[NFC] Add extra test for D106331
[llvm-project.git] / lld / MachO / UnwindInfoSection.cpp
blob95a5f57ded43e6035574e64f2015210c84dd5f8d
1 //===- UnwindInfoSection.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "UnwindInfoSection.h"
10 #include "ConcatOutputSection.h"
11 #include "Config.h"
12 #include "InputSection.h"
13 #include "OutputSection.h"
14 #include "OutputSegment.h"
15 #include "SymbolTable.h"
16 #include "Symbols.h"
17 #include "SyntheticSections.h"
18 #include "Target.h"
20 #include "lld/Common/ErrorHandler.h"
21 #include "lld/Common/Memory.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/BinaryFormat/MachO.h"
26 using namespace llvm;
27 using namespace llvm::MachO;
28 using namespace lld;
29 using namespace lld::macho;
31 #define COMMON_ENCODINGS_MAX 127
32 #define COMPACT_ENCODINGS_MAX 256
34 #define SECOND_LEVEL_PAGE_BYTES 4096
35 #define SECOND_LEVEL_PAGE_WORDS (SECOND_LEVEL_PAGE_BYTES / sizeof(uint32_t))
36 #define REGULAR_SECOND_LEVEL_ENTRIES_MAX \
37 ((SECOND_LEVEL_PAGE_BYTES - \
38 sizeof(unwind_info_regular_second_level_page_header)) / \
39 sizeof(unwind_info_regular_second_level_entry))
40 #define COMPRESSED_SECOND_LEVEL_ENTRIES_MAX \
41 ((SECOND_LEVEL_PAGE_BYTES - \
42 sizeof(unwind_info_compressed_second_level_page_header)) / \
43 sizeof(uint32_t))
45 #define COMPRESSED_ENTRY_FUNC_OFFSET_BITS 24
46 #define COMPRESSED_ENTRY_FUNC_OFFSET_MASK \
47 UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(~0)
49 // Compact Unwind format is a Mach-O evolution of DWARF Unwind that
50 // optimizes space and exception-time lookup. Most DWARF unwind
51 // entries can be replaced with Compact Unwind entries, but the ones
52 // that cannot are retained in DWARF form.
54 // This comment will address macro-level organization of the pre-link
55 // and post-link compact unwind tables. For micro-level organization
56 // pertaining to the bitfield layout of the 32-bit compact unwind
57 // entries, see libunwind/include/mach-o/compact_unwind_encoding.h
59 // Important clarifying factoids:
61 // * __LD,__compact_unwind is the compact unwind format for compiler
62 // output and linker input. It is never a final output. It could be
63 // an intermediate output with the `-r` option which retains relocs.
65 // * __TEXT,__unwind_info is the compact unwind format for final
66 // linker output. It is never an input.
68 // * __TEXT,__eh_frame is the DWARF format for both linker input and output.
70 // * __TEXT,__unwind_info entries are divided into 4 KiB pages (2nd
71 // level) by ascending address, and the pages are referenced by an
72 // index (1st level) in the section header.
74 // * Following the headers in __TEXT,__unwind_info, the bulk of the
75 // section contains a vector of compact unwind entries
76 // `{functionOffset, encoding}` sorted by ascending `functionOffset`.
77 // Adjacent entries with the same encoding can be folded to great
78 // advantage, achieving a 3-order-of-magnitude reduction in the
79 // number of entries.
81 // * The __TEXT,__unwind_info format can accommodate up to 127 unique
82 // encodings for the space-efficient compressed format. In practice,
83 // fewer than a dozen unique encodings are used by C++ programs of
84 // all sizes. Therefore, we don't even bother implementing the regular
85 // non-compressed format. Time will tell if anyone in the field ever
86 // overflows the 127-encodings limit.
88 // Refer to the definition of unwind_info_section_header in
89 // compact_unwind_encoding.h for an overview of the format we are encoding
90 // here.
