1 //===--- PatternInit.cpp - Pattern Initialization -------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "PatternInit.h"
10 #include "CodeGenModule.h"
11 #include "clang/Basic/TargetInfo.h"
12 #include "llvm/IR/Constant.h"
13 #include "llvm/IR/Type.h"
15 llvm::Constant
*clang::CodeGen::initializationPatternFor(CodeGenModule
&CGM
,
17 // The following value is a guaranteed unmappable pointer value and has a
18 // repeated byte-pattern which makes it easier to synthesize. We use it for
19 // pointers as well as integers so that aggregates are likely to be
20 // initialized with this repeated value.
21 // For 32-bit platforms it's a bit trickier because, across systems, only the
22 // zero page can reasonably be expected to be unmapped. We use max 0xFFFFFFFF
23 // assuming that memory access will overlap into zero page.
24 const uint64_t IntValue
=
25 CGM
.getContext().getTargetInfo().getMaxPointerWidth() < 64
26 ? 0xFFFFFFFFFFFFFFFFull
27 : 0xAAAAAAAAAAAAAAAAull
;
28 // Floating-point values are initialized as NaNs because they propagate. Using
29 // a repeated byte pattern means that it will be easier to initialize
30 // all-floating-point aggregates and arrays with memset. Further, aggregates
31 // which mix integral and a few floats might also initialize with memset
32 // followed by a handful of stores for the floats. Using fairly unique NaNs
33 // also means they'll be easier to distinguish in a crash.
34 constexpr bool NegativeNaN
= true;
35 constexpr uint64_t NaNPayload
= 0xFFFFFFFFFFFFFFFFull
;
36 if (Ty
->isIntOrIntVectorTy()) {
38 cast
<llvm::IntegerType
>(Ty
->getScalarType())->getBitWidth();
40 return llvm::ConstantInt::get(Ty
, IntValue
);
41 return llvm::ConstantInt::get(
42 Ty
, llvm::APInt::getSplat(BitWidth
, llvm::APInt(64, IntValue
)));
44 if (Ty
->isPtrOrPtrVectorTy()) {
45 auto *PtrTy
= cast
<llvm::PointerType
>(Ty
->getScalarType());
47 CGM
.getDataLayout().getPointerSizeInBits(PtrTy
->getAddressSpace());
49 llvm_unreachable("pattern initialization of unsupported pointer width");
50 llvm::Type
*IntTy
= llvm::IntegerType::get(CGM
.getLLVMContext(), PtrWidth
);
51 auto *Int
= llvm::ConstantInt::get(IntTy
, IntValue
);
52 return llvm::ConstantExpr::getIntToPtr(Int
, PtrTy
);
54 if (Ty
->isFPOrFPVectorTy()) {
55 unsigned BitWidth
= llvm::APFloat::semanticsSizeInBits(
56 Ty
->getScalarType()->getFltSemantics());
57 llvm::APInt
Payload(64, NaNPayload
);
59 Payload
= llvm::APInt::getSplat(BitWidth
, Payload
);
60 return llvm::ConstantFP::getQNaN(Ty
, NegativeNaN
, &Payload
);
62 if (Ty
->isArrayTy()) {
63 // Note: this doesn't touch tail padding (at the end of an object, before
64 // the next array object). It is instead handled by replaceUndef.
65 auto *ArrTy
= cast
<llvm::ArrayType
>(Ty
);
66 llvm::SmallVector
<llvm::Constant
*, 8> Element(
67 ArrTy
->getNumElements(),
68 initializationPatternFor(CGM
, ArrTy
->getElementType()));
69 return llvm::ConstantArray::get(ArrTy
, Element
);
72 // Note: this doesn't touch struct padding. It will initialize as much union
73 // padding as is required for the largest type in the union. Padding is
74 // instead handled by replaceUndef. Stores to structs with volatile members
75 // don't have a volatile qualifier when initialized according to C++. This is
76 // fine because stack-based volatiles don't really have volatile semantics
77 // anyways, and the initialization shouldn't be observable.
78 auto *StructTy
= cast
<llvm::StructType
>(Ty
);
79 llvm::SmallVector
<llvm::Constant
*, 8> Struct(StructTy
->getNumElements());
80 for (unsigned El
= 0; El
!= Struct
.size(); ++El
)
81 Struct
[El
] = initializationPatternFor(CGM
, StructTy
->getElementType(El
));
82 return llvm::ConstantStruct::get(StructTy
, Struct
);