[AMDGPU][AsmParser][NFC] Get rid of custom default operand handlers.
[llvm-project.git] / clang / lib / Headers / __clang_cuda_intrinsics.h
blob3c3948863c1d45380fcd1671c7afdb8845cb7591
1 /*===--- __clang_cuda_intrinsics.h - Device-side CUDA intrinsic wrappers ---===
3 * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 * See https://llvm.org/LICENSE.txt for license information.
5 * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 *===-----------------------------------------------------------------------===
8 */
9 #ifndef __CLANG_CUDA_INTRINSICS_H__
10 #define __CLANG_CUDA_INTRINSICS_H__
11 #ifndef __CUDA__
12 #error "This file is for CUDA compilation only."
13 #endif
15 // sm_30 intrinsics: __shfl_{up,down,xor}.
17 #define __SM_30_INTRINSICS_H__
18 #define __SM_30_INTRINSICS_HPP__
20 #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300
22 #pragma push_macro("__MAKE_SHUFFLES")
23 #define __MAKE_SHUFFLES(__FnName, __IntIntrinsic, __FloatIntrinsic, __Mask, \
24 __Type) \
25 inline __device__ int __FnName(int __val, __Type __offset, \
26 int __width = warpSize) { \
27 return __IntIntrinsic(__val, __offset, \
28 ((warpSize - __width) << 8) | (__Mask)); \
29 } \
30 inline __device__ float __FnName(float __val, __Type __offset, \
31 int __width = warpSize) { \
32 return __FloatIntrinsic(__val, __offset, \
33 ((warpSize - __width) << 8) | (__Mask)); \
34 } \
35 inline __device__ unsigned int __FnName(unsigned int __val, __Type __offset, \
36 int __width = warpSize) { \
37 return static_cast<unsigned int>( \
38 ::__FnName(static_cast<int>(__val), __offset, __width)); \
39 } \
40 inline __device__ long long __FnName(long long __val, __Type __offset, \
41 int __width = warpSize) { \
42 struct __Bits { \
43 int __a, __b; \
44 }; \
45 _Static_assert(sizeof(__val) == sizeof(__Bits)); \
46 _Static_assert(sizeof(__Bits) == 2 * sizeof(int)); \
47 __Bits __tmp; \
48 memcpy(&__tmp, &__val, sizeof(__val)); \
49 __tmp.__a = ::__FnName(__tmp.__a, __offset, __width); \
50 __tmp.__b = ::__FnName(__tmp.__b, __offset, __width); \
51 long long __ret; \
52 memcpy(&__ret, &__tmp, sizeof(__tmp)); \
53 return __ret; \
54 } \
55 inline __device__ long __FnName(long __val, __Type __offset, \
56 int __width = warpSize) { \
57 _Static_assert(sizeof(long) == sizeof(long long) || \
58 sizeof(long) == sizeof(int)); \
59 if (sizeof(long) == sizeof(long long)) { \
60 return static_cast<long>( \
61 ::__FnName(static_cast<long long>(__val), __offset, __width)); \
62 } else if (sizeof(long) == sizeof(int)) { \
63 return static_cast<long>( \
64 ::__FnName(static_cast<int>(__val), __offset, __width)); \
65 } \
66 } \
67 inline __device__ unsigned long __FnName( \
68 unsigned long __val, __Type __offset, int __width = warpSize) { \
69 return static_cast<unsigned long>( \
70 ::__FnName(static_cast<long>(__val), __offset, __width)); \
71 } \
72 inline __device__ unsigned long long __FnName( \
73 unsigned long long __val, __Type __offset, int __width = warpSize) { \
74 return static_cast<unsigned long long>( \
75 ::__FnName(static_cast<long long>(__val), __offset, __width)); \
76 } \
77 inline __device__ double __FnName(double __val, __Type __offset, \
78 int __width = warpSize) { \
79 long long __tmp; \
80 _Static_assert(sizeof(__tmp) == sizeof(__val)); \
81 memcpy(&__tmp, &__val, sizeof(__val)); \
82 __tmp = ::__FnName(__tmp, __offset, __width); \
83 double __ret; \
84 memcpy(&__ret, &__tmp, sizeof(__ret)); \
85 return __ret; \
88 __MAKE_SHUFFLES(__shfl, __nvvm_shfl_idx_i32, __nvvm_shfl_idx_f32, 0x1f, int);
89 // We use 0 rather than 31 as our mask, because shfl.up applies to lanes >=
90 // maxLane.