92 // TODO(gkm): prune __eh_frame entries superseded by __unwind_info, PR50410
93 // TODO(gkm): how do we align the 2nd-level pages?
95 using EncodingMap = DenseMap<compact_unwind_encoding_t, size_t>;
97 struct SecondLevelPage {
98 uint32_t kind;
99 size_t entryIndex;
100 size_t entryCount;
101 size_t byteCount;
102 std::vector<compact_unwind_encoding_t> localEncodings;
103 EncodingMap localEncodingIndexes;
106 template <class Ptr>
107 class UnwindInfoSectionImpl final : public UnwindInfoSection {
108 public:
109 void prepareRelocations(ConcatInputSection *) override;
110 void addInput(ConcatInputSection *) override;
111 void finalize() override;
112 void writeTo(uint8_t *buf) const override;
114 private:
115 std::vector<std::pair<compact_unwind_encoding_t, size_t>> commonEncodings;
116 EncodingMap commonEncodingIndexes;
117 // Indices of personality functions within the GOT.
118 std::vector<Ptr> personalities;
119 SmallDenseMap<std::pair<InputSection *, uint64_t /* addend */>, Symbol *>
120 personalityTable;
121 std::vector<unwind_info_section_header_lsda_index_entry> lsdaEntries;
122 // Map of function offset (from the image base) to an index within the LSDA
123 // array.
124 DenseMap<uint32_t, uint32_t> functionToLsdaIndex;
125 std::vector<CompactUnwindEntry<Ptr>> cuVector;
126 std::vector<CompactUnwindEntry<Ptr> *> cuPtrVector;
127 std::vector<SecondLevelPage> secondLevelPages;
128 uint64_t level2PagesOffset = 0;
131 UnwindInfoSection::UnwindInfoSection()
132 : SyntheticSection(segment_names::text, section_names::unwindInfo) {
133 align = 4;
134 compactUnwindSection =
135 make<ConcatOutputSection>(section_names::compactUnwind);
138 void UnwindInfoSection::prepareRelocations() {
139 for (ConcatInputSection *isec : compactUnwindSection->inputs)
140 prepareRelocations(isec);
143 template <class Ptr>
144 void UnwindInfoSectionImpl<Ptr>::addInput(ConcatInputSection *isec) {
145 assert(isec->getSegName() == segment_names::ld &&
146 isec->getName() == section_names::compactUnwind);
147 isec->parent = compactUnwindSection;
148 compactUnwindSection->addInput(isec);
151 // Compact unwind relocations have different semantics, so we handle them in a
152 // separate code path from regular relocations. First, we do not wish to add
153 // rebase opcodes for __LD,__compact_unwind, because that section doesn't
154 // actually end up in the final binary. Second, personality pointers always
155 // reside in the GOT and must be treated specially.
156 template <class Ptr>
157 void UnwindInfoSectionImpl<Ptr>::prepareRelocations(ConcatInputSection *isec) {
158 assert(!isec->shouldOmitFromOutput() &&
159 "__compact_unwind section should not be omitted");
161 // FIXME: Make this skip relocations for CompactUnwindEntries that
162 // point to dead-stripped functions. That might save some amount of
163 // work. But since there are usually just few personality functions
164 // that are referenced from many places, at least some of them likely
165 // live, it wouldn't reduce number of got entries.
166 for (size_t i = 0; i < isec->relocs.size(); ++i) {
167 Reloc &r = isec->relocs[i];
168 assert(target->hasAttr(r.type, RelocAttrBits::UNSIGNED));
170 if (r.offset % sizeof(CompactUnwindEntry<Ptr>) == 0) {
171 InputSection *referentIsec;
172 if (auto *isec = r.referent.dyn_cast<InputSection *>())
173 referentIsec = isec;
174 else
175 referentIsec = cast<Defined>(r.referent.dyn_cast<Symbol *>())->isec;
177 if (!cast<ConcatInputSection>(referentIsec)->shouldOmitFromOutput())
178 allEntriesAreOmitted = false;
179 continue;
182 if (r.offset % sizeof(CompactUnwindEntry<Ptr>) !=
183 offsetof(CompactUnwindEntry<Ptr>, personality))
184 continue;
186 if (auto *s = r.referent.dyn_cast<Symbol *>()) {
187 if (auto *undefined = dyn_cast<Undefined>(s)) {
188 treatUndefinedSymbol(*undefined);
189 // treatUndefinedSymbol() can replace s with a DylibSymbol; re-check.
