[AMDGPU][AsmParser][NFC] Get rid of custom default operand handlers.
[llvm-project.git] / clang / lib / CodeGen / CGObjCMac.cpp
blob7fcfff062fda82edadb68f2d09e251e05070c607
1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides Objective-C code generation targeting the Apple runtime.
11 //===----------------------------------------------------------------------===//
13 #include "CGBlocks.h"
14 #include "CGCleanup.h"
15 #include "CGObjCRuntime.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Mangle.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/Basic/CodeGenOptions.h"
27 #include "clang/Basic/LangOptions.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "clang/CodeGen/ConstantInitBuilder.h"
30 #include "llvm/ADT/CachedHashString.h"
31 #include "llvm/ADT/DenseSet.h"
32 #include "llvm/ADT/SetVector.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallString.h"
35 #include "llvm/ADT/UniqueVector.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/LLVMContext.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/Support/ScopedPrinter.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cstdio>
45 using namespace clang;
46 using namespace CodeGen;
48 namespace {
50 // FIXME: We should find a nicer way to make the labels for metadata, string
51 // concatenation is lame.
53 class ObjCCommonTypesHelper {
54 protected:
55 llvm::LLVMContext &VMContext;
57 private:
58 // The types of these functions don't really matter because we
59 // should always bitcast before calling them.
61 /// id objc_msgSend (id, SEL, ...)
62 ///
63 /// The default messenger, used for sends whose ABI is unchanged from
64 /// the all-integer/pointer case.
65 llvm::FunctionCallee getMessageSendFn() const {
66 // Add the non-lazy-bind attribute, since objc_msgSend is likely to
67 // be called a lot.
68 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
69 return CGM.CreateRuntimeFunction(
70 llvm::FunctionType::get(ObjectPtrTy, params, true), "objc_msgSend",
71 llvm::AttributeList::get(CGM.getLLVMContext(),
72 llvm::AttributeList::FunctionIndex,
73 llvm::Attribute::NonLazyBind));
76 /// void objc_msgSend_stret (id, SEL, ...)
77 ///
78 /// The messenger used when the return value is an aggregate returned
79 /// by indirect reference in the first argument, and therefore the
80 /// self and selector parameters are shifted over by one.
81 llvm::FunctionCallee getMessageSendStretFn() const {
82 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
83 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy,
84 params, true),
85 "objc_msgSend_stret");
88 /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...)
89 ///
90 /// The messenger used when the return value is returned on the x87
91 /// floating-point stack; without a special entrypoint, the nil case
92 /// would be unbalanced.
93 llvm::FunctionCallee getMessageSendFpretFn() const {
94 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
95 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy,
96 params, true),
97 "objc_msgSend_fpret");
100 /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...)
102 /// The messenger used when the return value is returned in two values on the
103 /// x87 floating point stack; without a special entrypoint, the nil case
104 /// would be unbalanced. Only used on 64-bit X86.
105 llvm::FunctionCallee getMessageSendFp2retFn() const {
106 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
107 llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext);
108 llvm::Type *resultType =
109 llvm::StructType::get(longDoubleType, longDoubleType);
111 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType,
112 params, true),
113 "objc_msgSend_fp2ret");
116 /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...)
118 /// The messenger used for super calls, which have different dispatch
119 /// semantics. The class passed is the superclass of the current
120 /// class.
121 llvm::FunctionCallee getMessageSendSuperFn() const {
122 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy };
123 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
124 params, true),
125 "objc_msgSendSuper");
128 /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...)
130 /// A slightly different messenger used for super calls. The class
131 /// passed is the current class.
132 llvm::FunctionCallee getMessageSendSuperFn2() const {
133 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy };
134 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
135 params, true),
136 "objc_msgSendSuper2");
139 /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super,
140 /// SEL op, ...)
142 /// The messenger used for super calls which return an aggregate indirectly.
143 llvm::FunctionCallee getMessageSendSuperStretFn() const {
144 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy };
145 return CGM.CreateRuntimeFunction(
146 llvm::FunctionType::get(CGM.VoidTy, params, true),
147 "objc_msgSendSuper_stret");
150 /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super,
151 /// SEL op, ...)
153 /// objc_msgSendSuper_stret with the super2 semantics.
154 llvm::FunctionCallee getMessageSendSuperStretFn2() const {
155 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy };
156 return CGM.CreateRuntimeFunction(
157 llvm::FunctionType::get(CGM.VoidTy, params, true),
158 "objc_msgSendSuper2_stret");
161 llvm::FunctionCallee getMessageSendSuperFpretFn() const {
162 // There is no objc_msgSendSuper_fpret? How can that work?
163 return getMessageSendSuperFn();
166 llvm::FunctionCallee getMessageSendSuperFpretFn2() const {
167 // There is no objc_msgSendSuper_fpret? How can that work?
168 return getMessageSendSuperFn2();
171 protected:
172 CodeGen::CodeGenModule &CGM;
174 public:
175 llvm::IntegerType *ShortTy, *IntTy, *LongTy;
176 llvm::PointerType *Int8PtrTy, *Int8PtrPtrTy;
177 llvm::PointerType *Int8PtrProgramASTy;
178 llvm::Type *IvarOffsetVarTy;
180 /// ObjectPtrTy - LLVM type for object handles (typeof(id))
181 llvm::PointerType *ObjectPtrTy;
183 /// PtrObjectPtrTy - LLVM type for id *
184 llvm::PointerType *PtrObjectPtrTy;
186 /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL))
187 llvm::PointerType *SelectorPtrTy;
189 private:
190 /// ProtocolPtrTy - LLVM type for external protocol handles
191 /// (typeof(Protocol))
192 llvm::Type *ExternalProtocolPtrTy;
194 public:
195 llvm::Type *getExternalProtocolPtrTy() {
196 if (!ExternalProtocolPtrTy) {
197 // FIXME: It would be nice to unify this with the opaque type, so that the
198 // IR comes out a bit cleaner.
199 CodeGen::CodeGenTypes &Types = CGM.getTypes();
200 ASTContext &Ctx = CGM.getContext();
201 llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType());
202 ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T);
205 return ExternalProtocolPtrTy;
208 // SuperCTy - clang type for struct objc_super.
209 QualType SuperCTy;
210 // SuperPtrCTy - clang type for struct objc_super *.
211 QualType SuperPtrCTy;
213 /// SuperTy - LLVM type for struct objc_super.
214 llvm::StructType *SuperTy;
215 /// SuperPtrTy - LLVM type for struct objc_super *.
216 llvm::PointerType *SuperPtrTy;
218 /// PropertyTy - LLVM type for struct objc_property (struct _prop_t
219 /// in GCC parlance).
220 llvm::StructType *PropertyTy;
222 /// PropertyListTy - LLVM type for struct objc_property_list
223 /// (_prop_list_t in GCC parlance).
224 llvm::StructType *PropertyListTy;
225 /// PropertyListPtrTy - LLVM type for struct objc_property_list*.
226 llvm::PointerType *PropertyListPtrTy;
228 // MethodTy - LLVM type for struct objc_method.
229 llvm::StructType *MethodTy;
231 /// CacheTy - LLVM type for struct objc_cache.
232 llvm::Type *CacheTy;
233 /// CachePtrTy - LLVM type for struct objc_cache *.
234 llvm::PointerType *CachePtrTy;
236 llvm::FunctionCallee getGetPropertyFn() {
237 CodeGen::CodeGenTypes &Types = CGM.getTypes();
238 ASTContext &Ctx = CGM.getContext();
239 // id objc_getProperty (id, SEL, ptrdiff_t, bool)
240 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
241 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
242 CanQualType Params[] = {
243 IdType, SelType,
244 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), Ctx.BoolTy};
245 llvm::FunctionType *FTy =
246 Types.GetFunctionType(
247 Types.arrangeBuiltinFunctionDeclaration(IdType, Params));
248 return CGM.CreateRuntimeFunction(FTy, "objc_getProperty");
251 llvm::FunctionCallee getSetPropertyFn() {
252 CodeGen::CodeGenTypes &Types = CGM.getTypes();
253 ASTContext &Ctx = CGM.getContext();
254 // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool)
255 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
256 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
257 CanQualType Params[] = {
258 IdType,
259 SelType,
260 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(),
261 IdType,
262 Ctx.BoolTy,
263 Ctx.BoolTy};
264 llvm::FunctionType *FTy =
265 Types.GetFunctionType(
266 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
267 return CGM.CreateRuntimeFunction(FTy, "objc_setProperty");
270 llvm::FunctionCallee getOptimizedSetPropertyFn(bool atomic, bool copy) {
271 CodeGen::CodeGenTypes &Types = CGM.getTypes();
272 ASTContext &Ctx = CGM.getContext();
273 // void objc_setProperty_atomic(id self, SEL _cmd,
274 // id newValue, ptrdiff_t offset);
275 // void objc_setProperty_nonatomic(id self, SEL _cmd,
276 // id newValue, ptrdiff_t offset);
277 // void objc_setProperty_atomic_copy(id self, SEL _cmd,
278 // id newValue, ptrdiff_t offset);
279 // void objc_setProperty_nonatomic_copy(id self, SEL _cmd,
280 // id newValue, ptrdiff_t offset);
282 SmallVector<CanQualType,4> Params;
283 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
284 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
285 Params.push_back(IdType);
286 Params.push_back(SelType);
287 Params.push_back(IdType);
288 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified());
289 llvm::FunctionType *FTy =
290 Types.GetFunctionType(
291 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
292 const char *name;
293 if (atomic && copy)
294 name = "objc_setProperty_atomic_copy";
295 else if (atomic && !copy)
296 name = "objc_setProperty_atomic";
297 else if (!atomic && copy)
298 name = "objc_setProperty_nonatomic_copy";
299 else
300 name = "objc_setProperty_nonatomic";
302 return CGM.CreateRuntimeFunction(FTy, name);
305 llvm::FunctionCallee getCopyStructFn() {
306 CodeGen::CodeGenTypes &Types = CGM.getTypes();
307 ASTContext &Ctx = CGM.getContext();
308 // void objc_copyStruct (void *, const void *, size_t, bool, bool)
309 SmallVector<CanQualType,5> Params;
310 Params.push_back(Ctx.VoidPtrTy);
311 Params.push_back(Ctx.VoidPtrTy);
312 Params.push_back(Ctx.getSizeType());
313 Params.push_back(Ctx.BoolTy);
314 Params.push_back(Ctx.BoolTy);
315 llvm::FunctionType *FTy =
316 Types.GetFunctionType(
317 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
318 return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct");
321 /// This routine declares and returns address of:
322 /// void objc_copyCppObjectAtomic(
323 /// void *dest, const void *src,
324 /// void (*copyHelper) (void *dest, const void *source));
325 llvm::FunctionCallee getCppAtomicObjectFunction() {
326 CodeGen::CodeGenTypes &Types = CGM.getTypes();
327 ASTContext &Ctx = CGM.getContext();
328 /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper);
329 SmallVector<CanQualType,3> Params;
330 Params.push_back(Ctx.VoidPtrTy);
331 Params.push_back(Ctx.VoidPtrTy);
332 Params.push_back(Ctx.VoidPtrTy);
333 llvm::FunctionType *FTy =
334 Types.GetFunctionType(
335 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
336 return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic");
339 llvm::FunctionCallee getEnumerationMutationFn() {
340 CodeGen::CodeGenTypes &Types = CGM.getTypes();
341 ASTContext &Ctx = CGM.getContext();
342 // void objc_enumerationMutation (id)
343 SmallVector<CanQualType,1> Params;
344 Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType()));
345 llvm::FunctionType *FTy =
346 Types.GetFunctionType(
347 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
348 return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation");
351 llvm::FunctionCallee getLookUpClassFn() {
352 CodeGen::CodeGenTypes &Types = CGM.getTypes();
353 ASTContext &Ctx = CGM.getContext();
354 // Class objc_lookUpClass (const char *)
355 SmallVector<CanQualType,1> Params;
356 Params.push_back(
357 Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst())));
358 llvm::FunctionType *FTy =
359 Types.GetFunctionType(Types.arrangeBuiltinFunctionDeclaration(
360 Ctx.getCanonicalType(Ctx.getObjCClassType()),
361 Params));
362 return CGM.CreateRuntimeFunction(FTy, "objc_lookUpClass");
365 /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function.
366 llvm::FunctionCallee getGcReadWeakFn() {
367 // id objc_read_weak (id *)
368 llvm::Type *args[] = { ObjectPtrTy->getPointerTo() };
369 llvm::FunctionType *FTy =
370 llvm::FunctionType::get(ObjectPtrTy, args, false);
371 return CGM.CreateRuntimeFunction(FTy, "objc_read_weak");
374 /// GcAssignWeakFn -- LLVM objc_assign_weak function.
375 llvm::FunctionCallee getGcAssignWeakFn() {
376 // id objc_assign_weak (id, id *)
377 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
378 llvm::FunctionType *FTy =
379 llvm::FunctionType::get(ObjectPtrTy, args, false);
380 return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak");
383 /// GcAssignGlobalFn -- LLVM objc_assign_global function.
384 llvm::FunctionCallee getGcAssignGlobalFn() {
385 // id objc_assign_global(id, id *)
386 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
387 llvm::FunctionType *FTy =
388 llvm::FunctionType::get(ObjectPtrTy, args, false);
389 return CGM.CreateRuntimeFunction(FTy, "objc_assign_global");
392 /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function.
393 llvm::FunctionCallee getGcAssignThreadLocalFn() {
394 // id objc_assign_threadlocal(id src, id * dest)
395 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
396 llvm::FunctionType *FTy =
397 llvm::FunctionType::get(ObjectPtrTy, args, false);
398 return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal");
401 /// GcAssignIvarFn -- LLVM objc_assign_ivar function.
402 llvm::FunctionCallee getGcAssignIvarFn() {
403 // id objc_assign_ivar(id, id *, ptrdiff_t)
404 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(),
405 CGM.PtrDiffTy };
406 llvm::FunctionType *FTy =
407 llvm::FunctionType::get(ObjectPtrTy, args, false);
408 return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar");
411 /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function.
412 llvm::FunctionCallee GcMemmoveCollectableFn() {
413 // void *objc_memmove_collectable(void *dst, const void *src, size_t size)
414 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy };
415 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false);
416 return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable");
419 /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function.
420 llvm::FunctionCallee getGcAssignStrongCastFn() {
421 // id objc_assign_strongCast(id, id *)
422 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
423 llvm::FunctionType *FTy =
424 llvm::FunctionType::get(ObjectPtrTy, args, false);
425 return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast");
428 /// ExceptionThrowFn - LLVM objc_exception_throw function.
429 llvm::FunctionCallee getExceptionThrowFn() {
430 // void objc_exception_throw(id)
431 llvm::Type *args[] = { ObjectPtrTy };
432 llvm::FunctionType *FTy =
433 llvm::FunctionType::get(CGM.VoidTy, args, false);
434 return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw");
437 /// ExceptionRethrowFn - LLVM objc_exception_rethrow function.
438 llvm::FunctionCallee getExceptionRethrowFn() {
439 // void objc_exception_rethrow(void)
440 llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false);
441 return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow");
444 /// SyncEnterFn - LLVM object_sync_enter function.
445 llvm::FunctionCallee getSyncEnterFn() {
446 // int objc_sync_enter (id)
447 llvm::Type *args[] = { ObjectPtrTy };
448 llvm::FunctionType *FTy =
449 llvm::FunctionType::get(CGM.IntTy, args, false);
450 return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter");
453 /// SyncExitFn - LLVM object_sync_exit function.
454 llvm::FunctionCallee getSyncExitFn() {
455 // int objc_sync_exit (id)
456 llvm::Type *args[] = { ObjectPtrTy };
457 llvm::FunctionType *FTy =
458 llvm::FunctionType::get(CGM.IntTy, args, false);
459 return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit");
462 llvm::FunctionCallee getSendFn(bool IsSuper) const {
463 return IsSuper ? getMessageSendSuperFn() : getMessageSendFn();
466 llvm::FunctionCallee getSendFn2(bool IsSuper) const {
467 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn();
470 llvm::FunctionCallee getSendStretFn(bool IsSuper) const {
471 return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn();
474 llvm::FunctionCallee getSendStretFn2(bool IsSuper) const {
475 return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn();
478 llvm::FunctionCallee getSendFpretFn(bool IsSuper) const {
479 return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn();
482 llvm::FunctionCallee getSendFpretFn2(bool IsSuper) const {
483 return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn();
486 llvm::FunctionCallee getSendFp2retFn(bool IsSuper) const {
487 return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn();
490 llvm::FunctionCallee getSendFp2RetFn2(bool IsSuper) const {
491 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn();
494 ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm);
497 /// ObjCTypesHelper - Helper class that encapsulates lazy
498 /// construction of varies types used during ObjC generation.
499 class ObjCTypesHelper : public ObjCCommonTypesHelper {
500 public:
501 /// SymtabTy - LLVM type for struct objc_symtab.
502 llvm::StructType *SymtabTy;
503 /// SymtabPtrTy - LLVM type for struct objc_symtab *.
504 llvm::PointerType *SymtabPtrTy;
505 /// ModuleTy - LLVM type for struct objc_module.
506 llvm::StructType *ModuleTy;
508 /// ProtocolTy - LLVM type for struct objc_protocol.
509 llvm::StructType *ProtocolTy;
510 /// ProtocolPtrTy - LLVM type for struct objc_protocol *.
511 llvm::PointerType *ProtocolPtrTy;
512 /// ProtocolExtensionTy - LLVM type for struct
513 /// objc_protocol_extension.
514 llvm::StructType *ProtocolExtensionTy;
515 /// ProtocolExtensionTy - LLVM type for struct
516 /// objc_protocol_extension *.
517 llvm::PointerType *ProtocolExtensionPtrTy;
518 /// MethodDescriptionTy - LLVM type for struct
519 /// objc_method_description.
520 llvm::StructType *MethodDescriptionTy;
521 /// MethodDescriptionListTy - LLVM type for struct
522 /// objc_method_description_list.
523 llvm::StructType *MethodDescriptionListTy;
524 /// MethodDescriptionListPtrTy - LLVM type for struct
525 /// objc_method_description_list *.
526 llvm::PointerType *MethodDescriptionListPtrTy;
527 /// ProtocolListTy - LLVM type for struct objc_property_list.
528 llvm::StructType *ProtocolListTy;
529 /// ProtocolListPtrTy - LLVM type for struct objc_property_list*.
530 llvm::PointerType *ProtocolListPtrTy;
531 /// CategoryTy - LLVM type for struct objc_category.
532 llvm::StructType *CategoryTy;
533 /// ClassTy - LLVM type for struct objc_class.
534 llvm::StructType *ClassTy;
535 /// ClassPtrTy - LLVM type for struct objc_class *.
536 llvm::PointerType *ClassPtrTy;
537 /// ClassExtensionTy - LLVM type for struct objc_class_ext.
538 llvm::StructType *ClassExtensionTy;
539 /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *.
540 llvm::PointerType *ClassExtensionPtrTy;
541 // IvarTy - LLVM type for struct objc_ivar.
542 llvm::StructType *IvarTy;
543 /// IvarListTy - LLVM type for struct objc_ivar_list.
544 llvm::StructType *IvarListTy;
545 /// IvarListPtrTy - LLVM type for struct objc_ivar_list *.
546 llvm::PointerType *IvarListPtrTy;
547 /// MethodListTy - LLVM type for struct objc_method_list.
548 llvm::StructType *MethodListTy;
549 /// MethodListPtrTy - LLVM type for struct objc_method_list *.
550 llvm::PointerType *MethodListPtrTy;
552 /// ExceptionDataTy - LLVM type for struct _objc_exception_data.
553 llvm::StructType *ExceptionDataTy;
555 /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function.
556 llvm::FunctionCallee getExceptionTryEnterFn() {
557 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
558 return CGM.CreateRuntimeFunction(
559 llvm::FunctionType::get(CGM.VoidTy, params, false),
560 "objc_exception_try_enter");
563 /// ExceptionTryExitFn - LLVM objc_exception_try_exit function.
564 llvm::FunctionCallee getExceptionTryExitFn() {
565 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
566 return CGM.CreateRuntimeFunction(
567 llvm::FunctionType::get(CGM.VoidTy, params, false),
568 "objc_exception_try_exit");
571 /// ExceptionExtractFn - LLVM objc_exception_extract function.
572 llvm::FunctionCallee getExceptionExtractFn() {
573 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
574 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
575 params, false),
576 "objc_exception_extract");
579 /// ExceptionMatchFn - LLVM objc_exception_match function.
580 llvm::FunctionCallee getExceptionMatchFn() {
581 llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy };
582 return CGM.CreateRuntimeFunction(
583 llvm::FunctionType::get(CGM.Int32Ty, params, false),
584 "objc_exception_match");
587 /// SetJmpFn - LLVM _setjmp function.
588 llvm::FunctionCallee getSetJmpFn() {
589 // This is specifically the prototype for x86.
590 llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() };
591 return CGM.CreateRuntimeFunction(
592 llvm::FunctionType::get(CGM.Int32Ty, params, false), "_setjmp",
593 llvm::AttributeList::get(CGM.getLLVMContext(),
594 llvm::AttributeList::FunctionIndex,
595 llvm::Attribute::NonLazyBind));
598 public:
599 ObjCTypesHelper(CodeGen::CodeGenModule &cgm);
602 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's
603 /// modern abi
604 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper {
605 public:
606 // MethodListnfABITy - LLVM for struct _method_list_t
607 llvm::StructType *MethodListnfABITy;
609 // MethodListnfABIPtrTy - LLVM for struct _method_list_t*
610 llvm::PointerType *MethodListnfABIPtrTy;
612 // ProtocolnfABITy = LLVM for struct _protocol_t
613 llvm::StructType *ProtocolnfABITy;
615 // ProtocolnfABIPtrTy = LLVM for struct _protocol_t*
616 llvm::PointerType *ProtocolnfABIPtrTy;
618 // ProtocolListnfABITy - LLVM for struct _objc_protocol_list
619 llvm::StructType *ProtocolListnfABITy;
621 // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list*
622 llvm::PointerType *ProtocolListnfABIPtrTy;
624 // ClassnfABITy - LLVM for struct _class_t
625 llvm::StructType *ClassnfABITy;
627 // ClassnfABIPtrTy - LLVM for struct _class_t*
628 llvm::PointerType *ClassnfABIPtrTy;
630 // IvarnfABITy - LLVM for struct _ivar_t
631 llvm::StructType *IvarnfABITy;
633 // IvarListnfABITy - LLVM for struct _ivar_list_t
634 llvm::StructType *IvarListnfABITy;
636 // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t*
637 llvm::PointerType *IvarListnfABIPtrTy;
639 // ClassRonfABITy - LLVM for struct _class_ro_t
640 llvm::StructType *ClassRonfABITy;
642 // ImpnfABITy - LLVM for id (*)(id, SEL, ...)
643 llvm::PointerType *ImpnfABITy;
645 // CategorynfABITy - LLVM for struct _category_t
646 llvm::StructType *CategorynfABITy;
648 // New types for nonfragile abi messaging.
650 // MessageRefTy - LLVM for:
651 // struct _message_ref_t {
652 // IMP messenger;
653 // SEL name;
654 // };
655 llvm::StructType *MessageRefTy;
656 // MessageRefCTy - clang type for struct _message_ref_t
657 QualType MessageRefCTy;
659 // MessageRefPtrTy - LLVM for struct _message_ref_t*
660 llvm::Type *MessageRefPtrTy;
661 // MessageRefCPtrTy - clang type for struct _message_ref_t*
662 QualType MessageRefCPtrTy;
664 // SuperMessageRefTy - LLVM for:
665 // struct _super_message_ref_t {
666 // SUPER_IMP messenger;
667 // SEL name;
668 // };
669 llvm::StructType *SuperMessageRefTy;
671 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t*
672 llvm::PointerType *SuperMessageRefPtrTy;
674 llvm::FunctionCallee getMessageSendFixupFn() {
675 // id objc_msgSend_fixup(id, struct message_ref_t*, ...)
676 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
677 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
678 params, true),
679 "objc_msgSend_fixup");
682 llvm::FunctionCallee getMessageSendFpretFixupFn() {
683 // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...)
684 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
685 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
686 params, true),
687 "objc_msgSend_fpret_fixup");
690 llvm::FunctionCallee getMessageSendStretFixupFn() {
691 // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...)
692 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
693 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
694 params, true),
695 "objc_msgSend_stret_fixup");
698 llvm::FunctionCallee getMessageSendSuper2FixupFn() {
699 // id objc_msgSendSuper2_fixup (struct objc_super *,
700 // struct _super_message_ref_t*, ...)
701 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy };
702 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
703 params, true),
704 "objc_msgSendSuper2_fixup");
707 llvm::FunctionCallee getMessageSendSuper2StretFixupFn() {
708 // id objc_msgSendSuper2_stret_fixup(struct objc_super *,
709 // struct _super_message_ref_t*, ...)
710 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy };
711 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
712 params, true),
713 "objc_msgSendSuper2_stret_fixup");
716 llvm::FunctionCallee getObjCEndCatchFn() {
717 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false),
718 "objc_end_catch");
721 llvm::FunctionCallee getObjCBeginCatchFn() {
722 llvm::Type *params[] = { Int8PtrTy };
723 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy,
724 params, false),
725 "objc_begin_catch");
728 /// Class objc_loadClassref (void *)
730 /// Loads from a classref. For Objective-C stub classes, this invokes the
731 /// initialization callback stored inside the stub. For all other classes
732 /// this simply dereferences the pointer.
733 llvm::FunctionCallee getLoadClassrefFn() const {
734 // Add the non-lazy-bind attribute, since objc_loadClassref is likely to
735 // be called a lot.
737 // Also it is safe to make it readnone, since we never load or store the
738 // classref except by calling this function.
739 llvm::Type *params[] = { Int8PtrPtrTy };
740 llvm::LLVMContext &C = CGM.getLLVMContext();
741 llvm::AttributeSet AS = llvm::AttributeSet::get(C, {
742 llvm::Attribute::get(C, llvm::Attribute::NonLazyBind),
743 llvm::Attribute::getWithMemoryEffects(C, llvm::MemoryEffects::none()),
744 llvm::Attribute::get(C, llvm::Attribute::NoUnwind),
746 llvm::FunctionCallee F = CGM.CreateRuntimeFunction(
747 llvm::FunctionType::get(ClassnfABIPtrTy, params, false),
748 "objc_loadClassref",
749 llvm::AttributeList::get(CGM.getLLVMContext(),
750 llvm::AttributeList::FunctionIndex, AS));
751 if (!CGM.getTriple().isOSBinFormatCOFF())
752 cast<llvm::Function>(F.getCallee())->setLinkage(
753 llvm::Function::ExternalWeakLinkage);
755 return F;
758 llvm::StructType *EHTypeTy;
759 llvm::Type *EHTypePtrTy;
761 ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm);
764 enum class ObjCLabelType {
765 ClassName,
766 MethodVarName,
767 MethodVarType,
768 PropertyName,
771 class CGObjCCommonMac : public CodeGen::CGObjCRuntime {
772 public:
773 class SKIP_SCAN {
774 public:
775 unsigned skip;
776 unsigned scan;
777 SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0)
778 : skip(_skip), scan(_scan) {}
781 /// opcode for captured block variables layout 'instructions'.
782 /// In the following descriptions, 'I' is the value of the immediate field.
783 /// (field following the opcode).
785 enum BLOCK_LAYOUT_OPCODE {
786 /// An operator which affects how the following layout should be
787 /// interpreted.
788 /// I == 0: Halt interpretation and treat everything else as
789 /// a non-pointer. Note that this instruction is equal
790 /// to '\0'.
791 /// I != 0: Currently unused.
792 BLOCK_LAYOUT_OPERATOR = 0,
794 /// The next I+1 bytes do not contain a value of object pointer type.
795 /// Note that this can leave the stream unaligned, meaning that
796 /// subsequent word-size instructions do not begin at a multiple of
797 /// the pointer size.
798 BLOCK_LAYOUT_NON_OBJECT_BYTES = 1,
800 /// The next I+1 words do not contain a value of object pointer type.
801 /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for
802 /// when the required skip quantity is a multiple of the pointer size.
803 BLOCK_LAYOUT_NON_OBJECT_WORDS = 2,
805 /// The next I+1 words are __strong pointers to Objective-C
806 /// objects or blocks.
807 BLOCK_LAYOUT_STRONG = 3,
809 /// The next I+1 words are pointers to __block variables.
810 BLOCK_LAYOUT_BYREF = 4,
812 /// The next I+1 words are __weak pointers to Objective-C
813 /// objects or blocks.
814 BLOCK_LAYOUT_WEAK = 5,
816 /// The next I+1 words are __unsafe_unretained pointers to
817 /// Objective-C objects or blocks.
818 BLOCK_LAYOUT_UNRETAINED = 6
820 /// The next I+1 words are block or object pointers with some
821 /// as-yet-unspecified ownership semantics. If we add more
822 /// flavors of ownership semantics, values will be taken from
823 /// this range.
825 /// This is included so that older tools can at least continue
826 /// processing the layout past such things.
827 //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10,
829 /// All other opcodes are reserved. Halt interpretation and
830 /// treat everything else as opaque.
833 class RUN_SKIP {
834 public:
835 enum BLOCK_LAYOUT_OPCODE opcode;
836 CharUnits block_var_bytepos;
837 CharUnits block_var_size;
838 RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR,
839 CharUnits BytePos = CharUnits::Zero(),
840 CharUnits Size = CharUnits::Zero())
841 : opcode(Opcode), block_var_bytepos(BytePos), block_var_size(Size) {}
843 // Allow sorting based on byte pos.
844 bool operator<(const RUN_SKIP &b) const {
845 return block_var_bytepos < b.block_var_bytepos;
849 protected:
850 llvm::LLVMContext &VMContext;
851 // FIXME! May not be needing this after all.
852 unsigned ObjCABI;
854 // arc/mrr layout of captured block literal variables.
855 SmallVector<RUN_SKIP, 16> RunSkipBlockVars;
857 /// LazySymbols - Symbols to generate a lazy reference for. See
858 /// DefinedSymbols and FinishModule().
859 llvm::SetVector<IdentifierInfo*> LazySymbols;
861 /// DefinedSymbols - External symbols which are defined by this
862 /// module. The symbols in this list and LazySymbols are used to add
863 /// special linker symbols which ensure that Objective-C modules are
864 /// linked properly.
865 llvm::SetVector<IdentifierInfo*> DefinedSymbols;
867 /// ClassNames - uniqued class names.
868 llvm::StringMap<llvm::GlobalVariable*> ClassNames;
870 /// MethodVarNames - uniqued method variable names.
871 llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames;
873 /// DefinedCategoryNames - list of category names in form Class_Category.
874 llvm::SmallSetVector<llvm::CachedHashString, 16> DefinedCategoryNames;
876 /// MethodVarTypes - uniqued method type signatures. We have to use
877 /// a StringMap here because have no other unique reference.
878 llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes;
880 /// MethodDefinitions - map of methods which have been defined in
881 /// this translation unit.
882 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions;
884 /// DirectMethodDefinitions - map of direct methods which have been defined in
885 /// this translation unit.
886 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> DirectMethodDefinitions;
888 /// PropertyNames - uniqued method variable names.
889 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames;
891 /// ClassReferences - uniqued class references.
892 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences;
894 /// SelectorReferences - uniqued selector references.
895 llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences;
897 /// Protocols - Protocols for which an objc_protocol structure has
898 /// been emitted. Forward declarations are handled by creating an
899 /// empty structure whose initializer is filled in when/if defined.
900 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols;
902 /// DefinedProtocols - Protocols which have actually been
903 /// defined. We should not need this, see FIXME in GenerateProtocol.
904 llvm::DenseSet<IdentifierInfo*> DefinedProtocols;
906 /// DefinedClasses - List of defined classes.
907 SmallVector<llvm::GlobalValue*, 16> DefinedClasses;
909 /// ImplementedClasses - List of @implemented classes.
910 SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses;
912 /// DefinedNonLazyClasses - List of defined "non-lazy" classes.
913 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses;
915 /// DefinedCategories - List of defined categories.
916 SmallVector<llvm::GlobalValue*, 16> DefinedCategories;
918 /// DefinedStubCategories - List of defined categories on class stubs.
919 SmallVector<llvm::GlobalValue*, 16> DefinedStubCategories;
921 /// DefinedNonLazyCategories - List of defined "non-lazy" categories.
922 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories;
924 /// Cached reference to the class for constant strings. This value has type
925 /// int * but is actually an Obj-C class pointer.
926 llvm::WeakTrackingVH ConstantStringClassRef;
928 /// The LLVM type corresponding to NSConstantString.
929 llvm::StructType *NSConstantStringType = nullptr;
931 llvm::StringMap<llvm::GlobalVariable *> NSConstantStringMap;
933 /// GetMethodVarName - Return a unique constant for the given
934 /// selector's name. The return value has type char *.
935 llvm::Constant *GetMethodVarName(Selector Sel);
936 llvm::Constant *GetMethodVarName(IdentifierInfo *Ident);
938 /// GetMethodVarType - Return a unique constant for the given
939 /// method's type encoding string. The return value has type char *.
941 // FIXME: This is a horrible name.
942 llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D,
943 bool Extended = false);
944 llvm::Constant *GetMethodVarType(const FieldDecl *D);
946 /// GetPropertyName - Return a unique constant for the given
947 /// name. The return value has type char *.
948 llvm::Constant *GetPropertyName(IdentifierInfo *Ident);
950 // FIXME: This can be dropped once string functions are unified.
951 llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD,
952 const Decl *Container);
954 /// GetClassName - Return a unique constant for the given selector's
955 /// runtime name (which may change via use of objc_runtime_name attribute on
956 /// class or protocol definition. The return value has type char *.
957 llvm::Constant *GetClassName(StringRef RuntimeName);
959 llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD);
961 /// BuildIvarLayout - Builds ivar layout bitmap for the class
962 /// implementation for the __strong or __weak case.
964 /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there
965 /// are any weak ivars defined directly in the class. Meaningless unless
966 /// building a weak layout. Does not guarantee that the layout will
967 /// actually have any entries, because the ivar might be under-aligned.
968 llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI,
969 CharUnits beginOffset,
970 CharUnits endOffset,
971 bool forStrongLayout,
972 bool hasMRCWeakIvars);
974 llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI,
975 CharUnits beginOffset,
976 CharUnits endOffset) {
977 return BuildIvarLayout(OI, beginOffset, endOffset, true, false);
980 llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI,
981 CharUnits beginOffset,
982 CharUnits endOffset,
983 bool hasMRCWeakIvars) {
984 return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars);
987 Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout);
989 void UpdateRunSkipBlockVars(bool IsByref,
990 Qualifiers::ObjCLifetime LifeTime,
991 CharUnits FieldOffset,
992 CharUnits FieldSize);
994 void BuildRCBlockVarRecordLayout(const RecordType *RT,
995 CharUnits BytePos, bool &HasUnion,
996 bool ByrefLayout=false);
998 void BuildRCRecordLayout(const llvm::StructLayout *RecLayout,
999 const RecordDecl *RD,
1000 ArrayRef<const FieldDecl*> RecFields,
1001 CharUnits BytePos, bool &HasUnion,
1002 bool ByrefLayout);
1004 uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout);
1006 llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout);
1008 /// GetIvarLayoutName - Returns a unique constant for the given
1009 /// ivar layout bitmap.
1010 llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident,
1011 const ObjCCommonTypesHelper &ObjCTypes);
1013 /// EmitPropertyList - Emit the given property list. The return
1014 /// value has type PropertyListPtrTy.
1015 llvm::Constant *EmitPropertyList(Twine Name,
1016 const Decl *Container,
1017 const ObjCContainerDecl *OCD,
1018 const ObjCCommonTypesHelper &ObjCTypes,
1019 bool IsClassProperty);
1021 /// EmitProtocolMethodTypes - Generate the array of extended method type
1022 /// strings. The return value has type Int8PtrPtrTy.
