[Transforms] Use {DenseMap,SmallPtrSet}::contains (NFC)
[llvm-project.git] / llvm / lib / Transforms / Scalar / GVN.cpp
blobe36578f3de7ac454ef53c025925cb6f2de934741
1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs global value numbering to eliminate fully redundant
10 // instructions. It also performs simple dead load elimination.
12 // Note that this pass does the value numbering itself; it does not use the
13 // ValueNumbering analysis passes.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Transforms/Scalar/GVN.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DepthFirstIterator.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/MapVector.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/AliasAnalysis.h"
29 #include "llvm/Analysis/AssumeBundleQueries.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/CFG.h"
32 #include "llvm/Analysis/DomTreeUpdater.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/InstructionPrecedenceTracking.h"
35 #include "llvm/Analysis/InstructionSimplify.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/MemoryBuiltins.h"
38 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
39 #include "llvm/Analysis/MemorySSA.h"
40 #include "llvm/Analysis/MemorySSAUpdater.h"
41 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
42 #include "llvm/Analysis/PHITransAddr.h"
43 #include "llvm/Analysis/TargetLibraryInfo.h"
44 #include "llvm/Analysis/ValueTracking.h"
45 #include "llvm/IR/Attributes.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/PassManager.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
72 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
73 #include "llvm/Transforms/Utils/Local.h"
74 #include "llvm/Transforms/Utils/SSAUpdater.h"
75 #include "llvm/Transforms/Utils/VNCoercion.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstdint>
79 #include <optional>
80 #include <utility>
82 using namespace llvm;
83 using namespace llvm::gvn;
84 using namespace llvm::VNCoercion;
85 using namespace PatternMatch;
87 #define DEBUG_TYPE "gvn"
89 STATISTIC(NumGVNInstr, "Number of instructions deleted");
90 STATISTIC(NumGVNLoad, "Number of loads deleted");
91 STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
92 STATISTIC(NumGVNBlocks, "Number of blocks merged");
93 STATISTIC(NumGVNSimpl, "Number of instructions simplified");
94 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
95 STATISTIC(NumPRELoad, "Number of loads PRE'd");
96 STATISTIC(NumPRELoopLoad, "Number of loop loads PRE'd");
97 STATISTIC(NumPRELoadMoved2CEPred,
98 "Number of loads moved to predecessor of a critical edge in PRE");
100 STATISTIC(IsValueFullyAvailableInBlockNumSpeculationsMax,
101 "Number of blocks speculated as available in "
102 "IsValueFullyAvailableInBlock(), max");
103 STATISTIC(MaxBBSpeculationCutoffReachedTimes,
104 "Number of times we we reached gvn-max-block-speculations cut-off "
105 "preventing further exploration");
107 static cl::opt<bool> GVNEnablePRE("enable-pre", cl::init(true), cl::Hidden);
108 static cl::opt<bool> GVNEnableLoadPRE("enable-load-pre", cl::init(true));
109 static cl::opt<bool> GVNEnableLoadInLoopPRE("enable-load-in-loop-pre",
110 cl::init(true));
111 static cl::opt<bool>
112 GVNEnableSplitBackedgeInLoadPRE("enable-split-backedge-in-load-pre",
113 cl::init(false));
114 static cl::opt<bool> GVNEnableMemDep("enable-gvn-memdep", cl::init(true));
116 static cl::opt<uint32_t> MaxNumDeps(
117 "gvn-max-num-deps", cl::Hidden, cl::init(100),
118 cl::desc("Max number of dependences to attempt Load PRE (default = 100)"));
120 // This is based on IsValueFullyAvailableInBlockNumSpeculationsMax stat.
121 static cl::opt<uint32_t> MaxBBSpeculations(
122 "gvn-max-block-speculations", cl::Hidden, cl::init(600),
123 cl::desc("Max number of blocks we're willing to speculate on (and recurse "
124 "into) when deducing if a value is fully available or not in GVN "
125 "(default = 600)"));
127 static cl::opt<uint32_t> MaxNumVisitedInsts(
128 "gvn-max-num-visited-insts", cl::Hidden, cl::init(100),
129 cl::desc("Max number of visited instructions when trying to find "
130 "dominating value of select dependency (default = 100)"));
132 static cl::opt<uint32_t> MaxNumInsnsPerBlock(
133 "gvn-max-num-insns", cl::Hidden, cl::init(100),
134 cl::desc("Max number of instructions to scan in each basic block in GVN "
135 "(default = 100)"));
137 struct llvm::GVNPass::Expression {
138 uint32_t opcode;
139 bool commutative = false;
140 // The type is not necessarily the result type of the expression, it may be
141 // any additional type needed to disambiguate the expression.
142 Type *type = nullptr;
143 SmallVector<uint32_t, 4> varargs;
145 Expression(uint32_t o = ~2U) : opcode(o) {}
147 bool operator==(const Expression &other) const {
148 if (opcode != other.opcode)
149 return false;
150 if (opcode == ~0U || opcode == ~1U)
151 return true;
152 if (type != other.type)
153 return false;
154 if (varargs != other.varargs)
155 return false;
156 return true;
159 friend hash_code hash_value(const Expression &Value) {
160 return hash_combine(
161 Value.opcode, Value.type,
162 hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
166 namespace llvm {
168 template <> struct DenseMapInfo<GVNPass::Expression> {
169 static inline GVNPass::Expression getEmptyKey() { return ~0U; }
170 static inline GVNPass::Expression getTombstoneKey() { return ~1U; }
172 static unsigned getHashValue(const GVNPass::Expression &e) {
173 using llvm::hash_value;
175 return static_cast<unsigned>(hash_value(e));
178 static bool isEqual(const GVNPass::Expression &LHS,
179 const GVNPass::Expression &RHS) {
180 return LHS == RHS;
184 } // end namespace llvm
186 /// Represents a particular available value that we know how to materialize.
187 /// Materialization of an AvailableValue never fails. An AvailableValue is
188 /// implicitly associated with a rematerialization point which is the
189 /// location of the instruction from which it was formed.
190 struct llvm::gvn::AvailableValue {
191 enum class ValType {
192 SimpleVal, // A simple offsetted value that is accessed.
193 LoadVal, // A value produced by a load.
194 MemIntrin, // A memory intrinsic which is loaded from.
195 UndefVal, // A UndefValue representing a value from dead block (which
196 // is not yet physically removed from the CFG).
197 SelectVal, // A pointer select which is loaded from and for which the load
198 // can be replace by a value select.
201 /// Val - The value that is live out of the block.
202 Value *Val;
203 /// Kind of the live-out value.
204 ValType Kind;
206 /// Offset - The byte offset in Val that is interesting for the load query.
207 unsigned Offset = 0;
208 /// V1, V2 - The dominating non-clobbered values of SelectVal.
209 Value *V1 = nullptr, *V2 = nullptr;
211 static AvailableValue get(Value *V, unsigned Offset = 0) {
212 AvailableValue Res;
213 Res.Val = V;
214 Res.Kind = ValType::SimpleVal;
215 Res.Offset = Offset;
216 return Res;
219 static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
220 AvailableValue Res;
221 Res.Val = MI;
222 Res.Kind = ValType::MemIntrin;
223 Res.Offset = Offset;
224 return Res;
227 static AvailableValue getLoad(LoadInst *Load, unsigned Offset = 0) {
228 AvailableValue Res;
229 Res.Val = Load;
230 Res.Kind = ValType::LoadVal;
231 Res.Offset = Offset;
232 return Res;
235 static AvailableValue getUndef() {
236 AvailableValue Res;
237 Res.Val = nullptr;
238 Res.Kind = ValType::UndefVal;
239 Res.Offset = 0;
240 return Res;
243 static AvailableValue getSelect(SelectInst *Sel, Value *V1, Value *V2) {
244 AvailableValue Res;
245 Res.Val = Sel;
246 Res.Kind = ValType::SelectVal;
247 Res.Offset = 0;
248 Res.V1 = V1;
249 Res.V2 = V2;
250 return Res;
253 bool isSimpleValue() const { return Kind == ValType::SimpleVal; }
254 bool isCoercedLoadValue() const { return Kind == ValType::LoadVal; }
255 bool isMemIntrinValue() const { return Kind == ValType::MemIntrin; }
256 bool isUndefValue() const { return Kind == ValType::UndefVal; }
257 bool isSelectValue() const { return Kind == ValType::SelectVal; }
259 Value *getSimpleValue() const {
260 assert(isSimpleValue() && "Wrong accessor");
261 return Val;
264 LoadInst *getCoercedLoadValue() const {
265 assert(isCoercedLoadValue() && "Wrong accessor");
266 return cast<LoadInst>(Val);
269 MemIntrinsic *getMemIntrinValue() const {
270 assert(isMemIntrinValue() && "Wrong accessor");
271 return cast<MemIntrinsic>(Val);
274 SelectInst *getSelectValue() const {
275 assert(isSelectValue() && "Wrong accessor");
276 return cast<SelectInst>(Val);
279 /// Emit code at the specified insertion point to adjust the value defined
280 /// here to the specified type. This handles various coercion cases.
281 Value *MaterializeAdjustedValue(LoadInst *Load, Instruction *InsertPt,
282 GVNPass &gvn) const;
285 /// Represents an AvailableValue which can be rematerialized at the end of
286 /// the associated BasicBlock.
287 struct llvm::gvn::AvailableValueInBlock {
288 /// BB - The basic block in question.
289 BasicBlock *BB = nullptr;
291 /// AV - The actual available value
292 AvailableValue AV;
294 static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
295 AvailableValueInBlock Res;
296 Res.BB = BB;
297 Res.AV = std::move(AV);
298 return Res;
301 static AvailableValueInBlock get(BasicBlock *BB, Value *V,
302 unsigned Offset = 0) {
303 return get(BB, AvailableValue::get(V, Offset));
306 static AvailableValueInBlock getUndef(BasicBlock *BB) {
307 return get(BB, AvailableValue::getUndef());
310 static AvailableValueInBlock getSelect(BasicBlock *BB, SelectInst *Sel,
311 Value *V1, Value *V2) {
312 return get(BB, AvailableValue::getSelect(Sel, V1, V2));
315 /// Emit code at the end of this block to adjust the value defined here to
316 /// the specified type. This handles various coercion cases.
317 Value *MaterializeAdjustedValue(LoadInst *Load, GVNPass &gvn) const {
318 return AV.MaterializeAdjustedValue(Load, BB->getTerminator(), gvn);
322 //===----------------------------------------------------------------------===//
323 // ValueTable Internal Functions
324 //===----------------------------------------------------------------------===//
326 GVNPass::Expression GVNPass::ValueTable::createExpr(Instruction *I) {
327 Expression e;
328 e.type = I->getType();
329 e.opcode = I->getOpcode();
330 if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(I)) {
331 // gc.relocate is 'special' call: its second and third operands are
332 // not real values, but indices into statepoint's argument list.
333 // Use the refered to values for purposes of identity.
334 e.varargs.push_back(lookupOrAdd(GCR->getOperand(0)));
335 e.varargs.push_back(lookupOrAdd(GCR->getBasePtr()));
336 e.varargs.push_back(lookupOrAdd(GCR->getDerivedPtr()));
337 } else {
338 for (Use &Op : I->operands())
339 e.varargs.push_back(lookupOrAdd(Op));
341 if (I->isCommutative()) {
342 // Ensure that commutative instructions that only differ by a permutation
343 // of their operands get the same value number by sorting the operand value
344 // numbers. Since commutative operands are the 1st two operands it is more
345 // efficient to sort by hand rather than using, say, std::sort.
