[AMDGPU][AsmParser][NFC] Get rid of custom default operand handlers.
[llvm-project.git] / clang / lib / CodeGen / CGObjC.cpp
blobc8f0070192dd6a90912648c35e996f19a16e33d9
1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Objective-C code as LLVM code.
11 //===----------------------------------------------------------------------===//
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Basic/Diagnostic.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/CodeGen/CodeGenABITypes.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/Analysis/ObjCARCUtil.h"
28 #include "llvm/BinaryFormat/MachO.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include <optional>
33 using namespace clang;
34 using namespace CodeGen;
36 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
37 static TryEmitResult
38 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
39 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
40 QualType ET,
41 RValue Result);
43 /// Given the address of a variable of pointer type, find the correct
44 /// null to store into it.
45 static llvm::Constant *getNullForVariable(Address addr) {
46 llvm::Type *type = addr.getElementType();
47 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
50 /// Emits an instance of NSConstantString representing the object.
51 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
53 llvm::Constant *C =
54 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
55 // FIXME: This bitcast should just be made an invariant on the Runtime.
56 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
59 /// EmitObjCBoxedExpr - This routine generates code to call
60 /// the appropriate expression boxing method. This will either be
61 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
62 /// or [NSValue valueWithBytes:objCType:].
63 ///
64 llvm::Value *
65 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
66 // Generate the correct selector for this literal's concrete type.
67 // Get the method.
68 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
69 const Expr *SubExpr = E->getSubExpr();
71 if (E->isExpressibleAsConstantInitializer()) {
72 ConstantEmitter ConstEmitter(CGM);
73 return ConstEmitter.tryEmitAbstract(E, E->getType());
76 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
77 Selector Sel = BoxingMethod->getSelector();
79 // Generate a reference to the class pointer, which will be the receiver.
80 // Assumes that the method was introduced in the class that should be
81 // messaged (avoids pulling it out of the result type).
82 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
83 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
84 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
86 CallArgList Args;
87 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
88 QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
90 // ObjCBoxedExpr supports boxing of structs and unions
91 // via [NSValue valueWithBytes:objCType:]
92 const QualType ValueType(SubExpr->getType().getCanonicalType());
93 if (ValueType->isObjCBoxableRecordType()) {
94 // Emit CodeGen for first parameter
95 // and cast value to correct type
96 Address Temporary = CreateMemTemp(SubExpr->getType());
97 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
98 llvm::Value *BitCast =
99 Builder.CreateBitCast(Temporary.getPointer(), ConvertType(ArgQT));
100 Args.add(RValue::get(BitCast), ArgQT);
102 // Create char array to store type encoding
103 std::string Str;
104 getContext().getObjCEncodingForType(ValueType, Str);
105 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
107 // Cast type encoding to correct type
108 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
109 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
110 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
112 Args.add(RValue::get(Cast), EncodingQT);
113 } else {
114 Args.add(EmitAnyExpr(SubExpr), ArgQT);
117 RValue result = Runtime.GenerateMessageSend(
118 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
119 Args, ClassDecl, BoxingMethod);
120 return Builder.CreateBitCast(result.getScalarVal(),
121 ConvertType(E->getType()));
124 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
125 const ObjCMethodDecl *MethodWithObjects) {
126 ASTContext &Context = CGM.getContext();
127 const ObjCDictionaryLiteral *DLE = nullptr;
128 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
129 if (!ALE)
130 DLE = cast<ObjCDictionaryLiteral>(E);
132 // Optimize empty collections by referencing constants, when available.
133 uint64_t NumElements =
134 ALE ? ALE->getNumElements() : DLE->getNumElements();
135 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
136 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
137 QualType IdTy(CGM.getContext().getObjCIdType());
138 llvm::Constant *Constant =
139 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
140 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
141 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
142 cast<llvm::LoadInst>(Ptr)->setMetadata(
143 llvm::LLVMContext::MD_invariant_load,
144 llvm::MDNode::get(getLLVMContext(), std::nullopt));
145 return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
148 // Compute the type of the array we're initializing.
149 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
150 NumElements);
151 QualType ElementType = Context.getObjCIdType().withConst();
152 QualType ElementArrayType
153 = Context.getConstantArrayType(ElementType, APNumElements, nullptr,
154 ArrayType::Normal, /*IndexTypeQuals=*/0);
156 // Allocate the temporary array(s).
157 Address Objects = CreateMemTemp(ElementArrayType, "objects");
158 Address Keys = Address::invalid();
159 if (DLE)
160 Keys = CreateMemTemp(ElementArrayType, "keys");
162 // In ARC, we may need to do extra work to keep all the keys and
163 // values alive until after the call.
164 SmallVector<llvm::Value *, 16> NeededObjects;
165 bool TrackNeededObjects =
166 (getLangOpts().ObjCAutoRefCount &&
167 CGM.getCodeGenOpts().OptimizationLevel != 0);
169 // Perform the actual initialialization of the array(s).
170 for (uint64_t i = 0; i < NumElements; i++) {
171 if (ALE) {
172 // Emit the element and store it to the appropriate array slot.
173 const Expr *Rhs = ALE->getElement(i);
174 LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
175 ElementType, AlignmentSource::Decl);
177 llvm::Value *value = EmitScalarExpr(Rhs);
178 EmitStoreThroughLValue(RValue::get(value), LV, true);
179 if (TrackNeededObjects) {
180 NeededObjects.push_back(value);
182 } else {
183 // Emit the key and store it to the appropriate array slot.
184 const Expr *Key = DLE->getKeyValueElement(i).Key;
185 LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
186 ElementType, AlignmentSource::Decl);
187 llvm::Value *keyValue = EmitScalarExpr(Key);
188 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
190 // Emit the value and store it to the appropriate array slot.
191 const Expr *Value = DLE->getKeyValueElement(i).Value;
192 LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
193 ElementType, AlignmentSource::Decl);
194 llvm::Value *valueValue = EmitScalarExpr(Value);
195 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
196 if (TrackNeededObjects) {
197 NeededObjects.push_back(keyValue);
198 NeededObjects.push_back(valueValue);
203 // Generate the argument list.
204 CallArgList Args;
205 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
206 const ParmVarDecl *argDecl = *PI++;
207 QualType ArgQT = argDecl->getType().getUnqualifiedType();
208 Args.add(RValue::get(Objects.getPointer()), ArgQT);
209 if (DLE) {
210 argDecl = *PI++;
211 ArgQT = argDecl->getType().getUnqualifiedType();
212 Args.add(RValue::get(Keys.getPointer()), ArgQT);
214 argDecl = *PI;
215 ArgQT = argDecl->getType().getUnqualifiedType();
216 llvm::Value *Count =
217 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
218 Args.add(RValue::get(Count), ArgQT);
220 // Generate a reference to the class pointer, which will be the receiver.
221 Selector Sel = MethodWithObjects->getSelector();
222 QualType ResultType = E->getType();
223 const ObjCObjectPointerType *InterfacePointerType
224 = ResultType->getAsObjCInterfacePointerType();
225 ObjCInterfaceDecl *Class
226 = InterfacePointerType->getObjectType()->getInterface();
227 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
228 llvm::Value *Receiver = Runtime.GetClass(*this, Class);
230 // Generate the message send.
231 RValue result = Runtime.GenerateMessageSend(
232 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
233 Receiver, Args, Class, MethodWithObjects);
235 // The above message send needs these objects, but in ARC they are
236 // passed in a buffer that is essentially __unsafe_unretained.
237 // Therefore we must prevent the optimizer from releasing them until
238 // after the call.
239 if (TrackNeededObjects) {
240 EmitARCIntrinsicUse(NeededObjects);
243 return Builder.CreateBitCast(result.getScalarVal(),
244 ConvertType(E->getType()));
247 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
248 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
251 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
252 const ObjCDictionaryLiteral *E) {
253 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
256 /// Emit a selector.
257 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
258 // Untyped selector.
259 // Note that this implementation allows for non-constant strings to be passed
260 // as arguments to @selector(). Currently, the only thing preventing this
261 // behaviour is the type checking in the front end.
262 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
265 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
266 // FIXME: This should pass the Decl not the name.
267 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
270 /// Adjust the type of an Objective-C object that doesn't match up due
271 /// to type erasure at various points, e.g., related result types or the use
272 /// of parameterized classes.
273 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
274 RValue Result) {
275 if (!ExpT->isObjCRetainableType())
276 return Result;
278 // If the converted types are the same, we're done.
279 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
280 if (ExpLLVMTy == Result.getScalarVal()->getType())
281 return Result;
283 // We have applied a substitution. Cast the rvalue appropriately.
284 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
285 ExpLLVMTy));
288 /// Decide whether to extend the lifetime of the receiver of a
289 /// returns-inner-pointer message.
290 static bool
291 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
292 switch (message->getReceiverKind()) {
294 // For a normal instance message, we should extend unless the
295 // receiver is loaded from a variable with precise lifetime.
296 case ObjCMessageExpr::Instance: {
297 const Expr *receiver = message->getInstanceReceiver();
299 // Look through OVEs.
300 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
301 if (opaque->getSourceExpr())
302 receiver = opaque->getSourceExpr()->IgnoreParens();
305 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
306 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
307 receiver = ice->getSubExpr()->IgnoreParens();
309 // Look through OVEs.
310 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
311 if (opaque->getSourceExpr())
312 receiver = opaque->getSourceExpr()->IgnoreParens();
315 // Only __strong variables.
316 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
317 return true;
319 // All ivars and fields have precise lifetime.
320 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
321 return false;
323 // Otherwise, check for variables.
324 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
325 if (!declRef) return true;
326 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
327 if (!var) return true;
329 // All variables have precise lifetime except local variables with
330 // automatic storage duration that aren't specially marked.
331 return (var->hasLocalStorage() &&
332 !var->hasAttr<ObjCPreciseLifetimeAttr>());
335 case ObjCMessageExpr::Class:
336 case ObjCMessageExpr::SuperClass:
337 // It's never necessary for class objects.
338 return false;
340 case ObjCMessageExpr::SuperInstance:
341 // We generally assume that 'self' lives throughout a method call.
342 return false;
345 llvm_unreachable("invalid receiver kind");
348 /// Given an expression of ObjC pointer type, check whether it was
349 /// immediately loaded from an ARC __weak l-value.
350 static const Expr *findWeakLValue(const Expr *E) {
351 assert(E->getType()->isObjCRetainableType());
352 E = E->IgnoreParens();
353 if (auto CE = dyn_cast<CastExpr>(E)) {
354 if (CE->getCastKind() == CK_LValueToRValue) {
355 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
356 return CE->getSubExpr();
360 return nullptr;
363 /// The ObjC runtime may provide entrypoints that are likely to be faster
364 /// than an ordinary message send of the appropriate selector.
366 /// The entrypoints are guaranteed to be equivalent to just sending the
367 /// corresponding message. If the entrypoint is implemented naively as just a
368 /// message send, using it is a trade-off: it sacrifices a few cycles of
369 /// overhead to save a small amount of code. However, it's possible for
370 /// runtimes to detect and special-case classes that use "standard"
371 /// behavior; if that's dynamically a large proportion of all objects, using
372 /// the entrypoint will also be faster than using a message send.
374 /// If the runtime does support a required entrypoint, then this method will
375 /// generate a call and return the resulting value. Otherwise it will return
376 /// std::nullopt and the caller can generate a msgSend instead.
377 static std::optional<llvm::Value *> tryGenerateSpecializedMessageSend(
378 CodeGenFunction &CGF, QualType ResultType, llvm::Value *Receiver,
379 const CallArgList &Args, Selector Sel, const ObjCMethodDecl *method,
380 bool isClassMessage) {
381 auto &CGM = CGF.CGM;
382 if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
383 return std::nullopt;
385 auto &Runtime = CGM.getLangOpts().ObjCRuntime;
386 switch (Sel.getMethodFamily()) {
387 case OMF_alloc:
388 if (isClassMessage &&
389 Runtime.shouldUseRuntimeFunctionsForAlloc() &&
390 ResultType->isObjCObjectPointerType()) {
391 // [Foo alloc] -> objc_alloc(Foo) or
392 // [self alloc] -> objc_alloc(self)
393 if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
394 return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
395 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
396 // [self allocWithZone:nil] -> objc_allocWithZone(self)
397 if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
398 Args.size() == 1 && Args.front().getType()->isPointerType() &&
399 Sel.getNameForSlot(0) == "allocWithZone") {
400 const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
401 if (isa<llvm::ConstantPointerNull>(arg))
402 return CGF.EmitObjCAllocWithZone(Receiver,
403 CGF.ConvertType(ResultType));
404 return std::nullopt;
407 break;
409 case OMF_autorelease:
410 if (ResultType->isObjCObjectPointerType() &&
411 CGM.getLangOpts().getGC() == LangOptions::NonGC &&
412 Runtime.shouldUseARCFunctionsForRetainRelease())
413 return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
414 break;
416 case OMF_retain:
417 if (ResultType->isObjCObjectPointerType() &&
418 CGM.getLangOpts().getGC() == LangOptions::NonGC &&
419 Runtime.shouldUseARCFunctionsForRetainRelease())
420 return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
421 break;
423 case OMF_release:
424 if (ResultType->isVoidType() &&
425 CGM.getLangOpts().getGC() == LangOptions::NonGC &&
426 Runtime.shouldUseARCFunctionsForRetainRelease()) {
427 CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
428 return nullptr;
430 break;
432 default:
433 break;
435 return std::nullopt;
438 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
439 CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
440 Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
441 const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
442 bool isClassMessage) {
443 if (std::optional<llvm::Value *> SpecializedResult =
444 tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
445 Sel, Method, isClassMessage)) {
446 return RValue::get(*SpecializedResult);
448 return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
449 Method);
452 static void AppendFirstImpliedRuntimeProtocols(
453 const ObjCProtocolDecl *PD,
454 llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) {
455 if (!PD->isNonRuntimeProtocol()) {
456 const auto *Can = PD->getCanonicalDecl();
457 PDs.insert(Can);
458 return;
461 for (const auto *ParentPD : PD->protocols())
462 AppendFirstImpliedRuntimeProtocols(ParentPD, PDs);
465 std::vector<const ObjCProtocolDecl *>
466 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin,
467 ObjCProtocolDecl::protocol_iterator end) {
468 std::vector<const ObjCProtocolDecl *> RuntimePds;
469 llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs;
471 for (; begin != end; ++begin) {
472 const auto *It = *begin;
473 const auto *Can = It->getCanonicalDecl();
474 if (Can->isNonRuntimeProtocol())
475 NonRuntimePDs.insert(Can);
476 else
477 RuntimePds.push_back(Can);
480 // If there are no non-runtime protocols then we can just stop now.
481 if (NonRuntimePDs.empty())
482 return RuntimePds;
484 // Else we have to search through the non-runtime protocol's inheritancy
485 // hierarchy DAG stopping whenever a branch either finds a runtime protocol or
486 // a non-runtime protocol without any parents. These are the "first-implied"
487 // protocols from a non-runtime protocol.
488 llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos;
489 for (const auto *PD : NonRuntimePDs)
490 AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos);
492 // Walk the Runtime list to get all protocols implied via the inclusion of
493 // this protocol, e.g. all protocols it inherits from including itself.
494 llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols;
495 for (const auto *PD : RuntimePds) {
496 const auto *Can = PD->getCanonicalDecl();
497 AllImpliedProtocols.insert(Can);
498 Can->getImpliedProtocols(AllImpliedProtocols);
501 // Similar to above, walk the list of first-implied protocols to find the set
502 // all the protocols implied excluding the listed protocols themselves since
503 // they are not yet a part of the `RuntimePds` list.
