ImplicitIntegerTruncation
)),
343 EmitImplicitIntegerSignChangeChecks(
344 SanOpts
.has(SanitizerKind::ImplicitIntegerSignChange
)) {}
346 Value
*EmitScalarCast(Value
*Src
, QualType SrcType
, QualType DstType
,
347 llvm::Type
*SrcTy
, llvm::Type
*DstTy
,
348 ScalarConversionOpts Opts
);
350 EmitScalarConversion(Value
*Src
, QualType SrcTy
, QualType DstTy
,
352 ScalarConversionOpts Opts
= ScalarConversionOpts());
354 /// Convert between either a fixed point and other fixed point or fixed point
356 Value
*EmitFixedPointConversion(Value
*Src
, QualType SrcTy
, QualType DstTy
,
359 /// Emit a conversion from the specified complex type to the specified
360 /// destination type, where the destination type is an LLVM scalar type.
361 Value
*EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src
,
362 QualType SrcTy
, QualType DstTy
,
365 /// EmitNullValue - Emit a value that corresponds to null for the given type.
366 Value
*EmitNullValue(QualType Ty
);
368 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
369 Value
*EmitFloatToBoolConversion(Value
*V
) {
370 // Compare against 0.0 for fp scalars.
371 llvm::Value
*Zero
= llvm::Constant::getNullValue(V
->getType());
372 return Builder
.CreateFCmpUNE(V
, Zero
, "tobool");
375 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
376 Value
*EmitPointerToBoolConversion(Value
*V
, QualType QT
) {
377 Value
*Zero
= CGF
.CGM
.getNullPointer(cast
<llvm::PointerType
>(V
->getType()), QT
);
379 return Builder
.CreateICmpNE(V
, Zero
, "tobool");
382 Value
*EmitIntToBoolConversion(Value
*V
) {
383 // Because of the type rules of C, we often end up computing a
384 // logical value, then zero extending it to int, then wanting it
385 // as a logical value again. Optimize this common case.
386 if (llvm::ZExtInst
*ZI
= dyn_cast
<llvm::ZExtInst
>(V
)) {
387 if (ZI
->getOperand(0)->getType() == Builder
.getInt1Ty()) {
388 Value
*Result
= ZI
->getOperand(0);
389 // If there aren't any more uses, zap the instruction to save space.
390 // Note that there can be more uses, for example if this
391 // is the result of an assignment.
393 ZI
->eraseFromParent();
398 return Builder
.CreateIsNotNull(V
, "tobool");
401 //===--------------------------------------------------------------------===//
403 //===--------------------------------------------------------------------===//
405 Value
*Visit(Expr
*E
) {
406 ApplyDebugLocation
DL(CGF
, E
);
407 return StmtVisitor
<ScalarExprEmitter
, Value
*>::Visit(E
);
410 Value
*VisitStmt(Stmt
*S
) {
411 S
->dump(llvm::errs(), CGF
.getContext());
412 llvm_unreachable("Stmt can't have complex result type!");
414 Value
*VisitExpr(Expr
*S
);
416 Value
*VisitConstantExpr(ConstantExpr
*E
) {
417 // A constant expression of type 'void' generates no code and produces no
419 if (E
->getType()->isVoidType())
422 if (Value
*Result
= ConstantEmitter(CGF
).tryEmitConstantExpr(E
)) {
424 return CGF
.Builder
.CreateLoad(Address(
425 Result
, CGF
.ConvertTypeForMem(E
->getType()),
426 CGF
.getContext().getTypeAlignInChars(E
->getType())));
429 return Visit(E
->getSubExpr());
431 Value
*VisitParenExpr(ParenExpr
*PE
) {
432 return Visit(PE
->getSubExpr());
434 Value
*VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr
*E
) {
435 return Visit(E
->getReplacement());
437 Value
*VisitGenericSelectionExpr(GenericSelectionExpr
*GE
) {
438 return Visit(GE
->getResultExpr());
440 Value
*VisitCoawaitExpr(CoawaitExpr
*S
) {
441 return CGF
.EmitCoawaitExpr(*S
).getScalarVal();
443 Value
*VisitCoyieldExpr(CoyieldExpr
*S
) {
444 return CGF
.EmitCoyieldExpr(*S
).getScalarVal();
446 Value
*VisitUnaryCoawait(const UnaryOperator
*E
) {
447 return Visit(E
->getSubExpr());
451 Value
*VisitIntegerLiteral(const IntegerLiteral
*E
) {
452 return Builder
.getInt(E
->getValue());
454 Value
*VisitFixedPointLiteral(const FixedPointLiteral
*E
) {
455 return Builder
.getInt(E
->getValue());
457 Value
*VisitFloatingLiteral(const FloatingLiteral
*E
) {
458 return llvm::ConstantFP::get(VMContext
, E
->getValue());
460 Value
*VisitCharacterLiteral(const CharacterLiteral
*E
) {
461 return llvm::ConstantInt::get(ConvertType(E
->getType()), E
->getValue());
463 Value
*VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr
*E
) {
464 return llvm::ConstantInt::get(ConvertType(E
->getType()), E
->getValue());
466 Value
*VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr
*E
) {
467 return llvm::ConstantInt::get(ConvertType(E
->getType()), E
->getValue());
469 Value
*VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr
*E
) {
470 if (E
->getType()->isVoidType())
473 return EmitNullValue(E
->getType());
475 Value
*VisitGNUNullExpr(const GNUNullExpr
*E
) {
476 return EmitNullValue(E
->getType());
478 Value
*VisitOffsetOfExpr(OffsetOfExpr
*E
);
479 Value
*VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr
*E
);
480 Value
*VisitAddrLabelExpr(const AddrLabelExpr
*E
) {
481 llvm::Value
*V
= CGF
.GetAddrOfLabel(E
->getLabel());
482 return Builder
.CreateBitCast(V
, ConvertType(E
->getType()));
485 Value
*VisitSizeOfPackExpr(SizeOfPackExpr
*E
) {
486 return llvm::ConstantInt::get(ConvertType(E
->getType()),E
->getPackLength());
489 Value
*VisitPseudoObjectExpr(PseudoObjectExpr
*E
) {
490 return CGF
.EmitPseudoObjectRValue(E
).getScalarVal();
493 Value
*VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr
*E
);
495 Value
*VisitOpaqueValueExpr(OpaqueValueExpr
*E
) {
497 return EmitLoadOfLValue(CGF
.getOrCreateOpaqueLValueMapping(E
),
500 // Otherwise, assume the mapping is the scalar directly.
501 return CGF
.getOrCreateOpaqueRValueMapping(E
).getScalarVal();
505 Value
*VisitDeclRefExpr(DeclRefExpr
*E
) {
506 if (CodeGenFunction::ConstantEmission Constant
= CGF
.tryEmitAsConstant(E
))
507 return CGF
.emitScalarConstant(Constant
, E
);
508 return EmitLoadOfLValue(E
);
511 Value
*VisitObjCSelectorExpr(ObjCSelectorExpr
*E
) {
512 return CGF
.EmitObjCSelectorExpr(E
);
514 Value
*VisitObjCProtocolExpr(ObjCProtocolExpr
*E
) {
515 return CGF
.EmitObjCProtocolExpr(E
);
517 Value
*VisitObjCIvarRefExpr(ObjCIvarRefExpr
*E
) {
518 return EmitLoadOfLValue(E
);
520 Value
*VisitObjCMessageExpr(ObjCMessageExpr
*E
) {
521 if (E
->getMethodDecl() &&
522 E
->getMethodDecl()->getReturnType()->isReferenceType())
523 return EmitLoadOfLValue(E
);
524 return CGF
.EmitObjCMessageExpr(E
).getScalarVal();
527 Value
*VisitObjCIsaExpr(ObjCIsaExpr
*E
) {
528 LValue LV
= CGF
.EmitObjCIsaExpr(E
);
529 Value
*V
= CGF
.EmitLoadOfLValue(LV
, E
->getExprLoc()).getScalarVal();
533 Value
*VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr
*E
) {
534 VersionTuple Version
= E
->getVersion();
536 // If we're checking for a platform older than our minimum deployment
537 // target, we can fold the check away.
538 if (Version
<= CGF
.CGM
.getTarget().getPlatformMinVersion())
539 return llvm::ConstantInt::get(Builder
.getInt1Ty(), 1);
541 return CGF
.EmitBuiltinAvailable(Version
);
544 Value
*VisitArraySubscriptExpr(ArraySubscriptExpr
*E
);
545 Value
*VisitMatrixSubscriptExpr(MatrixSubscriptExpr
*E
);
546 Value
*VisitShuffleVectorExpr(ShuffleVectorExpr
*E
);
547 Value
*VisitConvertVectorExpr(ConvertVectorExpr
*E
);
548 Value
*VisitMemberExpr(MemberExpr
*E
);
549 Value
*VisitExtVectorElementExpr(Expr
*E
) { return EmitLoadOfLValue(E
); }
550 Value
*VisitCompoundLiteralExpr(CompoundLiteralExpr
*E
) {
551 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
552 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
553 // literals aren't l-values in C++. We do so simply because that's the
554 // cleanest way to handle compound literals in C++.
555 // See the discussion here: https://reviews.llvm.org/D64464
556 return EmitLoadOfLValue(E
);
559 Value
*VisitInitListExpr(InitListExpr
*E
);
561 Value
*VisitArrayInitIndexExpr(ArrayInitIndexExpr
*E
) {
562 assert(CGF
.getArrayInitIndex() &&
563 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
564 return CGF
.getArrayInitIndex();
567 Value
*VisitImplicitValueInitExpr(const ImplicitValueInitExpr
*E
) {
568 return EmitNullValue(E
->getType());
570 Value
*VisitExplicitCastExpr(ExplicitCastExpr
*E
) {
571 CGF
.CGM
.EmitExplicitCastExprType(E
, &CGF
);
572 return VisitCastExpr(E
);
574 Value
*VisitCastExpr(CastExpr
*E
);
576 Value
*VisitCallExpr(const CallExpr
*E
) {
577 if (E
->getCallReturnType(CGF
.getContext())->isReferenceType())
578 return EmitLoadOfLValue(E
);
580 Value
*V
= CGF
.EmitCallExpr(E
).getScalarVal();
582 EmitLValueAlignmentAssumption(E
, V
);
586 Value
*VisitStmtExpr(const StmtExpr
*E
);
589 Value
*VisitUnaryPostDec(const UnaryOperator
*E
) {
590 LValue LV
= EmitLValue(E
->getSubExpr());
591 return EmitScalarPrePostIncDec(E
, LV
, false, false);
593 Value
*VisitUnaryPostInc(const UnaryOperator
*E
) {
594 LValue LV
= EmitLValue(E
->getSubExpr());
595 return EmitScalarPrePostIncDec(E
, LV
, true, false);
597 Value
*VisitUnaryPreDec(const UnaryOperator
*E
) {
598 LValue LV
= EmitLValue(E
->getSubExpr());
599 return EmitScalarPrePostIncDec(E
, LV
, false, true);
601 Value
*VisitUnaryPreInc(const UnaryOperator
*E
) {
602 LValue LV
= EmitLValue(E
->getSubExpr());
603 return EmitScalarPrePostIncDec(E
, LV
, true, true);
606 llvm::Value
*EmitIncDecConsiderOverflowBehavior(const UnaryOperator
*E
,
610 llvm::Value
*EmitScalarPrePostIncDec(const UnaryOperator
*E
, LValue LV
,
611 bool isInc
, bool isPre
);
614 Value
*VisitUnaryAddrOf(const UnaryOperator
*E
) {
615 if (isa
<MemberPointerType
>(E
->getType())) // never sugared
616 return CGF
.CGM
.getMemberPointerConstant(E
);
618 return EmitLValue(E
->getSubExpr()).getPointer(CGF
);
620 Value
*VisitUnaryDeref(const UnaryOperator
*E
) {
621 if (E
->getType()->isVoidType())
622 return Visit(E
->getSubExpr()); // the actual value should be unused
623 return EmitLoadOfLValue(E
);
626 Value
*VisitUnaryPlus(const UnaryOperator
*E
,
627 QualType PromotionType
= QualType());
628 Value
*VisitPlus(const UnaryOperator
*E
, QualType PromotionType
);
629 Value
*VisitUnaryMinus(const UnaryOperator
*E
,
630 QualType PromotionType
= QualType());
631 Value
*VisitMinus(const UnaryOperator
*E
, QualType PromotionType
);
633 Value
*VisitUnaryNot (const UnaryOperator
*E
);
634 Value
*VisitUnaryLNot (const UnaryOperator
*E
);
635 Value
*VisitUnaryReal(const UnaryOperator
*E
,
636 QualType PromotionType
= QualType());
637 Value
*VisitReal(const UnaryOperator
*E
, QualType PromotionType
);
638 Value
*VisitUnaryImag(const UnaryOperator
*E
,
639 QualType PromotionType
= QualType());
640 Value
*VisitImag(const UnaryOperator
*E
, QualType PromotionType
);
641 Value
*VisitUnaryExtension(const UnaryOperator
*E
) {
642 return Visit(E
->getSubExpr());
646 Value
*VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr
*E
) {
647 return EmitLoadOfLValue(E
);
649 Value
*VisitSourceLocExpr(SourceLocExpr
*SLE
) {
650 auto &Ctx
= CGF
.getContext();
652 SLE
->EvaluateInContext(Ctx
, CGF
.CurSourceLocExprScope
.getDefaultExpr());
653 return ConstantEmitter(CGF
).emitAbstract(SLE
->getLocation(), Evaluated
,
657 Value
*VisitCXXDefaultArgExpr(CXXDefaultArgExpr
*DAE
) {
658 CodeGenFunction::CXXDefaultArgExprScope
Scope(CGF
, DAE
);
659 return Visit(DAE
->getExpr());
661 Value
*VisitCXXDefaultInitExpr(CXXDefaultInitExpr
*DIE
) {
662 CodeGenFunction::CXXDefaultInitExprScope
Scope(CGF
, DIE
);
663 return Visit(DIE
->getExpr());
665 Value
*VisitCXXThisExpr(CXXThisExpr
*TE
) {
666 return CGF
.LoadCXXThis();
669 Value
*VisitExprWithCleanups(ExprWithCleanups
*E
);
670 Value
*VisitCXXNewExpr(const CXXNewExpr
*E
) {
671 return CGF
.EmitCXXNewExpr(E
);
673 Value
*VisitCXXDeleteExpr(const CXXDeleteExpr
*E
) {
674 CGF
.EmitCXXDeleteExpr(E
);
678 Value
*VisitTypeTraitExpr(const TypeTraitExpr
*E
) {
679 return llvm::ConstantInt::get(ConvertType(E
->getType()), E
->getValue());
682 Value
*VisitConceptSpecializationExpr(const ConceptSpecializationExpr
*E
) {
683 return Builder
.getInt1(E
->isSatisfied());
686 Value
*VisitRequiresExpr(const RequiresExpr
*E
) {
687 return Builder
.getInt1(E
->isSatisfied());
690 Value
*VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr
*E
) {
691 return llvm::ConstantInt::get(Builder
.getInt32Ty(), E
->getValue());
694 Value
*VisitExpressionTraitExpr(const ExpressionTraitExpr
*E
) {
695 return llvm::ConstantInt::get(Builder
.getInt1Ty(), E
->getValue());
698 Value
*VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr
*E
) {
699 // C++ [expr.pseudo]p1:
700 // The result shall only be used as the operand for the function call
701 // operator (), and the result of such a call has type void. The only
702 // effect is the evaluation of the postfix-expression before the dot or
704 CGF
.EmitScalarExpr(E
->getBase());
708 Value
*VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr
*E
) {
709 return EmitNullValue(E
->getType());
712 Value
*VisitCXXThrowExpr(const CXXThrowExpr
*E
) {
713 CGF
.EmitCXXThrowExpr(E
);
717 Value
*VisitCXXNoexceptExpr(const CXXNoexceptExpr
*E
) {
718 return Builder
.getInt1(E
->getValue());
722 Value
*EmitMul(const BinOpInfo
&Ops
) {
723 if (Ops
.Ty
->isSignedIntegerOrEnumerationType()) {
724 switch (CGF
.getLangOpts().getSignedOverflowBehavior()) {
725 case LangOptions::SOB_Defined
:
726 return Builder
.CreateMul(Ops
.LHS
, Ops
.RHS
, "mul");
727 case LangOptions::SOB_Undefined
:
728 if (!CGF
.SanOpts
.has(SanitizerKind::SignedIntegerOverflow
))
729 return Builder
.CreateNSWMul(Ops
.LHS
, Ops
.RHS
, "mul");
731 case LangOptions::SOB_Trapping
:
732 if (CanElideOverflowCheck(CGF
.getContext(), Ops
))
733 return Builder
.CreateNSWMul(Ops
.LHS
, Ops
.RHS
, "mul");
734 return EmitOverflowCheckedBinOp(Ops
);
738 if (Ops
.Ty
->isConstantMatrixType()) {
739 llvm::MatrixBuilder
MB(Builder
);
740 // We need to check the types of the operands of the operator to get the
741 // correct matrix dimensions.
742 auto *BO
= cast
<BinaryOperator
>(Ops
.E
);
743 auto *LHSMatTy
= dyn_cast
<ConstantMatrixType
>(
744 BO
->getLHS()->getType().getCanonicalType());
745 auto *RHSMatTy
= dyn_cast
<ConstantMatrixType
>(
746 BO
->getRHS()->getType().getCanonicalType());
747 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(CGF
, Ops
.FPFeatures
);
748 if (LHSMatTy
&& RHSMatTy
)
749 return MB
.CreateMatrixMultiply(Ops
.LHS
, Ops
.RHS
, LHSMatTy
->getNumRows(),
750 LHSMatTy
->getNumColumns(),
751 RHSMatTy
->getNumColumns());
752 return MB
.CreateScalarMultiply(Ops
.LHS
, Ops
.RHS
);
755 if (Ops
.Ty
->isUnsignedIntegerType() &&
756 CGF
.SanOpts
.has(SanitizerKind::UnsignedIntegerOverflow
) &&
757 !CanElideOverflowCheck(CGF
.getContext(), Ops
))
758 return EmitOverflowCheckedBinOp(Ops
);
760 if (Ops
.LHS
->getType()->isFPOrFPVectorTy()) {
761 // Preserve the old values
762 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(CGF
, Ops
.FPFeatures
);
763 return Builder
.CreateFMul(Ops
.LHS
, Ops
.RHS
, "mul");
765 if (Ops
.isFixedPointOp())
766 return EmitFixedPointBinOp(Ops
);
767 return Builder
.CreateMul(Ops
.LHS
, Ops
.RHS
, "mul");
769 /// Create a binary op that checks for overflow.
770 /// Currently only supports +, - and *.
771 Value
*EmitOverflowCheckedBinOp(const BinOpInfo
&Ops
);
773 // Check for undefined division and modulus behaviors.
774 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo
&Ops
,
775 llvm::Value
*Zero
,bool isDiv
);
776 // Common helper for getting how wide LHS of shift is.
777 static Value
*GetWidthMinusOneValue(Value
* LHS
,Value
* RHS
);
779 // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
780 // non powers of two.
781 Value
*ConstrainShiftValue(Value
*LHS
, Value
*RHS
, const Twine
&Name
);
783 Value
*EmitDiv(const BinOpInfo
&Ops
);
784 Value
*EmitRem(const BinOpInfo
&Ops
);
785 Value
*EmitAdd(const BinOpInfo
&Ops
);
786 Value
*EmitSub(const BinOpInfo
&Ops
);
787 Value
*EmitShl(const BinOpInfo
&Ops
);
788 Value
*EmitShr(const BinOpInfo
&Ops
);
789 Value
*EmitAnd(const BinOpInfo
&Ops
) {
790 return Builder
.CreateAnd(Ops
.LHS
, Ops
.RHS
, "and");
792 Value
*EmitXor(const BinOpInfo
&Ops
) {
793 return Builder
.CreateXor(Ops
.LHS
, Ops
.RHS
, "xor");
795 Value
*EmitOr (const BinOpInfo
&Ops
) {
796 return Builder
.CreateOr(Ops
.LHS
, Ops
.RHS
, "or");
799 // Helper functions for fixed point binary operations.
800 Value
*EmitFixedPointBinOp(const BinOpInfo
&Ops
);
802 BinOpInfo
EmitBinOps(const BinaryOperator
*E
,
803 QualType PromotionTy
= QualType());
805 Value
*EmitPromotedValue(Value
*result
, QualType PromotionType
);
806 Value
*EmitUnPromotedValue(Value
*result
, QualType ExprType
);
807 Value
*EmitPromoted(const Expr
*E
, QualType PromotionType
);
809 LValue
EmitCompoundAssignLValue(const CompoundAssignOperator
*E
,
810 Value
*(ScalarExprEmitter::*F
)(const BinOpInfo
&),
813 Value
*EmitCompoundAssign(const CompoundAssignOperator
*E
,
814 Value
*(ScalarExprEmitter::*F
)(const BinOpInfo
&));
816 QualType
getPromotionType(QualType Ty
) {
817 const auto &Ctx
= CGF
.getContext();
818 if (auto *CT
= Ty
->getAs
<ComplexType
>()) {
819 QualType ElementType
= CT
->getElementType();
820 if (ElementType
.UseExcessPrecision(Ctx
))
821 return Ctx
.getComplexType(Ctx
.FloatTy
);
824 if (Ty
.UseExcessPrecision(Ctx
)) {
825 if (auto *VT
= Ty
->getAs
<VectorType
>()) {
826 unsigned NumElements
= VT
->getNumElements();
827 return Ctx
.getVectorType(Ctx
.FloatTy
, NumElements
, VT
->getVectorKind());
835 // Binary operators and binary compound assignment operators.
836 #define HANDLEBINOP(OP) \
837 Value *VisitBin##OP(const BinaryOperator *E) { \
838 QualType promotionTy = getPromotionType(E->getType()); \
839 auto result = Emit##OP(EmitBinOps(E, promotionTy)); \
840 if (result && !promotionTy.isNull()) \
841 result = EmitUnPromotedValue(result, E->getType()); \
844 Value *VisitBin##OP##Assign(const CompoundAssignOperator *E) { \
845 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit##OP); \
860 Value
*EmitCompare(const BinaryOperator
*E
, llvm::CmpInst::Predicate UICmpOpc
,
861 llvm::CmpInst::Predicate SICmpOpc
,
862 llvm::CmpInst::Predicate FCmpOpc
, bool IsSignaling
);
863 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
864 Value *VisitBin##CODE(const BinaryOperator *E) { \
865 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
866 llvm::FCmpInst::FP, SIG); }
867 VISITCOMP(LT
, ICMP_ULT
, ICMP_SLT
, FCMP_OLT
, true)
868 VISITCOMP(GT
, ICMP_UGT
, ICMP_SGT
, FCMP_OGT
, true)
869 VISITCOMP(LE
, ICMP_ULE
, ICMP_SLE
, FCMP_OLE
, true)
870 VISITCOMP(GE
, ICMP_UGE
, ICMP_SGE
, FCMP_OGE
, true)
871 VISITCOMP(EQ
, ICMP_EQ
, ICMP_EQ
, FCMP_OEQ
, false)
872 VISITCOMP(NE
, ICMP_NE
, ICMP_NE
, FCMP_UNE
, false)
875 Value
*VisitBinAssign (const BinaryOperator
*E
);
877 Value
*VisitBinLAnd (const BinaryOperator
*E
);
878 Value
*VisitBinLOr (const BinaryOperator
*E
);
879 Value
*VisitBinComma (const BinaryOperator
*E
);
881 Value
*VisitBinPtrMemD(const Expr
*E
) { return EmitLoadOfLValue(E
); }
882 Value
*VisitBinPtrMemI(const Expr
*E
) { return EmitLoadOfLValue(E
); }
884 Value
*VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator
*E
) {
885 return Visit(E
->getSemanticForm());
889 Value
*VisitBlockExpr(const BlockExpr
*BE
);
890 Value
*VisitAbstractConditionalOperator(const AbstractConditionalOperator
*);
891 Value
*VisitChooseExpr(ChooseExpr
*CE
);
892 Value
*VisitVAArgExpr(VAArgExpr
*VE
);
893 Value
*VisitObjCStringLiteral(const ObjCStringLiteral
*E
) {
894 return CGF
.EmitObjCStringLiteral(E
);
896 Value
*VisitObjCBoxedExpr(ObjCBoxedExpr
*E
) {
897 return CGF
.EmitObjCBoxedExpr(E
);
899 Value
*VisitObjCArrayLiteral(ObjCArrayLiteral
*E
) {
900 return CGF
.EmitObjCArrayLiteral(E
);
902 Value
*VisitObjCDictionaryLiteral(ObjCDictionaryLiteral
*E
) {
903 return CGF
.EmitObjCDictionaryLiteral(E
);
905 Value
*VisitAsTypeExpr(AsTypeExpr
*CE
);
906 Value
*VisitAtomicExpr(AtomicExpr
*AE
);
908 } // end anonymous namespace.
910 //===----------------------------------------------------------------------===//
912 //===----------------------------------------------------------------------===//
914 /// EmitConversionToBool - Convert the specified expression value to a
915 /// boolean (i1) truth value. This is equivalent to "Val != 0".
916 Value
*ScalarExprEmitter::EmitConversionToBool(Value
*Src
, QualType SrcType
) {
917 assert(SrcType
.isCanonical() && "EmitScalarConversion strips typedefs");
919 if (SrcType
->isRealFloatingType())
920 return EmitFloatToBoolConversion(Src
);
922 if (const MemberPointerType
*MPT
= dyn_cast
<MemberPointerType
>(SrcType
))
923 return CGF
.CGM
.getCXXABI().EmitMemberPointerIsNotNull(CGF
, Src
, MPT
);
925 assert((SrcType
->isIntegerType() || isa
<llvm::PointerType
>(Src
->getType())) &&
926 "Unknown scalar type to convert");
928 if (isa
<llvm::IntegerType
>(Src
->getType()))
929 return EmitIntToBoolConversion(Src
);
931 assert(isa
<llvm::PointerType
>(Src
->getType()));
932 return EmitPointerToBoolConversion(Src
, SrcType
);
935 void ScalarExprEmitter::EmitFloatConversionCheck(
936 Value
*OrigSrc
, QualType OrigSrcType
, Value
*Src
, QualType SrcType
,
937 QualType DstType
, llvm::Type
*DstTy
, SourceLocation Loc
) {
938 assert(SrcType
->isFloatingType() && "not a conversion from floating point");
939 if (!isa
<llvm::IntegerType
>(DstTy
))
942 CodeGenFunction::SanitizerScope
SanScope(&CGF
);
946 llvm::Value
*Check
= nullptr;
947 const llvm::fltSemantics
&SrcSema
=
948 CGF
.getContext().getFloatTypeSemantics(OrigSrcType
);
950 // Floating-point to integer. This has undefined behavior if the source is
951 // +-Inf, NaN, or doesn't fit into the destination type (after truncation
953 unsigned Width
= CGF
.getContext().getIntWidth(DstType
);
954 bool Unsigned
= DstType
->isUnsignedIntegerOrEnumerationType();
956 APSInt Min
= APSInt::getMinValue(Width
, Unsigned
);
957 APFloat
MinSrc(SrcSema
, APFloat::uninitialized
);
958 if (MinSrc
.convertFromAPInt(Min
, !Unsigned
, APFloat::rmTowardZero
) &
960 // Don't need an overflow check for lower bound. Just check for
962 MinSrc
= APFloat::getInf(SrcSema
, true);
964 // Find the largest value which is too small to represent (before
965 // truncation toward zero).
966 MinSrc
.subtract(APFloat(SrcSema
, 1), APFloat::rmTowardNegative
);
968 APSInt Max
= APSInt::getMaxValue(Width
, Unsigned
);
969 APFloat
MaxSrc(SrcSema
, APFloat::uninitialized
);
970 if (MaxSrc
.convertFromAPInt(Max
, !Unsigned
, APFloat::rmTowardZero
) &
972 // Don't need an overflow check for upper bound. Just check for
974 MaxSrc
= APFloat::getInf(SrcSema
, false);
976 // Find the smallest value which is too large to represent (before
977 // truncation toward zero).
978 MaxSrc
.add(APFloat(SrcSema
, 1), APFloat::rmTowardPositive
);
980 // If we're converting from __half, convert the range to float to match
982 if (OrigSrcType
->isHalfType()) {
983 const llvm::fltSemantics
&Sema
=
984 CGF
.getContext().getFloatTypeSemantics(SrcType
);
986 MinSrc
.convert(Sema
, APFloat::rmTowardZero
, &IsInexact
);
987 MaxSrc
.convert(Sema
, APFloat::rmTowardZero
, &IsInexact
);
991 Builder
.CreateFCmpOGT(Src
, llvm::ConstantFP::get(VMContext
, MinSrc
));
993 Builder
.CreateFCmpOLT(Src
, llvm::ConstantFP::get(VMContext
, MaxSrc
));
994 Check
= Builder
.CreateAnd(GE
, LE
);
996 llvm::Constant
*StaticArgs
[] = {CGF
.EmitCheckSourceLocation(Loc
),
997 CGF
.EmitCheckTypeDescriptor(OrigSrcType
),
998 CGF
.EmitCheckTypeDescriptor(DstType
)};
999 CGF
.EmitCheck(std::make_pair(Check
, SanitizerKind::FloatCastOverflow
),
1000 SanitizerHandler::FloatCastOverflow
, StaticArgs
, OrigSrc
);
1003 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1004 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
1005 static std::pair
<ScalarExprEmitter::ImplicitConversionCheckKind
,
1006 std::pair
<llvm::Value
*, SanitizerMask
>>
1007 EmitIntegerTruncationCheckHelper(Value
*Src
, QualType SrcType
, Value
*Dst
,
1008 QualType DstType
, CGBuilderTy
&Builder
) {
1009 llvm::Type
*SrcTy
= Src
->getType();
1010 llvm::Type
*DstTy
= Dst
->getType();
1011 (void)DstTy
; // Only used in assert()
1013 // This should be truncation of integral types.
