[AMDGPU][AsmParser][NFC] Get rid of custom default operand handlers.
[llvm-project.git] / clang / lib / CodeGen / CodeGenTypes.h
blobe76fda95513f6ca8d1b901c720d3e4c20ad1a897
1 //===--- CodeGenTypes.h - Type translation for LLVM CodeGen -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the code that handles AST -> LLVM type lowering.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H
16 #include "CGCall.h"
17 #include "clang/Basic/ABI.h"
18 #include "clang/CodeGen/CGFunctionInfo.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/IR/Module.h"
22 namespace llvm {
23 class FunctionType;
24 class DataLayout;
25 class Type;
26 class LLVMContext;
27 class StructType;
30 namespace clang {
31 class ASTContext;
32 template <typename> class CanQual;
33 class CXXConstructorDecl;
34 class CXXMethodDecl;
35 class CodeGenOptions;
36 class FunctionProtoType;
37 class QualType;
38 class RecordDecl;
39 class TagDecl;
40 class TargetInfo;
41 class Type;
42 typedef CanQual<Type> CanQualType;
43 class GlobalDecl;
45 namespace CodeGen {
46 class ABIInfo;
47 class CGCXXABI;
48 class CGRecordLayout;
49 class CodeGenModule;
50 class RequiredArgs;
52 /// This class organizes the cross-module state that is used while lowering
53 /// AST types to LLVM types.
54 class CodeGenTypes {
55 CodeGenModule &CGM;
56 // Some of this stuff should probably be left on the CGM.
57 ASTContext &Context;
58 llvm::Module &TheModule;
59 const TargetInfo &Target;
60 CGCXXABI &TheCXXABI;
62 // This should not be moved earlier, since its initialization depends on some
63 // of the previous reference members being already initialized
64 const ABIInfo &TheABIInfo;
66 /// The opaque type map for Objective-C interfaces. All direct
67 /// manipulation is done by the runtime interfaces, which are
68 /// responsible for coercing to the appropriate type; these opaque
69 /// types are never refined.
70 llvm::DenseMap<const ObjCInterfaceType*, llvm::Type *> InterfaceTypes;
72 /// Maps clang struct type with corresponding record layout info.
73 llvm::DenseMap<const Type*, std::unique_ptr<CGRecordLayout>> CGRecordLayouts;
75 /// Contains the LLVM IR type for any converted RecordDecl.
76 llvm::DenseMap<const Type*, llvm::StructType *> RecordDeclTypes;
78 /// Hold memoized CGFunctionInfo results.
79 llvm::FoldingSet<CGFunctionInfo> FunctionInfos{FunctionInfosLog2InitSize};
81 /// This set keeps track of records that we're currently converting
82 /// to an IR type. For example, when converting:
83 /// struct A { struct B { int x; } } when processing 'x', the 'A' and 'B'
84 /// types will be in this set.
85 llvm::SmallPtrSet<const Type*, 4> RecordsBeingLaidOut;
87 llvm::SmallPtrSet<const CGFunctionInfo*, 4> FunctionsBeingProcessed;
89 /// True if we didn't layout a function due to a being inside
90 /// a recursive struct conversion, set this to true.
91 bool SkippedLayout;
93 SmallVector<const RecordDecl *, 8> DeferredRecords;
95 /// This map keeps cache of llvm::Types and maps clang::Type to
96 /// corresponding llvm::Type.
97 llvm::DenseMap<const Type *, llvm::Type *> TypeCache;
99 llvm::DenseMap<const Type *, llvm::Type *> RecordsWithOpaqueMemberPointers;
101 static constexpr unsigned FunctionInfosLog2InitSize = 9;
102 /// Helper for ConvertType.
103 llvm::Type *ConvertFunctionTypeInternal(QualType FT);
105 public:
106 CodeGenTypes(CodeGenModule &cgm);
107 ~CodeGenTypes();
109 const llvm::DataLayout &getDataLayout() const {
110 return TheModule.getDataLayout();
112 CodeGenModule &getCGM() const { return CGM; }
113 ASTContext &getContext() const { return Context; }
114 const ABIInfo &getABIInfo() const { return TheABIInfo; }
115 const TargetInfo &getTarget() const { return Target; }
116 CGCXXABI &getCXXABI() const { return TheCXXABI; }
117 llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); }
118 const CodeGenOptions &getCodeGenOpts() const;
120 /// Convert clang calling convention to LLVM callilng convention.