190 if (isa<Undefined>(s))
191 continue;
193 if (auto *defined = dyn_cast<Defined>(s)) {
194 // Check if we have created a synthetic symbol at the same address.
195 Symbol *&personality =
196 personalityTable[{defined->isec, defined->value}];
197 if (personality == nullptr) {
198 personality = defined;
199 in.got->addEntry(defined);
200 } else if (personality != defined) {
201 r.referent = personality;
203 continue;
205 assert(isa<DylibSymbol>(s));
206 in.got->addEntry(s);
207 continue;
210 if (auto *referentIsec = r.referent.dyn_cast<InputSection *>()) {
211 assert(!isCoalescedWeak(referentIsec));
212 // Personality functions can be referenced via section relocations
213 // if they live in the same object file. Create placeholder synthetic
214 // symbols for them in the GOT.
215 Symbol *&s = personalityTable[{referentIsec, r.addend}];
216 if (s == nullptr) {
217 // This runs after dead stripping, so the noDeadStrip argument does not
218 // matter.
219 s = make<Defined>("<internal>", /*file=*/nullptr, referentIsec,
220 r.addend, /*size=*/0, /*isWeakDef=*/false,
221 /*isExternal=*/false, /*isPrivateExtern=*/false,
222 /*isThumb=*/false, /*isReferencedDynamically=*/false,
223 /*noDeadStrip=*/false);
224 in.got->addEntry(s);
226 r.referent = s;
227 r.addend = 0;
232 // Unwind info lives in __DATA, and finalization of __TEXT will occur before
233 // finalization of __DATA. Moreover, the finalization of unwind info depends on
234 // the exact addresses that it references. So it is safe for compact unwind to
235 // reference addresses in __TEXT, but not addresses in any other segment.
236 static ConcatInputSection *checkTextSegment(InputSection *isec) {
237 if (isec->getSegName() != segment_names::text)
238 error("compact unwind references address in " + toString(isec) +
239 " which is not in segment __TEXT");
240 // __text should always be a ConcatInputSection.
241 return cast<ConcatInputSection>(isec);
244 template <class Ptr>
245 constexpr Ptr TombstoneValue = std::numeric_limits<Ptr>::max();
247 // We need to apply the relocations to the pre-link compact unwind section
248 // before converting it to post-link form. There should only be absolute
249 // relocations here: since we are not emitting the pre-link CU section, there
250 // is no source address to make a relative location meaningful.
251 template <class Ptr>
252 static void
253 relocateCompactUnwind(ConcatOutputSection *compactUnwindSection,
254 std::vector<CompactUnwindEntry<Ptr>> &cuVector) {
255 for (const ConcatInputSection *isec : compactUnwindSection->inputs) {
256 assert(isec->parent == compactUnwindSection);
258 uint8_t *buf =
259 reinterpret_cast<uint8_t *>(cuVector.data()) + isec->outSecOff;
260 memcpy(buf, isec->data.data(), isec->data.size());
262 for (const Reloc &r : isec->relocs) {
263 uint64_t referentVA = TombstoneValue<Ptr>;
264 if (auto *referentSym = r.referent.dyn_cast<Symbol *>()) {
265 if (!isa<Undefined>(referentSym)) {
266 if (auto *defined = dyn_cast<Defined>(referentSym))
267 checkTextSegment(defined->isec);
268 // At this point in the link, we may not yet know the final address of
269 // the GOT, so we just encode the index. We make it a 1-based index so
270 // that we can distinguish the null pointer case.