1015 assert(SrcTy
->getScalarSizeInBits() > Dst
->getType()->getScalarSizeInBits());
1016 assert(isa
<llvm::IntegerType
>(SrcTy
) && isa
<llvm::IntegerType
>(DstTy
) &&
1017 "non-integer llvm type");
1019 bool SrcSigned
= SrcType
->isSignedIntegerOrEnumerationType();
1020 bool DstSigned
= DstType
->isSignedIntegerOrEnumerationType();
1022 // If both (src and dst) types are unsigned, then it's an unsigned truncation.
1023 // Else, it is a signed truncation.
1024 ScalarExprEmitter::ImplicitConversionCheckKind Kind
;
1026 if (!SrcSigned
&& !DstSigned
) {
1027 Kind
= ScalarExprEmitter::ICCK_UnsignedIntegerTruncation
;
1028 Mask
= SanitizerKind::ImplicitUnsignedIntegerTruncation
;
1030 Kind
= ScalarExprEmitter::ICCK_SignedIntegerTruncation
;
1031 Mask
= SanitizerKind::ImplicitSignedIntegerTruncation
;
1034 llvm::Value
*Check
= nullptr;
1035 // 1. Extend the truncated value back to the same width as the Src.
1036 Check
= Builder
.CreateIntCast(Dst
, SrcTy
, DstSigned
, "anyext");
1037 // 2. Equality-compare with the original source value
1038 Check
= Builder
.CreateICmpEQ(Check
, Src
, "truncheck");
1039 // If the comparison result is 'i1 false', then the truncation was lossy.
1040 return std::make_pair(Kind
, std::make_pair(Check
, Mask
));
1043 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1044 QualType SrcType
, QualType DstType
) {
1045 return SrcType
->isIntegerType() && DstType
->isIntegerType();
1048 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value
*Src
, QualType SrcType
,
1049 Value
*Dst
, QualType DstType
,
1050 SourceLocation Loc
) {
1051 if (!CGF
.SanOpts
.hasOneOf(SanitizerKind::ImplicitIntegerTruncation
))
1054 // We only care about int->int conversions here.
1055 // We ignore conversions to/from pointer and/or bool.
1056 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType
,
1060 unsigned SrcBits
= Src
->getType()->getScalarSizeInBits();
1061 unsigned DstBits
= Dst
->getType()->getScalarSizeInBits();
1062 // This must be truncation. Else we do not care.
1063 if (SrcBits
<= DstBits
)
1066 assert(!DstType
->isBooleanType() && "we should not get here with booleans.");
1068 // If the integer sign change sanitizer is enabled,
1069 // and we are truncating from larger unsigned type to smaller signed type,
1070 // let that next sanitizer deal with it.
1071 bool SrcSigned
= SrcType
->isSignedIntegerOrEnumerationType();
1072 bool DstSigned
= DstType
->isSignedIntegerOrEnumerationType();
1073 if (CGF
.SanOpts
.has(SanitizerKind::ImplicitIntegerSignChange
) &&
1074 (!SrcSigned
&& DstSigned
))
1077 CodeGenFunction::SanitizerScope
SanScope(&CGF
);
1079 std::pair
<ScalarExprEmitter::ImplicitConversionCheckKind
,
1080 std::pair
<llvm::Value
*, SanitizerMask
>>
1082 EmitIntegerTruncationCheckHelper(Src
, SrcType
, Dst
, DstType
, Builder
);
1083 // If the comparison result is 'i1 false', then the truncation was lossy.
1085 // Do we care about this type of truncation?
1086 if (!CGF
.SanOpts
.has(Check
.second
.second
))
1089 llvm::Constant
*StaticArgs
[] = {
1090 CGF
.EmitCheckSourceLocation(Loc
), CGF
.EmitCheckTypeDescriptor(SrcType
),
1091 CGF
.EmitCheckTypeDescriptor(DstType
),
1092 llvm::ConstantInt::get(Builder
.getInt8Ty(), Check
.first
)};
1093 CGF
.EmitCheck(Check
.second
, SanitizerHandler::ImplicitConversion
, StaticArgs
,
1097 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1098 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1099 static std::pair
<ScalarExprEmitter::ImplicitConversionCheckKind
,
1100 std::pair
<llvm::Value
*, SanitizerMask
>>
1101 EmitIntegerSignChangeCheckHelper(Value
*Src
, QualType SrcType
, Value
*Dst
,
1102 QualType DstType
, CGBuilderTy
&Builder
) {
1103 llvm::Type
*SrcTy
= Src
->getType();
1104 llvm::Type
*DstTy
= Dst
->getType();
1106 assert(isa
<llvm::IntegerType
>(SrcTy
) && isa
<llvm::IntegerType
>(DstTy
) &&
1107 "non-integer llvm type");
1109 bool SrcSigned
= SrcType
->isSignedIntegerOrEnumerationType();
1110 bool DstSigned
= DstType
->isSignedIntegerOrEnumerationType();
1111 (void)SrcSigned
; // Only used in assert()
1112 (void)DstSigned
; // Only used in assert()
1113 unsigned SrcBits
= SrcTy
->getScalarSizeInBits();
1114 unsigned DstBits
= DstTy
->getScalarSizeInBits();
1115 (void)SrcBits
; // Only used in assert()
1116 (void)DstBits
; // Only used in assert()
1118 assert(((SrcBits
!= DstBits
) || (SrcSigned
!= DstSigned
)) &&
1119 "either the widths should be different, or the signednesses.");
1121 // NOTE: zero value is considered to be non-negative.
1122 auto EmitIsNegativeTest
= [&Builder
](Value
*V
, QualType VType
,
1123 const char *Name
) -> Value
* {
1124 // Is this value a signed type?
1125 bool VSigned
= VType
->isSignedIntegerOrEnumerationType();
1126 llvm::Type
*VTy
= V
->getType();
1128 // If the value is unsigned, then it is never negative.
1129 // FIXME: can we encounter non-scalar VTy here?
1130 return llvm::ConstantInt::getFalse(VTy
->getContext());
1132 // Get the zero of the same type with which we will be comparing.
1133 llvm::Constant
*Zero
= llvm::ConstantInt::get(VTy
, 0);
1134 // %V.isnegative = icmp slt %V, 0
1135 // I.e is %V *strictly* less than zero, does it have negative value?
1136 return Builder
.CreateICmp(llvm::ICmpInst::ICMP_SLT
, V
, Zero
,
1137 llvm::Twine(Name
) + "." + V
->getName() +
1138 ".negativitycheck");
1141 // 1. Was the old Value negative?
1142 llvm::Value
*SrcIsNegative
= EmitIsNegativeTest(Src
, SrcType
, "src");
1143 // 2. Is the new Value negative?
1144 llvm::Value
*DstIsNegative
= EmitIsNegativeTest(Dst
, DstType
, "dst");
1145 // 3. Now, was the 'negativity status' preserved during the conversion?
1146 // NOTE: conversion from negative to zero is considered to change the sign.
1147 // (We want to get 'false' when the conversion changed the sign)
1148 // So we should just equality-compare the negativity statuses.
1149 llvm::Value
*Check
= nullptr;
1150 Check
= Builder
.CreateICmpEQ(SrcIsNegative
, DstIsNegative
, "signchangecheck");
1151 // If the comparison result is 'false', then the conversion changed the sign.
1152 return std::make_pair(
1153 ScalarExprEmitter::ICCK_IntegerSignChange
,
1154 std::make_pair(Check
, SanitizerKind::ImplicitIntegerSignChange
));
1157 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value
*Src
, QualType SrcType
,
1158 Value
*Dst
, QualType DstType
,
1159 SourceLocation Loc
) {
1160 if (!CGF
.SanOpts
.has(SanitizerKind::ImplicitIntegerSignChange
))
1163 llvm::Type
*SrcTy
= Src
->getType();
1164 llvm::Type
*DstTy
= Dst
->getType();
1166 // We only care about int->int conversions here.
1167 // We ignore conversions to/from pointer and/or bool.
1168 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType
,
1172 bool SrcSigned
= SrcType
->isSignedIntegerOrEnumerationType();
1173 bool DstSigned
= DstType
->isSignedIntegerOrEnumerationType();
1174 unsigned SrcBits
= SrcTy
->getScalarSizeInBits();
1175 unsigned DstBits
= DstTy
->getScalarSizeInBits();
1177 // Now, we do not need to emit the check in *all* of the cases.
1178 // We can avoid emitting it in some obvious cases where it would have been
1179 // dropped by the opt passes (instcombine) always anyways.
1180 // If it's a cast between effectively the same type, no check.
1181 // NOTE: this is *not* equivalent to checking the canonical types.
1182 if (SrcSigned
== DstSigned
&& SrcBits
== DstBits
)
1184 // At least one of the values needs to have signed type.
1185 // If both are unsigned, then obviously, neither of them can be negative.
1186 if (!SrcSigned
&& !DstSigned
)
1188 // If the conversion is to *larger* *signed* type, then no check is needed.
1189 // Because either sign-extension happens (so the sign will remain),
1190 // or zero-extension will happen (the sign bit will be zero.)
1191 if ((DstBits
> SrcBits
) && DstSigned
)
1193 if (CGF
.SanOpts
.has(SanitizerKind::ImplicitSignedIntegerTruncation
) &&
1194 (SrcBits
> DstBits
) && SrcSigned
) {
1195 // If the signed integer truncation sanitizer is enabled,
1196 // and this is a truncation from signed type, then no check is needed.
1197 // Because here sign change check is interchangeable with truncation check.
1200 // That's it. We can't rule out any more cases with the data we have.
1202 CodeGenFunction::SanitizerScope
SanScope(&CGF
);
1204 std::pair
<ScalarExprEmitter::ImplicitConversionCheckKind
,
1205 std::pair
<llvm::Value
*, SanitizerMask
>>
1208 // Each of these checks needs to return 'false' when an issue was detected.
1209 ImplicitConversionCheckKind CheckKind
;
1210 llvm::SmallVector
<std::pair
<llvm::Value
*, SanitizerMask
>, 2> Checks
;
1211 // So we can 'and' all the checks together, and still get 'false',
1212 // if at least one of the checks detected an issue.
1214 Check
= EmitIntegerSignChangeCheckHelper(Src
, SrcType
, Dst
, DstType
, Builder
);
1215 CheckKind
= Check
.first
;
1216 Checks
.emplace_back(Check
.second
);
1218 if (CGF
.SanOpts
.has(SanitizerKind::ImplicitSignedIntegerTruncation
) &&
1219 (SrcBits
> DstBits
) && !SrcSigned
&& DstSigned
) {
1220 // If the signed integer truncation sanitizer was enabled,
1221 // and we are truncating from larger unsigned type to smaller signed type,
1222 // let's handle the case we skipped in that check.
1224 EmitIntegerTruncationCheckHelper(Src
, SrcType
, Dst
, DstType
, Builder
);
1225 CheckKind
= ICCK_SignedIntegerTruncationOrSignChange
;
1226 Checks
.emplace_back(Check
.second
);
1227 // If the comparison result is 'i1 false', then the truncation was lossy.
1230 llvm::Constant
*StaticArgs
[] = {
1231 CGF
.EmitCheckSourceLocation(Loc
), CGF
.EmitCheckTypeDescriptor(SrcType
),
1232 CGF
.EmitCheckTypeDescriptor(DstType
),
1233 llvm::ConstantInt::get(Builder
.getInt8Ty(), CheckKind
)};
1234 // EmitCheck() will 'and' all the checks together.
1235 CGF
.EmitCheck(Checks
, SanitizerHandler::ImplicitConversion
, StaticArgs
,
1239 Value
*ScalarExprEmitter::EmitScalarCast(Value
*Src
, QualType SrcType
,
1240 QualType DstType
, llvm::Type
*SrcTy
,
1242 ScalarConversionOpts Opts
) {
1243 // The Element types determine the type of cast to perform.
1244 llvm::Type
*SrcElementTy
;
1245 llvm::Type
*DstElementTy
;
1246 QualType SrcElementType
;
1247 QualType DstElementType
;
1248 if (SrcType
->isMatrixType() && DstType
->isMatrixType()) {
1249 SrcElementTy
= cast
<llvm::VectorType
>(SrcTy
)->getElementType();
1250 DstElementTy
= cast
<llvm::VectorType
>(DstTy
)->getElementType();
1251 SrcElementType
= SrcType
->castAs
<MatrixType
>()->getElementType();
1252 DstElementType
= DstType
->castAs
<MatrixType
>()->getElementType();
1254 assert(!SrcType
->isMatrixType() && !DstType
->isMatrixType() &&
1255 "cannot cast between matrix and non-matrix types");
1256 SrcElementTy
= SrcTy
;
1257 DstElementTy
= DstTy
;
1258 SrcElementType
= SrcType
;
1259 DstElementType
= DstType
;
1262 if (isa
<llvm::IntegerType
>(SrcElementTy
)) {
1263 bool InputSigned
= SrcElementType
->isSignedIntegerOrEnumerationType();
1264 if (SrcElementType
->isBooleanType() && Opts
.TreatBooleanAsSigned
) {
1268 if (isa
<llvm::IntegerType
>(DstElementTy
))
1269 return Builder
.CreateIntCast(Src
, DstTy
, InputSigned
, "conv");
1271 return Builder
.CreateSIToFP(Src
, DstTy
, "conv");
1272 return Builder
.CreateUIToFP(Src
, DstTy
, "conv");
1275 if (isa
<llvm::IntegerType
>(DstElementTy
)) {
1276 assert(SrcElementTy
->isFloatingPointTy() && "Unknown real conversion");
1277 bool IsSigned
= DstElementType
->isSignedIntegerOrEnumerationType();
1279 // If we can't recognize overflow as undefined behavior, assume that
1280 // overflow saturates. This protects against normal optimizations if we are
1281 // compiling with non-standard FP semantics.
1282 if (!CGF
.CGM
.getCodeGenOpts().StrictFloatCastOverflow
) {
1283 llvm::Intrinsic::ID IID
=
1284 IsSigned
? llvm::Intrinsic::fptosi_sat
: llvm::Intrinsic::fptoui_sat
;
1285 return Builder
.CreateCall(CGF
.CGM
.getIntrinsic(IID
, {DstTy
, SrcTy
}), Src
);
1289 return Builder
.CreateFPToSI(Src
, DstTy
, "conv");
1290 return Builder
.CreateFPToUI(Src
, DstTy
, "conv");
1293 if (DstElementTy
->getTypeID() < SrcElementTy
->getTypeID())
1294 return Builder
.CreateFPTrunc(Src
, DstTy
, "conv");
1295 return Builder
.CreateFPExt(Src
, DstTy
, "conv");
1298 /// Emit a conversion from the specified type to the specified destination type,
1299 /// both of which are LLVM scalar types.
1300 Value
*ScalarExprEmitter::EmitScalarConversion(Value
*Src
, QualType SrcType
,
1303 ScalarConversionOpts Opts
) {
1304 // All conversions involving fixed point types should be handled by the
1305 // EmitFixedPoint family functions. This is done to prevent bloating up this
1306 // function more, and although fixed point numbers are represented by
1307 // integers, we do not want to follow any logic that assumes they should be
1308 // treated as integers.
1309 // TODO(leonardchan): When necessary, add another if statement checking for
1310 // conversions to fixed point types from other types.
1311 if (SrcType
->isFixedPointType()) {
1312 if (DstType
->isBooleanType())
1313 // It is important that we check this before checking if the dest type is
1314 // an integer because booleans are technically integer types.
1315 // We do not need to check the padding bit on unsigned types if unsigned
1316 // padding is enabled because overflow into this bit is undefined
1318 return Builder
.CreateIsNotNull(Src
, "tobool");
1319 if (DstType
->isFixedPointType() || DstType
->isIntegerType() ||
1320 DstType
->isRealFloatingType())
1321 return EmitFixedPointConversion(Src
, SrcType
, DstType
, Loc
);
1324 "Unhandled scalar conversion from a fixed point type to another type.");
1325 } else if (DstType
->isFixedPointType()) {
1326 if (SrcType
->isIntegerType() || SrcType
->isRealFloatingType())
1327 // This also includes converting booleans and enums to fixed point types.
1328 return EmitFixedPointConversion(Src
, SrcType
, DstType
, Loc
);
1331 "Unhandled scalar conversion to a fixed point type from another type.");
1334 QualType NoncanonicalSrcType
= SrcType
;
1335 QualType NoncanonicalDstType
= DstType
;
1337 SrcType
= CGF
.getContext().getCanonicalType(SrcType
);
1338 DstType
= CGF
.getContext().getCanonicalType(DstType
);
1339 if (SrcType
== DstType
) return Src
;
1341 if (DstType
->isVoidType()) return nullptr;
1343 llvm::Value
*OrigSrc
= Src
;
1344 QualType OrigSrcType
= SrcType
;
1345 llvm::Type
*SrcTy
= Src
->getType();
1347 // Handle conversions to bool first, they are special: comparisons against 0.
1348 if (DstType
->isBooleanType())
1349 return EmitConversionToBool(Src
, SrcType
);
1351 llvm::Type
*DstTy
= ConvertType(DstType
);
1353 // Cast from half through float if half isn't a native type.
1354 if (SrcType
->isHalfType() && !CGF
.getContext().getLangOpts().NativeHalfType
) {
1355 // Cast to FP using the intrinsic if the half type itself isn't supported.
1356 if (DstTy
->isFloatingPointTy()) {
1357 if (CGF
.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1358 return Builder
.CreateCall(
1359 CGF
.CGM
.getIntrinsic(llvm::Intrinsic::convert_from_fp16
, DstTy
),
1362 // Cast to other types through float, using either the intrinsic or FPExt,
1363 // depending on whether the half type itself is supported
1364 // (as opposed to operations on half, available with NativeHalfType).
1365 if (CGF
.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1366 Src
= Builder
.CreateCall(
1367 CGF
.CGM
.getIntrinsic(llvm::Intrinsic::convert_from_fp16
,
1371 Src
= Builder
.CreateFPExt(Src
, CGF
.CGM
.FloatTy
, "conv");
1373 SrcType
= CGF
.getContext().FloatTy
;
1374 SrcTy
= CGF
.FloatTy
;
1378 // Ignore conversions like int -> uint.
1379 if (SrcTy
== DstTy
) {
1380 if (Opts
.EmitImplicitIntegerSignChangeChecks
)
1381 EmitIntegerSignChangeCheck(Src
, NoncanonicalSrcType
, Src
,
1382 NoncanonicalDstType
, Loc
);
1387 // Handle pointer conversions next: pointers can only be converted to/from
1388 // other pointers and integers. Check for pointer types in terms of LLVM, as
1389 // some native types (like Obj-C id) may map to a pointer type.
1390 if (auto DstPT
= dyn_cast
<llvm::PointerType
>(DstTy
)) {
1391 // The source value may be an integer, or a pointer.
1392 if (isa
<llvm::PointerType
>(SrcTy
))
1393 return Builder
.CreateBitCast(Src
, DstTy
, "conv");
1395 assert(SrcType
->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1396 // First, convert to the correct width so that we control the kind of
1398 llvm::Type
*MiddleTy
= CGF
.CGM
.getDataLayout().getIntPtrType(DstPT
);
1399 bool InputSigned
= SrcType
->isSignedIntegerOrEnumerationType();
1400 llvm::Value
* IntResult
=
1401 Builder
.CreateIntCast(Src
, MiddleTy
, InputSigned
, "conv");
1402 // Then, cast to pointer.
1403 return Builder
.CreateIntToPtr(IntResult
, DstTy
, "conv");
1406 if (isa
<llvm::PointerType
>(SrcTy
)) {
1407 // Must be an ptr to int cast.
1408 assert(isa
<llvm::IntegerType
>(DstTy
) && "not ptr->int?");
1409 return Builder
.CreatePtrToInt(Src
, DstTy
, "conv");
1412 // A scalar can be splatted to an extended vector of the same element type
1413 if (DstType
->isExtVectorType() && !SrcType
->isVectorType()) {
1414 // Sema should add casts to make sure that the source expression's type is
1415 // the same as the vector's element type (sans qualifiers)
1416 assert(DstType
->castAs
<ExtVectorType
>()->getElementType().getTypePtr() ==
1417 SrcType
.getTypePtr() &&
1418 "Splatted expr doesn't match with vector element type?");
1420 // Splat the element across to all elements
1421 unsigned NumElements
= cast
<llvm::FixedVectorType
>(DstTy
)->getNumElements();
1422 return Builder
.CreateVectorSplat(NumElements
, Src
, "splat");
1425 if (SrcType
->isMatrixType() && DstType
->isMatrixType())
1426 return EmitScalarCast(Src
, SrcType
, DstType
, SrcTy
, DstTy
, Opts
);
1428 if (isa
<llvm::VectorType
>(SrcTy
) || isa
<llvm::VectorType
>(DstTy
)) {
1429 // Allow bitcast from vector to integer/fp of the same size.
1430 llvm::TypeSize SrcSize
= SrcTy
->getPrimitiveSizeInBits();
1431 llvm::TypeSize DstSize
= DstTy
->getPrimitiveSizeInBits();
1432 if (SrcSize
== DstSize
)
1433 return Builder
.CreateBitCast(Src
, DstTy
, "conv");
1435 // Conversions between vectors of different sizes are not allowed except
1436 // when vectors of half are involved. Operations on storage-only half
1437 // vectors require promoting half vector operands to float vectors and
1438 // truncating the result, which is either an int or float vector, to a
1439 // short or half vector.
1441 // Source and destination are both expected to be vectors.
1442 llvm::Type
*SrcElementTy
= cast
<llvm::VectorType
>(SrcTy
)->getElementType();
1443 llvm::Type
*DstElementTy
= cast
<llvm::VectorType
>(DstTy
)->getElementType();
1446 assert(((SrcElementTy
->isIntegerTy() &&
1447 DstElementTy
->isIntegerTy()) ||
1448 (SrcElementTy
->isFloatingPointTy() &&
1449 DstElementTy
->isFloatingPointTy())) &&
1450 "unexpected conversion between a floating-point vector and an "
1453 // Truncate an i32 vector to an i16 vector.
1454 if (SrcElementTy
->isIntegerTy())
1455 return Builder
.CreateIntCast(Src
, DstTy
, false, "conv");
1457 // Truncate a float vector to a half vector.
1458 if (SrcSize
> DstSize
)
1459 return Builder
.CreateFPTrunc(Src
, DstTy
, "conv");
1461 // Promote a half vector to a float vector.
1462 return Builder
.CreateFPExt(Src
, DstTy
, "conv");
1465 // Finally, we have the arithmetic types: real int/float.
1466 Value
*Res
= nullptr;
1467 llvm::Type
*ResTy
= DstTy
;
1469 // An overflowing conversion has undefined behavior if either the source type
1470 // or the destination type is a floating-point type. However, we consider the
1471 // range of representable values for all floating-point types to be
1472 // [-inf,+inf], so no overflow can ever happen when the destination type is a
1473 // floating-point type.
1474 if (CGF
.SanOpts
.has(SanitizerKind::FloatCastOverflow
) &&
1475 OrigSrcType
->isFloatingType())
1476 EmitFloatConversionCheck(OrigSrc
, OrigSrcType
, Src
, SrcType
, DstType
, DstTy
,
1479 // Cast to half through float if half isn't a native type.
1480 if (DstType
->isHalfType() && !CGF
.getContext().getLangOpts().NativeHalfType
) {
1481 // Make sure we cast in a single step if from another FP type.
1482 if (SrcTy
->isFloatingPointTy()) {
1483 // Use the intrinsic if the half type itself isn't supported
1484 // (as opposed to operations on half, available with NativeHalfType).
1485 if (CGF
.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1486 return Builder
.CreateCall(
1487 CGF
.CGM
.getIntrinsic(llvm::Intrinsic::convert_to_fp16
, SrcTy
), Src
);
1488 // If the half type is supported, just use an fptrunc.
1489 return Builder
.CreateFPTrunc(Src
, DstTy
);
1491 DstTy
= CGF
.FloatTy
;
1494 Res
= EmitScalarCast(Src
, SrcType
, DstType
, SrcTy
, DstTy
, Opts
);
1496 if (DstTy
!= ResTy
) {
1497 if (CGF
.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1498 assert(ResTy
->isIntegerTy(16) && "Only half FP requires extra conversion");
1499 Res
= Builder
.CreateCall(
1500 CGF
.CGM
.getIntrinsic(llvm::Intrinsic::convert_to_fp16
, CGF
.CGM
.FloatTy
),
1503 Res
= Builder
.CreateFPTrunc(Res
, ResTy
, "conv");
1507 if (Opts
.EmitImplicitIntegerTruncationChecks
)
1508 EmitIntegerTruncationCheck(Src
, NoncanonicalSrcType
, Res
,
1509 NoncanonicalDstType
, Loc
);
1511 if (Opts
.EmitImplicitIntegerSignChangeChecks
)
1512 EmitIntegerSignChangeCheck(Src
, NoncanonicalSrcType
, Res
,
1513 NoncanonicalDstType
, Loc
);
1518 Value
*ScalarExprEmitter::EmitFixedPointConversion(Value
*Src
, QualType SrcTy
,
1520 SourceLocation Loc
) {
1521 llvm::FixedPointBuilder
<CGBuilderTy
> FPBuilder(Builder
);
1522 llvm::Value
*Result
;
1523 if (SrcTy
->isRealFloatingType())
1524 Result
= FPBuilder
.CreateFloatingToFixed(Src
,
1525 CGF
.getContext().getFixedPointSemantics(DstTy
));
1526 else if (DstTy
->isRealFloatingType())
1527 Result
= FPBuilder
.CreateFixedToFloating(Src
,
1528 CGF
.getContext().getFixedPointSemantics(SrcTy
),
1529 ConvertType(DstTy
));
1531 auto SrcFPSema
= CGF
.getContext().getFixedPointSemantics(SrcTy
);
1532 auto DstFPSema
= CGF
.getContext().getFixedPointSemantics(DstTy
);
1534 if (DstTy
->isIntegerType())
1535 Result
= FPBuilder
.CreateFixedToInteger(Src
, SrcFPSema
,
1536 DstFPSema
.getWidth(),
1537 DstFPSema
.isSigned());
1538 else if (SrcTy
->isIntegerType())
1539 Result
= FPBuilder
.CreateIntegerToFixed(Src
, SrcFPSema
.isSigned(),
1542 Result
= FPBuilder
.CreateFixedToFixed(Src
, SrcFPSema
, DstFPSema
);
1547 /// Emit a conversion from the specified complex type to the specified
1548 /// destination type, where the destination type is an LLVM scalar type.
1549 Value
*ScalarExprEmitter::EmitComplexToScalarConversion(
1550 CodeGenFunction::ComplexPairTy Src
, QualType SrcTy
, QualType DstTy
,
1551 SourceLocation Loc
) {
1552 // Get the source element type.
1553 SrcTy
= SrcTy
->castAs
<ComplexType
>()->getElementType();
1555 // Handle conversions to bool first, they are special: comparisons against 0.
1556 if (DstTy
->isBooleanType()) {
1557 // Complex != 0 -> (Real != 0) | (Imag != 0)
1558 Src
.first
= EmitScalarConversion(Src
.first
, SrcTy
, DstTy
, Loc
);
1559 Src
.second
= EmitScalarConversion(Src
.second
, SrcTy
, DstTy
, Loc
);
1560 return Builder
.CreateOr(Src
.first
, Src
.second
, "tobool");
1563 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1564 // the imaginary part of the complex value is discarded and the value of the
1565 // real part is converted according to the conversion rules for the
1566 // corresponding real type.
1567 return EmitScalarConversion(Src
.first
, SrcTy
, DstTy
, Loc
);
1570 Value
*ScalarExprEmitter::EmitNullValue(QualType Ty
) {
1571 return CGF
.EmitFromMemory(CGF
.CGM
.EmitNullConstant(Ty
), Ty
);
1574 /// Emit a sanitization check for the given "binary" operation (which
1575 /// might actually be a unary increment which has been lowered to a binary
1576 /// operation). The check passes if all values in \p Checks (which are \c i1),
1578 void ScalarExprEmitter::EmitBinOpCheck(
1579 ArrayRef
<std::pair
<Value
*, SanitizerMask
>> Checks
, const BinOpInfo
&Info
) {
1580 assert(CGF
.IsSanitizerScope
);
1581 SanitizerHandler Check
;
1582 SmallVector
<llvm::Constant
*, 4> StaticData
;
1583 SmallVector
<llvm::Value
*, 2> DynamicData
;
1585 BinaryOperatorKind Opcode
= Info
.Opcode
;
1586 if (BinaryOperator::isCompoundAssignmentOp(Opcode
))
1587 Opcode
= BinaryOperator::getOpForCompoundAssignment(Opcode
);
1589 StaticData
.push_back(CGF
.EmitCheckSourceLocation(Info
.E
->getExprLoc()));
1590 const UnaryOperator
*UO
= dyn_cast
<UnaryOperator
>(Info
.E
);
1591 if (UO
&& UO
->getOpcode() == UO_Minus
) {
1592 Check
= SanitizerHandler::NegateOverflow
;
1593 StaticData
.push_back(CGF
.EmitCheckTypeDescriptor(UO
->getType()));
1594 DynamicData
.push_back(Info
.RHS
);
1596 if (BinaryOperator::isShiftOp(Opcode
)) {
1597 // Shift LHS negative or too large, or RHS out of bounds.