121 unsigned ClangCallConvToLLVMCallConv(CallingConv CC);
123 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
124 /// qualification.
125 CanQualType DeriveThisType(const CXXRecordDecl *RD, const CXXMethodDecl *MD);
127 /// ConvertType - Convert type T into a llvm::Type.
128 llvm::Type *ConvertType(QualType T);
130 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
131 /// ConvertType in that it is used to convert to the memory representation for
132 /// a type. For example, the scalar representation for _Bool is i1, but the
133 /// memory representation is usually i8 or i32, depending on the target.
134 llvm::Type *ConvertTypeForMem(QualType T, bool ForBitField = false);
136 /// GetFunctionType - Get the LLVM function type for \arg Info.
137 llvm::FunctionType *GetFunctionType(const CGFunctionInfo &Info);
139 llvm::FunctionType *GetFunctionType(GlobalDecl GD);
141 /// isFuncTypeConvertible - Utility to check whether a function type can
142 /// be converted to an LLVM type (i.e. doesn't depend on an incomplete tag
143 /// type).
144 bool isFuncTypeConvertible(const FunctionType *FT);
145 bool isFuncParamTypeConvertible(QualType Ty);
147 /// Determine if a C++ inheriting constructor should have parameters matching
148 /// those of its inherited constructor.
149 bool inheritingCtorHasParams(const InheritedConstructor &Inherited,
150 CXXCtorType Type);
152 /// GetFunctionTypeForVTable - Get the LLVM function type for use in a vtable,
153 /// given a CXXMethodDecl. If the method to has an incomplete return type,
154 /// and/or incomplete argument types, this will return the opaque type.
155 llvm::Type *GetFunctionTypeForVTable(GlobalDecl GD);
157 const CGRecordLayout &getCGRecordLayout(const RecordDecl*);
159 /// UpdateCompletedType - When we find the full definition for a TagDecl,
160 /// replace the 'opaque' type we previously made for it if applicable.
161 void UpdateCompletedType(const TagDecl *TD);
163 /// Remove stale types from the type cache when an inheritance model
164 /// gets assigned to a class.
165 void RefreshTypeCacheForClass(const CXXRecordDecl *RD);
167 // The arrangement methods are split into three families:
168 // - those meant to drive the signature and prologue/epilogue
169 // of a function declaration or definition,
170 // - those meant for the computation of the LLVM type for an abstract
171 // appearance of a function, and
172 // - those meant for performing the IR-generation of a call.
173 // They differ mainly in how they deal with optional (i.e. variadic)
174 // arguments, as well as unprototyped functions.
176 // Key points:
177 // - The CGFunctionInfo for emitting a specific call site must include
178 // entries for the optional arguments.
179 // - The function type used at the call site must reflect the formal
180 // signature of the declaration being called, or else the call will
181 // go awry.
182 // - For the most part, unprototyped functions are called by casting to
183 // a formal signature inferred from the specific argument types used
184 // at the call-site. However, some targets (e.g. x86-64) screw with
185 // this for compatibility reasons.
187 const CGFunctionInfo &arrangeGlobalDeclaration(GlobalDecl GD);
189 /// Given a function info for a declaration, return the function info
190 /// for a call with the given arguments.
192 /// Often this will be able to simply return the declaration info.
193 const CGFunctionInfo &arrangeCall(const CGFunctionInfo &declFI,
194 const CallArgList &args);
196 /// Free functions are functions that are compatible with an ordinary
197 /// C function pointer type.
198 const CGFunctionInfo &arrangeFunctionDeclaration(const FunctionDecl *FD);
199 const CGFunctionInfo &arrangeFreeFunctionCall(const CallArgList &Args,
200 const FunctionType *Ty,
201 bool ChainCall);
202 const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionProtoType> Ty);
203 const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionNoProtoType> Ty);
205 /// A nullary function is a freestanding function of type 'void ()'.
206 /// This method works for both calls and declarations.
207 const CGFunctionInfo &arrangeNullaryFunction();
209 /// A builtin function is a freestanding function using the default
210 /// C conventions.