346 assert(I->getNumOperands() >= 2 && "Unsupported commutative instruction!");
347 if (e.varargs[0] > e.varargs[1])
348 std::swap(e.varargs[0], e.varargs[1]);
349 e.commutative = true;
352 if (auto *C = dyn_cast<CmpInst>(I)) {
353 // Sort the operand value numbers so x<y and y>x get the same value number.
354 CmpInst::Predicate Predicate = C->getPredicate();
355 if (e.varargs[0] > e.varargs[1]) {
356 std::swap(e.varargs[0], e.varargs[1]);
357 Predicate = CmpInst::getSwappedPredicate(Predicate);
359 e.opcode = (C->getOpcode() << 8) | Predicate;
360 e.commutative = true;
361 } else if (auto *E = dyn_cast<InsertValueInst>(I)) {
362 e.varargs.append(E->idx_begin(), E->idx_end());
363 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
364 ArrayRef<int> ShuffleMask = SVI->getShuffleMask();
365 e.varargs.append(ShuffleMask.begin(), ShuffleMask.end());
368 return e;
371 GVNPass::Expression GVNPass::ValueTable::createCmpExpr(
372 unsigned Opcode, CmpInst::Predicate Predicate, Value *LHS, Value *RHS) {
373 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
374 "Not a comparison!");
375 Expression e;
376 e.type = CmpInst::makeCmpResultType(LHS->getType());
377 e.varargs.push_back(lookupOrAdd(LHS));
378 e.varargs.push_back(lookupOrAdd(RHS));
380 // Sort the operand value numbers so x<y and y>x get the same value number.
381 if (e.varargs[0] > e.varargs[1]) {
382 std::swap(e.varargs[0], e.varargs[1]);
383 Predicate = CmpInst::getSwappedPredicate(Predicate);
385 e.opcode = (Opcode << 8) | Predicate;
386 e.commutative = true;
387 return e;
390 GVNPass::Expression
391 GVNPass::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
392 assert(EI && "Not an ExtractValueInst?");
393 Expression e;
394 e.type = EI->getType();
395 e.opcode = 0;
397 WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
398 if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
399 // EI is an extract from one of our with.overflow intrinsics. Synthesize
400 // a semantically equivalent expression instead of an extract value
401 // expression.
402 e.opcode = WO->getBinaryOp();
403 e.varargs.push_back(lookupOrAdd(WO->getLHS()));
404 e.varargs.push_back(lookupOrAdd(WO->getRHS()));
405 return e;
408 // Not a recognised intrinsic. Fall back to producing an extract value
409 // expression.
410 e.opcode = EI->getOpcode();
411 for (Use &Op : EI->operands())
412 e.varargs.push_back(lookupOrAdd(Op));
414 append_range(e.varargs, EI->indices());
416 return e;
419 GVNPass::Expression GVNPass::ValueTable::createGEPExpr(GetElementPtrInst *GEP) {
420 Expression E;
421 Type *PtrTy = GEP->getType()->getScalarType();
422 const DataLayout &DL = GEP->getModule()->getDataLayout();
423 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy);
424 MapVector<Value *, APInt> VariableOffsets;
425 APInt ConstantOffset(BitWidth, 0);
426 if (GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) {
427 // Convert into offset representation, to recognize equivalent address
428 // calculations that use different type encoding.
429 LLVMContext &Context = GEP->getContext();
430 E.opcode = GEP->getOpcode();
431 E.type = nullptr;
432 E.varargs.push_back(lookupOrAdd(GEP->getPointerOperand()));
433 for (const auto &Pair : VariableOffsets) {
434 E.varargs.push_back(lookupOrAdd(Pair.first));
435 E.varargs.push_back(lookupOrAdd(ConstantInt::get(Context, Pair.second)));
437 if (!ConstantOffset.isZero())
438 E.varargs.push_back(
439 lookupOrAdd(ConstantInt::get(Context, ConstantOffset)));
440 } else {
441 // If converting to offset representation fails (for scalable vectors),
442 // fall back to type-based implementation:
443 E.opcode = GEP->getOpcode();
444 E.type = GEP->getSourceElementType();
445 for (Use &Op : GEP->operands())
446 E.varargs.push_back(lookupOrAdd(Op));
448 return E;
451 //===----------------------------------------------------------------------===//
452 // ValueTable External Functions
453 //===----------------------------------------------------------------------===//
455 GVNPass::ValueTable::ValueTable() = default;
456 GVNPass::ValueTable::ValueTable(const ValueTable &) = default;
457 GVNPass::ValueTable::ValueTable(ValueTable &&) = default;
458 GVNPass::ValueTable::~ValueTable() = default;
459 GVNPass::ValueTable &
460 GVNPass::ValueTable::operator=(const GVNPass::ValueTable &Arg) = default;
462 /// add - Insert a value into the table with a specified value number.
463 void GVNPass::ValueTable::add(Value *V, uint32_t num) {
464 valueNumbering.insert(std::make_pair(V, num));
465 if (PHINode *PN = dyn_cast<PHINode>(V))
466 NumberingPhi[num] = PN;
469 uint32_t GVNPass::ValueTable::lookupOrAddCall(CallInst *C) {
470 // FIXME: Currently the calls which may access the thread id may
471 // be considered as not accessing the memory. But this is
472 // problematic for coroutines, since coroutines may resume in a
473 // different thread. So we disable the optimization here for the
474 // correctness. However, it may block many other correct
475 // optimizations. Revert this one when we detect the memory
476 // accessing kind more precisely.
477 if (C->getFunction()->isPresplitCoroutine()) {
478 valueNumbering[C] = nextValueNumber;
479 return nextValueNumber++;
482 // Do not combine convergent calls since they implicitly depend on the set of
483 // threads that is currently executing, and they might be in different basic
484 // blocks.
485 if (C->isConvergent()) {
486 valueNumbering[C] = nextValueNumber;
487 return nextValueNumber++;
490 if (AA->doesNotAccessMemory(C)) {
491 Expression exp = createExpr(C);
492 uint32_t e = assignExpNewValueNum(exp).first;
493 valueNumbering[C] = e;
494 return e;
497 if (MD && AA->onlyReadsMemory(C)) {
498 Expression exp = createExpr(C);
499 auto ValNum = assignExpNewValueNum(exp);
500 if (ValNum.second) {
501 valueNumbering[C] = ValNum.first;
502 return ValNum.first;
505 MemDepResult local_dep = MD->getDependency(C);
507 if (!local_dep.isDef() && !local_dep.isNonLocal()) {
508 valueNumbering[C] = nextValueNumber;
509 return nextValueNumber++;
512 if (local_dep.isDef()) {
513 // For masked load/store intrinsics, the local_dep may actually be
514 // a normal load or store instruction.
515 CallInst *local_cdep = dyn_cast<CallInst>(local_dep.getInst());
517 if (!local_cdep || local_cdep->arg_size() != C->arg_size()) {
518 valueNumbering[C] = nextValueNumber;
519 return nextValueNumber++;
522 for (unsigned i = 0, e = C->arg_size(); i < e; ++i) {
523 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
524 uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
525 if (c_vn != cd_vn) {
526 valueNumbering[C] = nextValueNumber;
527 return nextValueNumber++;
531 uint32_t v = lookupOrAdd(local_cdep);
532 valueNumbering[C] = v;
533 return v;
536 // Non-local case.
537 const MemoryDependenceResults::NonLocalDepInfo &deps =
538 MD->getNonLocalCallDependency(C);
539 // FIXME: Move the checking logic to MemDep!
540 CallInst* cdep = nullptr;
542 // Check to see if we have a single dominating call instruction that is
543 // identical to C.
544 for (const NonLocalDepEntry &I : deps) {
545 if (I.getResult().isNonLocal())
546 continue;
548 // We don't handle non-definitions. If we already have a call, reject
549 // instruction dependencies.
550 if (!I.getResult().isDef() || cdep != nullptr) {
551 cdep = nullptr;
552 break;
555 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I.getResult().getInst());
556 // FIXME: All duplicated with non-local case.
557 if (NonLocalDepCall && DT->properlyDominates(I.getBB(), C->getParent())) {
558 cdep = NonLocalDepCall;
559 continue;
562 cdep = nullptr;
563 break;
566 if (!cdep) {
567 valueNumbering[C] = nextValueNumber;
568 return nextValueNumber++;
571 if (cdep->arg_size() != C->arg_size()) {
572 valueNumbering[C] = nextValueNumber;
573 return nextValueNumber++;
575 for (unsigned i = 0, e = C->arg_size(); i < e; ++i) {
576 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
577 uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
578 if (c_vn != cd_vn) {
579 valueNumbering[C] = nextValueNumber;
580 return nextValueNumber++;
584 uint32_t v = lookupOrAdd(cdep);
585 valueNumbering[C] = v;
586 return v;
589 valueNumbering[C] = nextValueNumber;
590 return nextValueNumber++;
593 /// Returns true if a value number exists for the specified value.
594 bool GVNPass::ValueTable::exists(Value *V) const {
595 return valueNumbering.contains(V);
598 /// lookup_or_add - Returns the value number for the specified value, assigning
599 /// it a new number if it did not have one before.
600 uint32_t GVNPass::ValueTable::lookupOrAdd(Value *V) {
601 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
602 if (VI != valueNumbering.end())
603 return VI->second;
605 auto *I = dyn_cast<Instruction>(V);
606 if (!I) {
607 valueNumbering[V] = nextValueNumber;
608 return nextValueNumber++;
611 Expression exp;
612 switch (I->getOpcode()) {
613 case Instruction::Call:
614 return lookupOrAddCall(cast<CallInst>(I));
615 case Instruction::FNeg:
616 case Instruction::Add:
617 case Instruction::FAdd:
618 case Instruction::Sub:
619 case Instruction::FSub:
620 case Instruction::Mul:
621 case Instruction::FMul:
622 case Instruction::UDiv:
623 case Instruction::SDiv:
624 case Instruction::FDiv:
625 case Instruction::URem:
626 case Instruction::SRem:
627 case Instruction::FRem:
628 case Instruction::Shl:
629 case Instruction::LShr:
630 case Instruction::AShr:
631 case Instruction::And:
632 case Instruction::Or:
633 case Instruction::Xor:
634 case Instruction::ICmp:
635 case Instruction::FCmp:
636 case Instruction::Trunc:
637 case Instruction::ZExt:
638 case Instruction::SExt:
639 case Instruction::FPToUI:
640 case Instruction::FPToSI:
641 case Instruction::UIToFP:
642 case Instruction::SIToFP:
643 case Instruction::FPTrunc:
644 case Instruction::FPExt:
645 case Instruction::PtrToInt:
646 case Instruction::IntToPtr:
647 case Instruction::AddrSpaceCast:
648 case Instruction::BitCast:
649 case Instruction::Select:
650 case Instruction::Freeze:
651 case Instruction::ExtractElement:
652 case Instruction::InsertElement:
653 case Instruction::ShuffleVector:
654 case Instruction::InsertValue:
655 exp = createExpr(I);
656 break;
657 case Instruction::GetElementPtr:
658 exp = createGEPExpr(cast<GetElementPtrInst>(I));
659 break;
660 case Instruction::ExtractValue:
661 exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
662 break;
663 case Instruction::PHI:
664 valueNumbering[V] = nextValueNumber;
665 NumberingPhi[nextValueNumber] = cast<PHINode>(V);
666 return nextValueNumber++;
667 default:
668 valueNumbering[V] = nextValueNumber;
669 return nextValueNumber++;
672 uint32_t e = assignExpNewValueNum(exp).first;
673 valueNumbering[V] = e;
674 return e;
677 /// Returns the value number of the specified value. Fails if
678 /// the value has not yet been numbered.