1023 llvm::Constant *EmitProtocolMethodTypes(Twine Name,
1024 ArrayRef<llvm::Constant*> MethodTypes,
1025 const ObjCCommonTypesHelper &ObjCTypes);
1027 /// GetProtocolRef - Return a reference to the internal protocol
1028 /// description, creating an empty one if it has not been
1029 /// defined. The return value has type ProtocolPtrTy.
1030 llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD);
1032 /// Return a reference to the given Class using runtime calls rather than
1033 /// by a symbol reference.
1034 llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF,
1035 const ObjCInterfaceDecl *ID,
1036 ObjCCommonTypesHelper &ObjCTypes);
1038 std::string GetSectionName(StringRef Section, StringRef MachOAttributes);
1040 public:
1041 /// CreateMetadataVar - Create a global variable with internal
1042 /// linkage for use by the Objective-C runtime.
1044 /// This is a convenience wrapper which not only creates the
1045 /// variable, but also sets the section and alignment and adds the
1046 /// global to the "llvm.used" list.
1048 /// \param Name - The variable name.
1049 /// \param Init - The variable initializer; this is also used to
1050 /// define the type of the variable.
1051 /// \param Section - The section the variable should go into, or empty.
1052 /// \param Align - The alignment for the variable, or 0.
1053 /// \param AddToUsed - Whether the variable should be added to
1054 /// "llvm.used".
1055 llvm::GlobalVariable *CreateMetadataVar(Twine Name,
1056 ConstantStructBuilder &Init,
1057 StringRef Section, CharUnits Align,
1058 bool AddToUsed);
1059 llvm::GlobalVariable *CreateMetadataVar(Twine Name,
1060 llvm::Constant *Init,
1061 StringRef Section, CharUnits Align,
1062 bool AddToUsed);
1064 llvm::GlobalVariable *CreateCStringLiteral(StringRef Name,
1065 ObjCLabelType LabelType,
1066 bool ForceNonFragileABI = false,
1067 bool NullTerminate = true);
1069 protected:
1070 CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF,
1071 ReturnValueSlot Return,
1072 QualType ResultType,
1073 Selector Sel,
1074 llvm::Value *Arg0,
1075 QualType Arg0Ty,
1076 bool IsSuper,
1077 const CallArgList &CallArgs,
1078 const ObjCMethodDecl *OMD,
1079 const ObjCInterfaceDecl *ClassReceiver,
1080 const ObjCCommonTypesHelper &ObjCTypes);
1082 /// EmitImageInfo - Emit the image info marker used to encode some module
1083 /// level information.
1084 void EmitImageInfo();
1086 public:
1087 CGObjCCommonMac(CodeGen::CodeGenModule &cgm)
1088 : CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) {}
1090 bool isNonFragileABI() const {
1091 return ObjCABI == 2;
1094 ConstantAddress GenerateConstantString(const StringLiteral *SL) override;
1095 ConstantAddress GenerateConstantNSString(const StringLiteral *SL);
1097 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
1098 const ObjCContainerDecl *CD=nullptr) override;
1100 llvm::Function *GenerateDirectMethod(const ObjCMethodDecl *OMD,
1101 const ObjCContainerDecl *CD);
1103 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn,
1104 const ObjCMethodDecl *OMD,
1105 const ObjCContainerDecl *CD) override;
1107 void GenerateProtocol(const ObjCProtocolDecl *PD) override;
1109 /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1110 /// object for the given declaration, emitting it if needed. These
1111 /// forward references will be filled in with empty bodies if no
1112 /// definition is seen. The return value has type ProtocolPtrTy.
1113 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0;
1115 virtual llvm::Constant *getNSConstantStringClassRef() = 0;
1117 llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM,
1118 const CGBlockInfo &blockInfo) override;
1119 llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM,
1120 const CGBlockInfo &blockInfo) override;
1121 std::string getRCBlockLayoutStr(CodeGen::CodeGenModule &CGM,
1122 const CGBlockInfo &blockInfo) override;
1124 llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM,
1125 QualType T) override;
1127 private:
1128 void fillRunSkipBlockVars(CodeGenModule &CGM, const CGBlockInfo &blockInfo);
1131 namespace {
1133 enum class MethodListType {
1134 CategoryInstanceMethods,
1135 CategoryClassMethods,
1136 InstanceMethods,
1137 ClassMethods,
1138 ProtocolInstanceMethods,
1139 ProtocolClassMethods,
1140 OptionalProtocolInstanceMethods,
1141 OptionalProtocolClassMethods,
1144 /// A convenience class for splitting the methods of a protocol into
1145 /// the four interesting groups.
1146 class ProtocolMethodLists {
1147 public:
1148 enum Kind {
1149 RequiredInstanceMethods,
1150 RequiredClassMethods,
1151 OptionalInstanceMethods,
1152 OptionalClassMethods
1154 enum {
1155 NumProtocolMethodLists = 4
1158 static MethodListType getMethodListKind(Kind kind) {
1159 switch (kind) {
1160 case RequiredInstanceMethods:
1161 return MethodListType::ProtocolInstanceMethods;
1162 case RequiredClassMethods:
1163 return MethodListType::ProtocolClassMethods;
1164 case OptionalInstanceMethods:
1165 return MethodListType::OptionalProtocolInstanceMethods;
1166 case OptionalClassMethods:
1167 return MethodListType::OptionalProtocolClassMethods;
1169 llvm_unreachable("bad kind");
1172 SmallVector<const ObjCMethodDecl *, 4> Methods[NumProtocolMethodLists];
1174 static ProtocolMethodLists get(const ObjCProtocolDecl *PD) {
1175 ProtocolMethodLists result;
1177 for (auto *MD : PD->methods()) {
1178 size_t index = (2 * size_t(MD->isOptional()))
1179 + (size_t(MD->isClassMethod()));
1180 result.Methods[index].push_back(MD);
1183 return result;
1186 template <class Self>
1187 SmallVector<llvm::Constant*, 8> emitExtendedTypesArray(Self *self) const {
1188 // In both ABIs, the method types list is parallel with the
1189 // concatenation of the methods arrays in the following order:
1190 // instance methods
1191 // class methods
1192 // optional instance methods
1193 // optional class methods
1194 SmallVector<llvm::Constant*, 8> result;
1196 // Methods is already in the correct order for both ABIs.
1197 for (auto &list : Methods) {
1198 for (auto MD : list) {
1199 result.push_back(self->GetMethodVarType(MD, true));
1203 return result;
1206 template <class Self>
1207 llvm::Constant *emitMethodList(Self *self, const ObjCProtocolDecl *PD,
1208 Kind kind) const {
1209 return self->emitMethodList(PD->getObjCRuntimeNameAsString(),
1210 getMethodListKind(kind), Methods[kind]);
1214 } // end anonymous namespace
1216 class CGObjCMac : public CGObjCCommonMac {
1217 private:
1218 friend ProtocolMethodLists;
1220 ObjCTypesHelper ObjCTypes;
1222 /// EmitModuleInfo - Another marker encoding module level
1223 /// information.
1224 void EmitModuleInfo();
1226 /// EmitModuleSymols - Emit module symbols, the list of defined
1227 /// classes and categories. The result has type SymtabPtrTy.
1228 llvm::Constant *EmitModuleSymbols();
1230 /// FinishModule - Write out global data structures at the end of
1231 /// processing a translation unit.
1232 void FinishModule();
1234 /// EmitClassExtension - Generate the class extension structure used
1235 /// to store the weak ivar layout and properties. The return value
1236 /// has type ClassExtensionPtrTy.
1237 llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID,
1238 CharUnits instanceSize,
1239 bool hasMRCWeakIvars,
1240 bool isMetaclass);
1242 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1243 /// for the given class.
1244 llvm::Value *EmitClassRef(CodeGenFunction &CGF,
1245 const ObjCInterfaceDecl *ID);
1247 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF,
1248 IdentifierInfo *II);
1250 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
1252 /// EmitSuperClassRef - Emits reference to class's main metadata class.
1253 llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID);
1255 /// EmitIvarList - Emit the ivar list for the given
1256 /// implementation. If ForClass is true the list of class ivars
1257 /// (i.e. metaclass ivars) is emitted, otherwise the list of
1258 /// interface ivars will be emitted. The return value has type
1259 /// IvarListPtrTy.
1260 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID,
1261 bool ForClass);
1263 /// EmitMetaClass - Emit a forward reference to the class structure
1264 /// for the metaclass of the given interface. The return value has
1265 /// type ClassPtrTy.
1266 llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID);
1268 /// EmitMetaClass - Emit a class structure for the metaclass of the
1269 /// given implementation. The return value has type ClassPtrTy.
1270 llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID,
1271 llvm::Constant *Protocols,
1272 ArrayRef<const ObjCMethodDecl *> Methods);
1274 void emitMethodConstant(ConstantArrayBuilder &builder,
1275 const ObjCMethodDecl *MD);
1277 void emitMethodDescriptionConstant(ConstantArrayBuilder &builder,
1278 const ObjCMethodDecl *MD);
1280 /// EmitMethodList - Emit the method list for the given
1281 /// implementation. The return value has type MethodListPtrTy.
1282 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT,
1283 ArrayRef<const ObjCMethodDecl *> Methods);
1285 /// GetOrEmitProtocol - Get the protocol object for the given
1286 /// declaration, emitting it if necessary. The return value has type
1287 /// ProtocolPtrTy.
1288 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override;
1290 /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1291 /// object for the given declaration, emitting it if needed. These
1292 /// forward references will be filled in with empty bodies if no
1293 /// definition is seen. The return value has type ProtocolPtrTy.
1294 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override;
1296 /// EmitProtocolExtension - Generate the protocol extension
1297 /// structure used to store optional instance and class methods, and
1298 /// protocol properties. The return value has type
1299 /// ProtocolExtensionPtrTy.
1300 llvm::Constant *
1301 EmitProtocolExtension(const ObjCProtocolDecl *PD,
1302 const ProtocolMethodLists &methodLists);
1304 /// EmitProtocolList - Generate the list of referenced
1305 /// protocols. The return value has type ProtocolListPtrTy.
1306 llvm::Constant *EmitProtocolList(Twine Name,
1307 ObjCProtocolDecl::protocol_iterator begin,
1308 ObjCProtocolDecl::protocol_iterator end);
1310 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy,
1311 /// for the given selector.
1312 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel);
1313 Address EmitSelectorAddr(Selector Sel);
1315 public:
1316 CGObjCMac(CodeGen::CodeGenModule &cgm);
1318 llvm::Constant *getNSConstantStringClassRef() override;
1320 llvm::Function *ModuleInitFunction() override;
1322 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
1323 ReturnValueSlot Return,
1324 QualType ResultType,
1325 Selector Sel, llvm::Value *Receiver,
1326 const CallArgList &CallArgs,
1327 const ObjCInterfaceDecl *Class,
1328 const ObjCMethodDecl *Method) override;
1330 CodeGen::RValue
1331 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
1332 ReturnValueSlot Return, QualType ResultType,
1333 Selector Sel, const ObjCInterfaceDecl *Class,
1334 bool isCategoryImpl, llvm::Value *Receiver,
1335 bool IsClassMessage, const CallArgList &CallArgs,
1336 const ObjCMethodDecl *Method) override;
1338 llvm::Value *GetClass(CodeGenFunction &CGF,
1339 const ObjCInterfaceDecl *ID) override;
1341 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
1342 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override;
1344 /// The NeXT/Apple runtimes do not support typed selectors; just emit an
1345 /// untyped one.
1346 llvm::Value *GetSelector(CodeGenFunction &CGF,
1347 const ObjCMethodDecl *Method) override;
1349 llvm::Constant *GetEHType(QualType T) override;
1351 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
1353 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
1355 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {}
1357 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1358 const ObjCProtocolDecl *PD) override;
1360 llvm::FunctionCallee GetPropertyGetFunction() override;
1361 llvm::FunctionCallee GetPropertySetFunction() override;
1362 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
1363 bool copy) override;
1364 llvm::FunctionCallee GetGetStructFunction() override;
1365 llvm::FunctionCallee GetSetStructFunction() override;
1366 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override;
1367 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override;
1368 llvm::FunctionCallee EnumerationMutationFunction() override;
1370 void EmitTryStmt(CodeGen::CodeGenFunction &CGF,
1371 const ObjCAtTryStmt &S) override;
1372 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
1373 const ObjCAtSynchronizedStmt &S) override;
1374 void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S);
1375 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S,
1376 bool ClearInsertionPoint=true) override;
1377 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
1378 Address AddrWeakObj) override;
1379 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
1380 llvm::Value *src, Address dst) override;
1381 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
1382 llvm::Value *src, Address dest,
1383 bool threadlocal = false) override;
1384 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
1385 llvm::Value *src, Address dest,
1386 llvm::Value *ivarOffset) override;
1387 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
1388 llvm::Value *src, Address dest) override;
1389 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
1390 Address dest, Address src,
1391 llvm::Value *size) override;
1393 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy,
1394 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
1395 unsigned CVRQualifiers) override;
1396 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
1397 const ObjCInterfaceDecl *Interface,
1398 const ObjCIvarDecl *Ivar) override;
1401 class CGObjCNonFragileABIMac : public CGObjCCommonMac {
1402 private:
1403 friend ProtocolMethodLists;
1404 ObjCNonFragileABITypesHelper ObjCTypes;
1405 llvm::GlobalVariable* ObjCEmptyCacheVar;
1406 llvm::Constant* ObjCEmptyVtableVar;
1408 /// SuperClassReferences - uniqued super class references.
1409 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences;
1411 /// MetaClassReferences - uniqued meta class references.
1412 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences;
1414 /// EHTypeReferences - uniqued class ehtype references.
1415 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences;
1417 /// VTableDispatchMethods - List of methods for which we generate
1418 /// vtable-based message dispatch.
1419 llvm::DenseSet<Selector> VTableDispatchMethods;
1421 /// DefinedMetaClasses - List of defined meta-classes.
1422 std::vector<llvm::GlobalValue*> DefinedMetaClasses;
1424 /// isVTableDispatchedSelector - Returns true if SEL is a
1425 /// vtable-based selector.
1426 bool isVTableDispatchedSelector(Selector Sel);
1428 /// FinishNonFragileABIModule - Write out global data structures at the end of
1429 /// processing a translation unit.
1430 void FinishNonFragileABIModule();
1432 /// AddModuleClassList - Add the given list of class pointers to the
1433 /// module with the provided symbol and section names.
1434 void AddModuleClassList(ArrayRef<llvm::GlobalValue *> Container,
1435 StringRef SymbolName, StringRef SectionName);
1437 llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags,
1438 unsigned InstanceStart,
1439 unsigned InstanceSize,
1440 const ObjCImplementationDecl *ID);
1441 llvm::GlobalVariable *BuildClassObject(const ObjCInterfaceDecl *CI,
1442 bool isMetaclass,
1443 llvm::Constant *IsAGV,
1444 llvm::Constant *SuperClassGV,
1445 llvm::Constant *ClassRoGV,
1446 bool HiddenVisibility);
1448 void emitMethodConstant(ConstantArrayBuilder &builder,
1449 const ObjCMethodDecl *MD,
1450 bool forProtocol);
1452 /// Emit the method list for the given implementation. The return value
1453 /// has type MethodListnfABITy.
1454 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT,
1455 ArrayRef<const ObjCMethodDecl *> Methods);
1457 /// EmitIvarList - Emit the ivar list for the given
1458 /// implementation. If ForClass is true the list of class ivars
1459 /// (i.e. metaclass ivars) is emitted, otherwise the list of
1460 /// interface ivars will be emitted. The return value has type
1461 /// IvarListnfABIPtrTy.
1462 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID);
1464 llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID,
1465 const ObjCIvarDecl *Ivar,
1466 unsigned long int offset);
1468 /// GetOrEmitProtocol - Get the protocol object for the given
1469 /// declaration, emitting it if necessary. The return value has type
1470 /// ProtocolPtrTy.
1471 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override;
1473 /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1474 /// object for the given declaration, emitting it if needed. These
1475 /// forward references will be filled in with empty bodies if no
1476 /// definition is seen. The return value has type ProtocolPtrTy.
1477 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override;
1479 /// EmitProtocolList - Generate the list of referenced
1480 /// protocols. The return value has type ProtocolListPtrTy.
1481 llvm::Constant *EmitProtocolList(Twine Name,
1482 ObjCProtocolDecl::protocol_iterator begin,
1483 ObjCProtocolDecl::protocol_iterator end);
1485 CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF,
1486 ReturnValueSlot Return,
1487 QualType ResultType,
1488 Selector Sel,
1489 llvm::Value *Receiver,
1490 QualType Arg0Ty,
1491 bool IsSuper,
1492 const CallArgList &CallArgs,
1493 const ObjCMethodDecl *Method);
1495 /// GetClassGlobal - Return the global variable for the Objective-C
1496 /// class of the given name.
1497 llvm::Constant *GetClassGlobal(StringRef Name,
1498 ForDefinition_t IsForDefinition,
1499 bool Weak = false, bool DLLImport = false);
1500 llvm::Constant *GetClassGlobal(const ObjCInterfaceDecl *ID,
1501 bool isMetaclass,
1502 ForDefinition_t isForDefinition);
1504 llvm::Constant *GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID);
1506 llvm::Value *EmitLoadOfClassRef(CodeGenFunction &CGF,
1507 const ObjCInterfaceDecl *ID,
1508 llvm::GlobalVariable *Entry);
1510 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1511 /// for the given class reference.
1512 llvm::Value *EmitClassRef(CodeGenFunction &CGF,
1513 const ObjCInterfaceDecl *ID);
1515 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF,
1516 IdentifierInfo *II,
1517 const ObjCInterfaceDecl *ID);
1519 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
1521 /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1522 /// for the given super class reference.
1523 llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF,
1524 const ObjCInterfaceDecl *ID);
1526 /// EmitMetaClassRef - Return a Value * of the address of _class_t
1527 /// meta-data
1528 llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF,
1529 const ObjCInterfaceDecl *ID, bool Weak);
1531 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for
1532 /// the given ivar.
1534 llvm::GlobalVariable * ObjCIvarOffsetVariable(
1535 const ObjCInterfaceDecl *ID,
1536 const ObjCIvarDecl *Ivar);
1538 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy,
1539 /// for the given selector.
1540 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel);
1541 Address EmitSelectorAddr(Selector Sel);
1543 /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C
1544 /// interface. The return value has type EHTypePtrTy.
1545 llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID,
1546 ForDefinition_t IsForDefinition);
1548 StringRef getMetaclassSymbolPrefix() const { return "OBJC_METACLASS_$_"; }
1550 StringRef getClassSymbolPrefix() const { return "OBJC_CLASS_$_"; }
1552 void GetClassSizeInfo(const ObjCImplementationDecl *OID,
1553 uint32_t &InstanceStart,
1554 uint32_t &InstanceSize);
1556 // Shamelessly stolen from Analysis/CFRefCount.cpp
1557 Selector GetNullarySelector(const char* name) const {
1558 IdentifierInfo* II = &CGM.getContext().Idents.get(name);
1559 return CGM.getContext().Selectors.getSelector(0, &II);
1562 Selector GetUnarySelector(const char* name) const {
1563 IdentifierInfo* II = &CGM.getContext().Idents.get(name);
1564 return CGM.getContext().Selectors.getSelector(1, &II);
1567 /// ImplementationIsNonLazy - Check whether the given category or
1568 /// class implementation is "non-lazy".
1569 bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const;
1571 bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF,
1572 const ObjCIvarDecl *IV) {
1573 // Annotate the load as an invariant load iff inside an instance method
1574 // and ivar belongs to instance method's class and one of its super class.
1575 // This check is needed because the ivar offset is a lazily
1576 // initialised value that may depend on objc_msgSend to perform a fixup on
1577 // the first message dispatch.
1579 // An additional opportunity to mark the load as invariant arises when the
1580 // base of the ivar access is a parameter to an Objective C method.
1581 // However, because the parameters are not available in the current
1582 // interface, we cannot perform this check.
1584 // Note that for direct methods, because objc_msgSend is skipped,
1585 // and that the method may be inlined, this optimization actually
1586 // can't be performed.
1587 if (const ObjCMethodDecl *MD =
1588 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl))
1589 if (MD->isInstanceMethod() && !MD->isDirectMethod())
1590 if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
1591 return IV->getContainingInterface()->isSuperClassOf(ID);
1592 return false;
1595 bool isClassLayoutKnownStatically(const ObjCInterfaceDecl *ID) {
1596 // NSObject is a fixed size. If we can see the @implementation of a class
1597 // which inherits from NSObject then we know that all it's offsets also must
1598 // be fixed. FIXME: Can we do this if see a chain of super classes with
1599 // implementations leading to NSObject?
1600 return ID->getImplementation() && ID->getSuperClass() &&
1601 ID->getSuperClass()->getName() == "NSObject";
1604 public:
1605 CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm);
1607 llvm::Constant *getNSConstantStringClassRef() override;
1609 llvm::Function *ModuleInitFunction() override;
1611 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
1612 ReturnValueSlot Return,
1613 QualType ResultType, Selector Sel,
1614 llvm::Value *Receiver,
1615 const CallArgList &CallArgs,
1616 const ObjCInterfaceDecl *Class,
1617 const ObjCMethodDecl *Method) override;
1619 CodeGen::RValue
1620 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
1621 ReturnValueSlot Return, QualType ResultType,
1622 Selector Sel, const ObjCInterfaceDecl *Class,
1623 bool isCategoryImpl, llvm::Value *Receiver,
1624 bool IsClassMessage, const CallArgList &CallArgs,
1625 const ObjCMethodDecl *Method) override;
1627 llvm::Value *GetClass(CodeGenFunction &CGF,
1628 const ObjCInterfaceDecl *ID) override;
1630 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override
1631 { return EmitSelector(CGF, Sel); }
1632 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override
1633 { return EmitSelectorAddr(Sel); }
1635 /// The NeXT/Apple runtimes do not support typed selectors; just emit an
1636 /// untyped one.
1637 llvm::Value *GetSelector(CodeGenFunction &CGF,
1638 const ObjCMethodDecl *Method) override
1639 { return EmitSelector(CGF, Method->getSelector()); }
1641 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
1643 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
1645 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {}
1647 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1648 const ObjCProtocolDecl *PD) override;
1650 llvm::Constant *GetEHType(QualType T) override;
1652 llvm::FunctionCallee GetPropertyGetFunction() override {
1653 return ObjCTypes.getGetPropertyFn();
1655 llvm::FunctionCallee GetPropertySetFunction() override {
1656 return ObjCTypes.getSetPropertyFn();
1659 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
1660 bool copy) override {
1661 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy);
1664 llvm::FunctionCallee GetSetStructFunction() override {
1665 return ObjCTypes.getCopyStructFn();
1668 llvm::FunctionCallee GetGetStructFunction() override {
1669 return ObjCTypes.getCopyStructFn();
1672 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override {
1673 return ObjCTypes.getCppAtomicObjectFunction();
1676 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override {
1677 return ObjCTypes.getCppAtomicObjectFunction();
1680 llvm::FunctionCallee EnumerationMutationFunction() override {
1681 return ObjCTypes.getEnumerationMutationFn();
1684 void EmitTryStmt(CodeGen::CodeGenFunction &CGF,
1685 const ObjCAtTryStmt &S) override;
1686 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
1687 const ObjCAtSynchronizedStmt &S) override;
1688 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S,
1689 bool ClearInsertionPoint=true) override;
1690 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
1691 Address AddrWeakObj) override;
1692 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
1693 llvm::Value *src, Address edst) override;
1694 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
1695 llvm::Value *src, Address dest,
1696 bool threadlocal = false) override;
1697 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
1698 llvm::Value *src, Address dest,
1699 llvm::Value *ivarOffset) override;
1700 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
1701 llvm::Value *src, Address dest) override;
1702 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
1703 Address dest, Address src,
1704 llvm::Value *size) override;
1705 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy,
1706 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
1707 unsigned CVRQualifiers) override;
1708 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
1709 const ObjCInterfaceDecl *Interface,
1710 const ObjCIvarDecl *Ivar) override;
1713 /// A helper class for performing the null-initialization of a return
1714 /// value.
1715 struct NullReturnState {
1716 llvm::BasicBlock *NullBB;
1717 NullReturnState() : NullBB(nullptr) {}
1719 /// Perform a null-check of the given receiver.
1720 void init(CodeGenFunction &CGF, llvm::Value *receiver) {
1721 // Make blocks for the null-receiver and call edges.
1722 NullBB = CGF.createBasicBlock("msgSend.null-receiver");
1723 llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call");
1725 // Check for a null receiver and, if there is one, jump to the
1726 // null-receiver block. There's no point in trying to avoid it:
1727 // we're always going to put *something* there, because otherwise
1728 // we shouldn't have done this null-check in the first place.
1729 llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver);
1730 CGF.Builder.CreateCondBr(isNull, NullBB, callBB);
1732 // Otherwise, start performing the call.
1733 CGF.EmitBlock(callBB);
1736 /// Complete the null-return operation. It is valid to call this
1737 /// regardless of whether 'init' has been called.
1738 RValue complete(CodeGenFunction &CGF,
1739 ReturnValueSlot returnSlot,
1740 RValue result,
1741 QualType resultType,
1742 const CallArgList &CallArgs,
1743 const ObjCMethodDecl *Method) {
1744 // If we never had to do a null-check, just use the raw result.
1745 if (!NullBB) return result;
1747 // The continuation block. This will be left null if we don't have an
1748 // IP, which can happen if the method we're calling is marked noreturn.
1749 llvm::BasicBlock *contBB = nullptr;
1751 // Finish the call path.
1752 llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock();
1753 if (callBB) {
1754 contBB = CGF.createBasicBlock("msgSend.cont");
1755 CGF.Builder.CreateBr(contBB);
1758 // Okay, start emitting the null-receiver block.
1759 CGF.EmitBlock(NullBB);
1761 // Destroy any consumed arguments we've got.
1762 if (Method) {
1763 CGObjCRuntime::destroyCalleeDestroyedArguments(CGF, Method, CallArgs);
1766 // The phi code below assumes that we haven't needed any control flow yet.
1767 assert(CGF.Builder.GetInsertBlock() == NullBB);
1769 // If we've got a void return, just jump to the continuation block.
1770 if (result.isScalar() && resultType->isVoidType()) {
1771 // No jumps required if the message-send was noreturn.
1772 if (contBB) CGF.EmitBlock(contBB);
1773 return result;
1776 // If we've got a scalar return, build a phi.
1777 if (result.isScalar()) {
1778 // Derive the null-initialization value.
1779 llvm::Value *null =
1780 CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(resultType), resultType);
1782 // If no join is necessary, just flow out.
1783 if (!contBB) return RValue::get(null);
1785 // Otherwise, build a phi.
1786 CGF.EmitBlock(contBB);
1787 llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2);
1788 phi->addIncoming(result.getScalarVal(), callBB);
1789 phi->addIncoming(null, NullBB);
1790 return RValue::get(phi);
1793 // If we've got an aggregate return, null the buffer out.
1794 // FIXME: maybe we should be doing things differently for all the
1795 // cases where the ABI has us returning (1) non-agg values in
1796 // memory or (2) agg values in registers.
1797 if (result.isAggregate()) {
1798 assert(result.isAggregate() && "null init of non-aggregate result?");
1799 if (!returnSlot.isUnused())
1800 CGF.EmitNullInitialization(result.getAggregateAddress(), resultType);
1801 if (contBB) CGF.EmitBlock(contBB);
1802 return result;
1805 // Complex types.
1806 CGF.EmitBlock(contBB);
1807 CodeGenFunction::ComplexPairTy callResult = result.getComplexVal();
1809 // Find the scalar type and its zero value.
1810 llvm::Type *scalarTy = callResult.first->getType();
1811 llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy);
1813 // Build phis for both coordinates.
1814 llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2);
1815 real->addIncoming(callResult.first, callBB);
1816 real->addIncoming(scalarZero, NullBB);
1817 llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2);
1818 imag->addIncoming(callResult.second, callBB);
1819 imag->addIncoming(scalarZero, NullBB);
1820 return RValue::getComplex(real, imag);
1824 } // end anonymous namespace
1826 /* *** Helper Functions *** */
1828 /// getConstantGEP() - Help routine to construct simple GEPs.
1829 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext,
1830 llvm::GlobalVariable *C, unsigned idx0,
1831 unsigned idx1) {
1832 llvm::Value *Idxs[] = {
1833 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0),
1834 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1)
1836 return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs);
1839 /// hasObjCExceptionAttribute - Return true if this class or any super
1840 /// class has the __objc_exception__ attribute.
1841 static bool hasObjCExceptionAttribute(ASTContext &Context,
1842 const ObjCInterfaceDecl *OID) {
1843 if (OID->hasAttr<ObjCExceptionAttr>())
1844 return true;
1845 if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
1846 return hasObjCExceptionAttribute(Context, Super);
1847 return false;
1850 static llvm::GlobalValue::LinkageTypes
1851 getLinkageTypeForObjCMetadata(CodeGenModule &CGM, StringRef Section) {
1852 if (CGM.getTriple().isOSBinFormatMachO() &&
1853 (Section.empty() || Section.startswith("__DATA")))
1854 return llvm::GlobalValue::InternalLinkage;
1855 return llvm::GlobalValue::PrivateLinkage;
1858 /// A helper function to create an internal or private global variable.
1859 static llvm::GlobalVariable *
1860 finishAndCreateGlobal(ConstantInitBuilder::StructBuilder &Builder,
1861 const llvm::Twine &Name, CodeGenModule &CGM) {
1862 std::string SectionName;
1863 if (CGM.getTriple().isOSBinFormatMachO())
1864 SectionName = "__DATA, __objc_const";
1865 auto *GV = Builder.finishAndCreateGlobal(
1866 Name, CGM.getPointerAlign(), /*constant*/ false,
1867 getLinkageTypeForObjCMetadata(CGM, SectionName));
1868 GV->setSection(SectionName);
1869 return GV;
1872 /* *** CGObjCMac Public Interface *** */
1874 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm),
1875 ObjCTypes(cgm) {
1876 ObjCABI = 1;
1877 EmitImageInfo();
1880 /// GetClass - Return a reference to the class for the given interface
1881 /// decl.
1882 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF,
1883 const ObjCInterfaceDecl *ID) {
1884 return EmitClassRef(CGF, ID);
1887 /// GetSelector - Return the pointer to the unique'd string for this selector.
1888 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) {
1889 return EmitSelector(CGF, Sel);
1891 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
1892 return EmitSelectorAddr(Sel);
1894 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl
1895 *Method) {
1896 return EmitSelector(CGF, Method->getSelector());
1899 llvm::Constant *CGObjCMac::GetEHType(QualType T) {
1900 if (T->isObjCIdType() ||
1901 T->isObjCQualifiedIdType()) {
1902 return CGM.GetAddrOfRTTIDescriptor(
1903 CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true);
1905 if (T->isObjCClassType() ||
1906 T->isObjCQualifiedClassType()) {
1907 return CGM.GetAddrOfRTTIDescriptor(
1908 CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true);
1910 if (T->isObjCObjectPointerType())
1911 return CGM.GetAddrOfRTTIDescriptor(T, /*ForEH=*/true);
1913 llvm_unreachable("asking for catch type for ObjC type in fragile runtime");
1916 /// Generate a constant CFString object.
1918 struct __builtin_CFString {
1919 const int *isa; // point to __CFConstantStringClassReference
1920 int flags;
1921 const char *str;
1922 long length;
1926 /// or Generate a constant NSString object.
1928 struct __builtin_NSString {
1929 const int *isa; // point to __NSConstantStringClassReference
1930 const char *str;
1931 unsigned int length;
1935 ConstantAddress
1936 CGObjCCommonMac::GenerateConstantString(const StringLiteral *SL) {
1937 return (!CGM.getLangOpts().NoConstantCFStrings
1938 ? CGM.GetAddrOfConstantCFString(SL)
1939 : GenerateConstantNSString(SL));
1942 static llvm::StringMapEntry<llvm::GlobalVariable *> &
1943 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
1944 const StringLiteral *Literal, unsigned &StringLength) {
1945 StringRef String = Literal->getString();
1946 StringLength = String.size();
1947 return *Map.insert(std::make_pair(String, nullptr)).first;
1950 llvm::Constant *CGObjCMac::getNSConstantStringClassRef() {
1951 if (llvm::Value *V = ConstantStringClassRef)
1952 return cast<llvm::Constant>(V);
1954 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1955 std::string str =
1956 StringClass.empty() ? "_NSConstantStringClassReference"
1957 : "_" + StringClass + "ClassReference";
1959 llvm::Type *PTy = llvm::ArrayType::get(CGM.IntTy, 0);
1960 auto GV = CGM.CreateRuntimeVariable(PTy, str);
1961 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo());
1962 ConstantStringClassRef = V;
1963 return V;
1966 llvm::Constant *CGObjCNonFragileABIMac::getNSConstantStringClassRef() {
1967 if (llvm::Value *V = ConstantStringClassRef)
1968 return cast<llvm::Constant>(V);
1970 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1971 std::string str =
1972 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1973 : "OBJC_CLASS_$_" + StringClass;
1974 llvm::Constant *GV = GetClassGlobal(str, NotForDefinition);
1976 // Make sure the result is of the correct type.
1977 auto V = llvm::ConstantExpr::getBitCast(GV, CGM.IntTy->getPointerTo());
1979 ConstantStringClassRef = V;
1980 return V;
1983 ConstantAddress
1984 CGObjCCommonMac::GenerateConstantNSString(const StringLiteral *Literal) {
1985 unsigned StringLength = 0;
1986 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
1987 GetConstantStringEntry(NSConstantStringMap, Literal, StringLength);
1989 if (auto *C = Entry.second)
1990 return ConstantAddress(
1991 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
1993 // If we don't already have it, get _NSConstantStringClassReference.
1994 llvm::Constant *Class = getNSConstantStringClassRef();
1996 // If we don't already have it, construct the type for a constant NSString.
1997 if (!NSConstantStringType) {
1998 NSConstantStringType =
1999 llvm::StructType::create({
2000 CGM.Int32Ty->getPointerTo(),
2001 CGM.Int8PtrTy,
2002 CGM.IntTy
2003 }, "struct.__builtin_NSString");
2006 ConstantInitBuilder Builder(CGM);
2007 auto Fields = Builder.beginStruct(NSConstantStringType);
2009 // Class pointer.
2010 Fields.add(Class);
2012 // String pointer.
2013 llvm::Constant *C =
2014 llvm::ConstantDataArray::getString(VMContext, Entry.first());
2016 llvm::GlobalValue::LinkageTypes Linkage = llvm::GlobalValue::PrivateLinkage;
2017 bool isConstant = !CGM.getLangOpts().WritableStrings;
2019 auto *GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), isConstant,
2020 Linkage, C, ".str");
2021 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2022 // Don't enforce the target's minimum global alignment, since the only use
2023 // of the string is via this class initializer.
2024 GV->setAlignment(llvm::Align(1));
2025 Fields.addBitCast(GV, CGM.Int8PtrTy);
2027 // String length.
2028 Fields.addInt(CGM.IntTy, StringLength);
2030 // The struct.
2031 CharUnits Alignment = CGM.getPointerAlign();
2032 GV = Fields.finishAndCreateGlobal("_unnamed_nsstring_", Alignment,
2033 /*constant*/ true,
2034 llvm::GlobalVariable::PrivateLinkage);
2035 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2036 const char *NSStringNonFragileABISection =
2037 "__DATA,__objc_stringobj,regular,no_dead_strip";
2038 // FIXME. Fix section.