91 __MAKE_SHUFFLES(__shfl_up, __nvvm_shfl_up_i32, __nvvm_shfl_up_f32, 0,
92 unsigned int);
93 __MAKE_SHUFFLES(__shfl_down, __nvvm_shfl_down_i32, __nvvm_shfl_down_f32, 0x1f,
94 unsigned int);
95 __MAKE_SHUFFLES(__shfl_xor, __nvvm_shfl_bfly_i32, __nvvm_shfl_bfly_f32, 0x1f,
96 int);
97 #pragma pop_macro("__MAKE_SHUFFLES")
99 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300
101 #if CUDA_VERSION >= 9000
102 #if (!defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300)
103 // __shfl_sync_* variants available in CUDA-9
104 #pragma push_macro("__MAKE_SYNC_SHUFFLES")
105 #define __MAKE_SYNC_SHUFFLES(__FnName, __IntIntrinsic, __FloatIntrinsic, \
106 __Mask, __Type) \
107 inline __device__ int __FnName(unsigned int __mask, int __val, \
108 __Type __offset, int __width = warpSize) { \
109 return __IntIntrinsic(__mask, __val, __offset, \
110 ((warpSize - __width) << 8) | (__Mask)); \
112 inline __device__ float __FnName(unsigned int __mask, float __val, \
113 __Type __offset, int __width = warpSize) { \
114 return __FloatIntrinsic(__mask, __val, __offset, \
115 ((warpSize - __width) << 8) | (__Mask)); \
117 inline __device__ unsigned int __FnName(unsigned int __mask, \
118 unsigned int __val, __Type __offset, \
119 int __width = warpSize) { \
120 return static_cast<unsigned int>( \
121 ::__FnName(__mask, static_cast<int>(__val), __offset, __width)); \
123 inline __device__ long long __FnName(unsigned int __mask, long long __val, \
124 __Type __offset, \
125 int __width = warpSize) { \
126 struct __Bits { \
127 int __a, __b; \
128 }; \
129 _Static_assert(sizeof(__val) == sizeof(__Bits)); \
130 _Static_assert(sizeof(__Bits) == 2 * sizeof(int)); \
131 __Bits __tmp; \
132 memcpy(&__tmp, &__val, sizeof(__val)); \
133 __tmp.__a = ::__FnName(__mask, __tmp.__a, __offset, __width); \
134 __tmp.__b = ::__FnName(__mask, __tmp.__b, __offset, __width); \
135 long long __ret; \
136 memcpy(&__ret, &__tmp, sizeof(__tmp)); \
137 return __ret; \
139 inline __device__ unsigned long long __FnName( \
140 unsigned int __mask, unsigned long long __val, __Type __offset, \
141 int __width = warpSize) { \
142 return static_cast<unsigned long long>( \
143 ::__FnName(__mask, static_cast<long long>(__val), __offset, __width)); \
145 inline __device__ long __FnName(unsigned int __mask, long __val, \
146 __Type __offset, int __width = warpSize) { \
147 _Static_assert(sizeof(long) == sizeof(long long) || \
148 sizeof(long) == sizeof(int)); \
149 if (sizeof(long) == sizeof(long long)) { \
150 return static_cast<long>(::__FnName( \
151 __mask, static_cast<long long>(__val), __offset, __width)); \
152 } else if (sizeof(long) == sizeof(int)) { \
153 return static_cast<long>( \
154 ::__FnName(__mask, static_cast<int>(__val), __offset, __width)); \
157 inline __device__ unsigned long __FnName( \
158 unsigned int __mask, unsigned long __val, __Type __offset, \
159 int __width = warpSize) { \
160 return static_cast<unsigned long>( \
161 ::__FnName(__mask, static_cast<long>(__val), __offset, __width)); \
163 inline __device__ double __FnName(unsigned int __mask, double __val, \
164 __Type __offset, int __width = warpSize) { \
165 long long __tmp; \
166 _Static_assert(sizeof(__tmp) == sizeof(__val)); \
167 memcpy(&__tmp, &__val, sizeof(__val)); \
168 __tmp = ::__FnName(__mask, __tmp, __offset, __width); \
169 double __ret; \
170 memcpy(&__ret, &__tmp, sizeof(__ret)); \
171 return __ret; \
173 __MAKE_SYNC_SHUFFLES(__shfl_sync, __nvvm_shfl_sync_idx_i32,
174 __nvvm_shfl_sync_idx_f32, 0x1f, int);
175 // We use 0 rather than 31 as our mask, because shfl.up applies to lanes >=
176 // maxLane.