504 for (const auto *PD : FirstImpliedProtos) {
505 PD->getImpliedProtocols(AllImpliedProtocols);
508 // From the first-implied list we have to finish building the final protocol
509 // list. If a protocol in the first-implied list was already implied via some
510 // inheritance path through some other protocols then it would be redundant to
511 // add it here and so we skip over it.
512 for (const auto *PD : FirstImpliedProtos) {
513 if (!AllImpliedProtocols.contains(PD)) {
514 RuntimePds.push_back(PD);
518 return RuntimePds;
521 /// Instead of '[[MyClass alloc] init]', try to generate
522 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
523 /// caller side, as well as the optimized objc_alloc.
524 static std::optional<llvm::Value *>
525 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
526 auto &Runtime = CGF.getLangOpts().ObjCRuntime;
527 if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
528 return std::nullopt;
530 // Match the exact pattern '[[MyClass alloc] init]'.
531 Selector Sel = OME->getSelector();
532 if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
533 !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
534 Sel.getNameForSlot(0) != "init")
535 return std::nullopt;
537 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
538 // with 'cls' a Class.
539 auto *SubOME =
540 dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
541 if (!SubOME)
542 return std::nullopt;
543 Selector SubSel = SubOME->getSelector();
545 if (!SubOME->getType()->isObjCObjectPointerType() ||
546 !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
547 return std::nullopt;
549 llvm::Value *Receiver = nullptr;
550 switch (SubOME->getReceiverKind()) {
551 case ObjCMessageExpr::Instance:
552 if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
553 return std::nullopt;
554 Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
555 break;
557 case ObjCMessageExpr::Class: {
558 QualType ReceiverType = SubOME->getClassReceiver();
559 const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
560 const ObjCInterfaceDecl *ID = ObjTy->getInterface();
561 assert(ID && "null interface should be impossible here");
562 Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
563 break;
565 case ObjCMessageExpr::SuperInstance:
566 case ObjCMessageExpr::SuperClass:
567 return std::nullopt;
570 return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
573 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
574 ReturnValueSlot Return) {
575 // Only the lookup mechanism and first two arguments of the method
576 // implementation vary between runtimes. We can get the receiver and
577 // arguments in generic code.
579 bool isDelegateInit = E->isDelegateInitCall();
581 const ObjCMethodDecl *method = E->getMethodDecl();
583 // If the method is -retain, and the receiver's being loaded from
584 // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
585 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
586 method->getMethodFamily() == OMF_retain) {
587 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
588 LValue lvalue = EmitLValue(lvalueExpr);
589 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this));
590 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
594 if (std::optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
595 return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
597 // We don't retain the receiver in delegate init calls, and this is
598 // safe because the receiver value is always loaded from 'self',
599 // which we zero out. We don't want to Block_copy block receivers,
600 // though.
601 bool retainSelf =
602 (!isDelegateInit &&
603 CGM.getLangOpts().ObjCAutoRefCount &&
604 method &&
605 method->hasAttr<NSConsumesSelfAttr>());
607 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
608 bool isSuperMessage = false;
609 bool isClassMessage = false;
610 ObjCInterfaceDecl *OID = nullptr;
611 // Find the receiver
612 QualType ReceiverType;
613 llvm::Value *Receiver = nullptr;
614 switch (E->getReceiverKind()) {
615 case ObjCMessageExpr::Instance:
616 ReceiverType = E->getInstanceReceiver()->getType();
617 isClassMessage = ReceiverType->isObjCClassType();
618 if (retainSelf) {
619 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
620 E->getInstanceReceiver());
621 Receiver = ter.getPointer();
622 if (ter.getInt()) retainSelf = false;
623 } else
624 Receiver = EmitScalarExpr(E->getInstanceReceiver());
625 break;
627 case ObjCMessageExpr::Class: {
628 ReceiverType = E->getClassReceiver();
629 OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
630 assert(OID && "Invalid Objective-C class message send");
631 Receiver = Runtime.GetClass(*this, OID);
632 isClassMessage = true;
633 break;
636 case ObjCMessageExpr::SuperInstance:
637 ReceiverType = E->getSuperType();
638 Receiver = LoadObjCSelf();
639 isSuperMessage = true;
640 break;
642 case ObjCMessageExpr::SuperClass:
643 ReceiverType = E->getSuperType();
644 Receiver = LoadObjCSelf();
645 isSuperMessage = true;
646 isClassMessage = true;
647 break;
650 if (retainSelf)
651 Receiver = EmitARCRetainNonBlock(Receiver);
653 // In ARC, we sometimes want to "extend the lifetime"
654 // (i.e. retain+autorelease) of receivers of returns-inner-pointer
655 // messages.
656 if (getLangOpts().ObjCAutoRefCount && method &&
657 method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
658 shouldExtendReceiverForInnerPointerMessage(E))
659 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
661 QualType ResultType = method ? method->getReturnType() : E->getType();
663 CallArgList Args;
664 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
666 // For delegate init calls in ARC, do an unsafe store of null into
667 // self. This represents the call taking direct ownership of that
668 // value. We have to do this after emitting the other call
669 // arguments because they might also reference self, but we don't
670 // have to worry about any of them modifying self because that would
671 // be an undefined read and write of an object in unordered
672 // expressions.
673 if (isDelegateInit) {
674 assert(getLangOpts().ObjCAutoRefCount &&
675 "delegate init calls should only be marked in ARC");
677 // Do an unsafe store of null into self.
678 Address selfAddr =
679 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
680 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
683 RValue result;
684 if (isSuperMessage) {
685 // super is only valid in an Objective-C method
686 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
687 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
688 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
689 E->getSelector(),
690 OMD->getClassInterface(),
691 isCategoryImpl,
692 Receiver,
693 isClassMessage,
694 Args,
695 method);
696 } else {
697 // Call runtime methods directly if we can.
698 result = Runtime.GeneratePossiblySpecializedMessageSend(
699 *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
700 method, isClassMessage);
703 // For delegate init calls in ARC, implicitly store the result of
704 // the call back into self. This takes ownership of the value.
705 if (isDelegateInit) {
706 Address selfAddr =
707 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
708 llvm::Value *newSelf = result.getScalarVal();
710 // The delegate return type isn't necessarily a matching type; in
711 // fact, it's quite likely to be 'id'.
712 llvm::Type *selfTy = selfAddr.getElementType();
713 newSelf = Builder.CreateBitCast(newSelf, selfTy);
715 Builder.CreateStore(newSelf, selfAddr);
718 return AdjustObjCObjectType(*this, E->getType(), result);
721 namespace {
722 struct FinishARCDealloc final : EHScopeStack::Cleanup {
723 void Emit(CodeGenFunction &CGF, Flags flags) override {
724 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
726 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
727 const ObjCInterfaceDecl *iface = impl->getClassInterface();
728 if (!iface->getSuperClass()) return;
730 bool isCategory = isa<ObjCCategoryImplDecl>(impl);
732 // Call [super dealloc] if we have a superclass.
733 llvm::Value *self = CGF.LoadObjCSelf();
735 CallArgList args;
736 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
737 CGF.getContext().VoidTy,
738 method->getSelector(),
739 iface,
740 isCategory,
741 self,
742 /*is class msg*/ false,
743 args,
744 method);
749 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
750 /// the LLVM function and sets the other context used by
751 /// CodeGenFunction.
752 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
753 const ObjCContainerDecl *CD) {
754 SourceLocation StartLoc = OMD->getBeginLoc();
755 FunctionArgList args;
756 // Check if we should generate debug info for this method.
757 if (OMD->hasAttr<NoDebugAttr>())
758 DebugInfo = nullptr; // disable debug info indefinitely for this function
760 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
762 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
763 if (OMD->isDirectMethod()) {
764 Fn->setVisibility(llvm::Function::HiddenVisibility);
765 CGM.SetLLVMFunctionAttributes(OMD, FI, Fn, /*IsThunk=*/false);
766 CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
767 } else {
768 CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
771 args.push_back(OMD->getSelfDecl());
772 if (!OMD->isDirectMethod())
773 args.push_back(OMD->getCmdDecl());
775 args.append(OMD->param_begin(), OMD->param_end());
777 CurGD = OMD;
778 CurEHLocation = OMD->getEndLoc();
780 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
781 OMD->getLocation(), StartLoc);
783 if (OMD->isDirectMethod()) {
784 // This function is a direct call, it has to implement a nil check
785 // on entry.
787 // TODO: possibly have several entry points to elide the check
788 CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
791 // In ARC, certain methods get an extra cleanup.
792 if (CGM.getLangOpts().ObjCAutoRefCount &&
793 OMD->isInstanceMethod() &&
794 OMD->getSelector().isUnarySelector()) {
795 const IdentifierInfo *ident =
796 OMD->getSelector().getIdentifierInfoForSlot(0);
797 if (ident->isStr("dealloc"))
798 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
802 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
803 LValue lvalue, QualType type);
805 /// Generate an Objective-C method. An Objective-C method is a C function with
806 /// its pointer, name, and types registered in the class structure.
807 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
808 StartObjCMethod(OMD, OMD->getClassInterface());
809 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
810 assert(isa<CompoundStmt>(OMD->getBody()));
811 incrementProfileCounter(OMD->getBody());
812 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
813 FinishFunction(OMD->getBodyRBrace());
816 /// emitStructGetterCall - Call the runtime function to load a property
817 /// into the return value slot.
818 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
819 bool isAtomic, bool hasStrong) {
820 ASTContext &Context = CGF.getContext();
822 llvm::Value *src =
823 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
824 .getPointer(CGF);
826 // objc_copyStruct (ReturnValue, &structIvar,
827 // sizeof (Type of Ivar), isAtomic, false);
828 CallArgList args;
830 llvm::Value *dest =
831 CGF.Builder.CreateBitCast(CGF.ReturnValue.getPointer(), CGF.VoidPtrTy);
832 args.add(RValue::get(dest), Context.VoidPtrTy);
834 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
835 args.add(RValue::get(src), Context.VoidPtrTy);
837 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
838 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
839 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
840 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
842 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
843 CGCallee callee = CGCallee::forDirect(fn);
844 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
845 callee, ReturnValueSlot(), args);
848 /// Determine whether the given architecture supports unaligned atomic
849 /// accesses. They don't have to be fast, just faster than a function
850 /// call and a mutex.
851 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
852 // FIXME: Allow unaligned atomic load/store on x86. (It is not
853 // currently supported by the backend.)
854 return false;
857 /// Return the maximum size that permits atomic accesses for the given
858 /// architecture.
859 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
860 llvm::Triple::ArchType arch) {
861 // ARM has 8-byte atomic accesses, but it's not clear whether we
862 // want to rely on them here.
864 // In the default case, just assume that any size up to a pointer is
865 // fine given adequate alignment.
866 return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
869 namespace {
870 class PropertyImplStrategy {
871 public:
872 enum StrategyKind {
873 /// The 'native' strategy is to use the architecture's provided
874 /// reads and writes.
875 Native,
877 /// Use objc_setProperty and objc_getProperty.
878 GetSetProperty,
880 /// Use objc_setProperty for the setter, but use expression
881 /// evaluation for the getter.
882 SetPropertyAndExpressionGet,
884 /// Use objc_copyStruct.
885 CopyStruct,
887 /// The 'expression' strategy is to emit normal assignment or
888 /// lvalue-to-rvalue expressions.
889 Expression
892 StrategyKind getKind() const { return StrategyKind(Kind); }
894 bool hasStrongMember() const { return HasStrong; }
895 bool isAtomic() const { return IsAtomic; }
896 bool isCopy() const { return IsCopy; }
898 CharUnits getIvarSize() const { return IvarSize; }
899 CharUnits getIvarAlignment() const { return IvarAlignment; }
901 PropertyImplStrategy(CodeGenModule &CGM,
902 const ObjCPropertyImplDecl *propImpl);
904 private:
905 unsigned Kind : 8;
906 unsigned IsAtomic : 1;
907 unsigned IsCopy : 1;
908 unsigned HasStrong : 1;
910 CharUnits IvarSize;
911 CharUnits IvarAlignment;
915 /// Pick an implementation strategy for the given property synthesis.
916 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
917 const ObjCPropertyImplDecl *propImpl) {
918 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
919 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
921 IsCopy = (setterKind == ObjCPropertyDecl::Copy);
922 IsAtomic = prop->isAtomic();
923 HasStrong = false; // doesn't matter here.
925 // Evaluate the ivar's size and alignment.
926 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
927 QualType ivarType = ivar->getType();
928 auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType);
929 IvarSize = TInfo.Width;
930 IvarAlignment = TInfo.Align;
932 // If we have a copy property, we always have to use setProperty.
933 // If the property is atomic we need to use getProperty, but in
934 // the nonatomic case we can just use expression.
935 if (IsCopy) {
936 Kind = IsAtomic ? GetSetProperty : SetPropertyAndExpressionGet;
937 return;
940 // Handle retain.
941 if (setterKind == ObjCPropertyDecl::Retain) {
942 // In GC-only, there's nothing special that needs to be done.
943 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
944 // fallthrough
946 // In ARC, if the property is non-atomic, use expression emission,
947 // which translates to objc_storeStrong. This isn't required, but
948 // it's slightly nicer.
949 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
950 // Using standard expression emission for the setter is only
951 // acceptable if the ivar is __strong, which won't be true if
952 // the property is annotated with __attribute__((NSObject)).
953 // TODO: falling all the way back to objc_setProperty here is
954 // just laziness, though; we could still use objc_storeStrong
955 // if we hacked it right.
956 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
957 Kind = Expression;
958 else
959 Kind = SetPropertyAndExpressionGet;
960 return;
962 // Otherwise, we need to at least use setProperty. However, if
963 // the property isn't atomic, we can use normal expression
964 // emission for the getter.
965 } else if (!IsAtomic) {
966 Kind = SetPropertyAndExpressionGet;
967 return;
969 // Otherwise, we have to use both setProperty and getProperty.
970 } else {
971 Kind = GetSetProperty;
972 return;
976 // If we're not atomic, just use expression accesses.
977 if (!IsAtomic) {
978 Kind = Expression;
979 return;
982 // Properties on bitfield ivars need to be emitted using expression
983 // accesses even if they're nominally atomic.
984 if (ivar->isBitField()) {
985 Kind = Expression;
986 return;
989 // GC-qualified or ARC-qualified ivars need to be emitted as
990 // expressions. This actually works out to being atomic anyway,
991 // except for ARC __strong, but that should trigger the above code.
992 if (ivarType.hasNonTrivialObjCLifetime() ||
993 (CGM.getLangOpts().getGC() &&
994 CGM.getContext().getObjCGCAttrKind(ivarType))) {
995 Kind = Expression;
996 return;
999 // Compute whether the ivar has strong members.
1000 if (CGM.getLangOpts().getGC())
1001 if (const RecordType *recordType = ivarType->getAs<RecordType>())
1002 HasStrong = recordType->getDecl()->hasObjectMember();
1004 // We can never access structs with object members with a native
1005 // access, because we need to use write barriers. This is what
1006 // objc_copyStruct is for.
1007 if (HasStrong) {
1008 Kind = CopyStruct;
1009 return;
1012 // Otherwise, this is target-dependent and based on the size and
1013 // alignment of the ivar.
1015 // If the size of the ivar is not a power of two, give up. We don't
1016 // want to get into the business of doing compare-and-swaps.
1017 if (!IvarSize.isPowerOfTwo()) {
1018 Kind = CopyStruct;
1019 return;
1022 llvm::Triple::ArchType arch =
1023 CGM.getTarget().getTriple().getArch();
1025 // Most architectures require memory to fit within a single cache
1026 // line, so the alignment has to be at least the size of the access.
1027 // Otherwise we have to grab a lock.
1028 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
1029 Kind = CopyStruct;
1030 return;
1033 // If the ivar's size exceeds the architecture's maximum atomic
1034 // access size, we have to use CopyStruct.
1035 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
1036 Kind = CopyStruct;
1037 return;
1040 // Otherwise, we can use native loads and stores.