2039 GV->setSection(CGM.getLangOpts().ObjCRuntime.isNonFragile()
2040 ? NSStringNonFragileABISection
2041 : NSStringSection);
2042 Entry.second = GV;
2044 return ConstantAddress(GV, GV->getValueType(), Alignment);
2047 enum {
2048 kCFTaggedObjectID_Integer = (1 << 1) + 1
2051 /// Generates a message send where the super is the receiver. This is
2052 /// a message send to self with special delivery semantics indicating
2053 /// which class's method should be called.
2054 CodeGen::RValue
2055 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
2056 ReturnValueSlot Return,
2057 QualType ResultType,
2058 Selector Sel,
2059 const ObjCInterfaceDecl *Class,
2060 bool isCategoryImpl,
2061 llvm::Value *Receiver,
2062 bool IsClassMessage,
2063 const CodeGen::CallArgList &CallArgs,
2064 const ObjCMethodDecl *Method) {
2065 // Create and init a super structure; this is a (receiver, class)
2066 // pair we will pass to objc_msgSendSuper.
2067 Address ObjCSuper =
2068 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(),
2069 "objc_super");
2070 llvm::Value *ReceiverAsObject =
2071 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy);
2072 CGF.Builder.CreateStore(ReceiverAsObject,
2073 CGF.Builder.CreateStructGEP(ObjCSuper, 0));
2075 // If this is a class message the metaclass is passed as the target.
2076 llvm::Type *ClassTyPtr = llvm::PointerType::getUnqual(ObjCTypes.ClassTy);
2077 llvm::Value *Target;
2078 if (IsClassMessage) {
2079 if (isCategoryImpl) {
2080 // Message sent to 'super' in a class method defined in a category
2081 // implementation requires an odd treatment.
2082 // If we are in a class method, we must retrieve the
2083 // _metaclass_ for the current class, pointed at by
2084 // the class's "isa" pointer. The following assumes that
2085 // isa" is the first ivar in a class (which it must be).
2086 Target = EmitClassRef(CGF, Class->getSuperClass());
2087 Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0);
2088 Target = CGF.Builder.CreateAlignedLoad(ClassTyPtr, Target,
2089 CGF.getPointerAlign());
2090 } else {
2091 llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class);
2092 llvm::Value *SuperPtr =
2093 CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1);
2094 llvm::Value *Super = CGF.Builder.CreateAlignedLoad(ClassTyPtr, SuperPtr,
2095 CGF.getPointerAlign());
2096 Target = Super;
2098 } else if (isCategoryImpl)
2099 Target = EmitClassRef(CGF, Class->getSuperClass());
2100 else {
2101 llvm::Value *ClassPtr = EmitSuperClassRef(Class);
2102 ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1);
2103 Target = CGF.Builder.CreateAlignedLoad(ClassTyPtr, ClassPtr,
2104 CGF.getPointerAlign());
2106 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and
2107 // ObjCTypes types.
2108 llvm::Type *ClassTy =
2109 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType());
2110 Target = CGF.Builder.CreateBitCast(Target, ClassTy);
2111 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1));
2112 return EmitMessageSend(CGF, Return, ResultType, Sel, ObjCSuper.getPointer(),
2113 ObjCTypes.SuperPtrCTy, true, CallArgs, Method, Class,
2114 ObjCTypes);
2117 /// Generate code for a message send expression.
2118 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
2119 ReturnValueSlot Return,
2120 QualType ResultType,
2121 Selector Sel,
2122 llvm::Value *Receiver,
2123 const CallArgList &CallArgs,
2124 const ObjCInterfaceDecl *Class,
2125 const ObjCMethodDecl *Method) {
2126 return EmitMessageSend(CGF, Return, ResultType, Sel, Receiver,
2127 CGF.getContext().getObjCIdType(), false, CallArgs,
2128 Method, Class, ObjCTypes);
2131 CodeGen::RValue
2132 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF,
2133 ReturnValueSlot Return,
2134 QualType ResultType,
2135 Selector Sel,
2136 llvm::Value *Arg0,
2137 QualType Arg0Ty,
2138 bool IsSuper,
2139 const CallArgList &CallArgs,
2140 const ObjCMethodDecl *Method,
2141 const ObjCInterfaceDecl *ClassReceiver,
2142 const ObjCCommonTypesHelper &ObjCTypes) {
2143 CodeGenTypes &Types = CGM.getTypes();
2144 auto selTy = CGF.getContext().getObjCSelType();
2145 llvm::Value *SelValue = llvm::UndefValue::get(Types.ConvertType(selTy));
2147 CallArgList ActualArgs;
2148 if (!IsSuper)
2149 Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy);
2150 ActualArgs.add(RValue::get(Arg0), Arg0Ty);
2151 if (!Method || !Method->isDirectMethod())
2152 ActualArgs.add(RValue::get(SelValue), selTy);
2153 ActualArgs.addFrom(CallArgs);
2155 // If we're calling a method, use the formal signature.
2156 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2158 if (Method)
2159 assert(CGM.getContext().getCanonicalType(Method->getReturnType()) ==
2160 CGM.getContext().getCanonicalType(ResultType) &&
2161 "Result type mismatch!");
2163 bool ReceiverCanBeNull =
2164 canMessageReceiverBeNull(CGF, Method, IsSuper, ClassReceiver, Arg0);
2166 bool RequiresNullCheck = false;
2167 bool RequiresSelValue = true;
2169 llvm::FunctionCallee Fn = nullptr;
2170 if (Method && Method->isDirectMethod()) {
2171 assert(!IsSuper);
2172 Fn = GenerateDirectMethod(Method, Method->getClassInterface());
2173 // Direct methods will synthesize the proper `_cmd` internally,
2174 // so just don't bother with setting the `_cmd` argument.
2175 RequiresSelValue = false;
2176 } else if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) {
2177 if (ReceiverCanBeNull) RequiresNullCheck = true;
2178 Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper)
2179 : ObjCTypes.getSendStretFn(IsSuper);
2180 } else if (CGM.ReturnTypeUsesFPRet(ResultType)) {
2181 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper)
2182 : ObjCTypes.getSendFpretFn(IsSuper);
2183 } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) {
2184 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper)
2185 : ObjCTypes.getSendFp2retFn(IsSuper);
2186 } else {
2187 // arm64 uses objc_msgSend for stret methods and yet null receiver check
2188 // must be made for it.
2189 if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2190 RequiresNullCheck = true;
2191 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper)
2192 : ObjCTypes.getSendFn(IsSuper);
2195 // Cast function to proper signature
2196 llvm::Constant *BitcastFn = cast<llvm::Constant>(
2197 CGF.Builder.CreateBitCast(Fn.getCallee(), MSI.MessengerType));
2199 // We don't need to emit a null check to zero out an indirect result if the
2200 // result is ignored.
2201 if (Return.isUnused())
2202 RequiresNullCheck = false;
2204 // Emit a null-check if there's a consumed argument other than the receiver.
2205 if (!RequiresNullCheck && Method && Method->hasParamDestroyedInCallee())
2206 RequiresNullCheck = true;
2208 NullReturnState nullReturn;
2209 if (RequiresNullCheck) {
2210 nullReturn.init(CGF, Arg0);
2213 // If a selector value needs to be passed, emit the load before the call.
2214 if (RequiresSelValue) {
2215 SelValue = GetSelector(CGF, Sel);
2216 ActualArgs[1] = CallArg(RValue::get(SelValue), selTy);
2219 llvm::CallBase *CallSite;
2220 CGCallee Callee = CGCallee::forDirect(BitcastFn);
2221 RValue rvalue = CGF.EmitCall(MSI.CallInfo, Callee, Return, ActualArgs,
2222 &CallSite);
2224 // Mark the call as noreturn if the method is marked noreturn and the
2225 // receiver cannot be null.
2226 if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) {
2227 CallSite->setDoesNotReturn();
2230 return nullReturn.complete(CGF, Return, rvalue, ResultType, CallArgs,
2231 RequiresNullCheck ? Method : nullptr);
2234 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT,
2235 bool pointee = false) {
2236 // Note that GC qualification applies recursively to C pointer types
2237 // that aren't otherwise decorated. This is weird, but it's probably
2238 // an intentional workaround to the unreliable placement of GC qualifiers.
2239 if (FQT.isObjCGCStrong())
2240 return Qualifiers::Strong;
2242 if (FQT.isObjCGCWeak())
2243 return Qualifiers::Weak;
2245 if (auto ownership = FQT.getObjCLifetime()) {
2246 // Ownership does not apply recursively to C pointer types.
2247 if (pointee) return Qualifiers::GCNone;
2248 switch (ownership) {
2249 case Qualifiers::OCL_Weak: return Qualifiers::Weak;
2250 case Qualifiers::OCL_Strong: return Qualifiers::Strong;
2251 case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone;
2252 case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?");
2253 case Qualifiers::OCL_None: llvm_unreachable("known nonzero");
2255 llvm_unreachable("bad objc ownership");
2258 // Treat unqualified retainable pointers as strong.
2259 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType())
2260 return Qualifiers::Strong;
2262 // Walk into C pointer types, but only in GC.
2263 if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) {
2264 if (const PointerType *PT = FQT->getAs<PointerType>())
2265 return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true);
2268 return Qualifiers::GCNone;
2271 namespace {
2272 struct IvarInfo {
2273 CharUnits Offset;
2274 uint64_t SizeInWords;
2275 IvarInfo(CharUnits offset, uint64_t sizeInWords)
2276 : Offset(offset), SizeInWords(sizeInWords) {}
2278 // Allow sorting based on byte pos.
2279 bool operator<(const IvarInfo &other) const {
2280 return Offset < other.Offset;
2284 /// A helper class for building GC layout strings.
2285 class IvarLayoutBuilder {
2286 CodeGenModule &CGM;
2288 /// The start of the layout. Offsets will be relative to this value,
2289 /// and entries less than this value will be silently discarded.
2290 CharUnits InstanceBegin;
2292 /// The end of the layout. Offsets will never exceed this value.
2293 CharUnits InstanceEnd;
2295 /// Whether we're generating the strong layout or the weak layout.
2296 bool ForStrongLayout;
2298 /// Whether the offsets in IvarsInfo might be out-of-order.
2299 bool IsDisordered = false;
2301 llvm::SmallVector<IvarInfo, 8> IvarsInfo;
2303 public:
2304 IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin,
2305 CharUnits instanceEnd, bool forStrongLayout)
2306 : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd),
2307 ForStrongLayout(forStrongLayout) {
2310 void visitRecord(const RecordType *RT, CharUnits offset);
2312 template <class Iterator, class GetOffsetFn>
2313 void visitAggregate(Iterator begin, Iterator end,
2314 CharUnits aggrOffset,
2315 const GetOffsetFn &getOffset);
2317 void visitField(const FieldDecl *field, CharUnits offset);
2319 /// Add the layout of a block implementation.
2320 void visitBlock(const CGBlockInfo &blockInfo);
2322 /// Is there any information for an interesting bitmap?
2323 bool hasBitmapData() const { return !IvarsInfo.empty(); }
2325 llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC,
2326 llvm::SmallVectorImpl<unsigned char> &buffer);
2328 static void dump(ArrayRef<unsigned char> buffer) {
2329 const unsigned char *s = buffer.data();
2330 for (unsigned i = 0, e = buffer.size(); i < e; i++)
2331 if (!(s[i] & 0xf0))
2332 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : "");
2333 else
2334 printf("0x%x%s", s[i], s[i] != 0 ? ", " : "");
2335 printf("\n");
2338 } // end anonymous namespace
2340 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM,
2341 const CGBlockInfo &blockInfo) {
2343 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
2344 if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
2345 return nullPtr;
2347 IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize,
2348 /*for strong layout*/ true);
2350 builder.visitBlock(blockInfo);
2352 if (!builder.hasBitmapData())
2353 return nullPtr;
2355 llvm::SmallVector<unsigned char, 32> buffer;
2356 llvm::Constant *C = builder.buildBitmap(*this, buffer);
2357 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) {
2358 printf("\n block variable layout for block: ");
2359 builder.dump(buffer);
2362 return C;
2365 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) {
2366 // __isa is the first field in block descriptor and must assume by runtime's
2367 // convention that it is GC'able.
2368 IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1));
2370 const BlockDecl *blockDecl = blockInfo.getBlockDecl();
2372 // Ignore the optional 'this' capture: C++ objects are not assumed
2373 // to be GC'ed.
2375 CharUnits lastFieldOffset;
2377 // Walk the captured variables.
2378 for (const auto &CI : blockDecl->captures()) {
2379 const VarDecl *variable = CI.getVariable();
2380 QualType type = variable->getType();
2382 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
2384 // Ignore constant captures.
2385 if (capture.isConstant()) continue;
2387 CharUnits fieldOffset = capture.getOffset();
2389 // Block fields are not necessarily ordered; if we detect that we're
2390 // adding them out-of-order, make sure we sort later.
2391 if (fieldOffset < lastFieldOffset)
2392 IsDisordered = true;
2393 lastFieldOffset = fieldOffset;
2395 // __block variables are passed by their descriptor address.
2396 if (CI.isByRef()) {
2397 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1));
2398 continue;
2401 assert(!type->isArrayType() && "array variable should not be caught");
2402 if (const RecordType *record = type->getAs<RecordType>()) {
2403 visitRecord(record, fieldOffset);
2404 continue;
2407 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type);
2409 if (GCAttr == Qualifiers::Strong) {
2410 assert(CGM.getContext().getTypeSize(type) ==
2411 CGM.getTarget().getPointerWidth(LangAS::Default));
2412 IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1));
2417 /// getBlockCaptureLifetime - This routine returns life time of the captured
2418 /// block variable for the purpose of block layout meta-data generation. FQT is
2419 /// the type of the variable captured in the block.
2420 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT,
2421 bool ByrefLayout) {
2422 // If it has an ownership qualifier, we're done.
2423 if (auto lifetime = FQT.getObjCLifetime())
2424 return lifetime;
2426 // If it doesn't, and this is ARC, it has no ownership.
2427 if (CGM.getLangOpts().ObjCAutoRefCount)
2428 return Qualifiers::OCL_None;
2430 // In MRC, retainable pointers are owned by non-__block variables.
2431 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType())
2432 return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong;
2434 return Qualifiers::OCL_None;
2437 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref,
2438 Qualifiers::ObjCLifetime LifeTime,
2439 CharUnits FieldOffset,
2440 CharUnits FieldSize) {
2441 // __block variables are passed by their descriptor address.
2442 if (IsByref)
2443 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset,
2444 FieldSize));
2445 else if (LifeTime == Qualifiers::OCL_Strong)
2446 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset,
2447 FieldSize));
2448 else if (LifeTime == Qualifiers::OCL_Weak)
2449 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset,
2450 FieldSize));
2451 else if (LifeTime == Qualifiers::OCL_ExplicitNone)
2452 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset,
2453 FieldSize));
2454 else
2455 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES,
2456 FieldOffset,
2457 FieldSize));
2460 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout,
2461 const RecordDecl *RD,
2462 ArrayRef<const FieldDecl*> RecFields,
2463 CharUnits BytePos, bool &HasUnion,
2464 bool ByrefLayout) {
2465 bool IsUnion = (RD && RD->isUnion());
2466 CharUnits MaxUnionSize = CharUnits::Zero();
2467 const FieldDecl *MaxField = nullptr;
2468 const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr;
2469 CharUnits MaxFieldOffset = CharUnits::Zero();
2470 CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero();
2472 if (RecFields.empty())
2473 return;
2474 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2476 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2477 const FieldDecl *Field = RecFields[i];
2478 // Note that 'i' here is actually the field index inside RD of Field,
2479 // although this dependency is hidden.
2480 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD);
2481 CharUnits FieldOffset =
2482 CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i));
2484 // Skip over unnamed or bitfields
2485 if (!Field->getIdentifier() || Field->isBitField()) {
2486 LastFieldBitfieldOrUnnamed = Field;
2487 LastBitfieldOrUnnamedOffset = FieldOffset;
2488 continue;
2491 LastFieldBitfieldOrUnnamed = nullptr;
2492 QualType FQT = Field->getType();
2493 if (FQT->isRecordType() || FQT->isUnionType()) {
2494 if (FQT->isUnionType())
2495 HasUnion = true;
2497 BuildRCBlockVarRecordLayout(FQT->castAs<RecordType>(),
2498 BytePos + FieldOffset, HasUnion);
2499 continue;
2502 if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) {
2503 auto *CArray = cast<ConstantArrayType>(Array);
2504 uint64_t ElCount = CArray->getSize().getZExtValue();
2505 assert(CArray && "only array with known element size is supported");
2506 FQT = CArray->getElementType();
2507 while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) {
2508 auto *CArray = cast<ConstantArrayType>(Array);
2509 ElCount *= CArray->getSize().getZExtValue();
2510 FQT = CArray->getElementType();
2512 if (FQT->isRecordType() && ElCount) {
2513 int OldIndex = RunSkipBlockVars.size() - 1;
2514 auto *RT = FQT->castAs<RecordType>();
2515 BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset, HasUnion);
2517 // Replicate layout information for each array element. Note that
2518 // one element is already done.
2519 uint64_t ElIx = 1;
2520 for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) {
2521 CharUnits Size = CGM.getContext().getTypeSizeInChars(RT);
2522 for (int i = OldIndex+1; i <= FirstIndex; ++i)
2523 RunSkipBlockVars.push_back(
2524 RUN_SKIP(RunSkipBlockVars[i].opcode,
2525 RunSkipBlockVars[i].block_var_bytepos + Size*ElIx,
2526 RunSkipBlockVars[i].block_var_size));
2528 continue;
2531 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType());
2532 if (IsUnion) {
2533 CharUnits UnionIvarSize = FieldSize;
2534 if (UnionIvarSize > MaxUnionSize) {
2535 MaxUnionSize = UnionIvarSize;
2536 MaxField = Field;
2537 MaxFieldOffset = FieldOffset;
2539 } else {
2540 UpdateRunSkipBlockVars(false,
2541 getBlockCaptureLifetime(FQT, ByrefLayout),
2542 BytePos + FieldOffset,
2543 FieldSize);
2547 if (LastFieldBitfieldOrUnnamed) {
2548 if (LastFieldBitfieldOrUnnamed->isBitField()) {
2549 // Last field was a bitfield. Must update the info.
2550 uint64_t BitFieldSize
2551 = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext());
2552 unsigned UnsSize = (BitFieldSize / ByteSizeInBits) +
2553 ((BitFieldSize % ByteSizeInBits) != 0);
2554 CharUnits Size = CharUnits::fromQuantity(UnsSize);
2555 Size += LastBitfieldOrUnnamedOffset;
2556 UpdateRunSkipBlockVars(false,
2557 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(),
2558 ByrefLayout),
2559 BytePos + LastBitfieldOrUnnamedOffset,
2560 Size);
2561 } else {
2562 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed");
2563 // Last field was unnamed. Must update skip info.
2564 CharUnits FieldSize
2565 = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType());
2566 UpdateRunSkipBlockVars(false,
2567 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(),
2568 ByrefLayout),
2569 BytePos + LastBitfieldOrUnnamedOffset,
2570 FieldSize);
2574 if (MaxField)
2575 UpdateRunSkipBlockVars(false,
2576 getBlockCaptureLifetime(MaxField->getType(), ByrefLayout),
2577 BytePos + MaxFieldOffset,
2578 MaxUnionSize);
2581 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT,
2582 CharUnits BytePos,
2583 bool &HasUnion,
2584 bool ByrefLayout) {
2585 const RecordDecl *RD = RT->getDecl();
2586 SmallVector<const FieldDecl*, 16> Fields(RD->fields());
2587 llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0));
2588 const llvm::StructLayout *RecLayout =
2589 CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty));
2591 BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout);
2594 /// InlineLayoutInstruction - This routine produce an inline instruction for the
2595 /// block variable layout if it can. If not, it returns 0. Rules are as follow:
2596 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world,
2597 /// an inline layout of value 0x0000000000000xyz is interpreted as follows:
2598 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by
2599 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by
2600 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero
2601 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no
2602 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured.
2603 uint64_t CGObjCCommonMac::InlineLayoutInstruction(
2604 SmallVectorImpl<unsigned char> &Layout) {
2605 uint64_t Result = 0;
2606 if (Layout.size() <= 3) {
2607 unsigned size = Layout.size();
2608 unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0;
2609 unsigned char inst;
2610 enum BLOCK_LAYOUT_OPCODE opcode ;
2611 switch (size) {
2612 case 3:
2613 inst = Layout[0];
2614 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2615 if (opcode == BLOCK_LAYOUT_STRONG)
2616 strong_word_count = (inst & 0xF)+1;
2617 else
2618 return 0;
2619 inst = Layout[1];
2620 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2621 if (opcode == BLOCK_LAYOUT_BYREF)
2622 byref_word_count = (inst & 0xF)+1;
2623 else
2624 return 0;
2625 inst = Layout[2];
2626 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2627 if (opcode == BLOCK_LAYOUT_WEAK)
2628 weak_word_count = (inst & 0xF)+1;
2629 else
2630 return 0;
2631 break;
2633 case 2:
2634 inst = Layout[0];
2635 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2636 if (opcode == BLOCK_LAYOUT_STRONG) {
2637 strong_word_count = (inst & 0xF)+1;
2638 inst = Layout[1];
2639 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2640 if (opcode == BLOCK_LAYOUT_BYREF)
2641 byref_word_count = (inst & 0xF)+1;
2642 else if (opcode == BLOCK_LAYOUT_WEAK)
2643 weak_word_count = (inst & 0xF)+1;
2644 else
2645 return 0;
2647 else if (opcode == BLOCK_LAYOUT_BYREF) {
2648 byref_word_count = (inst & 0xF)+1;
2649 inst = Layout[1];
2650 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2651 if (opcode == BLOCK_LAYOUT_WEAK)
2652 weak_word_count = (inst & 0xF)+1;
2653 else
2654 return 0;
2656 else
2657 return 0;
2658 break;
2660 case 1:
2661 inst = Layout[0];
2662 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2663 if (opcode == BLOCK_LAYOUT_STRONG)
2664 strong_word_count = (inst & 0xF)+1;
2665 else if (opcode == BLOCK_LAYOUT_BYREF)
2666 byref_word_count = (inst & 0xF)+1;
2667 else if (opcode == BLOCK_LAYOUT_WEAK)
2668 weak_word_count = (inst & 0xF)+1;
2669 else
2670 return 0;
2671 break;
2673 default:
2674 return 0;
2677 // Cannot inline when any of the word counts is 15. Because this is one less
2678 // than the actual work count (so 15 means 16 actual word counts),
2679 // and we can only display 0 thru 15 word counts.
2680 if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16)
2681 return 0;
2683 unsigned count =
2684 (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0);
2686 if (size == count) {
2687 if (strong_word_count)
2688 Result = strong_word_count;
2689 Result <<= 4;
2690 if (byref_word_count)
2691 Result += byref_word_count;
2692 Result <<= 4;
2693 if (weak_word_count)
2694 Result += weak_word_count;
2697 return Result;
2700 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) {
2701 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
2702 if (RunSkipBlockVars.empty())
2703 return nullPtr;
2704 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(LangAS::Default);
2705 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2706 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits;
2708 // Sort on byte position; captures might not be allocated in order,
2709 // and unions can do funny things.
2710 llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end());
2711 SmallVector<unsigned char, 16> Layout;
2713 unsigned size = RunSkipBlockVars.size();
2714 for (unsigned i = 0; i < size; i++) {
2715 enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode;
2716 CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos;
2717 CharUnits end_byte_pos = start_byte_pos;
2718 unsigned j = i+1;
2719 while (j < size) {
2720 if (opcode == RunSkipBlockVars[j].opcode) {
2721 end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos;
2722 i++;
2724 else
2725 break;
2727 CharUnits size_in_bytes =
2728 end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size;
2729 if (j < size) {
2730 CharUnits gap =
2731 RunSkipBlockVars[j].block_var_bytepos -
2732 RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size;
2733 size_in_bytes += gap;
2735 CharUnits residue_in_bytes = CharUnits::Zero();
2736 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) {
2737 residue_in_bytes = size_in_bytes % WordSizeInBytes;
2738 size_in_bytes -= residue_in_bytes;
2739 opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS;
2742 unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes;
2743 while (size_in_words >= 16) {
2744 // Note that value in imm. is one less that the actual
2745 // value. So, 0xf means 16 words follow!
2746 unsigned char inst = (opcode << 4) | 0xf;
2747 Layout.push_back(inst);
2748 size_in_words -= 16;
2750 if (size_in_words > 0) {
2751 // Note that value in imm. is one less that the actual
2752 // value. So, we subtract 1 away!
2753 unsigned char inst = (opcode << 4) | (size_in_words-1);
2754 Layout.push_back(inst);
2756 if (residue_in_bytes > CharUnits::Zero()) {
2757 unsigned char inst =
2758 (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1);
2759 Layout.push_back(inst);
2763 while (!Layout.empty()) {
2764 unsigned char inst = Layout.back();
2765 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2766 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS)
2767 Layout.pop_back();
2768 else
2769 break;
2772 uint64_t Result = InlineLayoutInstruction(Layout);
2773 if (Result != 0) {
2774 // Block variable layout instruction has been inlined.
2775 if (CGM.getLangOpts().ObjCGCBitmapPrint) {
2776 if (ComputeByrefLayout)
2777 printf("\n Inline BYREF variable layout: ");
2778 else
2779 printf("\n Inline block variable layout: ");
2780 printf("0x0%" PRIx64 "", Result);
2781 if (auto numStrong = (Result & 0xF00) >> 8)
2782 printf(", BL_STRONG:%d", (int) numStrong);
2783 if (auto numByref = (Result & 0x0F0) >> 4)
2784 printf(", BL_BYREF:%d", (int) numByref);
2785 if (auto numWeak = (Result & 0x00F) >> 0)
2786 printf(", BL_WEAK:%d", (int) numWeak);
2787 printf(", BL_OPERATOR:0\n");
2789 return llvm::ConstantInt::get(CGM.IntPtrTy, Result);
2792 unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0;
2793 Layout.push_back(inst);
2794 std::string BitMap;
2795 for (unsigned i = 0, e = Layout.size(); i != e; i++)
2796 BitMap += Layout[i];
2798 if (CGM.getLangOpts().ObjCGCBitmapPrint) {
2799 if (ComputeByrefLayout)
2800 printf("\n Byref variable layout: ");
2801 else
2802 printf("\n Block variable layout: ");
2803 for (unsigned i = 0, e = BitMap.size(); i != e; i++) {
2804 unsigned char inst = BitMap[i];
2805 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2806 unsigned delta = 1;
2807 switch (opcode) {
2808 case BLOCK_LAYOUT_OPERATOR:
2809 printf("BL_OPERATOR:");
2810 delta = 0;
2811 break;
2812 case BLOCK_LAYOUT_NON_OBJECT_BYTES:
2813 printf("BL_NON_OBJECT_BYTES:");
2814 break;
2815 case BLOCK_LAYOUT_NON_OBJECT_WORDS:
2816 printf("BL_NON_OBJECT_WORD:");
2817 break;
2818 case BLOCK_LAYOUT_STRONG:
2819 printf("BL_STRONG:");
2820 break;
2821 case BLOCK_LAYOUT_BYREF:
2822 printf("BL_BYREF:");
2823 break;
2824 case BLOCK_LAYOUT_WEAK:
2825 printf("BL_WEAK:");
2826 break;
2827 case BLOCK_LAYOUT_UNRETAINED:
2828 printf("BL_UNRETAINED:");
2829 break;
2831 // Actual value of word count is one more that what is in the imm.
2832 // field of the instruction
2833 printf("%d", (inst & 0xf) + delta);
2834 if (i < e-1)
2835 printf(", ");
2836 else
2837 printf("\n");
2841 auto *Entry = CreateCStringLiteral(BitMap, ObjCLabelType::ClassName,
2842 /*ForceNonFragileABI=*/true,
2843 /*NullTerminate=*/false);
2844 return getConstantGEP(VMContext, Entry, 0, 0);
2847 static std::string getBlockLayoutInfoString(
2848 const SmallVectorImpl<CGObjCCommonMac::RUN_SKIP> &RunSkipBlockVars,
2849 bool HasCopyDisposeHelpers) {
2850 std::string Str;
2851 for (const CGObjCCommonMac::RUN_SKIP &R : RunSkipBlockVars) {
2852 if (R.opcode == CGObjCCommonMac::BLOCK_LAYOUT_UNRETAINED) {
2853 // Copy/dispose helpers don't have any information about
2854 // __unsafe_unretained captures, so unconditionally concatenate a string.
2855 Str += "u";
2856 } else if (HasCopyDisposeHelpers) {
2857 // Information about __strong, __weak, or byref captures has already been
2858 // encoded into the names of the copy/dispose helpers. We have to add a
2859 // string here only when the copy/dispose helpers aren't generated (which
2860 // happens when the block is non-escaping).
2861 continue;
2862 } else {
2863 switch (R.opcode) {
2864 case CGObjCCommonMac::BLOCK_LAYOUT_STRONG:
2865 Str += "s";
2866 break;
2867 case CGObjCCommonMac::BLOCK_LAYOUT_BYREF:
2868 Str += "r";
2869 break;
2870 case CGObjCCommonMac::BLOCK_LAYOUT_WEAK:
2871 Str += "w";
2872 break;
2873 default:
2874 continue;
2877 Str += llvm::to_string(R.block_var_bytepos.getQuantity());
2878 Str += "l" + llvm::to_string(R.block_var_size.getQuantity());
2880 return Str;
2883 void CGObjCCommonMac::fillRunSkipBlockVars(CodeGenModule &CGM,
2884 const CGBlockInfo &blockInfo) {
2885 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
2887 RunSkipBlockVars.clear();
2888 bool hasUnion = false;
2890 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(LangAS::Default);
2891 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2892 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits;
2894 const BlockDecl *blockDecl = blockInfo.getBlockDecl();
2896 // Calculate the basic layout of the block structure.
2897 const llvm::StructLayout *layout =
2898 CGM.getDataLayout().getStructLayout(blockInfo.StructureType);
2900 // Ignore the optional 'this' capture: C++ objects are not assumed
2901 // to be GC'ed.
2902 if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero())
2903 UpdateRunSkipBlockVars(false, Qualifiers::OCL_None,
2904 blockInfo.BlockHeaderForcedGapOffset,
2905 blockInfo.BlockHeaderForcedGapSize);
2906 // Walk the captured variables.
2907 for (const auto &CI : blockDecl->captures()) {
2908 const VarDecl *variable = CI.getVariable();
2909 QualType type = variable->getType();
2911 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
2913 // Ignore constant captures.
2914 if (capture.isConstant()) continue;
2916 CharUnits fieldOffset =
2917 CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex()));
2919 assert(!type->isArrayType() && "array variable should not be caught");
2920 if (!CI.isByRef())
2921 if (const RecordType *record = type->getAs<RecordType>()) {
2922 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion);
2923 continue;
2925 CharUnits fieldSize;
2926 if (CI.isByRef())
2927 fieldSize = CharUnits::fromQuantity(WordSizeInBytes);
2928 else
2929 fieldSize = CGM.getContext().getTypeSizeInChars(type);
2930 UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false),
2931 fieldOffset, fieldSize);
2935 llvm::Constant *
2936 CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM,
2937 const CGBlockInfo &blockInfo) {
2938 fillRunSkipBlockVars(CGM, blockInfo);
2939 return getBitmapBlockLayout(false);
2942 std::string CGObjCCommonMac::getRCBlockLayoutStr(CodeGenModule &CGM,
2943 const CGBlockInfo &blockInfo) {
2944 fillRunSkipBlockVars(CGM, blockInfo);
2945 return getBlockLayoutInfoString(RunSkipBlockVars, blockInfo.NeedsCopyDispose);
2948 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM,
2949 QualType T) {
2950 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
2951 assert(!T->isArrayType() && "__block array variable should not be caught");
2952 CharUnits fieldOffset;
2953 RunSkipBlockVars.clear();
2954 bool hasUnion = false;
2955 if (const RecordType *record = T->getAs<RecordType>()) {
2956 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */);
2957 llvm::Constant *Result = getBitmapBlockLayout(true);
2958 if (isa<llvm::ConstantInt>(Result))
2959 Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy);
2960 return Result;
2962 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
2963 return nullPtr;
2966 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF,
2967 const ObjCProtocolDecl *PD) {
2968 // FIXME: I don't understand why gcc generates this, or where it is
2969 // resolved. Investigate. Its also wasteful to look this up over and over.
2970 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol"));
2972 return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD),
2973 ObjCTypes.getExternalProtocolPtrTy());
2976 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) {
2977 // FIXME: We shouldn't need this, the protocol decl should contain enough
2978 // information to tell us whether this was a declaration or a definition.
2979 DefinedProtocols.insert(PD->getIdentifier());
2981 // If we have generated a forward reference to this protocol, emit
2982 // it now. Otherwise do nothing, the protocol objects are lazily
2983 // emitted.
2984 if (Protocols.count(PD->getIdentifier()))
2985 GetOrEmitProtocol(PD);
2988 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) {
2989 if (DefinedProtocols.count(PD->getIdentifier()))
2990 return GetOrEmitProtocol(PD);
2992 return GetOrEmitProtocolRef(PD);
2995 llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime(
2996 CodeGenFunction &CGF,
2997 const ObjCInterfaceDecl *ID,
2998 ObjCCommonTypesHelper &ObjCTypes) {
2999 llvm::FunctionCallee lookUpClassFn = ObjCTypes.getLookUpClassFn();
3001 llvm::Value *className = CGF.CGM
3002 .GetAddrOfConstantCString(std::string(
3003 ID->getObjCRuntimeNameAsString()))
3004 .getPointer();
3005 ASTContext &ctx = CGF.CGM.getContext();
3006 className =
3007 CGF.Builder.CreateBitCast(className,
3008 CGF.ConvertType(
3009 ctx.getPointerType(ctx.CharTy.withConst())));
3010 llvm::CallInst *call = CGF.Builder.CreateCall(lookUpClassFn, className);
3011 call->setDoesNotThrow();
3012 return call;
3016 // Objective-C 1.0 extensions
3017 struct _objc_protocol {
3018 struct _objc_protocol_extension *isa;
3019 char *protocol_name;
3020 struct _objc_protocol_list *protocol_list;
3021 struct _objc__method_prototype_list *instance_methods;
3022 struct _objc__method_prototype_list *class_methods
3025 See EmitProtocolExtension().
3027 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) {
3028 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()];
3030 // Early exit if a defining object has already been generated.
3031 if (Entry && Entry->hasInitializer())
3032 return Entry;
3034 // Use the protocol definition, if there is one.
3035 if (const ObjCProtocolDecl *Def = PD->getDefinition())
3036 PD = Def;
3038 // FIXME: I don't understand why gcc generates this, or where it is
3039 // resolved. Investigate. Its also wasteful to look this up over and over.
3040 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol"));
3042 // Construct method lists.
3043 auto methodLists = ProtocolMethodLists::get(PD);
3045 ConstantInitBuilder builder(CGM);
3046 auto values = builder.beginStruct(ObjCTypes.ProtocolTy);
3047 values.add(EmitProtocolExtension(PD, methodLists));
3048 values.add(GetClassName(PD->getObjCRuntimeNameAsString()));
3049 values.add(EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(),
3050 PD->protocol_begin(), PD->protocol_end()));
3051 values.add(methodLists.emitMethodList(this, PD,
3052 ProtocolMethodLists::RequiredInstanceMethods));
3053 values.add(methodLists.emitMethodList(this, PD,
3054 ProtocolMethodLists::RequiredClassMethods));
3056 if (Entry) {
3057 // Already created, update the initializer.