679 uint32_t GVNPass::ValueTable::lookup(Value *V, bool Verify) const {
680 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
681 if (Verify) {
682 assert(VI != valueNumbering.end() && "Value not numbered?");
683 return VI->second;
685 return (VI != valueNumbering.end()) ? VI->second : 0;
688 /// Returns the value number of the given comparison,
689 /// assigning it a new number if it did not have one before. Useful when
690 /// we deduced the result of a comparison, but don't immediately have an
691 /// instruction realizing that comparison to hand.
692 uint32_t GVNPass::ValueTable::lookupOrAddCmp(unsigned Opcode,
693 CmpInst::Predicate Predicate,
694 Value *LHS, Value *RHS) {
695 Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
696 return assignExpNewValueNum(exp).first;
699 /// Remove all entries from the ValueTable.
700 void GVNPass::ValueTable::clear() {
701 valueNumbering.clear();
702 expressionNumbering.clear();
703 NumberingPhi.clear();
704 PhiTranslateTable.clear();
705 nextValueNumber = 1;
706 Expressions.clear();
707 ExprIdx.clear();
708 nextExprNumber = 0;
711 /// Remove a value from the value numbering.
712 void GVNPass::ValueTable::erase(Value *V) {
713 uint32_t Num = valueNumbering.lookup(V);
714 valueNumbering.erase(V);
715 // If V is PHINode, V <--> value number is an one-to-one mapping.
716 if (isa<PHINode>(V))
717 NumberingPhi.erase(Num);
720 /// verifyRemoved - Verify that the value is removed from all internal data
721 /// structures.
722 void GVNPass::ValueTable::verifyRemoved(const Value *V) const {
723 assert(!valueNumbering.contains(V) &&
724 "Inst still occurs in value numbering map!");
727 //===----------------------------------------------------------------------===//
728 // GVN Pass
729 //===----------------------------------------------------------------------===//
731 bool GVNPass::isPREEnabled() const {
732 return Options.AllowPRE.value_or(GVNEnablePRE);
735 bool GVNPass::isLoadPREEnabled() const {
736 return Options.AllowLoadPRE.value_or(GVNEnableLoadPRE);
739 bool GVNPass::isLoadInLoopPREEnabled() const {
740 return Options.AllowLoadInLoopPRE.value_or(GVNEnableLoadInLoopPRE);
743 bool GVNPass::isLoadPRESplitBackedgeEnabled() const {
744 return Options.AllowLoadPRESplitBackedge.value_or(
745 GVNEnableSplitBackedgeInLoadPRE);
748 bool GVNPass::isMemDepEnabled() const {
749 return Options.AllowMemDep.value_or(GVNEnableMemDep);
752 PreservedAnalyses GVNPass::run(Function &F, FunctionAnalysisManager &AM) {
753 // FIXME: The order of evaluation of these 'getResult' calls is very
754 // significant! Re-ordering these variables will cause GVN when run alone to
755 // be less effective! We should fix memdep and basic-aa to not exhibit this
756 // behavior, but until then don't change the order here.
757 auto &AC = AM.getResult<AssumptionAnalysis>(F);
758 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
759 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
760 auto &AA = AM.getResult<AAManager>(F);
761 auto *MemDep =
762 isMemDepEnabled() ? &AM.getResult<MemoryDependenceAnalysis>(F) : nullptr;
763 auto &LI = AM.getResult<LoopAnalysis>(F);
764 auto *MSSA = AM.getCachedResult<MemorySSAAnalysis>(F);
765 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
766 bool Changed = runImpl(F, AC, DT, TLI, AA, MemDep, LI, &ORE,
767 MSSA ? &MSSA->getMSSA() : nullptr);
768 if (!Changed)
769 return PreservedAnalyses::all();
770 PreservedAnalyses PA;
771 PA.preserve<DominatorTreeAnalysis>();
772 PA.preserve<TargetLibraryAnalysis>();
773 if (MSSA)
774 PA.preserve<MemorySSAAnalysis>();
775 PA.preserve<LoopAnalysis>();
776 return PA;
779 void GVNPass::printPipeline(
780 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
781 static_cast<PassInfoMixin<GVNPass> *>(this)->printPipeline(
782 OS, MapClassName2PassName);
784 OS << '<';
785 if (Options.AllowPRE != std::nullopt)
786 OS << (*Options.AllowPRE ? "" : "no-") << "pre;";
787 if (Options.AllowLoadPRE != std::nullopt)
788 OS << (*Options.AllowLoadPRE ? "" : "no-") << "load-pre;";
789 if (Options.AllowLoadPRESplitBackedge != std::nullopt)
790 OS << (*Options.AllowLoadPRESplitBackedge ? "" : "no-")
791 << "split-backedge-load-pre;";
792 if (Options.AllowMemDep != std::nullopt)
793 OS << (*Options.AllowMemDep ? "" : "no-") << "memdep";
794 OS << '>';
797 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
798 LLVM_DUMP_METHOD void GVNPass::dump(DenseMap<uint32_t, Value *> &d) const {
799 errs() << "{\n";
800 for (auto &I : d) {
801 errs() << I.first << "\n";
802 I.second->dump();
804 errs() << "}\n";
806 #endif
808 enum class AvailabilityState : char {
809 /// We know the block *is not* fully available. This is a fixpoint.
810 Unavailable = 0,
811 /// We know the block *is* fully available. This is a fixpoint.
812 Available = 1,
813 /// We do not know whether the block is fully available or not,
814 /// but we are currently speculating that it will be.
815 /// If it would have turned out that the block was, in fact, not fully
816 /// available, this would have been cleaned up into an Unavailable.
817 SpeculativelyAvailable = 2,
820 /// Return true if we can prove that the value
821 /// we're analyzing is fully available in the specified block. As we go, keep
822 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This
823 /// map is actually a tri-state map with the following values:
824 /// 0) we know the block *is not* fully available.
825 /// 1) we know the block *is* fully available.
826 /// 2) we do not know whether the block is fully available or not, but we are
827 /// currently speculating that it will be.
828 static bool IsValueFullyAvailableInBlock(
829 BasicBlock *BB,
830 DenseMap<BasicBlock *, AvailabilityState> &FullyAvailableBlocks) {
831 SmallVector<BasicBlock *, 32> Worklist;
832 std::optional<BasicBlock *> UnavailableBB;
834 // The number of times we didn't find an entry for a block in a map and
835 // optimistically inserted an entry marking block as speculatively available.
836 unsigned NumNewNewSpeculativelyAvailableBBs = 0;
838 #ifndef NDEBUG
839 SmallSet<BasicBlock *, 32> NewSpeculativelyAvailableBBs;
840 SmallVector<BasicBlock *, 32> AvailableBBs;
841 #endif
843 Worklist.emplace_back(BB);
844 while (!Worklist.empty()) {
845 BasicBlock *CurrBB = Worklist.pop_back_val(); // LoadFO - depth-first!
846 // Optimistically assume that the block is Speculatively Available and check
847 // to see if we already know about this block in one lookup.
848 std::pair<DenseMap<BasicBlock *, AvailabilityState>::iterator, bool> IV =
849 FullyAvailableBlocks.try_emplace(
850 CurrBB, AvailabilityState::SpeculativelyAvailable);
851 AvailabilityState &State = IV.first->second;
853 // Did the entry already exist for this block?
854 if (!IV.second) {
855 if (State == AvailabilityState::Unavailable) {
856 UnavailableBB = CurrBB;
857 break; // Backpropagate unavailability info.
860 #ifndef NDEBUG
861 AvailableBBs.emplace_back(CurrBB);
862 #endif
863 continue; // Don't recurse further, but continue processing worklist.
866 // No entry found for block.
867 ++NumNewNewSpeculativelyAvailableBBs;
868 bool OutOfBudget = NumNewNewSpeculativelyAvailableBBs > MaxBBSpeculations;
870 // If we have exhausted our budget, mark this block as unavailable.
871 // Also, if this block has no predecessors, the value isn't live-in here.
872 if (OutOfBudget || pred_empty(CurrBB)) {
873 MaxBBSpeculationCutoffReachedTimes += (int)OutOfBudget;
874 State = AvailabilityState::Unavailable;
875 UnavailableBB = CurrBB;
876 break; // Backpropagate unavailability info.
879 // Tentatively consider this block as speculatively available.
880 #ifndef NDEBUG
881 NewSpeculativelyAvailableBBs.insert(CurrBB);
882 #endif
883 // And further recurse into block's predecessors, in depth-first order!
884 Worklist.append(pred_begin(CurrBB), pred_end(CurrBB));
887 #if LLVM_ENABLE_STATS
888 IsValueFullyAvailableInBlockNumSpeculationsMax.updateMax(
889 NumNewNewSpeculativelyAvailableBBs);
890 #endif
892 // If the block isn't marked as fixpoint yet
893 // (the Unavailable and Available states are fixpoints)
894 auto MarkAsFixpointAndEnqueueSuccessors =
895 [&](BasicBlock *BB, AvailabilityState FixpointState) {
896 auto It = FullyAvailableBlocks.find(BB);
897 if (It == FullyAvailableBlocks.end())
898 return; // Never queried this block, leave as-is.
899 switch (AvailabilityState &State = It->second) {
900 case AvailabilityState::Unavailable:
901 case AvailabilityState::Available:
902 return; // Don't backpropagate further, continue processing worklist.
903 case AvailabilityState::SpeculativelyAvailable: // Fix it!
904 State = FixpointState;
905 #ifndef NDEBUG
906 assert(NewSpeculativelyAvailableBBs.erase(BB) &&
907 "Found a speculatively available successor leftover?");
908 #endif
909 // Queue successors for further processing.
910 Worklist.append(succ_begin(BB), succ_end(BB));
911 return;
915 if (UnavailableBB) {
916 // Okay, we have encountered an unavailable block.
917 // Mark speculatively available blocks reachable from UnavailableBB as
918 // unavailable as well. Paths are terminated when they reach blocks not in
919 // FullyAvailableBlocks or they are not marked as speculatively available.
920 Worklist.clear();
921 Worklist.append(succ_begin(*UnavailableBB), succ_end(*UnavailableBB));
922 while (!Worklist.empty())
923 MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(),
924 AvailabilityState::Unavailable);
927 #ifndef NDEBUG
928 Worklist.clear();
929 for (BasicBlock *AvailableBB : AvailableBBs)
930 Worklist.append(succ_begin(AvailableBB), succ_end(AvailableBB));
931 while (!Worklist.empty())
932 MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(),
933 AvailabilityState::Available);
935 assert(NewSpeculativelyAvailableBBs.empty() &&
936 "Must have fixed all the new speculatively available blocks.");
937 #endif
939 return !UnavailableBB;
942 /// If the specified OldValue exists in ValuesPerBlock, replace its value with
943 /// NewValue.