1598 Check
= SanitizerHandler::ShiftOutOfBounds
;
1599 const BinaryOperator
*BO
= cast
<BinaryOperator
>(Info
.E
);
1600 StaticData
.push_back(
1601 CGF
.EmitCheckTypeDescriptor(BO
->getLHS()->getType()));
1602 StaticData
.push_back(
1603 CGF
.EmitCheckTypeDescriptor(BO
->getRHS()->getType()));
1604 } else if (Opcode
== BO_Div
|| Opcode
== BO_Rem
) {
1605 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1606 Check
= SanitizerHandler::DivremOverflow
;
1607 StaticData
.push_back(CGF
.EmitCheckTypeDescriptor(Info
.Ty
));
1609 // Arithmetic overflow (+, -, *).
1611 case BO_Add
: Check
= SanitizerHandler::AddOverflow
; break;
1612 case BO_Sub
: Check
= SanitizerHandler::SubOverflow
; break;
1613 case BO_Mul
: Check
= SanitizerHandler::MulOverflow
; break;
1614 default: llvm_unreachable("unexpected opcode for bin op check");
1616 StaticData
.push_back(CGF
.EmitCheckTypeDescriptor(Info
.Ty
));
1618 DynamicData
.push_back(Info
.LHS
);
1619 DynamicData
.push_back(Info
.RHS
);
1622 CGF
.EmitCheck(Checks
, Check
, StaticData
, DynamicData
);
1625 //===----------------------------------------------------------------------===//
1627 //===----------------------------------------------------------------------===//
1629 Value
*ScalarExprEmitter::VisitExpr(Expr
*E
) {
1630 CGF
.ErrorUnsupported(E
, "scalar expression");
1631 if (E
->getType()->isVoidType())
1633 return llvm::UndefValue::get(CGF
.ConvertType(E
->getType()));
1637 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr
*E
) {
1638 ASTContext
&Context
= CGF
.getContext();
1639 unsigned AddrSpace
=
1640 Context
.getTargetAddressSpace(CGF
.CGM
.GetGlobalConstantAddressSpace());
1641 llvm::Constant
*GlobalConstStr
= Builder
.CreateGlobalStringPtr(
1642 E
->ComputeName(Context
), "__usn_str", AddrSpace
);
1644 llvm::Type
*ExprTy
= ConvertType(E
->getType());
1645 return Builder
.CreatePointerBitCastOrAddrSpaceCast(GlobalConstStr
, ExprTy
,
1649 Value
*ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr
*E
) {
1651 if (E
->getNumSubExprs() == 2) {
1652 Value
*LHS
= CGF
.EmitScalarExpr(E
->getExpr(0));
1653 Value
*RHS
= CGF
.EmitScalarExpr(E
->getExpr(1));
1656 auto *LTy
= cast
<llvm::FixedVectorType
>(LHS
->getType());
1657 unsigned LHSElts
= LTy
->getNumElements();
1661 auto *MTy
= cast
<llvm::FixedVectorType
>(Mask
->getType());
1663 // Mask off the high bits of each shuffle index.
1665 llvm::ConstantInt::get(MTy
, llvm::NextPowerOf2(LHSElts
- 1) - 1);
1666 Mask
= Builder
.CreateAnd(Mask
, MaskBits
, "mask");
1669 // mask = mask & maskbits
1671 // n = extract mask i
1672 // x = extract val n
1673 // newv = insert newv, x, i
1674 auto *RTy
= llvm::FixedVectorType::get(LTy
->getElementType(),
1675 MTy
->getNumElements());
1676 Value
* NewV
= llvm::PoisonValue::get(RTy
);
1677 for (unsigned i
= 0, e
= MTy
->getNumElements(); i
!= e
; ++i
) {
1678 Value
*IIndx
= llvm::ConstantInt::get(CGF
.SizeTy
, i
);
1679 Value
*Indx
= Builder
.CreateExtractElement(Mask
, IIndx
, "shuf_idx");
1681 Value
*VExt
= Builder
.CreateExtractElement(LHS
, Indx
, "shuf_elt");
1682 NewV
= Builder
.CreateInsertElement(NewV
, VExt
, IIndx
, "shuf_ins");
1687 Value
* V1
= CGF
.EmitScalarExpr(E
->getExpr(0));
1688 Value
* V2
= CGF
.EmitScalarExpr(E
->getExpr(1));
1690 SmallVector
<int, 32> Indices
;
1691 for (unsigned i
= 2; i
< E
->getNumSubExprs(); ++i
) {
1692 llvm::APSInt Idx
= E
->getShuffleMaskIdx(CGF
.getContext(), i
-2);
1693 // Check for -1 and output it as undef in the IR.
1694 if (Idx
.isSigned() && Idx
.isAllOnes())
1695 Indices
.push_back(-1);
1697 Indices
.push_back(Idx
.getZExtValue());
1700 return Builder
.CreateShuffleVector(V1
, V2
, Indices
, "shuffle");
1703 Value
*ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr
*E
) {
1704 QualType SrcType
= E
->getSrcExpr()->getType(),
1705 DstType
= E
->getType();
1707 Value
*Src
= CGF
.EmitScalarExpr(E
->getSrcExpr());
1709 SrcType
= CGF
.getContext().getCanonicalType(SrcType
);
1710 DstType
= CGF
.getContext().getCanonicalType(DstType
);
1711 if (SrcType
== DstType
) return Src
;
1713 assert(SrcType
->isVectorType() &&
1714 "ConvertVector source type must be a vector");
1715 assert(DstType
->isVectorType() &&
1716 "ConvertVector destination type must be a vector");
1718 llvm::Type
*SrcTy
= Src
->getType();
1719 llvm::Type
*DstTy
= ConvertType(DstType
);
1721 // Ignore conversions like int -> uint.
1725 QualType SrcEltType
= SrcType
->castAs
<VectorType
>()->getElementType(),
1726 DstEltType
= DstType
->castAs
<VectorType
>()->getElementType();
1728 assert(SrcTy
->isVectorTy() &&
1729 "ConvertVector source IR type must be a vector");
1730 assert(DstTy
->isVectorTy() &&
1731 "ConvertVector destination IR type must be a vector");
1733 llvm::Type
*SrcEltTy
= cast
<llvm::VectorType
>(SrcTy
)->getElementType(),
1734 *DstEltTy
= cast
<llvm::VectorType
>(DstTy
)->getElementType();
1736 if (DstEltType
->isBooleanType()) {
1737 assert((SrcEltTy
->isFloatingPointTy() ||
1738 isa
<llvm::IntegerType
>(SrcEltTy
)) && "Unknown boolean conversion");
1740 llvm::Value
*Zero
= llvm::Constant::getNullValue(SrcTy
);
1741 if (SrcEltTy
->isFloatingPointTy()) {
1742 return Builder
.CreateFCmpUNE(Src
, Zero
, "tobool");
1744 return Builder
.CreateICmpNE(Src
, Zero
, "tobool");
1748 // We have the arithmetic types: real int/float.
1749 Value
*Res
= nullptr;
1751 if (isa
<llvm::IntegerType
>(SrcEltTy
)) {
1752 bool InputSigned
= SrcEltType
->isSignedIntegerOrEnumerationType();
1753 if (isa
<llvm::IntegerType
>(DstEltTy
))
1754 Res
= Builder
.CreateIntCast(Src
, DstTy
, InputSigned
, "conv");
1755 else if (InputSigned
)
1756 Res
= Builder
.CreateSIToFP(Src
, DstTy
, "conv");
1758 Res
= Builder
.CreateUIToFP(Src
, DstTy
, "conv");
1759 } else if (isa
<llvm::IntegerType
>(DstEltTy
)) {
1760 assert(SrcEltTy
->isFloatingPointTy() && "Unknown real conversion");
1761 if (DstEltType
->isSignedIntegerOrEnumerationType())
1762 Res
= Builder
.CreateFPToSI(Src
, DstTy
, "conv");
1764 Res
= Builder
.CreateFPToUI(Src
, DstTy
, "conv");
1766 assert(SrcEltTy
->isFloatingPointTy() && DstEltTy
->isFloatingPointTy() &&
1767 "Unknown real conversion");
1768 if (DstEltTy
->getTypeID() < SrcEltTy
->getTypeID())
1769 Res
= Builder
.CreateFPTrunc(Src
, DstTy
, "conv");
1771 Res
= Builder
.CreateFPExt(Src
, DstTy
, "conv");
1777 Value
*ScalarExprEmitter::VisitMemberExpr(MemberExpr
*E
) {
1778 if (CodeGenFunction::ConstantEmission Constant
= CGF
.tryEmitAsConstant(E
)) {
1779 CGF
.EmitIgnoredExpr(E
->getBase());
1780 return CGF
.emitScalarConstant(Constant
, E
);
1782 Expr::EvalResult Result
;
1783 if (E
->EvaluateAsInt(Result
, CGF
.getContext(), Expr::SE_AllowSideEffects
)) {
1784 llvm::APSInt Value
= Result
.Val
.getInt();
1785 CGF
.EmitIgnoredExpr(E
->getBase());
1786 return Builder
.getInt(Value
);
1790 return EmitLoadOfLValue(E
);
1793 Value
*ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr
*E
) {
1794 TestAndClearIgnoreResultAssign();
1796 // Emit subscript expressions in rvalue context's. For most cases, this just
1797 // loads the lvalue formed by the subscript expr. However, we have to be
1798 // careful, because the base of a vector subscript is occasionally an rvalue,
1799 // so we can't get it as an lvalue.
1800 if (!E
->getBase()->getType()->isVectorType() &&
1801 !E
->getBase()->getType()->isVLSTBuiltinType())
1802 return EmitLoadOfLValue(E
);
1804 // Handle the vector case. The base must be a vector, the index must be an
1806 Value
*Base
= Visit(E
->getBase());
1807 Value
*Idx
= Visit(E
->getIdx());
1808 QualType IdxTy
= E
->getIdx()->getType();
1810 if (CGF
.SanOpts
.has(SanitizerKind::ArrayBounds
))
1811 CGF
.EmitBoundsCheck(E
, E
->getBase(), Idx
, IdxTy
, /*Accessed*/true);
1813 return Builder
.CreateExtractElement(Base
, Idx
, "vecext");
1816 Value
*ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr
*E
) {
1817 TestAndClearIgnoreResultAssign();
1819 // Handle the vector case. The base must be a vector, the index must be an
1821 Value
*RowIdx
= Visit(E
->getRowIdx());
1822 Value
*ColumnIdx
= Visit(E
->getColumnIdx());
1824 const auto *MatrixTy
= E
->getBase()->getType()->castAs
<ConstantMatrixType
>();
1825 unsigned NumRows
= MatrixTy
->getNumRows();
1826 llvm::MatrixBuilder
MB(Builder
);
1827 Value
*Idx
= MB
.CreateIndex(RowIdx
, ColumnIdx
, NumRows
);
1828 if (CGF
.CGM
.getCodeGenOpts().OptimizationLevel
> 0)
1829 MB
.CreateIndexAssumption(Idx
, MatrixTy
->getNumElementsFlattened());
1831 Value
*Matrix
= Visit(E
->getBase());
1833 // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1834 return Builder
.CreateExtractElement(Matrix
, Idx
, "matrixext");
1837 static int getMaskElt(llvm::ShuffleVectorInst
*SVI
, unsigned Idx
,
1839 int MV
= SVI
->getMaskValue(Idx
);
1845 static int getAsInt32(llvm::ConstantInt
*C
, llvm::Type
*I32Ty
) {
1846 assert(llvm::ConstantInt::isValueValidForType(I32Ty
, C
->getZExtValue()) &&
1847 "Index operand too large for shufflevector mask!");
1848 return C
->getZExtValue();
1851 Value
*ScalarExprEmitter::VisitInitListExpr(InitListExpr
*E
) {
1852 bool Ignore
= TestAndClearIgnoreResultAssign();
1854 assert (Ignore
== false && "init list ignored");
1855 unsigned NumInitElements
= E
->getNumInits();
1857 if (E
->hadArrayRangeDesignator())
1858 CGF
.ErrorUnsupported(E
, "GNU array range designator extension");
1860 llvm::VectorType
*VType
=
1861 dyn_cast
<llvm::VectorType
>(ConvertType(E
->getType()));
1864 if (NumInitElements
== 0) {
1865 // C++11 value-initialization for the scalar.
1866 return EmitNullValue(E
->getType());
1868 // We have a scalar in braces. Just use the first element.
1869 return Visit(E
->getInit(0));
1872 unsigned ResElts
= cast
<llvm::FixedVectorType
>(VType
)->getNumElements();
1874 // Loop over initializers collecting the Value for each, and remembering
1875 // whether the source was swizzle (ExtVectorElementExpr). This will allow
1876 // us to fold the shuffle for the swizzle into the shuffle for the vector
1877 // initializer, since LLVM optimizers generally do not want to touch
1879 unsigned CurIdx
= 0;
1880 bool VIsUndefShuffle
= false;
1881 llvm::Value
*V
= llvm::UndefValue::get(VType
);
1882 for (unsigned i
= 0; i
!= NumInitElements
; ++i
) {
1883 Expr
*IE
= E
->getInit(i
);
1884 Value
*Init
= Visit(IE
);
1885 SmallVector
<int, 16> Args
;
1887 llvm::VectorType
*VVT
= dyn_cast
<llvm::VectorType
>(Init
->getType());
1889 // Handle scalar elements. If the scalar initializer is actually one
1890 // element of a different vector of the same width, use shuffle instead of
1893 if (isa
<ExtVectorElementExpr
>(IE
)) {
1894 llvm::ExtractElementInst
*EI
= cast
<llvm::ExtractElementInst
>(Init
);
1896 if (cast
<llvm::FixedVectorType
>(EI
->getVectorOperandType())
1897 ->getNumElements() == ResElts
) {
1898 llvm::ConstantInt
*C
= cast
<llvm::ConstantInt
>(EI
->getIndexOperand());
1899 Value
*LHS
= nullptr, *RHS
= nullptr;
1901 // insert into undef -> shuffle (src, undef)
1902 // shufflemask must use an i32
1903 Args
.push_back(getAsInt32(C
, CGF
.Int32Ty
));
1904 Args
.resize(ResElts
, -1);
1906 LHS
= EI
->getVectorOperand();
1908 VIsUndefShuffle
= true;
1909 } else if (VIsUndefShuffle
) {
1910 // insert into undefshuffle && size match -> shuffle (v, src)
1911 llvm::ShuffleVectorInst
*SVV
= cast
<llvm::ShuffleVectorInst
>(V
);
1912 for (unsigned j
= 0; j
!= CurIdx
; ++j
)
1913 Args
.push_back(getMaskElt(SVV
, j
, 0));
1914 Args
.push_back(ResElts
+ C
->getZExtValue());
1915 Args
.resize(ResElts
, -1);
1917 LHS
= cast
<llvm::ShuffleVectorInst
>(V
)->getOperand(0);
1918 RHS
= EI
->getVectorOperand();
1919 VIsUndefShuffle
= false;
1921 if (!Args
.empty()) {
1922 V
= Builder
.CreateShuffleVector(LHS
, RHS
, Args
);
1928 V
= Builder
.CreateInsertElement(V
, Init
, Builder
.getInt32(CurIdx
),
1930 VIsUndefShuffle
= false;
1935 unsigned InitElts
= cast
<llvm::FixedVectorType
>(VVT
)->getNumElements();
1937 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1938 // input is the same width as the vector being constructed, generate an
1939 // optimized shuffle of the swizzle input into the result.
1940 unsigned Offset
= (CurIdx
== 0) ? 0 : ResElts
;
1941 if (isa
<ExtVectorElementExpr
>(IE
)) {
1942 llvm::ShuffleVectorInst
*SVI
= cast
<llvm::ShuffleVectorInst
>(Init
);
1943 Value
*SVOp
= SVI
->getOperand(0);
1944 auto *OpTy
= cast
<llvm::FixedVectorType
>(SVOp
->getType());
1946 if (OpTy
->getNumElements() == ResElts
) {
1947 for (unsigned j
= 0; j
!= CurIdx
; ++j
) {
1948 // If the current vector initializer is a shuffle with undef, merge
1949 // this shuffle directly into it.
1950 if (VIsUndefShuffle
) {
1951 Args
.push_back(getMaskElt(cast
<llvm::ShuffleVectorInst
>(V
), j
, 0));
1956 for (unsigned j
= 0, je
= InitElts
; j
!= je
; ++j
)
1957 Args
.push_back(getMaskElt(SVI
, j
, Offset
));
1958 Args
.resize(ResElts
, -1);
1960 if (VIsUndefShuffle
)
1961 V
= cast
<llvm::ShuffleVectorInst
>(V
)->getOperand(0);
1967 // Extend init to result vector length, and then shuffle its contribution
1968 // to the vector initializer into V.
1970 for (unsigned j
= 0; j
!= InitElts
; ++j
)
1972 Args
.resize(ResElts
, -1);
1973 Init
= Builder
.CreateShuffleVector(Init
, Args
, "vext");
1976 for (unsigned j
= 0; j
!= CurIdx
; ++j
)
1978 for (unsigned j
= 0; j
!= InitElts
; ++j
)
1979 Args
.push_back(j
+ Offset
);
1980 Args
.resize(ResElts
, -1);
1983 // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1984 // merging subsequent shuffles into this one.
1987 V
= Builder
.CreateShuffleVector(V
, Init
, Args
, "vecinit");
1988 VIsUndefShuffle
= isa
<llvm::UndefValue
>(Init
);
1992 // FIXME: evaluate codegen vs. shuffling against constant null vector.
1993 // Emit remaining default initializers.
1994 llvm::Type
*EltTy
= VType
->getElementType();
1996 // Emit remaining default initializers
1997 for (/* Do not initialize i*/; CurIdx
< ResElts
; ++CurIdx
) {
1998 Value
*Idx
= Builder
.getInt32(CurIdx
);
1999 llvm::Value
*Init
= llvm::Constant::getNullValue(EltTy
);
2000 V
= Builder
.CreateInsertElement(V
, Init
, Idx
, "vecinit");
2005 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr
*CE
) {
2006 const Expr
*E
= CE
->getSubExpr();
2008 if (CE
->getCastKind() == CK_UncheckedDerivedToBase
)
2011 if (isa
<CXXThisExpr
>(E
->IgnoreParens())) {
2012 // We always assume that 'this' is never null.
2016 if (const ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(CE
)) {
2017 // And that glvalue casts are never null.
2018 if (ICE
->isGLValue())
2025 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
2026 // have to handle a more broad range of conversions than explicit casts, as they
2027 // handle things like function to ptr-to-function decay etc.
2028 Value
*ScalarExprEmitter::VisitCastExpr(CastExpr
*CE
) {
2029 Expr
*E
= CE
->getSubExpr();
2030 QualType DestTy
= CE
->getType();
2031 CastKind Kind
= CE
->getCastKind();
2032 CodeGenFunction::CGFPOptionsRAII
FPOptions(CGF
, CE
);
2034 // These cases are generally not written to ignore the result of
2035 // evaluating their sub-expressions, so we clear this now.
2036 bool Ignored
= TestAndClearIgnoreResultAssign();
2038 // Since almost all cast kinds apply to scalars, this switch doesn't have
2039 // a default case, so the compiler will warn on a missing case. The cases
2040 // are in the same order as in the CastKind enum.
2042 case CK_Dependent
: llvm_unreachable("dependent cast kind in IR gen!");
2043 case CK_BuiltinFnToFnPtr
:
2044 llvm_unreachable("builtin functions are handled elsewhere");
2046 case CK_LValueBitCast
:
2047 case CK_ObjCObjectLValueCast
: {
2048 Address Addr
= EmitLValue(E
).getAddress(CGF
);
2049 Addr
= Builder
.CreateElementBitCast(Addr
, CGF
.ConvertTypeForMem(DestTy
));
2050 LValue LV
= CGF
.MakeAddrLValue(Addr
, DestTy
);
2051 return EmitLoadOfLValue(LV
, CE
->getExprLoc());
2054 case CK_LValueToRValueBitCast
: {
2055 LValue SourceLVal
= CGF
.EmitLValue(E
);
2056 Address Addr
= Builder
.CreateElementBitCast(SourceLVal
.getAddress(CGF
),
2057 CGF
.ConvertTypeForMem(DestTy
));
2058 LValue DestLV
= CGF
.MakeAddrLValue(Addr
, DestTy
);
2059 DestLV
.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2060 return EmitLoadOfLValue(DestLV
, CE
->getExprLoc());
2063 case CK_CPointerToObjCPointerCast
:
2064 case CK_BlockPointerToObjCPointerCast
:
2065 case CK_AnyPointerToBlockPointerCast
:
2067 Value
*Src
= Visit(const_cast<Expr
*>(E
));
2068 llvm::Type
*SrcTy
= Src
->getType();
2069 llvm::Type
*DstTy
= ConvertType(DestTy
);
2070 if (SrcTy
->isPtrOrPtrVectorTy() && DstTy
->isPtrOrPtrVectorTy() &&
2071 SrcTy
->getPointerAddressSpace() != DstTy
->getPointerAddressSpace()) {
2072 llvm_unreachable("wrong cast for pointers in different address spaces"
2073 "(must be an address space cast)!");
2076 if (CGF
.SanOpts
.has(SanitizerKind::CFIUnrelatedCast
)) {
2077 if (auto *PT
= DestTy
->getAs
<PointerType
>()) {
2078 CGF
.EmitVTablePtrCheckForCast(
2079 PT
->getPointeeType(),
2081 CGF
.ConvertTypeForMem(
2082 E
->getType()->castAs
<PointerType
>()->getPointeeType()),
2083 CGF
.getPointerAlign()),
2084 /*MayBeNull=*/true, CodeGenFunction::CFITCK_UnrelatedCast
,
2089 if (CGF
.CGM
.getCodeGenOpts().StrictVTablePointers
) {
2090 const QualType SrcType
= E
->getType();
2092 if (SrcType
.mayBeNotDynamicClass() && DestTy
.mayBeDynamicClass()) {
2093 // Casting to pointer that could carry dynamic information (provided by
2094 // invariant.group) requires launder.
2095 Src
= Builder
.CreateLaunderInvariantGroup(Src
);
2096 } else if (SrcType
.mayBeDynamicClass() && DestTy
.mayBeNotDynamicClass()) {
2097 // Casting to pointer that does not carry dynamic information (provided
2098 // by invariant.group) requires stripping it. Note that we don't do it
2099 // if the source could not be dynamic type and destination could be
2100 // dynamic because dynamic information is already laundered. It is
2101 // because launder(strip(src)) == launder(src), so there is no need to
2102 // add extra strip before launder.
2103 Src
= Builder
.CreateStripInvariantGroup(Src
);
2107 // Update heapallocsite metadata when there is an explicit pointer cast.
2108 if (auto *CI
= dyn_cast
<llvm::CallBase
>(Src
)) {
2109 if (CI
->getMetadata("heapallocsite") && isa
<ExplicitCastExpr
>(CE
) &&
2110 !isa
<CastExpr
>(E
)) {
2111 QualType PointeeType
= DestTy
->getPointeeType();
2112 if (!PointeeType
.isNull())
2113 CGF
.getDebugInfo()->addHeapAllocSiteMetadata(CI
, PointeeType
,
2118 // If Src is a fixed vector and Dst is a scalable vector, and both have the
2119 // same element type, use the llvm.vector.insert intrinsic to perform the
2121 if (const auto *FixedSrc
= dyn_cast
<llvm::FixedVectorType
>(SrcTy
)) {
2122 if (const auto *ScalableDst
= dyn_cast
<llvm::ScalableVectorType
>(DstTy
)) {
2123 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
2124 // vector, use a vector insert and bitcast the result.
2125 bool NeedsBitCast
= false;
2126 auto PredType
= llvm::ScalableVectorType::get(Builder
.getInt1Ty(), 16);
2127 llvm::Type
*OrigType
= DstTy
;
2128 if (ScalableDst
== PredType
&&
2129 FixedSrc
->getElementType() == Builder
.getInt8Ty()) {
2130 DstTy
= llvm::ScalableVectorType::get(Builder
.getInt8Ty(), 2);
2131 ScalableDst
= cast
<llvm::ScalableVectorType
>(DstTy
);
2132 NeedsBitCast
= true;
2134 if (FixedSrc
->getElementType() == ScalableDst
->getElementType()) {
2135 llvm::Value
*UndefVec
= llvm::UndefValue::get(DstTy
);
2136 llvm::Value
*Zero
= llvm::Constant::getNullValue(CGF
.CGM
.Int64Ty
);
2137 llvm::Value
*Result
= Builder
.CreateInsertVector(
2138 DstTy
, UndefVec
, Src
, Zero
, "castScalableSve");
2140 Result
= Builder
.CreateBitCast(Result
, OrigType
);
2146 // If Src is a scalable vector and Dst is a fixed vector, and both have the
2147 // same element type, use the llvm.vector.extract intrinsic to perform the
2149 if (const auto *ScalableSrc
= dyn_cast
<llvm::ScalableVectorType
>(SrcTy
)) {
2150 if (const auto *FixedDst
= dyn_cast
<llvm::FixedVectorType
>(DstTy
)) {
2151 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2152 // vector, bitcast the source and use a vector extract.
2153 auto PredType
= llvm::ScalableVectorType::get(Builder
.getInt1Ty(), 16);
2154 if (ScalableSrc
== PredType
&&
2155 FixedDst
->getElementType() == Builder
.getInt8Ty()) {
2156 SrcTy
= llvm::ScalableVectorType::get(Builder
.getInt8Ty(), 2);
2157 ScalableSrc
= cast
<llvm::ScalableVectorType
>(SrcTy
);
2158 Src
= Builder
.CreateBitCast(Src
, SrcTy
);
2160 if (ScalableSrc
->getElementType() == FixedDst
->getElementType()) {
2161 llvm::Value
*Zero
= llvm::Constant::getNullValue(CGF
.CGM
.Int64Ty
);
2162 return Builder
.CreateExtractVector(DstTy
, Src
, Zero
, "castFixedSve");
2167 // Perform VLAT <-> VLST bitcast through memory.
2168 // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
2169 // require the element types of the vectors to be the same, we
2170 // need to keep this around for bitcasts between VLAT <-> VLST where
2171 // the element types of the vectors are not the same, until we figure
2172 // out a better way of doing these casts.
2173 if ((isa
<llvm::FixedVectorType
>(SrcTy
) &&
2174 isa
<llvm::ScalableVectorType
>(DstTy
)) ||
2175 (isa
<llvm::ScalableVectorType
>(SrcTy
) &&
2176 isa
<llvm::FixedVectorType
>(DstTy
))) {
2177 Address Addr
= CGF
.CreateDefaultAlignTempAlloca(SrcTy
, "saved-value");
2178 LValue LV
= CGF
.MakeAddrLValue(Addr
, E
->getType());
2179 CGF
.EmitStoreOfScalar(Src
, LV
);
2180 Addr
= Builder
.CreateElementBitCast(Addr
, CGF
.ConvertTypeForMem(DestTy
),
2182 LValue DestLV
= CGF
.MakeAddrLValue(Addr
, DestTy
);
2183 DestLV
.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2184 return EmitLoadOfLValue(DestLV
, CE
->getExprLoc());
2186 return Builder
.CreateBitCast(Src
, DstTy
);
2188 case CK_AddressSpaceConversion
: {
2189 Expr::EvalResult Result
;
2190 if (E
->EvaluateAsRValue(Result
, CGF
.getContext()) &&
2191 Result
.Val
.isNullPointer()) {
2192 // If E has side effect, it is emitted even if its final result is a
2193 // null pointer. In that case, a DCE pass should be able to
2194 // eliminate the useless instructions emitted during translating E.
2195 if (Result
.HasSideEffects
)
2197 return CGF
.CGM
.getNullPointer(cast
<llvm::PointerType
>(
2198 ConvertType(DestTy
)), DestTy
);
2200 // Since target may map different address spaces in AST to the same address
2201 // space, an address space conversion may end up as a bitcast.
2202 return CGF
.CGM
.getTargetCodeGenInfo().performAddrSpaceCast(
2203 CGF
, Visit(E
), E
->getType()->getPointeeType().getAddressSpace(),
2204 DestTy
->getPointeeType().getAddressSpace(), ConvertType(DestTy
));
2206 case CK_AtomicToNonAtomic
:
2207 case CK_NonAtomicToAtomic
:
2208 case CK_UserDefinedConversion
:
2209 return Visit(const_cast<Expr
*>(E
));
2212 llvm::Value
*V
= Visit(const_cast<Expr
*>(E
));
2214 // CK_NoOp can model a pointer qualification conversion, which can remove
2215 // an array bound and change the IR type.
2216 // FIXME: Once pointee types are removed from IR, remove this.
2217 llvm::Type
*T
= ConvertType(DestTy
);
2218 if (T
!= V
->getType())
2219 V
= Builder
.CreateBitCast(V
, T
);
2224 case CK_BaseToDerived
: {
2225 const CXXRecordDecl
*DerivedClassDecl
= DestTy
->getPointeeCXXRecordDecl();
2226 assert(DerivedClassDecl
&& "BaseToDerived arg isn't a C++ object pointer!");
2228 Address Base
= CGF
.EmitPointerWithAlignment(E
);
2230 CGF
.GetAddressOfDerivedClass(Base
, DerivedClassDecl
,
2231 CE
->path_begin(), CE
->path_end(),
2232 CGF
.ShouldNullCheckClassCastValue(CE
));
2234 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2235 // performed and the object is not of the derived type.