3058 assert(Entry->hasPrivateLinkage());
3059 values.finishAndSetAsInitializer(Entry);
3060 } else {
3061 Entry = values.finishAndCreateGlobal("OBJC_PROTOCOL_" + PD->getName(),
3062 CGM.getPointerAlign(),
3063 /*constant*/ false,
3064 llvm::GlobalValue::PrivateLinkage);
3065 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip");
3067 Protocols[PD->getIdentifier()] = Entry;
3069 CGM.addCompilerUsedGlobal(Entry);
3071 return Entry;
3074 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) {
3075 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()];
3077 if (!Entry) {
3078 // We use the initializer as a marker of whether this is a forward
3079 // reference or not. At module finalization we add the empty
3080 // contents for protocols which were referenced but never defined.
3081 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy,
3082 false, llvm::GlobalValue::PrivateLinkage,
3083 nullptr, "OBJC_PROTOCOL_" + PD->getName());
3084 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip");
3085 // FIXME: Is this necessary? Why only for protocol?
3086 Entry->setAlignment(llvm::Align(4));
3089 return Entry;
3093 struct _objc_protocol_extension {
3094 uint32_t size;
3095 struct objc_method_description_list *optional_instance_methods;
3096 struct objc_method_description_list *optional_class_methods;
3097 struct objc_property_list *instance_properties;
3098 const char ** extendedMethodTypes;
3099 struct objc_property_list *class_properties;
3102 llvm::Constant *
3103 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD,
3104 const ProtocolMethodLists &methodLists) {
3105 auto optInstanceMethods =
3106 methodLists.emitMethodList(this, PD,
3107 ProtocolMethodLists::OptionalInstanceMethods);
3108 auto optClassMethods =
3109 methodLists.emitMethodList(this, PD,
3110 ProtocolMethodLists::OptionalClassMethods);
3112 auto extendedMethodTypes =
3113 EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(),
3114 methodLists.emitExtendedTypesArray(this),
3115 ObjCTypes);
3117 auto instanceProperties =
3118 EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD,
3119 ObjCTypes, false);
3120 auto classProperties =
3121 EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr,
3122 PD, ObjCTypes, true);
3124 // Return null if no extension bits are used.
3125 if (optInstanceMethods->isNullValue() &&
3126 optClassMethods->isNullValue() &&
3127 extendedMethodTypes->isNullValue() &&
3128 instanceProperties->isNullValue() &&
3129 classProperties->isNullValue()) {
3130 return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy);
3133 uint64_t size =
3134 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy);
3136 ConstantInitBuilder builder(CGM);
3137 auto values = builder.beginStruct(ObjCTypes.ProtocolExtensionTy);
3138 values.addInt(ObjCTypes.IntTy, size);
3139 values.add(optInstanceMethods);
3140 values.add(optClassMethods);
3141 values.add(instanceProperties);
3142 values.add(extendedMethodTypes);
3143 values.add(classProperties);
3145 // No special section, but goes in llvm.used
3146 return CreateMetadataVar("_OBJC_PROTOCOLEXT_" + PD->getName(), values,
3147 StringRef(), CGM.getPointerAlign(), true);
3151 struct objc_protocol_list {
3152 struct objc_protocol_list *next;
3153 long count;
3154 Protocol *list[];
3157 llvm::Constant *
3158 CGObjCMac::EmitProtocolList(Twine name,
3159 ObjCProtocolDecl::protocol_iterator begin,
3160 ObjCProtocolDecl::protocol_iterator end) {
3161 // Just return null for empty protocol lists
3162 auto PDs = GetRuntimeProtocolList(begin, end);
3163 if (PDs.empty())
3164 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
3166 ConstantInitBuilder builder(CGM);
3167 auto values = builder.beginStruct();
3169 // This field is only used by the runtime.
3170 values.addNullPointer(ObjCTypes.ProtocolListPtrTy);
3172 // Reserve a slot for the count.
3173 auto countSlot = values.addPlaceholder();
3175 auto refsArray = values.beginArray(ObjCTypes.ProtocolPtrTy);
3176 for (const auto *Proto : PDs)
3177 refsArray.add(GetProtocolRef(Proto));
3179 auto count = refsArray.size();
3181 // This list is null terminated.
3182 refsArray.addNullPointer(ObjCTypes.ProtocolPtrTy);
3184 refsArray.finishAndAddTo(values);
3185 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count);
3187 StringRef section;
3188 if (CGM.getTriple().isOSBinFormatMachO())
3189 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip";
3191 llvm::GlobalVariable *GV =
3192 CreateMetadataVar(name, values, section, CGM.getPointerAlign(), false);
3193 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy);
3196 static void
3197 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet,
3198 SmallVectorImpl<const ObjCPropertyDecl *> &Properties,
3199 const ObjCProtocolDecl *Proto,
3200 bool IsClassProperty) {
3201 for (const auto *PD : Proto->properties()) {
3202 if (IsClassProperty != PD->isClassProperty())
3203 continue;
3204 if (!PropertySet.insert(PD->getIdentifier()).second)
3205 continue;
3206 Properties.push_back(PD);
3209 for (const auto *P : Proto->protocols())
3210 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty);
3214 struct _objc_property {
3215 const char * const name;
3216 const char * const attributes;
3219 struct _objc_property_list {
3220 uint32_t entsize; // sizeof (struct _objc_property)
3221 uint32_t prop_count;
3222 struct _objc_property[prop_count];
3225 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name,
3226 const Decl *Container,
3227 const ObjCContainerDecl *OCD,
3228 const ObjCCommonTypesHelper &ObjCTypes,
3229 bool IsClassProperty) {
3230 if (IsClassProperty) {
3231 // Make this entry NULL for OS X with deployment target < 10.11, for iOS
3232 // with deployment target < 9.0.
3233 const llvm::Triple &Triple = CGM.getTarget().getTriple();
3234 if ((Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 11)) ||
3235 (Triple.isiOS() && Triple.isOSVersionLT(9)))
3236 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
3239 SmallVector<const ObjCPropertyDecl *, 16> Properties;
3240 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet;
3242 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3243 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions())
3244 for (auto *PD : ClassExt->properties()) {
3245 if (IsClassProperty != PD->isClassProperty())
3246 continue;
3247 if (PD->isDirectProperty())
3248 continue;
3249 PropertySet.insert(PD->getIdentifier());
3250 Properties.push_back(PD);
3253 for (const auto *PD : OCD->properties()) {
3254 if (IsClassProperty != PD->isClassProperty())
3255 continue;
3256 // Don't emit duplicate metadata for properties that were already in a
3257 // class extension.
3258 if (!PropertySet.insert(PD->getIdentifier()).second)
3259 continue;
3260 if (PD->isDirectProperty())
3261 continue;
3262 Properties.push_back(PD);
3265 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) {
3266 for (const auto *P : OID->all_referenced_protocols())
3267 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty);
3269 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) {
3270 for (const auto *P : CD->protocols())
3271 PushProtocolProperties(PropertySet, Properties, P, IsClassProperty);
3274 // Return null for empty list.
3275 if (Properties.empty())
3276 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
3278 unsigned propertySize =
3279 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy);
3281 ConstantInitBuilder builder(CGM);
3282 auto values = builder.beginStruct();
3283 values.addInt(ObjCTypes.IntTy, propertySize);
3284 values.addInt(ObjCTypes.IntTy, Properties.size());
3285 auto propertiesArray = values.beginArray(ObjCTypes.PropertyTy);
3286 for (auto PD : Properties) {
3287 auto property = propertiesArray.beginStruct(ObjCTypes.PropertyTy);
3288 property.add(GetPropertyName(PD->getIdentifier()));
3289 property.add(GetPropertyTypeString(PD, Container));
3290 property.finishAndAddTo(propertiesArray);
3292 propertiesArray.finishAndAddTo(values);
3294 StringRef Section;
3295 if (CGM.getTriple().isOSBinFormatMachO())
3296 Section = (ObjCABI == 2) ? "__DATA, __objc_const"
3297 : "__OBJC,__property,regular,no_dead_strip";
3299 llvm::GlobalVariable *GV =
3300 CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true);
3301 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy);
3304 llvm::Constant *
3305 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name,
3306 ArrayRef<llvm::Constant*> MethodTypes,
3307 const ObjCCommonTypesHelper &ObjCTypes) {
3308 // Return null for empty list.
3309 if (MethodTypes.empty())
3310 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy);
3312 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy,
3313 MethodTypes.size());
3314 llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes);
3316 StringRef Section;
3317 if (CGM.getTriple().isOSBinFormatMachO() && ObjCABI == 2)
3318 Section = "__DATA, __objc_const";
3320 llvm::GlobalVariable *GV =
3321 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true);
3322 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy);
3326 struct _objc_category {
3327 char *category_name;
3328 char *class_name;
3329 struct _objc_method_list *instance_methods;
3330 struct _objc_method_list *class_methods;
3331 struct _objc_protocol_list *protocols;
3332 uint32_t size; // <rdar://4585769>
3333 struct _objc_property_list *instance_properties;
3334 struct _objc_property_list *class_properties;
3337 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
3338 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy);
3340 // FIXME: This is poor design, the OCD should have a pointer to the category
3341 // decl. Additionally, note that Category can be null for the @implementation
3342 // w/o an @interface case. Sema should just create one for us as it does for
3343 // @implementation so everyone else can live life under a clear blue sky.
3344 const ObjCInterfaceDecl *Interface = OCD->getClassInterface();
3345 const ObjCCategoryDecl *Category =
3346 Interface->FindCategoryDeclaration(OCD->getIdentifier());
3348 SmallString<256> ExtName;
3349 llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_'
3350 << OCD->getName();
3352 ConstantInitBuilder Builder(CGM);
3353 auto Values = Builder.beginStruct(ObjCTypes.CategoryTy);
3355 enum {
3356 InstanceMethods,
3357 ClassMethods,
3358 NumMethodLists
3360 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists];
3361 for (const auto *MD : OCD->methods()) {
3362 if (!MD->isDirectMethod())
3363 Methods[unsigned(MD->isClassMethod())].push_back(MD);
3366 Values.add(GetClassName(OCD->getName()));
3367 Values.add(GetClassName(Interface->getObjCRuntimeNameAsString()));
3368 LazySymbols.insert(Interface->getIdentifier());
3370 Values.add(emitMethodList(ExtName, MethodListType::CategoryInstanceMethods,
3371 Methods[InstanceMethods]));
3372 Values.add(emitMethodList(ExtName, MethodListType::CategoryClassMethods,
3373 Methods[ClassMethods]));
3374 if (Category) {
3375 Values.add(
3376 EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(),
3377 Category->protocol_begin(), Category->protocol_end()));
3378 } else {
3379 Values.addNullPointer(ObjCTypes.ProtocolListPtrTy);
3381 Values.addInt(ObjCTypes.IntTy, Size);
3383 // If there is no category @interface then there can be no properties.
3384 if (Category) {
3385 Values.add(EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(),
3386 OCD, Category, ObjCTypes, false));
3387 Values.add(EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(),
3388 OCD, Category, ObjCTypes, true));
3389 } else {
3390 Values.addNullPointer(ObjCTypes.PropertyListPtrTy);
3391 Values.addNullPointer(ObjCTypes.PropertyListPtrTy);
3394 llvm::GlobalVariable *GV =
3395 CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Values,
3396 "__OBJC,__category,regular,no_dead_strip",
3397 CGM.getPointerAlign(), true);
3398 DefinedCategories.push_back(GV);
3399 DefinedCategoryNames.insert(llvm::CachedHashString(ExtName));
3400 // method definition entries must be clear for next implementation.
3401 MethodDefinitions.clear();
3404 enum FragileClassFlags {
3405 /// Apparently: is not a meta-class.
3406 FragileABI_Class_Factory = 0x00001,
3408 /// Is a meta-class.
3409 FragileABI_Class_Meta = 0x00002,
3411 /// Has a non-trivial constructor or destructor.
3412 FragileABI_Class_HasCXXStructors = 0x02000,
3414 /// Has hidden visibility.
3415 FragileABI_Class_Hidden = 0x20000,
3417 /// Class implementation was compiled under ARC.
3418 FragileABI_Class_CompiledByARC = 0x04000000,
3420 /// Class implementation was compiled under MRC and has MRC weak ivars.
3421 /// Exclusive with CompiledByARC.
3422 FragileABI_Class_HasMRCWeakIvars = 0x08000000,
3425 enum NonFragileClassFlags {
3426 /// Is a meta-class.
3427 NonFragileABI_Class_Meta = 0x00001,
3429 /// Is a root class.
3430 NonFragileABI_Class_Root = 0x00002,
3432 /// Has a non-trivial constructor or destructor.
3433 NonFragileABI_Class_HasCXXStructors = 0x00004,
3435 /// Has hidden visibility.
3436 NonFragileABI_Class_Hidden = 0x00010,
3438 /// Has the exception attribute.
3439 NonFragileABI_Class_Exception = 0x00020,
3441 /// (Obsolete) ARC-specific: this class has a .release_ivars method
3442 NonFragileABI_Class_HasIvarReleaser = 0x00040,
3444 /// Class implementation was compiled under ARC.
3445 NonFragileABI_Class_CompiledByARC = 0x00080,
3447 /// Class has non-trivial destructors, but zero-initialization is okay.
3448 NonFragileABI_Class_HasCXXDestructorOnly = 0x00100,
3450 /// Class implementation was compiled under MRC and has MRC weak ivars.
3451 /// Exclusive with CompiledByARC.
3452 NonFragileABI_Class_HasMRCWeakIvars = 0x00200,
3455 static bool hasWeakMember(QualType type) {
3456 if (type.getObjCLifetime() == Qualifiers::OCL_Weak) {
3457 return true;
3460 if (auto recType = type->getAs<RecordType>()) {
3461 for (auto *field : recType->getDecl()->fields()) {
3462 if (hasWeakMember(field->getType()))
3463 return true;
3467 return false;
3470 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag
3471 /// (and actually fill in a layout string) if we really do have any
3472 /// __weak ivars.
3473 static bool hasMRCWeakIvars(CodeGenModule &CGM,
3474 const ObjCImplementationDecl *ID) {
3475 if (!CGM.getLangOpts().ObjCWeak) return false;
3476 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
3478 for (const ObjCIvarDecl *ivar =
3479 ID->getClassInterface()->all_declared_ivar_begin();
3480 ivar; ivar = ivar->getNextIvar()) {
3481 if (hasWeakMember(ivar->getType()))
3482 return true;
3485 return false;
3489 struct _objc_class {
3490 Class isa;
3491 Class super_class;
3492 const char *name;
3493 long version;
3494 long info;
3495 long instance_size;
3496 struct _objc_ivar_list *ivars;
3497 struct _objc_method_list *methods;
3498 struct _objc_cache *cache;
3499 struct _objc_protocol_list *protocols;
3500 // Objective-C 1.0 extensions (<rdr://4585769>)
3501 const char *ivar_layout;
3502 struct _objc_class_ext *ext;
3505 See EmitClassExtension();
3507 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) {
3508 IdentifierInfo *RuntimeName =
3509 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString());
3510 DefinedSymbols.insert(RuntimeName);
3512 std::string ClassName = ID->getNameAsString();
3513 // FIXME: Gross
3514 ObjCInterfaceDecl *Interface =
3515 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface());
3516 llvm::Constant *Protocols =
3517 EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(),
3518 Interface->all_referenced_protocol_begin(),
3519 Interface->all_referenced_protocol_end());
3520 unsigned Flags = FragileABI_Class_Factory;
3521 if (ID->hasNonZeroConstructors() || ID->hasDestructors())
3522 Flags |= FragileABI_Class_HasCXXStructors;
3524 bool hasMRCWeak = false;
3526 if (CGM.getLangOpts().ObjCAutoRefCount)
3527 Flags |= FragileABI_Class_CompiledByARC;
3528 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID)))
3529 Flags |= FragileABI_Class_HasMRCWeakIvars;
3531 CharUnits Size =
3532 CGM.getContext().getASTObjCImplementationLayout(ID).getSize();
3534 // FIXME: Set CXX-structors flag.
3535 if (ID->getClassInterface()->getVisibility() == HiddenVisibility)
3536 Flags |= FragileABI_Class_Hidden;
3538 enum {
3539 InstanceMethods,
3540 ClassMethods,
3541 NumMethodLists
3543 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists];
3544 for (const auto *MD : ID->methods()) {
3545 if (!MD->isDirectMethod())
3546 Methods[unsigned(MD->isClassMethod())].push_back(MD);
3549 for (const auto *PID : ID->property_impls()) {
3550 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3551 if (PID->getPropertyDecl()->isDirectProperty())
3552 continue;
3553 if (ObjCMethodDecl *MD = PID->getGetterMethodDecl())
3554 if (GetMethodDefinition(MD))
3555 Methods[InstanceMethods].push_back(MD);
3556 if (ObjCMethodDecl *MD = PID->getSetterMethodDecl())
3557 if (GetMethodDefinition(MD))
3558 Methods[InstanceMethods].push_back(MD);
3562 ConstantInitBuilder builder(CGM);
3563 auto values = builder.beginStruct(ObjCTypes.ClassTy);
3564 values.add(EmitMetaClass(ID, Protocols, Methods[ClassMethods]));
3565 if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) {
3566 // Record a reference to the super class.
3567 LazySymbols.insert(Super->getIdentifier());
3569 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()),
3570 ObjCTypes.ClassPtrTy);
3571 } else {
3572 values.addNullPointer(ObjCTypes.ClassPtrTy);
3574 values.add(GetClassName(ID->getObjCRuntimeNameAsString()));
3575 // Version is always 0.
3576 values.addInt(ObjCTypes.LongTy, 0);
3577 values.addInt(ObjCTypes.LongTy, Flags);
3578 values.addInt(ObjCTypes.LongTy, Size.getQuantity());
3579 values.add(EmitIvarList(ID, false));
3580 values.add(emitMethodList(ID->getName(), MethodListType::InstanceMethods,
3581 Methods[InstanceMethods]));
3582 // cache is always NULL.
3583 values.addNullPointer(ObjCTypes.CachePtrTy);
3584 values.add(Protocols);
3585 values.add(BuildStrongIvarLayout(ID, CharUnits::Zero(), Size));
3586 values.add(EmitClassExtension(ID, Size, hasMRCWeak,
3587 /*isMetaclass*/ false));
3589 std::string Name("OBJC_CLASS_");
3590 Name += ClassName;
3591 const char *Section = "__OBJC,__class,regular,no_dead_strip";
3592 // Check for a forward reference.
3593 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3594 if (GV) {
3595 assert(GV->getValueType() == ObjCTypes.ClassTy &&
3596 "Forward metaclass reference has incorrect type.");
3597 values.finishAndSetAsInitializer(GV);
3598 GV->setSection(Section);
3599 GV->setAlignment(CGM.getPointerAlign().getAsAlign());
3600 CGM.addCompilerUsedGlobal(GV);
3601 } else
3602 GV = CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true);
3603 DefinedClasses.push_back(GV);
3604 ImplementedClasses.push_back(Interface);
3605 // method definition entries must be clear for next implementation.
3606 MethodDefinitions.clear();
3609 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID,
3610 llvm::Constant *Protocols,
3611 ArrayRef<const ObjCMethodDecl*> Methods) {
3612 unsigned Flags = FragileABI_Class_Meta;
3613 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy);
3615 if (ID->getClassInterface()->getVisibility() == HiddenVisibility)
3616 Flags |= FragileABI_Class_Hidden;
3618 ConstantInitBuilder builder(CGM);
3619 auto values = builder.beginStruct(ObjCTypes.ClassTy);
3620 // The isa for the metaclass is the root of the hierarchy.
3621 const ObjCInterfaceDecl *Root = ID->getClassInterface();
3622 while (const ObjCInterfaceDecl *Super = Root->getSuperClass())
3623 Root = Super;
3624 values.addBitCast(GetClassName(Root->getObjCRuntimeNameAsString()),
3625 ObjCTypes.ClassPtrTy);
3626 // The super class for the metaclass is emitted as the name of the
3627 // super class. The runtime fixes this up to point to the
3628 // *metaclass* for the super class.
3629 if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) {
3630 values.addBitCast(GetClassName(Super->getObjCRuntimeNameAsString()),
3631 ObjCTypes.ClassPtrTy);
3632 } else {
3633 values.addNullPointer(ObjCTypes.ClassPtrTy);
3635 values.add(GetClassName(ID->getObjCRuntimeNameAsString()));
3636 // Version is always 0.
3637 values.addInt(ObjCTypes.LongTy, 0);
3638 values.addInt(ObjCTypes.LongTy, Flags);
3639 values.addInt(ObjCTypes.LongTy, Size);
3640 values.add(EmitIvarList(ID, true));
3641 values.add(emitMethodList(ID->getName(), MethodListType::ClassMethods,
3642 Methods));
3643 // cache is always NULL.
3644 values.addNullPointer(ObjCTypes.CachePtrTy);
3645 values.add(Protocols);
3646 // ivar_layout for metaclass is always NULL.
3647 values.addNullPointer(ObjCTypes.Int8PtrTy);
3648 // The class extension is used to store class properties for metaclasses.
3649 values.add(EmitClassExtension(ID, CharUnits::Zero(), false/*hasMRCWeak*/,
3650 /*isMetaclass*/true));
3652 std::string Name("OBJC_METACLASS_");
3653 Name += ID->getName();
3655 // Check for a forward reference.
3656 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3657 if (GV) {
3658 assert(GV->getValueType() == ObjCTypes.ClassTy &&
3659 "Forward metaclass reference has incorrect type.");
3660 values.finishAndSetAsInitializer(GV);
3661 } else {
3662 GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(),
3663 /*constant*/ false,
3664 llvm::GlobalValue::PrivateLinkage);
3666 GV->setSection("__OBJC,__meta_class,regular,no_dead_strip");
3667 CGM.addCompilerUsedGlobal(GV);
3669 return GV;
3672 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) {
3673 std::string Name = "OBJC_METACLASS_" + ID->getNameAsString();
3675 // FIXME: Should we look these up somewhere other than the module. Its a bit
3676 // silly since we only generate these while processing an implementation, so
3677 // exactly one pointer would work if know when we entered/exitted an
3678 // implementation block.
3680 // Check for an existing forward reference.
3681 // Previously, metaclass with internal linkage may have been defined.
3682 // pass 'true' as 2nd argument so it is returned.
3683 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3684 if (!GV)
3685 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
3686 llvm::GlobalValue::PrivateLinkage, nullptr,
3687 Name);
3689 assert(GV->getValueType() == ObjCTypes.ClassTy &&
3690 "Forward metaclass reference has incorrect type.");
3691 return GV;
3694 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) {
3695 std::string Name = "OBJC_CLASS_" + ID->getNameAsString();
3696 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3698 if (!GV)
3699 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
3700 llvm::GlobalValue::PrivateLinkage, nullptr,
3701 Name);
3703 assert(GV->getValueType() == ObjCTypes.ClassTy &&
3704 "Forward class metadata reference has incorrect type.");
3705 return GV;
3709 Emit a "class extension", which in this specific context means extra
3710 data that doesn't fit in the normal fragile-ABI class structure, and
3711 has nothing to do with the language concept of a class extension.
3713 struct objc_class_ext {
3714 uint32_t size;
3715 const char *weak_ivar_layout;
3716 struct _objc_property_list *properties;
3719 llvm::Constant *
3720 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID,
3721 CharUnits InstanceSize, bool hasMRCWeakIvars,
3722 bool isMetaclass) {
3723 // Weak ivar layout.
3724 llvm::Constant *layout;
3725 if (isMetaclass) {
3726 layout = llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
3727 } else {
3728 layout = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize,
3729 hasMRCWeakIvars);
3732 // Properties.
3733 llvm::Constant *propertyList =
3734 EmitPropertyList((isMetaclass ? Twine("_OBJC_$_CLASS_PROP_LIST_")
3735 : Twine("_OBJC_$_PROP_LIST_"))
3736 + ID->getName(),
3737 ID, ID->getClassInterface(), ObjCTypes, isMetaclass);
3739 // Return null if no extension bits are used.
3740 if (layout->isNullValue() && propertyList->isNullValue()) {
3741 return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy);
3744 uint64_t size =
3745 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy);
3747 ConstantInitBuilder builder(CGM);
3748 auto values = builder.beginStruct(ObjCTypes.ClassExtensionTy);
3749 values.addInt(ObjCTypes.IntTy, size);
3750 values.add(layout);
3751 values.add(propertyList);
3753 return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), values,
3754 "__OBJC,__class_ext,regular,no_dead_strip",
3755 CGM.getPointerAlign(), true);
3759 struct objc_ivar {
3760 char *ivar_name;
3761 char *ivar_type;
3762 int ivar_offset;
3765 struct objc_ivar_list {
3766 int ivar_count;
3767 struct objc_ivar list[count];
3770 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID,
3771 bool ForClass) {
3772 // When emitting the root class GCC emits ivar entries for the
3773 // actual class structure. It is not clear if we need to follow this
3774 // behavior; for now lets try and get away with not doing it. If so,
3775 // the cleanest solution would be to make up an ObjCInterfaceDecl
3776 // for the class.
3777 if (ForClass)
3778 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy);
3780 const ObjCInterfaceDecl *OID = ID->getClassInterface();
3782 ConstantInitBuilder builder(CGM);
3783 auto ivarList = builder.beginStruct();
3784 auto countSlot = ivarList.addPlaceholder();
3785 auto ivars = ivarList.beginArray(ObjCTypes.IvarTy);
3787 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin();
3788 IVD; IVD = IVD->getNextIvar()) {
3789 // Ignore unnamed bit-fields.
3790 if (!IVD->getDeclName())
3791 continue;
3793 auto ivar = ivars.beginStruct(ObjCTypes.IvarTy);
3794 ivar.add(GetMethodVarName(IVD->getIdentifier()));
3795 ivar.add(GetMethodVarType(IVD));
3796 ivar.addInt(ObjCTypes.IntTy, ComputeIvarBaseOffset(CGM, OID, IVD));
3797 ivar.finishAndAddTo(ivars);
3800 // Return null for empty list.
3801 auto count = ivars.size();
3802 if (count == 0) {
3803 ivars.abandon();
3804 ivarList.abandon();
3805 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy);
3808 ivars.finishAndAddTo(ivarList);
3809 ivarList.fillPlaceholderWithInt(countSlot, ObjCTypes.IntTy, count);
3811 llvm::GlobalVariable *GV;
3812 GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), ivarList,
3813 "__OBJC,__instance_vars,regular,no_dead_strip",
3814 CGM.getPointerAlign(), true);
3815 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy);
3818 /// Build a struct objc_method_description constant for the given method.
3820 /// struct objc_method_description {
3821 /// SEL method_name;
3822 /// char *method_types;
3823 /// };
3824 void CGObjCMac::emitMethodDescriptionConstant(ConstantArrayBuilder &builder,
3825 const ObjCMethodDecl *MD) {
3826 auto description = builder.beginStruct(ObjCTypes.MethodDescriptionTy);
3827 description.addBitCast(GetMethodVarName(MD->getSelector()),
3828 ObjCTypes.SelectorPtrTy);
3829 description.add(GetMethodVarType(MD));
3830 description.finishAndAddTo(builder);
3833 /// Build a struct objc_method constant for the given method.
3835 /// struct objc_method {
3836 /// SEL method_name;
3837 /// char *method_types;
3838 /// void *method;
3839 /// };
3840 void CGObjCMac::emitMethodConstant(ConstantArrayBuilder &builder,
3841 const ObjCMethodDecl *MD) {
3842 llvm::Function *fn = GetMethodDefinition(MD);
3843 assert(fn && "no definition registered for method");
3845 auto method = builder.beginStruct(ObjCTypes.MethodTy);
3846 method.addBitCast(GetMethodVarName(MD->getSelector()),
3847 ObjCTypes.SelectorPtrTy);
3848 method.add(GetMethodVarType(MD));
3849 method.addBitCast(fn, ObjCTypes.Int8PtrTy);
3850 method.finishAndAddTo(builder);
3853 /// Build a struct objc_method_list or struct objc_method_description_list,
3854 /// as appropriate.
3856 /// struct objc_method_list {
3857 /// struct objc_method_list *obsolete;
3858 /// int count;
3859 /// struct objc_method methods_list[count];
3860 /// };
3862 /// struct objc_method_description_list {
3863 /// int count;
3864 /// struct objc_method_description list[count];
3865 /// };
3866 llvm::Constant *CGObjCMac::emitMethodList(Twine name, MethodListType MLT,
3867 ArrayRef<const ObjCMethodDecl *> methods) {
3868 StringRef prefix;
3869 StringRef section;
3870 bool forProtocol = false;
3871 switch (MLT) {
3872 case MethodListType::CategoryInstanceMethods:
3873 prefix = "OBJC_CATEGORY_INSTANCE_METHODS_";
3874 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip";
3875 forProtocol = false;
3876 break;
3877 case MethodListType::CategoryClassMethods:
3878 prefix = "OBJC_CATEGORY_CLASS_METHODS_";
3879 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip";
3880 forProtocol = false;
3881 break;
3882 case MethodListType::InstanceMethods:
3883 prefix = "OBJC_INSTANCE_METHODS_";
3884 section = "__OBJC,__inst_meth,regular,no_dead_strip";
3885 forProtocol = false;
3886 break;
3887 case MethodListType::ClassMethods:
3888 prefix = "OBJC_CLASS_METHODS_";
3889 section = "__OBJC,__cls_meth,regular,no_dead_strip";
3890 forProtocol = false;
3891 break;
3892 case MethodListType::ProtocolInstanceMethods:
3893 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_";
3894 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip";
3895 forProtocol = true;
3896 break;
3897 case MethodListType::ProtocolClassMethods:
3898 prefix = "OBJC_PROTOCOL_CLASS_METHODS_";
3899 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip";
3900 forProtocol = true;
3901 break;
3902 case MethodListType::OptionalProtocolInstanceMethods:
3903 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_OPT_";
3904 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip";
3905 forProtocol = true;
3906 break;
3907 case MethodListType::OptionalProtocolClassMethods:
3908 prefix = "OBJC_PROTOCOL_CLASS_METHODS_OPT_";
3909 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip";
3910 forProtocol = true;
3911 break;
3914 // Return null for empty list.
3915 if (methods.empty())
3916 return llvm::Constant::getNullValue(forProtocol
3917 ? ObjCTypes.MethodDescriptionListPtrTy
3918 : ObjCTypes.MethodListPtrTy);
3920 // For protocols, this is an objc_method_description_list, which has
3921 // a slightly different structure.
3922 if (forProtocol) {
3923 ConstantInitBuilder builder(CGM);
3924 auto values = builder.beginStruct();
3925 values.addInt(ObjCTypes.IntTy, methods.size());
3926 auto methodArray = values.beginArray(ObjCTypes.MethodDescriptionTy);
3927 for (auto MD : methods) {
3928 emitMethodDescriptionConstant(methodArray, MD);
3930 methodArray.finishAndAddTo(values);
3932 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section,
3933 CGM.getPointerAlign(), true);
3934 return llvm::ConstantExpr::getBitCast(GV,
3935 ObjCTypes.MethodDescriptionListPtrTy);
3938 // Otherwise, it's an objc_method_list.
3939 ConstantInitBuilder builder(CGM);
3940 auto values = builder.beginStruct();
3941 values.addNullPointer(ObjCTypes.Int8PtrTy);
3942 values.addInt(ObjCTypes.IntTy, methods.size());
3943 auto methodArray = values.beginArray(ObjCTypes.MethodTy);
3944 for (auto MD : methods) {
3945 if (!MD->isDirectMethod())
3946 emitMethodConstant(methodArray, MD);
3948 methodArray.finishAndAddTo(values);
3950 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section,
3951 CGM.getPointerAlign(), true);
3952 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy);
3955 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD,
3956 const ObjCContainerDecl *CD) {
3957 llvm::Function *Method;
3959 if (OMD->isDirectMethod()) {
3960 Method = GenerateDirectMethod(OMD, CD);
3961 } else {
3962 auto Name = getSymbolNameForMethod(OMD);
3964 CodeGenTypes &Types = CGM.getTypes();
3965 llvm::FunctionType *MethodTy =
3966 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
3967 Method =
3968 llvm::Function::Create(MethodTy, llvm::GlobalValue::InternalLinkage,
3969 Name, &CGM.getModule());
3972 MethodDefinitions.insert(std::make_pair(OMD, Method));
3974 return Method;
3977 llvm::Function *
3978 CGObjCCommonMac::GenerateDirectMethod(const ObjCMethodDecl *OMD,
3979 const ObjCContainerDecl *CD) {
3980 auto *COMD = OMD->getCanonicalDecl();
3981 auto I = DirectMethodDefinitions.find(COMD);
3982 llvm::Function *OldFn = nullptr, *Fn = nullptr;
3984 if (I != DirectMethodDefinitions.end()) {
3985 // Objective-C allows for the declaration and implementation types
3986 // to differ slightly.
3988 // If we're being asked for the Function associated for a method
3989 // implementation, a previous value might have been cached
3990 // based on the type of the canonical declaration.
3992 // If these do not match, then we'll replace this function with
3993 // a new one that has the proper type below.
3994 if (!OMD->getBody() || COMD->getReturnType() == OMD->getReturnType())
3995 return I->second;
3996 OldFn = I->second;
3999 CodeGenTypes &Types = CGM.getTypes();
4000 llvm::FunctionType *MethodTy =
4001 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
4003 if (OldFn) {
4004 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage,
4005 "", &CGM.getModule());
4006 Fn->takeName(OldFn);
4007 OldFn->replaceAllUsesWith(
4008 llvm::ConstantExpr::getBitCast(Fn, OldFn->getType()));
4009 OldFn->eraseFromParent();
4011 // Replace the cached function in the map.
4012 I->second = Fn;
4013 } else {
4014 auto Name = getSymbolNameForMethod(OMD, /*include category*/ false);
4016 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage,
4017 Name, &CGM.getModule());
4018 DirectMethodDefinitions.insert(std::make_pair(COMD, Fn));
4021 return Fn;
4024 void CGObjCCommonMac::GenerateDirectMethodPrologue(
4025 CodeGenFunction &CGF, llvm::Function *Fn, const ObjCMethodDecl *OMD,
4026 const ObjCContainerDecl *CD) {
4027 auto &Builder = CGF.Builder;
4028 bool ReceiverCanBeNull = true;
4029 auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl());
4030 auto selfValue = Builder.CreateLoad(selfAddr);
4032 // Generate:
4034 // /* for class methods only to force class lazy initialization */
4035 // self = [self self];
4037 // /* unless the receiver is never NULL */
4038 // if (self == nil) {
4039 // return (ReturnType){ };
4040 // }
4042 // _cmd = @selector(...)
4043 // ...
4045 if (OMD->isClassMethod()) {
4046 const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(CD);
4047 assert(OID &&
4048 "GenerateDirectMethod() should be called with the Class Interface");
4049 Selector SelfSel = GetNullarySelector("self", CGM.getContext());
4050 auto ResultType = CGF.getContext().getObjCIdType();
4051 RValue result;
4052 CallArgList Args;
4054 // TODO: If this method is inlined, the caller might know that `self` is
4055 // already initialized; for example, it might be an ordinary Objective-C
4056 // method which always receives an initialized `self`, or it might have just
4057 // forced initialization on its own.
4059 // We should find a way to eliminate this unnecessary initialization in such
4060 // cases in LLVM.
4061 result = GeneratePossiblySpecializedMessageSend(
4062 CGF, ReturnValueSlot(), ResultType, SelfSel, selfValue, Args, OID,
4063 nullptr, true);
4064 Builder.CreateStore(result.getScalarVal(), selfAddr);
4066 // Nullable `Class` expressions cannot be messaged with a direct method
4067 // so the only reason why the receive can be null would be because
4068 // of weak linking.