944 static void replaceValuesPerBlockEntry(
945 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, Value *OldValue,
946 Value *NewValue) {
947 for (AvailableValueInBlock &V : ValuesPerBlock) {
948 if (V.AV.Val == OldValue)
949 V.AV.Val = NewValue;
950 if (V.AV.isSelectValue()) {
951 if (V.AV.V1 == OldValue)
952 V.AV.V1 = NewValue;
953 if (V.AV.V2 == OldValue)
954 V.AV.V2 = NewValue;
959 /// Given a set of loads specified by ValuesPerBlock,
960 /// construct SSA form, allowing us to eliminate Load. This returns the value
961 /// that should be used at Load's definition site.
962 static Value *
963 ConstructSSAForLoadSet(LoadInst *Load,
964 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
965 GVNPass &gvn) {
966 // Check for the fully redundant, dominating load case. In this case, we can
967 // just use the dominating value directly.
968 if (ValuesPerBlock.size() == 1 &&
969 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
970 Load->getParent())) {
971 assert(!ValuesPerBlock[0].AV.isUndefValue() &&
972 "Dead BB dominate this block");
973 return ValuesPerBlock[0].MaterializeAdjustedValue(Load, gvn);
976 // Otherwise, we have to construct SSA form.
977 SmallVector<PHINode*, 8> NewPHIs;
978 SSAUpdater SSAUpdate(&NewPHIs);
979 SSAUpdate.Initialize(Load->getType(), Load->getName());
981 for (const AvailableValueInBlock &AV : ValuesPerBlock) {
982 BasicBlock *BB = AV.BB;
984 if (AV.AV.isUndefValue())
985 continue;
987 if (SSAUpdate.HasValueForBlock(BB))
988 continue;
990 // If the value is the load that we will be eliminating, and the block it's
991 // available in is the block that the load is in, then don't add it as
992 // SSAUpdater will resolve the value to the relevant phi which may let it
993 // avoid phi construction entirely if there's actually only one value.
994 if (BB == Load->getParent() &&
995 ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == Load) ||
996 (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == Load)))
997 continue;
999 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(Load, gvn));
1002 // Perform PHI construction.
1003 return SSAUpdate.GetValueInMiddleOfBlock(Load->getParent());
1006 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *Load,
1007 Instruction *InsertPt,
1008 GVNPass &gvn) const {
1009 Value *Res;
1010 Type *LoadTy = Load->getType();
1011 const DataLayout &DL = Load->getModule()->getDataLayout();
1012 if (isSimpleValue()) {
1013 Res = getSimpleValue();
1014 if (Res->getType() != LoadTy) {
1015 Res = getValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
1017 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset
1018 << " " << *getSimpleValue() << '\n'
1019 << *Res << '\n'
1020 << "\n\n\n");
1022 } else if (isCoercedLoadValue()) {
1023 LoadInst *CoercedLoad = getCoercedLoadValue();
1024 if (CoercedLoad->getType() == LoadTy && Offset == 0) {
1025 Res = CoercedLoad;
1026 combineMetadataForCSE(CoercedLoad, Load, false);
1027 } else {
1028 Res = getValueForLoad(CoercedLoad, Offset, LoadTy, InsertPt, DL);
1029 // We are adding a new user for this load, for which the original
1030 // metadata may not hold. Additionally, the new load may have a different
1031 // size and type, so their metadata cannot be combined in any
1032 // straightforward way.
1033 // Drop all metadata that is not known to cause immediate UB on violation,
1034 // unless the load has !noundef, in which case all metadata violations
1035 // will be promoted to UB.
1036 // TODO: We can combine noalias/alias.scope metadata here, because it is
1037 // independent of the load type.
1038 if (!CoercedLoad->hasMetadata(LLVMContext::MD_noundef))
1039 CoercedLoad->dropUnknownNonDebugMetadata(
1040 {LLVMContext::MD_dereferenceable,
1041 LLVMContext::MD_dereferenceable_or_null,
1042 LLVMContext::MD_invariant_load, LLVMContext::MD_invariant_group});
1043 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset
1044 << " " << *getCoercedLoadValue() << '\n'
1045 << *Res << '\n'
1046 << "\n\n\n");
1048 } else if (isMemIntrinValue()) {
1049 Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
1050 InsertPt, DL);
1051 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1052 << " " << *getMemIntrinValue() << '\n'
1053 << *Res << '\n'
1054 << "\n\n\n");
1055 } else if (isSelectValue()) {
1056 // Introduce a new value select for a load from an eligible pointer select.
1057 SelectInst *Sel = getSelectValue();
1058 assert(V1 && V2 && "both value operands of the select must be present");
1059 Res = SelectInst::Create(Sel->getCondition(), V1, V2, "", Sel);
1060 } else {
1061 llvm_unreachable("Should not materialize value from dead block");
1063 assert(Res && "failed to materialize?");
1064 return Res;
1067 static bool isLifetimeStart(const Instruction *Inst) {
1068 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1069 return II->getIntrinsicID() == Intrinsic::lifetime_start;
1070 return false;
1073 /// Assuming To can be reached from both From and Between, does Between lie on
1074 /// every path from From to To?
1075 static bool liesBetween(const Instruction *From, Instruction *Between,
1076 const Instruction *To, DominatorTree *DT) {
1077 if (From->getParent() == Between->getParent())
1078 return DT->dominates(From, Between);
1079 SmallSet<BasicBlock *, 1> Exclusion;
1080 Exclusion.insert(Between->getParent());
1081 return !isPotentiallyReachable(From, To, &Exclusion, DT);
1084 /// Try to locate the three instruction involved in a missed
1085 /// load-elimination case that is due to an intervening store.
1086 static void reportMayClobberedLoad(LoadInst *Load, MemDepResult DepInfo,
1087 DominatorTree *DT,
1088 OptimizationRemarkEmitter *ORE) {
1089 using namespace ore;
1091 Instruction *OtherAccess = nullptr;
1093 OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", Load);
1094 R << "load of type " << NV("Type", Load->getType()) << " not eliminated"
1095 << setExtraArgs();
1097 for (auto *U : Load->getPointerOperand()->users()) {
1098 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U))) {
1099 auto *I = cast<Instruction>(U);
1100 if (I->getFunction() == Load->getFunction() && DT->dominates(I, Load)) {
1101 // Use the most immediately dominating value
1102 if (OtherAccess) {
1103 if (DT->dominates(OtherAccess, I))
1104 OtherAccess = I;
1105 else
1106 assert(U == OtherAccess || DT->dominates(I, OtherAccess));
1107 } else
1108 OtherAccess = I;
1113 if (!OtherAccess) {
1114 // There is no dominating use, check if we can find a closest non-dominating
1115 // use that lies between any other potentially available use and Load.
1116 for (auto *U : Load->getPointerOperand()->users()) {
1117 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U))) {
1118 auto *I = cast<Instruction>(U);
1119 if (I->getFunction() == Load->getFunction() &&
1120 isPotentiallyReachable(I, Load, nullptr, DT)) {
1121 if (OtherAccess) {
1122 if (liesBetween(OtherAccess, I, Load, DT)) {
1123 OtherAccess = I;
1124 } else if (!liesBetween(I, OtherAccess, Load, DT)) {
1125 // These uses are both partially available at Load were it not for
1126 // the clobber, but neither lies strictly after the other.
1127 OtherAccess = nullptr;
1128 break;
1129 } // else: keep current OtherAccess since it lies between U and Load
1130 } else {
1131 OtherAccess = I;
1138 if (OtherAccess)
1139 R << " in favor of " << NV("OtherAccess", OtherAccess);
1141 R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst());
1143 ORE->emit(R);
1146 // Find non-clobbered value for Loc memory location in extended basic block
1147 // (chain of basic blocks with single predecessors) starting From instruction.
1148 static Value *findDominatingValue(const MemoryLocation &Loc, Type *LoadTy,
1149 Instruction *From, AAResults *AA) {
1150 uint32_t NumVisitedInsts = 0;
1151 BasicBlock *FromBB = From->getParent();
1152 BatchAAResults BatchAA(*AA);
1153 for (BasicBlock *BB = FromBB; BB; BB = BB->getSinglePredecessor())
1154 for (auto *Inst = BB == FromBB ? From : BB->getTerminator();
1155 Inst != nullptr; Inst = Inst->getPrevNonDebugInstruction()) {
1156 // Stop the search if limit is reached.
1157 if (++NumVisitedInsts > MaxNumVisitedInsts)
1158 return nullptr;
1159 if (isModSet(BatchAA.getModRefInfo(Inst, Loc)))
1160 return nullptr;
1161 if (auto *LI = dyn_cast<LoadInst>(Inst))
1162 if (LI->getPointerOperand() == Loc.Ptr && LI->getType() == LoadTy)
1163 return LI;
1165 return nullptr;
1168 std::optional<AvailableValue>
1169 GVNPass::AnalyzeLoadAvailability(LoadInst *Load, MemDepResult DepInfo,
1170 Value *Address) {
1171 assert(Load->isUnordered() && "rules below are incorrect for ordered access");
1172 assert(DepInfo.isLocal() && "expected a local dependence");
1174 Instruction *DepInst = DepInfo.getInst();
1176 const DataLayout &DL = Load->getModule()->getDataLayout();
1177 if (DepInfo.isClobber()) {
1178 // If the dependence is to a store that writes to a superset of the bits
1179 // read by the load, we can extract the bits we need for the load from the
1180 // stored value.
1181 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1182 // Can't forward from non-atomic to atomic without violating memory model.
1183 if (Address && Load->isAtomic() <= DepSI->isAtomic()) {
1184 int Offset =
1185 analyzeLoadFromClobberingStore(Load->getType(), Address, DepSI, DL);
1186 if (Offset != -1)
1187 return AvailableValue::get(DepSI->getValueOperand(), Offset);
1191 // Check to see if we have something like this:
1192 // load i32* P
1193 // load i8* (P+1)
1194 // if we have this, replace the later with an extraction from the former.
1195 if (LoadInst *DepLoad = dyn_cast<LoadInst>(DepInst)) {
1196 // If this is a clobber and L is the first instruction in its block, then
1197 // we have the first instruction in the entry block.
1198 // Can't forward from non-atomic to atomic without violating memory model.
1199 if (DepLoad != Load && Address &&
1200 Load->isAtomic() <= DepLoad->isAtomic()) {
1201 Type *LoadType = Load->getType();
1202 int Offset = -1;
1204 // If MD reported clobber, check it was nested.
1205 if (DepInfo.isClobber() &&
1206 canCoerceMustAliasedValueToLoad(DepLoad, LoadType, DL)) {
1207 const auto ClobberOff = MD->getClobberOffset(DepLoad);
1208 // GVN has no deal with a negative offset.
1209 Offset = (ClobberOff == std::nullopt || *ClobberOff < 0)
1210 ? -1
1211 : *ClobberOff;
1213 if (Offset == -1)
1214 Offset =
1215 analyzeLoadFromClobberingLoad(LoadType, Address, DepLoad, DL);
1216 if (Offset != -1)
1217 return AvailableValue::getLoad(DepLoad, Offset);
1221 // If the clobbering value is a memset/memcpy/memmove, see if we can
1222 // forward a value on from it.
1223 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1224 if (Address && !Load->isAtomic()) {
1225 int Offset = analyzeLoadFromClobberingMemInst(Load->getType(), Address,
1226 DepMI, DL);
1227 if (Offset != -1)
1228 return AvailableValue::getMI(DepMI, Offset);
1232 // Nothing known about this clobber, have to be conservative
1233 LLVM_DEBUG(
1234 // fast print dep, using operator<< on instruction is too slow.