271 referentVA = referentSym->gotIndex + 1;
273 } else {
274 auto *referentIsec = r.referent.get<InputSection *>();
275 ConcatInputSection *concatIsec = checkTextSegment(referentIsec);
276 if (!concatIsec->shouldOmitFromOutput())
277 referentVA = referentIsec->getVA(r.addend);
279 writeAddress(buf + r.offset, referentVA, r.length);
284 // There should only be a handful of unique personality pointers, so we can
285 // encode them as 2-bit indices into a small array.
286 template <class Ptr>
287 static void
288 encodePersonalities(const std::vector<CompactUnwindEntry<Ptr> *> &cuPtrVector,
289 std::vector<Ptr> &personalities) {
290 for (CompactUnwindEntry<Ptr> *cu : cuPtrVector) {
291 if (cu->personality == 0)
292 continue;
293 // Linear search is fast enough for a small array.
294 auto it = find(personalities, cu->personality);
295 uint32_t personalityIndex; // 1-based index
296 if (it != personalities.end()) {
297 personalityIndex = std::distance(personalities.begin(), it) + 1;
298 } else {
299 personalities.push_back(cu->personality);
300 personalityIndex = personalities.size();
302 cu->encoding |=
303 personalityIndex << countTrailingZeros(
304 static_cast<compact_unwind_encoding_t>(UNWIND_PERSONALITY_MASK));
306 if (personalities.size() > 3)
307 error("too many personalities (" + std::to_string(personalities.size()) +
308 ") for compact unwind to encode");
311 // __unwind_info stores unwind data for address ranges. If several
312 // adjacent functions have the same unwind encoding, LSDA, and personality
313 // function, they share one unwind entry. For this to work, functions without
314 // unwind info need explicit "no unwind info" unwind entries -- else the
315 // unwinder would think they have the unwind info of the closest function
316 // with unwind info right before in the image.
317 template <class Ptr>
318 static void addEntriesForFunctionsWithoutUnwindInfo(
319 std::vector<CompactUnwindEntry<Ptr>> &cuVector) {
320 DenseSet<Ptr> hasUnwindInfo;
321 for (CompactUnwindEntry<Ptr> &cuEntry : cuVector)
322 if (cuEntry.functionAddress != TombstoneValue<Ptr>)
323 hasUnwindInfo.insert(cuEntry.functionAddress);
325 // Add explicit "has no unwind info" entries for all global and local symbols
326 // without unwind info.
327 auto markNoUnwindInfo = [&cuVector, &hasUnwindInfo](const Defined *d) {
328 if (d->isLive() && d->isec && isCodeSection(d->isec)) {
329 Ptr ptr = d->getVA();
330 if (!hasUnwindInfo.count(ptr))
331 cuVector.push_back({ptr, 0, 0, 0, 0});
334 for (Symbol *sym : symtab->getSymbols())
335 if (auto *d = dyn_cast<Defined>(sym))
336 markNoUnwindInfo(d);
337 for (const InputFile *file : inputFiles)
338 if (auto *objFile = dyn_cast<ObjFile>(file))
339 for (Symbol *sym : objFile->symbols)
340 if (auto *d = dyn_cast_or_null<Defined>(sym))
341 if (!d->isExternal())
342 markNoUnwindInfo(d);
345 static bool canFoldEncoding(compact_unwind_encoding_t encoding) {
346 // From compact_unwind_encoding.h:
347 // UNWIND_X86_64_MODE_STACK_IND:
348 // A "frameless" (RBP not used as frame pointer) function large constant
349 // stack size. This case is like the previous, except the stack size is too
350 // large to encode in the compact unwind encoding. Instead it requires that
351 // the function contains "subq $nnnnnnnn,RSP" in its prolog. The compact
352 // encoding contains the offset to the nnnnnnnn value in the function in
353 // UNWIND_X86_64_FRAMELESS_STACK_SIZE.