4069 ReceiverCanBeNull = isWeakLinkedClass(OID);
4072 if (ReceiverCanBeNull) {
4073 llvm::BasicBlock *SelfIsNilBlock =
4074 CGF.createBasicBlock("objc_direct_method.self_is_nil");
4075 llvm::BasicBlock *ContBlock =
4076 CGF.createBasicBlock("objc_direct_method.cont");
4078 // if (self == nil) {
4079 auto selfTy = cast<llvm::PointerType>(selfValue->getType());
4080 auto Zero = llvm::ConstantPointerNull::get(selfTy);
4082 llvm::MDBuilder MDHelper(CGM.getLLVMContext());
4083 Builder.CreateCondBr(Builder.CreateICmpEQ(selfValue, Zero), SelfIsNilBlock,
4084 ContBlock, MDHelper.createBranchWeights(1, 1 << 20));
4086 CGF.EmitBlock(SelfIsNilBlock);
4088 // return (ReturnType){ };
4089 auto retTy = OMD->getReturnType();
4090 Builder.SetInsertPoint(SelfIsNilBlock);
4091 if (!retTy->isVoidType()) {
4092 CGF.EmitNullInitialization(CGF.ReturnValue, retTy);
4094 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
4095 // }
4097 // rest of the body
4098 CGF.EmitBlock(ContBlock);
4099 Builder.SetInsertPoint(ContBlock);
4102 // only synthesize _cmd if it's referenced
4103 if (OMD->getCmdDecl()->isUsed()) {
4104 // `_cmd` is not a parameter to direct methods, so storage must be
4105 // explicitly declared for it.
4106 CGF.EmitVarDecl(*OMD->getCmdDecl());
4107 Builder.CreateStore(GetSelector(CGF, OMD),
4108 CGF.GetAddrOfLocalVar(OMD->getCmdDecl()));
4112 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name,
4113 ConstantStructBuilder &Init,
4114 StringRef Section,
4115 CharUnits Align,
4116 bool AddToUsed) {
4117 llvm::GlobalValue::LinkageTypes LT =
4118 getLinkageTypeForObjCMetadata(CGM, Section);
4119 llvm::GlobalVariable *GV =
4120 Init.finishAndCreateGlobal(Name, Align, /*constant*/ false, LT);
4121 if (!Section.empty())
4122 GV->setSection(Section);
4123 if (AddToUsed)
4124 CGM.addCompilerUsedGlobal(GV);
4125 return GV;
4128 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name,
4129 llvm::Constant *Init,
4130 StringRef Section,
4131 CharUnits Align,
4132 bool AddToUsed) {
4133 llvm::Type *Ty = Init->getType();
4134 llvm::GlobalValue::LinkageTypes LT =
4135 getLinkageTypeForObjCMetadata(CGM, Section);
4136 llvm::GlobalVariable *GV =
4137 new llvm::GlobalVariable(CGM.getModule(), Ty, false, LT, Init, Name);
4138 if (!Section.empty())
4139 GV->setSection(Section);
4140 GV->setAlignment(Align.getAsAlign());
4141 if (AddToUsed)
4142 CGM.addCompilerUsedGlobal(GV);
4143 return GV;
4146 llvm::GlobalVariable *
4147 CGObjCCommonMac::CreateCStringLiteral(StringRef Name, ObjCLabelType Type,
4148 bool ForceNonFragileABI,
4149 bool NullTerminate) {
4150 StringRef Label;
4151 switch (Type) {
4152 case ObjCLabelType::ClassName: Label = "OBJC_CLASS_NAME_"; break;
4153 case ObjCLabelType::MethodVarName: Label = "OBJC_METH_VAR_NAME_"; break;
4154 case ObjCLabelType::MethodVarType: Label = "OBJC_METH_VAR_TYPE_"; break;
4155 case ObjCLabelType::PropertyName: Label = "OBJC_PROP_NAME_ATTR_"; break;
4158 bool NonFragile = ForceNonFragileABI || isNonFragileABI();
4160 StringRef Section;
4161 switch (Type) {
4162 case ObjCLabelType::ClassName:
4163 Section = NonFragile ? "__TEXT,__objc_classname,cstring_literals"
4164 : "__TEXT,__cstring,cstring_literals";
4165 break;
4166 case ObjCLabelType::MethodVarName:
4167 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals"
4168 : "__TEXT,__cstring,cstring_literals";
4169 break;
4170 case ObjCLabelType::MethodVarType:
4171 Section = NonFragile ? "__TEXT,__objc_methtype,cstring_literals"
4172 : "__TEXT,__cstring,cstring_literals";
4173 break;
4174 case ObjCLabelType::PropertyName:
4175 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals"
4176 : "__TEXT,__cstring,cstring_literals";
4177 break;
4180 llvm::Constant *Value =
4181 llvm::ConstantDataArray::getString(VMContext, Name, NullTerminate);
4182 llvm::GlobalVariable *GV =
4183 new llvm::GlobalVariable(CGM.getModule(), Value->getType(),
4184 /*isConstant=*/true,
4185 llvm::GlobalValue::PrivateLinkage, Value, Label);
4186 if (CGM.getTriple().isOSBinFormatMachO())
4187 GV->setSection(Section);
4188 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4189 GV->setAlignment(CharUnits::One().getAsAlign());
4190 CGM.addCompilerUsedGlobal(GV);
4192 return GV;
4195 llvm::Function *CGObjCMac::ModuleInitFunction() {
4196 // Abuse this interface function as a place to finalize.
4197 FinishModule();
4198 return nullptr;
4201 llvm::FunctionCallee CGObjCMac::GetPropertyGetFunction() {
4202 return ObjCTypes.getGetPropertyFn();
4205 llvm::FunctionCallee CGObjCMac::GetPropertySetFunction() {
4206 return ObjCTypes.getSetPropertyFn();
4209 llvm::FunctionCallee CGObjCMac::GetOptimizedPropertySetFunction(bool atomic,
4210 bool copy) {
4211 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy);
4214 llvm::FunctionCallee CGObjCMac::GetGetStructFunction() {
4215 return ObjCTypes.getCopyStructFn();
4218 llvm::FunctionCallee CGObjCMac::GetSetStructFunction() {
4219 return ObjCTypes.getCopyStructFn();
4222 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectGetFunction() {
4223 return ObjCTypes.getCppAtomicObjectFunction();
4226 llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectSetFunction() {
4227 return ObjCTypes.getCppAtomicObjectFunction();
4230 llvm::FunctionCallee CGObjCMac::EnumerationMutationFunction() {
4231 return ObjCTypes.getEnumerationMutationFn();
4234 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) {
4235 return EmitTryOrSynchronizedStmt(CGF, S);
4238 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF,
4239 const ObjCAtSynchronizedStmt &S) {
4240 return EmitTryOrSynchronizedStmt(CGF, S);
4243 namespace {
4244 struct PerformFragileFinally final : EHScopeStack::Cleanup {
4245 const Stmt &S;
4246 Address SyncArgSlot;
4247 Address CallTryExitVar;
4248 Address ExceptionData;
4249 ObjCTypesHelper &ObjCTypes;
4250 PerformFragileFinally(const Stmt *S,
4251 Address SyncArgSlot,
4252 Address CallTryExitVar,
4253 Address ExceptionData,
4254 ObjCTypesHelper *ObjCTypes)
4255 : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar),
4256 ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {}
4258 void Emit(CodeGenFunction &CGF, Flags flags) override {
4259 // Check whether we need to call objc_exception_try_exit.
4260 // In optimized code, this branch will always be folded.
4261 llvm::BasicBlock *FinallyCallExit =
4262 CGF.createBasicBlock("finally.call_exit");
4263 llvm::BasicBlock *FinallyNoCallExit =
4264 CGF.createBasicBlock("finally.no_call_exit");
4265 CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar),
4266 FinallyCallExit, FinallyNoCallExit);
4268 CGF.EmitBlock(FinallyCallExit);
4269 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(),
4270 ExceptionData.getPointer());
4272 CGF.EmitBlock(FinallyNoCallExit);
4274 if (isa<ObjCAtTryStmt>(S)) {
4275 if (const ObjCAtFinallyStmt* FinallyStmt =
4276 cast<ObjCAtTryStmt>(S).getFinallyStmt()) {
4277 // Don't try to do the @finally if this is an EH cleanup.
4278 if (flags.isForEHCleanup()) return;
4280 // Save the current cleanup destination in case there's
4281 // control flow inside the finally statement.
4282 llvm::Value *CurCleanupDest =
4283 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot());
4285 CGF.EmitStmt(FinallyStmt->getFinallyBody());
4287 if (CGF.HaveInsertPoint()) {
4288 CGF.Builder.CreateStore(CurCleanupDest,
4289 CGF.getNormalCleanupDestSlot());
4290 } else {
4291 // Currently, the end of the cleanup must always exist.
4292 CGF.EnsureInsertPoint();
4295 } else {
4296 // Emit objc_sync_exit(expr); as finally's sole statement for
4297 // @synchronized.
4298 llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot);
4299 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg);
4304 class FragileHazards {
4305 CodeGenFunction &CGF;
4306 SmallVector<llvm::Value*, 20> Locals;
4307 llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry;
4309 llvm::InlineAsm *ReadHazard;
4310 llvm::InlineAsm *WriteHazard;
4312 llvm::FunctionType *GetAsmFnType();
4314 void collectLocals();
4315 void emitReadHazard(CGBuilderTy &Builder);
4317 public:
4318 FragileHazards(CodeGenFunction &CGF);
4320 void emitWriteHazard();
4321 void emitHazardsInNewBlocks();
4323 } // end anonymous namespace
4325 /// Create the fragile-ABI read and write hazards based on the current
4326 /// state of the function, which is presumed to be immediately prior
4327 /// to a @try block. These hazards are used to maintain correct
4328 /// semantics in the face of optimization and the fragile ABI's
4329 /// cavalier use of setjmp/longjmp.
4330 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) {
4331 collectLocals();
4333 if (Locals.empty()) return;
4335 // Collect all the blocks in the function.
4336 for (llvm::Function::iterator
4337 I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I)
4338 BlocksBeforeTry.insert(&*I);
4340 llvm::FunctionType *AsmFnTy = GetAsmFnType();
4342 // Create a read hazard for the allocas. This inhibits dead-store
4343 // optimizations and forces the values to memory. This hazard is
4344 // inserted before any 'throwing' calls in the protected scope to
4345 // reflect the possibility that the variables might be read from the
4346 // catch block if the call throws.
4348 std::string Constraint;
4349 for (unsigned I = 0, E = Locals.size(); I != E; ++I) {
4350 if (I) Constraint += ',';
4351 Constraint += "*m";
4354 ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false);
4357 // Create a write hazard for the allocas. This inhibits folding
4358 // loads across the hazard. This hazard is inserted at the
4359 // beginning of the catch path to reflect the possibility that the
4360 // variables might have been written within the protected scope.
4362 std::string Constraint;
4363 for (unsigned I = 0, E = Locals.size(); I != E; ++I) {
4364 if (I) Constraint += ',';
4365 Constraint += "=*m";
4368 WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false);
4372 /// Emit a write hazard at the current location.
4373 void FragileHazards::emitWriteHazard() {
4374 if (Locals.empty()) return;
4376 llvm::CallInst *Call = CGF.EmitNounwindRuntimeCall(WriteHazard, Locals);
4377 for (auto Pair : llvm::enumerate(Locals))
4378 Call->addParamAttr(Pair.index(), llvm::Attribute::get(
4379 CGF.getLLVMContext(), llvm::Attribute::ElementType,
4380 cast<llvm::AllocaInst>(Pair.value())->getAllocatedType()));
4383 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) {
4384 assert(!Locals.empty());
4385 llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals);
4386 call->setDoesNotThrow();
4387 call->setCallingConv(CGF.getRuntimeCC());
4388 for (auto Pair : llvm::enumerate(Locals))
4389 call->addParamAttr(Pair.index(), llvm::Attribute::get(
4390 Builder.getContext(), llvm::Attribute::ElementType,
4391 cast<llvm::AllocaInst>(Pair.value())->getAllocatedType()));
4394 /// Emit read hazards in all the protected blocks, i.e. all the blocks
4395 /// which have been inserted since the beginning of the try.
4396 void FragileHazards::emitHazardsInNewBlocks() {
4397 if (Locals.empty()) return;
4399 CGBuilderTy Builder(CGF, CGF.getLLVMContext());
4401 // Iterate through all blocks, skipping those prior to the try.
4402 for (llvm::Function::iterator
4403 FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) {
4404 llvm::BasicBlock &BB = *FI;
4405 if (BlocksBeforeTry.count(&BB)) continue;
4407 // Walk through all the calls in the block.
4408 for (llvm::BasicBlock::iterator
4409 BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) {
4410 llvm::Instruction &I = *BI;
4412 // Ignore instructions that aren't non-intrinsic calls.
4413 // These are the only calls that can possibly call longjmp.
4414 if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I))
4415 continue;
4416 if (isa<llvm::IntrinsicInst>(I))
4417 continue;
4419 // Ignore call sites marked nounwind. This may be questionable,
4420 // since 'nounwind' doesn't necessarily mean 'does not call longjmp'.
4421 if (cast<llvm::CallBase>(I).doesNotThrow())
4422 continue;
4424 // Insert a read hazard before the call. This will ensure that
4425 // any writes to the locals are performed before making the
4426 // call. If the call throws, then this is sufficient to
4427 // guarantee correctness as long as it doesn't also write to any
4428 // locals.
4429 Builder.SetInsertPoint(&BB, BI);
4430 emitReadHazard(Builder);
4435 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) {
4436 if (V.isValid()) S.insert(V.getPointer());
4439 void FragileHazards::collectLocals() {
4440 // Compute a set of allocas to ignore.
4441 llvm::DenseSet<llvm::Value*> AllocasToIgnore;
4442 addIfPresent(AllocasToIgnore, CGF.ReturnValue);
4443 addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest);
4445 // Collect all the allocas currently in the function. This is
4446 // probably way too aggressive.
4447 llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock();
4448 for (llvm::BasicBlock::iterator
4449 I = Entry.begin(), E = Entry.end(); I != E; ++I)
4450 if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I))
4451 Locals.push_back(&*I);
4454 llvm::FunctionType *FragileHazards::GetAsmFnType() {
4455 SmallVector<llvm::Type *, 16> tys(Locals.size());
4456 for (unsigned i = 0, e = Locals.size(); i != e; ++i)
4457 tys[i] = Locals[i]->getType();
4458 return llvm::FunctionType::get(CGF.VoidTy, tys, false);
4463 Objective-C setjmp-longjmp (sjlj) Exception Handling
4466 A catch buffer is a setjmp buffer plus:
4467 - a pointer to the exception that was caught
4468 - a pointer to the previous exception data buffer
4469 - two pointers of reserved storage
4470 Therefore catch buffers form a stack, with a pointer to the top
4471 of the stack kept in thread-local storage.
4473 objc_exception_try_enter pushes a catch buffer onto the EH stack.
4474 objc_exception_try_exit pops the given catch buffer, which is
4475 required to be the top of the EH stack.
4476 objc_exception_throw pops the top of the EH stack, writes the
4477 thrown exception into the appropriate field, and longjmps
4478 to the setjmp buffer. It crashes the process (with a printf
4479 and an abort()) if there are no catch buffers on the stack.
4480 objc_exception_extract just reads the exception pointer out of the
4481 catch buffer.
4483 There's no reason an implementation couldn't use a light-weight
4484 setjmp here --- something like __builtin_setjmp, but API-compatible
4485 with the heavyweight setjmp. This will be more important if we ever
4486 want to implement correct ObjC/C++ exception interactions for the
4487 fragile ABI.
4489 Note that for this use of setjmp/longjmp to be correct, we may need
4490 to mark some local variables volatile: if a non-volatile local
4491 variable is modified between the setjmp and the longjmp, it has
4492 indeterminate value. For the purposes of LLVM IR, it may be
4493 sufficient to make loads and stores within the @try (to variables
4494 declared outside the @try) volatile. This is necessary for
4495 optimized correctness, but is not currently being done; this is
4496 being tracked as rdar://problem/8160285
4498 The basic framework for a @try-catch-finally is as follows:
4500 objc_exception_data d;
4501 id _rethrow = null;
4502 bool _call_try_exit = true;
4504 objc_exception_try_enter(&d);
4505 if (!setjmp(d.jmp_buf)) {
4506 ... try body ...
4507 } else {
4508 // exception path
4509 id _caught = objc_exception_extract(&d);
4511 // enter new try scope for handlers
4512 if (!setjmp(d.jmp_buf)) {
4513 ... match exception and execute catch blocks ...
4515 // fell off end, rethrow.
4516 _rethrow = _caught;
4517 ... jump-through-finally to finally_rethrow ...
4518 } else {
4519 // exception in catch block
4520 _rethrow = objc_exception_extract(&d);
4521 _call_try_exit = false;
4522 ... jump-through-finally to finally_rethrow ...
4525 ... jump-through-finally to finally_end ...
4527 finally:
4528 if (_call_try_exit)
4529 objc_exception_try_exit(&d);
4531 ... finally block ....
4532 ... dispatch to finally destination ...
4534 finally_rethrow:
4535 objc_exception_throw(_rethrow);
4537 finally_end:
4540 This framework differs slightly from the one gcc uses, in that gcc
4541 uses _rethrow to determine if objc_exception_try_exit should be called
4542 and if the object should be rethrown. This breaks in the face of
4543 throwing nil and introduces unnecessary branches.
4545 We specialize this framework for a few particular circumstances:
4547 - If there are no catch blocks, then we avoid emitting the second
4548 exception handling context.
4550 - If there is a catch-all catch block (i.e. @catch(...) or @catch(id
4551 e)) we avoid emitting the code to rethrow an uncaught exception.
4553 - FIXME: If there is no @finally block we can do a few more
4554 simplifications.
4556 Rethrows and Jumps-Through-Finally
4559 '@throw;' is supported by pushing the currently-caught exception
4560 onto ObjCEHStack while the @catch blocks are emitted.
4562 Branches through the @finally block are handled with an ordinary
4563 normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC
4564 exceptions are not compatible with C++ exceptions, and this is
4565 hardly the only place where this will go wrong.
4567 @synchronized(expr) { stmt; } is emitted as if it were:
4568 id synch_value = expr;
4569 objc_sync_enter(synch_value);
4570 @try { stmt; } @finally { objc_sync_exit(synch_value); }
4573 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
4574 const Stmt &S) {
4575 bool isTry = isa<ObjCAtTryStmt>(S);
4577 // A destination for the fall-through edges of the catch handlers to
4578 // jump to.
4579 CodeGenFunction::JumpDest FinallyEnd =
4580 CGF.getJumpDestInCurrentScope("finally.end");
4582 // A destination for the rethrow edge of the catch handlers to jump
4583 // to.
4584 CodeGenFunction::JumpDest FinallyRethrow =
4585 CGF.getJumpDestInCurrentScope("finally.rethrow");
4587 // For @synchronized, call objc_sync_enter(sync.expr). The
4588 // evaluation of the expression must occur before we enter the
4589 // @synchronized. We can't avoid a temp here because we need the
4590 // value to be preserved. If the backend ever does liveness
4591 // correctly after setjmp, this will be unnecessary.
4592 Address SyncArgSlot = Address::invalid();
4593 if (!isTry) {
4594 llvm::Value *SyncArg =
4595 CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr());
4596 SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy);
4597 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg);
4599 SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(),
4600 CGF.getPointerAlign(), "sync.arg");
4601 CGF.Builder.CreateStore(SyncArg, SyncArgSlot);
4604 // Allocate memory for the setjmp buffer. This needs to be kept
4605 // live throughout the try and catch blocks.
4606 Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy,
4607 CGF.getPointerAlign(),
4608 "exceptiondata.ptr");
4610 // Create the fragile hazards. Note that this will not capture any
4611 // of the allocas required for exception processing, but will
4612 // capture the current basic block (which extends all the way to the
4613 // setjmp call) as "before the @try".
4614 FragileHazards Hazards(CGF);
4616 // Create a flag indicating whether the cleanup needs to call
4617 // objc_exception_try_exit. This is true except when
4618 // - no catches match and we're branching through the cleanup
4619 // just to rethrow the exception, or
4620 // - a catch matched and we're falling out of the catch handler.
4621 // The setjmp-safety rule here is that we should always store to this
4622 // variable in a place that dominates the branch through the cleanup
4623 // without passing through any setjmps.
4624 Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(),
4625 CharUnits::One(),
4626 "_call_try_exit");
4628 // A slot containing the exception to rethrow. Only needed when we
4629 // have both a @catch and a @finally.
4630 Address PropagatingExnVar = Address::invalid();
4632 // Push a normal cleanup to leave the try scope.
4633 CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S,
4634 SyncArgSlot,
4635 CallTryExitVar,
4636 ExceptionData,
4637 &ObjCTypes);
4639 // Enter a try block:
4640 // - Call objc_exception_try_enter to push ExceptionData on top of
4641 // the EH stack.
4642 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(),
4643 ExceptionData.getPointer());
4645 // - Call setjmp on the exception data buffer.
4646 llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0);
4647 llvm::Value *GEPIndexes[] = { Zero, Zero, Zero };
4648 llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP(
4649 ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes,
4650 "setjmp_buffer");
4651 llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall(
4652 ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result");
4653 SetJmpResult->setCanReturnTwice();
4655 // If setjmp returned 0, enter the protected block; otherwise,
4656 // branch to the handler.
4657 llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try");
4658 llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler");
4659 llvm::Value *DidCatch =
4660 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception");
4661 CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock);
4663 // Emit the protected block.
4664 CGF.EmitBlock(TryBlock);
4665 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar);
4666 CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody()
4667 : cast<ObjCAtSynchronizedStmt>(S).getSynchBody());
4669 CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP();
4671 // Emit the exception handler block.
4672 CGF.EmitBlock(TryHandler);
4674 // Don't optimize loads of the in-scope locals across this point.
4675 Hazards.emitWriteHazard();
4677 // For a @synchronized (or a @try with no catches), just branch
4678 // through the cleanup to the rethrow block.
4679 if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) {
4680 // Tell the cleanup not to re-pop the exit.
4681 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar);
4682 CGF.EmitBranchThroughCleanup(FinallyRethrow);
4684 // Otherwise, we have to match against the caught exceptions.
4685 } else {
4686 // Retrieve the exception object. We may emit multiple blocks but
4687 // nothing can cross this so the value is already in SSA form.
4688 llvm::CallInst *Caught =
4689 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4690 ExceptionData.getPointer(), "caught");
4692 // Push the exception to rethrow onto the EH value stack for the
4693 // benefit of any @throws in the handlers.
4694 CGF.ObjCEHValueStack.push_back(Caught);
4696 const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S);
4698 bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr);
4700 llvm::BasicBlock *CatchBlock = nullptr;
4701 llvm::BasicBlock *CatchHandler = nullptr;
4702 if (HasFinally) {
4703 // Save the currently-propagating exception before
4704 // objc_exception_try_enter clears the exception slot.
4705 PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(),
4706 CGF.getPointerAlign(),
4707 "propagating_exception");
4708 CGF.Builder.CreateStore(Caught, PropagatingExnVar);
4710 // Enter a new exception try block (in case a @catch block
4711 // throws an exception).
4712 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(),
4713 ExceptionData.getPointer());
4715 llvm::CallInst *SetJmpResult =
4716 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(),
4717 SetJmpBuffer, "setjmp.result");
4718 SetJmpResult->setCanReturnTwice();
4720 llvm::Value *Threw =
4721 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception");
4723 CatchBlock = CGF.createBasicBlock("catch");
4724 CatchHandler = CGF.createBasicBlock("catch_for_catch");
4725 CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock);
4727 CGF.EmitBlock(CatchBlock);
4730 CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar);
4732 // Handle catch list. As a special case we check if everything is
4733 // matched and avoid generating code for falling off the end if
4734 // so.
4735 bool AllMatched = false;
4736 for (const ObjCAtCatchStmt *CatchStmt : AtTryStmt->catch_stmts()) {
4737 const VarDecl *CatchParam = CatchStmt->getCatchParamDecl();
4738 const ObjCObjectPointerType *OPT = nullptr;
4740 // catch(...) always matches.
4741 if (!CatchParam) {
4742 AllMatched = true;
4743 } else {
4744 OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>();
4746 // catch(id e) always matches under this ABI, since only
4747 // ObjC exceptions end up here in the first place.
4748 // FIXME: For the time being we also match id<X>; this should
4749 // be rejected by Sema instead.
4750 if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType()))
4751 AllMatched = true;
4754 // If this is a catch-all, we don't need to test anything.
4755 if (AllMatched) {
4756 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF);
4758 if (CatchParam) {
4759 CGF.EmitAutoVarDecl(*CatchParam);
4760 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?");
4762 // These types work out because ConvertType(id) == i8*.
4763 EmitInitOfCatchParam(CGF, Caught, CatchParam);
4766 CGF.EmitStmt(CatchStmt->getCatchBody());
4768 // The scope of the catch variable ends right here.
4769 CatchVarCleanups.ForceCleanup();
4771 CGF.EmitBranchThroughCleanup(FinallyEnd);
4772 break;
4775 assert(OPT && "Unexpected non-object pointer type in @catch");
4776 const ObjCObjectType *ObjTy = OPT->getObjectType();
4778 // FIXME: @catch (Class c) ?
4779 ObjCInterfaceDecl *IDecl = ObjTy->getInterface();
4780 assert(IDecl && "Catch parameter must have Objective-C type!");
4782 // Check if the @catch block matches the exception object.
4783 llvm::Value *Class = EmitClassRef(CGF, IDecl);
4785 llvm::Value *matchArgs[] = { Class, Caught };
4786 llvm::CallInst *Match =
4787 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(),
4788 matchArgs, "match");
4790 llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match");
4791 llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next");
4793 CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"),
4794 MatchedBlock, NextCatchBlock);
4796 // Emit the @catch block.
4797 CGF.EmitBlock(MatchedBlock);
4799 // Collect any cleanups for the catch variable. The scope lasts until
4800 // the end of the catch body.
4801 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF);
4803 CGF.EmitAutoVarDecl(*CatchParam);
4804 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?");
4806 // Initialize the catch variable.
4807 llvm::Value *Tmp =
4808 CGF.Builder.CreateBitCast(Caught,
4809 CGF.ConvertType(CatchParam->getType()));
4810 EmitInitOfCatchParam(CGF, Tmp, CatchParam);
4812 CGF.EmitStmt(CatchStmt->getCatchBody());
4814 // We're done with the catch variable.
4815 CatchVarCleanups.ForceCleanup();
4817 CGF.EmitBranchThroughCleanup(FinallyEnd);
4819 CGF.EmitBlock(NextCatchBlock);
4822 CGF.ObjCEHValueStack.pop_back();
4824 // If nothing wanted anything to do with the caught exception,
4825 // kill the extract call.
4826 if (Caught->use_empty())
4827 Caught->eraseFromParent();
4829 if (!AllMatched)
4830 CGF.EmitBranchThroughCleanup(FinallyRethrow);
4832 if (HasFinally) {
4833 // Emit the exception handler for the @catch blocks.
4834 CGF.EmitBlock(CatchHandler);
4836 // In theory we might now need a write hazard, but actually it's
4837 // unnecessary because there's no local-accessing code between
4838 // the try's write hazard and here.
4839 //Hazards.emitWriteHazard();
4841 // Extract the new exception and save it to the
4842 // propagating-exception slot.
4843 assert(PropagatingExnVar.isValid());
4844 llvm::CallInst *NewCaught =
4845 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4846 ExceptionData.getPointer(), "caught");
4847 CGF.Builder.CreateStore(NewCaught, PropagatingExnVar);
4849 // Don't pop the catch handler; the throw already did.
4850 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar);
4851 CGF.EmitBranchThroughCleanup(FinallyRethrow);
4855 // Insert read hazards as required in the new blocks.
4856 Hazards.emitHazardsInNewBlocks();
4858 // Pop the cleanup.
4859 CGF.Builder.restoreIP(TryFallthroughIP);
4860 if (CGF.HaveInsertPoint())
4861 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar);
4862 CGF.PopCleanupBlock();
4863 CGF.EmitBlock(FinallyEnd.getBlock(), true);
4865 // Emit the rethrow block.
4866 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP();
4867 CGF.EmitBlock(FinallyRethrow.getBlock(), true);
4868 if (CGF.HaveInsertPoint()) {
4869 // If we have a propagating-exception variable, check it.
4870 llvm::Value *PropagatingExn;
4871 if (PropagatingExnVar.isValid()) {
4872 PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar);
4874 // Otherwise, just look in the buffer for the exception to throw.
4875 } else {
4876 llvm::CallInst *Caught =
4877 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4878 ExceptionData.getPointer());
4879 PropagatingExn = Caught;
4882 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(),
4883 PropagatingExn);
4884 CGF.Builder.CreateUnreachable();
4887 CGF.Builder.restoreIP(SavedIP);
4890 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF,
4891 const ObjCAtThrowStmt &S,
4892 bool ClearInsertionPoint) {
4893 llvm::Value *ExceptionAsObject;
4895 if (const Expr *ThrowExpr = S.getThrowExpr()) {
4896 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
4897 ExceptionAsObject =
4898 CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy);
4899 } else {
4900 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
4901 "Unexpected rethrow outside @catch block.");
4902 ExceptionAsObject = CGF.ObjCEHValueStack.back();
4905 CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject)
4906 ->setDoesNotReturn();
4907 CGF.Builder.CreateUnreachable();
4909 // Clear the insertion point to indicate we are in unreachable code.
4910 if (ClearInsertionPoint)
4911 CGF.Builder.ClearInsertionPoint();
4914 /// EmitObjCWeakRead - Code gen for loading value of a __weak
4915 /// object: objc_read_weak (id *src)
4917 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
4918 Address AddrWeakObj) {
4919 llvm::Type* DestTy = AddrWeakObj.getElementType();
4920 llvm::Value *AddrWeakObjVal = CGF.Builder.CreateBitCast(
4921 AddrWeakObj.getPointer(), ObjCTypes.PtrObjectPtrTy);
4922 llvm::Value *read_weak =
4923 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(),
4924 AddrWeakObjVal, "weakread");
4925 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy);
4926 return read_weak;
4929 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object.
4930 /// objc_assign_weak (id src, id *dst)
4932 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
4933 llvm::Value *src, Address dst) {
4934 llvm::Type * SrcTy = src->getType();
4935 if (!isa<llvm::PointerType>(SrcTy)) {
4936 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4937 assert(Size <= 8 && "does not support size > 8");
4938 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty)
4939 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty);
4940 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4942 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4943 llvm::Value *dstVal =
4944 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy);
4945 llvm::Value *args[] = { src, dstVal };
4946 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(),
4947 args, "weakassign");
4950 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object.
4951 /// objc_assign_global (id src, id *dst)
4953 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
4954 llvm::Value *src, Address dst,
4955 bool threadlocal) {
4956 llvm::Type * SrcTy = src->getType();
4957 if (!isa<llvm::PointerType>(SrcTy)) {
4958 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4959 assert(Size <= 8 && "does not support size > 8");
4960 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty)
4961 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty);
4962 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4964 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4965 llvm::Value *dstVal =
4966 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy);
4967 llvm::Value *args[] = {src, dstVal};
4968 if (!threadlocal)
4969 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(),
4970 args, "globalassign");
4971 else
4972 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(),
4973 args, "threadlocalassign");
4976 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object.
4977 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset)
4979 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
4980 llvm::Value *src, Address dst,
4981 llvm::Value *ivarOffset) {
4982 assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL");
4983 llvm::Type * SrcTy = src->getType();
4984 if (!isa<llvm::PointerType>(SrcTy)) {
4985 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4986 assert(Size <= 8 && "does not support size > 8");
4987 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty)
4988 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty);
4989 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4991 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4992 llvm::Value *dstVal =
4993 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy);
4994 llvm::Value *args[] = {src, dstVal, ivarOffset};
4995 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args);
4998 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object.
4999 /// objc_assign_strongCast (id src, id *dst)
5001 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
5002 llvm::Value *src, Address dst) {
5003 llvm::Type * SrcTy = src->getType();
5004 if (!isa<llvm::PointerType>(SrcTy)) {
5005 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
5006 assert(Size <= 8 && "does not support size > 8");
5007 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, CGM.Int32Ty)
5008 : CGF.Builder.CreateBitCast(src, CGM.Int64Ty);
5009 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
5011 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
5012 llvm::Value *dstVal =
5013 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy);
5014 llvm::Value *args[] = {src, dstVal};
5015 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(),
5016 args, "strongassign");
5019 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
5020 Address DestPtr,
5021 Address SrcPtr,
5022 llvm::Value *size) {
5023 SrcPtr = CGF.Builder.CreateElementBitCast(SrcPtr, CGF.Int8Ty);
5024 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
5025 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size };
5026 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args);
5029 /// EmitObjCValueForIvar - Code Gen for ivar reference.
5031 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF,
5032 QualType ObjectTy,
5033 llvm::Value *BaseValue,
5034 const ObjCIvarDecl *Ivar,
5035 unsigned CVRQualifiers) {
5036 const ObjCInterfaceDecl *ID =
5037 ObjectTy->castAs<ObjCObjectType>()->getInterface();
5038 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
5039 EmitIvarOffset(CGF, ID, Ivar));
5042 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
5043 const ObjCInterfaceDecl *Interface,
5044 const ObjCIvarDecl *Ivar) {
5045 uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar);
5046 return llvm::ConstantInt::get(
5047 CGM.getTypes().ConvertType(CGM.getContext().LongTy),
5048 Offset);
5051 /* *** Private Interface *** */
5053 std::string CGObjCCommonMac::GetSectionName(StringRef Section,
5054 StringRef MachOAttributes) {
5055 switch (CGM.getTriple().getObjectFormat()) {
5056 case llvm::Triple::UnknownObjectFormat:
5057 llvm_unreachable("unexpected object file format");
5058 case llvm::Triple::MachO: {
5059 if (MachOAttributes.empty())
5060 return ("__DATA," + Section).str();
5061 return ("__DATA," + Section + "," + MachOAttributes).str();
5063 case llvm::Triple::ELF:
5064 assert(Section.substr(0, 2) == "__" &&
5065 "expected the name to begin with __");
5066 return Section.substr(2).str();
5067 case llvm::Triple::COFF:
5068 assert(Section.substr(0, 2) == "__" &&
5069 "expected the name to begin with __");
5070 return ("." + Section.substr(2) + "$B").str();
5071 case llvm::Triple::Wasm:
5072 case llvm::Triple::GOFF:
5073 case llvm::Triple::SPIRV:
5074 case llvm::Triple::XCOFF:
5075 case llvm::Triple::DXContainer:
5076 llvm::report_fatal_error(
5077 "Objective-C support is unimplemented for object file format");
5080 llvm_unreachable("Unhandled llvm::Triple::ObjectFormatType enum");
5083 /// EmitImageInfo - Emit the image info marker used to encode some module
5084 /// level information.
5086 /// See: <rdr://4810609&4810587&4810587>
5087 /// struct IMAGE_INFO {
5088 /// unsigned version;
5089 /// unsigned flags;
5090 /// };
5091 enum ImageInfoFlags {
5092 eImageInfo_FixAndContinue = (1 << 0), // This flag is no longer set by clang.
5093 eImageInfo_GarbageCollected = (1 << 1),
5094 eImageInfo_GCOnly = (1 << 2),
5095 eImageInfo_OptimizedByDyld = (1 << 3), // This flag is set by the dyld shared cache.
5097 // A flag indicating that the module has no instances of a @synthesize of a
5098 // superclass variable. <rdar://problem/6803242>
5099 eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang.
5100 eImageInfo_ImageIsSimulated = (1 << 5),
5101 eImageInfo_ClassProperties = (1 << 6)
5104 void CGObjCCommonMac::EmitImageInfo() {
5105 unsigned version = 0; // Version is unused?
5106 std::string Section =
5107 (ObjCABI == 1)
5108 ? "__OBJC,__image_info,regular"
5109 : GetSectionName("__objc_imageinfo", "regular,no_dead_strip");
5111 // Generate module-level named metadata to convey this information to the
5112 // linker and code-gen.