1041 Kind = Native;
1044 /// Generate an Objective-C property getter function.
1046 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1047 /// is illegal within a category.
1048 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
1049 const ObjCPropertyImplDecl *PID) {
1050 llvm::Constant *AtomicHelperFn =
1051 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
1052 ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
1053 assert(OMD && "Invalid call to generate getter (empty method)");
1054 StartObjCMethod(OMD, IMP->getClassInterface());
1056 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
1058 FinishFunction(OMD->getEndLoc());
1061 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
1062 const Expr *getter = propImpl->getGetterCXXConstructor();
1063 if (!getter) return true;
1065 // Sema only makes only of these when the ivar has a C++ class type,
1066 // so the form is pretty constrained.
1068 // If the property has a reference type, we might just be binding a
1069 // reference, in which case the result will be a gl-value. We should
1070 // treat this as a non-trivial operation.
1071 if (getter->isGLValue())
1072 return false;
1074 // If we selected a trivial copy-constructor, we're okay.
1075 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
1076 return (construct->getConstructor()->isTrivial());
1078 // The constructor might require cleanups (in which case it's never
1079 // trivial).
1080 assert(isa<ExprWithCleanups>(getter));
1081 return false;
1084 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
1085 /// copy the ivar into the resturn slot.
1086 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1087 llvm::Value *returnAddr,
1088 ObjCIvarDecl *ivar,
1089 llvm::Constant *AtomicHelperFn) {
1090 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1091 // AtomicHelperFn);
1092 CallArgList args;
1094 // The 1st argument is the return Slot.
1095 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1097 // The 2nd argument is the address of the ivar.
1098 llvm::Value *ivarAddr =
1099 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1100 .getPointer(CGF);
1101 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1102 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1104 // Third argument is the helper function.
1105 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1107 llvm::FunctionCallee copyCppAtomicObjectFn =
1108 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1109 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1110 CGF.EmitCall(
1111 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1112 callee, ReturnValueSlot(), args);
1115 // emitCmdValueForGetterSetterBody - Handle emitting the load necessary for
1116 // the `_cmd` selector argument for getter/setter bodies. For direct methods,
1117 // this returns an undefined/poison value; this matches behavior prior to `_cmd`
1118 // being removed from the direct method ABI as the getter/setter caller would
1119 // never load one. For non-direct methods, this emits a load of the implicit
1120 // `_cmd` storage.
1121 static llvm::Value *emitCmdValueForGetterSetterBody(CodeGenFunction &CGF,
1122 ObjCMethodDecl *MD) {
1123 if (MD->isDirectMethod()) {
1124 // Direct methods do not have a `_cmd` argument. Emit an undefined/poison
1125 // value. This will be passed to objc_getProperty/objc_setProperty, which
1126 // has not appeared bothered by the `_cmd` argument being undefined before.
1127 llvm::Type *selType = CGF.ConvertType(CGF.getContext().getObjCSelType());
1128 return llvm::PoisonValue::get(selType);
1131 return CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(MD->getCmdDecl()), "cmd");
1134 void
1135 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1136 const ObjCPropertyImplDecl *propImpl,
1137 const ObjCMethodDecl *GetterMethodDecl,
1138 llvm::Constant *AtomicHelperFn) {
1140 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1142 if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
1143 if (!AtomicHelperFn) {
1144 LValue Src =
1145 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1146 LValue Dst = MakeAddrLValue(ReturnValue, ivar->getType());
1147 callCStructCopyConstructor(Dst, Src);
1148 } else {
1149 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1150 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), ivar,
1151 AtomicHelperFn);
1153 return;
1156 // If there's a non-trivial 'get' expression, we just have to emit that.
1157 if (!hasTrivialGetExpr(propImpl)) {
1158 if (!AtomicHelperFn) {
1159 auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1160 propImpl->getGetterCXXConstructor(),
1161 /* NRVOCandidate=*/nullptr);
1162 EmitReturnStmt(*ret);
1164 else {
1165 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1166 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
1167 ivar, AtomicHelperFn);
1169 return;
1172 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1173 QualType propType = prop->getType();
1174 ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1176 // Pick an implementation strategy.
1177 PropertyImplStrategy strategy(CGM, propImpl);
1178 switch (strategy.getKind()) {
1179 case PropertyImplStrategy::Native: {
1180 // We don't need to do anything for a zero-size struct.
1181 if (strategy.getIvarSize().isZero())
1182 return;
1184 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1186 // Currently, all atomic accesses have to be through integer
1187 // types, so there's no point in trying to pick a prettier type.
1188 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1189 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1191 // Perform an atomic load. This does not impose ordering constraints.
1192 Address ivarAddr = LV.getAddress(*this);
1193 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1194 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1195 load->setAtomic(llvm::AtomicOrdering::Unordered);
1197 // Store that value into the return address. Doing this with a
1198 // bitcast is likely to produce some pretty ugly IR, but it's not
1199 // the *most* terrible thing in the world.
1200 llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1201 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1202 llvm::Value *ivarVal = load;
1203 if (ivarSize > retTySize) {
1204 bitcastType = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1205 ivarVal = Builder.CreateTrunc(load, bitcastType);
1207 Builder.CreateStore(ivarVal,
1208 Builder.CreateElementBitCast(ReturnValue, bitcastType));
1210 // Make sure we don't do an autorelease.
1211 AutoreleaseResult = false;
1212 return;
1215 case PropertyImplStrategy::GetSetProperty: {
1216 llvm::FunctionCallee getPropertyFn =
1217 CGM.getObjCRuntime().GetPropertyGetFunction();
1218 if (!getPropertyFn) {
1219 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1220 return;
1222 CGCallee callee = CGCallee::forDirect(getPropertyFn);
1224 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1225 // FIXME: Can't this be simpler? This might even be worse than the
1226 // corresponding gcc code.
1227 llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, getterMethod);
1228 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1229 llvm::Value *ivarOffset =
1230 EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar);
1232 CallArgList args;
1233 args.add(RValue::get(self), getContext().getObjCIdType());
1234 args.add(RValue::get(cmd), getContext().getObjCSelType());
1235 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1236 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1237 getContext().BoolTy);
1239 // FIXME: We shouldn't need to get the function info here, the
1240 // runtime already should have computed it to build the function.
1241 llvm::CallBase *CallInstruction;
1242 RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1243 getContext().getObjCIdType(), args),
1244 callee, ReturnValueSlot(), args, &CallInstruction);
1245 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1246 call->setTailCall();
1248 // We need to fix the type here. Ivars with copy & retain are
1249 // always objects so we don't need to worry about complex or
1250 // aggregates.
1251 RV = RValue::get(Builder.CreateBitCast(
1252 RV.getScalarVal(),
1253 getTypes().ConvertType(getterMethod->getReturnType())));
1255 EmitReturnOfRValue(RV, propType);
1257 // objc_getProperty does an autorelease, so we should suppress ours.
1258 AutoreleaseResult = false;
1260 return;
1263 case PropertyImplStrategy::CopyStruct:
1264 emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1265 strategy.hasStrongMember());
1266 return;
1268 case PropertyImplStrategy::Expression:
1269 case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1270 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1272 QualType ivarType = ivar->getType();
1273 switch (getEvaluationKind(ivarType)) {
1274 case TEK_Complex: {
1275 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1276 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1277 /*init*/ true);
1278 return;
1280 case TEK_Aggregate: {
1281 // The return value slot is guaranteed to not be aliased, but
1282 // that's not necessarily the same as "on the stack", so
1283 // we still potentially need objc_memmove_collectable.
1284 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1285 /* Src= */ LV, ivarType, getOverlapForReturnValue());
1286 return;
1288 case TEK_Scalar: {
1289 llvm::Value *value;
1290 if (propType->isReferenceType()) {
1291 value = LV.getAddress(*this).getPointer();
1292 } else {
1293 // We want to load and autoreleaseReturnValue ARC __weak ivars.
1294 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1295 if (getLangOpts().ObjCAutoRefCount) {
1296 value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1297 } else {
1298 value = EmitARCLoadWeak(LV.getAddress(*this));
1301 // Otherwise we want to do a simple load, suppressing the
1302 // final autorelease.
1303 } else {
1304 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1305 AutoreleaseResult = false;
1308 value = Builder.CreateBitCast(
1309 value, ConvertType(GetterMethodDecl->getReturnType()));
1312 EmitReturnOfRValue(RValue::get(value), propType);
1313 return;
1316 llvm_unreachable("bad evaluation kind");
1320 llvm_unreachable("bad @property implementation strategy!");
1323 /// emitStructSetterCall - Call the runtime function to store the value
1324 /// from the first formal parameter into the given ivar.
1325 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1326 ObjCIvarDecl *ivar) {
1327 // objc_copyStruct (&structIvar, &Arg,
1328 // sizeof (struct something), true, false);
1329 CallArgList args;
1331 // The first argument is the address of the ivar.
1332 llvm::Value *ivarAddr =
1333 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1334 .getPointer(CGF);
1335 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1336 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1338 // The second argument is the address of the parameter variable.
1339 ParmVarDecl *argVar = *OMD->param_begin();
1340 DeclRefExpr argRef(CGF.getContext(), argVar, false,
1341 argVar->getType().getNonReferenceType(), VK_LValue,
1342 SourceLocation());
1343 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1344 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1345 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1347 // The third argument is the sizeof the type.
1348 llvm::Value *size =
1349 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1350 args.add(RValue::get(size), CGF.getContext().getSizeType());
1352 // The fourth argument is the 'isAtomic' flag.
1353 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1355 // The fifth argument is the 'hasStrong' flag.
1356 // FIXME: should this really always be false?
1357 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1359 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1360 CGCallee callee = CGCallee::forDirect(fn);
1361 CGF.EmitCall(
1362 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1363 callee, ReturnValueSlot(), args);
1366 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1367 /// the value from the first formal parameter into the given ivar, using
1368 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1369 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1370 ObjCMethodDecl *OMD,
1371 ObjCIvarDecl *ivar,
1372 llvm::Constant *AtomicHelperFn) {
1373 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1374 // AtomicHelperFn);
1375 CallArgList args;
1377 // The first argument is the address of the ivar.
1378 llvm::Value *ivarAddr =
1379 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1380 .getPointer(CGF);
1381 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1382 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1384 // The second argument is the address of the parameter variable.
1385 ParmVarDecl *argVar = *OMD->param_begin();
1386 DeclRefExpr argRef(CGF.getContext(), argVar, false,
1387 argVar->getType().getNonReferenceType(), VK_LValue,
1388 SourceLocation());
1389 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1390 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1391 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1393 // Third argument is the helper function.
1394 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1396 llvm::FunctionCallee fn =
1397 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1398 CGCallee callee = CGCallee::forDirect(fn);
1399 CGF.EmitCall(
1400 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1401 callee, ReturnValueSlot(), args);
1405 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1406 Expr *setter = PID->getSetterCXXAssignment();
1407 if (!setter) return true;
1409 // Sema only makes only of these when the ivar has a C++ class type,
1410 // so the form is pretty constrained.
1412 // An operator call is trivial if the function it calls is trivial.
1413 // This also implies that there's nothing non-trivial going on with
1414 // the arguments, because operator= can only be trivial if it's a
1415 // synthesized assignment operator and therefore both parameters are
1416 // references.
1417 if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1418 if (const FunctionDecl *callee
1419 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1420 if (callee->isTrivial())
1421 return true;
1422 return false;
1425 assert(isa<ExprWithCleanups>(setter));
1426 return false;
1429 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1430 if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1431 return false;
1432 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1435 void
1436 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1437 const ObjCPropertyImplDecl *propImpl,
1438 llvm::Constant *AtomicHelperFn) {
1439 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1440 ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1442 if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
1443 ParmVarDecl *PVD = *setterMethod->param_begin();
1444 if (!AtomicHelperFn) {
1445 // Call the move assignment operator instead of calling the copy
1446 // assignment operator and destructor.
1447 LValue Dst = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar,
1448 /*quals*/ 0);
1449 LValue Src = MakeAddrLValue(GetAddrOfLocalVar(PVD), ivar->getType());
1450 callCStructMoveAssignmentOperator(Dst, Src);
1451 } else {
1452 // If atomic, assignment is called via a locking api.
1453 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, AtomicHelperFn);
1455 // Decativate the destructor for the setter parameter.
1456 DeactivateCleanupBlock(CalleeDestructedParamCleanups[PVD], AllocaInsertPt);
1457 return;
1460 // Just use the setter expression if Sema gave us one and it's
1461 // non-trivial.
1462 if (!hasTrivialSetExpr(propImpl)) {
1463 if (!AtomicHelperFn)
1464 // If non-atomic, assignment is called directly.
1465 EmitStmt(propImpl->getSetterCXXAssignment());
1466 else
1467 // If atomic, assignment is called via a locking api.
1468 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1469 AtomicHelperFn);
1470 return;
1473 PropertyImplStrategy strategy(CGM, propImpl);
1474 switch (strategy.getKind()) {
1475 case PropertyImplStrategy::Native: {
1476 // We don't need to do anything for a zero-size struct.
1477 if (strategy.getIvarSize().isZero())
1478 return;
1480 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1482 LValue ivarLValue =
1483 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1484 Address ivarAddr = ivarLValue.getAddress(*this);
1486 // Currently, all atomic accesses have to be through integer
1487 // types, so there's no point in trying to pick a prettier type.
1488 llvm::Type *bitcastType =
1489 llvm::Type::getIntNTy(getLLVMContext(),
1490 getContext().toBits(strategy.getIvarSize()));
1492 // Cast both arguments to the chosen operation type.
1493 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1494 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1496 // This bitcast load is likely to cause some nasty IR.
1497 llvm::Value *load = Builder.CreateLoad(argAddr);
1499 // Perform an atomic store. There are no memory ordering requirements.
1500 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1501 store->setAtomic(llvm::AtomicOrdering::Unordered);
1502 return;
1505 case PropertyImplStrategy::GetSetProperty:
1506 case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1508 llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1509 llvm::FunctionCallee setPropertyFn = nullptr;
1510 if (UseOptimizedSetter(CGM)) {
1511 // 10.8 and iOS 6.0 code and GC is off
1512 setOptimizedPropertyFn =
1513 CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1514 strategy.isAtomic(), strategy.isCopy());
1515 if (!setOptimizedPropertyFn) {
1516 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1517 return;
1520 else {
1521 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1522 if (!setPropertyFn) {
1523 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1524 return;
1528 // Emit objc_setProperty((id) self, _cmd, offset, arg,
1529 // <is-atomic>, <is-copy>).
1530 llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, setterMethod);
1531 llvm::Value *self =
1532 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1533 llvm::Value *ivarOffset =
1534 EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar);
1535 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1536 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1537 arg = Builder.CreateBitCast(arg, VoidPtrTy);
1539 CallArgList args;
1540 args.add(RValue::get(self), getContext().getObjCIdType());
1541 args.add(RValue::get(cmd), getContext().getObjCSelType());
1542 if (setOptimizedPropertyFn) {
1543 args.add(RValue::get(arg), getContext().getObjCIdType());
1544 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1545 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1546 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1547 callee, ReturnValueSlot(), args);
1548 } else {
1549 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1550 args.add(RValue::get(arg), getContext().getObjCIdType());
1551 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1552 getContext().BoolTy);
1553 args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1554 getContext().BoolTy);
1555 // FIXME: We shouldn't need to get the function info here, the runtime
1556 // already should have computed it to build the function.
1557 CGCallee callee = CGCallee::forDirect(setPropertyFn);
1558 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1559 callee, ReturnValueSlot(), args);
1562 return;
1565 case PropertyImplStrategy::CopyStruct:
1566 emitStructSetterCall(*this, setterMethod, ivar);
1567 return;
1569 case PropertyImplStrategy::Expression:
1570 break;
1573 // Otherwise, fake up some ASTs and emit a normal assignment.