1235 dbgs() << "GVN: load "; Load->printAsOperand(dbgs());
1236 dbgs() << " is clobbered by " << *DepInst << '\n';);
1237 if (ORE->allowExtraAnalysis(DEBUG_TYPE))
1238 reportMayClobberedLoad(Load, DepInfo, DT, ORE);
1240 return std::nullopt;
1242 assert(DepInfo.isDef() && "follows from above");
1244 // Loading the alloca -> undef.
1245 // Loading immediately after lifetime begin -> undef.
1246 if (isa<AllocaInst>(DepInst) || isLifetimeStart(DepInst))
1247 return AvailableValue::get(UndefValue::get(Load->getType()));
1249 if (Constant *InitVal =
1250 getInitialValueOfAllocation(DepInst, TLI, Load->getType()))
1251 return AvailableValue::get(InitVal);
1253 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1254 // Reject loads and stores that are to the same address but are of
1255 // different types if we have to. If the stored value is convertable to
1256 // the loaded value, we can reuse it.
1257 if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), Load->getType(),
1258 DL))
1259 return std::nullopt;
1261 // Can't forward from non-atomic to atomic without violating memory model.
1262 if (S->isAtomic() < Load->isAtomic())
1263 return std::nullopt;
1265 return AvailableValue::get(S->getValueOperand());
1268 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1269 // If the types mismatch and we can't handle it, reject reuse of the load.
1270 // If the stored value is larger or equal to the loaded value, we can reuse
1271 // it.
1272 if (!canCoerceMustAliasedValueToLoad(LD, Load->getType(), DL))
1273 return std::nullopt;
1275 // Can't forward from non-atomic to atomic without violating memory model.
1276 if (LD->isAtomic() < Load->isAtomic())
1277 return std::nullopt;
1279 return AvailableValue::getLoad(LD);
1282 // Check if load with Addr dependent from select can be converted to select
1283 // between load values. There must be no instructions between the found
1284 // loads and DepInst that may clobber the loads.
1285 if (auto *Sel = dyn_cast<SelectInst>(DepInst)) {
1286 assert(Sel->getType() == Load->getPointerOperandType());
1287 auto Loc = MemoryLocation::get(Load);
1288 Value *V1 =
1289 findDominatingValue(Loc.getWithNewPtr(Sel->getTrueValue()),
1290 Load->getType(), DepInst, getAliasAnalysis());
1291 if (!V1)
1292 return std::nullopt;
1293 Value *V2 =
1294 findDominatingValue(Loc.getWithNewPtr(Sel->getFalseValue()),
1295 Load->getType(), DepInst, getAliasAnalysis());
1296 if (!V2)
1297 return std::nullopt;
1298 return AvailableValue::getSelect(Sel, V1, V2);
1301 // Unknown def - must be conservative
1302 LLVM_DEBUG(
1303 // fast print dep, using operator<< on instruction is too slow.
1304 dbgs() << "GVN: load "; Load->printAsOperand(dbgs());
1305 dbgs() << " has unknown def " << *DepInst << '\n';);
1306 return std::nullopt;
1309 void GVNPass::AnalyzeLoadAvailability(LoadInst *Load, LoadDepVect &Deps,
1310 AvailValInBlkVect &ValuesPerBlock,
1311 UnavailBlkVect &UnavailableBlocks) {
1312 // Filter out useless results (non-locals, etc). Keep track of the blocks
1313 // where we have a value available in repl, also keep track of whether we see
1314 // dependencies that produce an unknown value for the load (such as a call
1315 // that could potentially clobber the load).
1316 for (const auto &Dep : Deps) {
1317 BasicBlock *DepBB = Dep.getBB();
1318 MemDepResult DepInfo = Dep.getResult();
1320 if (DeadBlocks.count(DepBB)) {
1321 // Dead dependent mem-op disguise as a load evaluating the same value
1322 // as the load in question.
1323 ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
1324 continue;
1327 if (!DepInfo.isLocal()) {
1328 UnavailableBlocks.push_back(DepBB);
1329 continue;
1332 // The address being loaded in this non-local block may not be the same as
1333 // the pointer operand of the load if PHI translation occurs. Make sure
1334 // to consider the right address.
1335 if (auto AV = AnalyzeLoadAvailability(Load, DepInfo, Dep.getAddress())) {
1336 // subtlety: because we know this was a non-local dependency, we know
1337 // it's safe to materialize anywhere between the instruction within
1338 // DepInfo and the end of it's block.
1339 ValuesPerBlock.push_back(
1340 AvailableValueInBlock::get(DepBB, std::move(*AV)));
1341 } else {
1342 UnavailableBlocks.push_back(DepBB);
1346 assert(Deps.size() == ValuesPerBlock.size() + UnavailableBlocks.size() &&
1347 "post condition violation");
1350 /// Given the following code, v1 is partially available on some edges, but not
1351 /// available on the edge from PredBB. This function tries to find if there is
1352 /// another identical load in the other successor of PredBB.
1354 /// v0 = load %addr
1355 /// br %LoadBB
1357 /// LoadBB:
1358 /// v1 = load %addr
1359 /// ...
1361 /// PredBB:
1362 /// ...
1363 /// br %cond, label %LoadBB, label %SuccBB
1365 /// SuccBB:
1366 /// v2 = load %addr
1367 /// ...
1369 LoadInst *GVNPass::findLoadToHoistIntoPred(BasicBlock *Pred, BasicBlock *LoadBB,
1370 LoadInst *Load) {
1371 // For simplicity we handle a Pred has 2 successors only.
1372 auto *Term = Pred->getTerminator();
1373 if (Term->getNumSuccessors() != 2 || Term->isSpecialTerminator())
1374 return nullptr;
1375 auto *SuccBB = Term->getSuccessor(0);
1376 if (SuccBB == LoadBB)
1377 SuccBB = Term->getSuccessor(1);
1378 if (!SuccBB->getSinglePredecessor())
1379 return nullptr;
1381 unsigned int NumInsts = MaxNumInsnsPerBlock;
1382 for (Instruction &Inst : *SuccBB) {
1383 if (Inst.isDebugOrPseudoInst())
1384 continue;
1385 if (--NumInsts == 0)
1386 return nullptr;
1388 if (!Inst.isIdenticalTo(Load))
1389 continue;
1391 MemDepResult Dep = MD->getDependency(&Inst);
1392 // If an identical load doesn't depends on any local instructions, it can
1393 // be safely moved to PredBB.
1394 // Also check for the implicit control flow instructions. See the comments
1395 // in PerformLoadPRE for details.
1396 if (Dep.isNonLocal() && !ICF->isDominatedByICFIFromSameBlock(&Inst))
1397 return cast<LoadInst>(&Inst);
1399 // Otherwise there is something in the same BB clobbers the memory, we can't
1400 // move this and later load to PredBB.
1401 return nullptr;
1404 return nullptr;
1407 void GVNPass::eliminatePartiallyRedundantLoad(
1408 LoadInst *Load, AvailValInBlkVect &ValuesPerBlock,
1409 MapVector<BasicBlock *, Value *> &AvailableLoads,
1410 MapVector<BasicBlock *, LoadInst *> *CriticalEdgePredAndLoad) {
1411 for (const auto &AvailableLoad : AvailableLoads) {
1412 BasicBlock *UnavailableBlock = AvailableLoad.first;
1413 Value *LoadPtr = AvailableLoad.second;
1415 auto *NewLoad =
1416 new LoadInst(Load->getType(), LoadPtr, Load->getName() + ".pre",
1417 Load->isVolatile(), Load->getAlign(), Load->getOrdering(),
1418 Load->getSyncScopeID(), UnavailableBlock->getTerminator());
1419 NewLoad->setDebugLoc(Load->getDebugLoc());
1420 if (MSSAU) {
1421 auto *NewAccess = MSSAU->createMemoryAccessInBB(
1422 NewLoad, nullptr, NewLoad->getParent(), MemorySSA::BeforeTerminator);
1423 if (auto *NewDef = dyn_cast<MemoryDef>(NewAccess))
1424 MSSAU->insertDef(NewDef, /*RenameUses=*/true);
1425 else
1426 MSSAU->insertUse(cast<MemoryUse>(NewAccess), /*RenameUses=*/true);
1429 // Transfer the old load's AA tags to the new load.
1430 AAMDNodes Tags = Load->getAAMetadata();
1431 if (Tags)
1432 NewLoad->setAAMetadata(Tags);
1434 if (auto *MD = Load->getMetadata(LLVMContext::MD_invariant_load))
1435 NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
1436 if (auto *InvGroupMD = Load->getMetadata(LLVMContext::MD_invariant_group))
1437 NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
1438 if (auto *RangeMD = Load->getMetadata(LLVMContext::MD_range))
1439 NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
1440 if (auto *AccessMD = Load->getMetadata(LLVMContext::MD_access_group))
1441 if (LI->getLoopFor(Load->getParent()) == LI->getLoopFor(UnavailableBlock))
1442 NewLoad->setMetadata(LLVMContext::MD_access_group, AccessMD);
1444 // We do not propagate the old load's debug location, because the new
1445 // load now lives in a different BB, and we want to avoid a jumpy line
1446 // table.
1447 // FIXME: How do we retain source locations without causing poor debugging
1448 // behavior?
1450 // Add the newly created load.
1451 ValuesPerBlock.push_back(
1452 AvailableValueInBlock::get(UnavailableBlock, NewLoad));
1453 MD->invalidateCachedPointerInfo(LoadPtr);
1454 LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1456 // For PredBB in CriticalEdgePredAndLoad we need to replace the uses of old
1457 // load instruction with the new created load instruction.
1458 if (CriticalEdgePredAndLoad) {
1459 auto I = CriticalEdgePredAndLoad->find(UnavailableBlock);
1460 if (I != CriticalEdgePredAndLoad->end()) {
1461 ++NumPRELoadMoved2CEPred;
1462 ICF->insertInstructionTo(NewLoad, UnavailableBlock);
1463 LoadInst *OldLoad = I->second;
1464 combineMetadataForCSE(NewLoad, OldLoad, false);
1465 OldLoad->replaceAllUsesWith(NewLoad);
1466 replaceValuesPerBlockEntry(ValuesPerBlock, OldLoad, NewLoad);
1467 if (uint32_t ValNo = VN.lookup(OldLoad, false))
1468 removeFromLeaderTable(ValNo, OldLoad, OldLoad->getParent());
1469 VN.erase(OldLoad);
1470 removeInstruction(OldLoad);
1475 // Perform PHI construction.
1476 Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this);
1477 // ConstructSSAForLoadSet is responsible for combining metadata.
1478 ICF->removeUsersOf(Load);
1479 Load->replaceAllUsesWith(V);
1480 if (isa<PHINode>(V))
1481 V->takeName(Load);
1482 if (Instruction *I = dyn_cast<Instruction>(V))
1483 I->setDebugLoc(Load->getDebugLoc());
1484 if (V->getType()->isPtrOrPtrVectorTy())
1485 MD->invalidateCachedPointerInfo(V);
1486 markInstructionForDeletion(Load);
1487 ORE->emit([&]() {
1488 return OptimizationRemark(DEBUG_TYPE, "LoadPRE", Load)
1489 << "load eliminated by PRE";
1493 bool GVNPass::PerformLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock,
1494 UnavailBlkVect &UnavailableBlocks) {
1495 // Okay, we have *some* definitions of the value. This means that the value
1496 // is available in some of our (transitive) predecessors. Lets think about
1497 // doing PRE of this load. This will involve inserting a new load into the
1498 // predecessor when it's not available. We could do this in general, but
1499 // prefer to not increase code size. As such, we only do this when we know
1500 // that we only have to insert *one* load (which means we're basically moving
1501 // the load, not inserting a new one).