177 __MAKE_SYNC_SHUFFLES(__shfl_up_sync, __nvvm_shfl_sync_up_i32,
178 __nvvm_shfl_sync_up_f32, 0, unsigned int);
179 __MAKE_SYNC_SHUFFLES(__shfl_down_sync, __nvvm_shfl_sync_down_i32,
180 __nvvm_shfl_sync_down_f32, 0x1f, unsigned int);
181 __MAKE_SYNC_SHUFFLES(__shfl_xor_sync, __nvvm_shfl_sync_bfly_i32,
182 __nvvm_shfl_sync_bfly_f32, 0x1f, int);
183 #pragma pop_macro("__MAKE_SYNC_SHUFFLES")
185 inline __device__ void __syncwarp(unsigned int mask = 0xffffffff) {
186 return __nvvm_bar_warp_sync(mask);
189 inline __device__ void __barrier_sync(unsigned int id) {
190 __nvvm_barrier_sync(id);
193 inline __device__ void __barrier_sync_count(unsigned int id,
194 unsigned int count) {
195 __nvvm_barrier_sync_cnt(id, count);
198 inline __device__ int __all_sync(unsigned int mask, int pred) {
199 return __nvvm_vote_all_sync(mask, pred);
202 inline __device__ int __any_sync(unsigned int mask, int pred) {
203 return __nvvm_vote_any_sync(mask, pred);
206 inline __device__ int __uni_sync(unsigned int mask, int pred) {
207 return __nvvm_vote_uni_sync(mask, pred);
210 inline __device__ unsigned int __ballot_sync(unsigned int mask, int pred) {
211 return __nvvm_vote_ballot_sync(mask, pred);
214 inline __device__ unsigned int __activemask() {
215 #if CUDA_VERSION < 9020
216 return __nvvm_vote_ballot(1);
217 #else
218 unsigned int mask;
219 asm volatile("activemask.b32 %0;" : "=r"(mask));
220 return mask;
221 #endif
224 inline __device__ unsigned int __fns(unsigned mask, unsigned base, int offset) {
225 return __nvvm_fns(mask, base, offset);
228 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300
230 // Define __match* builtins CUDA-9 headers expect to see.
231 #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 700
232 inline __device__ unsigned int __match32_any_sync(unsigned int mask,
233 unsigned int value) {
234 return __nvvm_match_any_sync_i32(mask, value);
237 inline __device__ unsigned int
238 __match64_any_sync(unsigned int mask, unsigned long long value) {
239 return __nvvm_match_any_sync_i64(mask, value);
242 inline __device__ unsigned int
243 __match32_all_sync(unsigned int mask, unsigned int value, int *pred) {
244 return __nvvm_match_all_sync_i32p(mask, value, pred);
247 inline __device__ unsigned int
248 __match64_all_sync(unsigned int mask, unsigned long long value, int *pred) {
249 return __nvvm_match_all_sync_i64p(mask, value, pred);
251 #include "crt/sm_70_rt.hpp"
253 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 700
254 #endif // __CUDA_VERSION >= 9000
256 // sm_32 intrinsics: __ldg and __funnelshift_{l,lc,r,rc}.