1574 ValueDecl *selfDecl = setterMethod->getSelfDecl();
1575 DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1576 VK_LValue, SourceLocation());
1577 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(),
1578 CK_LValueToRValue, &self, VK_PRValue,
1579 FPOptionsOverride());
1580 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1581 SourceLocation(), SourceLocation(),
1582 &selfLoad, true, true);
1584 ParmVarDecl *argDecl = *setterMethod->param_begin();
1585 QualType argType = argDecl->getType().getNonReferenceType();
1586 DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1587 SourceLocation());
1588 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1589 argType.getUnqualifiedType(), CK_LValueToRValue,
1590 &arg, VK_PRValue, FPOptionsOverride());
1592 // The property type can differ from the ivar type in some situations with
1593 // Objective-C pointer types, we can always bit cast the RHS in these cases.
1594 // The following absurdity is just to ensure well-formed IR.
1595 CastKind argCK = CK_NoOp;
1596 if (ivarRef.getType()->isObjCObjectPointerType()) {
1597 if (argLoad.getType()->isObjCObjectPointerType())
1598 argCK = CK_BitCast;
1599 else if (argLoad.getType()->isBlockPointerType())
1600 argCK = CK_BlockPointerToObjCPointerCast;
1601 else
1602 argCK = CK_CPointerToObjCPointerCast;
1603 } else if (ivarRef.getType()->isBlockPointerType()) {
1604 if (argLoad.getType()->isBlockPointerType())
1605 argCK = CK_BitCast;
1606 else
1607 argCK = CK_AnyPointerToBlockPointerCast;
1608 } else if (ivarRef.getType()->isPointerType()) {
1609 argCK = CK_BitCast;
1610 } else if (argLoad.getType()->isAtomicType() &&
1611 !ivarRef.getType()->isAtomicType()) {
1612 argCK = CK_AtomicToNonAtomic;
1613 } else if (!argLoad.getType()->isAtomicType() &&
1614 ivarRef.getType()->isAtomicType()) {
1615 argCK = CK_NonAtomicToAtomic;
1617 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK,
1618 &argLoad, VK_PRValue, FPOptionsOverride());
1619 Expr *finalArg = &argLoad;
1620 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1621 argLoad.getType()))
1622 finalArg = &argCast;
1624 BinaryOperator *assign = BinaryOperator::Create(
1625 getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(),
1626 VK_PRValue, OK_Ordinary, SourceLocation(), FPOptionsOverride());
1627 EmitStmt(assign);
1630 /// Generate an Objective-C property setter function.
1632 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1633 /// is illegal within a category.
1634 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1635 const ObjCPropertyImplDecl *PID) {
1636 llvm::Constant *AtomicHelperFn =
1637 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1638 ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1639 assert(OMD && "Invalid call to generate setter (empty method)");
1640 StartObjCMethod(OMD, IMP->getClassInterface());
1642 generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1644 FinishFunction(OMD->getEndLoc());
1647 namespace {
1648 struct DestroyIvar final : EHScopeStack::Cleanup {
1649 private:
1650 llvm::Value *addr;
1651 const ObjCIvarDecl *ivar;
1652 CodeGenFunction::Destroyer *destroyer;
1653 bool useEHCleanupForArray;
1654 public:
1655 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1656 CodeGenFunction::Destroyer *destroyer,
1657 bool useEHCleanupForArray)
1658 : addr(addr), ivar(ivar), destroyer(destroyer),
1659 useEHCleanupForArray(useEHCleanupForArray) {}
1661 void Emit(CodeGenFunction &CGF, Flags flags) override {
1662 LValue lvalue
1663 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1664 CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer,
1665 flags.isForNormalCleanup() && useEHCleanupForArray);
1670 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1671 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1672 Address addr,
1673 QualType type) {
1674 llvm::Value *null = getNullForVariable(addr);
1675 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1678 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1679 ObjCImplementationDecl *impl) {
1680 CodeGenFunction::RunCleanupsScope scope(CGF);
1682 llvm::Value *self = CGF.LoadObjCSelf();
1684 const ObjCInterfaceDecl *iface = impl->getClassInterface();
1685 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1686 ivar; ivar = ivar->getNextIvar()) {
1687 QualType type = ivar->getType();
1689 // Check whether the ivar is a destructible type.
1690 QualType::DestructionKind dtorKind = type.isDestructedType();
1691 if (!dtorKind) continue;
1693 CodeGenFunction::Destroyer *destroyer = nullptr;
1695 // Use a call to objc_storeStrong to destroy strong ivars, for the
1696 // general benefit of the tools.
1697 if (dtorKind == QualType::DK_objc_strong_lifetime) {
1698 destroyer = destroyARCStrongWithStore;
1700 // Otherwise use the default for the destruction kind.
1701 } else {
1702 destroyer = CGF.getDestroyer(dtorKind);
1705 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1707 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1708 cleanupKind & EHCleanup);
1711 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1714 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1715 ObjCMethodDecl *MD,
1716 bool ctor) {
1717 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1718 StartObjCMethod(MD, IMP->getClassInterface());
1720 // Emit .cxx_construct.
1721 if (ctor) {
1722 // Suppress the final autorelease in ARC.
1723 AutoreleaseResult = false;
1725 for (const auto *IvarInit : IMP->inits()) {
1726 FieldDecl *Field = IvarInit->getAnyMember();
1727 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1728 LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1729 LoadObjCSelf(), Ivar, 0);
1730 EmitAggExpr(IvarInit->getInit(),
1731 AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed,
1732 AggValueSlot::DoesNotNeedGCBarriers,
1733 AggValueSlot::IsNotAliased,
1734 AggValueSlot::DoesNotOverlap));
1736 // constructor returns 'self'.
1737 CodeGenTypes &Types = CGM.getTypes();
1738 QualType IdTy(CGM.getContext().getObjCIdType());
1739 llvm::Value *SelfAsId =
1740 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1741 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1743 // Emit .cxx_destruct.
1744 } else {
1745 emitCXXDestructMethod(*this, IMP);
1747 FinishFunction();
1750 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1751 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1752 DeclRefExpr DRE(getContext(), Self,
1753 /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1754 Self->getType(), VK_LValue, SourceLocation());
1755 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1758 QualType CodeGenFunction::TypeOfSelfObject() {
1759 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1760 ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1761 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1762 getContext().getCanonicalType(selfDecl->getType()));
1763 return PTy->getPointeeType();
1766 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1767 llvm::FunctionCallee EnumerationMutationFnPtr =
1768 CGM.getObjCRuntime().EnumerationMutationFunction();
1769 if (!EnumerationMutationFnPtr) {
1770 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1771 return;
1773 CGCallee EnumerationMutationFn =
1774 CGCallee::forDirect(EnumerationMutationFnPtr);
1776 CGDebugInfo *DI = getDebugInfo();
1777 if (DI)
1778 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1780 RunCleanupsScope ForScope(*this);
1782 // The local variable comes into scope immediately.
1783 AutoVarEmission variable = AutoVarEmission::invalid();
1784 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1785 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1787 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1789 // Fast enumeration state.
1790 QualType StateTy = CGM.getObjCFastEnumerationStateType();
1791 Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1792 EmitNullInitialization(StatePtr, StateTy);
1794 // Number of elements in the items array.
1795 static const unsigned NumItems = 16;
1797 // Fetch the countByEnumeratingWithState:objects:count: selector.
1798 IdentifierInfo *II[] = {
1799 &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1800 &CGM.getContext().Idents.get("objects"),
1801 &CGM.getContext().Idents.get("count")
1803 Selector FastEnumSel =
1804 CGM.getContext().Selectors.getSelector(std::size(II), &II[0]);
1806 QualType ItemsTy =
1807 getContext().getConstantArrayType(getContext().getObjCIdType(),
1808 llvm::APInt(32, NumItems), nullptr,
1809 ArrayType::Normal, 0);
1810 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1812 // Emit the collection pointer. In ARC, we do a retain.
1813 llvm::Value *Collection;
1814 if (getLangOpts().ObjCAutoRefCount) {
1815 Collection = EmitARCRetainScalarExpr(S.getCollection());
1817 // Enter a cleanup to do the release.
1818 EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1819 } else {
1820 Collection = EmitScalarExpr(S.getCollection());
1823 // The 'continue' label needs to appear within the cleanup for the
1824 // collection object.
1825 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1827 // Send it our message:
1828 CallArgList Args;
1830 // The first argument is a temporary of the enumeration-state type.
1831 Args.add(RValue::get(StatePtr.getPointer()),
1832 getContext().getPointerType(StateTy));
1834 // The second argument is a temporary array with space for NumItems
1835 // pointers. We'll actually be loading elements from the array
1836 // pointer written into the control state; this buffer is so that
1837 // collections that *aren't* backed by arrays can still queue up
1838 // batches of elements.
1839 Args.add(RValue::get(ItemsPtr.getPointer()),
1840 getContext().getPointerType(ItemsTy));
1842 // The third argument is the capacity of that temporary array.
1843 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1844 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1845 Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1847 // Start the enumeration.
1848 RValue CountRV =
1849 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1850 getContext().getNSUIntegerType(),
1851 FastEnumSel, Collection, Args);
1853 // The initial number of objects that were returned in the buffer.
1854 llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1856 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1857 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1859 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1861 // If the limit pointer was zero to begin with, the collection is
1862 // empty; skip all this. Set the branch weight assuming this has the same
1863 // probability of exiting the loop as any other loop exit.
1864 uint64_t EntryCount = getCurrentProfileCount();
1865 Builder.CreateCondBr(
1866 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1867 LoopInitBB,
1868 createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1870 // Otherwise, initialize the loop.
1871 EmitBlock(LoopInitBB);
1873 // Save the initial mutations value. This is the value at an
1874 // address that was written into the state object by
1875 // countByEnumeratingWithState:objects:count:.
1876 Address StateMutationsPtrPtr =
1877 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1878 llvm::Value *StateMutationsPtr
1879 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1881 llvm::Type *UnsignedLongTy = ConvertType(getContext().UnsignedLongTy);
1882 llvm::Value *initialMutations =
1883 Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1884 getPointerAlign(), "forcoll.initial-mutations");
1886 // Start looping. This is the point we return to whenever we have a
1887 // fresh, non-empty batch of objects.
1888 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1889 EmitBlock(LoopBodyBB);
1891 // The current index into the buffer.
1892 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1893 index->addIncoming(zero, LoopInitBB);
1895 // The current buffer size.
1896 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1897 count->addIncoming(initialBufferLimit, LoopInitBB);
1899 incrementProfileCounter(&S);
1901 // Check whether the mutations value has changed from where it was
1902 // at start. StateMutationsPtr should actually be invariant between
1903 // refreshes.
1904 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1905 llvm::Value *currentMutations
1906 = Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1907 getPointerAlign(), "statemutations");
1909 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1910 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1912 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1913 WasNotMutatedBB, WasMutatedBB);
1915 // If so, call the enumeration-mutation function.
1916 EmitBlock(WasMutatedBB);
1917 llvm::Type *ObjCIdType = ConvertType(getContext().getObjCIdType());
1918 llvm::Value *V =
1919 Builder.CreateBitCast(Collection, ObjCIdType);
1920 CallArgList Args2;
1921 Args2.add(RValue::get(V), getContext().getObjCIdType());
1922 // FIXME: We shouldn't need to get the function info here, the runtime already
1923 // should have computed it to build the function.
1924 EmitCall(
1925 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1926 EnumerationMutationFn, ReturnValueSlot(), Args2);
1928 // Otherwise, or if the mutation function returns, just continue.
1929 EmitBlock(WasNotMutatedBB);
1931 // Initialize the element variable.
1932 RunCleanupsScope elementVariableScope(*this);
1933 bool elementIsVariable;
1934 LValue elementLValue;
1935 QualType elementType;
1936 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1937 // Initialize the variable, in case it's a __block variable or something.
1938 EmitAutoVarInit(variable);
1940 const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1941 DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1942 D->getType(), VK_LValue, SourceLocation());
1943 elementLValue = EmitLValue(&tempDRE);
1944 elementType = D->getType();
1945 elementIsVariable = true;
1947 if (D->isARCPseudoStrong())
1948 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1949 } else {
1950 elementLValue = LValue(); // suppress warning
1951 elementType = cast<Expr>(S.getElement())->getType();
1952 elementIsVariable = false;
1954 llvm::Type *convertedElementType = ConvertType(elementType);
1956 // Fetch the buffer out of the enumeration state.
1957 // TODO: this pointer should actually be invariant between
1958 // refreshes, which would help us do certain loop optimizations.
1959 Address StateItemsPtr =
1960 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1961 llvm::Value *EnumStateItems =
1962 Builder.CreateLoad(StateItemsPtr, "stateitems");
1964 // Fetch the value at the current index from the buffer.
1965 llvm::Value *CurrentItemPtr = Builder.CreateGEP(
1966 ObjCIdType, EnumStateItems, index, "currentitem.ptr");
1967 llvm::Value *CurrentItem =
1968 Builder.CreateAlignedLoad(ObjCIdType, CurrentItemPtr, getPointerAlign());
1970 if (SanOpts.has(SanitizerKind::ObjCCast)) {
1971 // Before using an item from the collection, check that the implicit cast
1972 // from id to the element type is valid. This is done with instrumentation
1973 // roughly corresponding to:
1975 // if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1976 const ObjCObjectPointerType *ObjPtrTy =
1977 elementType->getAsObjCInterfacePointerType();
1978 const ObjCInterfaceType *InterfaceTy =
1979 ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr;
1980 if (InterfaceTy) {
1981 SanitizerScope SanScope(this);
1982 auto &C = CGM.getContext();
1983 assert(InterfaceTy->getDecl() && "No decl for ObjC interface type");
1984 Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C);
1985 CallArgList IsKindOfClassArgs;
1986 llvm::Value *Cls =
1987 CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl());
1988 IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType());
1989 llvm::Value *IsClass =
1990 CGM.getObjCRuntime()
1991 .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy,
1992 IsKindOfClassSel, CurrentItem,
1993 IsKindOfClassArgs)
1994 .getScalarVal();
1995 llvm::Constant *StaticData[] = {
1996 EmitCheckSourceLocation(S.getBeginLoc()),
1997 EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))};
1998 EmitCheck({{IsClass, SanitizerKind::ObjCCast}},
1999 SanitizerHandler::InvalidObjCCast,
2000 ArrayRef<llvm::Constant *>(StaticData), CurrentItem);
2004 // Cast that value to the right type.
2005 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
2006 "currentitem");
2008 // Make sure we have an l-value. Yes, this gets evaluated every
2009 // time through the loop.
2010 if (!elementIsVariable) {
2011 elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2012 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
2013 } else {
2014 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
2015 /*isInit*/ true);
2018 // If we do have an element variable, this assignment is the end of
2019 // its initialization.
2020 if (elementIsVariable)
2021 EmitAutoVarCleanups(variable);
2023 // Perform the loop body, setting up break and continue labels.
2024 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
2026 RunCleanupsScope Scope(*this);
2027 EmitStmt(S.getBody());
2029 BreakContinueStack.pop_back();
2031 // Destroy the element variable now.
2032 elementVariableScope.ForceCleanup();
2034 // Check whether there are more elements.
2035 EmitBlock(AfterBody.getBlock());
2037 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
2039 // First we check in the local buffer.
2040 llvm::Value *indexPlusOne =
2041 Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
2043 // If we haven't overrun the buffer yet, we can continue.
2044 // Set the branch weights based on the simplifying assumption that this is
2045 // like a while-loop, i.e., ignoring that the false branch fetches more
2046 // elements and then returns to the loop.
2047 Builder.CreateCondBr(
2048 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
2049 createProfileWeights(getProfileCount(S.getBody()), EntryCount));
2051 index->addIncoming(indexPlusOne, AfterBody.getBlock());
2052 count->addIncoming(count, AfterBody.getBlock());
2054 // Otherwise, we have to fetch more elements.