5113 llvm::Module &Mod = CGM.getModule();
5115 // Add the ObjC ABI version to the module flags.
5116 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI);
5117 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version",
5118 version);
5119 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section",
5120 llvm::MDString::get(VMContext, Section));
5122 auto Int8Ty = llvm::Type::getInt8Ty(VMContext);
5123 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
5124 // Non-GC overrides those files which specify GC.
5125 Mod.addModuleFlag(llvm::Module::Error,
5126 "Objective-C Garbage Collection",
5127 llvm::ConstantInt::get(Int8Ty,0));
5128 } else {
5129 // Add the ObjC garbage collection value.
5130 Mod.addModuleFlag(llvm::Module::Error,
5131 "Objective-C Garbage Collection",
5132 llvm::ConstantInt::get(Int8Ty,
5133 (uint8_t)eImageInfo_GarbageCollected));
5135 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
5136 // Add the ObjC GC Only value.
5137 Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only",
5138 eImageInfo_GCOnly);
5140 // Require that GC be specified and set to eImageInfo_GarbageCollected.
5141 llvm::Metadata *Ops[2] = {
5142 llvm::MDString::get(VMContext, "Objective-C Garbage Collection"),
5143 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
5144 Int8Ty, eImageInfo_GarbageCollected))};
5145 Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only",
5146 llvm::MDNode::get(VMContext, Ops));
5150 // Indicate whether we're compiling this to run on a simulator.
5151 if (CGM.getTarget().getTriple().isSimulatorEnvironment())
5152 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated",
5153 eImageInfo_ImageIsSimulated);
5155 // Indicate whether we are generating class properties.
5156 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties",
5157 eImageInfo_ClassProperties);
5160 // struct objc_module {
5161 // unsigned long version;
5162 // unsigned long size;
5163 // const char *name;
5164 // Symtab symtab;
5165 // };
5167 // FIXME: Get from somewhere
5168 static const int ModuleVersion = 7;
5170 void CGObjCMac::EmitModuleInfo() {
5171 uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy);
5173 ConstantInitBuilder builder(CGM);
5174 auto values = builder.beginStruct(ObjCTypes.ModuleTy);
5175 values.addInt(ObjCTypes.LongTy, ModuleVersion);
5176 values.addInt(ObjCTypes.LongTy, Size);
5177 // This used to be the filename, now it is unused. <rdr://4327263>
5178 values.add(GetClassName(StringRef("")));
5179 values.add(EmitModuleSymbols());
5180 CreateMetadataVar("OBJC_MODULES", values,
5181 "__OBJC,__module_info,regular,no_dead_strip",
5182 CGM.getPointerAlign(), true);
5185 llvm::Constant *CGObjCMac::EmitModuleSymbols() {
5186 unsigned NumClasses = DefinedClasses.size();
5187 unsigned NumCategories = DefinedCategories.size();
5189 // Return null if no symbols were defined.
5190 if (!NumClasses && !NumCategories)
5191 return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy);
5193 ConstantInitBuilder builder(CGM);
5194 auto values = builder.beginStruct();
5195 values.addInt(ObjCTypes.LongTy, 0);
5196 values.addNullPointer(ObjCTypes.SelectorPtrTy);
5197 values.addInt(ObjCTypes.ShortTy, NumClasses);
5198 values.addInt(ObjCTypes.ShortTy, NumCategories);
5200 // The runtime expects exactly the list of defined classes followed
5201 // by the list of defined categories, in a single array.
5202 auto array = values.beginArray(ObjCTypes.Int8PtrTy);
5203 for (unsigned i=0; i<NumClasses; i++) {
5204 const ObjCInterfaceDecl *ID = ImplementedClasses[i];
5205 assert(ID);
5206 if (ObjCImplementationDecl *IMP = ID->getImplementation())
5207 // We are implementing a weak imported interface. Give it external linkage
5208 if (ID->isWeakImported() && !IMP->isWeakImported())
5209 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
5211 array.addBitCast(DefinedClasses[i], ObjCTypes.Int8PtrTy);
5213 for (unsigned i=0; i<NumCategories; i++)
5214 array.addBitCast(DefinedCategories[i], ObjCTypes.Int8PtrTy);
5216 array.finishAndAddTo(values);
5218 llvm::GlobalVariable *GV = CreateMetadataVar(
5219 "OBJC_SYMBOLS", values, "__OBJC,__symbols,regular,no_dead_strip",
5220 CGM.getPointerAlign(), true);
5221 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy);
5224 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF,
5225 IdentifierInfo *II) {
5226 LazySymbols.insert(II);
5228 llvm::GlobalVariable *&Entry = ClassReferences[II];
5230 if (!Entry) {
5231 llvm::Constant *Casted =
5232 llvm::ConstantExpr::getBitCast(GetClassName(II->getName()),
5233 ObjCTypes.ClassPtrTy);
5234 Entry = CreateMetadataVar(
5235 "OBJC_CLASS_REFERENCES_", Casted,
5236 "__OBJC,__cls_refs,literal_pointers,no_dead_strip",
5237 CGM.getPointerAlign(), true);
5240 return CGF.Builder.CreateAlignedLoad(Entry->getValueType(), Entry,
5241 CGF.getPointerAlign());
5244 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF,
5245 const ObjCInterfaceDecl *ID) {
5246 // If the class has the objc_runtime_visible attribute, we need to
5247 // use the Objective-C runtime to get the class.
5248 if (ID->hasAttr<ObjCRuntimeVisibleAttr>())
5249 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes);
5251 IdentifierInfo *RuntimeName =
5252 &CGM.getContext().Idents.get(ID->getObjCRuntimeNameAsString());
5253 return EmitClassRefFromId(CGF, RuntimeName);
5256 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
5257 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool");
5258 return EmitClassRefFromId(CGF, II);
5261 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) {
5262 return CGF.Builder.CreateLoad(EmitSelectorAddr(Sel));
5265 Address CGObjCMac::EmitSelectorAddr(Selector Sel) {
5266 CharUnits Align = CGM.getPointerAlign();
5268 llvm::GlobalVariable *&Entry = SelectorReferences[Sel];
5269 if (!Entry) {
5270 llvm::Constant *Casted =
5271 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel),
5272 ObjCTypes.SelectorPtrTy);
5273 Entry = CreateMetadataVar(
5274 "OBJC_SELECTOR_REFERENCES_", Casted,
5275 "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true);
5276 Entry->setExternallyInitialized(true);
5279 return Address(Entry, ObjCTypes.SelectorPtrTy, Align);
5282 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) {
5283 llvm::GlobalVariable *&Entry = ClassNames[RuntimeName];
5284 if (!Entry)
5285 Entry = CreateCStringLiteral(RuntimeName, ObjCLabelType::ClassName);
5286 return getConstantGEP(VMContext, Entry, 0, 0);
5289 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) {
5290 return MethodDefinitions.lookup(MD);
5293 /// GetIvarLayoutName - Returns a unique constant for the given
5294 /// ivar layout bitmap.
5295 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident,
5296 const ObjCCommonTypesHelper &ObjCTypes) {
5297 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
5300 void IvarLayoutBuilder::visitRecord(const RecordType *RT,
5301 CharUnits offset) {
5302 const RecordDecl *RD = RT->getDecl();
5304 // If this is a union, remember that we had one, because it might mess
5305 // up the ordering of layout entries.
5306 if (RD->isUnion())
5307 IsDisordered = true;
5309 const ASTRecordLayout *recLayout = nullptr;
5310 visitAggregate(RD->field_begin(), RD->field_end(), offset,
5311 [&](const FieldDecl *field) -> CharUnits {
5312 if (!recLayout)
5313 recLayout = &CGM.getContext().getASTRecordLayout(RD);
5314 auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex());
5315 return CGM.getContext().toCharUnitsFromBits(offsetInBits);
5319 template <class Iterator, class GetOffsetFn>
5320 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end,
5321 CharUnits aggregateOffset,
5322 const GetOffsetFn &getOffset) {
5323 for (; begin != end; ++begin) {
5324 auto field = *begin;
5326 // Skip over bitfields.
5327 if (field->isBitField()) {
5328 continue;
5331 // Compute the offset of the field within the aggregate.
5332 CharUnits fieldOffset = aggregateOffset + getOffset(field);
5334 visitField(field, fieldOffset);
5338 /// Collect layout information for the given fields into IvarsInfo.
5339 void IvarLayoutBuilder::visitField(const FieldDecl *field,
5340 CharUnits fieldOffset) {
5341 QualType fieldType = field->getType();
5343 // Drill down into arrays.
5344 uint64_t numElts = 1;
5345 if (auto arrayType = CGM.getContext().getAsIncompleteArrayType(fieldType)) {
5346 numElts = 0;
5347 fieldType = arrayType->getElementType();
5349 // Unlike incomplete arrays, constant arrays can be nested.
5350 while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) {
5351 numElts *= arrayType->getSize().getZExtValue();
5352 fieldType = arrayType->getElementType();
5355 assert(!fieldType->isArrayType() && "ivar of non-constant array type?");
5357 // If we ended up with a zero-sized array, we've done what we can do within
5358 // the limits of this layout encoding.
5359 if (numElts == 0) return;
5361 // Recurse if the base element type is a record type.
5362 if (auto recType = fieldType->getAs<RecordType>()) {
5363 size_t oldEnd = IvarsInfo.size();
5365 visitRecord(recType, fieldOffset);
5367 // If we have an array, replicate the first entry's layout information.
5368 auto numEltEntries = IvarsInfo.size() - oldEnd;
5369 if (numElts != 1 && numEltEntries != 0) {
5370 CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType);
5371 for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) {
5372 // Copy the last numEltEntries onto the end of the array, adjusting
5373 // each for the element size.
5374 for (size_t i = 0; i != numEltEntries; ++i) {
5375 auto firstEntry = IvarsInfo[oldEnd + i];
5376 IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize,
5377 firstEntry.SizeInWords));
5382 return;
5385 // Classify the element type.
5386 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType);
5388 // If it matches what we're looking for, add an entry.
5389 if ((ForStrongLayout && GCAttr == Qualifiers::Strong)
5390 || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) {
5391 assert(CGM.getContext().getTypeSizeInChars(fieldType)
5392 == CGM.getPointerSize());
5393 IvarsInfo.push_back(IvarInfo(fieldOffset, numElts));
5397 /// buildBitmap - This routine does the horsework of taking the offsets of
5398 /// strong/weak references and creating a bitmap. The bitmap is also
5399 /// returned in the given buffer, suitable for being passed to \c dump().
5400 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC,
5401 llvm::SmallVectorImpl<unsigned char> &buffer) {
5402 // The bitmap is a series of skip/scan instructions, aligned to word
5403 // boundaries. The skip is performed first.
5404 const unsigned char MaxNibble = 0xF;
5405 const unsigned char SkipMask = 0xF0, SkipShift = 4;
5406 const unsigned char ScanMask = 0x0F, ScanShift = 0;
5408 assert(!IvarsInfo.empty() && "generating bitmap for no data");
5410 // Sort the ivar info on byte position in case we encounterred a
5411 // union nested in the ivar list.
5412 if (IsDisordered) {
5413 // This isn't a stable sort, but our algorithm should handle it fine.
5414 llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end());
5415 } else {
5416 assert(llvm::is_sorted(IvarsInfo));
5418 assert(IvarsInfo.back().Offset < InstanceEnd);
5420 assert(buffer.empty());
5422 // Skip the next N words.
5423 auto skip = [&](unsigned numWords) {
5424 assert(numWords > 0);
5426 // Try to merge into the previous byte. Since scans happen second, we
5427 // can't do this if it includes a scan.
5428 if (!buffer.empty() && !(buffer.back() & ScanMask)) {
5429 unsigned lastSkip = buffer.back() >> SkipShift;
5430 if (lastSkip < MaxNibble) {
5431 unsigned claimed = std::min(MaxNibble - lastSkip, numWords);
5432 numWords -= claimed;
5433 lastSkip += claimed;
5434 buffer.back() = (lastSkip << SkipShift);
5438 while (numWords >= MaxNibble) {
5439 buffer.push_back(MaxNibble << SkipShift);
5440 numWords -= MaxNibble;
5442 if (numWords) {
5443 buffer.push_back(numWords << SkipShift);
5447 // Scan the next N words.
5448 auto scan = [&](unsigned numWords) {
5449 assert(numWords > 0);
5451 // Try to merge into the previous byte. Since scans happen second, we can
5452 // do this even if it includes a skip.
5453 if (!buffer.empty()) {
5454 unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift;
5455 if (lastScan < MaxNibble) {
5456 unsigned claimed = std::min(MaxNibble - lastScan, numWords);
5457 numWords -= claimed;
5458 lastScan += claimed;
5459 buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift);
5463 while (numWords >= MaxNibble) {
5464 buffer.push_back(MaxNibble << ScanShift);
5465 numWords -= MaxNibble;
5467 if (numWords) {
5468 buffer.push_back(numWords << ScanShift);
5472 // One past the end of the last scan.
5473 unsigned endOfLastScanInWords = 0;
5474 const CharUnits WordSize = CGM.getPointerSize();
5476 // Consider all the scan requests.
5477 for (auto &request : IvarsInfo) {
5478 CharUnits beginOfScan = request.Offset - InstanceBegin;
5480 // Ignore scan requests that don't start at an even multiple of the
5481 // word size. We can't encode them.
5482 if ((beginOfScan % WordSize) != 0) continue;
5484 // Ignore scan requests that start before the instance start.
5485 // This assumes that scans never span that boundary. The boundary
5486 // isn't the true start of the ivars, because in the fragile-ARC case
5487 // it's rounded up to word alignment, but the test above should leave
5488 // us ignoring that possibility.
5489 if (beginOfScan.isNegative()) {
5490 assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin);
5491 continue;
5494 unsigned beginOfScanInWords = beginOfScan / WordSize;
5495 unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords;
5497 // If the scan starts some number of words after the last one ended,
5498 // skip forward.
5499 if (beginOfScanInWords > endOfLastScanInWords) {
5500 skip(beginOfScanInWords - endOfLastScanInWords);
5502 // Otherwise, start scanning where the last left off.
5503 } else {
5504 beginOfScanInWords = endOfLastScanInWords;
5506 // If that leaves us with nothing to scan, ignore this request.
5507 if (beginOfScanInWords >= endOfScanInWords) continue;
5510 // Scan to the end of the request.
5511 assert(beginOfScanInWords < endOfScanInWords);
5512 scan(endOfScanInWords - beginOfScanInWords);
5513 endOfLastScanInWords = endOfScanInWords;
5516 if (buffer.empty())
5517 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
5519 // For GC layouts, emit a skip to the end of the allocation so that we
5520 // have precise information about the entire thing. This isn't useful
5521 // or necessary for the ARC-style layout strings.
5522 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) {
5523 unsigned lastOffsetInWords =
5524 (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize;
5525 if (lastOffsetInWords > endOfLastScanInWords) {
5526 skip(lastOffsetInWords - endOfLastScanInWords);
5530 // Null terminate the string.
5531 buffer.push_back(0);
5533 auto *Entry = CGObjC.CreateCStringLiteral(
5534 reinterpret_cast<char *>(buffer.data()), ObjCLabelType::ClassName);
5535 return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0);
5538 /// BuildIvarLayout - Builds ivar layout bitmap for the class
5539 /// implementation for the __strong or __weak case.
5540 /// The layout map displays which words in ivar list must be skipped
5541 /// and which must be scanned by GC (see below). String is built of bytes.
5542 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count
5543 /// of words to skip and right nibble is count of words to scan. So, each
5544 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is
5545 /// represented by a 0x00 byte which also ends the string.
5546 /// 1. when ForStrongLayout is true, following ivars are scanned:
5547 /// - id, Class
5548 /// - object *
5549 /// - __strong anything
5551 /// 2. When ForStrongLayout is false, following ivars are scanned:
5552 /// - __weak anything
5554 llvm::Constant *
5555 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD,
5556 CharUnits beginOffset, CharUnits endOffset,
5557 bool ForStrongLayout, bool HasMRCWeakIvars) {
5558 // If this is MRC, and we're either building a strong layout or there
5559 // are no weak ivars, bail out early.
5560 llvm::Type *PtrTy = CGM.Int8PtrTy;
5561 if (CGM.getLangOpts().getGC() == LangOptions::NonGC &&
5562 !CGM.getLangOpts().ObjCAutoRefCount &&
5563 (ForStrongLayout || !HasMRCWeakIvars))
5564 return llvm::Constant::getNullValue(PtrTy);
5566 const ObjCInterfaceDecl *OI = OMD->getClassInterface();
5567 SmallVector<const ObjCIvarDecl*, 32> ivars;
5569 // GC layout strings include the complete object layout, possibly
5570 // inaccurately in the non-fragile ABI; the runtime knows how to fix this
5571 // up.
5573 // ARC layout strings only include the class's ivars. In non-fragile
5574 // runtimes, that means starting at InstanceStart, rounded up to word
5575 // alignment. In fragile runtimes, there's no InstanceStart, so it means
5576 // starting at the offset of the first ivar, rounded up to word alignment.
5578 // MRC weak layout strings follow the ARC style.
5579 CharUnits baseOffset;
5580 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
5581 for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin();
5582 IVD; IVD = IVD->getNextIvar())
5583 ivars.push_back(IVD);
5585 if (isNonFragileABI()) {
5586 baseOffset = beginOffset; // InstanceStart
5587 } else if (!ivars.empty()) {
5588 baseOffset =
5589 CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0]));
5590 } else {
5591 baseOffset = CharUnits::Zero();
5594 baseOffset = baseOffset.alignTo(CGM.getPointerAlign());
5596 else {
5597 CGM.getContext().DeepCollectObjCIvars(OI, true, ivars);
5599 baseOffset = CharUnits::Zero();
5602 if (ivars.empty())
5603 return llvm::Constant::getNullValue(PtrTy);
5605 IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout);
5607 builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(),
5608 [&](const ObjCIvarDecl *ivar) -> CharUnits {
5609 return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar));
5612 if (!builder.hasBitmapData())
5613 return llvm::Constant::getNullValue(PtrTy);
5615 llvm::SmallVector<unsigned char, 4> buffer;
5616 llvm::Constant *C = builder.buildBitmap(*this, buffer);
5618 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) {
5619 printf("\n%s ivar layout for class '%s': ",
5620 ForStrongLayout ? "strong" : "weak",
5621 OMD->getClassInterface()->getName().str().c_str());
5622 builder.dump(buffer);
5624 return C;
5627 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) {
5628 llvm::GlobalVariable *&Entry = MethodVarNames[Sel];
5629 // FIXME: Avoid std::string in "Sel.getAsString()"
5630 if (!Entry)
5631 Entry = CreateCStringLiteral(Sel.getAsString(), ObjCLabelType::MethodVarName);
5632 return getConstantGEP(VMContext, Entry, 0, 0);
5635 // FIXME: Merge into a single cstring creation function.
5636 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) {
5637 return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID));
5640 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) {
5641 std::string TypeStr;
5642 CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field);
5644 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr];
5645 if (!Entry)
5646 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType);
5647 return getConstantGEP(VMContext, Entry, 0, 0);
5650 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D,
5651 bool Extended) {
5652 std::string TypeStr =
5653 CGM.getContext().getObjCEncodingForMethodDecl(D, Extended);
5655 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr];
5656 if (!Entry)
5657 Entry = CreateCStringLiteral(TypeStr, ObjCLabelType::MethodVarType);
5658 return getConstantGEP(VMContext, Entry, 0, 0);
5661 // FIXME: Merge into a single cstring creation function.
5662 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) {
5663 llvm::GlobalVariable *&Entry = PropertyNames[Ident];
5664 if (!Entry)
5665 Entry = CreateCStringLiteral(Ident->getName(), ObjCLabelType::PropertyName);
5666 return getConstantGEP(VMContext, Entry, 0, 0);
5669 // FIXME: Merge into a single cstring creation function.
5670 // FIXME: This Decl should be more precise.
5671 llvm::Constant *
5672 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD,
5673 const Decl *Container) {
5674 std::string TypeStr =
5675 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container);
5676 return GetPropertyName(&CGM.getContext().Idents.get(TypeStr));
5679 void CGObjCMac::FinishModule() {
5680 EmitModuleInfo();
5682 // Emit the dummy bodies for any protocols which were referenced but
5683 // never defined.
5684 for (auto &entry : Protocols) {
5685 llvm::GlobalVariable *global = entry.second;
5686 if (global->hasInitializer())
5687 continue;
5689 ConstantInitBuilder builder(CGM);
5690 auto values = builder.beginStruct(ObjCTypes.ProtocolTy);
5691 values.addNullPointer(ObjCTypes.ProtocolExtensionPtrTy);
5692 values.add(GetClassName(entry.first->getName()));
5693 values.addNullPointer(ObjCTypes.ProtocolListPtrTy);
5694 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy);
5695 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy);
5696 values.finishAndSetAsInitializer(global);
5697 CGM.addCompilerUsedGlobal(global);
5700 // Add assembler directives to add lazy undefined symbol references
5701 // for classes which are referenced but not defined. This is
5702 // important for correct linker interaction.
5704 // FIXME: It would be nice if we had an LLVM construct for this.
5705 if ((!LazySymbols.empty() || !DefinedSymbols.empty()) &&
5706 CGM.getTriple().isOSBinFormatMachO()) {
5707 SmallString<256> Asm;
5708 Asm += CGM.getModule().getModuleInlineAsm();
5709 if (!Asm.empty() && Asm.back() != '\n')
5710 Asm += '\n';
5712 llvm::raw_svector_ostream OS(Asm);
5713 for (const auto *Sym : DefinedSymbols)
5714 OS << "\t.objc_class_name_" << Sym->getName() << "=0\n"
5715 << "\t.globl .objc_class_name_" << Sym->getName() << "\n";
5716 for (const auto *Sym : LazySymbols)
5717 OS << "\t.lazy_reference .objc_class_name_" << Sym->getName() << "\n";
5718 for (const auto &Category : DefinedCategoryNames)
5719 OS << "\t.objc_category_name_" << Category << "=0\n"
5720 << "\t.globl .objc_category_name_" << Category << "\n";
5722 CGM.getModule().setModuleInlineAsm(OS.str());
5726 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm)
5727 : CGObjCCommonMac(cgm), ObjCTypes(cgm), ObjCEmptyCacheVar(nullptr),
5728 ObjCEmptyVtableVar(nullptr) {
5729 ObjCABI = 2;
5732 /* *** */
5734 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm)
5735 : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr)
5737 CodeGen::CodeGenTypes &Types = CGM.getTypes();
5738 ASTContext &Ctx = CGM.getContext();
5739 unsigned ProgramAS = CGM.getDataLayout().getProgramAddressSpace();
5741 ShortTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.ShortTy));
5742 IntTy = CGM.IntTy;
5743 LongTy = cast<llvm::IntegerType>(Types.ConvertType(Ctx.LongTy));
5744 Int8PtrTy = CGM.Int8PtrTy;
5745 Int8PtrProgramASTy = llvm::PointerType::get(CGM.Int8Ty, ProgramAS);
5746 Int8PtrPtrTy = CGM.Int8PtrPtrTy;
5748 // arm64 targets use "int" ivar offset variables. All others,
5749 // including OS X x86_64 and Windows x86_64, use "long" ivar offsets.
5750 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64)
5751 IvarOffsetVarTy = IntTy;
5752 else
5753 IvarOffsetVarTy = LongTy;
5755 ObjectPtrTy =
5756 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCIdType()));
5757 PtrObjectPtrTy =
5758 llvm::PointerType::getUnqual(ObjectPtrTy);
5759 SelectorPtrTy =
5760 cast<llvm::PointerType>(Types.ConvertType(Ctx.getObjCSelType()));
5762 // I'm not sure I like this. The implicit coordination is a bit
5763 // gross. We should solve this in a reasonable fashion because this
5764 // is a pretty common task (match some runtime data structure with
5765 // an LLVM data structure).
5767 // FIXME: This is leaked.
5768 // FIXME: Merge with rewriter code?
5770 // struct _objc_super {
5771 // id self;
5772 // Class cls;
5773 // }
5774 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct,
5775 Ctx.getTranslationUnitDecl(),
5776 SourceLocation(), SourceLocation(),
5777 &Ctx.Idents.get("_objc_super"));
5778 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5779 nullptr, Ctx.getObjCIdType(), nullptr, nullptr,
5780 false, ICIS_NoInit));
5781 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5782 nullptr, Ctx.getObjCClassType(), nullptr,
5783 nullptr, false, ICIS_NoInit));
5784 RD->completeDefinition();
5786 SuperCTy = Ctx.getTagDeclType(RD);
5787 SuperPtrCTy = Ctx.getPointerType(SuperCTy);
5789 SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy));
5790 SuperPtrTy = llvm::PointerType::getUnqual(SuperTy);
5792 // struct _prop_t {
5793 // char *name;
5794 // char *attributes;
5795 // }
5796 PropertyTy = llvm::StructType::create("struct._prop_t", Int8PtrTy, Int8PtrTy);
5798 // struct _prop_list_t {
5799 // uint32_t entsize; // sizeof(struct _prop_t)
5800 // uint32_t count_of_properties;
5801 // struct _prop_t prop_list[count_of_properties];
5802 // }
5803 PropertyListTy = llvm::StructType::create(
5804 "struct._prop_list_t", IntTy, IntTy, llvm::ArrayType::get(PropertyTy, 0));
5805 // struct _prop_list_t *
5806 PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy);
5808 // struct _objc_method {
5809 // SEL _cmd;
5810 // char *method_type;
5811 // char *_imp;
5812 // }
5813 MethodTy = llvm::StructType::create("struct._objc_method", SelectorPtrTy,
5814 Int8PtrTy, Int8PtrProgramASTy);
5816 // struct _objc_cache *
5817 CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache");
5818 CachePtrTy = llvm::PointerType::getUnqual(CacheTy);
5821 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm)
5822 : ObjCCommonTypesHelper(cgm) {
5823 // struct _objc_method_description {
5824 // SEL name;
5825 // char *types;
5826 // }
5827 MethodDescriptionTy = llvm::StructType::create(
5828 "struct._objc_method_description", SelectorPtrTy, Int8PtrTy);
5830 // struct _objc_method_description_list {
5831 // int count;
5832 // struct _objc_method_description[1];
5833 // }
5834 MethodDescriptionListTy =
5835 llvm::StructType::create("struct._objc_method_description_list", IntTy,
5836 llvm::ArrayType::get(MethodDescriptionTy, 0));
5838 // struct _objc_method_description_list *
5839 MethodDescriptionListPtrTy =
5840 llvm::PointerType::getUnqual(MethodDescriptionListTy);
5842 // Protocol description structures
5844 // struct _objc_protocol_extension {
5845 // uint32_t size; // sizeof(struct _objc_protocol_extension)
5846 // struct _objc_method_description_list *optional_instance_methods;
5847 // struct _objc_method_description_list *optional_class_methods;
5848 // struct _objc_property_list *instance_properties;
5849 // const char ** extendedMethodTypes;
5850 // struct _objc_property_list *class_properties;
5851 // }
5852 ProtocolExtensionTy = llvm::StructType::create(
5853 "struct._objc_protocol_extension", IntTy, MethodDescriptionListPtrTy,
5854 MethodDescriptionListPtrTy, PropertyListPtrTy, Int8PtrPtrTy,
5855 PropertyListPtrTy);
5857 // struct _objc_protocol_extension *
5858 ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy);
5860 // Handle recursive construction of Protocol and ProtocolList types
5862 ProtocolTy =
5863 llvm::StructType::create(VMContext, "struct._objc_protocol");
5865 ProtocolListTy =
5866 llvm::StructType::create(VMContext, "struct._objc_protocol_list");
5867 ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), LongTy,
5868 llvm::ArrayType::get(ProtocolTy, 0));
5870 // struct _objc_protocol {
5871 // struct _objc_protocol_extension *isa;
5872 // char *protocol_name;
5873 // struct _objc_protocol **_objc_protocol_list;
5874 // struct _objc_method_description_list *instance_methods;
5875 // struct _objc_method_description_list *class_methods;
5876 // }
5877 ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy,
5878 llvm::PointerType::getUnqual(ProtocolListTy),
5879 MethodDescriptionListPtrTy, MethodDescriptionListPtrTy);
5881 // struct _objc_protocol_list *
5882 ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy);
5884 ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy);
5886 // Class description structures
5888 // struct _objc_ivar {
5889 // char *ivar_name;
5890 // char *ivar_type;
5891 // int ivar_offset;
5892 // }
5893 IvarTy = llvm::StructType::create("struct._objc_ivar", Int8PtrTy, Int8PtrTy,
5894 IntTy);
5896 // struct _objc_ivar_list *
5897 IvarListTy =
5898 llvm::StructType::create(VMContext, "struct._objc_ivar_list");
5899 IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy);
5901 // struct _objc_method_list *
5902 MethodListTy =
5903 llvm::StructType::create(VMContext, "struct._objc_method_list");
5904 MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy);
5906 // struct _objc_class_extension *
5907 ClassExtensionTy = llvm::StructType::create(
5908 "struct._objc_class_extension", IntTy, Int8PtrTy, PropertyListPtrTy);
5909 ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy);
5911 ClassTy = llvm::StructType::create(VMContext, "struct._objc_class");
5913 // struct _objc_class {
5914 // Class isa;
5915 // Class super_class;
5916 // char *name;
5917 // long version;
5918 // long info;
5919 // long instance_size;
5920 // struct _objc_ivar_list *ivars;
5921 // struct _objc_method_list *methods;
5922 // struct _objc_cache *cache;
5923 // struct _objc_protocol_list *protocols;
5924 // char *ivar_layout;
5925 // struct _objc_class_ext *ext;
5926 // };
5927 ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy),
5928 llvm::PointerType::getUnqual(ClassTy), Int8PtrTy, LongTy,
5929 LongTy, LongTy, IvarListPtrTy, MethodListPtrTy, CachePtrTy,
5930 ProtocolListPtrTy, Int8PtrTy, ClassExtensionPtrTy);
5932 ClassPtrTy = llvm::PointerType::getUnqual(ClassTy);
5934 // struct _objc_category {
5935 // char *category_name;
5936 // char *class_name;
5937 // struct _objc_method_list *instance_method;
5938 // struct _objc_method_list *class_method;
5939 // struct _objc_protocol_list *protocols;
5940 // uint32_t size; // sizeof(struct _objc_category)
5941 // struct _objc_property_list *instance_properties;// category's @property
5942 // struct _objc_property_list *class_properties;
5943 // }
5944 CategoryTy = llvm::StructType::create(
5945 "struct._objc_category", Int8PtrTy, Int8PtrTy, MethodListPtrTy,
5946 MethodListPtrTy, ProtocolListPtrTy, IntTy, PropertyListPtrTy,
5947 PropertyListPtrTy);
5949 // Global metadata structures
5951 // struct _objc_symtab {
5952 // long sel_ref_cnt;
5953 // SEL *refs;
5954 // short cls_def_cnt;
5955 // short cat_def_cnt;
5956 // char *defs[cls_def_cnt + cat_def_cnt];
5957 // }
5958 SymtabTy = llvm::StructType::create("struct._objc_symtab", LongTy,
5959 SelectorPtrTy, ShortTy, ShortTy,
5960 llvm::ArrayType::get(Int8PtrTy, 0));
5961 SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy);
5963 // struct _objc_module {
5964 // long version;
5965 // long size; // sizeof(struct _objc_module)
5966 // char *name;
5967 // struct _objc_symtab* symtab;
5968 // }
5969 ModuleTy = llvm::StructType::create("struct._objc_module", LongTy, LongTy,
5970 Int8PtrTy, SymtabPtrTy);
5972 // FIXME: This is the size of the setjmp buffer and should be target
5973 // specific. 18 is what's used on 32-bit X86.
5974 uint64_t SetJmpBufferSize = 18;
5976 // Exceptions
5977 llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4);
5979 ExceptionDataTy = llvm::StructType::create(
5980 "struct._objc_exception_data",
5981 llvm::ArrayType::get(CGM.Int32Ty, SetJmpBufferSize), StackPtrTy);
5984 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm)
5985 : ObjCCommonTypesHelper(cgm) {
5986 // struct _method_list_t {
5987 // uint32_t entsize; // sizeof(struct _objc_method)
5988 // uint32_t method_count;
5989 // struct _objc_method method_list[method_count];
5990 // }
5991 MethodListnfABITy =
5992 llvm::StructType::create("struct.__method_list_t", IntTy, IntTy,
5993 llvm::ArrayType::get(MethodTy, 0));
5994 // struct method_list_t *
5995 MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy);
5997 // struct _protocol_t {
5998 // id isa; // NULL
5999 // const char * const protocol_name;
6000 // const struct _protocol_list_t * protocol_list; // super protocols
6001 // const struct method_list_t * const instance_methods;
6002 // const struct method_list_t * const class_methods;
6003 // const struct method_list_t *optionalInstanceMethods;
6004 // const struct method_list_t *optionalClassMethods;
6005 // const struct _prop_list_t * properties;
6006 // const uint32_t size; // sizeof(struct _protocol_t)
6007 // const uint32_t flags; // = 0
6008 // const char ** extendedMethodTypes;
6009 // const char *demangledName;
6010 // const struct _prop_list_t * class_properties;
6011 // }
6013 // Holder for struct _protocol_list_t *
6014 ProtocolListnfABITy =
6015 llvm::StructType::create(VMContext, "struct._objc_protocol_list");
6017 ProtocolnfABITy = llvm::StructType::create(
6018 "struct._protocol_t", ObjectPtrTy, Int8PtrTy,
6019 llvm::PointerType::getUnqual(ProtocolListnfABITy), MethodListnfABIPtrTy,
6020 MethodListnfABIPtrTy, MethodListnfABIPtrTy, MethodListnfABIPtrTy,
6021 PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, Int8PtrTy,
6022 PropertyListPtrTy);
6024 // struct _protocol_t*
6025 ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy);
6027 // struct _protocol_list_t {
6028 // long protocol_count; // Note, this is 32/64 bit
6029 // struct _protocol_t *[protocol_count];
6030 // }
6031 ProtocolListnfABITy->setBody(LongTy,
6032 llvm::ArrayType::get(ProtocolnfABIPtrTy, 0));
6034 // struct _objc_protocol_list*
6035 ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy);
6037 // struct _ivar_t {
6038 // unsigned [long] int *offset; // pointer to ivar offset location
6039 // char *name;
6040 // char *type;
6041 // uint32_t alignment;
6042 // uint32_t size;
6043 // }
6044 IvarnfABITy = llvm::StructType::create(
6045 "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy),
6046 Int8PtrTy, Int8PtrTy, IntTy, IntTy);
6048 // struct _ivar_list_t {
6049 // uint32 entsize; // sizeof(struct _ivar_t)
6050 // uint32 count;
6051 // struct _iver_t list[count];
6052 // }
6053 IvarListnfABITy =
6054 llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy,
6055 llvm::ArrayType::get(IvarnfABITy, 0));
6057 IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy);
6059 // struct _class_ro_t {
6060 // uint32_t const flags;
6061 // uint32_t const instanceStart;
6062 // uint32_t const instanceSize;
6063 // uint32_t const reserved; // only when building for 64bit targets
6064 // const uint8_t * const ivarLayout;
6065 // const char *const name;
6066 // const struct _method_list_t * const baseMethods;
6067 // const struct _objc_protocol_list *const baseProtocols;
6068 // const struct _ivar_list_t *const ivars;
6069 // const uint8_t * const weakIvarLayout;
6070 // const struct _prop_list_t * const properties;
6071 // }
6073 // FIXME. Add 'reserved' field in 64bit abi mode!