2236 if (CGF
.sanitizePerformTypeCheck())
2237 CGF
.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer
, CE
->getExprLoc(),
2238 Derived
.getPointer(), DestTy
->getPointeeType());
2240 if (CGF
.SanOpts
.has(SanitizerKind::CFIDerivedCast
))
2241 CGF
.EmitVTablePtrCheckForCast(DestTy
->getPointeeType(), Derived
,
2243 CodeGenFunction::CFITCK_DerivedCast
,
2246 return Derived
.getPointer();
2248 case CK_UncheckedDerivedToBase
:
2249 case CK_DerivedToBase
: {
2250 // The EmitPointerWithAlignment path does this fine; just discard
2252 return CGF
.EmitPointerWithAlignment(CE
).getPointer();
2256 Address V
= CGF
.EmitPointerWithAlignment(E
);
2257 const CXXDynamicCastExpr
*DCE
= cast
<CXXDynamicCastExpr
>(CE
);
2258 return CGF
.EmitDynamicCast(V
, DCE
);
2261 case CK_ArrayToPointerDecay
:
2262 return CGF
.EmitArrayToPointerDecay(E
).getPointer();
2263 case CK_FunctionToPointerDecay
:
2264 return EmitLValue(E
).getPointer(CGF
);
2266 case CK_NullToPointer
:
2267 if (MustVisitNullValue(E
))
2268 CGF
.EmitIgnoredExpr(E
);
2270 return CGF
.CGM
.getNullPointer(cast
<llvm::PointerType
>(ConvertType(DestTy
)),
2273 case CK_NullToMemberPointer
: {
2274 if (MustVisitNullValue(E
))
2275 CGF
.EmitIgnoredExpr(E
);
2277 const MemberPointerType
*MPT
= CE
->getType()->getAs
<MemberPointerType
>();
2278 return CGF
.CGM
.getCXXABI().EmitNullMemberPointer(MPT
);
2281 case CK_ReinterpretMemberPointer
:
2282 case CK_BaseToDerivedMemberPointer
:
2283 case CK_DerivedToBaseMemberPointer
: {
2284 Value
*Src
= Visit(E
);
2286 // Note that the AST doesn't distinguish between checked and
2287 // unchecked member pointer conversions, so we always have to
2288 // implement checked conversions here. This is inefficient when
2289 // actual control flow may be required in order to perform the
2290 // check, which it is for data member pointers (but not member
2291 // function pointers on Itanium and ARM).
2292 return CGF
.CGM
.getCXXABI().EmitMemberPointerConversion(CGF
, CE
, Src
);
2295 case CK_ARCProduceObject
:
2296 return CGF
.EmitARCRetainScalarExpr(E
);
2297 case CK_ARCConsumeObject
:
2298 return CGF
.EmitObjCConsumeObject(E
->getType(), Visit(E
));
2299 case CK_ARCReclaimReturnedObject
:
2300 return CGF
.EmitARCReclaimReturnedObject(E
, /*allowUnsafe*/ Ignored
);
2301 case CK_ARCExtendBlockObject
:
2302 return CGF
.EmitARCExtendBlockObject(E
);
2304 case CK_CopyAndAutoreleaseBlockObject
:
2305 return CGF
.EmitBlockCopyAndAutorelease(Visit(E
), E
->getType());
2307 case CK_FloatingRealToComplex
:
2308 case CK_FloatingComplexCast
:
2309 case CK_IntegralRealToComplex
:
2310 case CK_IntegralComplexCast
:
2311 case CK_IntegralComplexToFloatingComplex
:
2312 case CK_FloatingComplexToIntegralComplex
:
2313 case CK_ConstructorConversion
:
2315 llvm_unreachable("scalar cast to non-scalar value");
2317 case CK_LValueToRValue
:
2318 assert(CGF
.getContext().hasSameUnqualifiedType(E
->getType(), DestTy
));
2319 assert(E
->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2320 return Visit(const_cast<Expr
*>(E
));
2322 case CK_IntegralToPointer
: {
2323 Value
*Src
= Visit(const_cast<Expr
*>(E
));
2325 // First, convert to the correct width so that we control the kind of
2327 auto DestLLVMTy
= ConvertType(DestTy
);
2328 llvm::Type
*MiddleTy
= CGF
.CGM
.getDataLayout().getIntPtrType(DestLLVMTy
);
2329 bool InputSigned
= E
->getType()->isSignedIntegerOrEnumerationType();
2330 llvm::Value
* IntResult
=
2331 Builder
.CreateIntCast(Src
, MiddleTy
, InputSigned
, "conv");
2333 auto *IntToPtr
= Builder
.CreateIntToPtr(IntResult
, DestLLVMTy
);
2335 if (CGF
.CGM
.getCodeGenOpts().StrictVTablePointers
) {
2336 // Going from integer to pointer that could be dynamic requires reloading
2337 // dynamic information from invariant.group.
2338 if (DestTy
.mayBeDynamicClass())
2339 IntToPtr
= Builder
.CreateLaunderInvariantGroup(IntToPtr
);
2343 case CK_PointerToIntegral
: {
2344 assert(!DestTy
->isBooleanType() && "bool should use PointerToBool");
2345 auto *PtrExpr
= Visit(E
);
2347 if (CGF
.CGM
.getCodeGenOpts().StrictVTablePointers
) {
2348 const QualType SrcType
= E
->getType();
2350 // Casting to integer requires stripping dynamic information as it does
2352 if (SrcType
.mayBeDynamicClass())
2353 PtrExpr
= Builder
.CreateStripInvariantGroup(PtrExpr
);
2356 return Builder
.CreatePtrToInt(PtrExpr
, ConvertType(DestTy
));
2359 CGF
.EmitIgnoredExpr(E
);
2362 case CK_MatrixCast
: {
2363 return EmitScalarConversion(Visit(E
), E
->getType(), DestTy
,
2366 case CK_VectorSplat
: {
2367 llvm::Type
*DstTy
= ConvertType(DestTy
);
2368 Value
*Elt
= Visit(const_cast<Expr
*>(E
));
2369 // Splat the element across to all elements
2370 llvm::ElementCount NumElements
=
2371 cast
<llvm::VectorType
>(DstTy
)->getElementCount();
2372 return Builder
.CreateVectorSplat(NumElements
, Elt
, "splat");
2375 case CK_FixedPointCast
:
2376 return EmitScalarConversion(Visit(E
), E
->getType(), DestTy
,
2379 case CK_FixedPointToBoolean
:
2380 assert(E
->getType()->isFixedPointType() &&
2381 "Expected src type to be fixed point type");
2382 assert(DestTy
->isBooleanType() && "Expected dest type to be boolean type");
2383 return EmitScalarConversion(Visit(E
), E
->getType(), DestTy
,
2386 case CK_FixedPointToIntegral
:
2387 assert(E
->getType()->isFixedPointType() &&
2388 "Expected src type to be fixed point type");
2389 assert(DestTy
->isIntegerType() && "Expected dest type to be an integer");
2390 return EmitScalarConversion(Visit(E
), E
->getType(), DestTy
,
2393 case CK_IntegralToFixedPoint
:
2394 assert(E
->getType()->isIntegerType() &&
2395 "Expected src type to be an integer");
2396 assert(DestTy
->isFixedPointType() &&
2397 "Expected dest type to be fixed point type");
2398 return EmitScalarConversion(Visit(E
), E
->getType(), DestTy
,
2401 case CK_IntegralCast
: {
2402 ScalarConversionOpts Opts
;
2403 if (auto *ICE
= dyn_cast
<ImplicitCastExpr
>(CE
)) {
2404 if (!ICE
->isPartOfExplicitCast())
2405 Opts
= ScalarConversionOpts(CGF
.SanOpts
);
2407 return EmitScalarConversion(Visit(E
), E
->getType(), DestTy
,
2408 CE
->getExprLoc(), Opts
);
2410 case CK_IntegralToFloating
:
2411 case CK_FloatingToIntegral
:
2412 case CK_FloatingCast
:
2413 case CK_FixedPointToFloating
:
2414 case CK_FloatingToFixedPoint
: {
2415 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(CGF
, CE
);
2416 return EmitScalarConversion(Visit(E
), E
->getType(), DestTy
,
2419 case CK_BooleanToSignedIntegral
: {
2420 ScalarConversionOpts Opts
;
2421 Opts
.TreatBooleanAsSigned
= true;
2422 return EmitScalarConversion(Visit(E
), E
->getType(), DestTy
,
2423 CE
->getExprLoc(), Opts
);
2425 case CK_IntegralToBoolean
:
2426 return EmitIntToBoolConversion(Visit(E
));
2427 case CK_PointerToBoolean
:
2428 return EmitPointerToBoolConversion(Visit(E
), E
->getType());
2429 case CK_FloatingToBoolean
: {
2430 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(CGF
, CE
);
2431 return EmitFloatToBoolConversion(Visit(E
));
2433 case CK_MemberPointerToBoolean
: {
2434 llvm::Value
*MemPtr
= Visit(E
);
2435 const MemberPointerType
*MPT
= E
->getType()->getAs
<MemberPointerType
>();
2436 return CGF
.CGM
.getCXXABI().EmitMemberPointerIsNotNull(CGF
, MemPtr
, MPT
);
2439 case CK_FloatingComplexToReal
:
2440 case CK_IntegralComplexToReal
:
2441 return CGF
.EmitComplexExpr(E
, false, true).first
;
2443 case CK_FloatingComplexToBoolean
:
2444 case CK_IntegralComplexToBoolean
: {
2445 CodeGenFunction::ComplexPairTy V
= CGF
.EmitComplexExpr(E
);
2447 // TODO: kill this function off, inline appropriate case here
2448 return EmitComplexToScalarConversion(V
, E
->getType(), DestTy
,
2452 case CK_ZeroToOCLOpaqueType
: {
2453 assert((DestTy
->isEventT() || DestTy
->isQueueT() ||
2454 DestTy
->isOCLIntelSubgroupAVCType()) &&
2455 "CK_ZeroToOCLEvent cast on non-event type");
2456 return llvm::Constant::getNullValue(ConvertType(DestTy
));
2459 case CK_IntToOCLSampler
:
2460 return CGF
.CGM
.createOpenCLIntToSamplerConversion(E
, CGF
);
2464 llvm_unreachable("unknown scalar cast");
2467 Value
*ScalarExprEmitter::VisitStmtExpr(const StmtExpr
*E
) {
2468 CodeGenFunction::StmtExprEvaluation
eval(CGF
);
2469 Address RetAlloca
= CGF
.EmitCompoundStmt(*E
->getSubStmt(),
2470 !E
->getType()->isVoidType());
2471 if (!RetAlloca
.isValid())
2473 return CGF
.EmitLoadOfScalar(CGF
.MakeAddrLValue(RetAlloca
, E
->getType()),
2477 Value
*ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups
*E
) {
2478 CodeGenFunction::RunCleanupsScope
Scope(CGF
);
2479 Value
*V
= Visit(E
->getSubExpr());
2480 // Defend against dominance problems caused by jumps out of expression
2481 // evaluation through the shared cleanup block.
2482 Scope
.ForceCleanup({&V
});
2486 //===----------------------------------------------------------------------===//
2488 //===----------------------------------------------------------------------===//
2490 static BinOpInfo
createBinOpInfoFromIncDec(const UnaryOperator
*E
,
2491 llvm::Value
*InVal
, bool IsInc
,
2492 FPOptions FPFeatures
) {
2495 BinOp
.RHS
= llvm::ConstantInt::get(InVal
->getType(), 1, false);
2496 BinOp
.Ty
= E
->getType();
2497 BinOp
.Opcode
= IsInc
? BO_Add
: BO_Sub
;
2498 BinOp
.FPFeatures
= FPFeatures
;
2503 llvm::Value
*ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2504 const UnaryOperator
*E
, llvm::Value
*InVal
, bool IsInc
) {
2505 llvm::Value
*Amount
=
2506 llvm::ConstantInt::get(InVal
->getType(), IsInc
? 1 : -1, true);
2507 StringRef Name
= IsInc
? "inc" : "dec";
2508 switch (CGF
.getLangOpts().getSignedOverflowBehavior()) {
2509 case LangOptions::SOB_Defined
:
2510 return Builder
.CreateAdd(InVal
, Amount
, Name
);
2511 case LangOptions::SOB_Undefined
:
2512 if (!CGF
.SanOpts
.has(SanitizerKind::SignedIntegerOverflow
))
2513 return Builder
.CreateNSWAdd(InVal
, Amount
, Name
);
2515 case LangOptions::SOB_Trapping
:
2516 if (!E
->canOverflow())
2517 return Builder
.CreateNSWAdd(InVal
, Amount
, Name
);
2518 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2519 E
, InVal
, IsInc
, E
->getFPFeaturesInEffect(CGF
.getLangOpts())));
2521 llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2525 /// Handles check and update for lastprivate conditional variables.
2526 class OMPLastprivateConditionalUpdateRAII
{
2528 CodeGenFunction
&CGF
;
2529 const UnaryOperator
*E
;
2532 OMPLastprivateConditionalUpdateRAII(CodeGenFunction
&CGF
,
2533 const UnaryOperator
*E
)
2535 ~OMPLastprivateConditionalUpdateRAII() {
2536 if (CGF
.getLangOpts().OpenMP
)
2537 CGF
.CGM
.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2538 CGF
, E
->getSubExpr());
2544 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator
*E
, LValue LV
,
2545 bool isInc
, bool isPre
) {
2546 OMPLastprivateConditionalUpdateRAII
OMPRegion(CGF
, E
);
2547 QualType type
= E
->getSubExpr()->getType();
2548 llvm::PHINode
*atomicPHI
= nullptr;
2552 int amount
= (isInc
? 1 : -1);
2553 bool isSubtraction
= !isInc
;
2555 if (const AtomicType
*atomicTy
= type
->getAs
<AtomicType
>()) {
2556 type
= atomicTy
->getValueType();
2557 if (isInc
&& type
->isBooleanType()) {
2558 llvm::Value
*True
= CGF
.EmitToMemory(Builder
.getTrue(), type
);
2560 Builder
.CreateStore(True
, LV
.getAddress(CGF
), LV
.isVolatileQualified())
2561 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent
);
2562 return Builder
.getTrue();
2564 // For atomic bool increment, we just store true and return it for
2565 // preincrement, do an atomic swap with true for postincrement
2566 return Builder
.CreateAtomicRMW(
2567 llvm::AtomicRMWInst::Xchg
, LV
.getPointer(CGF
), True
,
2568 llvm::AtomicOrdering::SequentiallyConsistent
);
2570 // Special case for atomic increment / decrement on integers, emit
2571 // atomicrmw instructions. We skip this if we want to be doing overflow
2572 // checking, and fall into the slow path with the atomic cmpxchg loop.
2573 if (!type
->isBooleanType() && type
->isIntegerType() &&
2574 !(type
->isUnsignedIntegerType() &&
2575 CGF
.SanOpts
.has(SanitizerKind::UnsignedIntegerOverflow
)) &&
2576 CGF
.getLangOpts().getSignedOverflowBehavior() !=
2577 LangOptions::SOB_Trapping
) {
2578 llvm::AtomicRMWInst::BinOp aop
= isInc
? llvm::AtomicRMWInst::Add
:
2579 llvm::AtomicRMWInst::Sub
;
2580 llvm::Instruction::BinaryOps op
= isInc
? llvm::Instruction::Add
:
2581 llvm::Instruction::Sub
;
2582 llvm::Value
*amt
= CGF
.EmitToMemory(
2583 llvm::ConstantInt::get(ConvertType(type
), 1, true), type
);
2585 Builder
.CreateAtomicRMW(aop
, LV
.getPointer(CGF
), amt
,
2586 llvm::AtomicOrdering::SequentiallyConsistent
);
2587 return isPre
? Builder
.CreateBinOp(op
, old
, amt
) : old
;
2589 value
= EmitLoadOfLValue(LV
, E
->getExprLoc());
2591 // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2592 llvm::BasicBlock
*startBB
= Builder
.GetInsertBlock();
2593 llvm::BasicBlock
*opBB
= CGF
.createBasicBlock("atomic_op", CGF
.CurFn
);
2594 value
= CGF
.EmitToMemory(value
, type
);
2595 Builder
.CreateBr(opBB
);
2596 Builder
.SetInsertPoint(opBB
);
2597 atomicPHI
= Builder
.CreatePHI(value
->getType(), 2);
2598 atomicPHI
->addIncoming(value
, startBB
);
2601 value
= EmitLoadOfLValue(LV
, E
->getExprLoc());
2605 // Special case of integer increment that we have to check first: bool++.
2606 // Due to promotion rules, we get:
2607 // bool++ -> bool = bool + 1
2608 // -> bool = (int)bool + 1
2609 // -> bool = ((int)bool + 1 != 0)
2610 // An interesting aspect of this is that increment is always true.
2611 // Decrement does not have this property.
2612 if (isInc
&& type
->isBooleanType()) {
2613 value
= Builder
.getTrue();
2615 // Most common case by far: integer increment.
2616 } else if (type
->isIntegerType()) {
2617 QualType promotedType
;
2618 bool canPerformLossyDemotionCheck
= false;
2619 if (CGF
.getContext().isPromotableIntegerType(type
)) {
2620 promotedType
= CGF
.getContext().getPromotedIntegerType(type
);
2621 assert(promotedType
!= type
&& "Shouldn't promote to the same type.");
2622 canPerformLossyDemotionCheck
= true;
2623 canPerformLossyDemotionCheck
&=
2624 CGF
.getContext().getCanonicalType(type
) !=
2625 CGF
.getContext().getCanonicalType(promotedType
);
2626 canPerformLossyDemotionCheck
&=
2627 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2628 type
, promotedType
);
2629 assert((!canPerformLossyDemotionCheck
||
2630 type
->isSignedIntegerOrEnumerationType() ||
2631 promotedType
->isSignedIntegerOrEnumerationType() ||
2632 ConvertType(type
)->getScalarSizeInBits() ==
2633 ConvertType(promotedType
)->getScalarSizeInBits()) &&
2634 "The following check expects that if we do promotion to different "
2635 "underlying canonical type, at least one of the types (either "
2636 "base or promoted) will be signed, or the bitwidths will match.");
2638 if (CGF
.SanOpts
.hasOneOf(
2639 SanitizerKind::ImplicitIntegerArithmeticValueChange
) &&
2640 canPerformLossyDemotionCheck
) {
2641 // While `x += 1` (for `x` with width less than int) is modeled as
2642 // promotion+arithmetics+demotion, and we can catch lossy demotion with
2643 // ease; inc/dec with width less than int can't overflow because of
2644 // promotion rules, so we omit promotion+demotion, which means that we can
2645 // not catch lossy "demotion". Because we still want to catch these cases
2646 // when the sanitizer is enabled, we perform the promotion, then perform
2647 // the increment/decrement in the wider type, and finally
2648 // perform the demotion. This will catch lossy demotions.
2650 value
= EmitScalarConversion(value
, type
, promotedType
, E
->getExprLoc());
2651 Value
*amt
= llvm::ConstantInt::get(value
->getType(), amount
, true);
2652 value
= Builder
.CreateAdd(value
, amt
, isInc
? "inc" : "dec");
2653 // Do pass non-default ScalarConversionOpts so that sanitizer check is
2655 value
= EmitScalarConversion(value
, promotedType
, type
, E
->getExprLoc(),
2656 ScalarConversionOpts(CGF
.SanOpts
));
2658 // Note that signed integer inc/dec with width less than int can't
2659 // overflow because of promotion rules; we're just eliding a few steps
2661 } else if (E
->canOverflow() && type
->isSignedIntegerOrEnumerationType()) {
2662 value
= EmitIncDecConsiderOverflowBehavior(E
, value
, isInc
);
2663 } else if (E
->canOverflow() && type
->isUnsignedIntegerType() &&
2664 CGF
.SanOpts
.has(SanitizerKind::UnsignedIntegerOverflow
)) {
2665 value
= EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2666 E
, value
, isInc
, E
->getFPFeaturesInEffect(CGF
.getLangOpts())));
2668 llvm::Value
*amt
= llvm::ConstantInt::get(value
->getType(), amount
, true);
2669 value
= Builder
.CreateAdd(value
, amt
, isInc
? "inc" : "dec");
2672 // Next most common: pointer increment.
2673 } else if (const PointerType
*ptr
= type
->getAs
<PointerType
>()) {
2674 QualType type
= ptr
->getPointeeType();
2676 // VLA types don't have constant size.
2677 if (const VariableArrayType
*vla
2678 = CGF
.getContext().getAsVariableArrayType(type
)) {
2679 llvm::Value
*numElts
= CGF
.getVLASize(vla
).NumElts
;
2680 if (!isInc
) numElts
= Builder
.CreateNSWNeg(numElts
, "vla.negsize");
2681 llvm::Type
*elemTy
= CGF
.ConvertTypeForMem(vla
->getElementType());
2682 if (CGF
.getLangOpts().isSignedOverflowDefined())
2683 value
= Builder
.CreateGEP(elemTy
, value
, numElts
, "vla.inc");
2685 value
= CGF
.EmitCheckedInBoundsGEP(
2686 elemTy
, value
, numElts
, /*SignedIndices=*/false, isSubtraction
,
2687 E
->getExprLoc(), "vla.inc");
2689 // Arithmetic on function pointers (!) is just +-1.
2690 } else if (type
->isFunctionType()) {
2691 llvm::Value
*amt
= Builder
.getInt32(amount
);
2693 value
= CGF
.EmitCastToVoidPtr(value
);
2694 if (CGF
.getLangOpts().isSignedOverflowDefined())
2695 value
= Builder
.CreateGEP(CGF
.Int8Ty
, value
, amt
, "incdec.funcptr");
2697 value
= CGF
.EmitCheckedInBoundsGEP(CGF
.Int8Ty
, value
, amt
,
2698 /*SignedIndices=*/false,
2699 isSubtraction
, E
->getExprLoc(),
2701 value
= Builder
.CreateBitCast(value
, input
->getType());
2703 // For everything else, we can just do a simple increment.
2705 llvm::Value
*amt
= Builder
.getInt32(amount
);
2706 llvm::Type
*elemTy
= CGF
.ConvertTypeForMem(type
);
2707 if (CGF
.getLangOpts().isSignedOverflowDefined())
2708 value
= Builder
.CreateGEP(elemTy
, value
, amt
, "incdec.ptr");
2710 value
= CGF
.EmitCheckedInBoundsGEP(
2711 elemTy
, value
, amt
, /*SignedIndices=*/false, isSubtraction
,
2712 E
->getExprLoc(), "incdec.ptr");
2715 // Vector increment/decrement.
2716 } else if (type
->isVectorType()) {
2717 if (type
->hasIntegerRepresentation()) {
2718 llvm::Value
*amt
= llvm::ConstantInt::get(value
->getType(), amount
);
2720 value
= Builder
.CreateAdd(value
, amt
, isInc
? "inc" : "dec");
2722 value
= Builder
.CreateFAdd(
2724 llvm::ConstantFP::get(value
->getType(), amount
),
2725 isInc
? "inc" : "dec");
2729 } else if (type
->isRealFloatingType()) {
2730 // Add the inc/dec to the real part.
2732 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(CGF
, E
);
2734 if (type
->isHalfType() && !CGF
.getContext().getLangOpts().NativeHalfType
) {
2735 // Another special case: half FP increment should be done via float
2736 if (CGF
.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2737 value
= Builder
.CreateCall(
2738 CGF
.CGM
.getIntrinsic(llvm::Intrinsic::convert_from_fp16
,
2740 input
, "incdec.conv");
2742 value
= Builder
.CreateFPExt(input
, CGF
.CGM
.FloatTy
, "incdec.conv");
2746 if (value
->getType()->isFloatTy())
2747 amt
= llvm::ConstantFP::get(VMContext
,
2748 llvm::APFloat(static_cast<float>(amount
)));
2749 else if (value
->getType()->isDoubleTy())
2750 amt
= llvm::ConstantFP::get(VMContext
,
2751 llvm::APFloat(static_cast<double>(amount
)));
2753 // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert
2755 llvm::APFloat
F(static_cast<float>(amount
));
2757 const llvm::fltSemantics
*FS
;
2758 // Don't use getFloatTypeSemantics because Half isn't
2759 // necessarily represented using the "half" LLVM type.
2760 if (value
->getType()->isFP128Ty())
2761 FS
= &CGF
.getTarget().getFloat128Format();
2762 else if (value
->getType()->isHalfTy())
2763 FS
= &CGF
.getTarget().getHalfFormat();
2764 else if (value
->getType()->isPPC_FP128Ty())
2765 FS
= &CGF
.getTarget().getIbm128Format();
2767 FS
= &CGF
.getTarget().getLongDoubleFormat();
2768 F
.convert(*FS
, llvm::APFloat::rmTowardZero
, &ignored
);
2769 amt
= llvm::ConstantFP::get(VMContext
, F
);
2771 value
= Builder
.CreateFAdd(value
, amt
, isInc
? "inc" : "dec");
2773 if (type
->isHalfType() && !CGF
.getContext().getLangOpts().NativeHalfType
) {
2774 if (CGF
.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2775 value
= Builder
.CreateCall(
2776 CGF
.CGM
.getIntrinsic(llvm::Intrinsic::convert_to_fp16
,
2778 value
, "incdec.conv");
2780 value
= Builder
.CreateFPTrunc(value
, input
->getType(), "incdec.conv");
2784 // Fixed-point types.
2785 } else if (type
->isFixedPointType()) {
2786 // Fixed-point types are tricky. In some cases, it isn't possible to
2787 // represent a 1 or a -1 in the type at all. Piggyback off of
2788 // EmitFixedPointBinOp to avoid having to reimplement saturation.
2791 Info
.Ty
= E
->getType();
2792 Info
.Opcode
= isInc
? BO_Add
: BO_Sub
;
2794 Info
.RHS
= llvm::ConstantInt::get(value
->getType(), 1, false);
2795 // If the type is signed, it's better to represent this as +(-1) or -(-1),
2796 // since -1 is guaranteed to be representable.
2797 if (type
->isSignedFixedPointType()) {
2798 Info
.Opcode
= isInc
? BO_Sub
: BO_Add
;
2799 Info
.RHS
= Builder
.CreateNeg(Info
.RHS
);
2801 // Now, convert from our invented integer literal to the type of the unary
2802 // op. This will upscale and saturate if necessary. This value can become
2803 // undef in some cases.
2804 llvm::FixedPointBuilder
<CGBuilderTy
> FPBuilder(Builder
);
2805 auto DstSema
= CGF
.getContext().getFixedPointSemantics(Info
.Ty
);
2806 Info
.RHS
= FPBuilder
.CreateIntegerToFixed(Info
.RHS
, true, DstSema
);
2807 value
= EmitFixedPointBinOp(Info
);
2809 // Objective-C pointer types.
2811 const ObjCObjectPointerType
*OPT
= type
->castAs
<ObjCObjectPointerType
>();
2812 value
= CGF
.EmitCastToVoidPtr(value
);
2814 CharUnits size
= CGF
.getContext().getTypeSizeInChars(OPT
->getObjectType());
2815 if (!isInc
) size
= -size
;
2816 llvm::Value
*sizeValue
=
2817 llvm::ConstantInt::get(CGF
.SizeTy
, size
.getQuantity());
2819 if (CGF
.getLangOpts().isSignedOverflowDefined())
2820 value
= Builder
.CreateGEP(CGF
.Int8Ty
, value
, sizeValue
, "incdec.objptr");
2822 value
= CGF
.EmitCheckedInBoundsGEP(
2823 CGF
.Int8Ty
, value
, sizeValue
, /*SignedIndices=*/false, isSubtraction
,
2824 E
->getExprLoc(), "incdec.objptr");
2825 value
= Builder
.CreateBitCast(value
, input
->getType());
2829 llvm::BasicBlock
*curBlock
= Builder
.GetInsertBlock();
2830 llvm::BasicBlock
*contBB
= CGF
.createBasicBlock("atomic_cont", CGF
.CurFn
);
2831 auto Pair
= CGF
.EmitAtomicCompareExchange(
2832 LV
, RValue::get(atomicPHI
), RValue::get(value
), E
->getExprLoc());
2833 llvm::Value
*old
= CGF
.EmitToMemory(Pair
.first
.getScalarVal(), type
);
2834 llvm::Value
*success
= Pair
.second
;
2835 atomicPHI
->addIncoming(old
, curBlock
);
2836 Builder
.CreateCondBr(success
, contBB
, atomicPHI
->getParent());
2837 Builder
.SetInsertPoint(contBB
);
2838 return isPre
? value
: input
;
2841 // Store the updated result through the lvalue.
2842 if (LV
.isBitField())
2843 CGF
.EmitStoreThroughBitfieldLValue(RValue::get(value
), LV
, &value
);
2845 CGF
.EmitStoreThroughLValue(RValue::get(value
), LV
);
2847 // If this is a postinc, return the value read from memory, otherwise use the
2849 return isPre
? value
: input
;
2853 Value
*ScalarExprEmitter::VisitUnaryPlus(const UnaryOperator
*E
,
2854 QualType PromotionType
) {
2855 QualType promotionTy
= PromotionType
.isNull()
2856 ? getPromotionType(E
->getSubExpr()->getType())
2858 Value
*result
= VisitPlus(E
, promotionTy
);
2859 if (result
&& !promotionTy
.isNull())
2860 result
= EmitUnPromotedValue(result
, E
->getType());
2864 Value
*ScalarExprEmitter::VisitPlus(const UnaryOperator
*E
,
2865 QualType PromotionType
) {
2866 // This differs from gcc, though, most likely due to a bug in gcc.