2055 EmitBlock(FetchMoreBB);
2057 CountRV =
2058 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2059 getContext().getNSUIntegerType(),
2060 FastEnumSel, Collection, Args);
2062 // If we got a zero count, we're done.
2063 llvm::Value *refetchCount = CountRV.getScalarVal();
2065 // (note that the message send might split FetchMoreBB)
2066 index->addIncoming(zero, Builder.GetInsertBlock());
2067 count->addIncoming(refetchCount, Builder.GetInsertBlock());
2069 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
2070 EmptyBB, LoopBodyBB);
2072 // No more elements.
2073 EmitBlock(EmptyBB);
2075 if (!elementIsVariable) {
2076 // If the element was not a declaration, set it to be null.
2078 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
2079 elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2080 EmitStoreThroughLValue(RValue::get(null), elementLValue);
2083 if (DI)
2084 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
2086 ForScope.ForceCleanup();
2087 EmitBlock(LoopEnd.getBlock());
2090 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
2091 CGM.getObjCRuntime().EmitTryStmt(*this, S);
2094 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
2095 CGM.getObjCRuntime().EmitThrowStmt(*this, S);
2098 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
2099 const ObjCAtSynchronizedStmt &S) {
2100 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
2103 namespace {
2104 struct CallObjCRelease final : EHScopeStack::Cleanup {
2105 CallObjCRelease(llvm::Value *object) : object(object) {}
2106 llvm::Value *object;
2108 void Emit(CodeGenFunction &CGF, Flags flags) override {
2109 // Releases at the end of the full-expression are imprecise.
2110 CGF.EmitARCRelease(object, ARCImpreciseLifetime);
2115 /// Produce the code for a CK_ARCConsumeObject. Does a primitive
2116 /// release at the end of the full-expression.
2117 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
2118 llvm::Value *object) {
2119 // If we're in a conditional branch, we need to make the cleanup
2120 // conditional.
2121 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
2122 return object;
2125 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
2126 llvm::Value *value) {
2127 return EmitARCRetainAutorelease(type, value);
2130 /// Given a number of pointers, inform the optimizer that they're
2131 /// being intrinsically used up until this point in the program.
2132 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
2133 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
2134 if (!fn)
2135 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
2137 // This isn't really a "runtime" function, but as an intrinsic it
2138 // doesn't really matter as long as we align things up.
2139 EmitNounwindRuntimeCall(fn, values);
2142 /// Emit a call to "clang.arc.noop.use", which consumes the result of a call
2143 /// that has operand bundle "clang.arc.attachedcall".
2144 void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) {
2145 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use;
2146 if (!fn)
2147 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use);
2148 EmitNounwindRuntimeCall(fn, values);
2151 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
2152 if (auto *F = dyn_cast<llvm::Function>(RTF)) {
2153 // If the target runtime doesn't naturally support ARC, emit weak
2154 // references to the runtime support library. We don't really
2155 // permit this to fail, but we need a particular relocation style.
2156 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
2157 !CGM.getTriple().isOSBinFormatCOFF()) {
2158 F->setLinkage(llvm::Function::ExternalWeakLinkage);
2163 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
2164 llvm::FunctionCallee RTF) {
2165 setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
2168 static llvm::Function *getARCIntrinsic(llvm::Intrinsic::ID IntID,
2169 CodeGenModule &CGM) {
2170 llvm::Function *fn = CGM.getIntrinsic(IntID);
2171 setARCRuntimeFunctionLinkage(CGM, fn);
2172 return fn;
2175 /// Perform an operation having the signature
2176 /// i8* (i8*)
2177 /// where a null input causes a no-op and returns null.
2178 static llvm::Value *emitARCValueOperation(
2179 CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2180 llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2181 llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2182 if (isa<llvm::ConstantPointerNull>(value))
2183 return value;
2185 if (!fn)
2186 fn = getARCIntrinsic(IntID, CGF.CGM);
2188 // Cast the argument to 'id'.
2189 llvm::Type *origType = returnType ? returnType : value->getType();
2190 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2192 // Call the function.
2193 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2194 call->setTailCallKind(tailKind);
2196 // Cast the result back to the original type.
2197 return CGF.Builder.CreateBitCast(call, origType);
2200 /// Perform an operation having the following signature:
2201 /// i8* (i8**)
2202 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2203 llvm::Function *&fn,
2204 llvm::Intrinsic::ID IntID) {
2205 if (!fn)
2206 fn = getARCIntrinsic(IntID, CGF.CGM);
2208 // Cast the argument to 'id*'.
2209 llvm::Type *origType = addr.getElementType();
2210 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8PtrTy);
2212 // Call the function.
2213 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2215 // Cast the result back to a dereference of the original type.
2216 if (origType != CGF.Int8PtrTy)
2217 result = CGF.Builder.CreateBitCast(result, origType);
2219 return result;
2222 /// Perform an operation having the following signature:
2223 /// i8* (i8**, i8*)
2224 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2225 llvm::Value *value,
2226 llvm::Function *&fn,
2227 llvm::Intrinsic::ID IntID,
2228 bool ignored) {
2229 assert(addr.getElementType() == value->getType());
2231 if (!fn)
2232 fn = getARCIntrinsic(IntID, CGF.CGM);
2234 llvm::Type *origType = value->getType();
2236 llvm::Value *args[] = {
2237 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2238 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2240 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2242 if (ignored) return nullptr;
2244 return CGF.Builder.CreateBitCast(result, origType);
2247 /// Perform an operation having the following signature:
2248 /// void (i8**, i8**)
2249 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2250 llvm::Function *&fn,
2251 llvm::Intrinsic::ID IntID) {
2252 assert(dst.getType() == src.getType());
2254 if (!fn)
2255 fn = getARCIntrinsic(IntID, CGF.CGM);
2257 llvm::Value *args[] = {
2258 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2259 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
2261 CGF.EmitNounwindRuntimeCall(fn, args);
2264 /// Perform an operation having the signature
2265 /// i8* (i8*)
2266 /// where a null input causes a no-op and returns null.
2267 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2268 llvm::Value *value,
2269 llvm::Type *returnType,
2270 llvm::FunctionCallee &fn,
2271 StringRef fnName) {
2272 if (isa<llvm::ConstantPointerNull>(value))
2273 return value;
2275 if (!fn) {
2276 llvm::FunctionType *fnType =
2277 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2278 fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2280 // We have Native ARC, so set nonlazybind attribute for performance
2281 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2282 if (fnName == "objc_retain")
2283 f->addFnAttr(llvm::Attribute::NonLazyBind);
2286 // Cast the argument to 'id'.
2287 llvm::Type *origType = returnType ? returnType : value->getType();
2288 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2290 // Call the function.
2291 llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2293 // Mark calls to objc_autorelease as tail on the assumption that methods
2294 // overriding autorelease do not touch anything on the stack.
2295 if (fnName == "objc_autorelease")
2296 if (auto *Call = dyn_cast<llvm::CallInst>(Inst))
2297 Call->setTailCall();
2299 // Cast the result back to the original type.
2300 return CGF.Builder.CreateBitCast(Inst, origType);
2303 /// Produce the code to do a retain. Based on the type, calls one of:
2304 /// call i8* \@objc_retain(i8* %value)
2305 /// call i8* \@objc_retainBlock(i8* %value)
2306 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2307 if (type->isBlockPointerType())
2308 return EmitARCRetainBlock(value, /*mandatory*/ false);
2309 else
2310 return EmitARCRetainNonBlock(value);
2313 /// Retain the given object, with normal retain semantics.
2314 /// call i8* \@objc_retain(i8* %value)
2315 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2316 return emitARCValueOperation(*this, value, nullptr,
2317 CGM.getObjCEntrypoints().objc_retain,
2318 llvm::Intrinsic::objc_retain);
2321 /// Retain the given block, with _Block_copy semantics.
2322 /// call i8* \@objc_retainBlock(i8* %value)
2324 /// \param mandatory - If false, emit the call with metadata
2325 /// indicating that it's okay for the optimizer to eliminate this call
2326 /// if it can prove that the block never escapes except down the stack.
2327 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2328 bool mandatory) {
2329 llvm::Value *result
2330 = emitARCValueOperation(*this, value, nullptr,
2331 CGM.getObjCEntrypoints().objc_retainBlock,
2332 llvm::Intrinsic::objc_retainBlock);
2334 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2335 // tell the optimizer that it doesn't need to do this copy if the
2336 // block doesn't escape, where being passed as an argument doesn't
2337 // count as escaping.
2338 if (!mandatory && isa<llvm::Instruction>(result)) {
2339 llvm::CallInst *call
2340 = cast<llvm::CallInst>(result->stripPointerCasts());
2341 assert(call->getCalledOperand() ==
2342 CGM.getObjCEntrypoints().objc_retainBlock);
2344 call->setMetadata("clang.arc.copy_on_escape",
2345 llvm::MDNode::get(Builder.getContext(), std::nullopt));
2348 return result;
2351 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2352 // Fetch the void(void) inline asm which marks that we're going to
2353 // do something with the autoreleased return value.
2354 llvm::InlineAsm *&marker
2355 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2356 if (!marker) {
2357 StringRef assembly
2358 = CGF.CGM.getTargetCodeGenInfo()
2359 .getARCRetainAutoreleasedReturnValueMarker();
2361 // If we have an empty assembly string, there's nothing to do.
2362 if (assembly.empty()) {
2364 // Otherwise, at -O0, build an inline asm that we're going to call
2365 // in a moment.
2366 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2367 llvm::FunctionType *type =
2368 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2370 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2372 // If we're at -O1 and above, we don't want to litter the code
2373 // with this marker yet, so leave a breadcrumb for the ARC
2374 // optimizer to pick up.
2375 } else {
2376 const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr();
2377 if (!CGF.CGM.getModule().getModuleFlag(retainRVMarkerKey)) {
2378 auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2379 CGF.CGM.getModule().addModuleFlag(llvm::Module::Error,
2380 retainRVMarkerKey, str);
2385 // Call the marker asm if we made one, which we do only at -O0.
2386 if (marker)
2387 CGF.Builder.CreateCall(marker, std::nullopt,
2388 CGF.getBundlesForFunclet(marker));
2391 static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value,
2392 bool IsRetainRV,
2393 CodeGenFunction &CGF) {
2394 emitAutoreleasedReturnValueMarker(CGF);
2396 // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting
2397 // retainRV or claimRV calls in the IR. We currently do this only when the
2398 // optimization level isn't -O0 since global-isel, which is currently run at
2399 // -O0, doesn't know about the operand bundle.
2400 ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints();
2401 llvm::Function *&EP = IsRetainRV
2402 ? EPs.objc_retainAutoreleasedReturnValue
2403 : EPs.objc_unsafeClaimAutoreleasedReturnValue;
2404 llvm::Intrinsic::ID IID =
2405 IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue
2406 : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue;
2407 EP = getARCIntrinsic(IID, CGF.CGM);
2409 llvm::Triple::ArchType Arch = CGF.CGM.getTriple().getArch();
2411 // FIXME: Do this on all targets and at -O0 too. This can be enabled only if
2412 // the target backend knows how to handle the operand bundle.
2413 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2414 (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::x86_64)) {
2415 llvm::Value *bundleArgs[] = {EP};
2416 llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs);
2417 auto *oldCall = cast<llvm::CallBase>(value);
2418 llvm::CallBase *newCall = llvm::CallBase::addOperandBundle(
2419 oldCall, llvm::LLVMContext::OB_clang_arc_attachedcall, OB, oldCall);
2420 newCall->copyMetadata(*oldCall);
2421 oldCall->replaceAllUsesWith(newCall);
2422 oldCall->eraseFromParent();
2423 CGF.EmitARCNoopIntrinsicUse(newCall);
2424 return newCall;
2427 bool isNoTail =
2428 CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail();
2429 llvm::CallInst::TailCallKind tailKind =
2430 isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None;
2431 return emitARCValueOperation(CGF, value, nullptr, EP, IID, tailKind);
2434 /// Retain the given object which is the result of a function call.
2435 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2437 /// Yes, this function name is one character away from a different
2438 /// call with completely different semantics.
2439 llvm::Value *
2440 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2441 return emitOptimizedARCReturnCall(value, true, *this);
2444 /// Claim a possibly-autoreleased return value at +0. This is only
2445 /// valid to do in contexts which do not rely on the retain to keep
2446 /// the object valid for all of its uses; for example, when
2447 /// the value is ignored, or when it is being assigned to an
2448 /// __unsafe_unretained variable.
2450 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2451 llvm::Value *
2452 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2453 return emitOptimizedARCReturnCall(value, false, *this);
2456 /// Release the given object.
2457 /// call void \@objc_release(i8* %value)
2458 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2459 ARCPreciseLifetime_t precise) {
2460 if (isa<llvm::ConstantPointerNull>(value)) return;
2462 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2463 if (!fn)
2464 fn = getARCIntrinsic(llvm::Intrinsic::objc_release, CGM);
2466 // Cast the argument to 'id'.
2467 value = Builder.CreateBitCast(value, Int8PtrTy);
2469 // Call objc_release.
2470 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2472 if (precise == ARCImpreciseLifetime) {
2473 call->setMetadata("clang.imprecise_release",
2474 llvm::MDNode::get(Builder.getContext(), std::nullopt));
2478 /// Destroy a __strong variable.
2480 /// At -O0, emit a call to store 'null' into the address;
2481 /// instrumenting tools prefer this because the address is exposed,
2482 /// but it's relatively cumbersome to optimize.
2484 /// At -O1 and above, just load and call objc_release.
2486 /// call void \@objc_storeStrong(i8** %addr, i8* null)
2487 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2488 ARCPreciseLifetime_t precise) {
2489 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2490 llvm::Value *null = getNullForVariable(addr);
2491 EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2492 return;
2495 llvm::Value *value = Builder.CreateLoad(addr);
2496 EmitARCRelease(value, precise);
2499 /// Store into a strong object. Always calls this:
2500 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
2501 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2502 llvm::Value *value,
2503 bool ignored) {
2504 assert(addr.getElementType() == value->getType());
2506 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2507 if (!fn)
2508 fn = getARCIntrinsic(llvm::Intrinsic::objc_storeStrong, CGM);
2510 llvm::Value *args[] = {
2511 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2512 Builder.CreateBitCast(value, Int8PtrTy)
2514 EmitNounwindRuntimeCall(fn, args);
2516 if (ignored) return nullptr;
2517 return value;
2520 /// Store into a strong object. Sometimes calls this:
2521 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
2522 /// Other times, breaks it down into components.
2523 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2524 llvm::Value *newValue,
2525 bool ignored) {
2526 QualType type = dst.getType();
2527 bool isBlock = type->isBlockPointerType();
2529 // Use a store barrier at -O0 unless this is a block type or the
2530 // lvalue is inadequately aligned.
2531 if (shouldUseFusedARCCalls() &&
2532 !isBlock &&
2533 (dst.getAlignment().isZero() ||
2534 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2535 return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored);
2538 // Otherwise, split it out.
2540 // Retain the new value.
2541 newValue = EmitARCRetain(type, newValue);
2543 // Read the old value.
2544 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2546 // Store. We do this before the release so that any deallocs won't
2547 // see the old value.
2548 EmitStoreOfScalar(newValue, dst);
2550 // Finally, release the old value.
2551 EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2553 return newValue;
2556 /// Autorelease the given object.
2557 /// call i8* \@objc_autorelease(i8* %value)
2558 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2559 return emitARCValueOperation(*this, value, nullptr,
2560 CGM.getObjCEntrypoints().objc_autorelease,
2561 llvm::Intrinsic::objc_autorelease);
2564 /// Autorelease the given object.