1503 SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
1504 UnavailableBlocks.end());
1506 // Let's find the first basic block with more than one predecessor. Walk
1507 // backwards through predecessors if needed.
1508 BasicBlock *LoadBB = Load->getParent();
1509 BasicBlock *TmpBB = LoadBB;
1511 // Check that there is no implicit control flow instructions above our load in
1512 // its block. If there is an instruction that doesn't always pass the
1513 // execution to the following instruction, then moving through it may become
1514 // invalid. For example:
1516 // int arr[LEN];
1517 // int index = ???;
1518 // ...
1519 // guard(0 <= index && index < LEN);
1520 // use(arr[index]);
1522 // It is illegal to move the array access to any point above the guard,
1523 // because if the index is out of bounds we should deoptimize rather than
1524 // access the array.
1525 // Check that there is no guard in this block above our instruction.
1526 bool MustEnsureSafetyOfSpeculativeExecution =
1527 ICF->isDominatedByICFIFromSameBlock(Load);
1529 while (TmpBB->getSinglePredecessor()) {
1530 TmpBB = TmpBB->getSinglePredecessor();
1531 if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1532 return false;
1533 if (Blockers.count(TmpBB))
1534 return false;
1536 // If any of these blocks has more than one successor (i.e. if the edge we
1537 // just traversed was critical), then there are other paths through this
1538 // block along which the load may not be anticipated. Hoisting the load
1539 // above this block would be adding the load to execution paths along
1540 // which it was not previously executed.
1541 if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1542 return false;
1544 // Check that there is no implicit control flow in a block above.
1545 MustEnsureSafetyOfSpeculativeExecution =
1546 MustEnsureSafetyOfSpeculativeExecution || ICF->hasICF(TmpBB);
1549 assert(TmpBB);
1550 LoadBB = TmpBB;
1552 // Check to see how many predecessors have the loaded value fully
1553 // available.
1554 MapVector<BasicBlock *, Value *> PredLoads;
1555 DenseMap<BasicBlock *, AvailabilityState> FullyAvailableBlocks;
1556 for (const AvailableValueInBlock &AV : ValuesPerBlock)
1557 FullyAvailableBlocks[AV.BB] = AvailabilityState::Available;
1558 for (BasicBlock *UnavailableBB : UnavailableBlocks)
1559 FullyAvailableBlocks[UnavailableBB] = AvailabilityState::Unavailable;
1561 // The edge from Pred to LoadBB is a critical edge will be splitted.
1562 SmallVector<BasicBlock *, 4> CriticalEdgePredSplit;
1563 // The edge from Pred to LoadBB is a critical edge, another successor of Pred
1564 // contains a load can be moved to Pred. This data structure maps the Pred to
1565 // the movable load.
1566 MapVector<BasicBlock *, LoadInst *> CriticalEdgePredAndLoad;
1567 for (BasicBlock *Pred : predecessors(LoadBB)) {
1568 // If any predecessor block is an EH pad that does not allow non-PHI
1569 // instructions before the terminator, we can't PRE the load.
1570 if (Pred->getTerminator()->isEHPad()) {
1571 LLVM_DEBUG(
1572 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
1573 << Pred->getName() << "': " << *Load << '\n');
1574 return false;
1577 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1578 continue;
1581 if (Pred->getTerminator()->getNumSuccessors() != 1) {
1582 if (isa<IndirectBrInst>(Pred->getTerminator())) {
1583 LLVM_DEBUG(
1584 dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1585 << Pred->getName() << "': " << *Load << '\n');
1586 return false;
1589 if (LoadBB->isEHPad()) {
1590 LLVM_DEBUG(
1591 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
1592 << Pred->getName() << "': " << *Load << '\n');
1593 return false;
1596 // Do not split backedge as it will break the canonical loop form.
1597 if (!isLoadPRESplitBackedgeEnabled())
1598 if (DT->dominates(LoadBB, Pred)) {
1599 LLVM_DEBUG(
1600 dbgs()
1601 << "COULD NOT PRE LOAD BECAUSE OF A BACKEDGE CRITICAL EDGE '"
1602 << Pred->getName() << "': " << *Load << '\n');
1603 return false;
1606 if (LoadInst *LI = findLoadToHoistIntoPred(Pred, LoadBB, Load))
1607 CriticalEdgePredAndLoad[Pred] = LI;
1608 else
1609 CriticalEdgePredSplit.push_back(Pred);
1610 } else {
1611 // Only add the predecessors that will not be split for now.
1612 PredLoads[Pred] = nullptr;
1616 // Decide whether PRE is profitable for this load.
1617 unsigned NumInsertPreds = PredLoads.size() + CriticalEdgePredSplit.size();
1618 unsigned NumUnavailablePreds = NumInsertPreds +
1619 CriticalEdgePredAndLoad.size();
1620 assert(NumUnavailablePreds != 0 &&
1621 "Fully available value should already be eliminated!");
1622 (void)NumUnavailablePreds;
1624 // If we need to insert new load in multiple predecessors, reject it.
1625 // FIXME: If we could restructure the CFG, we could make a common pred with
1626 // all the preds that don't have an available Load and insert a new load into
1627 // that one block.
1628 if (NumInsertPreds > 1)
1629 return false;
1631 // Now we know where we will insert load. We must ensure that it is safe
1632 // to speculatively execute the load at that points.
1633 if (MustEnsureSafetyOfSpeculativeExecution) {
1634 if (CriticalEdgePredSplit.size())
1635 if (!isSafeToSpeculativelyExecute(Load, LoadBB->getFirstNonPHI(), AC, DT))
1636 return false;
1637 for (auto &PL : PredLoads)
1638 if (!isSafeToSpeculativelyExecute(Load, PL.first->getTerminator(), AC,
1639 DT))
1640 return false;
1641 for (auto &CEP : CriticalEdgePredAndLoad)
1642 if (!isSafeToSpeculativelyExecute(Load, CEP.first->getTerminator(), AC,
1643 DT))
1644 return false;
1647 // Split critical edges, and update the unavailable predecessors accordingly.
1648 for (BasicBlock *OrigPred : CriticalEdgePredSplit) {
1649 BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1650 assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
1651 PredLoads[NewPred] = nullptr;
1652 LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1653 << LoadBB->getName() << '\n');
1656 for (auto &CEP : CriticalEdgePredAndLoad)
1657 PredLoads[CEP.first] = nullptr;
1659 // Check if the load can safely be moved to all the unavailable predecessors.
1660 bool CanDoPRE = true;
1661 const DataLayout &DL = Load->getModule()->getDataLayout();
1662 SmallVector<Instruction*, 8> NewInsts;
1663 for (auto &PredLoad : PredLoads) {
1664 BasicBlock *UnavailablePred = PredLoad.first;
1666 // Do PHI translation to get its value in the predecessor if necessary. The
1667 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1668 // We do the translation for each edge we skipped by going from Load's block
1669 // to LoadBB, otherwise we might miss pieces needing translation.
1671 // If all preds have a single successor, then we know it is safe to insert
1672 // the load on the pred (?!?), so we can insert code to materialize the
1673 // pointer if it is not available.
1674 Value *LoadPtr = Load->getPointerOperand();
1675 BasicBlock *Cur = Load->getParent();
1676 while (Cur != LoadBB) {
1677 PHITransAddr Address(LoadPtr, DL, AC);
1678 LoadPtr = Address.translateWithInsertion(Cur, Cur->getSinglePredecessor(),
1679 *DT, NewInsts);
1680 if (!LoadPtr) {
1681 CanDoPRE = false;
1682 break;
1684 Cur = Cur->getSinglePredecessor();
1687 if (LoadPtr) {
1688 PHITransAddr Address(LoadPtr, DL, AC);
1689 LoadPtr = Address.translateWithInsertion(LoadBB, UnavailablePred, *DT,
1690 NewInsts);
1692 // If we couldn't find or insert a computation of this phi translated value,
1693 // we fail PRE.
1694 if (!LoadPtr) {
1695 LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1696 << *Load->getPointerOperand() << "\n");
1697 CanDoPRE = false;
1698 break;
1701 PredLoad.second = LoadPtr;
1704 if (!CanDoPRE) {
1705 while (!NewInsts.empty()) {
1706 // Erase instructions generated by the failed PHI translation before
1707 // trying to number them. PHI translation might insert instructions
1708 // in basic blocks other than the current one, and we delete them
1709 // directly, as markInstructionForDeletion only allows removing from the
1710 // current basic block.
1711 NewInsts.pop_back_val()->eraseFromParent();
1713 // HINT: Don't revert the edge-splitting as following transformation may
1714 // also need to split these critical edges.
1715 return !CriticalEdgePredSplit.empty();
1718 // Okay, we can eliminate this load by inserting a reload in the predecessor
1719 // and using PHI construction to get the value in the other predecessors, do
1720 // it.
1721 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *Load << '\n');
1722 LLVM_DEBUG(if (!NewInsts.empty()) dbgs() << "INSERTED " << NewInsts.size()
1723 << " INSTS: " << *NewInsts.back()
1724 << '\n');
1726 // Assign value numbers to the new instructions.
1727 for (Instruction *I : NewInsts) {
1728 // Instructions that have been inserted in predecessor(s) to materialize
1729 // the load address do not retain their original debug locations. Doing
1730 // so could lead to confusing (but correct) source attributions.
1731 I->updateLocationAfterHoist();
1733 // FIXME: We really _ought_ to insert these value numbers into their
1734 // parent's availability map. However, in doing so, we risk getting into
1735 // ordering issues. If a block hasn't been processed yet, we would be
1736 // marking a value as AVAIL-IN, which isn't what we intend.
1737 VN.lookupOrAdd(I);
1740 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, PredLoads,
1741 &CriticalEdgePredAndLoad);
1742 ++NumPRELoad;
1743 return true;
1746 bool GVNPass::performLoopLoadPRE(LoadInst *Load,
1747 AvailValInBlkVect &ValuesPerBlock,
1748 UnavailBlkVect &UnavailableBlocks) {
1749 const Loop *L = LI->getLoopFor(Load->getParent());
1750 // TODO: Generalize to other loop blocks that dominate the latch.
1751 if (!L || L->getHeader() != Load->getParent())
1752 return false;
1754 BasicBlock *Preheader = L->getLoopPreheader();
1755 BasicBlock *Latch = L->getLoopLatch();
1756 if (!Preheader || !Latch)
1757 return false;
1759 Value *LoadPtr = Load->getPointerOperand();
1760 // Must be available in preheader.
1761 if (!L->isLoopInvariant(LoadPtr))
1762 return false;
1764 // We plan to hoist the load to preheader without introducing a new fault.
1765 // In order to do it, we need to prove that we cannot side-exit the loop
1766 // once loop header is first entered before execution of the load.
1767 if (ICF->isDominatedByICFIFromSameBlock(Load))
1768 return false;
1770 BasicBlock *LoopBlock = nullptr;
1771 for (auto *Blocker : UnavailableBlocks) {
1772 // Blockers from outside the loop are handled in preheader.