6074 ClassRonfABITy = llvm::StructType::create(
6075 "struct._class_ro_t", IntTy, IntTy, IntTy, Int8PtrTy, Int8PtrTy,
6076 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, IvarListnfABIPtrTy,
6077 Int8PtrTy, PropertyListPtrTy);
6079 // ImpnfABITy - LLVM for id (*)(id, SEL, ...)
6080 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
6081 ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false)
6082 ->getPointerTo();
6084 // struct _class_t {
6085 // struct _class_t *isa;
6086 // struct _class_t * const superclass;
6087 // void *cache;
6088 // IMP *vtable;
6089 // struct class_ro_t *ro;
6090 // }
6092 ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t");
6093 ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy),
6094 llvm::PointerType::getUnqual(ClassnfABITy), CachePtrTy,
6095 llvm::PointerType::getUnqual(ImpnfABITy),
6096 llvm::PointerType::getUnqual(ClassRonfABITy));
6098 // LLVM for struct _class_t *
6099 ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy);
6101 // struct _category_t {
6102 // const char * const name;
6103 // struct _class_t *const cls;
6104 // const struct _method_list_t * const instance_methods;
6105 // const struct _method_list_t * const class_methods;
6106 // const struct _protocol_list_t * const protocols;
6107 // const struct _prop_list_t * const properties;
6108 // const struct _prop_list_t * const class_properties;
6109 // const uint32_t size;
6110 // }
6111 CategorynfABITy = llvm::StructType::create(
6112 "struct._category_t", Int8PtrTy, ClassnfABIPtrTy, MethodListnfABIPtrTy,
6113 MethodListnfABIPtrTy, ProtocolListnfABIPtrTy, PropertyListPtrTy,
6114 PropertyListPtrTy, IntTy);
6116 // New types for nonfragile abi messaging.
6117 CodeGen::CodeGenTypes &Types = CGM.getTypes();
6118 ASTContext &Ctx = CGM.getContext();
6120 // MessageRefTy - LLVM for:
6121 // struct _message_ref_t {
6122 // IMP messenger;
6123 // SEL name;
6124 // };
6126 // First the clang type for struct _message_ref_t
6127 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct,
6128 Ctx.getTranslationUnitDecl(),
6129 SourceLocation(), SourceLocation(),
6130 &Ctx.Idents.get("_message_ref_t"));
6131 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
6132 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false,
6133 ICIS_NoInit));
6134 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
6135 nullptr, Ctx.getObjCSelType(), nullptr, nullptr,
6136 false, ICIS_NoInit));
6137 RD->completeDefinition();
6139 MessageRefCTy = Ctx.getTagDeclType(RD);
6140 MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy);
6141 MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy));
6143 // MessageRefPtrTy - LLVM for struct _message_ref_t*
6144 MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy);
6146 // SuperMessageRefTy - LLVM for:
6147 // struct _super_message_ref_t {
6148 // SUPER_IMP messenger;
6149 // SEL name;
6150 // };
6151 SuperMessageRefTy = llvm::StructType::create("struct._super_message_ref_t",
6152 ImpnfABITy, SelectorPtrTy);
6154 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t*
6155 SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy);
6158 // struct objc_typeinfo {
6159 // const void** vtable; // objc_ehtype_vtable + 2
6160 // const char* name; // c++ typeinfo string
6161 // Class cls;
6162 // };
6163 EHTypeTy = llvm::StructType::create("struct._objc_typeinfo",
6164 llvm::PointerType::getUnqual(Int8PtrTy),
6165 Int8PtrTy, ClassnfABIPtrTy);
6166 EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy);
6169 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() {
6170 FinishNonFragileABIModule();
6172 return nullptr;
6175 void CGObjCNonFragileABIMac::AddModuleClassList(
6176 ArrayRef<llvm::GlobalValue *> Container, StringRef SymbolName,
6177 StringRef SectionName) {
6178 unsigned NumClasses = Container.size();
6180 if (!NumClasses)
6181 return;
6183 SmallVector<llvm::Constant*, 8> Symbols(NumClasses);
6184 for (unsigned i=0; i<NumClasses; i++)
6185 Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i],
6186 ObjCTypes.Int8PtrTy);
6187 llvm::Constant *Init =
6188 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy,
6189 Symbols.size()),
6190 Symbols);
6192 // Section name is obtained by calling GetSectionName, which returns
6193 // sections in the __DATA segment on MachO.
6194 assert((!CGM.getTriple().isOSBinFormatMachO() ||
6195 SectionName.startswith("__DATA")) &&
6196 "SectionName expected to start with __DATA on MachO");
6197 llvm::GlobalVariable *GV = new llvm::GlobalVariable(
6198 CGM.getModule(), Init->getType(), false,
6199 llvm::GlobalValue::PrivateLinkage, Init, SymbolName);
6200 GV->setAlignment(CGM.getDataLayout().getABITypeAlign(Init->getType()));
6201 GV->setSection(SectionName);
6202 CGM.addCompilerUsedGlobal(GV);
6205 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() {
6206 // nonfragile abi has no module definition.
6208 // Build list of all implemented class addresses in array
6209 // L_OBJC_LABEL_CLASS_$.
6211 for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) {
6212 const ObjCInterfaceDecl *ID = ImplementedClasses[i];
6213 assert(ID);
6214 if (ObjCImplementationDecl *IMP = ID->getImplementation())
6215 // We are implementing a weak imported interface. Give it external linkage
6216 if (ID->isWeakImported() && !IMP->isWeakImported()) {
6217 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
6218 DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
6222 AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$",
6223 GetSectionName("__objc_classlist",
6224 "regular,no_dead_strip"));
6226 AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$",
6227 GetSectionName("__objc_nlclslist",
6228 "regular,no_dead_strip"));
6230 // Build list of all implemented category addresses in array
6231 // L_OBJC_LABEL_CATEGORY_$.
6232 AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$",
6233 GetSectionName("__objc_catlist",
6234 "regular,no_dead_strip"));
6235 AddModuleClassList(DefinedStubCategories, "OBJC_LABEL_STUB_CATEGORY_$",
6236 GetSectionName("__objc_catlist2",
6237 "regular,no_dead_strip"));
6238 AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$",
6239 GetSectionName("__objc_nlcatlist",
6240 "regular,no_dead_strip"));
6242 EmitImageInfo();
6245 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of
6246 /// VTableDispatchMethods; false otherwise. What this means is that
6247 /// except for the 19 selectors in the list, we generate 32bit-style
6248 /// message dispatch call for all the rest.
6249 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) {
6250 // At various points we've experimented with using vtable-based
6251 // dispatch for all methods.
6252 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
6253 case CodeGenOptions::Legacy:
6254 return false;
6255 case CodeGenOptions::NonLegacy:
6256 return true;
6257 case CodeGenOptions::Mixed:
6258 break;
6261 // If so, see whether this selector is in the white-list of things which must
6262 // use the new dispatch convention. We lazily build a dense set for this.
6263 if (VTableDispatchMethods.empty()) {
6264 VTableDispatchMethods.insert(GetNullarySelector("alloc"));
6265 VTableDispatchMethods.insert(GetNullarySelector("class"));
6266 VTableDispatchMethods.insert(GetNullarySelector("self"));
6267 VTableDispatchMethods.insert(GetNullarySelector("isFlipped"));
6268 VTableDispatchMethods.insert(GetNullarySelector("length"));
6269 VTableDispatchMethods.insert(GetNullarySelector("count"));
6271 // These are vtable-based if GC is disabled.
6272 // Optimistically use vtable dispatch for hybrid compiles.
6273 if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
6274 VTableDispatchMethods.insert(GetNullarySelector("retain"));
6275 VTableDispatchMethods.insert(GetNullarySelector("release"));
6276 VTableDispatchMethods.insert(GetNullarySelector("autorelease"));
6279 VTableDispatchMethods.insert(GetUnarySelector("allocWithZone"));
6280 VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass"));
6281 VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector"));
6282 VTableDispatchMethods.insert(GetUnarySelector("objectForKey"));
6283 VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex"));
6284 VTableDispatchMethods.insert(GetUnarySelector("isEqualToString"));
6285 VTableDispatchMethods.insert(GetUnarySelector("isEqual"));
6287 // These are vtable-based if GC is enabled.
6288 // Optimistically use vtable dispatch for hybrid compiles.
6289 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) {
6290 VTableDispatchMethods.insert(GetNullarySelector("hash"));
6291 VTableDispatchMethods.insert(GetUnarySelector("addObject"));
6293 // "countByEnumeratingWithState:objects:count"
6294 IdentifierInfo *KeyIdents[] = {
6295 &CGM.getContext().Idents.get("countByEnumeratingWithState"),
6296 &CGM.getContext().Idents.get("objects"),
6297 &CGM.getContext().Idents.get("count")
6299 VTableDispatchMethods.insert(
6300 CGM.getContext().Selectors.getSelector(3, KeyIdents));
6304 return VTableDispatchMethods.count(Sel);
6307 /// BuildClassRoTInitializer - generate meta-data for:
6308 /// struct _class_ro_t {
6309 /// uint32_t const flags;
6310 /// uint32_t const instanceStart;
6311 /// uint32_t const instanceSize;
6312 /// uint32_t const reserved; // only when building for 64bit targets
6313 /// const uint8_t * const ivarLayout;
6314 /// const char *const name;
6315 /// const struct _method_list_t * const baseMethods;
6316 /// const struct _protocol_list_t *const baseProtocols;
6317 /// const struct _ivar_list_t *const ivars;
6318 /// const uint8_t * const weakIvarLayout;
6319 /// const struct _prop_list_t * const properties;
6320 /// }
6322 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer(
6323 unsigned flags,
6324 unsigned InstanceStart,
6325 unsigned InstanceSize,
6326 const ObjCImplementationDecl *ID) {
6327 std::string ClassName = std::string(ID->getObjCRuntimeNameAsString());
6329 CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart);
6330 CharUnits endInstance = CharUnits::fromQuantity(InstanceSize);
6332 bool hasMRCWeak = false;
6333 if (CGM.getLangOpts().ObjCAutoRefCount)
6334 flags |= NonFragileABI_Class_CompiledByARC;
6335 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID)))
6336 flags |= NonFragileABI_Class_HasMRCWeakIvars;
6338 ConstantInitBuilder builder(CGM);
6339 auto values = builder.beginStruct(ObjCTypes.ClassRonfABITy);
6341 values.addInt(ObjCTypes.IntTy, flags);
6342 values.addInt(ObjCTypes.IntTy, InstanceStart);
6343 values.addInt(ObjCTypes.IntTy, InstanceSize);
6344 values.add((flags & NonFragileABI_Class_Meta)
6345 ? GetIvarLayoutName(nullptr, ObjCTypes)
6346 : BuildStrongIvarLayout(ID, beginInstance, endInstance));
6347 values.add(GetClassName(ID->getObjCRuntimeNameAsString()));
6349 // const struct _method_list_t * const baseMethods;
6350 SmallVector<const ObjCMethodDecl*, 16> methods;
6351 if (flags & NonFragileABI_Class_Meta) {
6352 for (const auto *MD : ID->class_methods())
6353 if (!MD->isDirectMethod())
6354 methods.push_back(MD);
6355 } else {
6356 for (const auto *MD : ID->instance_methods())
6357 if (!MD->isDirectMethod())
6358 methods.push_back(MD);
6361 values.add(emitMethodList(ID->getObjCRuntimeNameAsString(),
6362 (flags & NonFragileABI_Class_Meta)
6363 ? MethodListType::ClassMethods
6364 : MethodListType::InstanceMethods,
6365 methods));
6367 const ObjCInterfaceDecl *OID = ID->getClassInterface();
6368 assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer");
6369 values.add(EmitProtocolList("_OBJC_CLASS_PROTOCOLS_$_"
6370 + OID->getObjCRuntimeNameAsString(),
6371 OID->all_referenced_protocol_begin(),
6372 OID->all_referenced_protocol_end()));
6374 if (flags & NonFragileABI_Class_Meta) {
6375 values.addNullPointer(ObjCTypes.IvarListnfABIPtrTy);
6376 values.add(GetIvarLayoutName(nullptr, ObjCTypes));
6377 values.add(EmitPropertyList(
6378 "_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(),
6379 ID, ID->getClassInterface(), ObjCTypes, true));
6380 } else {
6381 values.add(EmitIvarList(ID));
6382 values.add(BuildWeakIvarLayout(ID, beginInstance, endInstance, hasMRCWeak));
6383 values.add(EmitPropertyList(
6384 "_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(),
6385 ID, ID->getClassInterface(), ObjCTypes, false));
6388 llvm::SmallString<64> roLabel;
6389 llvm::raw_svector_ostream(roLabel)
6390 << ((flags & NonFragileABI_Class_Meta) ? "_OBJC_METACLASS_RO_$_"
6391 : "_OBJC_CLASS_RO_$_")
6392 << ClassName;
6394 return finishAndCreateGlobal(values, roLabel, CGM);
6397 /// Build the metaclass object for a class.
6399 /// struct _class_t {
6400 /// struct _class_t *isa;
6401 /// struct _class_t * const superclass;
6402 /// void *cache;
6403 /// IMP *vtable;
6404 /// struct class_ro_t *ro;
6405 /// }
6407 llvm::GlobalVariable *
6408 CGObjCNonFragileABIMac::BuildClassObject(const ObjCInterfaceDecl *CI,
6409 bool isMetaclass,
6410 llvm::Constant *IsAGV,
6411 llvm::Constant *SuperClassGV,
6412 llvm::Constant *ClassRoGV,
6413 bool HiddenVisibility) {
6414 ConstantInitBuilder builder(CGM);
6415 auto values = builder.beginStruct(ObjCTypes.ClassnfABITy);
6416 values.add(IsAGV);
6417 if (SuperClassGV) {
6418 values.add(SuperClassGV);
6419 } else {
6420 values.addNullPointer(ObjCTypes.ClassnfABIPtrTy);
6422 values.add(ObjCEmptyCacheVar);
6423 values.add(ObjCEmptyVtableVar);
6424 values.add(ClassRoGV);
6426 llvm::GlobalVariable *GV =
6427 cast<llvm::GlobalVariable>(GetClassGlobal(CI, isMetaclass, ForDefinition));
6428 values.finishAndSetAsInitializer(GV);
6430 if (CGM.getTriple().isOSBinFormatMachO())
6431 GV->setSection("__DATA, __objc_data");
6432 GV->setAlignment(CGM.getDataLayout().getABITypeAlign(ObjCTypes.ClassnfABITy));
6433 if (!CGM.getTriple().isOSBinFormatCOFF())
6434 if (HiddenVisibility)
6435 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6436 return GV;
6439 bool CGObjCNonFragileABIMac::ImplementationIsNonLazy(
6440 const ObjCImplDecl *OD) const {
6441 return OD->getClassMethod(GetNullarySelector("load")) != nullptr ||
6442 OD->getClassInterface()->hasAttr<ObjCNonLazyClassAttr>() ||
6443 OD->hasAttr<ObjCNonLazyClassAttr>();
6446 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID,
6447 uint32_t &InstanceStart,
6448 uint32_t &InstanceSize) {
6449 const ASTRecordLayout &RL =
6450 CGM.getContext().getASTObjCImplementationLayout(OID);
6452 // InstanceSize is really instance end.
6453 InstanceSize = RL.getDataSize().getQuantity();
6455 // If there are no fields, the start is the same as the end.
6456 if (!RL.getFieldCount())
6457 InstanceStart = InstanceSize;
6458 else
6459 InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth();
6462 static llvm::GlobalValue::DLLStorageClassTypes getStorage(CodeGenModule &CGM,
6463 StringRef Name) {
6464 IdentifierInfo &II = CGM.getContext().Idents.get(Name);
6465 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
6466 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6468 const VarDecl *VD = nullptr;
6469 for (const auto *Result : DC->lookup(&II))
6470 if ((VD = dyn_cast<VarDecl>(Result)))
6471 break;
6473 if (!VD)
6474 return llvm::GlobalValue::DLLImportStorageClass;
6475 if (VD->hasAttr<DLLExportAttr>())
6476 return llvm::GlobalValue::DLLExportStorageClass;
6477 if (VD->hasAttr<DLLImportAttr>())
6478 return llvm::GlobalValue::DLLImportStorageClass;
6479 return llvm::GlobalValue::DefaultStorageClass;
6482 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) {
6483 if (!ObjCEmptyCacheVar) {
6484 ObjCEmptyCacheVar =
6485 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CacheTy, false,
6486 llvm::GlobalValue::ExternalLinkage, nullptr,
6487 "_objc_empty_cache");
6488 if (CGM.getTriple().isOSBinFormatCOFF())
6489 ObjCEmptyCacheVar->setDLLStorageClass(getStorage(CGM, "_objc_empty_cache"));
6491 // Only OS X with deployment version <10.9 use the empty vtable symbol
6492 const llvm::Triple &Triple = CGM.getTarget().getTriple();
6493 if (Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 9))
6494 ObjCEmptyVtableVar =
6495 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ImpnfABITy, false,
6496 llvm::GlobalValue::ExternalLinkage, nullptr,
6497 "_objc_empty_vtable");
6498 else
6499 ObjCEmptyVtableVar =
6500 llvm::ConstantPointerNull::get(ObjCTypes.ImpnfABITy->getPointerTo());
6503 // FIXME: Is this correct (that meta class size is never computed)?
6504 uint32_t InstanceStart =
6505 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy);
6506 uint32_t InstanceSize = InstanceStart;
6507 uint32_t flags = NonFragileABI_Class_Meta;
6509 llvm::Constant *SuperClassGV, *IsAGV;
6511 const auto *CI = ID->getClassInterface();
6512 assert(CI && "CGObjCNonFragileABIMac::GenerateClass - class is 0");
6514 // Build the flags for the metaclass.
6515 bool classIsHidden = (CGM.getTriple().isOSBinFormatCOFF())
6516 ? !CI->hasAttr<DLLExportAttr>()
6517 : CI->getVisibility() == HiddenVisibility;
6518 if (classIsHidden)
6519 flags |= NonFragileABI_Class_Hidden;
6521 // FIXME: why is this flag set on the metaclass?
6522 // ObjC metaclasses have no fields and don't really get constructed.
6523 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) {
6524 flags |= NonFragileABI_Class_HasCXXStructors;
6525 if (!ID->hasNonZeroConstructors())
6526 flags |= NonFragileABI_Class_HasCXXDestructorOnly;
6529 if (!CI->getSuperClass()) {
6530 // class is root
6531 flags |= NonFragileABI_Class_Root;
6533 SuperClassGV = GetClassGlobal(CI, /*metaclass*/ false, NotForDefinition);
6534 IsAGV = GetClassGlobal(CI, /*metaclass*/ true, NotForDefinition);
6535 } else {
6536 // Has a root. Current class is not a root.
6537 const ObjCInterfaceDecl *Root = ID->getClassInterface();
6538 while (const ObjCInterfaceDecl *Super = Root->getSuperClass())
6539 Root = Super;
6541 const auto *Super = CI->getSuperClass();
6542 IsAGV = GetClassGlobal(Root, /*metaclass*/ true, NotForDefinition);
6543 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ true, NotForDefinition);
6546 llvm::GlobalVariable *CLASS_RO_GV =
6547 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID);
6549 llvm::GlobalVariable *MetaTClass =
6550 BuildClassObject(CI, /*metaclass*/ true,
6551 IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden);
6552 CGM.setGVProperties(MetaTClass, CI);
6553 DefinedMetaClasses.push_back(MetaTClass);
6555 // Metadata for the class
6556 flags = 0;
6557 if (classIsHidden)
6558 flags |= NonFragileABI_Class_Hidden;
6560 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) {
6561 flags |= NonFragileABI_Class_HasCXXStructors;
6563 // Set a flag to enable a runtime optimization when a class has
6564 // fields that require destruction but which don't require
6565 // anything except zero-initialization during construction. This
6566 // is most notably true of __strong and __weak types, but you can
6567 // also imagine there being C++ types with non-trivial default
6568 // constructors that merely set all fields to null.
6569 if (!ID->hasNonZeroConstructors())
6570 flags |= NonFragileABI_Class_HasCXXDestructorOnly;
6573 if (hasObjCExceptionAttribute(CGM.getContext(), CI))
6574 flags |= NonFragileABI_Class_Exception;
6576 if (!CI->getSuperClass()) {
6577 flags |= NonFragileABI_Class_Root;
6578 SuperClassGV = nullptr;
6579 } else {
6580 // Has a root. Current class is not a root.
6581 const auto *Super = CI->getSuperClass();
6582 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ false, NotForDefinition);
6585 GetClassSizeInfo(ID, InstanceStart, InstanceSize);
6586 CLASS_RO_GV =
6587 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID);
6589 llvm::GlobalVariable *ClassMD =
6590 BuildClassObject(CI, /*metaclass*/ false,
6591 MetaTClass, SuperClassGV, CLASS_RO_GV, classIsHidden);
6592 CGM.setGVProperties(ClassMD, CI);
6593 DefinedClasses.push_back(ClassMD);
6594 ImplementedClasses.push_back(CI);
6596 // Determine if this class is also "non-lazy".
6597 if (ImplementationIsNonLazy(ID))
6598 DefinedNonLazyClasses.push_back(ClassMD);
6600 // Force the definition of the EHType if necessary.
6601 if (flags & NonFragileABI_Class_Exception)
6602 (void) GetInterfaceEHType(CI, ForDefinition);
6603 // Make sure method definition entries are all clear for next implementation.
6604 MethodDefinitions.clear();
6607 /// GenerateProtocolRef - This routine is called to generate code for
6608 /// a protocol reference expression; as in:
6609 /// @code
6610 /// @protocol(Proto1);
6611 /// @endcode
6612 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1
6613 /// which will hold address of the protocol meta-data.
6615 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF,
6616 const ObjCProtocolDecl *PD) {
6618 // This routine is called for @protocol only. So, we must build definition
6619 // of protocol's meta-data (not a reference to it!)
6620 assert(!PD->isNonRuntimeProtocol() &&
6621 "attempting to get a protocol ref to a static protocol.");
6622 llvm::Constant *Init =
6623 llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD),
6624 ObjCTypes.getExternalProtocolPtrTy());
6626 std::string ProtocolName("_OBJC_PROTOCOL_REFERENCE_$_");
6627 ProtocolName += PD->getObjCRuntimeNameAsString();
6629 CharUnits Align = CGF.getPointerAlign();
6631 llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName);
6632 if (PTGV)
6633 return CGF.Builder.CreateAlignedLoad(PTGV->getValueType(), PTGV, Align);
6634 PTGV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
6635 llvm::GlobalValue::WeakAnyLinkage, Init,
6636 ProtocolName);
6637 PTGV->setSection(GetSectionName("__objc_protorefs",
6638 "coalesced,no_dead_strip"));
6639 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6640 PTGV->setAlignment(Align.getAsAlign());
6641 if (!CGM.getTriple().isOSBinFormatMachO())
6642 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolName));
6643 CGM.addUsedGlobal(PTGV);
6644 return CGF.Builder.CreateAlignedLoad(PTGV->getValueType(), PTGV, Align);
6647 /// GenerateCategory - Build metadata for a category implementation.
6648 /// struct _category_t {
6649 /// const char * const name;
6650 /// struct _class_t *const cls;
6651 /// const struct _method_list_t * const instance_methods;
6652 /// const struct _method_list_t * const class_methods;
6653 /// const struct _protocol_list_t * const protocols;
6654 /// const struct _prop_list_t * const properties;
6655 /// const struct _prop_list_t * const class_properties;
6656 /// const uint32_t size;
6657 /// }
6659 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
6660 const ObjCInterfaceDecl *Interface = OCD->getClassInterface();
6661 const char *Prefix = "_OBJC_$_CATEGORY_";
6663 llvm::SmallString<64> ExtCatName(Prefix);
6664 ExtCatName += Interface->getObjCRuntimeNameAsString();
6665 ExtCatName += "_$_";
6666 ExtCatName += OCD->getNameAsString();
6668 ConstantInitBuilder builder(CGM);
6669 auto values = builder.beginStruct(ObjCTypes.CategorynfABITy);
6670 values.add(GetClassName(OCD->getIdentifier()->getName()));
6671 // meta-class entry symbol
6672 values.add(GetClassGlobal(Interface, /*metaclass*/ false, NotForDefinition));
6673 std::string listName =
6674 (Interface->getObjCRuntimeNameAsString() + "_$_" + OCD->getName()).str();
6676 SmallVector<const ObjCMethodDecl *, 16> instanceMethods;
6677 SmallVector<const ObjCMethodDecl *, 8> classMethods;
6678 for (const auto *MD : OCD->methods()) {
6679 if (MD->isDirectMethod())
6680 continue;
6681 if (MD->isInstanceMethod()) {
6682 instanceMethods.push_back(MD);
6683 } else {
6684 classMethods.push_back(MD);
6688 auto instanceMethodList = emitMethodList(
6689 listName, MethodListType::CategoryInstanceMethods, instanceMethods);
6690 auto classMethodList = emitMethodList(
6691 listName, MethodListType::CategoryClassMethods, classMethods);
6692 values.add(instanceMethodList);
6693 values.add(classMethodList);
6694 // Keep track of whether we have actual metadata to emit.
6695 bool isEmptyCategory =
6696 instanceMethodList->isNullValue() && classMethodList->isNullValue();
6698 const ObjCCategoryDecl *Category =
6699 Interface->FindCategoryDeclaration(OCD->getIdentifier());
6700 if (Category) {
6701 SmallString<256> ExtName;
6702 llvm::raw_svector_ostream(ExtName)
6703 << Interface->getObjCRuntimeNameAsString() << "_$_" << OCD->getName();
6704 auto protocolList =
6705 EmitProtocolList("_OBJC_CATEGORY_PROTOCOLS_$_" +
6706 Interface->getObjCRuntimeNameAsString() + "_$_" +
6707 Category->getName(),
6708 Category->protocol_begin(), Category->protocol_end());
6709 auto propertyList = EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(),
6710 OCD, Category, ObjCTypes, false);
6711 auto classPropertyList =
6712 EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), OCD,
6713 Category, ObjCTypes, true);
6714 values.add(protocolList);
6715 values.add(propertyList);
6716 values.add(classPropertyList);
6717 isEmptyCategory &= protocolList->isNullValue() &&
6718 propertyList->isNullValue() &&
6719 classPropertyList->isNullValue();
6720 } else {
6721 values.addNullPointer(ObjCTypes.ProtocolListnfABIPtrTy);
6722 values.addNullPointer(ObjCTypes.PropertyListPtrTy);
6723 values.addNullPointer(ObjCTypes.PropertyListPtrTy);
6726 if (isEmptyCategory) {
6727 // Empty category, don't emit any metadata.
6728 values.abandon();
6729 MethodDefinitions.clear();
6730 return;
6733 unsigned Size =
6734 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy);
6735 values.addInt(ObjCTypes.IntTy, Size);
6737 llvm::GlobalVariable *GCATV =
6738 finishAndCreateGlobal(values, ExtCatName.str(), CGM);
6739 CGM.addCompilerUsedGlobal(GCATV);
6740 if (Interface->hasAttr<ObjCClassStubAttr>())
6741 DefinedStubCategories.push_back(GCATV);
6742 else
6743 DefinedCategories.push_back(GCATV);
6745 // Determine if this category is also "non-lazy".
6746 if (ImplementationIsNonLazy(OCD))
6747 DefinedNonLazyCategories.push_back(GCATV);
6748 // method definition entries must be clear for next implementation.
6749 MethodDefinitions.clear();
6752 /// emitMethodConstant - Return a struct objc_method constant. If
6753 /// forProtocol is true, the implementation will be null; otherwise,
6754 /// the method must have a definition registered with the runtime.
6756 /// struct _objc_method {
6757 /// SEL _cmd;
6758 /// char *method_type;
6759 /// char *_imp;
6760 /// }
6761 void CGObjCNonFragileABIMac::emitMethodConstant(ConstantArrayBuilder &builder,
6762 const ObjCMethodDecl *MD,
6763 bool forProtocol) {
6764 auto method = builder.beginStruct(ObjCTypes.MethodTy);
6765 method.addBitCast(GetMethodVarName(MD->getSelector()),
6766 ObjCTypes.SelectorPtrTy);
6767 method.add(GetMethodVarType(MD));
6769 if (forProtocol) {
6770 // Protocol methods have no implementation. So, this entry is always NULL.
6771 method.addNullPointer(ObjCTypes.Int8PtrProgramASTy);
6772 } else {
6773 llvm::Function *fn = GetMethodDefinition(MD);
6774 assert(fn && "no definition for method?");
6775 method.addBitCast(fn, ObjCTypes.Int8PtrProgramASTy);
6778 method.finishAndAddTo(builder);
6781 /// Build meta-data for method declarations.
6783 /// struct _method_list_t {
6784 /// uint32_t entsize; // sizeof(struct _objc_method)
6785 /// uint32_t method_count;
6786 /// struct _objc_method method_list[method_count];
6787 /// }
6789 llvm::Constant *
6790 CGObjCNonFragileABIMac::emitMethodList(Twine name, MethodListType kind,
6791 ArrayRef<const ObjCMethodDecl *> methods) {
6792 // Return null for empty list.
6793 if (methods.empty())
6794 return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy);
6796 StringRef prefix;
6797 bool forProtocol;
6798 switch (kind) {
6799 case MethodListType::CategoryInstanceMethods:
6800 prefix = "_OBJC_$_CATEGORY_INSTANCE_METHODS_";
6801 forProtocol = false;
6802 break;
6803 case MethodListType::CategoryClassMethods:
6804 prefix = "_OBJC_$_CATEGORY_CLASS_METHODS_";
6805 forProtocol = false;
6806 break;
6807 case MethodListType::InstanceMethods:
6808 prefix = "_OBJC_$_INSTANCE_METHODS_";
6809 forProtocol = false;
6810 break;
6811 case MethodListType::ClassMethods:
6812 prefix = "_OBJC_$_CLASS_METHODS_";
6813 forProtocol = false;
6814 break;
6816 case MethodListType::ProtocolInstanceMethods:
6817 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_";
6818 forProtocol = true;
6819 break;
6820 case MethodListType::ProtocolClassMethods:
6821 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_";
6822 forProtocol = true;
6823 break;
6824 case MethodListType::OptionalProtocolInstanceMethods:
6825 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_";
6826 forProtocol = true;
6827 break;
6828 case MethodListType::OptionalProtocolClassMethods:
6829 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_";
6830 forProtocol = true;
6831 break;
6834 ConstantInitBuilder builder(CGM);
6835 auto values = builder.beginStruct();
6837 // sizeof(struct _objc_method)
6838 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy);
6839 values.addInt(ObjCTypes.IntTy, Size);
6840 // method_count
6841 values.addInt(ObjCTypes.IntTy, methods.size());
6842 auto methodArray = values.beginArray(ObjCTypes.MethodTy);
6843 for (auto MD : methods)
6844 emitMethodConstant(methodArray, MD, forProtocol);
6845 methodArray.finishAndAddTo(values);
6847 llvm::GlobalVariable *GV = finishAndCreateGlobal(values, prefix + name, CGM);
6848 CGM.addCompilerUsedGlobal(GV);
6849 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy);
6852 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for
6853 /// the given ivar.
6854 llvm::GlobalVariable *
6855 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
6856 const ObjCIvarDecl *Ivar) {
6857 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
6858 llvm::SmallString<64> Name("OBJC_IVAR_$_");
6859 Name += Container->getObjCRuntimeNameAsString();
6860 Name += ".";
6861 Name += Ivar->getName();
6862 llvm::GlobalVariable *IvarOffsetGV = CGM.getModule().getGlobalVariable(Name);
6863 if (!IvarOffsetGV) {
6864 IvarOffsetGV =
6865 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.IvarOffsetVarTy,
6866 false, llvm::GlobalValue::ExternalLinkage,
6867 nullptr, Name.str());
6868 if (CGM.getTriple().isOSBinFormatCOFF()) {
6869 bool IsPrivateOrPackage =
6870 Ivar->getAccessControl() == ObjCIvarDecl::Private ||
6871 Ivar->getAccessControl() == ObjCIvarDecl::Package;
6873 const ObjCInterfaceDecl *ContainingID = Ivar->getContainingInterface();
6875 if (ContainingID->hasAttr<DLLImportAttr>())
6876 IvarOffsetGV
6877 ->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6878 else if (ContainingID->hasAttr<DLLExportAttr>() && !IsPrivateOrPackage)
6879 IvarOffsetGV
6880 ->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6883 return IvarOffsetGV;
6886 llvm::Constant *
6887 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID,
6888 const ObjCIvarDecl *Ivar,
6889 unsigned long int Offset) {
6890 llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar);
6891 IvarOffsetGV->setInitializer(
6892 llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset));
6893 IvarOffsetGV->setAlignment(
6894 CGM.getDataLayout().getABITypeAlign(ObjCTypes.IvarOffsetVarTy));
6896 if (!CGM.getTriple().isOSBinFormatCOFF()) {
6897 // FIXME: This matches gcc, but shouldn't the visibility be set on the use
6898 // as well (i.e., in ObjCIvarOffsetVariable).
6899 if (Ivar->getAccessControl() == ObjCIvarDecl::Private ||
6900 Ivar->getAccessControl() == ObjCIvarDecl::Package ||
6901 ID->getVisibility() == HiddenVisibility)
6902 IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6903 else
6904 IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility);
6907 // If ID's layout is known, then make the global constant. This serves as a
6908 // useful assertion: we'll never use this variable to calculate ivar offsets,
6909 // so if the runtime tries to patch it then we should crash.
6910 if (isClassLayoutKnownStatically(ID))
6911 IvarOffsetGV->setConstant(true);
6913 if (CGM.getTriple().isOSBinFormatMachO())
6914 IvarOffsetGV->setSection("__DATA, __objc_ivar");
6915 return IvarOffsetGV;
6918 /// EmitIvarList - Emit the ivar list for the given
6919 /// implementation. The return value has type
6920 /// IvarListnfABIPtrTy.
6921 /// struct _ivar_t {
6922 /// unsigned [long] int *offset; // pointer to ivar offset location
6923 /// char *name;
6924 /// char *type;
6925 /// uint32_t alignment;
6926 /// uint32_t size;
6927 /// }
6928 /// struct _ivar_list_t {
6929 /// uint32 entsize; // sizeof(struct _ivar_t)
6930 /// uint32 count;
6931 /// struct _iver_t list[count];
6932 /// }
6935 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList(
6936 const ObjCImplementationDecl *ID) {
6938 ConstantInitBuilder builder(CGM);
6939 auto ivarList = builder.beginStruct();
6940 ivarList.addInt(ObjCTypes.IntTy,
6941 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy));
6942 auto ivarCountSlot = ivarList.addPlaceholder();
6943 auto ivars = ivarList.beginArray(ObjCTypes.IvarnfABITy);
6945 const ObjCInterfaceDecl *OID = ID->getClassInterface();
6946 assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface");
6948 // FIXME. Consolidate this with similar code in GenerateClass.
6950 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin();
6951 IVD; IVD = IVD->getNextIvar()) {
6952 // Ignore unnamed bit-fields.
6953 if (!IVD->getDeclName())
6954 continue;
6956 auto ivar = ivars.beginStruct(ObjCTypes.IvarnfABITy);
6957 ivar.add(EmitIvarOffsetVar(ID->getClassInterface(), IVD,
6958 ComputeIvarBaseOffset(CGM, ID, IVD)));
6959 ivar.add(GetMethodVarName(IVD->getIdentifier()));
6960 ivar.add(GetMethodVarType(IVD));
6961 llvm::Type *FieldTy =
6962 CGM.getTypes().ConvertTypeForMem(IVD->getType());
6963 unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy);
6964 unsigned Align = CGM.getContext().getPreferredTypeAlign(
6965 IVD->getType().getTypePtr()) >> 3;
6966 Align = llvm::Log2_32(Align);
6967 ivar.addInt(ObjCTypes.IntTy, Align);
6968 // NOTE. Size of a bitfield does not match gcc's, because of the
6969 // way bitfields are treated special in each. But I am told that
6970 // 'size' for bitfield ivars is ignored by the runtime so it does
6971 // not matter. If it matters, there is enough info to get the
6972 // bitfield right!