2565 /// call i8* \@objc_autoreleaseReturnValue(i8* %value)
2566 llvm::Value *
2567 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2568 return emitARCValueOperation(*this, value, nullptr,
2569 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2570 llvm::Intrinsic::objc_autoreleaseReturnValue,
2571 llvm::CallInst::TCK_Tail);
2574 /// Do a fused retain/autorelease of the given object.
2575 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2576 llvm::Value *
2577 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2578 return emitARCValueOperation(*this, value, nullptr,
2579 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2580 llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2581 llvm::CallInst::TCK_Tail);
2584 /// Do a fused retain/autorelease of the given object.
2585 /// call i8* \@objc_retainAutorelease(i8* %value)
2586 /// or
2587 /// %retain = call i8* \@objc_retainBlock(i8* %value)
2588 /// call i8* \@objc_autorelease(i8* %retain)
2589 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2590 llvm::Value *value) {
2591 if (!type->isBlockPointerType())
2592 return EmitARCRetainAutoreleaseNonBlock(value);
2594 if (isa<llvm::ConstantPointerNull>(value)) return value;
2596 llvm::Type *origType = value->getType();
2597 value = Builder.CreateBitCast(value, Int8PtrTy);
2598 value = EmitARCRetainBlock(value, /*mandatory*/ true);
2599 value = EmitARCAutorelease(value);
2600 return Builder.CreateBitCast(value, origType);
2603 /// Do a fused retain/autorelease of the given object.
2604 /// call i8* \@objc_retainAutorelease(i8* %value)
2605 llvm::Value *
2606 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2607 return emitARCValueOperation(*this, value, nullptr,
2608 CGM.getObjCEntrypoints().objc_retainAutorelease,
2609 llvm::Intrinsic::objc_retainAutorelease);
2612 /// i8* \@objc_loadWeak(i8** %addr)
2613 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2614 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2615 return emitARCLoadOperation(*this, addr,
2616 CGM.getObjCEntrypoints().objc_loadWeak,
2617 llvm::Intrinsic::objc_loadWeak);
2620 /// i8* \@objc_loadWeakRetained(i8** %addr)
2621 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2622 return emitARCLoadOperation(*this, addr,
2623 CGM.getObjCEntrypoints().objc_loadWeakRetained,
2624 llvm::Intrinsic::objc_loadWeakRetained);
2627 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2628 /// Returns %value.
2629 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2630 llvm::Value *value,
2631 bool ignored) {
2632 return emitARCStoreOperation(*this, addr, value,
2633 CGM.getObjCEntrypoints().objc_storeWeak,
2634 llvm::Intrinsic::objc_storeWeak, ignored);
2637 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2638 /// Returns %value. %addr is known to not have a current weak entry.
2639 /// Essentially equivalent to:
2640 /// *addr = nil; objc_storeWeak(addr, value);
2641 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2642 // If we're initializing to null, just write null to memory; no need
2643 // to get the runtime involved. But don't do this if optimization
2644 // is enabled, because accounting for this would make the optimizer
2645 // much more complicated.
2646 if (isa<llvm::ConstantPointerNull>(value) &&
2647 CGM.getCodeGenOpts().OptimizationLevel == 0) {
2648 Builder.CreateStore(value, addr);
2649 return;
2652 emitARCStoreOperation(*this, addr, value,
2653 CGM.getObjCEntrypoints().objc_initWeak,
2654 llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2657 /// void \@objc_destroyWeak(i8** %addr)
2658 /// Essentially objc_storeWeak(addr, nil).
2659 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2660 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2661 if (!fn)
2662 fn = getARCIntrinsic(llvm::Intrinsic::objc_destroyWeak, CGM);
2664 // Cast the argument to 'id*'.
2665 addr = Builder.CreateElementBitCast(addr, Int8PtrTy);
2667 EmitNounwindRuntimeCall(fn, addr.getPointer());
2670 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2671 /// Disregards the current value in %dest. Leaves %src pointing to nothing.
2672 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2673 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2674 emitARCCopyOperation(*this, dst, src,
2675 CGM.getObjCEntrypoints().objc_moveWeak,
2676 llvm::Intrinsic::objc_moveWeak);
2679 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2680 /// Disregards the current value in %dest. Essentially
2681 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2682 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2683 emitARCCopyOperation(*this, dst, src,
2684 CGM.getObjCEntrypoints().objc_copyWeak,
2685 llvm::Intrinsic::objc_copyWeak);
2688 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2689 Address SrcAddr) {
2690 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2691 Object = EmitObjCConsumeObject(Ty, Object);
2692 EmitARCStoreWeak(DstAddr, Object, false);
2695 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2696 Address SrcAddr) {
2697 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2698 Object = EmitObjCConsumeObject(Ty, Object);
2699 EmitARCStoreWeak(DstAddr, Object, false);
2700 EmitARCDestroyWeak(SrcAddr);
2703 /// Produce the code to do a objc_autoreleasepool_push.
2704 /// call i8* \@objc_autoreleasePoolPush(void)
2705 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2706 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2707 if (!fn)
2708 fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush, CGM);
2710 return EmitNounwindRuntimeCall(fn);
2713 /// Produce the code to do a primitive release.
2714 /// call void \@objc_autoreleasePoolPop(i8* %ptr)
2715 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2716 assert(value->getType() == Int8PtrTy);
2718 if (getInvokeDest()) {
2719 // Call the runtime method not the intrinsic if we are handling exceptions
2720 llvm::FunctionCallee &fn =
2721 CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2722 if (!fn) {
2723 llvm::FunctionType *fnType =
2724 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2725 fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2726 setARCRuntimeFunctionLinkage(CGM, fn);
2729 // objc_autoreleasePoolPop can throw.
2730 EmitRuntimeCallOrInvoke(fn, value);
2731 } else {
2732 llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2733 if (!fn)
2734 fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop, CGM);
2736 EmitRuntimeCall(fn, value);
2740 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2741 /// Which is: [[NSAutoreleasePool alloc] init];
2742 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2743 /// init is declared as: - (id) init; in its NSObject super class.
2745 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2746 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2747 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2748 // [NSAutoreleasePool alloc]
2749 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2750 Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2751 CallArgList Args;
2752 RValue AllocRV =
2753 Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2754 getContext().getObjCIdType(),
2755 AllocSel, Receiver, Args);
2757 // [Receiver init]
2758 Receiver = AllocRV.getScalarVal();
2759 II = &CGM.getContext().Idents.get("init");
2760 Selector InitSel = getContext().Selectors.getSelector(0, &II);
2761 RValue InitRV =
2762 Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2763 getContext().getObjCIdType(),
2764 InitSel, Receiver, Args);
2765 return InitRV.getScalarVal();
2768 /// Allocate the given objc object.
2769 /// call i8* \@objc_alloc(i8* %value)
2770 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2771 llvm::Type *resultType) {
2772 return emitObjCValueOperation(*this, value, resultType,
2773 CGM.getObjCEntrypoints().objc_alloc,
2774 "objc_alloc");
2777 /// Allocate the given objc object.
2778 /// call i8* \@objc_allocWithZone(i8* %value)
2779 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2780 llvm::Type *resultType) {
2781 return emitObjCValueOperation(*this, value, resultType,
2782 CGM.getObjCEntrypoints().objc_allocWithZone,
2783 "objc_allocWithZone");
2786 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2787 llvm::Type *resultType) {
2788 return emitObjCValueOperation(*this, value, resultType,
2789 CGM.getObjCEntrypoints().objc_alloc_init,
2790 "objc_alloc_init");
2793 /// Produce the code to do a primitive release.
2794 /// [tmp drain];
2795 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2796 IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2797 Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2798 CallArgList Args;
2799 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2800 getContext().VoidTy, DrainSel, Arg, Args);
2803 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2804 Address addr,
2805 QualType type) {
2806 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2809 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2810 Address addr,
2811 QualType type) {
2812 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2815 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2816 Address addr,
2817 QualType type) {
2818 CGF.EmitARCDestroyWeak(addr);
2821 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2822 QualType type) {
2823 llvm::Value *value = CGF.Builder.CreateLoad(addr);
2824 CGF.EmitARCIntrinsicUse(value);
2827 /// Autorelease the given object.
2828 /// call i8* \@objc_autorelease(i8* %value)
2829 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2830 llvm::Type *returnType) {
2831 return emitObjCValueOperation(
2832 *this, value, returnType,
2833 CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2834 "objc_autorelease");
2837 /// Retain the given object, with normal retain semantics.
2838 /// call i8* \@objc_retain(i8* %value)
2839 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2840 llvm::Type *returnType) {
2841 return emitObjCValueOperation(
2842 *this, value, returnType,
2843 CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2846 /// Release the given object.
2847 /// call void \@objc_release(i8* %value)
2848 void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2849 ARCPreciseLifetime_t precise) {
2850 if (isa<llvm::ConstantPointerNull>(value)) return;
2852 llvm::FunctionCallee &fn =
2853 CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2854 if (!fn) {
2855 llvm::FunctionType *fnType =
2856 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2857 fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2858 setARCRuntimeFunctionLinkage(CGM, fn);
2859 // We have Native ARC, so set nonlazybind attribute for performance
2860 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2861 f->addFnAttr(llvm::Attribute::NonLazyBind);
2864 // Cast the argument to 'id'.
2865 value = Builder.CreateBitCast(value, Int8PtrTy);
2867 // Call objc_release.
2868 llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2870 if (precise == ARCImpreciseLifetime) {
2871 call->setMetadata("clang.imprecise_release",
2872 llvm::MDNode::get(Builder.getContext(), std::nullopt));
2876 namespace {
2877 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2878 llvm::Value *Token;
2880 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2882 void Emit(CodeGenFunction &CGF, Flags flags) override {
2883 CGF.EmitObjCAutoreleasePoolPop(Token);
2886 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2887 llvm::Value *Token;
2889 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2891 void Emit(CodeGenFunction &CGF, Flags flags) override {
2892 CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2897 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2898 if (CGM.getLangOpts().ObjCAutoRefCount)
2899 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2900 else
2901 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2904 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2905 switch (lifetime) {
2906 case Qualifiers::OCL_None:
2907 case Qualifiers::OCL_ExplicitNone:
2908 case Qualifiers::OCL_Strong:
2909 case Qualifiers::OCL_Autoreleasing:
2910 return true;
2912 case Qualifiers::OCL_Weak:
2913 return false;
2916 llvm_unreachable("impossible lifetime!");
2919 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2920 LValue lvalue,
2921 QualType type) {
2922 llvm::Value *result;
2923 bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2924 if (shouldRetain) {
2925 result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2926 } else {
2927 assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2928 result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF));
2930 return TryEmitResult(result, !shouldRetain);
2933 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2934 const Expr *e) {
2935 e = e->IgnoreParens();
2936 QualType type = e->getType();
2938 // If we're loading retained from a __strong xvalue, we can avoid
2939 // an extra retain/release pair by zeroing out the source of this
2940 // "move" operation.
2941 if (e->isXValue() &&
2942 !type.isConstQualified() &&
2943 type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2944 // Emit the lvalue.
2945 LValue lv = CGF.EmitLValue(e);
2947 // Load the object pointer.
2948 llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2949 SourceLocation()).getScalarVal();
2951 // Set the source pointer to NULL.
2952 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv);
2954 return TryEmitResult(result, true);
2957 // As a very special optimization, in ARC++, if the l-value is the
2958 // result of a non-volatile assignment, do a simple retain of the
2959 // result of the call to objc_storeWeak instead of reloading.
2960 if (CGF.getLangOpts().CPlusPlus &&
2961 !type.isVolatileQualified() &&
2962 type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2963 isa<BinaryOperator>(e) &&
2964 cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2965 return TryEmitResult(CGF.EmitScalarExpr(e), false);
2967 // Try to emit code for scalar constant instead of emitting LValue and
2968 // loading it because we are not guaranteed to have an l-value. One of such
2969 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2970 if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2971 auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2972 if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2973 return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2974 !shouldRetainObjCLifetime(type.getObjCLifetime()));
2977 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2980 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2981 llvm::Value *value)>
2982 ValueTransform;
2984 /// Insert code immediately after a call.
2986 // FIXME: We should find a way to emit the runtime call immediately
2987 // after the call is emitted to eliminate the need for this function.
2988 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2989 llvm::Value *value,
2990 ValueTransform doAfterCall,
2991 ValueTransform doFallback) {
2992 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2993 auto *callBase = dyn_cast<llvm::CallBase>(value);
2995 if (callBase && llvm::objcarc::hasAttachedCallOpBundle(callBase)) {
2996 // Fall back if the call base has operand bundle "clang.arc.attachedcall".
2997 value = doFallback(CGF, value);
2998 } else if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2999 // Place the retain immediately following the call.
3000 CGF.Builder.SetInsertPoint(call->getParent(),
3001 ++llvm::BasicBlock::iterator(call));
3002 value = doAfterCall(CGF, value);
3003 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
3004 // Place the retain at the beginning of the normal destination block.
3005 llvm::BasicBlock *BB = invoke->getNormalDest();
3006 CGF.Builder.SetInsertPoint(BB, BB->begin());
3007 value = doAfterCall(CGF, value);
3009 // Bitcasts can arise because of related-result returns. Rewrite
3010 // the operand.
3011 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
3012 // Change the insert point to avoid emitting the fall-back call after the
3013 // bitcast.
3014 CGF.Builder.SetInsertPoint(bitcast->getParent(), bitcast->getIterator());
3015 llvm::Value *operand = bitcast->getOperand(0);
3016 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
3017 bitcast->setOperand(0, operand);
3018 value = bitcast;
3019 } else {
3020 auto *phi = dyn_cast<llvm::PHINode>(value);
3021 if (phi && phi->getNumIncomingValues() == 2 &&
3022 isa<llvm::ConstantPointerNull>(phi->getIncomingValue(1)) &&
3023 isa<llvm::CallBase>(phi->getIncomingValue(0))) {
3024 // Handle phi instructions that are generated when it's necessary to check
3025 // whether the receiver of a message is null.
3026 llvm::Value *inVal = phi->getIncomingValue(0);
3027 inVal = emitARCOperationAfterCall(CGF, inVal, doAfterCall, doFallback);
3028 phi->setIncomingValue(0, inVal);
3029 value = phi;
3030 } else {
3031 // Generic fall-back case.
3032 // Retain using the non-block variant: we never need to do a copy
3033 // of a block that's been returned to us.
3034 value = doFallback(CGF, value);
3038 CGF.Builder.restoreIP(ip);
3039 return value;
3042 /// Given that the given expression is some sort of call (which does
3043 /// not return retained), emit a retain following it.
3044 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
3045 const Expr *e) {
3046 llvm::Value *value = CGF.EmitScalarExpr(e);
3047 return emitARCOperationAfterCall(CGF, value,
3048 [](CodeGenFunction &CGF, llvm::Value *value) {
3049 return CGF.EmitARCRetainAutoreleasedReturnValue(value);
3051 [](CodeGenFunction &CGF, llvm::Value *value) {
3052 return CGF.EmitARCRetainNonBlock(value);
3056 /// Given that the given expression is some sort of call (which does
3057 /// not return retained), perform an unsafeClaim following it.
3058 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
3059 const Expr *e) {
3060 llvm::Value *value = CGF.EmitScalarExpr(e);
3061 return emitARCOperationAfterCall(CGF, value,
3062 [](CodeGenFunction &CGF, llvm::Value *value) {
3063 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
3065 [](CodeGenFunction &CGF, llvm::Value *value) {
3066 return value;
3070 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
3071 bool allowUnsafeClaim) {
3072 if (allowUnsafeClaim &&
3073 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
3074 return emitARCUnsafeClaimCallResult(*this, E);
3075 } else {
3076 llvm::Value *value = emitARCRetainCallResult(*this, E);
3077 return EmitObjCConsumeObject(E->getType(), value);
3081 /// Determine whether it might be important to emit a separate
3082 /// objc_retain_block on the result of the given expression, or
3083 /// whether it's okay to just emit it in a +1 context.