258 // Prevent the vanilla sm_32 intrinsics header from being included.
259 #define __SM_32_INTRINSICS_H__
260 #define __SM_32_INTRINSICS_HPP__
262 #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 320
264 inline __device__ char __ldg(const char *ptr) { return __nvvm_ldg_c(ptr); }
265 inline __device__ short __ldg(const short *ptr) { return __nvvm_ldg_s(ptr); }
266 inline __device__ int __ldg(const int *ptr) { return __nvvm_ldg_i(ptr); }
267 inline __device__ long __ldg(const long *ptr) { return __nvvm_ldg_l(ptr); }
268 inline __device__ long long __ldg(const long long *ptr) {
269 return __nvvm_ldg_ll(ptr);
271 inline __device__ unsigned char __ldg(const unsigned char *ptr) {
272 return __nvvm_ldg_uc(ptr);
274 inline __device__ signed char __ldg(const signed char *ptr) {
275 return __nvvm_ldg_uc((const unsigned char *)ptr);
277 inline __device__ unsigned short __ldg(const unsigned short *ptr) {
278 return __nvvm_ldg_us(ptr);
280 inline __device__ unsigned int __ldg(const unsigned int *ptr) {
281 return __nvvm_ldg_ui(ptr);
283 inline __device__ unsigned long __ldg(const unsigned long *ptr) {
284 return __nvvm_ldg_ul(ptr);
286 inline __device__ unsigned long long __ldg(const unsigned long long *ptr) {
287 return __nvvm_ldg_ull(ptr);
289 inline __device__ float __ldg(const float *ptr) { return __nvvm_ldg_f(ptr); }
290 inline __device__ double __ldg(const double *ptr) { return __nvvm_ldg_d(ptr); }
292 inline __device__ char2 __ldg(const char2 *ptr) {
293 typedef char c2 __attribute__((ext_vector_type(2)));
294 // We can assume that ptr is aligned at least to char2's alignment, but the
295 // load will assume that ptr is aligned to char2's alignment. This is only
296 // safe if alignof(c2) <= alignof(char2).
297 c2 rv = __nvvm_ldg_c2(reinterpret_cast<const c2 *>(ptr));
298 char2 ret;
299 ret.x = rv[0];
300 ret.y = rv[1];
301 return ret;
303 inline __device__ char4 __ldg(const char4 *ptr) {
304 typedef char c4 __attribute__((ext_vector_type(4)));
305 c4 rv = __nvvm_ldg_c4(reinterpret_cast<const c4 *>(ptr));
306 char4 ret;
307 ret.x = rv[0];
308 ret.y = rv[1];
309 ret.z = rv[2];
310 ret.w = rv[3];
311 return ret;
313 inline __device__ short2 __ldg(const short2 *ptr) {
314 typedef short s2 __attribute__((ext_vector_type(2)));
315 s2 rv = __nvvm_ldg_s2(reinterpret_cast<const s2 *>(ptr));
316 short2 ret;
317 ret.x = rv[0];
318 ret.y = rv[1];
319 return ret;
321 inline __device__ short4 __ldg(const short4 *ptr) {
322 typedef short s4 __attribute__((ext_vector_type(4)));
323 s4 rv = __nvvm_ldg_s4(reinterpret_cast<const s4 *>(ptr));
324 short4 ret;
325 ret.x = rv[0];
326 ret.y = rv[1];
327 ret.z = rv[2];
328 ret.w = rv[3];
329 return ret;
331 inline __device__ int2 __ldg(const int2 *ptr) {
332 typedef int i2 __attribute__((ext_vector_type(2)));
333 i2 rv = __nvvm_ldg_i2(reinterpret_cast<const i2 *>(ptr));
334 int2 ret;
335 ret.x = rv[0];
336 ret.y = rv[1];
337 return ret;
339 inline __device__ int4 __ldg(const int4 *ptr) {
340 typedef int i4 __attribute__((ext_vector_type(4)));
341 i4 rv = __nvvm_ldg_i4(reinterpret_cast<const i4 *>(ptr));
342 int4 ret;
343 ret.x = rv[0];
344 ret.y = rv[1];
345 ret.z = rv[2];
346 ret.w = rv[3];
347 return ret;