354 // Since this means the unwinder has to look at the `subq` in the function
355 // of the unwind info's unwind address, two functions that have identical
356 // unwind info can't be folded if it's using this encoding since both
357 // entries need unique addresses.
358 static_assert(UNWIND_X86_64_MODE_MASK == UNWIND_X86_MODE_MASK, "");
359 static_assert(UNWIND_X86_64_MODE_STACK_IND == UNWIND_X86_MODE_STACK_IND, "");
360 if ((target->cpuType == CPU_TYPE_X86_64 || target->cpuType == CPU_TYPE_X86) &&
361 (encoding & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_STACK_IND) {
362 // FIXME: Consider passing in the two function addresses and getting
363 // their two stack sizes off the `subq` and only returning false if they're
364 // actually different.
365 return false;
367 return true;
370 // Scan the __LD,__compact_unwind entries and compute the space needs of
371 // __TEXT,__unwind_info and __TEXT,__eh_frame
372 template <class Ptr> void UnwindInfoSectionImpl<Ptr>::finalize() {
373 if (compactUnwindSection == nullptr)
374 return;
376 // At this point, the address space for __TEXT,__text has been
377 // assigned, so we can relocate the __LD,__compact_unwind entries
378 // into a temporary buffer. Relocation is necessary in order to sort
379 // the CU entries by function address. Sorting is necessary so that
380 // we can fold adjacent CU entries with identical
381 // encoding+personality+lsda. Folding is necessary because it reduces
382 // the number of CU entries by as much as 3 orders of magnitude!
383 compactUnwindSection->finalize();
384 assert(compactUnwindSection->getSize() % sizeof(CompactUnwindEntry<Ptr>) ==
386 size_t cuCount =
387 compactUnwindSection->getSize() / sizeof(CompactUnwindEntry<Ptr>);
388 cuVector.resize(cuCount);
389 relocateCompactUnwind(compactUnwindSection, cuVector);
391 addEntriesForFunctionsWithoutUnwindInfo(cuVector);
393 // Rather than sort & fold the 32-byte entries directly, we create a
394 // vector of pointers to entries and sort & fold that instead.
395 cuPtrVector.reserve(cuVector.size());
396 for (CompactUnwindEntry<Ptr> &cuEntry : cuVector)
397 cuPtrVector.emplace_back(&cuEntry);
398 llvm::sort(cuPtrVector, [](const CompactUnwindEntry<Ptr> *a,
399 const CompactUnwindEntry<Ptr> *b) {
400 return a->functionAddress < b->functionAddress;
403 // Dead-stripped functions get a functionAddress of TombstoneValue in
404 // relocateCompactUnwind(). Filter them out here.
405 // FIXME: This doesn't yet collect associated data like LSDAs kept
406 // alive only by a now-removed CompactUnwindEntry or other comdat-like
407 // data (`kindNoneGroupSubordinate*` in ld64).
408 CompactUnwindEntry<Ptr> tombstone;
409 tombstone.functionAddress = TombstoneValue<Ptr>;
410 cuPtrVector.erase(
411 std::lower_bound(cuPtrVector.begin(), cuPtrVector.end(), &tombstone,
412 [](const CompactUnwindEntry<Ptr> *a,
413 const CompactUnwindEntry<Ptr> *b) {
414 return a->functionAddress < b->functionAddress;
416 cuPtrVector.end());
418 // If there are no entries left after adding explicit "no unwind info"
419 // entries and removing entries for dead-stripped functions, don't write
420 // an __unwind_info section at all.
421 assert(allEntriesAreOmitted == cuPtrVector.empty());
422 if (cuPtrVector.empty())
423 return;
425 // Fold adjacent entries with matching encoding+personality+lsda
426 // We use three iterators on the same cuPtrVector to fold in-situ:
427 // (1) `foldBegin` is the first of a potential sequence of matching entries
428 // (2) `foldEnd` is the first non-matching entry after `foldBegin`.