2867 TestAndClearIgnoreResultAssign();
2868 if (!PromotionType
.isNull())
2869 return CGF
.EmitPromotedScalarExpr(E
->getSubExpr(), PromotionType
);
2870 return Visit(E
->getSubExpr());
2873 Value
*ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator
*E
,
2874 QualType PromotionType
) {
2875 QualType promotionTy
= PromotionType
.isNull()
2876 ? getPromotionType(E
->getSubExpr()->getType())
2878 Value
*result
= VisitMinus(E
, promotionTy
);
2879 if (result
&& !promotionTy
.isNull())
2880 result
= EmitUnPromotedValue(result
, E
->getType());
2884 Value
*ScalarExprEmitter::VisitMinus(const UnaryOperator
*E
,
2885 QualType PromotionType
) {
2886 TestAndClearIgnoreResultAssign();
2888 if (!PromotionType
.isNull())
2889 Op
= CGF
.EmitPromotedScalarExpr(E
->getSubExpr(), PromotionType
);
2891 Op
= Visit(E
->getSubExpr());
2893 // Generate a unary FNeg for FP ops.
2894 if (Op
->getType()->isFPOrFPVectorTy())
2895 return Builder
.CreateFNeg(Op
, "fneg");
2897 // Emit unary minus with EmitSub so we handle overflow cases etc.
2900 BinOp
.LHS
= llvm::Constant::getNullValue(BinOp
.RHS
->getType());
2901 BinOp
.Ty
= E
->getType();
2902 BinOp
.Opcode
= BO_Sub
;
2903 BinOp
.FPFeatures
= E
->getFPFeaturesInEffect(CGF
.getLangOpts());
2905 return EmitSub(BinOp
);
2908 Value
*ScalarExprEmitter::VisitUnaryNot(const UnaryOperator
*E
) {
2909 TestAndClearIgnoreResultAssign();
2910 Value
*Op
= Visit(E
->getSubExpr());
2911 return Builder
.CreateNot(Op
, "not");
2914 Value
*ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator
*E
) {
2915 // Perform vector logical not on comparison with zero vector.
2916 if (E
->getType()->isVectorType() &&
2917 E
->getType()->castAs
<VectorType
>()->getVectorKind() ==
2918 VectorType::GenericVector
) {
2919 Value
*Oper
= Visit(E
->getSubExpr());
2920 Value
*Zero
= llvm::Constant::getNullValue(Oper
->getType());
2922 if (Oper
->getType()->isFPOrFPVectorTy()) {
2923 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(
2924 CGF
, E
->getFPFeaturesInEffect(CGF
.getLangOpts()));
2925 Result
= Builder
.CreateFCmp(llvm::CmpInst::FCMP_OEQ
, Oper
, Zero
, "cmp");
2927 Result
= Builder
.CreateICmp(llvm::CmpInst::ICMP_EQ
, Oper
, Zero
, "cmp");
2928 return Builder
.CreateSExt(Result
, ConvertType(E
->getType()), "sext");
2931 // Compare operand to zero.
2932 Value
*BoolVal
= CGF
.EvaluateExprAsBool(E
->getSubExpr());
2935 // TODO: Could dynamically modify easy computations here. For example, if
2936 // the operand is an icmp ne, turn into icmp eq.
2937 BoolVal
= Builder
.CreateNot(BoolVal
, "lnot");
2939 // ZExt result to the expr type.
2940 return Builder
.CreateZExt(BoolVal
, ConvertType(E
->getType()), "lnot.ext");
2943 Value
*ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr
*E
) {
2944 // Try folding the offsetof to a constant.
2945 Expr::EvalResult EVResult
;
2946 if (E
->EvaluateAsInt(EVResult
, CGF
.getContext())) {
2947 llvm::APSInt Value
= EVResult
.Val
.getInt();
2948 return Builder
.getInt(Value
);
2951 // Loop over the components of the offsetof to compute the value.
2952 unsigned n
= E
->getNumComponents();
2953 llvm::Type
* ResultType
= ConvertType(E
->getType());
2954 llvm::Value
* Result
= llvm::Constant::getNullValue(ResultType
);
2955 QualType CurrentType
= E
->getTypeSourceInfo()->getType();
2956 for (unsigned i
= 0; i
!= n
; ++i
) {
2957 OffsetOfNode ON
= E
->getComponent(i
);
2958 llvm::Value
*Offset
= nullptr;
2959 switch (ON
.getKind()) {
2960 case OffsetOfNode::Array
: {
2961 // Compute the index
2962 Expr
*IdxExpr
= E
->getIndexExpr(ON
.getArrayExprIndex());
2963 llvm::Value
* Idx
= CGF
.EmitScalarExpr(IdxExpr
);
2964 bool IdxSigned
= IdxExpr
->getType()->isSignedIntegerOrEnumerationType();
2965 Idx
= Builder
.CreateIntCast(Idx
, ResultType
, IdxSigned
, "conv");
2967 // Save the element type
2969 CGF
.getContext().getAsArrayType(CurrentType
)->getElementType();
2971 // Compute the element size
2972 llvm::Value
* ElemSize
= llvm::ConstantInt::get(ResultType
,
2973 CGF
.getContext().getTypeSizeInChars(CurrentType
).getQuantity());
2975 // Multiply out to compute the result
2976 Offset
= Builder
.CreateMul(Idx
, ElemSize
);
2980 case OffsetOfNode::Field
: {
2981 FieldDecl
*MemberDecl
= ON
.getField();
2982 RecordDecl
*RD
= CurrentType
->castAs
<RecordType
>()->getDecl();
2983 const ASTRecordLayout
&RL
= CGF
.getContext().getASTRecordLayout(RD
);
2985 // Compute the index of the field in its parent.
2987 // FIXME: It would be nice if we didn't have to loop here!
2988 for (RecordDecl::field_iterator Field
= RD
->field_begin(),
2989 FieldEnd
= RD
->field_end();
2990 Field
!= FieldEnd
; ++Field
, ++i
) {
2991 if (*Field
== MemberDecl
)
2994 assert(i
< RL
.getFieldCount() && "offsetof field in wrong type");
2996 // Compute the offset to the field
2997 int64_t OffsetInt
= RL
.getFieldOffset(i
) /
2998 CGF
.getContext().getCharWidth();
2999 Offset
= llvm::ConstantInt::get(ResultType
, OffsetInt
);
3001 // Save the element type.
3002 CurrentType
= MemberDecl
->getType();
3006 case OffsetOfNode::Identifier
:
3007 llvm_unreachable("dependent __builtin_offsetof");
3009 case OffsetOfNode::Base
: {
3010 if (ON
.getBase()->isVirtual()) {
3011 CGF
.ErrorUnsupported(E
, "virtual base in offsetof");
3015 RecordDecl
*RD
= CurrentType
->castAs
<RecordType
>()->getDecl();
3016 const ASTRecordLayout
&RL
= CGF
.getContext().getASTRecordLayout(RD
);
3018 // Save the element type.
3019 CurrentType
= ON
.getBase()->getType();
3021 // Compute the offset to the base.
3022 auto *BaseRT
= CurrentType
->castAs
<RecordType
>();
3023 auto *BaseRD
= cast
<CXXRecordDecl
>(BaseRT
->getDecl());
3024 CharUnits OffsetInt
= RL
.getBaseClassOffset(BaseRD
);
3025 Offset
= llvm::ConstantInt::get(ResultType
, OffsetInt
.getQuantity());
3029 Result
= Builder
.CreateAdd(Result
, Offset
);
3034 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
3035 /// argument of the sizeof expression as an integer.
3037 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
3038 const UnaryExprOrTypeTraitExpr
*E
) {
3039 QualType TypeToSize
= E
->getTypeOfArgument();
3040 if (E
->getKind() == UETT_SizeOf
) {
3041 if (const VariableArrayType
*VAT
=
3042 CGF
.getContext().getAsVariableArrayType(TypeToSize
)) {
3043 if (E
->isArgumentType()) {
3044 // sizeof(type) - make sure to emit the VLA size.
3045 CGF
.EmitVariablyModifiedType(TypeToSize
);
3047 // C99 6.5.3.4p2: If the argument is an expression of type
3048 // VLA, it is evaluated.
3049 CGF
.EmitIgnoredExpr(E
->getArgumentExpr());
3052 auto VlaSize
= CGF
.getVLASize(VAT
);
3053 llvm::Value
*size
= VlaSize
.NumElts
;
3055 // Scale the number of non-VLA elements by the non-VLA element size.
3056 CharUnits eltSize
= CGF
.getContext().getTypeSizeInChars(VlaSize
.Type
);
3057 if (!eltSize
.isOne())
3058 size
= CGF
.Builder
.CreateNUWMul(CGF
.CGM
.getSize(eltSize
), size
);
3062 } else if (E
->getKind() == UETT_OpenMPRequiredSimdAlign
) {
3065 .toCharUnitsFromBits(CGF
.getContext().getOpenMPDefaultSimdAlign(
3066 E
->getTypeOfArgument()->getPointeeType()))
3068 return llvm::ConstantInt::get(CGF
.SizeTy
, Alignment
);
3071 // If this isn't sizeof(vla), the result must be constant; use the constant
3072 // folding logic so we don't have to duplicate it here.
3073 return Builder
.getInt(E
->EvaluateKnownConstInt(CGF
.getContext()));
3076 Value
*ScalarExprEmitter::VisitUnaryReal(const UnaryOperator
*E
,
3077 QualType PromotionType
) {
3078 QualType promotionTy
= PromotionType
.isNull()
3079 ? getPromotionType(E
->getSubExpr()->getType())
3081 Value
*result
= VisitReal(E
, promotionTy
);
3082 if (result
&& !promotionTy
.isNull())
3083 result
= EmitUnPromotedValue(result
, E
->getType());
3087 Value
*ScalarExprEmitter::VisitReal(const UnaryOperator
*E
,
3088 QualType PromotionType
) {
3089 Expr
*Op
= E
->getSubExpr();
3090 if (Op
->getType()->isAnyComplexType()) {
3091 // If it's an l-value, load through the appropriate subobject l-value.
3092 // Note that we have to ask E because Op might be an l-value that
3093 // this won't work for, e.g. an Obj-C property.
3094 if (E
->isGLValue()) {
3095 if (!PromotionType
.isNull()) {
3096 CodeGenFunction::ComplexPairTy result
= CGF
.EmitComplexExpr(
3097 Op
, /*IgnoreReal*/ IgnoreResultAssign
, /*IgnoreImag*/ true);
3099 result
.first
= CGF
.EmitPromotedValue(result
, PromotionType
).first
;
3100 return result
.first
;
3102 return CGF
.EmitLoadOfLValue(CGF
.EmitLValue(E
), E
->getExprLoc())
3106 // Otherwise, calculate and project.
3107 return CGF
.EmitComplexExpr(Op
, false, true).first
;
3110 if (!PromotionType
.isNull())
3111 return CGF
.EmitPromotedScalarExpr(Op
, PromotionType
);
3115 Value
*ScalarExprEmitter::VisitUnaryImag(const UnaryOperator
*E
,
3116 QualType PromotionType
) {
3117 QualType promotionTy
= PromotionType
.isNull()
3118 ? getPromotionType(E
->getSubExpr()->getType())
3120 Value
*result
= VisitImag(E
, promotionTy
);
3121 if (result
&& !promotionTy
.isNull())
3122 result
= EmitUnPromotedValue(result
, E
->getType());
3126 Value
*ScalarExprEmitter::VisitImag(const UnaryOperator
*E
,
3127 QualType PromotionType
) {
3128 Expr
*Op
= E
->getSubExpr();
3129 if (Op
->getType()->isAnyComplexType()) {
3130 // If it's an l-value, load through the appropriate subobject l-value.
3131 // Note that we have to ask E because Op might be an l-value that
3132 // this won't work for, e.g. an Obj-C property.
3133 if (Op
->isGLValue()) {
3134 if (!PromotionType
.isNull()) {
3135 CodeGenFunction::ComplexPairTy result
= CGF
.EmitComplexExpr(
3136 Op
, /*IgnoreReal*/ true, /*IgnoreImag*/ IgnoreResultAssign
);
3138 result
.second
= CGF
.EmitPromotedValue(result
, PromotionType
).second
;
3139 return result
.second
;
3141 return CGF
.EmitLoadOfLValue(CGF
.EmitLValue(E
), E
->getExprLoc())
3145 // Otherwise, calculate and project.
3146 return CGF
.EmitComplexExpr(Op
, true, false).second
;
3149 // __imag on a scalar returns zero. Emit the subexpr to ensure side
3150 // effects are evaluated, but not the actual value.
3151 if (Op
->isGLValue())
3153 else if (!PromotionType
.isNull())
3154 CGF
.EmitPromotedScalarExpr(Op
, PromotionType
);
3156 CGF
.EmitScalarExpr(Op
, true);
3157 if (!PromotionType
.isNull())
3158 return llvm::Constant::getNullValue(ConvertType(PromotionType
));
3159 return llvm::Constant::getNullValue(ConvertType(E
->getType()));
3162 //===----------------------------------------------------------------------===//
3164 //===----------------------------------------------------------------------===//
3166 Value
*ScalarExprEmitter::EmitPromotedValue(Value
*result
,
3167 QualType PromotionType
) {
3168 return CGF
.Builder
.CreateFPExt(result
, ConvertType(PromotionType
), "ext");
3171 Value
*ScalarExprEmitter::EmitUnPromotedValue(Value
*result
,
3172 QualType ExprType
) {
3173 return CGF
.Builder
.CreateFPTrunc(result
, ConvertType(ExprType
), "unpromotion");
3176 Value
*ScalarExprEmitter::EmitPromoted(const Expr
*E
, QualType PromotionType
) {
3177 E
= E
->IgnoreParens();
3178 if (auto BO
= dyn_cast
<BinaryOperator
>(E
)) {
3179 switch (BO
->getOpcode()) {
3180 #define HANDLE_BINOP(OP) \
3182 return Emit##OP(EmitBinOps(BO, PromotionType));
3191 } else if (auto UO
= dyn_cast
<UnaryOperator
>(E
)) {
3192 switch (UO
->getOpcode()) {
3194 return VisitImag(UO
, PromotionType
);
3196 return VisitReal(UO
, PromotionType
);
3198 return VisitMinus(UO
, PromotionType
);
3200 return VisitPlus(UO
, PromotionType
);
3205 auto result
= Visit(const_cast<Expr
*>(E
));
3207 if (!PromotionType
.isNull())
3208 return EmitPromotedValue(result
, PromotionType
);
3210 return EmitUnPromotedValue(result
, E
->getType());
3215 BinOpInfo
ScalarExprEmitter::EmitBinOps(const BinaryOperator
*E
,
3216 QualType PromotionType
) {
3217 TestAndClearIgnoreResultAssign();
3219 Result
.LHS
= CGF
.EmitPromotedScalarExpr(E
->getLHS(), PromotionType
);
3220 Result
.RHS
= CGF
.EmitPromotedScalarExpr(E
->getRHS(), PromotionType
);
3221 if (!PromotionType
.isNull())
3222 Result
.Ty
= PromotionType
;
3224 Result
.Ty
= E
->getType();
3225 Result
.Opcode
= E
->getOpcode();
3226 Result
.FPFeatures
= E
->getFPFeaturesInEffect(CGF
.getLangOpts());
3231 LValue
ScalarExprEmitter::EmitCompoundAssignLValue(
3232 const CompoundAssignOperator
*E
,
3233 Value
*(ScalarExprEmitter::*Func
)(const BinOpInfo
&),
3235 QualType LHSTy
= E
->getLHS()->getType();
3238 if (E
->getComputationResultType()->isAnyComplexType())
3239 return CGF
.EmitScalarCompoundAssignWithComplex(E
, Result
);
3241 // Emit the RHS first. __block variables need to have the rhs evaluated
3242 // first, plus this should improve codegen a little.
3244 QualType PromotionTypeCR
;
3245 PromotionTypeCR
= getPromotionType(E
->getComputationResultType());
3246 if (PromotionTypeCR
.isNull())
3247 PromotionTypeCR
= E
->getComputationResultType();
3248 QualType PromotionTypeLHS
= getPromotionType(E
->getComputationLHSType());
3249 QualType PromotionTypeRHS
= getPromotionType(E
->getRHS()->getType());
3250 if (!PromotionTypeRHS
.isNull())
3251 OpInfo
.RHS
= CGF
.EmitPromotedScalarExpr(E
->getRHS(), PromotionTypeRHS
);
3253 OpInfo
.RHS
= Visit(E
->getRHS());
3254 OpInfo
.Ty
= PromotionTypeCR
;
3255 OpInfo
.Opcode
= E
->getOpcode();
3256 OpInfo
.FPFeatures
= E
->getFPFeaturesInEffect(CGF
.getLangOpts());
3258 // Load/convert the LHS.
3259 LValue LHSLV
= EmitCheckedLValue(E
->getLHS(), CodeGenFunction::TCK_Store
);
3261 llvm::PHINode
*atomicPHI
= nullptr;
3262 if (const AtomicType
*atomicTy
= LHSTy
->getAs
<AtomicType
>()) {
3263 QualType type
= atomicTy
->getValueType();
3264 if (!type
->isBooleanType() && type
->isIntegerType() &&
3265 !(type
->isUnsignedIntegerType() &&
3266 CGF
.SanOpts
.has(SanitizerKind::UnsignedIntegerOverflow
)) &&
3267 CGF
.getLangOpts().getSignedOverflowBehavior() !=
3268 LangOptions::SOB_Trapping
) {
3269 llvm::AtomicRMWInst::BinOp AtomicOp
= llvm::AtomicRMWInst::BAD_BINOP
;
3270 llvm::Instruction::BinaryOps Op
;
3271 switch (OpInfo
.Opcode
) {
3272 // We don't have atomicrmw operands for *, %, /, <<, >>
3273 case BO_MulAssign
: case BO_DivAssign
:
3279 AtomicOp
= llvm::AtomicRMWInst::Add
;
3280 Op
= llvm::Instruction::Add
;
3283 AtomicOp
= llvm::AtomicRMWInst::Sub
;
3284 Op
= llvm::Instruction::Sub
;
3287 AtomicOp
= llvm::AtomicRMWInst::And
;
3288 Op
= llvm::Instruction::And
;
3291 AtomicOp
= llvm::AtomicRMWInst::Xor
;
3292 Op
= llvm::Instruction::Xor
;
3295 AtomicOp
= llvm::AtomicRMWInst::Or
;
3296 Op
= llvm::Instruction::Or
;
3299 llvm_unreachable("Invalid compound assignment type");
3301 if (AtomicOp
!= llvm::AtomicRMWInst::BAD_BINOP
) {
3302 llvm::Value
*Amt
= CGF
.EmitToMemory(
3303 EmitScalarConversion(OpInfo
.RHS
, E
->getRHS()->getType(), LHSTy
,
3306 Value
*OldVal
= Builder
.CreateAtomicRMW(
3307 AtomicOp
, LHSLV
.getPointer(CGF
), Amt
,
3308 llvm::AtomicOrdering::SequentiallyConsistent
);
3310 // Since operation is atomic, the result type is guaranteed to be the
3311 // same as the input in LLVM terms.
3312 Result
= Builder
.CreateBinOp(Op
, OldVal
, Amt
);
3316 // FIXME: For floating point types, we should be saving and restoring the
3317 // floating point environment in the loop.
3318 llvm::BasicBlock
*startBB
= Builder
.GetInsertBlock();
3319 llvm::BasicBlock
*opBB
= CGF
.createBasicBlock("atomic_op", CGF
.CurFn
);
3320 OpInfo
.LHS
= EmitLoadOfLValue(LHSLV
, E
->getExprLoc());
3321 OpInfo
.LHS
= CGF
.EmitToMemory(OpInfo
.LHS
, type
);
3322 Builder
.CreateBr(opBB
);
3323 Builder
.SetInsertPoint(opBB
);
3324 atomicPHI
= Builder
.CreatePHI(OpInfo
.LHS
->getType(), 2);
3325 atomicPHI
->addIncoming(OpInfo
.LHS
, startBB
);
3326 OpInfo
.LHS
= atomicPHI
;
3329 OpInfo
.LHS
= EmitLoadOfLValue(LHSLV
, E
->getExprLoc());
3331 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(CGF
, OpInfo
.FPFeatures
);
3332 SourceLocation Loc
= E
->getExprLoc();
3333 if (!PromotionTypeLHS
.isNull())
3334 OpInfo
.LHS
= EmitScalarConversion(OpInfo
.LHS
, LHSTy
, PromotionTypeLHS
,
3337 OpInfo
.LHS
= EmitScalarConversion(OpInfo
.LHS
, LHSTy
,
3338 E
->getComputationLHSType(), Loc
);
3340 // Expand the binary operator.
3341 Result
= (this->*Func
)(OpInfo
);
3343 // Convert the result back to the LHS type,
3344 // potentially with Implicit Conversion sanitizer check.
3345 Result
= EmitScalarConversion(Result
, PromotionTypeCR
, LHSTy
, Loc
,
3346 ScalarConversionOpts(CGF
.SanOpts
));
3349 llvm::BasicBlock
*curBlock
= Builder
.GetInsertBlock();
3350 llvm::BasicBlock
*contBB
= CGF
.createBasicBlock("atomic_cont", CGF
.CurFn
);
3351 auto Pair
= CGF
.EmitAtomicCompareExchange(
3352 LHSLV
, RValue::get(atomicPHI
), RValue::get(Result
), E
->getExprLoc());
3353 llvm::Value
*old
= CGF
.EmitToMemory(Pair
.first
.getScalarVal(), LHSTy
);
3354 llvm::Value
*success
= Pair
.second
;
3355 atomicPHI
->addIncoming(old
, curBlock
);
3356 Builder
.CreateCondBr(success
, contBB
, atomicPHI
->getParent());
3357 Builder
.SetInsertPoint(contBB
);
3361 // Store the result value into the LHS lvalue. Bit-fields are handled
3362 // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3363 // 'An assignment expression has the value of the left operand after the
3365 if (LHSLV
.isBitField())
3366 CGF
.EmitStoreThroughBitfieldLValue(RValue::get(Result
), LHSLV
, &Result
);
3368 CGF
.EmitStoreThroughLValue(RValue::get(Result
), LHSLV
);
3370 if (CGF
.getLangOpts().OpenMP
)
3371 CGF
.CGM
.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF
,
3376 Value
*ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator
*E
,
3377 Value
*(ScalarExprEmitter::*Func
)(const BinOpInfo
&)) {
3378 bool Ignore
= TestAndClearIgnoreResultAssign();
3379 Value
*RHS
= nullptr;
3380 LValue LHS
= EmitCompoundAssignLValue(E
, Func
, RHS
);
3382 // If the result is clearly ignored, return now.
3386 // The result of an assignment in C is the assigned r-value.
3387 if (!CGF
.getLangOpts().CPlusPlus
)
3390 // If the lvalue is non-volatile, return the computed value of the assignment.
3391 if (!LHS
.isVolatileQualified())
3394 // Otherwise, reload the value.
3395 return EmitLoadOfLValue(LHS
, E
->getExprLoc());
3398 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3399 const BinOpInfo
&Ops
, llvm::Value
*Zero
, bool isDiv
) {
3400 SmallVector
<std::pair
<llvm::Value
*, SanitizerMask
>, 2> Checks
;
3402 if (CGF
.SanOpts
.has(SanitizerKind::IntegerDivideByZero
)) {
3403 Checks
.push_back(std::make_pair(Builder
.CreateICmpNE(Ops
.RHS
, Zero
),
3404 SanitizerKind::IntegerDivideByZero
));
3407 const auto *BO
= cast
<BinaryOperator
>(Ops
.E
);
3408 if (CGF
.SanOpts
.has(SanitizerKind::SignedIntegerOverflow
) &&
3409 Ops
.Ty
->hasSignedIntegerRepresentation() &&
3410 !IsWidenedIntegerOp(CGF
.getContext(), BO
->getLHS()) &&
3411 Ops
.mayHaveIntegerOverflow()) {
3412 llvm::IntegerType
*Ty
= cast
<llvm::IntegerType
>(Zero
->getType());
3414 llvm::Value
*IntMin
=
3415 Builder
.getInt(llvm::APInt::getSignedMinValue(Ty
->getBitWidth()));
3416 llvm::Value
*NegOne
= llvm::Constant::getAllOnesValue(Ty
);
3418 llvm::Value
*LHSCmp
= Builder
.CreateICmpNE(Ops
.LHS
, IntMin
);
3419 llvm::Value
*RHSCmp
= Builder
.CreateICmpNE(Ops
.RHS
, NegOne
);
3420 llvm::Value
*NotOverflow
= Builder
.CreateOr(LHSCmp
, RHSCmp
, "or");
3422 std::make_pair(NotOverflow
, SanitizerKind::SignedIntegerOverflow
));
3425 if (Checks
.size() > 0)
3426 EmitBinOpCheck(Checks
, Ops
);
3429 Value
*ScalarExprEmitter::EmitDiv(const BinOpInfo
&Ops
) {
3431 CodeGenFunction::SanitizerScope
SanScope(&CGF
);
3432 if ((CGF
.SanOpts
.has(SanitizerKind::IntegerDivideByZero
) ||
3433 CGF
.SanOpts
.has(SanitizerKind::SignedIntegerOverflow
)) &&
3434 Ops
.Ty
->isIntegerType() &&
3435 (Ops
.mayHaveIntegerDivisionByZero() || Ops
.mayHaveIntegerOverflow())) {
3436 llvm::Value
*Zero
= llvm::Constant::getNullValue(ConvertType(Ops
.Ty
));
3437 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops
, Zero
, true);
3438 } else if (CGF
.SanOpts
.has(SanitizerKind::FloatDivideByZero
) &&
3439 Ops
.Ty
->isRealFloatingType() &&
3440 Ops
.mayHaveFloatDivisionByZero()) {
3441 llvm::Value
*Zero
= llvm::Constant::getNullValue(ConvertType(Ops
.Ty
));
3442 llvm::Value
*NonZero
= Builder
.CreateFCmpUNE(Ops
.RHS
, Zero
);
3443 EmitBinOpCheck(std::make_pair(NonZero
, SanitizerKind::FloatDivideByZero
),
3448 if (Ops
.Ty
->isConstantMatrixType()) {
3449 llvm::MatrixBuilder
MB(Builder
);
3450 // We need to check the types of the operands of the operator to get the
3451 // correct matrix dimensions.
3452 auto *BO
= cast
<BinaryOperator
>(Ops
.E
);
3455 isa
<ConstantMatrixType
>(BO
->getLHS()->getType().getCanonicalType()) &&
3456 "first operand must be a matrix");
3457 assert(BO
->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3458 "second operand must be an arithmetic type");
3459 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(CGF
, Ops
.FPFeatures
);
3460 return MB
.CreateScalarDiv(Ops
.LHS
, Ops
.RHS
,
3461 Ops
.Ty
->hasUnsignedIntegerRepresentation());
3464 if (Ops
.LHS
->getType()->isFPOrFPVectorTy()) {
3466 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(CGF
, Ops
.FPFeatures
);
3467 Val
= Builder
.CreateFDiv(Ops
.LHS
, Ops
.RHS
, "div");
3468 if ((CGF
.getLangOpts().OpenCL
&&
3469 !CGF
.CGM
.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt
) ||
3470 (CGF
.getLangOpts().HIP
&& CGF
.getLangOpts().CUDAIsDevice
&&
3471 !CGF
.CGM
.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt
)) {
3472 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3473 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3474 // build option allows an application to specify that single precision
3475 // floating-point divide (x/y and 1/x) and sqrt used in the program
3476 // source are correctly rounded.
3477 llvm::Type
*ValTy
= Val
->getType();
3478 if (ValTy
->isFloatTy() ||
3479 (isa
<llvm::VectorType
>(ValTy
) &&
3480 cast
<llvm::VectorType
>(ValTy
)->getElementType()->isFloatTy()))
3481 CGF
.SetFPAccuracy(Val
, 2.5);
3485 else if (Ops
.isFixedPointOp())
3486 return EmitFixedPointBinOp(Ops
);
3487 else if (Ops
.Ty
->hasUnsignedIntegerRepresentation())
3488 return Builder
.CreateUDiv(Ops
.LHS
, Ops
.RHS
, "div");
3490 return Builder
.CreateSDiv(Ops
.LHS
, Ops
.RHS
, "div");
3493 Value
*ScalarExprEmitter::EmitRem(const BinOpInfo
&Ops
) {
3494 // Rem in C can't be a floating point type: C99 6.5.5p2.
3495 if ((CGF
.SanOpts
.has(SanitizerKind::IntegerDivideByZero
) ||
3496 CGF
.SanOpts
.has(SanitizerKind::SignedIntegerOverflow
)) &&
3497 Ops
.Ty
->isIntegerType() &&
3498 (Ops
.mayHaveIntegerDivisionByZero() || Ops
.mayHaveIntegerOverflow())) {
3499 CodeGenFunction::SanitizerScope
SanScope(&CGF
);
3500 llvm::Value
*Zero
= llvm::Constant::getNullValue(ConvertType(Ops
.Ty
));
3501 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops
, Zero
, false);
3504 if (Ops
.Ty
->hasUnsignedIntegerRepresentation())
3505 return Builder
.CreateURem(Ops
.LHS
, Ops
.RHS
, "rem");
3507 return Builder
.CreateSRem(Ops
.LHS
, Ops
.RHS
, "rem");
3510 Value
*ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo
&Ops
) {
3513 SanitizerHandler OverflowKind
;
3515 bool isSigned
= Ops
.Ty
->isSignedIntegerOrEnumerationType();
3516 switch (Ops
.Opcode
) {
3520 IID
= isSigned
? llvm::Intrinsic::sadd_with_overflow
:
3521 llvm::Intrinsic::uadd_with_overflow
;
3522 OverflowKind
= SanitizerHandler::AddOverflow
;
3527 IID
= isSigned
? llvm::Intrinsic::ssub_with_overflow
:
3528 llvm::Intrinsic::usub_with_overflow
;
3529 OverflowKind
= SanitizerHandler::SubOverflow
;
3534 IID
= isSigned
? llvm::Intrinsic::smul_with_overflow
:
3535 llvm::Intrinsic::umul_with_overflow
;
3536 OverflowKind
= SanitizerHandler::MulOverflow
;
3539 llvm_unreachable("Unsupported operation for overflow detection");
3545 CodeGenFunction::SanitizerScope
SanScope(&CGF
);
3546 llvm::Type
*opTy
= CGF
.CGM
.getTypes().ConvertType(Ops
.Ty
);
3548 llvm::Function
*intrinsic
= CGF
.CGM
.getIntrinsic(IID
, opTy
);
3550 Value
*resultAndOverflow
= Builder
.CreateCall(intrinsic
, {Ops
.LHS
, Ops
.RHS
});
3551 Value
*result
= Builder
.CreateExtractValue(resultAndOverflow
, 0);
3552 Value
*overflow
= Builder
.CreateExtractValue(resultAndOverflow
, 1);
3554 // Handle overflow with llvm.trap if no custom handler has been specified.