1773 if (!L->contains(Blocker))
1774 continue;
1776 // Only allow one loop block. Loop header is not less frequently executed
1777 // than each loop block, and likely it is much more frequently executed. But
1778 // in case of multiple loop blocks, we need extra information (such as block
1779 // frequency info) to understand whether it is profitable to PRE into
1780 // multiple loop blocks.
1781 if (LoopBlock)
1782 return false;
1784 // Do not sink into inner loops. This may be non-profitable.
1785 if (L != LI->getLoopFor(Blocker))
1786 return false;
1788 // Blocks that dominate the latch execute on every single iteration, maybe
1789 // except the last one. So PREing into these blocks doesn't make much sense
1790 // in most cases. But the blocks that do not necessarily execute on each
1791 // iteration are sometimes much colder than the header, and this is when
1792 // PRE is potentially profitable.
1793 if (DT->dominates(Blocker, Latch))
1794 return false;
1796 // Make sure that the terminator itself doesn't clobber.
1797 if (Blocker->getTerminator()->mayWriteToMemory())
1798 return false;
1800 LoopBlock = Blocker;
1803 if (!LoopBlock)
1804 return false;
1806 // Make sure the memory at this pointer cannot be freed, therefore we can
1807 // safely reload from it after clobber.
1808 if (LoadPtr->canBeFreed())
1809 return false;
1811 // TODO: Support critical edge splitting if blocker has more than 1 successor.
1812 MapVector<BasicBlock *, Value *> AvailableLoads;
1813 AvailableLoads[LoopBlock] = LoadPtr;
1814 AvailableLoads[Preheader] = LoadPtr;
1816 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOOP LOAD: " << *Load << '\n');
1817 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, AvailableLoads,
1818 /*CriticalEdgePredAndLoad*/ nullptr);
1819 ++NumPRELoopLoad;
1820 return true;
1823 static void reportLoadElim(LoadInst *Load, Value *AvailableValue,
1824 OptimizationRemarkEmitter *ORE) {
1825 using namespace ore;
1827 ORE->emit([&]() {
1828 return OptimizationRemark(DEBUG_TYPE, "LoadElim", Load)
1829 << "load of type " << NV("Type", Load->getType()) << " eliminated"
1830 << setExtraArgs() << " in favor of "
1831 << NV("InfavorOfValue", AvailableValue);
1835 /// Attempt to eliminate a load whose dependencies are
1836 /// non-local by performing PHI construction.
1837 bool GVNPass::processNonLocalLoad(LoadInst *Load) {
1838 // non-local speculations are not allowed under asan.
1839 if (Load->getParent()->getParent()->hasFnAttribute(
1840 Attribute::SanitizeAddress) ||
1841 Load->getParent()->getParent()->hasFnAttribute(
1842 Attribute::SanitizeHWAddress))
1843 return false;
1845 // Step 1: Find the non-local dependencies of the load.
1846 LoadDepVect Deps;
1847 MD->getNonLocalPointerDependency(Load, Deps);
1849 // If we had to process more than one hundred blocks to find the
1850 // dependencies, this load isn't worth worrying about. Optimizing
1851 // it will be too expensive.
1852 unsigned NumDeps = Deps.size();
1853 if (NumDeps > MaxNumDeps)
1854 return false;
1856 // If we had a phi translation failure, we'll have a single entry which is a
1857 // clobber in the current block. Reject this early.
1858 if (NumDeps == 1 &&
1859 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1860 LLVM_DEBUG(dbgs() << "GVN: non-local load "; Load->printAsOperand(dbgs());
1861 dbgs() << " has unknown dependencies\n";);
1862 return false;
1865 bool Changed = false;
1866 // If this load follows a GEP, see if we can PRE the indices before analyzing.
1867 if (GetElementPtrInst *GEP =
1868 dyn_cast<GetElementPtrInst>(Load->getOperand(0))) {
1869 for (Use &U : GEP->indices())
1870 if (Instruction *I = dyn_cast<Instruction>(U.get()))
1871 Changed |= performScalarPRE(I);
1874 // Step 2: Analyze the availability of the load
1875 AvailValInBlkVect ValuesPerBlock;
1876 UnavailBlkVect UnavailableBlocks;
1877 AnalyzeLoadAvailability(Load, Deps, ValuesPerBlock, UnavailableBlocks);
1879 // If we have no predecessors that produce a known value for this load, exit
1880 // early.
1881 if (ValuesPerBlock.empty())
1882 return Changed;
1884 // Step 3: Eliminate fully redundancy.
1886 // If all of the instructions we depend on produce a known value for this
1887 // load, then it is fully redundant and we can use PHI insertion to compute
1888 // its value. Insert PHIs and remove the fully redundant value now.
1889 if (UnavailableBlocks.empty()) {
1890 LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *Load << '\n');
1892 // Perform PHI construction.
1893 Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this);
1894 // ConstructSSAForLoadSet is responsible for combining metadata.
1895 ICF->removeUsersOf(Load);
1896 Load->replaceAllUsesWith(V);
1898 if (isa<PHINode>(V))
1899 V->takeName(Load);
1900 if (Instruction *I = dyn_cast<Instruction>(V))
1901 // If instruction I has debug info, then we should not update it.
1902 // Also, if I has a null DebugLoc, then it is still potentially incorrect
1903 // to propagate Load's DebugLoc because Load may not post-dominate I.
1904 if (Load->getDebugLoc() && Load->getParent() == I->getParent())
1905 I->setDebugLoc(Load->getDebugLoc());
1906 if (V->getType()->isPtrOrPtrVectorTy())
1907 MD->invalidateCachedPointerInfo(V);
1908 markInstructionForDeletion(Load);
1909 ++NumGVNLoad;
1910 reportLoadElim(Load, V, ORE);
1911 return true;
1914 // Step 4: Eliminate partial redundancy.
1915 if (!isPREEnabled() || !isLoadPREEnabled())
1916 return Changed;
1917 if (!isLoadInLoopPREEnabled() && LI->getLoopFor(Load->getParent()))
1918 return Changed;
1920 if (performLoopLoadPRE(Load, ValuesPerBlock, UnavailableBlocks) ||
1921 PerformLoadPRE(Load, ValuesPerBlock, UnavailableBlocks))
1922 return true;
1924 return Changed;
1927 static bool impliesEquivalanceIfTrue(CmpInst* Cmp) {
1928 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_EQ)
1929 return true;
1931 // Floating point comparisons can be equal, but not equivalent. Cases:
1932 // NaNs for unordered operators
1933 // +0.0 vs 0.0 for all operators
1934 if (Cmp->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
1935 (Cmp->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
1936 Cmp->getFastMathFlags().noNaNs())) {
1937 Value *LHS = Cmp->getOperand(0);
1938 Value *RHS = Cmp->getOperand(1);
1939 // If we can prove either side non-zero, then equality must imply
1940 // equivalence.
1941 // FIXME: We should do this optimization if 'no signed zeros' is
1942 // applicable via an instruction-level fast-math-flag or some other
1943 // indicator that relaxed FP semantics are being used.
1944 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero())
1945 return true;
1946 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero())
1947 return true;
1948 // TODO: Handle vector floating point constants
1950 return false;
1953 static bool impliesEquivalanceIfFalse(CmpInst* Cmp) {
1954 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_NE)
1955 return true;
1957 // Floating point comparisons can be equal, but not equivelent. Cases:
1958 // NaNs for unordered operators
1959 // +0.0 vs 0.0 for all operators
1960 if ((Cmp->getPredicate() == CmpInst::Predicate::FCMP_ONE &&
1961 Cmp->getFastMathFlags().noNaNs()) ||
1962 Cmp->getPredicate() == CmpInst::Predicate::FCMP_UNE) {
1963 Value *LHS = Cmp->getOperand(0);
1964 Value *RHS = Cmp->getOperand(1);
1965 // If we can prove either side non-zero, then equality must imply
1966 // equivalence.
1967 // FIXME: We should do this optimization if 'no signed zeros' is
1968 // applicable via an instruction-level fast-math-flag or some other
1969 // indicator that relaxed FP semantics are being used.
1970 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero())
1971 return true;
1972 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero())
1973 return true;
1974 // TODO: Handle vector floating point constants
1976 return false;
1980 static bool hasUsersIn(Value *V, BasicBlock *BB) {
1981 return llvm::any_of(V->users(), [BB](User *U) {
1982 auto *I = dyn_cast<Instruction>(U);
1983 return I && I->getParent() == BB;
1987 bool GVNPass::processAssumeIntrinsic(AssumeInst *IntrinsicI) {
1988 Value *V = IntrinsicI->getArgOperand(0);
1990 if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
1991 if (Cond->isZero()) {
1992 Type *Int8Ty = Type::getInt8Ty(V->getContext());
1993 Type *PtrTy = PointerType::get(V->getContext(), 0);
1994 // Insert a new store to null instruction before the load to indicate that
1995 // this code is not reachable. FIXME: We could insert unreachable
1996 // instruction directly because we can modify the CFG.
1997 auto *NewS = new StoreInst(PoisonValue::get(Int8Ty),
1998 Constant::getNullValue(PtrTy), IntrinsicI);
1999 if (MSSAU) {
2000 const MemoryUseOrDef *FirstNonDom = nullptr;
2001 const auto *AL =
2002 MSSAU->getMemorySSA()->getBlockAccesses(IntrinsicI->getParent());
2004 // If there are accesses in the current basic block, find the first one
2005 // that does not come before NewS. The new memory access is inserted
2006 // after the found access or before the terminator if no such access is
2007 // found.
2008 if (AL) {
2009 for (const auto &Acc : *AL) {
2010 if (auto *Current = dyn_cast<MemoryUseOrDef>(&Acc))
2011 if (!Current->getMemoryInst()->comesBefore(NewS)) {
2012 FirstNonDom = Current;
2013 break;
2018 auto *NewDef =
2019 FirstNonDom ? MSSAU->createMemoryAccessBefore(
2020 NewS, nullptr,
2021 const_cast<MemoryUseOrDef *>(FirstNonDom))
2022 : MSSAU->createMemoryAccessInBB(
2023 NewS, nullptr,
2024 NewS->getParent(), MemorySSA::BeforeTerminator);
2026 MSSAU->insertDef(cast<MemoryDef>(NewDef), /*RenameUses=*/false);
2029 if (isAssumeWithEmptyBundle(*IntrinsicI)) {
2030 markInstructionForDeletion(IntrinsicI);
2031 return true;
2033 return false;
2036 if (isa<Constant>(V)) {
2037 // If it's not false, and constant, it must evaluate to true. This means our
2038 // assume is assume(true), and thus, pointless, and we don't want to do
2039 // anything more here.
2040 return false;
2043 Constant *True = ConstantInt::getTrue(V->getContext());
2044 bool Changed = false;
2046 for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
2047 BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
2049 // This property is only true in dominated successors, propagateEquality
2050 // will check dominance for us.
2051 Changed |= propagateEquality(V, True, Edge, false);
2054 // We can replace assume value with true, which covers cases like this:
2055 // call void @llvm.assume(i1 %cmp)
2056 // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
2057 ReplaceOperandsWithMap[V] = True;
2059 // Similarly, after assume(!NotV) we know that NotV == false.