429 // The semi-open interval [ foldBegin .. foldEnd ) contains a range
430 // entries that can be folded into a single entry and written to ...
431 // (3) `foldWrite`
432 auto foldWrite = cuPtrVector.begin();
433 for (auto foldBegin = cuPtrVector.begin(); foldBegin < cuPtrVector.end();) {
434 auto foldEnd = foldBegin;
435 while (++foldEnd < cuPtrVector.end() &&
436 (*foldBegin)->encoding == (*foldEnd)->encoding &&
437 (*foldBegin)->personality == (*foldEnd)->personality &&
438 (*foldBegin)->lsda == (*foldEnd)->lsda &&
439 canFoldEncoding((*foldEnd)->encoding))
441 *foldWrite++ = *foldBegin;
442 foldBegin = foldEnd;
444 cuPtrVector.erase(foldWrite, cuPtrVector.end());
446 encodePersonalities(cuPtrVector, personalities);
448 // Count frequencies of the folded encodings
449 EncodingMap encodingFrequencies;
450 for (const CompactUnwindEntry<Ptr> *cuPtrEntry : cuPtrVector)
451 encodingFrequencies[cuPtrEntry->encoding]++;
453 // Make a vector of encodings, sorted by descending frequency
454 for (const auto &frequency : encodingFrequencies)
455 commonEncodings.emplace_back(frequency);
456 llvm::sort(commonEncodings,
457 [](const std::pair<compact_unwind_encoding_t, size_t> &a,
458 const std::pair<compact_unwind_encoding_t, size_t> &b) {
459 if (a.second == b.second)
460 // When frequencies match, secondarily sort on encoding
461 // to maintain parity with validate-unwind-info.py
462 return a.first > b.first;
463 return a.second > b.second;
466 // Truncate the vector to 127 elements.
467 // Common encoding indexes are limited to 0..126, while encoding
468 // indexes 127..255 are local to each second-level page
469 if (commonEncodings.size() > COMMON_ENCODINGS_MAX)
470 commonEncodings.resize(COMMON_ENCODINGS_MAX);
472 // Create a map from encoding to common-encoding-table index
473 for (size_t i = 0; i < commonEncodings.size(); i++)
474 commonEncodingIndexes[commonEncodings[i].first] = i;
476 // Split folded encodings into pages, where each page is limited by ...
477 // (a) 4 KiB capacity
478 // (b) 24-bit difference between first & final function address
479 // (c) 8-bit compact-encoding-table index,
480 // for which 0..126 references the global common-encodings table,
481 // and 127..255 references a local per-second-level-page table.
482 // First we try the compact format and determine how many entries fit.
483 // If more entries fit in the regular format, we use that.
484 for (size_t i = 0; i < cuPtrVector.size();) {
485 secondLevelPages.emplace_back();
486 SecondLevelPage &page = secondLevelPages.back();
487 page.entryIndex = i;
488 uintptr_t functionAddressMax =
489 cuPtrVector[i]->functionAddress + COMPRESSED_ENTRY_FUNC_OFFSET_MASK;
490 size_t n = commonEncodings.size();
491 size_t wordsRemaining =
492 SECOND_LEVEL_PAGE_WORDS -
493 sizeof(unwind_info_compressed_second_level_page_header) /
494 sizeof(uint32_t);
495 while (wordsRemaining >= 1 && i < cuPtrVector.size()) {
496 const CompactUnwindEntry<Ptr> *cuPtr = cuPtrVector[i];
497 if (cuPtr->functionAddress >= functionAddressMax) {
498 break;
499 } else if (commonEncodingIndexes.count(cuPtr->encoding) ||
500 page.localEncodingIndexes.count(cuPtr->encoding)) {
501 i++;
502 wordsRemaining--;
503 } else if (wordsRemaining >= 2 && n < COMPACT_ENCODINGS_MAX) {
504 page.localEncodings.emplace_back(cuPtr->encoding);
505 page.localEncodingIndexes[cuPtr->encoding] = n++;
506 i++;
507 wordsRemaining -= 2;
508 } else {
509 break;
512 page.entryCount = i - page.entryIndex;
514 // If this is not the final page, see if it's possible to fit more
515 // entries by using the regular format. This can happen when there
516 // are many unique encodings, and we we saturated the local
517 // encoding table early.