3555 const std::string
*handlerName
=
3556 &CGF
.getLangOpts().OverflowHandler
;
3557 if (handlerName
->empty()) {
3558 // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3559 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3560 if (!isSigned
|| CGF
.SanOpts
.has(SanitizerKind::SignedIntegerOverflow
)) {
3561 llvm::Value
*NotOverflow
= Builder
.CreateNot(overflow
);
3562 SanitizerMask Kind
= isSigned
? SanitizerKind::SignedIntegerOverflow
3563 : SanitizerKind::UnsignedIntegerOverflow
;
3564 EmitBinOpCheck(std::make_pair(NotOverflow
, Kind
), Ops
);
3566 CGF
.EmitTrapCheck(Builder
.CreateNot(overflow
), OverflowKind
);
3570 // Branch in case of overflow.
3571 llvm::BasicBlock
*initialBB
= Builder
.GetInsertBlock();
3572 llvm::BasicBlock
*continueBB
=
3573 CGF
.createBasicBlock("nooverflow", CGF
.CurFn
, initialBB
->getNextNode());
3574 llvm::BasicBlock
*overflowBB
= CGF
.createBasicBlock("overflow", CGF
.CurFn
);
3576 Builder
.CreateCondBr(overflow
, overflowBB
, continueBB
);
3578 // If an overflow handler is set, then we want to call it and then use its
3579 // result, if it returns.
3580 Builder
.SetInsertPoint(overflowBB
);
3582 // Get the overflow handler.
3583 llvm::Type
*Int8Ty
= CGF
.Int8Ty
;
3584 llvm::Type
*argTypes
[] = { CGF
.Int64Ty
, CGF
.Int64Ty
, Int8Ty
, Int8Ty
};
3585 llvm::FunctionType
*handlerTy
=
3586 llvm::FunctionType::get(CGF
.Int64Ty
, argTypes
, true);
3587 llvm::FunctionCallee handler
=
3588 CGF
.CGM
.CreateRuntimeFunction(handlerTy
, *handlerName
);
3590 // Sign extend the args to 64-bit, so that we can use the same handler for
3591 // all types of overflow.
3592 llvm::Value
*lhs
= Builder
.CreateSExt(Ops
.LHS
, CGF
.Int64Ty
);
3593 llvm::Value
*rhs
= Builder
.CreateSExt(Ops
.RHS
, CGF
.Int64Ty
);
3595 // Call the handler with the two arguments, the operation, and the size of
3597 llvm::Value
*handlerArgs
[] = {
3600 Builder
.getInt8(OpID
),
3601 Builder
.getInt8(cast
<llvm::IntegerType
>(opTy
)->getBitWidth())
3603 llvm::Value
*handlerResult
=
3604 CGF
.EmitNounwindRuntimeCall(handler
, handlerArgs
);
3606 // Truncate the result back to the desired size.
3607 handlerResult
= Builder
.CreateTrunc(handlerResult
, opTy
);
3608 Builder
.CreateBr(continueBB
);
3610 Builder
.SetInsertPoint(continueBB
);
3611 llvm::PHINode
*phi
= Builder
.CreatePHI(opTy
, 2);
3612 phi
->addIncoming(result
, initialBB
);
3613 phi
->addIncoming(handlerResult
, overflowBB
);
3618 /// Emit pointer + index arithmetic.
3619 static Value
*emitPointerArithmetic(CodeGenFunction
&CGF
,
3620 const BinOpInfo
&op
,
3621 bool isSubtraction
) {
3622 // Must have binary (not unary) expr here. Unary pointer
3623 // increment/decrement doesn't use this path.
3624 const BinaryOperator
*expr
= cast
<BinaryOperator
>(op
.E
);
3626 Value
*pointer
= op
.LHS
;
3627 Expr
*pointerOperand
= expr
->getLHS();
3628 Value
*index
= op
.RHS
;
3629 Expr
*indexOperand
= expr
->getRHS();
3631 // In a subtraction, the LHS is always the pointer.
3632 if (!isSubtraction
&& !pointer
->getType()->isPointerTy()) {
3633 std::swap(pointer
, index
);
3634 std::swap(pointerOperand
, indexOperand
);
3637 bool isSigned
= indexOperand
->getType()->isSignedIntegerOrEnumerationType();
3639 unsigned width
= cast
<llvm::IntegerType
>(index
->getType())->getBitWidth();
3640 auto &DL
= CGF
.CGM
.getDataLayout();
3641 auto PtrTy
= cast
<llvm::PointerType
>(pointer
->getType());
3643 // Some versions of glibc and gcc use idioms (particularly in their malloc
3644 // routines) that add a pointer-sized integer (known to be a pointer value)
3645 // to a null pointer in order to cast the value back to an integer or as
3646 // part of a pointer alignment algorithm. This is undefined behavior, but
3647 // we'd like to be able to compile programs that use it.
3649 // Normally, we'd generate a GEP with a null-pointer base here in response
3650 // to that code, but it's also UB to dereference a pointer created that
3651 // way. Instead (as an acknowledged hack to tolerate the idiom) we will
3652 // generate a direct cast of the integer value to a pointer.
3654 // The idiom (p = nullptr + N) is not met if any of the following are true:
3656 // The operation is subtraction.
3657 // The index is not pointer-sized.
3658 // The pointer type is not byte-sized.
3660 if (BinaryOperator::isNullPointerArithmeticExtension(CGF
.getContext(),
3664 return CGF
.Builder
.CreateIntToPtr(index
, pointer
->getType());
3666 if (width
!= DL
.getIndexTypeSizeInBits(PtrTy
)) {
3667 // Zero-extend or sign-extend the pointer value according to
3668 // whether the index is signed or not.
3669 index
= CGF
.Builder
.CreateIntCast(index
, DL
.getIndexType(PtrTy
), isSigned
,
3673 // If this is subtraction, negate the index.
3675 index
= CGF
.Builder
.CreateNeg(index
, "idx.neg");
3677 if (CGF
.SanOpts
.has(SanitizerKind::ArrayBounds
))
3678 CGF
.EmitBoundsCheck(op
.E
, pointerOperand
, index
, indexOperand
->getType(),
3679 /*Accessed*/ false);
3681 const PointerType
*pointerType
3682 = pointerOperand
->getType()->getAs
<PointerType
>();
3684 QualType objectType
= pointerOperand
->getType()
3685 ->castAs
<ObjCObjectPointerType
>()
3687 llvm::Value
*objectSize
3688 = CGF
.CGM
.getSize(CGF
.getContext().getTypeSizeInChars(objectType
));
3690 index
= CGF
.Builder
.CreateMul(index
, objectSize
);
3692 Value
*result
= CGF
.Builder
.CreateBitCast(pointer
, CGF
.VoidPtrTy
);
3693 result
= CGF
.Builder
.CreateGEP(CGF
.Int8Ty
, result
, index
, "add.ptr");
3694 return CGF
.Builder
.CreateBitCast(result
, pointer
->getType());
3697 QualType elementType
= pointerType
->getPointeeType();
3698 if (const VariableArrayType
*vla
3699 = CGF
.getContext().getAsVariableArrayType(elementType
)) {
3700 // The element count here is the total number of non-VLA elements.
3701 llvm::Value
*numElements
= CGF
.getVLASize(vla
).NumElts
;
3703 // Effectively, the multiply by the VLA size is part of the GEP.
3704 // GEP indexes are signed, and scaling an index isn't permitted to
3705 // signed-overflow, so we use the same semantics for our explicit
3706 // multiply. We suppress this if overflow is not undefined behavior.
3707 llvm::Type
*elemTy
= CGF
.ConvertTypeForMem(vla
->getElementType());
3708 if (CGF
.getLangOpts().isSignedOverflowDefined()) {
3709 index
= CGF
.Builder
.CreateMul(index
, numElements
, "vla.index");
3710 pointer
= CGF
.Builder
.CreateGEP(elemTy
, pointer
, index
, "add.ptr");
3712 index
= CGF
.Builder
.CreateNSWMul(index
, numElements
, "vla.index");
3713 pointer
= CGF
.EmitCheckedInBoundsGEP(
3714 elemTy
, pointer
, index
, isSigned
, isSubtraction
, op
.E
->getExprLoc(),
3720 // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3721 // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3723 if (elementType
->isVoidType() || elementType
->isFunctionType()) {
3724 Value
*result
= CGF
.EmitCastToVoidPtr(pointer
);
3725 result
= CGF
.Builder
.CreateGEP(CGF
.Int8Ty
, result
, index
, "add.ptr");
3726 return CGF
.Builder
.CreateBitCast(result
, pointer
->getType());
3729 llvm::Type
*elemTy
= CGF
.ConvertTypeForMem(elementType
);
3730 if (CGF
.getLangOpts().isSignedOverflowDefined())
3731 return CGF
.Builder
.CreateGEP(elemTy
, pointer
, index
, "add.ptr");
3733 return CGF
.EmitCheckedInBoundsGEP(
3734 elemTy
, pointer
, index
, isSigned
, isSubtraction
, op
.E
->getExprLoc(),
3738 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3739 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3740 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3741 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3742 // efficient operations.
3743 static Value
* buildFMulAdd(llvm::Instruction
*MulOp
, Value
*Addend
,
3744 const CodeGenFunction
&CGF
, CGBuilderTy
&Builder
,
3745 bool negMul
, bool negAdd
) {
3746 Value
*MulOp0
= MulOp
->getOperand(0);
3747 Value
*MulOp1
= MulOp
->getOperand(1);
3749 MulOp0
= Builder
.CreateFNeg(MulOp0
, "neg");
3751 Addend
= Builder
.CreateFNeg(Addend
, "neg");
3753 Value
*FMulAdd
= nullptr;
3754 if (Builder
.getIsFPConstrained()) {
3755 assert(isa
<llvm::ConstrainedFPIntrinsic
>(MulOp
) &&
3756 "Only constrained operation should be created when Builder is in FP "
3757 "constrained mode");
3758 FMulAdd
= Builder
.CreateConstrainedFPCall(
3759 CGF
.CGM
.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd
,
3761 {MulOp0
, MulOp1
, Addend
});
3763 FMulAdd
= Builder
.CreateCall(
3764 CGF
.CGM
.getIntrinsic(llvm::Intrinsic::fmuladd
, Addend
->getType()),
3765 {MulOp0
, MulOp1
, Addend
});
3767 MulOp
->eraseFromParent();
3772 // Check whether it would be legal to emit an fmuladd intrinsic call to
3773 // represent op and if so, build the fmuladd.
3775 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3776 // Does NOT check the type of the operation - it's assumed that this function
3777 // will be called from contexts where it's known that the type is contractable.
3778 static Value
* tryEmitFMulAdd(const BinOpInfo
&op
,
3779 const CodeGenFunction
&CGF
, CGBuilderTy
&Builder
,
3782 assert((op
.Opcode
== BO_Add
|| op
.Opcode
== BO_AddAssign
||
3783 op
.Opcode
== BO_Sub
|| op
.Opcode
== BO_SubAssign
) &&
3784 "Only fadd/fsub can be the root of an fmuladd.");
3786 // Check whether this op is marked as fusable.
3787 if (!op
.FPFeatures
.allowFPContractWithinStatement())
3790 Value
*LHS
= op
.LHS
;
3791 Value
*RHS
= op
.RHS
;
3793 // Peek through fneg to look for fmul. Make sure fneg has no users, and that
3794 // it is the only use of its operand.
3795 bool NegLHS
= false;
3796 if (auto *LHSUnOp
= dyn_cast
<llvm::UnaryOperator
>(LHS
)) {
3797 if (LHSUnOp
->getOpcode() == llvm::Instruction::FNeg
&&
3798 LHSUnOp
->use_empty() && LHSUnOp
->getOperand(0)->hasOneUse()) {
3799 LHS
= LHSUnOp
->getOperand(0);
3804 bool NegRHS
= false;
3805 if (auto *RHSUnOp
= dyn_cast
<llvm::UnaryOperator
>(RHS
)) {
3806 if (RHSUnOp
->getOpcode() == llvm::Instruction::FNeg
&&
3807 RHSUnOp
->use_empty() && RHSUnOp
->getOperand(0)->hasOneUse()) {
3808 RHS
= RHSUnOp
->getOperand(0);
3813 // We have a potentially fusable op. Look for a mul on one of the operands.
3814 // Also, make sure that the mul result isn't used directly. In that case,
3815 // there's no point creating a muladd operation.
3816 if (auto *LHSBinOp
= dyn_cast
<llvm::BinaryOperator
>(LHS
)) {
3817 if (LHSBinOp
->getOpcode() == llvm::Instruction::FMul
&&
3818 (LHSBinOp
->use_empty() || NegLHS
)) {
3819 // If we looked through fneg, erase it.
3821 cast
<llvm::Instruction
>(op
.LHS
)->eraseFromParent();
3822 return buildFMulAdd(LHSBinOp
, op
.RHS
, CGF
, Builder
, NegLHS
, isSub
);
3825 if (auto *RHSBinOp
= dyn_cast
<llvm::BinaryOperator
>(RHS
)) {
3826 if (RHSBinOp
->getOpcode() == llvm::Instruction::FMul
&&
3827 (RHSBinOp
->use_empty() || NegRHS
)) {
3828 // If we looked through fneg, erase it.
3830 cast
<llvm::Instruction
>(op
.RHS
)->eraseFromParent();
3831 return buildFMulAdd(RHSBinOp
, op
.LHS
, CGF
, Builder
, isSub
^ NegRHS
, false);
3835 if (auto *LHSBinOp
= dyn_cast
<llvm::CallBase
>(LHS
)) {
3836 if (LHSBinOp
->getIntrinsicID() ==
3837 llvm::Intrinsic::experimental_constrained_fmul
&&
3838 (LHSBinOp
->use_empty() || NegLHS
)) {
3839 // If we looked through fneg, erase it.
3841 cast
<llvm::Instruction
>(op
.LHS
)->eraseFromParent();
3842 return buildFMulAdd(LHSBinOp
, op
.RHS
, CGF
, Builder
, NegLHS
, isSub
);
3845 if (auto *RHSBinOp
= dyn_cast
<llvm::CallBase
>(RHS
)) {
3846 if (RHSBinOp
->getIntrinsicID() ==
3847 llvm::Intrinsic::experimental_constrained_fmul
&&
3848 (RHSBinOp
->use_empty() || NegRHS
)) {
3849 // If we looked through fneg, erase it.
3851 cast
<llvm::Instruction
>(op
.RHS
)->eraseFromParent();
3852 return buildFMulAdd(RHSBinOp
, op
.LHS
, CGF
, Builder
, isSub
^ NegRHS
, false);
3859 Value
*ScalarExprEmitter::EmitAdd(const BinOpInfo
&op
) {
3860 if (op
.LHS
->getType()->isPointerTy() ||
3861 op
.RHS
->getType()->isPointerTy())
3862 return emitPointerArithmetic(CGF
, op
, CodeGenFunction::NotSubtraction
);
3864 if (op
.Ty
->isSignedIntegerOrEnumerationType()) {
3865 switch (CGF
.getLangOpts().getSignedOverflowBehavior()) {
3866 case LangOptions::SOB_Defined
:
3867 return Builder
.CreateAdd(op
.LHS
, op
.RHS
, "add");
3868 case LangOptions::SOB_Undefined
:
3869 if (!CGF
.SanOpts
.has(SanitizerKind::SignedIntegerOverflow
))
3870 return Builder
.CreateNSWAdd(op
.LHS
, op
.RHS
, "add");
3872 case LangOptions::SOB_Trapping
:
3873 if (CanElideOverflowCheck(CGF
.getContext(), op
))
3874 return Builder
.CreateNSWAdd(op
.LHS
, op
.RHS
, "add");
3875 return EmitOverflowCheckedBinOp(op
);
3879 if (op
.Ty
->isConstantMatrixType()) {
3880 llvm::MatrixBuilder
MB(Builder
);
3881 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(CGF
, op
.FPFeatures
);
3882 return MB
.CreateAdd(op
.LHS
, op
.RHS
);
3885 if (op
.Ty
->isUnsignedIntegerType() &&
3886 CGF
.SanOpts
.has(SanitizerKind::UnsignedIntegerOverflow
) &&
3887 !CanElideOverflowCheck(CGF
.getContext(), op
))
3888 return EmitOverflowCheckedBinOp(op
);
3890 if (op
.LHS
->getType()->isFPOrFPVectorTy()) {
3891 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(CGF
, op
.FPFeatures
);
3892 // Try to form an fmuladd.
3893 if (Value
*FMulAdd
= tryEmitFMulAdd(op
, CGF
, Builder
))
3896 return Builder
.CreateFAdd(op
.LHS
, op
.RHS
, "add");
3899 if (op
.isFixedPointOp())
3900 return EmitFixedPointBinOp(op
);
3902 return Builder
.CreateAdd(op
.LHS
, op
.RHS
, "add");
3905 /// The resulting value must be calculated with exact precision, so the operands
3906 /// may not be the same type.
3907 Value
*ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo
&op
) {
3909 using llvm::ConstantInt
;
3911 // This is either a binary operation where at least one of the operands is
3912 // a fixed-point type, or a unary operation where the operand is a fixed-point
3913 // type. The result type of a binary operation is determined by
3914 // Sema::handleFixedPointConversions().
3915 QualType ResultTy
= op
.Ty
;
3916 QualType LHSTy
, RHSTy
;
3917 if (const auto *BinOp
= dyn_cast
<BinaryOperator
>(op
.E
)) {
3918 RHSTy
= BinOp
->getRHS()->getType();
3919 if (const auto *CAO
= dyn_cast
<CompoundAssignOperator
>(BinOp
)) {
3920 // For compound assignment, the effective type of the LHS at this point
3921 // is the computation LHS type, not the actual LHS type, and the final
3922 // result type is not the type of the expression but rather the
3923 // computation result type.
3924 LHSTy
= CAO
->getComputationLHSType();
3925 ResultTy
= CAO
->getComputationResultType();
3927 LHSTy
= BinOp
->getLHS()->getType();
3928 } else if (const auto *UnOp
= dyn_cast
<UnaryOperator
>(op
.E
)) {
3929 LHSTy
= UnOp
->getSubExpr()->getType();
3930 RHSTy
= UnOp
->getSubExpr()->getType();
3932 ASTContext
&Ctx
= CGF
.getContext();
3933 Value
*LHS
= op
.LHS
;
3934 Value
*RHS
= op
.RHS
;
3936 auto LHSFixedSema
= Ctx
.getFixedPointSemantics(LHSTy
);
3937 auto RHSFixedSema
= Ctx
.getFixedPointSemantics(RHSTy
);
3938 auto ResultFixedSema
= Ctx
.getFixedPointSemantics(ResultTy
);
3939 auto CommonFixedSema
= LHSFixedSema
.getCommonSemantics(RHSFixedSema
);
3941 // Perform the actual operation.
3943 llvm::FixedPointBuilder
<CGBuilderTy
> FPBuilder(Builder
);
3944 switch (op
.Opcode
) {
3947 Result
= FPBuilder
.CreateAdd(LHS
, LHSFixedSema
, RHS
, RHSFixedSema
);
3951 Result
= FPBuilder
.CreateSub(LHS
, LHSFixedSema
, RHS
, RHSFixedSema
);
3955 Result
= FPBuilder
.CreateMul(LHS
, LHSFixedSema
, RHS
, RHSFixedSema
);
3959 Result
= FPBuilder
.CreateDiv(LHS
, LHSFixedSema
, RHS
, RHSFixedSema
);
3963 Result
= FPBuilder
.CreateShl(LHS
, LHSFixedSema
, RHS
);
3967 Result
= FPBuilder
.CreateShr(LHS
, LHSFixedSema
, RHS
);
3970 return FPBuilder
.CreateLT(LHS
, LHSFixedSema
, RHS
, RHSFixedSema
);
3972 return FPBuilder
.CreateGT(LHS
, LHSFixedSema
, RHS
, RHSFixedSema
);
3974 return FPBuilder
.CreateLE(LHS
, LHSFixedSema
, RHS
, RHSFixedSema
);
3976 return FPBuilder
.CreateGE(LHS
, LHSFixedSema
, RHS
, RHSFixedSema
);
3978 // For equality operations, we assume any padding bits on unsigned types are
3979 // zero'd out. They could be overwritten through non-saturating operations
3980 // that cause overflow, but this leads to undefined behavior.
3981 return FPBuilder
.CreateEQ(LHS
, LHSFixedSema
, RHS
, RHSFixedSema
);
3983 return FPBuilder
.CreateNE(LHS
, LHSFixedSema
, RHS
, RHSFixedSema
);
3987 llvm_unreachable("Found unimplemented fixed point binary operation");
4000 llvm_unreachable("Found unsupported binary operation for fixed point types.");
4003 bool IsShift
= BinaryOperator::isShiftOp(op
.Opcode
) ||
4004 BinaryOperator::isShiftAssignOp(op
.Opcode
);
4005 // Convert to the result type.
4006 return FPBuilder
.CreateFixedToFixed(Result
, IsShift
? LHSFixedSema
4011 Value
*ScalarExprEmitter::EmitSub(const BinOpInfo
&op
) {
4012 // The LHS is always a pointer if either side is.
4013 if (!op
.LHS
->getType()->isPointerTy()) {
4014 if (op
.Ty
->isSignedIntegerOrEnumerationType()) {
4015 switch (CGF
.getLangOpts().getSignedOverflowBehavior()) {
4016 case LangOptions::SOB_Defined
:
4017 return Builder
.CreateSub(op
.LHS
, op
.RHS
, "sub");
4018 case LangOptions::SOB_Undefined
:
4019 if (!CGF
.SanOpts
.has(SanitizerKind::SignedIntegerOverflow
))
4020 return Builder
.CreateNSWSub(op
.LHS
, op
.RHS
, "sub");
4022 case LangOptions::SOB_Trapping
:
4023 if (CanElideOverflowCheck(CGF
.getContext(), op
))
4024 return Builder
.CreateNSWSub(op
.LHS
, op
.RHS
, "sub");
4025 return EmitOverflowCheckedBinOp(op
);
4029 if (op
.Ty
->isConstantMatrixType()) {
4030 llvm::MatrixBuilder
MB(Builder
);
4031 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(CGF
, op
.FPFeatures
);
4032 return MB
.CreateSub(op
.LHS
, op
.RHS
);
4035 if (op
.Ty
->isUnsignedIntegerType() &&
4036 CGF
.SanOpts
.has(SanitizerKind::UnsignedIntegerOverflow
) &&
4037 !CanElideOverflowCheck(CGF
.getContext(), op
))
4038 return EmitOverflowCheckedBinOp(op
);
4040 if (op
.LHS
->getType()->isFPOrFPVectorTy()) {
4041 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(CGF
, op
.FPFeatures
);
4042 // Try to form an fmuladd.
4043 if (Value
*FMulAdd
= tryEmitFMulAdd(op
, CGF
, Builder
, true))
4045 return Builder
.CreateFSub(op
.LHS
, op
.RHS
, "sub");
4048 if (op
.isFixedPointOp())
4049 return EmitFixedPointBinOp(op
);
4051 return Builder
.CreateSub(op
.LHS
, op
.RHS
, "sub");
4054 // If the RHS is not a pointer, then we have normal pointer
4056 if (!op
.RHS
->getType()->isPointerTy())
4057 return emitPointerArithmetic(CGF
, op
, CodeGenFunction::IsSubtraction
);
4059 // Otherwise, this is a pointer subtraction.
4061 // Do the raw subtraction part.
4063 = Builder
.CreatePtrToInt(op
.LHS
, CGF
.PtrDiffTy
, "sub.ptr.lhs.cast");
4065 = Builder
.CreatePtrToInt(op
.RHS
, CGF
.PtrDiffTy
, "sub.ptr.rhs.cast");
4066 Value
*diffInChars
= Builder
.CreateSub(LHS
, RHS
, "sub.ptr.sub");
4068 // Okay, figure out the element size.
4069 const BinaryOperator
*expr
= cast
<BinaryOperator
>(op
.E
);
4070 QualType elementType
= expr
->getLHS()->getType()->getPointeeType();
4072 llvm::Value
*divisor
= nullptr;
4074 // For a variable-length array, this is going to be non-constant.
4075 if (const VariableArrayType
*vla
4076 = CGF
.getContext().getAsVariableArrayType(elementType
)) {
4077 auto VlaSize
= CGF
.getVLASize(vla
);
4078 elementType
= VlaSize
.Type
;
4079 divisor
= VlaSize
.NumElts
;
4081 // Scale the number of non-VLA elements by the non-VLA element size.
4082 CharUnits eltSize
= CGF
.getContext().getTypeSizeInChars(elementType
);
4083 if (!eltSize
.isOne())
4084 divisor
= CGF
.Builder
.CreateNUWMul(CGF
.CGM
.getSize(eltSize
), divisor
);
4086 // For everything elese, we can just compute it, safe in the
4087 // assumption that Sema won't let anything through that we can't
4088 // safely compute the size of.
4090 CharUnits elementSize
;
4091 // Handle GCC extension for pointer arithmetic on void* and
4092 // function pointer types.
4093 if (elementType
->isVoidType() || elementType
->isFunctionType())
4094 elementSize
= CharUnits::One();
4096 elementSize
= CGF
.getContext().getTypeSizeInChars(elementType
);
4098 // Don't even emit the divide for element size of 1.
4099 if (elementSize
.isOne())
4102 divisor
= CGF
.CGM
.getSize(elementSize
);
4105 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
4106 // pointer difference in C is only defined in the case where both operands
4107 // are pointing to elements of an array.
4108 return Builder
.CreateExactSDiv(diffInChars
, divisor
, "sub.ptr.div");
4111 Value
*ScalarExprEmitter::GetWidthMinusOneValue(Value
* LHS
,Value
* RHS
) {
4112 llvm::IntegerType
*Ty
;
4113 if (llvm::VectorType
*VT
= dyn_cast
<llvm::VectorType
>(LHS
->getType()))
4114 Ty
= cast
<llvm::IntegerType
>(VT
->getElementType());
4116 Ty
= cast
<llvm::IntegerType
>(LHS
->getType());
4117 return llvm::ConstantInt::get(RHS
->getType(), Ty
->getBitWidth() - 1);
4120 Value
*ScalarExprEmitter::ConstrainShiftValue(Value
*LHS
, Value
*RHS
,
4121 const Twine
&Name
) {
4122 llvm::IntegerType
*Ty
;
4123 if (auto *VT
= dyn_cast
<llvm::VectorType
>(LHS
->getType()))
4124 Ty
= cast
<llvm::IntegerType
>(VT
->getElementType());
4126 Ty
= cast
<llvm::IntegerType
>(LHS
->getType());
4128 if (llvm::isPowerOf2_64(Ty
->getBitWidth()))
4129 return Builder
.CreateAnd(RHS
, GetWidthMinusOneValue(LHS
, RHS
), Name
);
4131 return Builder
.CreateURem(
4132 RHS
, llvm::ConstantInt::get(RHS
->getType(), Ty
->getBitWidth()), Name
);
4135 Value
*ScalarExprEmitter::EmitShl(const BinOpInfo
&Ops
) {
4136 // TODO: This misses out on the sanitizer check below.
4137 if (Ops
.isFixedPointOp())
4138 return EmitFixedPointBinOp(Ops
);
4140 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4141 // RHS to the same size as the LHS.
4142 Value
*RHS
= Ops
.RHS
;
4143 if (Ops
.LHS
->getType() != RHS
->getType())
4144 RHS
= Builder
.CreateIntCast(RHS
, Ops
.LHS
->getType(), false, "sh_prom");
4146 bool SanitizeSignedBase
= CGF
.SanOpts
.has(SanitizerKind::ShiftBase
) &&
4147 Ops
.Ty
->hasSignedIntegerRepresentation() &&
4148 !CGF
.getLangOpts().isSignedOverflowDefined() &&
4149 !CGF
.getLangOpts().CPlusPlus20
;
4150 bool SanitizeUnsignedBase
=
4151 CGF
.SanOpts
.has(SanitizerKind::UnsignedShiftBase
) &&
4152 Ops
.Ty
->hasUnsignedIntegerRepresentation();
4153 bool SanitizeBase
= SanitizeSignedBase
|| SanitizeUnsignedBase
;
4154 bool SanitizeExponent
= CGF
.SanOpts
.has(SanitizerKind::ShiftExponent
);
4155 // OpenCL 6.3j: shift values are effectively % word size of LHS.