349 inline __device__ longlong2 __ldg(const longlong2 *ptr) {
350 typedef long long ll2 __attribute__((ext_vector_type(2)));
351 ll2 rv = __nvvm_ldg_ll2(reinterpret_cast<const ll2 *>(ptr));
352 longlong2 ret;
353 ret.x = rv[0];
354 ret.y = rv[1];
355 return ret;
358 inline __device__ uchar2 __ldg(const uchar2 *ptr) {
359 typedef unsigned char uc2 __attribute__((ext_vector_type(2)));
360 uc2 rv = __nvvm_ldg_uc2(reinterpret_cast<const uc2 *>(ptr));
361 uchar2 ret;
362 ret.x = rv[0];
363 ret.y = rv[1];
364 return ret;
366 inline __device__ uchar4 __ldg(const uchar4 *ptr) {
367 typedef unsigned char uc4 __attribute__((ext_vector_type(4)));
368 uc4 rv = __nvvm_ldg_uc4(reinterpret_cast<const uc4 *>(ptr));
369 uchar4 ret;
370 ret.x = rv[0];
371 ret.y = rv[1];
372 ret.z = rv[2];
373 ret.w = rv[3];
374 return ret;
376 inline __device__ ushort2 __ldg(const ushort2 *ptr) {
377 typedef unsigned short us2 __attribute__((ext_vector_type(2)));
378 us2 rv = __nvvm_ldg_us2(reinterpret_cast<const us2 *>(ptr));
379 ushort2 ret;
380 ret.x = rv[0];
381 ret.y = rv[1];
382 return ret;
384 inline __device__ ushort4 __ldg(const ushort4 *ptr) {
385 typedef unsigned short us4 __attribute__((ext_vector_type(4)));
386 us4 rv = __nvvm_ldg_us4(reinterpret_cast<const us4 *>(ptr));
387 ushort4 ret;
388 ret.x = rv[0];
389 ret.y = rv[1];
390 ret.z = rv[2];
391 ret.w = rv[3];
392 return ret;
394 inline __device__ uint2 __ldg(const uint2 *ptr) {
395 typedef unsigned int ui2 __attribute__((ext_vector_type(2)));
396 ui2 rv = __nvvm_ldg_ui2(reinterpret_cast<const ui2 *>(ptr));
397 uint2 ret;
398 ret.x = rv[0];
399 ret.y = rv[1];
400 return ret;
402 inline __device__ uint4 __ldg(const uint4 *ptr) {
403 typedef unsigned int ui4 __attribute__((ext_vector_type(4)));
404 ui4 rv = __nvvm_ldg_ui4(reinterpret_cast<const ui4 *>(ptr));
405 uint4 ret;
406 ret.x = rv[0];
407 ret.y = rv[1];
408 ret.z = rv[2];
409 ret.w = rv[3];
410 return ret;
412 inline __device__ ulonglong2 __ldg(const ulonglong2 *ptr) {
413 typedef unsigned long long ull2 __attribute__((ext_vector_type(2)));
414 ull2 rv = __nvvm_ldg_ull2(reinterpret_cast<const ull2 *>(ptr));
415 ulonglong2 ret;
416 ret.x = rv[0];
417 ret.y = rv[1];
418 return ret;
421 inline __device__ float2 __ldg(const float2 *ptr) {
422 typedef float f2 __attribute__((ext_vector_type(2)));
423 f2 rv = __nvvm_ldg_f2(reinterpret_cast<const f2 *>(ptr));
424 float2 ret;
425 ret.x = rv[0];
426 ret.y = rv[1];
427 return ret;
429 inline __device__ float4 __ldg(const float4 *ptr) {
430 typedef float f4 __attribute__((ext_vector_type(4)));
431 f4 rv = __nvvm_ldg_f4(reinterpret_cast<const f4 *>(ptr));
432 float4 ret;
433 ret.x = rv[0];
434 ret.y = rv[1];
435 ret.z = rv[2];
436 ret.w = rv[3];
437 return ret;
439 inline __device__ double2 __ldg(const double2 *ptr) {
440 typedef double d2 __attribute__((ext_vector_type(2)));
441 d2 rv = __nvvm_ldg_d2(reinterpret_cast<const d2 *>(ptr));
442 double2 ret;
443 ret.x = rv[0];
444 ret.y = rv[1];
445 return ret;
448 // TODO: Implement these as intrinsics, so the backend can work its magic on
449 // these. Alternatively, we could implement these as plain C and try to get
450 // llvm to recognize the relevant patterns.