211 const CGFunctionInfo &
212 arrangeBuiltinFunctionDeclaration(QualType resultType,
213 const FunctionArgList &args);
214 const CGFunctionInfo &
215 arrangeBuiltinFunctionDeclaration(CanQualType resultType,
216 ArrayRef<CanQualType> argTypes);
217 const CGFunctionInfo &arrangeBuiltinFunctionCall(QualType resultType,
218 const CallArgList &args);
220 /// Objective-C methods are C functions with some implicit parameters.
221 const CGFunctionInfo &arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD);
222 const CGFunctionInfo &arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
223 QualType receiverType);
224 const CGFunctionInfo &arrangeUnprototypedObjCMessageSend(
225 QualType returnType,
226 const CallArgList &args);
228 /// Block invocation functions are C functions with an implicit parameter.
229 const CGFunctionInfo &arrangeBlockFunctionDeclaration(
230 const FunctionProtoType *type,
231 const FunctionArgList &args);
232 const CGFunctionInfo &arrangeBlockFunctionCall(const CallArgList &args,
233 const FunctionType *type);
235 /// C++ methods have some special rules and also have implicit parameters.
236 const CGFunctionInfo &arrangeCXXMethodDeclaration(const CXXMethodDecl *MD);
237 const CGFunctionInfo &arrangeCXXStructorDeclaration(GlobalDecl GD);
238 const CGFunctionInfo &arrangeCXXConstructorCall(const CallArgList &Args,
239 const CXXConstructorDecl *D,
240 CXXCtorType CtorKind,
241 unsigned ExtraPrefixArgs,
242 unsigned ExtraSuffixArgs,
243 bool PassProtoArgs = true);
245 const CGFunctionInfo &arrangeCXXMethodCall(const CallArgList &args,
246 const FunctionProtoType *type,
247 RequiredArgs required,
248 unsigned numPrefixArgs);
249 const CGFunctionInfo &
250 arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD);
251 const CGFunctionInfo &arrangeMSCtorClosure(const CXXConstructorDecl *CD,
252 CXXCtorType CT);
253 const CGFunctionInfo &arrangeCXXMethodType(const CXXRecordDecl *RD,
254 const FunctionProtoType *FTP,
255 const CXXMethodDecl *MD);
257 /// "Arrange" the LLVM information for a call or type with the given
258 /// signature. This is largely an internal method; other clients
259 /// should use one of the above routines, which ultimately defer to
260 /// this.
262 /// \param argTypes - must all actually be canonical as params
263 const CGFunctionInfo &arrangeLLVMFunctionInfo(CanQualType returnType,
264 bool instanceMethod,
265 bool chainCall,
266 ArrayRef<CanQualType> argTypes,
267 FunctionType::ExtInfo info,
268 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
269 RequiredArgs args);
271 /// Compute a new LLVM record layout object for the given record.
272 std::unique_ptr<CGRecordLayout> ComputeRecordLayout(const RecordDecl *D,
273 llvm::StructType *Ty);
275 /// addRecordTypeName - Compute a name from the given record decl with an
276 /// optional suffix and name the given LLVM type using it.
277 void addRecordTypeName(const RecordDecl *RD, llvm::StructType *Ty,
278 StringRef suffix);
281 public: // These are internal details of CGT that shouldn't be used externally.
282 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
283 llvm::StructType *ConvertRecordDeclType(const RecordDecl *TD);
285 /// getExpandedTypes - Expand the type \arg Ty into the LLVM
286 /// argument types it would be passed as. See ABIArgInfo::Expand.
287 void getExpandedTypes(QualType Ty,
288 SmallVectorImpl<llvm::Type *>::iterator &TI);
290 /// IsZeroInitializable - Return whether a type can be
291 /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
292 bool isZeroInitializable(QualType T);
294 /// Check if the pointer type can be zero-initialized (in the C++ sense)
295 /// with an LLVM zeroinitializer.
296 bool isPointerZeroInitializable(QualType T);
298 /// IsZeroInitializable - Return whether a record type can be
299 /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
300 bool isZeroInitializable(const RecordDecl *RD);
302 bool isRecordLayoutComplete(const Type *Ty) const;
303 bool noRecordsBeingLaidOut() const {
304 return RecordsBeingLaidOut.empty();
306 bool isRecordBeingLaidOut(const Type *Ty) const {
307 return RecordsBeingLaidOut.count(Ty);
309 unsigned getTargetAddressSpace(QualType T) const;
312 } // end namespace CodeGen
313 } // end namespace clang
315 #endif