4156 if (CGF
.getLangOpts().OpenCL
)
4157 RHS
= ConstrainShiftValue(Ops
.LHS
, RHS
, "shl.mask");
4158 else if ((SanitizeBase
|| SanitizeExponent
) &&
4159 isa
<llvm::IntegerType
>(Ops
.LHS
->getType())) {
4160 CodeGenFunction::SanitizerScope
SanScope(&CGF
);
4161 SmallVector
<std::pair
<Value
*, SanitizerMask
>, 2> Checks
;
4162 llvm::Value
*WidthMinusOne
= GetWidthMinusOneValue(Ops
.LHS
, Ops
.RHS
);
4163 llvm::Value
*ValidExponent
= Builder
.CreateICmpULE(Ops
.RHS
, WidthMinusOne
);
4165 if (SanitizeExponent
) {
4167 std::make_pair(ValidExponent
, SanitizerKind::ShiftExponent
));
4171 // Check whether we are shifting any non-zero bits off the top of the
4172 // integer. We only emit this check if exponent is valid - otherwise
4173 // instructions below will have undefined behavior themselves.
4174 llvm::BasicBlock
*Orig
= Builder
.GetInsertBlock();
4175 llvm::BasicBlock
*Cont
= CGF
.createBasicBlock("cont");
4176 llvm::BasicBlock
*CheckShiftBase
= CGF
.createBasicBlock("check");
4177 Builder
.CreateCondBr(ValidExponent
, CheckShiftBase
, Cont
);
4178 llvm::Value
*PromotedWidthMinusOne
=
4179 (RHS
== Ops
.RHS
) ? WidthMinusOne
4180 : GetWidthMinusOneValue(Ops
.LHS
, RHS
);
4181 CGF
.EmitBlock(CheckShiftBase
);
4182 llvm::Value
*BitsShiftedOff
= Builder
.CreateLShr(
4183 Ops
.LHS
, Builder
.CreateSub(PromotedWidthMinusOne
, RHS
, "shl.zeros",
4184 /*NUW*/ true, /*NSW*/ true),
4186 if (SanitizeUnsignedBase
|| CGF
.getLangOpts().CPlusPlus
) {
4187 // In C99, we are not permitted to shift a 1 bit into the sign bit.
4188 // Under C++11's rules, shifting a 1 bit into the sign bit is
4189 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
4190 // define signed left shifts, so we use the C99 and C++11 rules there).
4191 // Unsigned shifts can always shift into the top bit.
4192 llvm::Value
*One
= llvm::ConstantInt::get(BitsShiftedOff
->getType(), 1);
4193 BitsShiftedOff
= Builder
.CreateLShr(BitsShiftedOff
, One
);
4195 llvm::Value
*Zero
= llvm::ConstantInt::get(BitsShiftedOff
->getType(), 0);
4196 llvm::Value
*ValidBase
= Builder
.CreateICmpEQ(BitsShiftedOff
, Zero
);
4197 CGF
.EmitBlock(Cont
);
4198 llvm::PHINode
*BaseCheck
= Builder
.CreatePHI(ValidBase
->getType(), 2);
4199 BaseCheck
->addIncoming(Builder
.getTrue(), Orig
);
4200 BaseCheck
->addIncoming(ValidBase
, CheckShiftBase
);
4201 Checks
.push_back(std::make_pair(
4202 BaseCheck
, SanitizeSignedBase
? SanitizerKind::ShiftBase
4203 : SanitizerKind::UnsignedShiftBase
));
4206 assert(!Checks
.empty());
4207 EmitBinOpCheck(Checks
, Ops
);
4210 return Builder
.CreateShl(Ops
.LHS
, RHS
, "shl");
4213 Value
*ScalarExprEmitter::EmitShr(const BinOpInfo
&Ops
) {
4214 // TODO: This misses out on the sanitizer check below.
4215 if (Ops
.isFixedPointOp())
4216 return EmitFixedPointBinOp(Ops
);
4218 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4219 // RHS to the same size as the LHS.
4220 Value
*RHS
= Ops
.RHS
;
4221 if (Ops
.LHS
->getType() != RHS
->getType())
4222 RHS
= Builder
.CreateIntCast(RHS
, Ops
.LHS
->getType(), false, "sh_prom");
4224 // OpenCL 6.3j: shift values are effectively % word size of LHS.
4225 if (CGF
.getLangOpts().OpenCL
)
4226 RHS
= ConstrainShiftValue(Ops
.LHS
, RHS
, "shr.mask");
4227 else if (CGF
.SanOpts
.has(SanitizerKind::ShiftExponent
) &&
4228 isa
<llvm::IntegerType
>(Ops
.LHS
->getType())) {
4229 CodeGenFunction::SanitizerScope
SanScope(&CGF
);
4230 llvm::Value
*Valid
=
4231 Builder
.CreateICmpULE(RHS
, GetWidthMinusOneValue(Ops
.LHS
, RHS
));
4232 EmitBinOpCheck(std::make_pair(Valid
, SanitizerKind::ShiftExponent
), Ops
);
4235 if (Ops
.Ty
->hasUnsignedIntegerRepresentation())
4236 return Builder
.CreateLShr(Ops
.LHS
, RHS
, "shr");
4237 return Builder
.CreateAShr(Ops
.LHS
, RHS
, "shr");
4240 enum IntrinsicType
{ VCMPEQ
, VCMPGT
};
4241 // return corresponding comparison intrinsic for given vector type
4242 static llvm::Intrinsic::ID
GetIntrinsic(IntrinsicType IT
,
4243 BuiltinType::Kind ElemKind
) {
4245 default: llvm_unreachable("unexpected element type");
4246 case BuiltinType::Char_U
:
4247 case BuiltinType::UChar
:
4248 return (IT
== VCMPEQ
) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p
:
4249 llvm::Intrinsic::ppc_altivec_vcmpgtub_p
;
4250 case BuiltinType::Char_S
:
4251 case BuiltinType::SChar
:
4252 return (IT
== VCMPEQ
) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p
:
4253 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p
;
4254 case BuiltinType::UShort
:
4255 return (IT
== VCMPEQ
) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p
:
4256 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p
;
4257 case BuiltinType::Short
:
4258 return (IT
== VCMPEQ
) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p
:
4259 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p
;
4260 case BuiltinType::UInt
:
4261 return (IT
== VCMPEQ
) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p
:
4262 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p
;
4263 case BuiltinType::Int
:
4264 return (IT
== VCMPEQ
) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p
:
4265 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p
;
4266 case BuiltinType::ULong
:
4267 case BuiltinType::ULongLong
:
4268 return (IT
== VCMPEQ
) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p
:
4269 llvm::Intrinsic::ppc_altivec_vcmpgtud_p
;
4270 case BuiltinType::Long
:
4271 case BuiltinType::LongLong
:
4272 return (IT
== VCMPEQ
) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p
:
4273 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p
;
4274 case BuiltinType::Float
:
4275 return (IT
== VCMPEQ
) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p
:
4276 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p
;
4277 case BuiltinType::Double
:
4278 return (IT
== VCMPEQ
) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p
:
4279 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p
;
4280 case BuiltinType::UInt128
:
4281 return (IT
== VCMPEQ
) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4282 : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p
;
4283 case BuiltinType::Int128
:
4284 return (IT
== VCMPEQ
) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4285 : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p
;
4289 Value
*ScalarExprEmitter::EmitCompare(const BinaryOperator
*E
,
4290 llvm::CmpInst::Predicate UICmpOpc
,
4291 llvm::CmpInst::Predicate SICmpOpc
,
4292 llvm::CmpInst::Predicate FCmpOpc
,
4294 TestAndClearIgnoreResultAssign();
4296 QualType LHSTy
= E
->getLHS()->getType();
4297 QualType RHSTy
= E
->getRHS()->getType();
4298 if (const MemberPointerType
*MPT
= LHSTy
->getAs
<MemberPointerType
>()) {
4299 assert(E
->getOpcode() == BO_EQ
||
4300 E
->getOpcode() == BO_NE
);
4301 Value
*LHS
= CGF
.EmitScalarExpr(E
->getLHS());
4302 Value
*RHS
= CGF
.EmitScalarExpr(E
->getRHS());
4303 Result
= CGF
.CGM
.getCXXABI().EmitMemberPointerComparison(
4304 CGF
, LHS
, RHS
, MPT
, E
->getOpcode() == BO_NE
);
4305 } else if (!LHSTy
->isAnyComplexType() && !RHSTy
->isAnyComplexType()) {
4306 BinOpInfo BOInfo
= EmitBinOps(E
);
4307 Value
*LHS
= BOInfo
.LHS
;
4308 Value
*RHS
= BOInfo
.RHS
;
4310 // If AltiVec, the comparison results in a numeric type, so we use
4311 // intrinsics comparing vectors and giving 0 or 1 as a result
4312 if (LHSTy
->isVectorType() && !E
->getType()->isVectorType()) {
4313 // constants for mapping CR6 register bits to predicate result
4314 enum { CR6_EQ
=0, CR6_EQ_REV
, CR6_LT
, CR6_LT_REV
} CR6
;
4316 llvm::Intrinsic::ID ID
= llvm::Intrinsic::not_intrinsic
;
4318 // in several cases vector arguments order will be reversed
4319 Value
*FirstVecArg
= LHS
,
4320 *SecondVecArg
= RHS
;
4322 QualType ElTy
= LHSTy
->castAs
<VectorType
>()->getElementType();
4323 BuiltinType::Kind ElementKind
= ElTy
->castAs
<BuiltinType
>()->getKind();
4325 switch(E
->getOpcode()) {
4326 default: llvm_unreachable("is not a comparison operation");
4329 ID
= GetIntrinsic(VCMPEQ
, ElementKind
);
4333 ID
= GetIntrinsic(VCMPEQ
, ElementKind
);
4337 ID
= GetIntrinsic(VCMPGT
, ElementKind
);
4338 std::swap(FirstVecArg
, SecondVecArg
);
4342 ID
= GetIntrinsic(VCMPGT
, ElementKind
);
4345 if (ElementKind
== BuiltinType::Float
) {
4347 ID
= llvm::Intrinsic::ppc_altivec_vcmpgefp_p
;
4348 std::swap(FirstVecArg
, SecondVecArg
);
4352 ID
= GetIntrinsic(VCMPGT
, ElementKind
);
4356 if (ElementKind
== BuiltinType::Float
) {
4358 ID
= llvm::Intrinsic::ppc_altivec_vcmpgefp_p
;
4362 ID
= GetIntrinsic(VCMPGT
, ElementKind
);
4363 std::swap(FirstVecArg
, SecondVecArg
);
4368 Value
*CR6Param
= Builder
.getInt32(CR6
);
4369 llvm::Function
*F
= CGF
.CGM
.getIntrinsic(ID
);
4370 Result
= Builder
.CreateCall(F
, {CR6Param
, FirstVecArg
, SecondVecArg
});
4372 // The result type of intrinsic may not be same as E->getType().
4373 // If E->getType() is not BoolTy, EmitScalarConversion will do the
4374 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4375 // do nothing, if ResultTy is not i1 at the same time, it will cause
4377 llvm::IntegerType
*ResultTy
= cast
<llvm::IntegerType
>(Result
->getType());
4378 if (ResultTy
->getBitWidth() > 1 &&
4379 E
->getType() == CGF
.getContext().BoolTy
)
4380 Result
= Builder
.CreateTrunc(Result
, Builder
.getInt1Ty());
4381 return EmitScalarConversion(Result
, CGF
.getContext().BoolTy
, E
->getType(),
4385 if (BOInfo
.isFixedPointOp()) {
4386 Result
= EmitFixedPointBinOp(BOInfo
);
4387 } else if (LHS
->getType()->isFPOrFPVectorTy()) {
4388 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(CGF
, BOInfo
.FPFeatures
);
4390 Result
= Builder
.CreateFCmp(FCmpOpc
, LHS
, RHS
, "cmp");
4392 Result
= Builder
.CreateFCmpS(FCmpOpc
, LHS
, RHS
, "cmp");
4393 } else if (LHSTy
->hasSignedIntegerRepresentation()) {
4394 Result
= Builder
.CreateICmp(SICmpOpc
, LHS
, RHS
, "cmp");
4396 // Unsigned integers and pointers.
4398 if (CGF
.CGM
.getCodeGenOpts().StrictVTablePointers
&&
4399 !isa
<llvm::ConstantPointerNull
>(LHS
) &&
4400 !isa
<llvm::ConstantPointerNull
>(RHS
)) {
4402 // Dynamic information is required to be stripped for comparisons,
4403 // because it could leak the dynamic information. Based on comparisons
4404 // of pointers to dynamic objects, the optimizer can replace one pointer
4405 // with another, which might be incorrect in presence of invariant
4406 // groups. Comparison with null is safe because null does not carry any
4407 // dynamic information.
4408 if (LHSTy
.mayBeDynamicClass())
4409 LHS
= Builder
.CreateStripInvariantGroup(LHS
);
4410 if (RHSTy
.mayBeDynamicClass())
4411 RHS
= Builder
.CreateStripInvariantGroup(RHS
);
4414 Result
= Builder
.CreateICmp(UICmpOpc
, LHS
, RHS
, "cmp");
4417 // If this is a vector comparison, sign extend the result to the appropriate
4418 // vector integer type and return it (don't convert to bool).
4419 if (LHSTy
->isVectorType())
4420 return Builder
.CreateSExt(Result
, ConvertType(E
->getType()), "sext");
4423 // Complex Comparison: can only be an equality comparison.
4424 CodeGenFunction::ComplexPairTy LHS
, RHS
;
4426 if (auto *CTy
= LHSTy
->getAs
<ComplexType
>()) {
4427 LHS
= CGF
.EmitComplexExpr(E
->getLHS());
4428 CETy
= CTy
->getElementType();
4430 LHS
.first
= Visit(E
->getLHS());
4431 LHS
.second
= llvm::Constant::getNullValue(LHS
.first
->getType());
4434 if (auto *CTy
= RHSTy
->getAs
<ComplexType
>()) {
4435 RHS
= CGF
.EmitComplexExpr(E
->getRHS());
4436 assert(CGF
.getContext().hasSameUnqualifiedType(CETy
,
4437 CTy
->getElementType()) &&
4438 "The element types must always match.");
4441 RHS
.first
= Visit(E
->getRHS());
4442 RHS
.second
= llvm::Constant::getNullValue(RHS
.first
->getType());
4443 assert(CGF
.getContext().hasSameUnqualifiedType(CETy
, RHSTy
) &&
4444 "The element types must always match.");
4447 Value
*ResultR
, *ResultI
;
4448 if (CETy
->isRealFloatingType()) {
4449 // As complex comparisons can only be equality comparisons, they
4450 // are never signaling comparisons.
4451 ResultR
= Builder
.CreateFCmp(FCmpOpc
, LHS
.first
, RHS
.first
, "cmp.r");
4452 ResultI
= Builder
.CreateFCmp(FCmpOpc
, LHS
.second
, RHS
.second
, "cmp.i");
4454 // Complex comparisons can only be equality comparisons. As such, signed
4455 // and unsigned opcodes are the same.
4456 ResultR
= Builder
.CreateICmp(UICmpOpc
, LHS
.first
, RHS
.first
, "cmp.r");
4457 ResultI
= Builder
.CreateICmp(UICmpOpc
, LHS
.second
, RHS
.second
, "cmp.i");
4460 if (E
->getOpcode() == BO_EQ
) {
4461 Result
= Builder
.CreateAnd(ResultR
, ResultI
, "and.ri");
4463 assert(E
->getOpcode() == BO_NE
&&
4464 "Complex comparison other than == or != ?");
4465 Result
= Builder
.CreateOr(ResultR
, ResultI
, "or.ri");
4469 return EmitScalarConversion(Result
, CGF
.getContext().BoolTy
, E
->getType(),
4473 Value
*ScalarExprEmitter::VisitBinAssign(const BinaryOperator
*E
) {
4474 bool Ignore
= TestAndClearIgnoreResultAssign();
4479 switch (E
->getLHS()->getType().getObjCLifetime()) {
4480 case Qualifiers::OCL_Strong
:
4481 std::tie(LHS
, RHS
) = CGF
.EmitARCStoreStrong(E
, Ignore
);
4484 case Qualifiers::OCL_Autoreleasing
:
4485 std::tie(LHS
, RHS
) = CGF
.EmitARCStoreAutoreleasing(E
);
4488 case Qualifiers::OCL_ExplicitNone
:
4489 std::tie(LHS
, RHS
) = CGF
.EmitARCStoreUnsafeUnretained(E
, Ignore
);
4492 case Qualifiers::OCL_Weak
:
4493 RHS
= Visit(E
->getRHS());
4494 LHS
= EmitCheckedLValue(E
->getLHS(), CodeGenFunction::TCK_Store
);
4495 RHS
= CGF
.EmitARCStoreWeak(LHS
.getAddress(CGF
), RHS
, Ignore
);
4498 case Qualifiers::OCL_None
:
4499 // __block variables need to have the rhs evaluated first, plus
4500 // this should improve codegen just a little.
4501 RHS
= Visit(E
->getRHS());
4502 LHS
= EmitCheckedLValue(E
->getLHS(), CodeGenFunction::TCK_Store
);
4504 // Store the value into the LHS. Bit-fields are handled specially
4505 // because the result is altered by the store, i.e., [C99 6.5.16p1]
4506 // 'An assignment expression has the value of the left operand after
4507 // the assignment...'.
4508 if (LHS
.isBitField()) {
4509 CGF
.EmitStoreThroughBitfieldLValue(RValue::get(RHS
), LHS
, &RHS
);
4511 CGF
.EmitNullabilityCheck(LHS
, RHS
, E
->getExprLoc());
4512 CGF
.EmitStoreThroughLValue(RValue::get(RHS
), LHS
);
4516 // If the result is clearly ignored, return now.
4520 // The result of an assignment in C is the assigned r-value.
4521 if (!CGF
.getLangOpts().CPlusPlus
)
4524 // If the lvalue is non-volatile, return the computed value of the assignment.
4525 if (!LHS
.isVolatileQualified())
4528 // Otherwise, reload the value.
4529 return EmitLoadOfLValue(LHS
, E
->getExprLoc());
4532 Value
*ScalarExprEmitter::VisitBinLAnd(const BinaryOperator
*E
) {
4533 // Perform vector logical and on comparisons with zero vectors.
4534 if (E
->getType()->isVectorType()) {
4535 CGF
.incrementProfileCounter(E
);
4537 Value
*LHS
= Visit(E
->getLHS());
4538 Value
*RHS
= Visit(E
->getRHS());
4539 Value
*Zero
= llvm::ConstantAggregateZero::get(LHS
->getType());
4540 if (LHS
->getType()->isFPOrFPVectorTy()) {
4541 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(
4542 CGF
, E
->getFPFeaturesInEffect(CGF
.getLangOpts()));
4543 LHS
= Builder
.CreateFCmp(llvm::CmpInst::FCMP_UNE
, LHS
, Zero
, "cmp");
4544 RHS
= Builder
.CreateFCmp(llvm::CmpInst::FCMP_UNE
, RHS
, Zero
, "cmp");
4546 LHS
= Builder
.CreateICmp(llvm::CmpInst::ICMP_NE
, LHS
, Zero
, "cmp");
4547 RHS
= Builder
.CreateICmp(llvm::CmpInst::ICMP_NE
, RHS
, Zero
, "cmp");
4549 Value
*And
= Builder
.CreateAnd(LHS
, RHS
);
4550 return Builder
.CreateSExt(And
, ConvertType(E
->getType()), "sext");
4553 bool InstrumentRegions
= CGF
.CGM
.getCodeGenOpts().hasProfileClangInstr();
4554 llvm::Type
*ResTy
= ConvertType(E
->getType());
4556 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4557 // If we have 1 && X, just emit X without inserting the control flow.
4559 if (CGF
.ConstantFoldsToSimpleInteger(E
->getLHS(), LHSCondVal
)) {
4560 if (LHSCondVal
) { // If we have 1 && X, just emit X.
4561 CGF
.incrementProfileCounter(E
);
4563 Value
*RHSCond
= CGF
.EvaluateExprAsBool(E
->getRHS());
4565 // If we're generating for profiling or coverage, generate a branch to a
4566 // block that increments the RHS counter needed to track branch condition
4567 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4568 // "FalseBlock" after the increment is done.
4569 if (InstrumentRegions
&&
4570 CodeGenFunction::isInstrumentedCondition(E
->getRHS())) {
4571 llvm::BasicBlock
*FBlock
= CGF
.createBasicBlock("land.end");
4572 llvm::BasicBlock
*RHSBlockCnt
= CGF
.createBasicBlock("land.rhscnt");
4573 Builder
.CreateCondBr(RHSCond
, RHSBlockCnt
, FBlock
);
4574 CGF
.EmitBlock(RHSBlockCnt
);
4575 CGF
.incrementProfileCounter(E
->getRHS());
4576 CGF
.EmitBranch(FBlock
);
4577 CGF
.EmitBlock(FBlock
);
4580 // ZExt result to int or bool.
4581 return Builder
.CreateZExtOrBitCast(RHSCond
, ResTy
, "land.ext");
4584 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4585 if (!CGF
.ContainsLabel(E
->getRHS()))
4586 return llvm::Constant::getNullValue(ResTy
);
4589 llvm::BasicBlock
*ContBlock
= CGF
.createBasicBlock("land.end");
4590 llvm::BasicBlock
*RHSBlock
= CGF
.createBasicBlock("land.rhs");
4592 CodeGenFunction::ConditionalEvaluation
eval(CGF
);
4594 // Branch on the LHS first. If it is false, go to the failure (cont) block.
4595 CGF
.EmitBranchOnBoolExpr(E
->getLHS(), RHSBlock
, ContBlock
,
4596 CGF
.getProfileCount(E
->getRHS()));
4598 // Any edges into the ContBlock are now from an (indeterminate number of)
4599 // edges from this first condition. All of these values will be false. Start
4600 // setting up the PHI node in the Cont Block for this.
4601 llvm::PHINode
*PN
= llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext
), 2,
4603 for (llvm::pred_iterator PI
= pred_begin(ContBlock
), PE
= pred_end(ContBlock
);
4605 PN
->addIncoming(llvm::ConstantInt::getFalse(VMContext
), *PI
);
4608 CGF
.EmitBlock(RHSBlock
);
4609 CGF
.incrementProfileCounter(E
);
4610 Value
*RHSCond
= CGF
.EvaluateExprAsBool(E
->getRHS());
4613 // Reaquire the RHS block, as there may be subblocks inserted.
4614 RHSBlock
= Builder
.GetInsertBlock();
4616 // If we're generating for profiling or coverage, generate a branch on the
4617 // RHS to a block that increments the RHS true counter needed to track branch
4618 // condition coverage.
4619 if (InstrumentRegions
&&
4620 CodeGenFunction::isInstrumentedCondition(E
->getRHS())) {
4621 llvm::BasicBlock
*RHSBlockCnt
= CGF
.createBasicBlock("land.rhscnt");
4622 Builder
.CreateCondBr(RHSCond
, RHSBlockCnt
, ContBlock
);
4623 CGF
.EmitBlock(RHSBlockCnt
);
4624 CGF
.incrementProfileCounter(E
->getRHS());
4625 CGF
.EmitBranch(ContBlock
);
4626 PN
->addIncoming(RHSCond
, RHSBlockCnt
);
4629 // Emit an unconditional branch from this block to ContBlock.
4631 // There is no need to emit line number for unconditional branch.
4632 auto NL
= ApplyDebugLocation::CreateEmpty(CGF
);
4633 CGF
.EmitBlock(ContBlock
);
4635 // Insert an entry into the phi node for the edge with the value of RHSCond.
4636 PN
->addIncoming(RHSCond
, RHSBlock
);
4638 // Artificial location to preserve the scope information
4640 auto NL
= ApplyDebugLocation::CreateArtificial(CGF
);
4641 PN
->setDebugLoc(Builder
.getCurrentDebugLocation());
4644 // ZExt result to int.
4645 return Builder
.CreateZExtOrBitCast(PN
, ResTy
, "land.ext");
4648 Value
*ScalarExprEmitter::VisitBinLOr(const BinaryOperator
*E
) {
4649 // Perform vector logical or on comparisons with zero vectors.
4650 if (E
->getType()->isVectorType()) {
4651 CGF
.incrementProfileCounter(E
);
4653 Value
*LHS
= Visit(E
->getLHS());
4654 Value
*RHS
= Visit(E
->getRHS());
4655 Value
*Zero
= llvm::ConstantAggregateZero::get(LHS
->getType());
4656 if (LHS
->getType()->isFPOrFPVectorTy()) {
4657 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(
4658 CGF
, E
->getFPFeaturesInEffect(CGF
.getLangOpts()));
4659 LHS
= Builder
.CreateFCmp(llvm::CmpInst::FCMP_UNE
, LHS
, Zero
, "cmp");
4660 RHS
= Builder
.CreateFCmp(llvm::CmpInst::FCMP_UNE
, RHS
, Zero
, "cmp");
4662 LHS
= Builder
.CreateICmp(llvm::CmpInst::ICMP_NE
, LHS
, Zero
, "cmp");
4663 RHS
= Builder
.CreateICmp(llvm::CmpInst::ICMP_NE
, RHS
, Zero
, "cmp");
4665 Value
*Or
= Builder
.CreateOr(LHS
, RHS
);
4666 return Builder
.CreateSExt(Or
, ConvertType(E
->getType()), "sext");
4669 bool InstrumentRegions
= CGF
.CGM
.getCodeGenOpts().hasProfileClangInstr();
4670 llvm::Type
*ResTy
= ConvertType(E
->getType());
4672 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4673 // If we have 0 || X, just emit X without inserting the control flow.
4675 if (CGF
.ConstantFoldsToSimpleInteger(E
->getLHS(), LHSCondVal
)) {
4676 if (!LHSCondVal
) { // If we have 0 || X, just emit X.
4677 CGF
.incrementProfileCounter(E
);
4679 Value
*RHSCond
= CGF
.EvaluateExprAsBool(E
->getRHS());
4681 // If we're generating for profiling or coverage, generate a branch to a
4682 // block that increments the RHS counter need to track branch condition
4683 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4684 // "FalseBlock" after the increment is done.
4685 if (InstrumentRegions
&&
4686 CodeGenFunction::isInstrumentedCondition(E
->getRHS())) {
4687 llvm::BasicBlock
*FBlock
= CGF
.createBasicBlock("lor.end");
4688 llvm::BasicBlock
*RHSBlockCnt
= CGF
.createBasicBlock("lor.rhscnt");
4689 Builder
.CreateCondBr(RHSCond
, FBlock
, RHSBlockCnt
);
4690 CGF
.EmitBlock(RHSBlockCnt
);
4691 CGF
.incrementProfileCounter(E
->getRHS());
4692 CGF
.EmitBranch(FBlock
);
4693 CGF
.EmitBlock(FBlock
);
4696 // ZExt result to int or bool.
4697 return Builder
.CreateZExtOrBitCast(RHSCond
, ResTy
, "lor.ext");
4700 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4701 if (!CGF
.ContainsLabel(E
->getRHS()))
4702 return llvm::ConstantInt::get(ResTy
, 1);
4705 llvm::BasicBlock
*ContBlock
= CGF
.createBasicBlock("lor.end");
4706 llvm::BasicBlock
*RHSBlock
= CGF
.createBasicBlock("lor.rhs");
4708 CodeGenFunction::ConditionalEvaluation
eval(CGF
);
4710 // Branch on the LHS first. If it is true, go to the success (cont) block.
4711 CGF
.EmitBranchOnBoolExpr(E
->getLHS(), ContBlock
, RHSBlock
,
4712 CGF
.getCurrentProfileCount() -
4713 CGF
.getProfileCount(E
->getRHS()));
4715 // Any edges into the ContBlock are now from an (indeterminate number of)
4716 // edges from this first condition. All of these values will be true. Start
4717 // setting up the PHI node in the Cont Block for this.
4718 llvm::PHINode
*PN
= llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext
), 2,
4720 for (llvm::pred_iterator PI
= pred_begin(ContBlock
), PE
= pred_end(ContBlock
);
4722 PN
->addIncoming(llvm::ConstantInt::getTrue(VMContext
), *PI
);
4726 // Emit the RHS condition as a bool value.
4727 CGF
.EmitBlock(RHSBlock
);
4728 CGF
.incrementProfileCounter(E
);
4729 Value
*RHSCond
= CGF
.EvaluateExprAsBool(E
->getRHS());
4733 // Reaquire the RHS block, as there may be subblocks inserted.
4734 RHSBlock
= Builder
.GetInsertBlock();
4736 // If we're generating for profiling or coverage, generate a branch on the
4737 // RHS to a block that increments the RHS true counter needed to track branch
4738 // condition coverage.
4739 if (InstrumentRegions
&&
4740 CodeGenFunction::isInstrumentedCondition(E
->getRHS())) {
4741 llvm::BasicBlock
*RHSBlockCnt
= CGF
.createBasicBlock("lor.rhscnt");
4742 Builder
.CreateCondBr(RHSCond
, ContBlock
, RHSBlockCnt
);
4743 CGF
.EmitBlock(RHSBlockCnt
);
4744 CGF
.incrementProfileCounter(E
->getRHS());
4745 CGF
.EmitBranch(ContBlock
);
4746 PN
->addIncoming(RHSCond
, RHSBlockCnt
);
4749 // Emit an unconditional branch from this block to ContBlock. Insert an entry
4750 // into the phi node for the edge with the value of RHSCond.
4751 CGF
.EmitBlock(ContBlock
);
4752 PN
->addIncoming(RHSCond
, RHSBlock
);
4754 // ZExt result to int.