451 inline __device__ unsigned __funnelshift_l(unsigned low32, unsigned high32,
452 unsigned shiftWidth) {
453 unsigned result;
454 asm("shf.l.wrap.b32 %0, %1, %2, %3;"
455 : "=r"(result)
456 : "r"(low32), "r"(high32), "r"(shiftWidth));
457 return result;
459 inline __device__ unsigned __funnelshift_lc(unsigned low32, unsigned high32,
460 unsigned shiftWidth) {
461 unsigned result;
462 asm("shf.l.clamp.b32 %0, %1, %2, %3;"
463 : "=r"(result)
464 : "r"(low32), "r"(high32), "r"(shiftWidth));
465 return result;
467 inline __device__ unsigned __funnelshift_r(unsigned low32, unsigned high32,
468 unsigned shiftWidth) {
469 unsigned result;
470 asm("shf.r.wrap.b32 %0, %1, %2, %3;"
471 : "=r"(result)
472 : "r"(low32), "r"(high32), "r"(shiftWidth));
473 return result;
475 inline __device__ unsigned __funnelshift_rc(unsigned low32, unsigned high32,
476 unsigned shiftWidth) {
477 unsigned ret;
478 asm("shf.r.clamp.b32 %0, %1, %2, %3;"
479 : "=r"(ret)
480 : "r"(low32), "r"(high32), "r"(shiftWidth));
481 return ret;
484 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 320
486 #if CUDA_VERSION >= 11000
487 extern "C" {
488 __device__ inline size_t __nv_cvta_generic_to_global_impl(const void *__ptr) {
489 return (size_t)(void __attribute__((address_space(1))) *)__ptr;
491 __device__ inline size_t __nv_cvta_generic_to_shared_impl(const void *__ptr) {
492 return (size_t)(void __attribute__((address_space(3))) *)__ptr;
494 __device__ inline size_t __nv_cvta_generic_to_constant_impl(const void *__ptr) {
495 return (size_t)(void __attribute__((address_space(4))) *)__ptr;
497 __device__ inline size_t __nv_cvta_generic_to_local_impl(const void *__ptr) {
498 return (size_t)(void __attribute__((address_space(5))) *)__ptr;
500 __device__ inline void *__nv_cvta_global_to_generic_impl(size_t __ptr) {
501 return (void *)(void __attribute__((address_space(1))) *)__ptr;
503 __device__ inline void *__nv_cvta_shared_to_generic_impl(size_t __ptr) {
504 return (void *)(void __attribute__((address_space(3))) *)__ptr;
506 __device__ inline void *__nv_cvta_constant_to_generic_impl(size_t __ptr) {
507 return (void *)(void __attribute__((address_space(4))) *)__ptr;
509 __device__ inline void *__nv_cvta_local_to_generic_impl(size_t __ptr) {
510 return (void *)(void __attribute__((address_space(5))) *)__ptr;
512 __device__ inline cuuint32_t __nvvm_get_smem_pointer(void *__ptr) {
513 return __nv_cvta_generic_to_shared_impl(__ptr);
515 } // extern "C"
517 #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 800
518 __device__ inline unsigned __reduce_add_sync(unsigned __mask,
519 unsigned __value) {
520 return __nvvm_redux_sync_add(__mask, __value);
522 __device__ inline unsigned __reduce_min_sync(unsigned __mask,
523 unsigned __value) {
524 return __nvvm_redux_sync_umin(__mask, __value);
526 __device__ inline unsigned __reduce_max_sync(unsigned __mask,
527 unsigned __value) {
528 return __nvvm_redux_sync_umax(__mask, __value);
530 __device__ inline int __reduce_min_sync(unsigned __mask, int __value) {