6973 ivar.addInt(ObjCTypes.IntTy, Size);
6974 ivar.finishAndAddTo(ivars);
6976 // Return null for empty list.
6977 if (ivars.empty()) {
6978 ivars.abandon();
6979 ivarList.abandon();
6980 return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy);
6983 auto ivarCount = ivars.size();
6984 ivars.finishAndAddTo(ivarList);
6985 ivarList.fillPlaceholderWithInt(ivarCountSlot, ObjCTypes.IntTy, ivarCount);
6987 const char *Prefix = "_OBJC_$_INSTANCE_VARIABLES_";
6988 llvm::GlobalVariable *GV = finishAndCreateGlobal(
6989 ivarList, Prefix + OID->getObjCRuntimeNameAsString(), CGM);
6990 CGM.addCompilerUsedGlobal(GV);
6991 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy);
6994 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef(
6995 const ObjCProtocolDecl *PD) {
6996 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()];
6998 assert(!PD->isNonRuntimeProtocol() &&
6999 "attempting to GetOrEmit a non-runtime protocol");
7000 if (!Entry) {
7001 // We use the initializer as a marker of whether this is a forward
7002 // reference or not. At module finalization we add the empty
7003 // contents for protocols which were referenced but never defined.
7004 llvm::SmallString<64> Protocol;
7005 llvm::raw_svector_ostream(Protocol) << "_OBJC_PROTOCOL_$_"
7006 << PD->getObjCRuntimeNameAsString();
7008 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy,
7009 false, llvm::GlobalValue::ExternalLinkage,
7010 nullptr, Protocol);
7011 if (!CGM.getTriple().isOSBinFormatMachO())
7012 Entry->setComdat(CGM.getModule().getOrInsertComdat(Protocol));
7015 return Entry;
7018 /// GetOrEmitProtocol - Generate the protocol meta-data:
7019 /// @code
7020 /// struct _protocol_t {
7021 /// id isa; // NULL
7022 /// const char * const protocol_name;
7023 /// const struct _protocol_list_t * protocol_list; // super protocols
7024 /// const struct method_list_t * const instance_methods;
7025 /// const struct method_list_t * const class_methods;
7026 /// const struct method_list_t *optionalInstanceMethods;
7027 /// const struct method_list_t *optionalClassMethods;
7028 /// const struct _prop_list_t * properties;
7029 /// const uint32_t size; // sizeof(struct _protocol_t)
7030 /// const uint32_t flags; // = 0
7031 /// const char ** extendedMethodTypes;
7032 /// const char *demangledName;
7033 /// const struct _prop_list_t * class_properties;
7034 /// }
7035 /// @endcode
7038 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol(
7039 const ObjCProtocolDecl *PD) {
7040 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()];
7042 // Early exit if a defining object has already been generated.
7043 if (Entry && Entry->hasInitializer())
7044 return Entry;
7046 // Use the protocol definition, if there is one.
7047 assert(PD->hasDefinition() &&
7048 "emitting protocol metadata without definition");
7049 PD = PD->getDefinition();
7051 auto methodLists = ProtocolMethodLists::get(PD);
7053 ConstantInitBuilder builder(CGM);
7054 auto values = builder.beginStruct(ObjCTypes.ProtocolnfABITy);
7056 // isa is NULL
7057 values.addNullPointer(ObjCTypes.ObjectPtrTy);
7058 values.add(GetClassName(PD->getObjCRuntimeNameAsString()));
7059 values.add(EmitProtocolList("_OBJC_$_PROTOCOL_REFS_"
7060 + PD->getObjCRuntimeNameAsString(),
7061 PD->protocol_begin(),
7062 PD->protocol_end()));
7063 values.add(methodLists.emitMethodList(this, PD,
7064 ProtocolMethodLists::RequiredInstanceMethods));
7065 values.add(methodLists.emitMethodList(this, PD,
7066 ProtocolMethodLists::RequiredClassMethods));
7067 values.add(methodLists.emitMethodList(this, PD,
7068 ProtocolMethodLists::OptionalInstanceMethods));
7069 values.add(methodLists.emitMethodList(this, PD,
7070 ProtocolMethodLists::OptionalClassMethods));
7071 values.add(EmitPropertyList(
7072 "_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(),
7073 nullptr, PD, ObjCTypes, false));
7074 uint32_t Size =
7075 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy);
7076 values.addInt(ObjCTypes.IntTy, Size);
7077 values.addInt(ObjCTypes.IntTy, 0);
7078 values.add(EmitProtocolMethodTypes("_OBJC_$_PROTOCOL_METHOD_TYPES_"
7079 + PD->getObjCRuntimeNameAsString(),
7080 methodLists.emitExtendedTypesArray(this),
7081 ObjCTypes));
7083 // const char *demangledName;
7084 values.addNullPointer(ObjCTypes.Int8PtrTy);
7086 values.add(EmitPropertyList(
7087 "_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(),
7088 nullptr, PD, ObjCTypes, true));
7090 if (Entry) {
7091 // Already created, fix the linkage and update the initializer.
7092 Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
7093 values.finishAndSetAsInitializer(Entry);
7094 } else {
7095 llvm::SmallString<64> symbolName;
7096 llvm::raw_svector_ostream(symbolName)
7097 << "_OBJC_PROTOCOL_$_" << PD->getObjCRuntimeNameAsString();
7099 Entry = values.finishAndCreateGlobal(symbolName, CGM.getPointerAlign(),
7100 /*constant*/ false,
7101 llvm::GlobalValue::WeakAnyLinkage);
7102 if (!CGM.getTriple().isOSBinFormatMachO())
7103 Entry->setComdat(CGM.getModule().getOrInsertComdat(symbolName));
7105 Protocols[PD->getIdentifier()] = Entry;
7107 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility);
7108 CGM.addUsedGlobal(Entry);
7110 // Use this protocol meta-data to build protocol list table in section
7111 // __DATA, __objc_protolist
7112 llvm::SmallString<64> ProtocolRef;
7113 llvm::raw_svector_ostream(ProtocolRef) << "_OBJC_LABEL_PROTOCOL_$_"
7114 << PD->getObjCRuntimeNameAsString();
7116 llvm::GlobalVariable *PTGV =
7117 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy,
7118 false, llvm::GlobalValue::WeakAnyLinkage, Entry,
7119 ProtocolRef);
7120 if (!CGM.getTriple().isOSBinFormatMachO())
7121 PTGV->setComdat(CGM.getModule().getOrInsertComdat(ProtocolRef));
7122 PTGV->setAlignment(
7123 CGM.getDataLayout().getABITypeAlign(ObjCTypes.ProtocolnfABIPtrTy));
7124 PTGV->setSection(GetSectionName("__objc_protolist",
7125 "coalesced,no_dead_strip"));
7126 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
7127 CGM.addUsedGlobal(PTGV);
7128 return Entry;
7131 /// EmitProtocolList - Generate protocol list meta-data:
7132 /// @code
7133 /// struct _protocol_list_t {
7134 /// long protocol_count; // Note, this is 32/64 bit
7135 /// struct _protocol_t[protocol_count];
7136 /// }
7137 /// @endcode
7139 llvm::Constant *
7140 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name,
7141 ObjCProtocolDecl::protocol_iterator begin,
7142 ObjCProtocolDecl::protocol_iterator end) {
7143 // Just return null for empty protocol lists
7144 auto Protocols = GetRuntimeProtocolList(begin, end);
7145 if (Protocols.empty())
7146 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy);
7148 SmallVector<llvm::Constant *, 16> ProtocolRefs;
7149 ProtocolRefs.reserve(Protocols.size());
7151 for (const auto *PD : Protocols)
7152 ProtocolRefs.push_back(GetProtocolRef(PD));
7154 // If all of the protocols in the protocol list are objc_non_runtime_protocol
7155 // just return null
7156 if (ProtocolRefs.size() == 0)
7157 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy);
7159 // FIXME: We shouldn't need to do this lookup here, should we?
7160 SmallString<256> TmpName;
7161 Name.toVector(TmpName);
7162 llvm::GlobalVariable *GV =
7163 CGM.getModule().getGlobalVariable(TmpName.str(), true);
7164 if (GV)
7165 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy);
7167 ConstantInitBuilder builder(CGM);
7168 auto values = builder.beginStruct();
7169 auto countSlot = values.addPlaceholder();
7171 // A null-terminated array of protocols.
7172 auto array = values.beginArray(ObjCTypes.ProtocolnfABIPtrTy);
7173 for (auto const &proto : ProtocolRefs)
7174 array.add(proto);
7175 auto count = array.size();
7176 array.addNullPointer(ObjCTypes.ProtocolnfABIPtrTy);
7178 array.finishAndAddTo(values);
7179 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count);
7181 GV = finishAndCreateGlobal(values, Name, CGM);
7182 CGM.addCompilerUsedGlobal(GV);
7183 return llvm::ConstantExpr::getBitCast(GV,
7184 ObjCTypes.ProtocolListnfABIPtrTy);
7187 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference.
7188 /// This code gen. amounts to generating code for:
7189 /// @code
7190 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar;
7191 /// @encode
7193 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar(
7194 CodeGen::CodeGenFunction &CGF,
7195 QualType ObjectTy,
7196 llvm::Value *BaseValue,
7197 const ObjCIvarDecl *Ivar,
7198 unsigned CVRQualifiers) {
7199 ObjCInterfaceDecl *ID = ObjectTy->castAs<ObjCObjectType>()->getInterface();
7200 llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar);
7201 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
7202 Offset);
7205 llvm::Value *
7206 CGObjCNonFragileABIMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
7207 const ObjCInterfaceDecl *Interface,
7208 const ObjCIvarDecl *Ivar) {
7209 llvm::Value *IvarOffsetValue;
7210 if (isClassLayoutKnownStatically(Interface)) {
7211 IvarOffsetValue = llvm::ConstantInt::get(
7212 ObjCTypes.IvarOffsetVarTy,
7213 ComputeIvarBaseOffset(CGM, Interface->getImplementation(), Ivar));
7214 } else {
7215 llvm::GlobalVariable *GV = ObjCIvarOffsetVariable(Interface, Ivar);
7216 IvarOffsetValue =
7217 CGF.Builder.CreateAlignedLoad(GV->getValueType(), GV,
7218 CGF.getSizeAlign(), "ivar");
7219 if (IsIvarOffsetKnownIdempotent(CGF, Ivar))
7220 cast<llvm::LoadInst>(IvarOffsetValue)
7221 ->setMetadata(llvm::LLVMContext::MD_invariant_load,
7222 llvm::MDNode::get(VMContext, std::nullopt));
7225 // This could be 32bit int or 64bit integer depending on the architecture.
7226 // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value
7227 // as this is what caller always expects.
7228 if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy)
7229 IvarOffsetValue = CGF.Builder.CreateIntCast(
7230 IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv");
7231 return IvarOffsetValue;
7234 static void appendSelectorForMessageRefTable(std::string &buffer,
7235 Selector selector) {
7236 if (selector.isUnarySelector()) {
7237 buffer += selector.getNameForSlot(0);
7238 return;
7241 for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) {
7242 buffer += selector.getNameForSlot(i);
7243 buffer += '_';
7247 /// Emit a "vtable" message send. We emit a weak hidden-visibility
7248 /// struct, initially containing the selector pointer and a pointer to
7249 /// a "fixup" variant of the appropriate objc_msgSend. To call, we
7250 /// load and call the function pointer, passing the address of the
7251 /// struct as the second parameter. The runtime determines whether
7252 /// the selector is currently emitted using vtable dispatch; if so, it
7253 /// substitutes a stub function which simply tail-calls through the
7254 /// appropriate vtable slot, and if not, it substitues a stub function
7255 /// which tail-calls objc_msgSend. Both stubs adjust the selector
7256 /// argument to correctly point to the selector.
7257 RValue
7258 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF,
7259 ReturnValueSlot returnSlot,
7260 QualType resultType,
7261 Selector selector,
7262 llvm::Value *arg0,
7263 QualType arg0Type,
7264 bool isSuper,
7265 const CallArgList &formalArgs,
7266 const ObjCMethodDecl *method) {
7267 // Compute the actual arguments.
7268 CallArgList args;
7270 // First argument: the receiver / super-call structure.
7271 if (!isSuper)
7272 arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy);
7273 args.add(RValue::get(arg0), arg0Type);
7275 // Second argument: a pointer to the message ref structure. Leave
7276 // the actual argument value blank for now.
7277 args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy);
7279 args.insert(args.end(), formalArgs.begin(), formalArgs.end());
7281 MessageSendInfo MSI = getMessageSendInfo(method, resultType, args);
7283 NullReturnState nullReturn;
7285 // Find the function to call and the mangled name for the message
7286 // ref structure. Using a different mangled name wouldn't actually
7287 // be a problem; it would just be a waste.
7289 // The runtime currently never uses vtable dispatch for anything
7290 // except normal, non-super message-sends.
7291 // FIXME: don't use this for that.
7292 llvm::FunctionCallee fn = nullptr;
7293 std::string messageRefName("_");
7294 if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) {
7295 if (isSuper) {
7296 fn = ObjCTypes.getMessageSendSuper2StretFixupFn();
7297 messageRefName += "objc_msgSendSuper2_stret_fixup";
7298 } else {
7299 nullReturn.init(CGF, arg0);
7300 fn = ObjCTypes.getMessageSendStretFixupFn();
7301 messageRefName += "objc_msgSend_stret_fixup";
7303 } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) {
7304 fn = ObjCTypes.getMessageSendFpretFixupFn();
7305 messageRefName += "objc_msgSend_fpret_fixup";
7306 } else {
7307 if (isSuper) {
7308 fn = ObjCTypes.getMessageSendSuper2FixupFn();
7309 messageRefName += "objc_msgSendSuper2_fixup";
7310 } else {
7311 fn = ObjCTypes.getMessageSendFixupFn();
7312 messageRefName += "objc_msgSend_fixup";
7315 assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend");
7316 messageRefName += '_';
7318 // Append the selector name, except use underscores anywhere we
7319 // would have used colons.
7320 appendSelectorForMessageRefTable(messageRefName, selector);
7322 llvm::GlobalVariable *messageRef
7323 = CGM.getModule().getGlobalVariable(messageRefName);
7324 if (!messageRef) {
7325 // Build the message ref structure.
7326 ConstantInitBuilder builder(CGM);
7327 auto values = builder.beginStruct();
7328 values.add(cast<llvm::Constant>(fn.getCallee()));
7329 values.add(GetMethodVarName(selector));
7330 messageRef = values.finishAndCreateGlobal(messageRefName,
7331 CharUnits::fromQuantity(16),
7332 /*constant*/ false,
7333 llvm::GlobalValue::WeakAnyLinkage);
7334 messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility);
7335 messageRef->setSection(GetSectionName("__objc_msgrefs", "coalesced"));
7338 bool requiresnullCheck = false;
7339 if (CGM.getLangOpts().ObjCAutoRefCount && method)
7340 for (const auto *ParamDecl : method->parameters()) {
7341 if (ParamDecl->isDestroyedInCallee()) {
7342 if (!nullReturn.NullBB)
7343 nullReturn.init(CGF, arg0);
7344 requiresnullCheck = true;
7345 break;
7349 Address mref =
7350 Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy),
7351 ObjCTypes.MessageRefTy, CGF.getPointerAlign());
7353 // Update the message ref argument.
7354 args[1].setRValue(RValue::get(mref.getPointer()));
7356 // Load the function to call from the message ref table.
7357 Address calleeAddr = CGF.Builder.CreateStructGEP(mref, 0);
7358 llvm::Value *calleePtr = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn");
7360 calleePtr = CGF.Builder.CreateBitCast(calleePtr, MSI.MessengerType);
7361 CGCallee callee(CGCalleeInfo(), calleePtr);
7363 RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args);
7364 return nullReturn.complete(CGF, returnSlot, result, resultType, formalArgs,
7365 requiresnullCheck ? method : nullptr);
7368 /// Generate code for a message send expression in the nonfragile abi.
7369 CodeGen::RValue
7370 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
7371 ReturnValueSlot Return,
7372 QualType ResultType,
7373 Selector Sel,
7374 llvm::Value *Receiver,
7375 const CallArgList &CallArgs,
7376 const ObjCInterfaceDecl *Class,
7377 const ObjCMethodDecl *Method) {
7378 return isVTableDispatchedSelector(Sel)
7379 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel,
7380 Receiver, CGF.getContext().getObjCIdType(),
7381 false, CallArgs, Method)
7382 : EmitMessageSend(CGF, Return, ResultType, Sel,
7383 Receiver, CGF.getContext().getObjCIdType(),
7384 false, CallArgs, Method, Class, ObjCTypes);
7387 llvm::Constant *
7388 CGObjCNonFragileABIMac::GetClassGlobal(const ObjCInterfaceDecl *ID,
7389 bool metaclass,
7390 ForDefinition_t isForDefinition) {
7391 auto prefix =
7392 (metaclass ? getMetaclassSymbolPrefix() : getClassSymbolPrefix());
7393 return GetClassGlobal((prefix + ID->getObjCRuntimeNameAsString()).str(),
7394 isForDefinition,
7395 ID->isWeakImported(),
7396 !isForDefinition
7397 && CGM.getTriple().isOSBinFormatCOFF()
7398 && ID->hasAttr<DLLImportAttr>());
7401 llvm::Constant *
7402 CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name,
7403 ForDefinition_t IsForDefinition,
7404 bool Weak, bool DLLImport) {
7405 llvm::GlobalValue::LinkageTypes L =
7406 Weak ? llvm::GlobalValue::ExternalWeakLinkage
7407 : llvm::GlobalValue::ExternalLinkage;
7409 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name);
7410 if (!GV || GV->getValueType() != ObjCTypes.ClassnfABITy) {
7411 auto *NewGV = new llvm::GlobalVariable(ObjCTypes.ClassnfABITy, false, L,
7412 nullptr, Name);
7414 if (DLLImport)
7415 NewGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
7417 if (GV) {
7418 GV->replaceAllUsesWith(
7419 llvm::ConstantExpr::getBitCast(NewGV, GV->getType()));
7420 GV->eraseFromParent();
7422 GV = NewGV;
7423 CGM.getModule().insertGlobalVariable(GV);
7426 assert(GV->getLinkage() == L);
7427 return GV;
7430 llvm::Constant *
7431 CGObjCNonFragileABIMac::GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID) {
7432 llvm::Constant *ClassGV = GetClassGlobal(ID, /*metaclass*/ false,
7433 NotForDefinition);
7435 if (!ID->hasAttr<ObjCClassStubAttr>())
7436 return ClassGV;
7438 ClassGV = llvm::ConstantExpr::getPointerCast(ClassGV, ObjCTypes.Int8PtrTy);
7440 // Stub classes are pointer-aligned. Classrefs pointing at stub classes
7441 // must set the least significant bit set to 1.
7442 auto *Idx = llvm::ConstantInt::get(CGM.Int32Ty, 1);
7443 return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, ClassGV, Idx);
7446 llvm::Value *
7447 CGObjCNonFragileABIMac::EmitLoadOfClassRef(CodeGenFunction &CGF,
7448 const ObjCInterfaceDecl *ID,
7449 llvm::GlobalVariable *Entry) {
7450 if (ID && ID->hasAttr<ObjCClassStubAttr>()) {
7451 // Classrefs pointing at Objective-C stub classes must be loaded by calling
7452 // a special runtime function.
7453 return CGF.EmitRuntimeCall(
7454 ObjCTypes.getLoadClassrefFn(), Entry, "load_classref_result");
7457 CharUnits Align = CGF.getPointerAlign();
7458 return CGF.Builder.CreateAlignedLoad(Entry->getValueType(), Entry, Align);
7461 llvm::Value *
7462 CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF,
7463 IdentifierInfo *II,
7464 const ObjCInterfaceDecl *ID) {
7465 llvm::GlobalVariable *&Entry = ClassReferences[II];
7467 if (!Entry) {
7468 llvm::Constant *ClassGV;
7469 if (ID) {
7470 ClassGV = GetClassGlobalForClassRef(ID);
7471 } else {
7472 ClassGV = GetClassGlobal((getClassSymbolPrefix() + II->getName()).str(),
7473 NotForDefinition);
7474 assert(ClassGV->getType() == ObjCTypes.ClassnfABIPtrTy &&
7475 "classref was emitted with the wrong type?");
7478 std::string SectionName =
7479 GetSectionName("__objc_classrefs", "regular,no_dead_strip");
7480 Entry = new llvm::GlobalVariable(
7481 CGM.getModule(), ClassGV->getType(), false,
7482 getLinkageTypeForObjCMetadata(CGM, SectionName), ClassGV,
7483 "OBJC_CLASSLIST_REFERENCES_$_");
7484 Entry->setAlignment(CGF.getPointerAlign().getAsAlign());
7485 if (!ID || !ID->hasAttr<ObjCClassStubAttr>())
7486 Entry->setSection(SectionName);
7488 CGM.addCompilerUsedGlobal(Entry);
7491 return EmitLoadOfClassRef(CGF, ID, Entry);
7494 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF,
7495 const ObjCInterfaceDecl *ID) {
7496 // If the class has the objc_runtime_visible attribute, we need to
7497 // use the Objective-C runtime to get the class.
7498 if (ID->hasAttr<ObjCRuntimeVisibleAttr>())
7499 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes);
7501 return EmitClassRefFromId(CGF, ID->getIdentifier(), ID);
7504 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef(
7505 CodeGenFunction &CGF) {
7506 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool");
7507 return EmitClassRefFromId(CGF, II, nullptr);
7510 llvm::Value *
7511 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF,
7512 const ObjCInterfaceDecl *ID) {
7513 llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()];
7515 if (!Entry) {
7516 llvm::Constant *ClassGV = GetClassGlobalForClassRef(ID);
7517 std::string SectionName =
7518 GetSectionName("__objc_superrefs", "regular,no_dead_strip");
7519 Entry = new llvm::GlobalVariable(CGM.getModule(), ClassGV->getType(), false,
7520 llvm::GlobalValue::PrivateLinkage, ClassGV,
7521 "OBJC_CLASSLIST_SUP_REFS_$_");
7522 Entry->setAlignment(CGF.getPointerAlign().getAsAlign());
7523 Entry->setSection(SectionName);
7524 CGM.addCompilerUsedGlobal(Entry);
7527 return EmitLoadOfClassRef(CGF, ID, Entry);
7530 /// EmitMetaClassRef - Return a Value * of the address of _class_t
7531 /// meta-data
7533 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF,
7534 const ObjCInterfaceDecl *ID,
7535 bool Weak) {
7536 CharUnits Align = CGF.getPointerAlign();
7537 llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()];
7538 if (!Entry) {
7539 auto MetaClassGV = GetClassGlobal(ID, /*metaclass*/ true, NotForDefinition);
7540 std::string SectionName =
7541 GetSectionName("__objc_superrefs", "regular,no_dead_strip");
7542 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy,
7543 false, llvm::GlobalValue::PrivateLinkage,
7544 MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_");
7545 Entry->setAlignment(Align.getAsAlign());
7546 Entry->setSection(SectionName);
7547 CGM.addCompilerUsedGlobal(Entry);
7550 return CGF.Builder.CreateAlignedLoad(ObjCTypes.ClassnfABIPtrTy, Entry, Align);
7553 /// GetClass - Return a reference to the class for the given interface
7554 /// decl.
7555 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF,
7556 const ObjCInterfaceDecl *ID) {
7557 if (ID->isWeakImported()) {
7558 auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition);
7559 (void)ClassGV;
7560 assert(!isa<llvm::GlobalVariable>(ClassGV) ||
7561 cast<llvm::GlobalVariable>(ClassGV)->hasExternalWeakLinkage());
7564 return EmitClassRef(CGF, ID);
7567 /// Generates a message send where the super is the receiver. This is
7568 /// a message send to self with special delivery semantics indicating
7569 /// which class's method should be called.
7570 CodeGen::RValue
7571 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
7572 ReturnValueSlot Return,
7573 QualType ResultType,
7574 Selector Sel,
7575 const ObjCInterfaceDecl *Class,
7576 bool isCategoryImpl,
7577 llvm::Value *Receiver,
7578 bool IsClassMessage,
7579 const CodeGen::CallArgList &CallArgs,
7580 const ObjCMethodDecl *Method) {
7581 // ...
7582 // Create and init a super structure; this is a (receiver, class)
7583 // pair we will pass to objc_msgSendSuper.
7584 Address ObjCSuper =
7585 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(),
7586 "objc_super");
7588 llvm::Value *ReceiverAsObject =
7589 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy);
7590 CGF.Builder.CreateStore(ReceiverAsObject,
7591 CGF.Builder.CreateStructGEP(ObjCSuper, 0));
7593 // If this is a class message the metaclass is passed as the target.
7594 llvm::Value *Target;
7595 if (IsClassMessage)
7596 Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported());
7597 else
7598 Target = EmitSuperClassRef(CGF, Class);
7600 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and
7601 // ObjCTypes types.
7602 llvm::Type *ClassTy =
7603 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType());
7604 Target = CGF.Builder.CreateBitCast(Target, ClassTy);
7605 CGF.Builder.CreateStore(Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1));
7607 return (isVTableDispatchedSelector(Sel))
7608 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel,
7609 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy,
7610 true, CallArgs, Method)
7611 : EmitMessageSend(CGF, Return, ResultType, Sel,
7612 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy,
7613 true, CallArgs, Method, Class, ObjCTypes);
7616 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF,
7617 Selector Sel) {
7618 Address Addr = EmitSelectorAddr(Sel);
7620 llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr);
7621 LI->setMetadata(llvm::LLVMContext::MD_invariant_load,
7622 llvm::MDNode::get(VMContext, std::nullopt));
7623 return LI;
7626 Address CGObjCNonFragileABIMac::EmitSelectorAddr(Selector Sel) {
7627 llvm::GlobalVariable *&Entry = SelectorReferences[Sel];
7628 CharUnits Align = CGM.getPointerAlign();
7629 if (!Entry) {
7630 llvm::Constant *Casted =
7631 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel),
7632 ObjCTypes.SelectorPtrTy);
7633 std::string SectionName =
7634 GetSectionName("__objc_selrefs", "literal_pointers,no_dead_strip");
7635 Entry = new llvm::GlobalVariable(
7636 CGM.getModule(), ObjCTypes.SelectorPtrTy, false,
7637 getLinkageTypeForObjCMetadata(CGM, SectionName), Casted,
7638 "OBJC_SELECTOR_REFERENCES_");
7639 Entry->setExternallyInitialized(true);
7640 Entry->setSection(SectionName);
7641 Entry->setAlignment(Align.getAsAlign());
7642 CGM.addCompilerUsedGlobal(Entry);
7645 return Address(Entry, ObjCTypes.SelectorPtrTy, Align);
7648 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object.
7649 /// objc_assign_ivar (id src, id *dst, ptrdiff_t)
7651 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
7652 llvm::Value *src,
7653 Address dst,
7654 llvm::Value *ivarOffset) {
7655 llvm::Type * SrcTy = src->getType();
7656 if (!isa<llvm::PointerType>(SrcTy)) {
7657 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7658 assert(Size <= 8 && "does not support size > 8");
7659 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7660 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7661 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7663 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7664 llvm::Value *dstVal =
7665 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy);
7666 llvm::Value *args[] = {src, dstVal, ivarOffset};
7667 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args);
7670 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object.
7671 /// objc_assign_strongCast (id src, id *dst)
7673 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign(
7674 CodeGen::CodeGenFunction &CGF,
7675 llvm::Value *src, Address dst) {
7676 llvm::Type * SrcTy = src->getType();
7677 if (!isa<llvm::PointerType>(SrcTy)) {
7678 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7679 assert(Size <= 8 && "does not support size > 8");
7680 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7681 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7682 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7684 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7685 llvm::Value *dstVal =
7686 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy);
7687 llvm::Value *args[] = {src, dstVal};
7688 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(),
7689 args, "weakassign");
7692 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable(
7693 CodeGen::CodeGenFunction &CGF,
7694 Address DestPtr,
7695 Address SrcPtr,
7696 llvm::Value *Size) {
7697 SrcPtr = CGF.Builder.CreateElementBitCast(SrcPtr, CGF.Int8Ty);
7698 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
7699 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size };
7700 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args);
7703 /// EmitObjCWeakRead - Code gen for loading value of a __weak
7704 /// object: objc_read_weak (id *src)
7706 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead(
7707 CodeGen::CodeGenFunction &CGF,
7708 Address AddrWeakObj) {
7709 llvm::Type *DestTy = AddrWeakObj.getElementType();
7710 llvm::Value *AddrWeakObjVal = CGF.Builder.CreateBitCast(
7711 AddrWeakObj.getPointer(), ObjCTypes.PtrObjectPtrTy);
7712 llvm::Value *read_weak =
7713 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(),
7714 AddrWeakObjVal, "weakread");
7715 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy);
7716 return read_weak;
7719 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object.
7720 /// objc_assign_weak (id src, id *dst)
7722 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
7723 llvm::Value *src, Address dst) {
7724 llvm::Type * SrcTy = src->getType();
7725 if (!isa<llvm::PointerType>(SrcTy)) {
7726 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7727 assert(Size <= 8 && "does not support size > 8");
7728 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7729 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7730 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7732 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7733 llvm::Value *dstVal =
7734 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy);
7735 llvm::Value *args[] = {src, dstVal};
7736 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(),
7737 args, "weakassign");
7740 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object.
7741 /// objc_assign_global (id src, id *dst)
7743 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
7744 llvm::Value *src, Address dst,
7745 bool threadlocal) {
7746 llvm::Type * SrcTy = src->getType();
7747 if (!isa<llvm::PointerType>(SrcTy)) {
7748 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7749 assert(Size <= 8 && "does not support size > 8");
7750 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7751 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7752 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7754 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7755 llvm::Value *dstVal =
7756 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy);
7757 llvm::Value *args[] = {src, dstVal};
7758 if (!threadlocal)
7759 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(),
7760 args, "globalassign");
7761 else
7762 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(),
7763 args, "threadlocalassign");
7766 void
7767 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
7768 const ObjCAtSynchronizedStmt &S) {
7769 EmitAtSynchronizedStmt(CGF, S, ObjCTypes.getSyncEnterFn(),
7770 ObjCTypes.getSyncExitFn());
7773 llvm::Constant *
7774 CGObjCNonFragileABIMac::GetEHType(QualType T) {
7775 // There's a particular fixed type info for 'id'.
7776 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
7777 auto *IDEHType = CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id");
7778 if (!IDEHType) {
7779 IDEHType =
7780 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false,
7781 llvm::GlobalValue::ExternalLinkage, nullptr,
7782 "OBJC_EHTYPE_id");
7783 if (CGM.getTriple().isOSBinFormatCOFF())
7784 IDEHType->setDLLStorageClass(getStorage(CGM, "OBJC_EHTYPE_id"));
7786 return IDEHType;
7789 // All other types should be Objective-C interface pointer types.
7790 const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
7791 assert(PT && "Invalid @catch type.");
7793 const ObjCInterfaceType *IT = PT->getInterfaceType();
7794 assert(IT && "Invalid @catch type.");
7796 return GetInterfaceEHType(IT->getDecl(), NotForDefinition);
7799 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF,
7800 const ObjCAtTryStmt &S) {
7801 EmitTryCatchStmt(CGF, S, ObjCTypes.getObjCBeginCatchFn(),
7802 ObjCTypes.getObjCEndCatchFn(),
7803 ObjCTypes.getExceptionRethrowFn());
7806 /// EmitThrowStmt - Generate code for a throw statement.
7807 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF,
7808 const ObjCAtThrowStmt &S,
7809 bool ClearInsertionPoint) {
7810 if (const Expr *ThrowExpr = S.getThrowExpr()) {
7811 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
7812 Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy);
7813 llvm::CallBase *Call =
7814 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception);
7815 Call->setDoesNotReturn();
7816 } else {
7817 llvm::CallBase *Call =
7818 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn());
7819 Call->setDoesNotReturn();
7822 CGF.Builder.CreateUnreachable();
7823 if (ClearInsertionPoint)
7824 CGF.Builder.ClearInsertionPoint();
7827 llvm::Constant *
7828 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID,
7829 ForDefinition_t IsForDefinition) {
7830 llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()];
7831 StringRef ClassName = ID->getObjCRuntimeNameAsString();
7833 // If we don't need a definition, return the entry if found or check
7834 // if we use an external reference.
7835 if (!IsForDefinition) {
7836 if (Entry)
7837 return Entry;
7839 // If this type (or a super class) has the __objc_exception__
7840 // attribute, emit an external reference.
7841 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) {
7842 std::string EHTypeName = ("OBJC_EHTYPE_$_" + ClassName).str();
7843 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy,
7844 false, llvm::GlobalValue::ExternalLinkage,
7845 nullptr, EHTypeName);
7846 CGM.setGVProperties(Entry, ID);
7847 return Entry;
7851 // Otherwise we need to either make a new entry or fill in the initializer.
7852 assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition");
7854 std::string VTableName = "objc_ehtype_vtable";
7855 auto *VTableGV = CGM.getModule().getGlobalVariable(VTableName);
7856 if (!VTableGV) {
7857 VTableGV =
7858 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, false,
7859 llvm::GlobalValue::ExternalLinkage, nullptr,
7860 VTableName);
7861 if (CGM.getTriple().isOSBinFormatCOFF())
7862 VTableGV->setDLLStorageClass(getStorage(CGM, VTableName));
7865 llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2);
7866 ConstantInitBuilder builder(CGM);
7867 auto values = builder.beginStruct(ObjCTypes.EHTypeTy);
7868 values.add(
7869 llvm::ConstantExpr::getInBoundsGetElementPtr(VTableGV->getValueType(),
7870 VTableGV, VTableIdx));
7871 values.add(GetClassName(ClassName));
7872 values.add(GetClassGlobal(ID, /*metaclass*/ false, NotForDefinition));
7874 llvm::GlobalValue::LinkageTypes L = IsForDefinition
7875 ? llvm::GlobalValue::ExternalLinkage
7876 : llvm::GlobalValue::WeakAnyLinkage;
7877 if (Entry) {
7878 values.finishAndSetAsInitializer(Entry);
7879 Entry->setAlignment(CGM.getPointerAlign().getAsAlign());
7880 } else {
7881 Entry = values.finishAndCreateGlobal("OBJC_EHTYPE_$_" + ClassName,
7882 CGM.getPointerAlign(),
7883 /*constant*/ false,
7885 if (hasObjCExceptionAttribute(CGM.getContext(), ID))
7886 CGM.setGVProperties(Entry, ID);
7888 assert(Entry->getLinkage() == L);
7890 if (!CGM.getTriple().isOSBinFormatCOFF())
7891 if (ID->getVisibility() == HiddenVisibility)
7892 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility);
7894 if (IsForDefinition)
7895 if (CGM.getTriple().isOSBinFormatMachO())
7896 Entry->setSection("__DATA,__objc_const");
7898 return Entry;
7901 /* *** */
7903 CodeGen::CGObjCRuntime *
7904 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) {
7905 switch (CGM.getLangOpts().ObjCRuntime.getKind()) {
7906 case ObjCRuntime::FragileMacOSX:
7907 return new CGObjCMac(CGM);
7909 case ObjCRuntime::MacOSX:
7910 case ObjCRuntime::iOS:
7911 case ObjCRuntime::WatchOS:
7912 return new CGObjCNonFragileABIMac(CGM);
7914 case ObjCRuntime::GNUstep:
7915 case ObjCRuntime::GCC:
7916 case ObjCRuntime::ObjFW:
7917 llvm_unreachable("these runtimes are not Mac runtimes");
7919 llvm_unreachable("bad runtime");