4755 return Builder
.CreateZExtOrBitCast(PN
, ResTy
, "lor.ext");
4758 Value
*ScalarExprEmitter::VisitBinComma(const BinaryOperator
*E
) {
4759 CGF
.EmitIgnoredExpr(E
->getLHS());
4760 CGF
.EnsureInsertPoint();
4761 return Visit(E
->getRHS());
4764 //===----------------------------------------------------------------------===//
4766 //===----------------------------------------------------------------------===//
4768 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4769 /// expression is cheap enough and side-effect-free enough to evaluate
4770 /// unconditionally instead of conditionally. This is used to convert control
4771 /// flow into selects in some cases.
4772 static bool isCheapEnoughToEvaluateUnconditionally(const Expr
*E
,
4773 CodeGenFunction
&CGF
) {
4774 // Anything that is an integer or floating point constant is fine.
4775 return E
->IgnoreParens()->isEvaluatable(CGF
.getContext());
4777 // Even non-volatile automatic variables can't be evaluated unconditionally.
4778 // Referencing a thread_local may cause non-trivial initialization work to
4779 // occur. If we're inside a lambda and one of the variables is from the scope
4780 // outside the lambda, that function may have returned already. Reading its
4781 // locals is a bad idea. Also, these reads may introduce races there didn't
4782 // exist in the source-level program.
4786 Value
*ScalarExprEmitter::
4787 VisitAbstractConditionalOperator(const AbstractConditionalOperator
*E
) {
4788 TestAndClearIgnoreResultAssign();
4790 // Bind the common expression if necessary.
4791 CodeGenFunction::OpaqueValueMapping
binding(CGF
, E
);
4793 Expr
*condExpr
= E
->getCond();
4794 Expr
*lhsExpr
= E
->getTrueExpr();
4795 Expr
*rhsExpr
= E
->getFalseExpr();
4797 // If the condition constant folds and can be elided, try to avoid emitting
4798 // the condition and the dead arm.
4800 if (CGF
.ConstantFoldsToSimpleInteger(condExpr
, CondExprBool
)) {
4801 Expr
*live
= lhsExpr
, *dead
= rhsExpr
;
4802 if (!CondExprBool
) std::swap(live
, dead
);
4804 // If the dead side doesn't have labels we need, just emit the Live part.
4805 if (!CGF
.ContainsLabel(dead
)) {
4807 CGF
.incrementProfileCounter(E
);
4808 Value
*Result
= Visit(live
);
4810 // If the live part is a throw expression, it acts like it has a void
4811 // type, so evaluating it returns a null Value*. However, a conditional
4812 // with non-void type must return a non-null Value*.
4813 if (!Result
&& !E
->getType()->isVoidType())
4814 Result
= llvm::UndefValue::get(CGF
.ConvertType(E
->getType()));
4820 // OpenCL: If the condition is a vector, we can treat this condition like
4821 // the select function.
4822 if ((CGF
.getLangOpts().OpenCL
&& condExpr
->getType()->isVectorType()) ||
4823 condExpr
->getType()->isExtVectorType()) {
4824 CGF
.incrementProfileCounter(E
);
4826 llvm::Value
*CondV
= CGF
.EmitScalarExpr(condExpr
);
4827 llvm::Value
*LHS
= Visit(lhsExpr
);
4828 llvm::Value
*RHS
= Visit(rhsExpr
);
4830 llvm::Type
*condType
= ConvertType(condExpr
->getType());
4831 auto *vecTy
= cast
<llvm::FixedVectorType
>(condType
);
4833 unsigned numElem
= vecTy
->getNumElements();
4834 llvm::Type
*elemType
= vecTy
->getElementType();
4836 llvm::Value
*zeroVec
= llvm::Constant::getNullValue(vecTy
);
4837 llvm::Value
*TestMSB
= Builder
.CreateICmpSLT(CondV
, zeroVec
);
4838 llvm::Value
*tmp
= Builder
.CreateSExt(
4839 TestMSB
, llvm::FixedVectorType::get(elemType
, numElem
), "sext");
4840 llvm::Value
*tmp2
= Builder
.CreateNot(tmp
);
4842 // Cast float to int to perform ANDs if necessary.
4843 llvm::Value
*RHSTmp
= RHS
;
4844 llvm::Value
*LHSTmp
= LHS
;
4845 bool wasCast
= false;
4846 llvm::VectorType
*rhsVTy
= cast
<llvm::VectorType
>(RHS
->getType());
4847 if (rhsVTy
->getElementType()->isFloatingPointTy()) {
4848 RHSTmp
= Builder
.CreateBitCast(RHS
, tmp2
->getType());
4849 LHSTmp
= Builder
.CreateBitCast(LHS
, tmp
->getType());
4853 llvm::Value
*tmp3
= Builder
.CreateAnd(RHSTmp
, tmp2
);
4854 llvm::Value
*tmp4
= Builder
.CreateAnd(LHSTmp
, tmp
);
4855 llvm::Value
*tmp5
= Builder
.CreateOr(tmp3
, tmp4
, "cond");
4857 tmp5
= Builder
.CreateBitCast(tmp5
, RHS
->getType());
4862 if (condExpr
->getType()->isVectorType() ||
4863 condExpr
->getType()->isVLSTBuiltinType()) {
4864 CGF
.incrementProfileCounter(E
);
4866 llvm::Value
*CondV
= CGF
.EmitScalarExpr(condExpr
);
4867 llvm::Value
*LHS
= Visit(lhsExpr
);
4868 llvm::Value
*RHS
= Visit(rhsExpr
);
4870 llvm::Type
*CondType
= ConvertType(condExpr
->getType());
4871 auto *VecTy
= cast
<llvm::VectorType
>(CondType
);
4872 llvm::Value
*ZeroVec
= llvm::Constant::getNullValue(VecTy
);
4874 CondV
= Builder
.CreateICmpNE(CondV
, ZeroVec
, "vector_cond");
4875 return Builder
.CreateSelect(CondV
, LHS
, RHS
, "vector_select");
4878 // If this is a really simple expression (like x ? 4 : 5), emit this as a
4879 // select instead of as control flow. We can only do this if it is cheap and
4880 // safe to evaluate the LHS and RHS unconditionally.
4881 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr
, CGF
) &&
4882 isCheapEnoughToEvaluateUnconditionally(rhsExpr
, CGF
)) {
4883 llvm::Value
*CondV
= CGF
.EvaluateExprAsBool(condExpr
);
4884 llvm::Value
*StepV
= Builder
.CreateZExtOrBitCast(CondV
, CGF
.Int64Ty
);
4886 CGF
.incrementProfileCounter(E
, StepV
);
4888 llvm::Value
*LHS
= Visit(lhsExpr
);
4889 llvm::Value
*RHS
= Visit(rhsExpr
);
4891 // If the conditional has void type, make sure we return a null Value*.
4892 assert(!RHS
&& "LHS and RHS types must match");
4895 return Builder
.CreateSelect(CondV
, LHS
, RHS
, "cond");
4898 llvm::BasicBlock
*LHSBlock
= CGF
.createBasicBlock("cond.true");
4899 llvm::BasicBlock
*RHSBlock
= CGF
.createBasicBlock("cond.false");
4900 llvm::BasicBlock
*ContBlock
= CGF
.createBasicBlock("cond.end");
4902 CodeGenFunction::ConditionalEvaluation
eval(CGF
);
4903 CGF
.EmitBranchOnBoolExpr(condExpr
, LHSBlock
, RHSBlock
,
4904 CGF
.getProfileCount(lhsExpr
));
4906 CGF
.EmitBlock(LHSBlock
);
4907 CGF
.incrementProfileCounter(E
);
4909 Value
*LHS
= Visit(lhsExpr
);
4912 LHSBlock
= Builder
.GetInsertBlock();
4913 Builder
.CreateBr(ContBlock
);
4915 CGF
.EmitBlock(RHSBlock
);
4917 Value
*RHS
= Visit(rhsExpr
);
4920 RHSBlock
= Builder
.GetInsertBlock();
4921 CGF
.EmitBlock(ContBlock
);
4923 // If the LHS or RHS is a throw expression, it will be legitimately null.
4929 // Create a PHI node for the real part.
4930 llvm::PHINode
*PN
= Builder
.CreatePHI(LHS
->getType(), 2, "cond");
4931 PN
->addIncoming(LHS
, LHSBlock
);
4932 PN
->addIncoming(RHS
, RHSBlock
);
4936 Value
*ScalarExprEmitter::VisitChooseExpr(ChooseExpr
*E
) {
4937 return Visit(E
->getChosenSubExpr());
4940 Value
*ScalarExprEmitter::VisitVAArgExpr(VAArgExpr
*VE
) {
4941 QualType Ty
= VE
->getType();
4943 if (Ty
->isVariablyModifiedType())
4944 CGF
.EmitVariablyModifiedType(Ty
);
4946 Address ArgValue
= Address::invalid();
4947 Address ArgPtr
= CGF
.EmitVAArg(VE
, ArgValue
);
4949 llvm::Type
*ArgTy
= ConvertType(VE
->getType());
4951 // If EmitVAArg fails, emit an error.
4952 if (!ArgPtr
.isValid()) {
4953 CGF
.ErrorUnsupported(VE
, "va_arg expression");
4954 return llvm::UndefValue::get(ArgTy
);
4957 // FIXME Volatility.
4958 llvm::Value
*Val
= Builder
.CreateLoad(ArgPtr
);
4960 // If EmitVAArg promoted the type, we must truncate it.
4961 if (ArgTy
!= Val
->getType()) {
4962 if (ArgTy
->isPointerTy() && !Val
->getType()->isPointerTy())
4963 Val
= Builder
.CreateIntToPtr(Val
, ArgTy
);
4965 Val
= Builder
.CreateTrunc(Val
, ArgTy
);
4971 Value
*ScalarExprEmitter::VisitBlockExpr(const BlockExpr
*block
) {
4972 return CGF
.EmitBlockLiteral(block
);
4975 // Convert a vec3 to vec4, or vice versa.
4976 static Value
*ConvertVec3AndVec4(CGBuilderTy
&Builder
, CodeGenFunction
&CGF
,
4977 Value
*Src
, unsigned NumElementsDst
) {
4978 static constexpr int Mask
[] = {0, 1, 2, -1};
4979 return Builder
.CreateShuffleVector(Src
, llvm::ArrayRef(Mask
, NumElementsDst
));
4982 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4983 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4984 // but could be scalar or vectors of different lengths, and either can be
4986 // There are 4 cases:
4987 // 1. non-pointer -> non-pointer : needs 1 bitcast
4988 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast
4989 // 3. pointer -> non-pointer
4990 // a) pointer -> intptr_t : needs 1 ptrtoint
4991 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast
4992 // 4. non-pointer -> pointer
4993 // a) intptr_t -> pointer : needs 1 inttoptr
4994 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr
4995 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4996 // allow casting directly between pointer types and non-integer non-pointer
4998 static Value
*createCastsForTypeOfSameSize(CGBuilderTy
&Builder
,
4999 const llvm::DataLayout
&DL
,
5000 Value
*Src
, llvm::Type
*DstTy
,
5001 StringRef Name
= "") {
5002 auto SrcTy
= Src
->getType();
5005 if (!SrcTy
->isPointerTy() && !DstTy
->isPointerTy())
5006 return Builder
.CreateBitCast(Src
, DstTy
, Name
);
5009 if (SrcTy
->isPointerTy() && DstTy
->isPointerTy())
5010 return Builder
.CreatePointerBitCastOrAddrSpaceCast(Src
, DstTy
, Name
);
5013 if (SrcTy
->isPointerTy() && !DstTy
->isPointerTy()) {
5015 if (!DstTy
->isIntegerTy())
5016 Src
= Builder
.CreatePtrToInt(Src
, DL
.getIntPtrType(SrcTy
));
5018 return Builder
.CreateBitOrPointerCast(Src
, DstTy
, Name
);
5022 if (!SrcTy
->isIntegerTy())
5023 Src
= Builder
.CreateBitCast(Src
, DL
.getIntPtrType(DstTy
));
5025 return Builder
.CreateIntToPtr(Src
, DstTy
, Name
);
5028 Value
*ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr
*E
) {
5029 Value
*Src
= CGF
.EmitScalarExpr(E
->getSrcExpr());
5030 llvm::Type
*DstTy
= ConvertType(E
->getType());
5032 llvm::Type
*SrcTy
= Src
->getType();
5033 unsigned NumElementsSrc
=
5034 isa
<llvm::VectorType
>(SrcTy
)
5035 ? cast
<llvm::FixedVectorType
>(SrcTy
)->getNumElements()
5037 unsigned NumElementsDst
=
5038 isa
<llvm::VectorType
>(DstTy
)
5039 ? cast
<llvm::FixedVectorType
>(DstTy
)->getNumElements()
5042 // Use bit vector expansion for ext_vector_type boolean vectors.
5043 if (E
->getType()->isExtVectorBoolType())
5044 return CGF
.emitBoolVecConversion(Src
, NumElementsDst
, "astype");
5046 // Going from vec3 to non-vec3 is a special case and requires a shuffle
5047 // vector to get a vec4, then a bitcast if the target type is different.
5048 if (NumElementsSrc
== 3 && NumElementsDst
!= 3) {
5049 Src
= ConvertVec3AndVec4(Builder
, CGF
, Src
, 4);
5050 Src
= createCastsForTypeOfSameSize(Builder
, CGF
.CGM
.getDataLayout(), Src
,
5053 Src
->setName("astype");
5057 // Going from non-vec3 to vec3 is a special case and requires a bitcast
5058 // to vec4 if the original type is not vec4, then a shuffle vector to
5060 if (NumElementsSrc
!= 3 && NumElementsDst
== 3) {
5061 auto *Vec4Ty
= llvm::FixedVectorType::get(
5062 cast
<llvm::VectorType
>(DstTy
)->getElementType(), 4);
5063 Src
= createCastsForTypeOfSameSize(Builder
, CGF
.CGM
.getDataLayout(), Src
,
5066 Src
= ConvertVec3AndVec4(Builder
, CGF
, Src
, 3);
5067 Src
->setName("astype");
5071 return createCastsForTypeOfSameSize(Builder
, CGF
.CGM
.getDataLayout(),
5072 Src
, DstTy
, "astype");
5075 Value
*ScalarExprEmitter::VisitAtomicExpr(AtomicExpr
*E
) {
5076 return CGF
.EmitAtomicExpr(E
).getScalarVal();
5079 //===----------------------------------------------------------------------===//
5080 // Entry Point into this File
5081 //===----------------------------------------------------------------------===//
5083 /// Emit the computation of the specified expression of scalar type, ignoring
5085 Value
*CodeGenFunction::EmitScalarExpr(const Expr
*E
, bool IgnoreResultAssign
) {
5086 assert(E
&& hasScalarEvaluationKind(E
->getType()) &&
5087 "Invalid scalar expression to emit");
5089 return ScalarExprEmitter(*this, IgnoreResultAssign
)
5090 .Visit(const_cast<Expr
*>(E
));
5093 /// Emit a conversion from the specified type to the specified destination type,
5094 /// both of which are LLVM scalar types.
5095 Value
*CodeGenFunction::EmitScalarConversion(Value
*Src
, QualType SrcTy
,
5097 SourceLocation Loc
) {
5098 assert(hasScalarEvaluationKind(SrcTy
) && hasScalarEvaluationKind(DstTy
) &&
5099 "Invalid scalar expression to emit");
5100 return ScalarExprEmitter(*this).EmitScalarConversion(Src
, SrcTy
, DstTy
, Loc
);
5103 /// Emit a conversion from the specified complex type to the specified
5104 /// destination type, where the destination type is an LLVM scalar type.
5105 Value
*CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src
,
5108 SourceLocation Loc
) {
5109 assert(SrcTy
->isAnyComplexType() && hasScalarEvaluationKind(DstTy
) &&
5110 "Invalid complex -> scalar conversion");
5111 return ScalarExprEmitter(*this)
5112 .EmitComplexToScalarConversion(Src
, SrcTy
, DstTy
, Loc
);
5117 CodeGenFunction::EmitPromotedScalarExpr(const Expr
*E
,
5118 QualType PromotionType
) {
5119 if (!PromotionType
.isNull())
5120 return ScalarExprEmitter(*this).EmitPromoted(E
, PromotionType
);
5122 return ScalarExprEmitter(*this).Visit(const_cast<Expr
*>(E
));
5126 llvm::Value
*CodeGenFunction::
5127 EmitScalarPrePostIncDec(const UnaryOperator
*E
, LValue LV
,
5128 bool isInc
, bool isPre
) {
5129 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E
, LV
, isInc
, isPre
);
5132 LValue
CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr
*E
) {
5133 // object->isa or (*object).isa
5134 // Generate code as for: *(Class*)object
5136 Expr
*BaseExpr
= E
->getBase();
5137 Address Addr
= Address::invalid();
5138 if (BaseExpr
->isPRValue()) {
5139 llvm::Type
*BaseTy
=
5140 ConvertTypeForMem(BaseExpr
->getType()->getPointeeType());
5141 Addr
= Address(EmitScalarExpr(BaseExpr
), BaseTy
, getPointerAlign());
5143 Addr
= EmitLValue(BaseExpr
).getAddress(*this);
5146 // Cast the address to Class*.
5147 Addr
= Builder
.CreateElementBitCast(Addr
, ConvertType(E
->getType()));
5148 return MakeAddrLValue(Addr
, E
->getType());
5152 LValue
CodeGenFunction::EmitCompoundAssignmentLValue(
5153 const CompoundAssignOperator
*E
) {
5154 ScalarExprEmitter
Scalar(*this);
5155 Value
*Result
= nullptr;
5156 switch (E
->getOpcode()) {
5157 #define COMPOUND_OP(Op) \
5158 case BO_##Op##Assign: \
5159 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
5196 llvm_unreachable("Not valid compound assignment operators");
5199 llvm_unreachable("Unhandled compound assignment operator");
5202 struct GEPOffsetAndOverflow
{
5203 // The total (signed) byte offset for the GEP.
5204 llvm::Value
*TotalOffset
;
5205 // The offset overflow flag - true if the total offset overflows.
5206 llvm::Value
*OffsetOverflows
;
5209 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
5210 /// and compute the total offset it applies from it's base pointer BasePtr.
5211 /// Returns offset in bytes and a boolean flag whether an overflow happened
5212 /// during evaluation.
5213 static GEPOffsetAndOverflow
EmitGEPOffsetInBytes(Value
*BasePtr
, Value
*GEPVal
,
5214 llvm::LLVMContext
&VMContext
,
5216 CGBuilderTy
&Builder
) {
5217 const auto &DL
= CGM
.getDataLayout();
5219 // The total (signed) byte offset for the GEP.
5220 llvm::Value
*TotalOffset
= nullptr;
5222 // Was the GEP already reduced to a constant?
5223 if (isa
<llvm::Constant
>(GEPVal
)) {
5224 // Compute the offset by casting both pointers to integers and subtracting:
5225 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
5226 Value
*BasePtr_int
=
5227 Builder
.CreatePtrToInt(BasePtr
, DL
.getIntPtrType(BasePtr
->getType()));
5229 Builder
.CreatePtrToInt(GEPVal
, DL
.getIntPtrType(GEPVal
->getType()));
5230 TotalOffset
= Builder
.CreateSub(GEPVal_int
, BasePtr_int
);
5231 return {TotalOffset
, /*OffsetOverflows=*/Builder
.getFalse()};
5234 auto *GEP
= cast
<llvm::GEPOperator
>(GEPVal
);
5235 assert(GEP
->getPointerOperand() == BasePtr
&&
5236 "BasePtr must be the base of the GEP.");
5237 assert(GEP
->isInBounds() && "Expected inbounds GEP");
5239 auto *IntPtrTy
= DL
.getIntPtrType(GEP
->getPointerOperandType());
5241 // Grab references to the signed add/mul overflow intrinsics for intptr_t.
5242 auto *Zero
= llvm::ConstantInt::getNullValue(IntPtrTy
);
5243 auto *SAddIntrinsic
=
5244 CGM
.getIntrinsic(llvm::Intrinsic::sadd_with_overflow
, IntPtrTy
);
5245 auto *SMulIntrinsic
=
5246 CGM
.getIntrinsic(llvm::Intrinsic::smul_with_overflow
, IntPtrTy
);
5248 // The offset overflow flag - true if the total offset overflows.
5249 llvm::Value
*OffsetOverflows
= Builder
.getFalse();
5251 /// Return the result of the given binary operation.
5252 auto eval
= [&](BinaryOperator::Opcode Opcode
, llvm::Value
*LHS
,
5253 llvm::Value
*RHS
) -> llvm::Value
* {
5254 assert((Opcode
== BO_Add
|| Opcode
== BO_Mul
) && "Can't eval binop");
5256 // If the operands are constants, return a constant result.
5257 if (auto *LHSCI
= dyn_cast
<llvm::ConstantInt
>(LHS
)) {
5258 if (auto *RHSCI
= dyn_cast
<llvm::ConstantInt
>(RHS
)) {
5260 bool HasOverflow
= mayHaveIntegerOverflow(LHSCI
, RHSCI
, Opcode
,
5261 /*Signed=*/true, N
);
5263 OffsetOverflows
= Builder
.getTrue();
5264 return llvm::ConstantInt::get(VMContext
, N
);
5268 // Otherwise, compute the result with checked arithmetic.
5269 auto *ResultAndOverflow
= Builder
.CreateCall(
5270 (Opcode
== BO_Add
) ? SAddIntrinsic
: SMulIntrinsic
, {LHS
, RHS
});
5271 OffsetOverflows
= Builder
.CreateOr(
5272 Builder
.CreateExtractValue(ResultAndOverflow
, 1), OffsetOverflows
);
5273 return Builder
.CreateExtractValue(ResultAndOverflow
, 0);
5276 // Determine the total byte offset by looking at each GEP operand.
5277 for (auto GTI
= llvm::gep_type_begin(GEP
), GTE
= llvm::gep_type_end(GEP
);
5278 GTI
!= GTE
; ++GTI
) {
5279 llvm::Value
*LocalOffset
;
5280 auto *Index
= GTI
.getOperand();
5281 // Compute the local offset contributed by this indexing step:
5282 if (auto *STy
= GTI
.getStructTypeOrNull()) {
5283 // For struct indexing, the local offset is the byte position of the
5285 unsigned FieldNo
= cast
<llvm::ConstantInt
>(Index
)->getZExtValue();
5286 LocalOffset
= llvm::ConstantInt::get(
5287 IntPtrTy
, DL
.getStructLayout(STy
)->getElementOffset(FieldNo
));
5289 // Otherwise this is array-like indexing. The local offset is the index
5290 // multiplied by the element size.
5291 auto *ElementSize
= llvm::ConstantInt::get(
5292 IntPtrTy
, DL
.getTypeAllocSize(GTI
.getIndexedType()));
5293 auto *IndexS
= Builder
.CreateIntCast(Index
, IntPtrTy
, /*isSigned=*/true);
5294 LocalOffset
= eval(BO_Mul
, ElementSize
, IndexS
);
5297 // If this is the first offset, set it as the total offset. Otherwise, add
5298 // the local offset into the running total.
5299 if (!TotalOffset
|| TotalOffset
== Zero
)
5300 TotalOffset
= LocalOffset
;
5302 TotalOffset
= eval(BO_Add
, TotalOffset
, LocalOffset
);
5305 return {TotalOffset
, OffsetOverflows
};
5309 CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type
*ElemTy
, Value
*Ptr
,
5310 ArrayRef
<Value
*> IdxList
,
5311 bool SignedIndices
, bool IsSubtraction
,
5312 SourceLocation Loc
, const Twine
&Name
) {
5313 llvm::Type
*PtrTy
= Ptr
->getType();
5314 Value
*GEPVal
= Builder
.CreateInBoundsGEP(ElemTy
, Ptr
, IdxList
, Name
);
5316 // If the pointer overflow sanitizer isn't enabled, do nothing.
5317 if (!SanOpts
.has(SanitizerKind::PointerOverflow
))
5320 // Perform nullptr-and-offset check unless the nullptr is defined.
5321 bool PerformNullCheck
= !NullPointerIsDefined(
5322 Builder
.GetInsertBlock()->getParent(), PtrTy
->getPointerAddressSpace());
5323 // Check for overflows unless the GEP got constant-folded,
5324 // and only in the default address space
5325 bool PerformOverflowCheck
=
5326 !isa
<llvm::Constant
>(GEPVal
) && PtrTy
->getPointerAddressSpace() == 0;
5328 if (!(PerformNullCheck
|| PerformOverflowCheck
))
5331 const auto &DL
= CGM
.getDataLayout();
5333 SanitizerScope
SanScope(this);
5334 llvm::Type
*IntPtrTy
= DL
.getIntPtrType(PtrTy
);
5336 GEPOffsetAndOverflow EvaluatedGEP
=
5337 EmitGEPOffsetInBytes(Ptr
, GEPVal
, getLLVMContext(), CGM
, Builder
);
5339 assert((!isa
<llvm::Constant
>(EvaluatedGEP
.TotalOffset
) ||
5340 EvaluatedGEP
.OffsetOverflows
== Builder
.getFalse()) &&
5341 "If the offset got constant-folded, we don't expect that there was an "
5344 auto *Zero
= llvm::ConstantInt::getNullValue(IntPtrTy
);
5346 // Common case: if the total offset is zero, and we are using C++ semantics,
5347 // where nullptr+0 is defined, don't emit a check.
5348 if (EvaluatedGEP
.TotalOffset
== Zero
&& CGM
.getLangOpts().CPlusPlus
)
5351 // Now that we've computed the total offset, add it to the base pointer (with
5352 // wrapping semantics).
5353 auto *IntPtr
= Builder
.CreatePtrToInt(Ptr
, IntPtrTy
);
5354 auto *ComputedGEP
= Builder
.CreateAdd(IntPtr
, EvaluatedGEP
.TotalOffset
);
5356 llvm::SmallVector
<std::pair
<llvm::Value
*, SanitizerMask
>, 2> Checks
;
5358 if (PerformNullCheck
) {
5359 // In C++, if the base pointer evaluates to a null pointer value,
5360 // the only valid pointer this inbounds GEP can produce is also
5361 // a null pointer, so the offset must also evaluate to zero.
5362 // Likewise, if we have non-zero base pointer, we can not get null pointer
5363 // as a result, so the offset can not be -intptr_t(BasePtr).
5364 // In other words, both pointers are either null, or both are non-null,
5365 // or the behaviour is undefined.
5367 // C, however, is more strict in this regard, and gives more
5368 // optimization opportunities: in C, additionally, nullptr+0 is undefined.
5369 // So both the input to the 'gep inbounds' AND the output must not be null.
5370 auto *BaseIsNotNullptr
= Builder
.CreateIsNotNull(Ptr
);
5371 auto *ResultIsNotNullptr
= Builder
.CreateIsNotNull(ComputedGEP
);
5373 CGM
.getLangOpts().CPlusPlus
5374 ? Builder
.CreateICmpEQ(BaseIsNotNullptr
, ResultIsNotNullptr
)
5375 : Builder
.CreateAnd(BaseIsNotNullptr
, ResultIsNotNullptr
);
5376 Checks
.emplace_back(Valid
, SanitizerKind::PointerOverflow
);
5379 if (PerformOverflowCheck
) {
5380 // The GEP is valid if:
5381 // 1) The total offset doesn't overflow, and
5382 // 2) The sign of the difference between the computed address and the base
5383 // pointer matches the sign of the total offset.
5384 llvm::Value
*ValidGEP
;
5385 auto *NoOffsetOverflow
= Builder
.CreateNot(EvaluatedGEP
.OffsetOverflows
);
5386 if (SignedIndices
) {
5387 // GEP is computed as `unsigned base + signed offset`, therefore:
5388 // * If offset was positive, then the computed pointer can not be
5389 // [unsigned] less than the base pointer, unless it overflowed.
5390 // * If offset was negative, then the computed pointer can not be
5391 // [unsigned] greater than the bas pointere, unless it overflowed.
5392 auto *PosOrZeroValid
= Builder
.CreateICmpUGE(ComputedGEP
, IntPtr
);
5393 auto *PosOrZeroOffset
=
5394 Builder
.CreateICmpSGE(EvaluatedGEP
.TotalOffset
, Zero
);
5395 llvm::Value
*NegValid
= Builder
.CreateICmpULT(ComputedGEP
, IntPtr
);
5397 Builder
.CreateSelect(PosOrZeroOffset
, PosOrZeroValid
, NegValid
);
5398 } else if (!IsSubtraction
) {
5399 // GEP is computed as `unsigned base + unsigned offset`, therefore the
5400 // computed pointer can not be [unsigned] less than base pointer,
5401 // unless there was an overflow.
5402 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5403 ValidGEP
= Builder
.CreateICmpUGE(ComputedGEP
, IntPtr
);
5405 // GEP is computed as `unsigned base - unsigned offset`, therefore the
5406 // computed pointer can not be [unsigned] greater than base pointer,
5407 // unless there was an overflow.
5408 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5409 ValidGEP
= Builder
.CreateICmpULE(ComputedGEP
, IntPtr
);
5411 ValidGEP
= Builder
.CreateAnd(ValidGEP
, NoOffsetOverflow
);
5412 Checks
.emplace_back(ValidGEP
, SanitizerKind::PointerOverflow
);
5415 assert(!Checks
.empty() && "Should have produced some checks.");
5417 llvm::Constant
*StaticArgs
[] = {EmitCheckSourceLocation(Loc
)};
5418 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5419 llvm::Value
*DynamicArgs
[] = {IntPtr
, ComputedGEP
};
5420 EmitCheck(Checks
, SanitizerHandler::PointerOverflow
, StaticArgs
, DynamicArgs
);