531 return __nvvm_redux_sync_min(__mask, __value);
533 __device__ inline int __reduce_max_sync(unsigned __mask, int __value) {
534 return __nvvm_redux_sync_max(__mask, __value);
536 __device__ inline unsigned __reduce_or_sync(unsigned __mask, unsigned __value) {
537 return __nvvm_redux_sync_or(__mask, __value);
539 __device__ inline unsigned __reduce_and_sync(unsigned __mask,
540 unsigned __value) {
541 return __nvvm_redux_sync_and(__mask, __value);
543 __device__ inline unsigned __reduce_xor_sync(unsigned __mask,
544 unsigned __value) {
545 return __nvvm_redux_sync_xor(__mask, __value);
548 __device__ inline void __nv_memcpy_async_shared_global_4(void *__dst,
549 const void *__src,
550 unsigned __src_size) {
551 __nvvm_cp_async_ca_shared_global_4(
552 (void __attribute__((address_space(3))) *)__dst,
553 (const void __attribute__((address_space(1))) *)__src, __src_size);
555 __device__ inline void __nv_memcpy_async_shared_global_8(void *__dst,
556 const void *__src,
557 unsigned __src_size) {
558 __nvvm_cp_async_ca_shared_global_8(
559 (void __attribute__((address_space(3))) *)__dst,
560 (const void __attribute__((address_space(1))) *)__src, __src_size);
562 __device__ inline void __nv_memcpy_async_shared_global_16(void *__dst,
563 const void *__src,
564 unsigned __src_size) {
565 __nvvm_cp_async_ca_shared_global_16(
566 (void __attribute__((address_space(3))) *)__dst,
567 (const void __attribute__((address_space(1))) *)__src, __src_size);
570 __device__ inline void *
571 __nv_associate_access_property(const void *__ptr, unsigned long long __prop) {
572 // TODO: it appears to provide compiler with some sort of a hint. We do not
573 // know what exactly it is supposed to do. However, CUDA headers suggest that
574 // just passing through __ptr should not affect correctness. They do so on
575 // pre-sm80 GPUs where this builtin is not available.
576 return (void*)__ptr;
578 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 800
580 #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 900
581 __device__ inline unsigned __isCtaShared(const void *ptr) {
582 return __isShared(ptr);
585 __device__ inline unsigned __isClusterShared(const void *__ptr) {
586 return __nvvm_isspacep_shared_cluster(__ptr);
589 __device__ inline void *__cluster_map_shared_rank(const void *__ptr,
590 unsigned __rank) {
591 return __nvvm_mapa((void *)__ptr, __rank);
594 __device__ inline unsigned __cluster_query_shared_rank(const void *__ptr) {
595 return __nvvm_getctarank((void *)__ptr);
598 __device__ inline uint2
599 __cluster_map_shared_multicast(const void *__ptr,
600 unsigned int __cluster_cta_mask) {
601 return make_uint2((unsigned)__cvta_generic_to_shared(__ptr),
602 __cluster_cta_mask);
605 __device__ inline unsigned __clusterDimIsSpecified() {
606 return __nvvm_is_explicit_cluster();
609 __device__ inline dim3 __clusterDim() {
610 return dim3(__nvvm_read_ptx_sreg_cluster_nctaid_x(),
611 __nvvm_read_ptx_sreg_cluster_nctaid_y(),
612 __nvvm_read_ptx_sreg_cluster_nctaid_z());