518 if (i < cuPtrVector.size() &&
519 page.entryCount < REGULAR_SECOND_LEVEL_ENTRIES_MAX) {
520 page.kind = UNWIND_SECOND_LEVEL_REGULAR;
521 page.entryCount = std::min(REGULAR_SECOND_LEVEL_ENTRIES_MAX,
522 cuPtrVector.size() - page.entryIndex);
523 i = page.entryIndex + page.entryCount;
524 } else {
525 page.kind = UNWIND_SECOND_LEVEL_COMPRESSED;
529 for (const CompactUnwindEntry<Ptr> *cu : cuPtrVector) {
530 uint32_t functionOffset = cu->functionAddress - in.header->addr;
531 functionToLsdaIndex[functionOffset] = lsdaEntries.size();
532 if (cu->lsda != 0)
533 lsdaEntries.push_back(
534 {functionOffset, static_cast<uint32_t>(cu->lsda - in.header->addr)});
537 // compute size of __TEXT,__unwind_info section
538 level2PagesOffset =
539 sizeof(unwind_info_section_header) +
540 commonEncodings.size() * sizeof(uint32_t) +
541 personalities.size() * sizeof(uint32_t) +
542 // The extra second-level-page entry is for the sentinel
543 (secondLevelPages.size() + 1) *
544 sizeof(unwind_info_section_header_index_entry) +
545 lsdaEntries.size() * sizeof(unwind_info_section_header_lsda_index_entry);
546 unwindInfoSize =
547 level2PagesOffset + secondLevelPages.size() * SECOND_LEVEL_PAGE_BYTES;
550 // All inputs are relocated and output addresses are known, so write!
552 template <class Ptr>
553 void UnwindInfoSectionImpl<Ptr>::writeTo(uint8_t *buf) const {
554 assert(!cuPtrVector.empty() && "call only if there is unwind info");
556 // section header
557 auto *uip = reinterpret_cast<unwind_info_section_header *>(buf);
558 uip->version = 1;
559 uip->commonEncodingsArraySectionOffset = sizeof(unwind_info_section_header);
560 uip->commonEncodingsArrayCount = commonEncodings.size();
561 uip->personalityArraySectionOffset =
562 uip->commonEncodingsArraySectionOffset +
563 (uip->commonEncodingsArrayCount * sizeof(uint32_t));
564 uip->personalityArrayCount = personalities.size();
565 uip->indexSectionOffset = uip->personalityArraySectionOffset +
566 (uip->personalityArrayCount * sizeof(uint32_t));
567 uip->indexCount = secondLevelPages.size() + 1;
569 // Common encodings
570 auto *i32p = reinterpret_cast<uint32_t *>(&uip[1]);
571 for (const auto &encoding : commonEncodings)
572 *i32p++ = encoding.first;
574 // Personalities
575 for (Ptr personality : personalities)
576 *i32p++ =
577 in.got->addr + (personality - 1) * target->wordSize - in.header->addr;
579 // Level-1 index
580 uint32_t lsdaOffset =
581 uip->indexSectionOffset +
582 uip->indexCount * sizeof(unwind_info_section_header_index_entry);
583 uint64_t l2PagesOffset = level2PagesOffset;
584 auto *iep = reinterpret_cast<unwind_info_section_header_index_entry *>(i32p);
585 for (const SecondLevelPage &page : secondLevelPages) {
586 iep->functionOffset =
587 cuPtrVector[page.entryIndex]->functionAddress - in.header->addr;
588 iep->secondLevelPagesSectionOffset = l2PagesOffset;