3084 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
3085 assert(e->getType()->isBlockPointerType());
3086 e = e->IgnoreParens();
3088 // For future goodness, emit block expressions directly in +1
3089 // contexts if we can.
3090 if (isa<BlockExpr>(e))
3091 return false;
3093 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
3094 switch (cast->getCastKind()) {
3095 // Emitting these operations in +1 contexts is goodness.
3096 case CK_LValueToRValue:
3097 case CK_ARCReclaimReturnedObject:
3098 case CK_ARCConsumeObject:
3099 case CK_ARCProduceObject:
3100 return false;
3102 // These operations preserve a block type.
3103 case CK_NoOp:
3104 case CK_BitCast:
3105 return shouldEmitSeparateBlockRetain(cast->getSubExpr());
3107 // These operations are known to be bad (or haven't been considered).
3108 case CK_AnyPointerToBlockPointerCast:
3109 default:
3110 return true;
3114 return true;
3117 namespace {
3118 /// A CRTP base class for emitting expressions of retainable object
3119 /// pointer type in ARC.
3120 template <typename Impl, typename Result> class ARCExprEmitter {
3121 protected:
3122 CodeGenFunction &CGF;
3123 Impl &asImpl() { return *static_cast<Impl*>(this); }
3125 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
3127 public:
3128 Result visit(const Expr *e);
3129 Result visitCastExpr(const CastExpr *e);
3130 Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
3131 Result visitBlockExpr(const BlockExpr *e);
3132 Result visitBinaryOperator(const BinaryOperator *e);
3133 Result visitBinAssign(const BinaryOperator *e);
3134 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
3135 Result visitBinAssignAutoreleasing(const BinaryOperator *e);
3136 Result visitBinAssignWeak(const BinaryOperator *e);
3137 Result visitBinAssignStrong(const BinaryOperator *e);
3139 // Minimal implementation:
3140 // Result visitLValueToRValue(const Expr *e)
3141 // Result visitConsumeObject(const Expr *e)
3142 // Result visitExtendBlockObject(const Expr *e)
3143 // Result visitReclaimReturnedObject(const Expr *e)
3144 // Result visitCall(const Expr *e)
3145 // Result visitExpr(const Expr *e)
3147 // Result emitBitCast(Result result, llvm::Type *resultType)
3148 // llvm::Value *getValueOfResult(Result result)
3152 /// Try to emit a PseudoObjectExpr under special ARC rules.
3154 /// This massively duplicates emitPseudoObjectRValue.
3155 template <typename Impl, typename Result>
3156 Result
3157 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
3158 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3160 // Find the result expression.
3161 const Expr *resultExpr = E->getResultExpr();
3162 assert(resultExpr);
3163 Result result;
3165 for (PseudoObjectExpr::const_semantics_iterator
3166 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3167 const Expr *semantic = *i;
3169 // If this semantic expression is an opaque value, bind it
3170 // to the result of its source expression.
3171 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3172 typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3173 OVMA opaqueData;
3175 // If this semantic is the result of the pseudo-object
3176 // expression, try to evaluate the source as +1.
3177 if (ov == resultExpr) {
3178 assert(!OVMA::shouldBindAsLValue(ov));
3179 result = asImpl().visit(ov->getSourceExpr());
3180 opaqueData = OVMA::bind(CGF, ov,
3181 RValue::get(asImpl().getValueOfResult(result)));
3183 // Otherwise, just bind it.
3184 } else {
3185 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3187 opaques.push_back(opaqueData);
3189 // Otherwise, if the expression is the result, evaluate it
3190 // and remember the result.
3191 } else if (semantic == resultExpr) {
3192 result = asImpl().visit(semantic);
3194 // Otherwise, evaluate the expression in an ignored context.
3195 } else {
3196 CGF.EmitIgnoredExpr(semantic);
3200 // Unbind all the opaques now.
3201 for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3202 opaques[i].unbind(CGF);
3204 return result;
3207 template <typename Impl, typename Result>
3208 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
3209 // The default implementation just forwards the expression to visitExpr.
3210 return asImpl().visitExpr(e);
3213 template <typename Impl, typename Result>
3214 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3215 switch (e->getCastKind()) {
3217 // No-op casts don't change the type, so we just ignore them.
3218 case CK_NoOp:
3219 return asImpl().visit(e->getSubExpr());
3221 // These casts can change the type.
3222 case CK_CPointerToObjCPointerCast:
3223 case CK_BlockPointerToObjCPointerCast:
3224 case CK_AnyPointerToBlockPointerCast:
3225 case CK_BitCast: {
3226 llvm::Type *resultType = CGF.ConvertType(e->getType());
3227 assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3228 Result result = asImpl().visit(e->getSubExpr());
3229 return asImpl().emitBitCast(result, resultType);
3232 // Handle some casts specially.
3233 case CK_LValueToRValue:
3234 return asImpl().visitLValueToRValue(e->getSubExpr());
3235 case CK_ARCConsumeObject:
3236 return asImpl().visitConsumeObject(e->getSubExpr());
3237 case CK_ARCExtendBlockObject:
3238 return asImpl().visitExtendBlockObject(e->getSubExpr());
3239 case CK_ARCReclaimReturnedObject:
3240 return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3242 // Otherwise, use the default logic.
3243 default:
3244 return asImpl().visitExpr(e);
3248 template <typename Impl, typename Result>
3249 Result
3250 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3251 switch (e->getOpcode()) {
3252 case BO_Comma:
3253 CGF.EmitIgnoredExpr(e->getLHS());
3254 CGF.EnsureInsertPoint();
3255 return asImpl().visit(e->getRHS());
3257 case BO_Assign:
3258 return asImpl().visitBinAssign(e);
3260 default:
3261 return asImpl().visitExpr(e);
3265 template <typename Impl, typename Result>
3266 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3267 switch (e->getLHS()->getType().getObjCLifetime()) {
3268 case Qualifiers::OCL_ExplicitNone:
3269 return asImpl().visitBinAssignUnsafeUnretained(e);
3271 case Qualifiers::OCL_Weak:
3272 return asImpl().visitBinAssignWeak(e);
3274 case Qualifiers::OCL_Autoreleasing:
3275 return asImpl().visitBinAssignAutoreleasing(e);
3277 case Qualifiers::OCL_Strong:
3278 return asImpl().visitBinAssignStrong(e);
3280 case Qualifiers::OCL_None:
3281 return asImpl().visitExpr(e);
3283 llvm_unreachable("bad ObjC ownership qualifier");
3286 /// The default rule for __unsafe_unretained emits the RHS recursively,
3287 /// stores into the unsafe variable, and propagates the result outward.
3288 template <typename Impl, typename Result>
3289 Result ARCExprEmitter<Impl,Result>::
3290 visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3291 // Recursively emit the RHS.
3292 // For __block safety, do this before emitting the LHS.
3293 Result result = asImpl().visit(e->getRHS());
3295 // Perform the store.
3296 LValue lvalue =
3297 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3298 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3299 lvalue);
3301 return result;
3304 template <typename Impl, typename Result>
3305 Result
3306 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3307 return asImpl().visitExpr(e);
3310 template <typename Impl, typename Result>
3311 Result
3312 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3313 return asImpl().visitExpr(e);
3316 template <typename Impl, typename Result>
3317 Result
3318 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3319 return asImpl().visitExpr(e);
3322 /// The general expression-emission logic.
3323 template <typename Impl, typename Result>
3324 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3325 // We should *never* see a nested full-expression here, because if
3326 // we fail to emit at +1, our caller must not retain after we close
3327 // out the full-expression. This isn't as important in the unsafe
3328 // emitter.
3329 assert(!isa<ExprWithCleanups>(e));
3331 // Look through parens, __extension__, generic selection, etc.
3332 e = e->IgnoreParens();
3334 // Handle certain kinds of casts.
3335 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3336 return asImpl().visitCastExpr(ce);
3338 // Handle the comma operator.
3339 } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3340 return asImpl().visitBinaryOperator(op);
3342 // TODO: handle conditional operators here
3344 // For calls and message sends, use the retained-call logic.
3345 // Delegate inits are a special case in that they're the only
3346 // returns-retained expression that *isn't* surrounded by
3347 // a consume.
3348 } else if (isa<CallExpr>(e) ||
3349 (isa<ObjCMessageExpr>(e) &&
3350 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3351 return asImpl().visitCall(e);
3353 // Look through pseudo-object expressions.
3354 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3355 return asImpl().visitPseudoObjectExpr(pseudo);
3356 } else if (auto *be = dyn_cast<BlockExpr>(e))
3357 return asImpl().visitBlockExpr(be);
3359 return asImpl().visitExpr(e);
3362 namespace {
3364 /// An emitter for +1 results.
3365 struct ARCRetainExprEmitter :
3366 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3368 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3370 llvm::Value *getValueOfResult(TryEmitResult result) {
3371 return result.getPointer();
3374 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3375 llvm::Value *value = result.getPointer();
3376 value = CGF.Builder.CreateBitCast(value, resultType);
3377 result.setPointer(value);
3378 return result;
3381 TryEmitResult visitLValueToRValue(const Expr *e) {
3382 return tryEmitARCRetainLoadOfScalar(CGF, e);
3385 /// For consumptions, just emit the subexpression and thus elide
3386 /// the retain/release pair.
3387 TryEmitResult visitConsumeObject(const Expr *e) {
3388 llvm::Value *result = CGF.EmitScalarExpr(e);
3389 return TryEmitResult(result, true);
3392 TryEmitResult visitBlockExpr(const BlockExpr *e) {
3393 TryEmitResult result = visitExpr(e);
3394 // Avoid the block-retain if this is a block literal that doesn't need to be
3395 // copied to the heap.
3396 if (CGF.CGM.getCodeGenOpts().ObjCAvoidHeapifyLocalBlocks &&
3397 e->getBlockDecl()->canAvoidCopyToHeap())
3398 result.setInt(true);
3399 return result;
3402 /// Block extends are net +0. Naively, we could just recurse on
3403 /// the subexpression, but actually we need to ensure that the
3404 /// value is copied as a block, so there's a little filter here.
3405 TryEmitResult visitExtendBlockObject(const Expr *e) {
3406 llvm::Value *result; // will be a +0 value
3408 // If we can't safely assume the sub-expression will produce a
3409 // block-copied value, emit the sub-expression at +0.
3410 if (shouldEmitSeparateBlockRetain(e)) {
3411 result = CGF.EmitScalarExpr(e);
3413 // Otherwise, try to emit the sub-expression at +1 recursively.
3414 } else {
3415 TryEmitResult subresult = asImpl().visit(e);
3417 // If that produced a retained value, just use that.
3418 if (subresult.getInt()) {
3419 return subresult;
3422 // Otherwise it's +0.
3423 result = subresult.getPointer();
3426 // Retain the object as a block.
3427 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3428 return TryEmitResult(result, true);
3431 /// For reclaims, emit the subexpression as a retained call and
3432 /// skip the consumption.
3433 TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3434 llvm::Value *result = emitARCRetainCallResult(CGF, e);
3435 return TryEmitResult(result, true);
3438 /// When we have an undecorated call, retroactively do a claim.
3439 TryEmitResult visitCall(const Expr *e) {
3440 llvm::Value *result = emitARCRetainCallResult(CGF, e);
3441 return TryEmitResult(result, true);
3444 // TODO: maybe special-case visitBinAssignWeak?
3446 TryEmitResult visitExpr(const Expr *e) {
3447 // We didn't find an obvious production, so emit what we've got and
3448 // tell the caller that we didn't manage to retain.
3449 llvm::Value *result = CGF.EmitScalarExpr(e);
3450 return TryEmitResult(result, false);
3455 static TryEmitResult
3456 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3457 return ARCRetainExprEmitter(CGF).visit(e);
3460 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3461 LValue lvalue,
3462 QualType type) {
3463 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3464 llvm::Value *value = result.getPointer();
3465 if (!result.getInt())
3466 value = CGF.EmitARCRetain(type, value);
3467 return value;
3470 /// EmitARCRetainScalarExpr - Semantically equivalent to
3471 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3472 /// best-effort attempt to peephole expressions that naturally produce
3473 /// retained objects.
3474 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3475 // The retain needs to happen within the full-expression.
3476 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3477 RunCleanupsScope scope(*this);
3478 return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3481 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3482 llvm::Value *value = result.getPointer();
3483 if (!result.getInt())
3484 value = EmitARCRetain(e->getType(), value);
3485 return value;
3488 llvm::Value *
3489 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3490 // The retain needs to happen within the full-expression.
3491 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3492 RunCleanupsScope scope(*this);
3493 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3496 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3497 llvm::Value *value = result.getPointer();
3498 if (result.getInt())
3499 value = EmitARCAutorelease(value);
3500 else
3501 value = EmitARCRetainAutorelease(e->getType(), value);
3502 return value;
3505 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3506 llvm::Value *result;
3507 bool doRetain;
3509 if (shouldEmitSeparateBlockRetain(e)) {
3510 result = EmitScalarExpr(e);
3511 doRetain = true;
3512 } else {
3513 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3514 result = subresult.getPointer();
3515 doRetain = !subresult.getInt();
3518 if (doRetain)
3519 result = EmitARCRetainBlock(result, /*mandatory*/ true);
3520 return EmitObjCConsumeObject(e->getType(), result);
3523 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3524 // In ARC, retain and autorelease the expression.
3525 if (getLangOpts().ObjCAutoRefCount) {
3526 // Do so before running any cleanups for the full-expression.
3527 // EmitARCRetainAutoreleaseScalarExpr does this for us.
3528 return EmitARCRetainAutoreleaseScalarExpr(expr);
3531 // Otherwise, use the normal scalar-expression emission. The
3532 // exception machinery doesn't do anything special with the
3533 // exception like retaining it, so there's no safety associated with
3534 // only running cleanups after the throw has started, and when it
3535 // matters it tends to be substantially inferior code.
3536 return EmitScalarExpr(expr);
3539 namespace {
3541 /// An emitter for assigning into an __unsafe_unretained context.
3542 struct ARCUnsafeUnretainedExprEmitter :
3543 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3545 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3547 llvm::Value *getValueOfResult(llvm::Value *value) {
3548 return value;
3551 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3552 return CGF.Builder.CreateBitCast(value, resultType);
3555 llvm::Value *visitLValueToRValue(const Expr *e) {
3556 return CGF.EmitScalarExpr(e);
3559 /// For consumptions, just emit the subexpression and perform the
3560 /// consumption like normal.
3561 llvm::Value *visitConsumeObject(const Expr *e) {
3562 llvm::Value *value = CGF.EmitScalarExpr(e);
3563 return CGF.EmitObjCConsumeObject(e->getType(), value);
3566 /// No special logic for block extensions. (This probably can't
3567 /// actually happen in this emitter, though.)
3568 llvm::Value *visitExtendBlockObject(const Expr *e) {
3569 return CGF.EmitARCExtendBlockObject(e);
3572 /// For reclaims, perform an unsafeClaim if that's enabled.
3573 llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3574 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3577 /// When we have an undecorated call, just emit it without adding
3578 /// the unsafeClaim.
3579 llvm::Value *visitCall(const Expr *e) {
3580 return CGF.EmitScalarExpr(e);
3583 /// Just do normal scalar emission in the default case.
3584 llvm::Value *visitExpr(const Expr *e) {
3585 return CGF.EmitScalarExpr(e);
3590 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3591 const Expr *e) {
3592 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3595 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3596 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3597 /// avoiding any spurious retains, including by performing reclaims
3598 /// with objc_unsafeClaimAutoreleasedReturnValue.
3599 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3600 // Look through full-expressions.