615 __device__ inline dim3 __clusterRelativeBlockIdx() {
616 return dim3(__nvvm_read_ptx_sreg_cluster_ctaid_x(),
617 __nvvm_read_ptx_sreg_cluster_ctaid_y(),
618 __nvvm_read_ptx_sreg_cluster_ctaid_z());
621 __device__ inline dim3 __clusterGridDimInClusters() {
622 return dim3(__nvvm_read_ptx_sreg_nclusterid_x(),
623 __nvvm_read_ptx_sreg_nclusterid_y(),
624 __nvvm_read_ptx_sreg_nclusterid_z());
627 __device__ inline dim3 __clusterIdx() {
628 return dim3(__nvvm_read_ptx_sreg_clusterid_x(),
629 __nvvm_read_ptx_sreg_clusterid_y(),
630 __nvvm_read_ptx_sreg_clusterid_z());
633 __device__ inline unsigned __clusterRelativeBlockRank() {
634 return __nvvm_read_ptx_sreg_cluster_ctarank();
637 __device__ inline unsigned __clusterSizeInBlocks() {
638 return __nvvm_read_ptx_sreg_cluster_nctarank();
641 __device__ inline void __cluster_barrier_arrive() {
642 __nvvm_barrier_cluster_arrive();
645 __device__ inline void __cluster_barrier_arrive_relaxed() {
646 __nvvm_barrier_cluster_arrive_relaxed();
649 __device__ inline void __cluster_barrier_wait() {
650 __nvvm_barrier_cluster_wait();
653 __device__ inline void __threadfence_cluster() { __nvvm_fence_sc_cluster(); }
655 __device__ inline float2 atomicAdd(float2 *__ptr, float2 __val) {
656 float2 __ret;
657 __asm__("atom.add.v2.f32 {%0, %1}, [%2], {%3, %4};"
658 : "=f"(__ret.x), "=f"(__ret.y)
659 : "l"(__ptr), "f"(__val.x), "f"(__val.y));
660 return __ret;
663 __device__ inline float2 atomicAdd_block(float2 *__ptr, float2 __val) {
664 float2 __ret;
665 __asm__("atom.cta.add.v2.f32 {%0, %1}, [%2], {%3, %4};"
666 : "=f"(__ret.x), "=f"(__ret.y)
667 : "l"(__ptr), "f"(__val.x), "f"(__val.y));
668 return __ret;
671 __device__ inline float2 atomicAdd_system(float2 *__ptr, float2 __val) {
672 float2 __ret;
673 __asm__("atom.sys.add.v2.f32 {%0, %1}, [%2], {%3, %4};"
674 : "=f"(__ret.x), "=f"(__ret.y)
675 : "l"(__ptr), "f"(__val.x), "f"(__val.y));
676 return __ret;
679 __device__ inline float4 atomicAdd(float4 *__ptr, float4 __val) {
680 float4 __ret;
681 __asm__("atom.add.v4.f32 {%0, %1, %2, %3}, [%4], {%5, %6, %7, %8};"
682 : "=f"(__ret.x), "=f"(__ret.y), "=f"(__ret.z), "=f"(__ret.w)
683 : "l"(__ptr), "f"(__val.x), "f"(__val.y), "f"(__val.z), "f"(__val.w));
684 return __ret;
687 __device__ inline float4 atomicAdd_block(float4 *__ptr, float4 __val) {
688 float4 __ret;
689 __asm__(
690 "atom.cta.add.v4.f32 {%0, %1, %2, %3}, [%4], {%5, %6, %7, %8};"
691 : "=f"(__ret.x), "=f"(__ret.y), "=f"(__ret.z), "=f"(__ret.w)
692 : "l"(__ptr), "f"(__val.x), "f"(__val.y), "f"(__val.z), "f"(__val.w));
693 return __ret;
696 __device__ inline float4 atomicAdd_system(float4 *__ptr, float4 __val) {
697 float4 __ret;
698 __asm__(
699 "atom.sys.add.v4.f32 {%0, %1, %2, %3}, [%4], {%5, %6, %7, %8};"
700 : "=f"(__ret.x), "=f"(__ret.y), "=f"(__ret.z), "=f"(__ret.w)
701 : "l"(__ptr), "f"(__val.x), "f"(__val.y), "f"(__val.z), "f"(__val.w)
703 return __ret;
706 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 900
707 #endif // CUDA_VERSION >= 11000
709 #endif // defined(__CLANG_CUDA_INTRINSICS_H__)