589 iep->lsdaIndexArraySectionOffset =
590 lsdaOffset + functionToLsdaIndex.lookup(iep->functionOffset) *
591 sizeof(unwind_info_section_header_lsda_index_entry);
592 iep++;
593 l2PagesOffset += SECOND_LEVEL_PAGE_BYTES;
595 // Level-1 sentinel
596 const CompactUnwindEntry<Ptr> &cuEnd = *cuPtrVector.back();
597 assert(cuEnd.functionAddress != TombstoneValue<Ptr>);
598 iep->functionOffset =
599 cuEnd.functionAddress - in.header->addr + cuEnd.functionLength;
600 iep->secondLevelPagesSectionOffset = 0;
601 iep->lsdaIndexArraySectionOffset =
602 lsdaOffset +
603 lsdaEntries.size() * sizeof(unwind_info_section_header_lsda_index_entry);
604 iep++;
606 // LSDAs
607 size_t lsdaBytes =
608 lsdaEntries.size() * sizeof(unwind_info_section_header_lsda_index_entry);
609 if (lsdaBytes > 0)
610 memcpy(iep, lsdaEntries.data(), lsdaBytes);
612 // Level-2 pages
613 auto *pp = reinterpret_cast<uint32_t *>(reinterpret_cast<uint8_t *>(iep) +
614 lsdaBytes);
615 for (const SecondLevelPage &page : secondLevelPages) {
616 if (page.kind == UNWIND_SECOND_LEVEL_COMPRESSED) {
617 uintptr_t functionAddressBase =
618 cuPtrVector[page.entryIndex]->functionAddress;
619 auto *p2p =
620 reinterpret_cast<unwind_info_compressed_second_level_page_header *>(
621 pp);
622 p2p->kind = page.kind;
623 p2p->entryPageOffset =
624 sizeof(unwind_info_compressed_second_level_page_header);
625 p2p->entryCount = page.entryCount;
626 p2p->encodingsPageOffset =
627 p2p->entryPageOffset + p2p->entryCount * sizeof(uint32_t);
628 p2p->encodingsCount = page.localEncodings.size();
629 auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
630 for (size_t i = 0; i < page.entryCount; i++) {
631 const CompactUnwindEntry<Ptr> *cuep = cuPtrVector[page.entryIndex + i];
632 auto it = commonEncodingIndexes.find(cuep->encoding);
633 if (it == commonEncodingIndexes.end())
634 it = page.localEncodingIndexes.find(cuep->encoding);
635 *ep++ = (it->second << COMPRESSED_ENTRY_FUNC_OFFSET_BITS) |
636 (cuep->functionAddress - functionAddressBase);
638 if (page.localEncodings.size() != 0)
639 memcpy(ep, page.localEncodings.data(),
640 page.localEncodings.size() * sizeof(uint32_t));
641 } else {
642 auto *p2p =
643 reinterpret_cast<unwind_info_regular_second_level_page_header *>(pp);
644 p2p->kind = page.kind;
645 p2p->entryPageOffset =
646 sizeof(unwind_info_regular_second_level_page_header);
647 p2p->entryCount = page.entryCount;
648 auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
649 for (size_t i = 0; i < page.entryCount; i++) {
650 const CompactUnwindEntry<Ptr> *cuep = cuPtrVector[page.entryIndex + i];
651 *ep++ = cuep->functionAddress;
652 *ep++ = cuep->encoding;
655 pp += SECOND_LEVEL_PAGE_WORDS;
659 UnwindInfoSection *macho::makeUnwindInfoSection() {
660 if (target->wordSize == 8)
661 return make<UnwindInfoSectionImpl<uint64_t>>();
662 else
663 return make<UnwindInfoSectionImpl<uint32_t>>();