3601 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3602 RunCleanupsScope scope(*this);
3603 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3606 return emitARCUnsafeUnretainedScalarExpr(*this, e);
3609 std::pair<LValue,llvm::Value*>
3610 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3611 bool ignored) {
3612 // Evaluate the RHS first. If we're ignoring the result, assume
3613 // that we can emit at an unsafe +0.
3614 llvm::Value *value;
3615 if (ignored) {
3616 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3617 } else {
3618 value = EmitScalarExpr(e->getRHS());
3621 // Emit the LHS and perform the store.
3622 LValue lvalue = EmitLValue(e->getLHS());
3623 EmitStoreOfScalar(value, lvalue);
3625 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3628 std::pair<LValue,llvm::Value*>
3629 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3630 bool ignored) {
3631 // Evaluate the RHS first.
3632 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3633 llvm::Value *value = result.getPointer();
3635 bool hasImmediateRetain = result.getInt();
3637 // If we didn't emit a retained object, and the l-value is of block
3638 // type, then we need to emit the block-retain immediately in case
3639 // it invalidates the l-value.
3640 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3641 value = EmitARCRetainBlock(value, /*mandatory*/ false);
3642 hasImmediateRetain = true;
3645 LValue lvalue = EmitLValue(e->getLHS());
3647 // If the RHS was emitted retained, expand this.
3648 if (hasImmediateRetain) {
3649 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3650 EmitStoreOfScalar(value, lvalue);
3651 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3652 } else {
3653 value = EmitARCStoreStrong(lvalue, value, ignored);
3656 return std::pair<LValue,llvm::Value*>(lvalue, value);
3659 std::pair<LValue,llvm::Value*>
3660 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3661 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3662 LValue lvalue = EmitLValue(e->getLHS());
3664 EmitStoreOfScalar(value, lvalue);
3666 return std::pair<LValue,llvm::Value*>(lvalue, value);
3669 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3670 const ObjCAutoreleasePoolStmt &ARPS) {
3671 const Stmt *subStmt = ARPS.getSubStmt();
3672 const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3674 CGDebugInfo *DI = getDebugInfo();
3675 if (DI)
3676 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3678 // Keep track of the current cleanup stack depth.
3679 RunCleanupsScope Scope(*this);
3680 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3681 llvm::Value *token = EmitObjCAutoreleasePoolPush();
3682 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3683 } else {
3684 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3685 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3688 for (const auto *I : S.body())
3689 EmitStmt(I);
3691 if (DI)
3692 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3695 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3696 /// make sure it survives garbage collection until this point.
3697 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3698 // We just use an inline assembly.
3699 llvm::FunctionType *extenderType
3700 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3701 llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3702 /* assembly */ "",
3703 /* constraints */ "r",
3704 /* side effects */ true);
3706 object = Builder.CreateBitCast(object, VoidPtrTy);
3707 EmitNounwindRuntimeCall(extender, object);
3710 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3711 /// non-trivial copy assignment function, produce following helper function.
3712 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3714 llvm::Constant *
3715 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3716 const ObjCPropertyImplDecl *PID) {
3717 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3718 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3719 return nullptr;
3721 QualType Ty = PID->getPropertyIvarDecl()->getType();
3722 ASTContext &C = getContext();
3724 if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
3725 // Call the move assignment operator instead of calling the copy assignment
3726 // operator and destructor.
3727 CharUnits Alignment = C.getTypeAlignInChars(Ty);
3728 llvm::Constant *Fn = getNonTrivialCStructMoveAssignmentOperator(
3729 CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty);
3730 return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3733 if (!getLangOpts().CPlusPlus ||
3734 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3735 return nullptr;
3736 if (!Ty->isRecordType())
3737 return nullptr;
3738 llvm::Constant *HelperFn = nullptr;
3739 if (hasTrivialSetExpr(PID))
3740 return nullptr;
3741 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3742 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3743 return HelperFn;
3745 IdentifierInfo *II
3746 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3748 QualType ReturnTy = C.VoidTy;
3749 QualType DestTy = C.getPointerType(Ty);
3750 QualType SrcTy = Ty;
3751 SrcTy.addConst();
3752 SrcTy = C.getPointerType(SrcTy);
3754 SmallVector<QualType, 2> ArgTys;
3755 ArgTys.push_back(DestTy);
3756 ArgTys.push_back(SrcTy);
3757 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3759 FunctionDecl *FD = FunctionDecl::Create(
3760 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3761 FunctionTy, nullptr, SC_Static, false, false, false);
3763 FunctionArgList args;
3764 ParmVarDecl *Params[2];
3765 ParmVarDecl *DstDecl = ParmVarDecl::Create(
3766 C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3767 C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3768 /*DefArg=*/nullptr);
3769 args.push_back(Params[0] = DstDecl);
3770 ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3771 C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3772 C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3773 /*DefArg=*/nullptr);
3774 args.push_back(Params[1] = SrcDecl);
3775 FD->setParams(Params);
3777 const CGFunctionInfo &FI =
3778 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3780 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3782 llvm::Function *Fn =
3783 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3784 "__assign_helper_atomic_property_",
3785 &CGM.getModule());
3787 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3789 StartFunction(FD, ReturnTy, Fn, FI, args);
3791 DeclRefExpr DstExpr(C, DstDecl, false, DestTy, VK_PRValue, SourceLocation());
3792 UnaryOperator *DST = UnaryOperator::Create(
3793 C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary,
3794 SourceLocation(), false, FPOptionsOverride());
3796 DeclRefExpr SrcExpr(C, SrcDecl, false, SrcTy, VK_PRValue, SourceLocation());
3797 UnaryOperator *SRC = UnaryOperator::Create(
3798 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3799 SourceLocation(), false, FPOptionsOverride());
3801 Expr *Args[2] = {DST, SRC};
3802 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3803 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3804 C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3805 VK_LValue, SourceLocation(), FPOptionsOverride());
3807 EmitStmt(TheCall);
3809 FinishFunction();
3810 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3811 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3812 return HelperFn;
3815 llvm::Constant *CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3816 const ObjCPropertyImplDecl *PID) {
3817 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3818 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3819 return nullptr;
3821 QualType Ty = PD->getType();
3822 ASTContext &C = getContext();
3824 if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
3825 CharUnits Alignment = C.getTypeAlignInChars(Ty);
3826 llvm::Constant *Fn = getNonTrivialCStructCopyConstructor(
3827 CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty);
3828 return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3831 if (!getLangOpts().CPlusPlus ||
3832 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3833 return nullptr;
3834 if (!Ty->isRecordType())
3835 return nullptr;
3836 llvm::Constant *HelperFn = nullptr;
3837 if (hasTrivialGetExpr(PID))
3838 return nullptr;
3839 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3840 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3841 return HelperFn;
3843 IdentifierInfo *II =
3844 &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3846 QualType ReturnTy = C.VoidTy;
3847 QualType DestTy = C.getPointerType(Ty);
3848 QualType SrcTy = Ty;
3849 SrcTy.addConst();
3850 SrcTy = C.getPointerType(SrcTy);
3852 SmallVector<QualType, 2> ArgTys;
3853 ArgTys.push_back(DestTy);
3854 ArgTys.push_back(SrcTy);
3855 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3857 FunctionDecl *FD = FunctionDecl::Create(
3858 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3859 FunctionTy, nullptr, SC_Static, false, false, false);
3861 FunctionArgList args;
3862 ParmVarDecl *Params[2];
3863 ParmVarDecl *DstDecl = ParmVarDecl::Create(
3864 C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3865 C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3866 /*DefArg=*/nullptr);
3867 args.push_back(Params[0] = DstDecl);
3868 ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3869 C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3870 C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3871 /*DefArg=*/nullptr);
3872 args.push_back(Params[1] = SrcDecl);
3873 FD->setParams(Params);
3875 const CGFunctionInfo &FI =
3876 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3878 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3880 llvm::Function *Fn = llvm::Function::Create(
3881 LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3882 &CGM.getModule());
3884 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3886 StartFunction(FD, ReturnTy, Fn, FI, args);
3888 DeclRefExpr SrcExpr(getContext(), SrcDecl, false, SrcTy, VK_PRValue,
3889 SourceLocation());
3891 UnaryOperator *SRC = UnaryOperator::Create(
3892 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3893 SourceLocation(), false, FPOptionsOverride());
3895 CXXConstructExpr *CXXConstExpr =
3896 cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3898 SmallVector<Expr*, 4> ConstructorArgs;
3899 ConstructorArgs.push_back(SRC);
3900 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3901 CXXConstExpr->arg_end());
3903 CXXConstructExpr *TheCXXConstructExpr =
3904 CXXConstructExpr::Create(C, Ty, SourceLocation(),
3905 CXXConstExpr->getConstructor(),
3906 CXXConstExpr->isElidable(),
3907 ConstructorArgs,
3908 CXXConstExpr->hadMultipleCandidates(),
3909 CXXConstExpr->isListInitialization(),
3910 CXXConstExpr->isStdInitListInitialization(),
3911 CXXConstExpr->requiresZeroInitialization(),
3912 CXXConstExpr->getConstructionKind(),
3913 SourceRange());
3915 DeclRefExpr DstExpr(getContext(), DstDecl, false, DestTy, VK_PRValue,
3916 SourceLocation());
3918 RValue DV = EmitAnyExpr(&DstExpr);
3919 CharUnits Alignment =
3920 getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3921 EmitAggExpr(TheCXXConstructExpr,
3922 AggValueSlot::forAddr(
3923 Address(DV.getScalarVal(), ConvertTypeForMem(Ty), Alignment),
3924 Qualifiers(), AggValueSlot::IsDestructed,
3925 AggValueSlot::DoesNotNeedGCBarriers,
3926 AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
3928 FinishFunction();
3929 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3930 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3931 return HelperFn;
3934 llvm::Value *
3935 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3936 // Get selectors for retain/autorelease.
3937 IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3938 Selector CopySelector =
3939 getContext().Selectors.getNullarySelector(CopyID);
3940 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3941 Selector AutoreleaseSelector =
3942 getContext().Selectors.getNullarySelector(AutoreleaseID);
3944 // Emit calls to retain/autorelease.
3945 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3946 llvm::Value *Val = Block;
3947 RValue Result;
3948 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3949 Ty, CopySelector,
3950 Val, CallArgList(), nullptr, nullptr);
3951 Val = Result.getScalarVal();
3952 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3953 Ty, AutoreleaseSelector,
3954 Val, CallArgList(), nullptr, nullptr);
3955 Val = Result.getScalarVal();
3956 return Val;
3959 static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) {
3960 switch (TT.getOS()) {
3961 case llvm::Triple::Darwin:
3962 case llvm::Triple::MacOSX:
3963 return llvm::MachO::PLATFORM_MACOS;
3964 case llvm::Triple::IOS:
3965 return llvm::MachO::PLATFORM_IOS;
3966 case llvm::Triple::TvOS:
3967 return llvm::MachO::PLATFORM_TVOS;
3968 case llvm::Triple::WatchOS:
3969 return llvm::MachO::PLATFORM_WATCHOS;
3970 case llvm::Triple::DriverKit:
3971 return llvm::MachO::PLATFORM_DRIVERKIT;
3972 default:
3973 return /*Unknown platform*/ 0;
3977 static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF,
3978 const VersionTuple &Version) {
3979 CodeGenModule &CGM = CGF.CGM;
3980 // Note: we intend to support multi-platform version checks, so reserve
3981 // the room for a dual platform checking invocation that will be
3982 // implemented in the future.
3983 llvm::SmallVector<llvm::Value *, 8> Args;
3985 auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) {
3986 std::optional<unsigned> Min = Version.getMinor(),
3987 SMin = Version.getSubminor();
3988 Args.push_back(
3989 llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT)));
3990 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()));
3991 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)));
3992 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0)));
3995 assert(!Version.empty() && "unexpected empty version");
3996 EmitArgs(Version, CGM.getTarget().getTriple());
3998 if (!CGM.IsPlatformVersionAtLeastFn) {
3999 llvm::FunctionType *FTy = llvm::FunctionType::get(
4000 CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty},
4001 false);
4002 CGM.IsPlatformVersionAtLeastFn =
4003 CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast");
4006 llvm::Value *Check =
4007 CGF.EmitNounwindRuntimeCall(CGM.IsPlatformVersionAtLeastFn, Args);
4008 return CGF.Builder.CreateICmpNE(Check,
4009 llvm::Constant::getNullValue(CGM.Int32Ty));
4012 llvm::Value *
4013 CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) {
4014 // Darwin uses the new __isPlatformVersionAtLeast family of routines.
4015 if (CGM.getTarget().getTriple().isOSDarwin())
4016 return emitIsPlatformVersionAtLeast(*this, Version);
4018 if (!CGM.IsOSVersionAtLeastFn) {
4019 llvm::FunctionType *FTy =
4020 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
4021 CGM.IsOSVersionAtLeastFn =
4022 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
4025 std::optional<unsigned> Min = Version.getMinor(),
4026 SMin = Version.getSubminor();
4027 llvm::Value *Args[] = {
4028 llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()),
4029 llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)),
4030 llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0))};
4032 llvm::Value *CallRes =
4033 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
4035 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
4038 static bool isFoundationNeededForDarwinAvailabilityCheck(
4039 const llvm::Triple &TT, const VersionTuple &TargetVersion) {
4040 VersionTuple FoundationDroppedInVersion;
4041 switch (TT.getOS()) {
4042 case llvm::Triple::IOS:
4043 case llvm::Triple::TvOS:
4044 FoundationDroppedInVersion = VersionTuple(/*Major=*/13);
4045 break;
4046 case llvm::Triple::WatchOS:
4047 FoundationDroppedInVersion = VersionTuple(/*Major=*/6);
4048 break;
4049 case llvm::Triple::Darwin:
4050 case llvm::Triple::MacOSX:
4051 FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15);
4052 break;
4053 case llvm::Triple::DriverKit:
4054 // DriverKit doesn't need Foundation.
4055 return false;
4056 default:
4057 llvm_unreachable("Unexpected OS");
4059 return TargetVersion < FoundationDroppedInVersion;
4062 void CodeGenModule::emitAtAvailableLinkGuard() {
4063 if (!IsPlatformVersionAtLeastFn)
4064 return;
4065 // @available requires CoreFoundation only on Darwin.
4066 if (!Target.getTriple().isOSDarwin())
4067 return;
4068 // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or
4069 // watchOS 6+.
4070 if (!isFoundationNeededForDarwinAvailabilityCheck(
4071 Target.getTriple(), Target.getPlatformMinVersion()))
4072 return;
4073 // Add -framework CoreFoundation to the linker commands. We still want to
4074 // emit the core foundation reference down below because otherwise if
4075 // CoreFoundation is not used in the code, the linker won't link the
4076 // framework.
4077 auto &Context = getLLVMContext();
4078 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
4079 llvm::MDString::get(Context, "CoreFoundation")};
4080 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
4081 // Emit a reference to a symbol from CoreFoundation to ensure that
4082 // CoreFoundation is linked into the final binary.
4083 llvm::FunctionType *FTy =
4084 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
4085 llvm::FunctionCallee CFFunc =
4086 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
4088 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
4089 llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
4090 CheckFTy, "__clang_at_available_requires_core_foundation_framework",
4091 llvm::AttributeList(), /*Local=*/true);
4092 llvm::Function *CFLinkCheckFunc =
4093 cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
4094 if (CFLinkCheckFunc->empty()) {
4095 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
4096 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
4097 CodeGenFunction CGF(*this);
4098 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
4099 CGF.EmitNounwindRuntimeCall(CFFunc,
4100 llvm::Constant::getNullValue(VoidPtrTy));
4101 CGF.Builder.CreateUnreachable();
4102 addCompilerUsedGlobal(CFLinkCheckFunc);
4106 CGObjCRuntime::~CGObjCRuntime() {}