2060 Value *NotV;
2061 if (match(V, m_Not(m_Value(NotV))))
2062 ReplaceOperandsWithMap[NotV] = ConstantInt::getFalse(V->getContext());
2064 // If we find an equality fact, canonicalize all dominated uses in this block
2065 // to one of the two values. We heuristically choice the "oldest" of the
2066 // two where age is determined by value number. (Note that propagateEquality
2067 // above handles the cross block case.)
2069 // Key case to cover are:
2070 // 1)
2071 // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
2072 // call void @llvm.assume(i1 %cmp)
2073 // ret float %0 ; will change it to ret float 3.000000e+00
2074 // 2)
2075 // %load = load float, float* %addr
2076 // %cmp = fcmp oeq float %load, %0
2077 // call void @llvm.assume(i1 %cmp)
2078 // ret float %load ; will change it to ret float %0
2079 if (auto *CmpI = dyn_cast<CmpInst>(V)) {
2080 if (impliesEquivalanceIfTrue(CmpI)) {
2081 Value *CmpLHS = CmpI->getOperand(0);
2082 Value *CmpRHS = CmpI->getOperand(1);
2083 // Heuristically pick the better replacement -- the choice of heuristic
2084 // isn't terribly important here, but the fact we canonicalize on some
2085 // replacement is for exposing other simplifications.
2086 // TODO: pull this out as a helper function and reuse w/existing
2087 // (slightly different) logic.
2088 if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS))
2089 std::swap(CmpLHS, CmpRHS);
2090 if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))
2091 std::swap(CmpLHS, CmpRHS);
2092 if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) ||
2093 (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) {
2094 // Move the 'oldest' value to the right-hand side, using the value
2095 // number as a proxy for age.
2096 uint32_t LVN = VN.lookupOrAdd(CmpLHS);
2097 uint32_t RVN = VN.lookupOrAdd(CmpRHS);
2098 if (LVN < RVN)
2099 std::swap(CmpLHS, CmpRHS);
2102 // Handle degenerate case where we either haven't pruned a dead path or a
2103 // removed a trivial assume yet.
2104 if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS))
2105 return Changed;
2107 LLVM_DEBUG(dbgs() << "Replacing dominated uses of "
2108 << *CmpLHS << " with "
2109 << *CmpRHS << " in block "
2110 << IntrinsicI->getParent()->getName() << "\n");
2113 // Setup the replacement map - this handles uses within the same block
2114 if (hasUsersIn(CmpLHS, IntrinsicI->getParent()))
2115 ReplaceOperandsWithMap[CmpLHS] = CmpRHS;
2117 // NOTE: The non-block local cases are handled by the call to
2118 // propagateEquality above; this block is just about handling the block
2119 // local cases. TODO: There's a bunch of logic in propagateEqualiy which
2120 // isn't duplicated for the block local case, can we share it somehow?
2123 return Changed;
2126 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
2127 patchReplacementInstruction(I, Repl);
2128 I->replaceAllUsesWith(Repl);
2131 /// Attempt to eliminate a load, first by eliminating it
2132 /// locally, and then attempting non-local elimination if that fails.
2133 bool GVNPass::processLoad(LoadInst *L) {
2134 if (!MD)
2135 return false;
2137 // This code hasn't been audited for ordered or volatile memory access
2138 if (!L->isUnordered())
2139 return false;
2141 if (L->use_empty()) {
2142 markInstructionForDeletion(L);
2143 return true;
2146 // ... to a pointer that has been loaded from before...
2147 MemDepResult Dep = MD->getDependency(L);
2149 // If it is defined in another block, try harder.
2150 if (Dep.isNonLocal())
2151 return processNonLocalLoad(L);
2153 // Only handle the local case below
2154 if (!Dep.isLocal()) {
2155 // This might be a NonFuncLocal or an Unknown
2156 LLVM_DEBUG(
2157 // fast print dep, using operator<< on instruction is too slow.
2158 dbgs() << "GVN: load "; L->printAsOperand(dbgs());
2159 dbgs() << " has unknown dependence\n";);
2160 return false;
2163 auto AV = AnalyzeLoadAvailability(L, Dep, L->getPointerOperand());
2164 if (!AV)
2165 return false;
2167 Value *AvailableValue = AV->MaterializeAdjustedValue(L, L, *this);
2169 // MaterializeAdjustedValue is responsible for combining metadata.
2170 ICF->removeUsersOf(L);
2171 L->replaceAllUsesWith(AvailableValue);
2172 markInstructionForDeletion(L);
2173 if (MSSAU)
2174 MSSAU->removeMemoryAccess(L);
2175 ++NumGVNLoad;
2176 reportLoadElim(L, AvailableValue, ORE);
2177 // Tell MDA to reexamine the reused pointer since we might have more
2178 // information after forwarding it.
2179 if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy())
2180 MD->invalidateCachedPointerInfo(AvailableValue);
2181 return true;
2184 /// Return a pair the first field showing the value number of \p Exp and the
2185 /// second field showing whether it is a value number newly created.
2186 std::pair<uint32_t, bool>
2187 GVNPass::ValueTable::assignExpNewValueNum(Expression &Exp) {
2188 uint32_t &e = expressionNumbering[Exp];
2189 bool CreateNewValNum = !e;
2190 if (CreateNewValNum) {
2191 Expressions.push_back(Exp);
2192 if (ExprIdx.size() < nextValueNumber + 1)
2193 ExprIdx.resize(nextValueNumber * 2);
2194 e = nextValueNumber;
2195 ExprIdx[nextValueNumber++] = nextExprNumber++;
2197 return {e, CreateNewValNum};
2200 /// Return whether all the values related with the same \p num are
2201 /// defined in \p BB.
2202 bool GVNPass::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB,
2203 GVNPass &Gvn) {
2204 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
2205 while (Vals && Vals->BB == BB)
2206 Vals = Vals->Next;
2207 return !Vals;
2210 /// Wrap phiTranslateImpl to provide caching functionality.
2211 uint32_t GVNPass::ValueTable::phiTranslate(const BasicBlock *Pred,
2212 const BasicBlock *PhiBlock,
2213 uint32_t Num, GVNPass &Gvn) {
2214 auto FindRes = PhiTranslateTable.find({Num, Pred});
2215 if (FindRes != PhiTranslateTable.end())
2216 return FindRes->second;
2217 uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
2218 PhiTranslateTable.insert({{Num, Pred}, NewNum});
2219 return NewNum;
2222 // Return true if the value number \p Num and NewNum have equal value.
2223 // Return false if the result is unknown.
2224 bool GVNPass::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum,
2225 const BasicBlock *Pred,
2226 const BasicBlock *PhiBlock,
2227 GVNPass &Gvn) {
2228 CallInst *Call = nullptr;
2229 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
2230 while (Vals) {
2231 Call = dyn_cast<CallInst>(Vals->Val);
2232 if (Call && Call->getParent() == PhiBlock)
2233 break;
2234 Vals = Vals->Next;
2237 if (AA->doesNotAccessMemory(Call))
2238 return true;
2240 if (!MD || !AA->onlyReadsMemory(Call))
2241 return false;
2243 MemDepResult local_dep = MD->getDependency(Call);
2244 if (!local_dep.isNonLocal())
2245 return false;
2247 const MemoryDependenceResults::NonLocalDepInfo &deps =
2248 MD->getNonLocalCallDependency(Call);
2250 // Check to see if the Call has no function local clobber.
2251 for (const NonLocalDepEntry &D : deps) {
2252 if (D.getResult().isNonFuncLocal())
2253 return true;
2255 return false;
2258 /// Translate value number \p Num using phis, so that it has the values of
2259 /// the phis in BB.
2260 uint32_t GVNPass::ValueTable::phiTranslateImpl(const BasicBlock *Pred,
2261 const BasicBlock *PhiBlock,
2262 uint32_t Num, GVNPass &Gvn) {
2263 if (PHINode *PN = NumberingPhi[Num]) {
2264 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
2265 if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
2266 if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false))
2267 return TransVal;
2269 return Num;
2272 // If there is any value related with Num is defined in a BB other than
2273 // PhiBlock, it cannot depend on a phi in PhiBlock without going through
2274 // a backedge. We can do an early exit in that case to save compile time.
2275 if (!areAllValsInBB(Num, PhiBlock, Gvn))
2276 return Num;
2278 if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
2279 return Num;
2280 Expression Exp = Expressions[ExprIdx[Num]];
2282 for (unsigned i = 0; i < Exp.varargs.size(); i++) {
2283 // For InsertValue and ExtractValue, some varargs are index numbers
2284 // instead of value numbers. Those index numbers should not be
2285 // translated.
2286 if ((i > 1 && Exp.opcode == Instruction::InsertValue) ||
2287 (i > 0 && Exp.opcode == Instruction::ExtractValue) ||
2288 (i > 1 && Exp.opcode == Instruction::ShuffleVector))
2289 continue;
2290 Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn);
2293 if (Exp.commutative) {
2294 assert(Exp.varargs.size() >= 2 && "Unsupported commutative instruction!");
2295 if (Exp.varargs[0] > Exp.varargs[1]) {
2296 std::swap(Exp.varargs[0], Exp.varargs[1]);
2297 uint32_t Opcode = Exp.opcode >> 8;
2298 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)
2299 Exp.opcode = (Opcode << 8) |
2300 CmpInst::getSwappedPredicate(
2301 static_cast<CmpInst::Predicate>(Exp.opcode & 255));
2305 if (uint32_t NewNum = expressionNumbering[Exp]) {
2306 if (Exp.opcode == Instruction::Call && NewNum != Num)
2307 return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num;
2308 return NewNum;
2310 return Num;
2313 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed
2314 /// again.
2315 void GVNPass::ValueTable::eraseTranslateCacheEntry(
2316 uint32_t Num, const BasicBlock &CurrBlock) {
2317 for (const BasicBlock *Pred : predecessors(&CurrBlock))
2318 PhiTranslateTable.erase({Num, Pred});
2321 // In order to find a leader for a given value number at a
2322 // specific basic block, we first obtain the list of all Values for that number,
2323 // and then scan the list to find one whose block dominates the block in
2324 // question. This is fast because dominator tree queries consist of only
2325 // a few comparisons of DFS numbers.
2326 Value *GVNPass::findLeader(const BasicBlock *BB, uint32_t num) {
2327 LeaderTableEntry Vals = LeaderTable[num];
2328 if (!Vals.Val) return nullptr;
2330 Value *Val = nullptr;
2331 if (DT->dominates(Vals.BB, BB)) {
2332 Val = Vals.Val;
2333 if (isa<Constant>(Val)) return Val;
2336 LeaderTableEntry* Next = Vals.Next;
2337 while (Next) {
2338 if (DT->dominates(Next->BB, BB)) {
2339 if (isa<Constant>(Next->Val)) return Next->Val;
2340 if (!Val) Val = Next->Val;
2343 Next = Next->Next;
2346 return Val;
2349 /// There is an edge from 'Src' to 'Dst'. Return
2350 /// true if every path from the entry block to 'Dst' passes via this edge. In
2351 /// particular 'Dst' must not be reachable via another edge from 'Src'.
2352 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
2353 DominatorTree *DT) {
2354 // While in theory it is interesting to consider the case in which Dst has
2355 // more than one predecessor, because Dst might be part of a loop which is
2356 // only reachable from Src, in practice it is pointless since at the time
2357 // GVN runs all such loops have preheaders, which means that Dst will have
2358 // been changed to have only one predecessor, namely Src.
2359 const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
2360 assert((!Pred || Pred == E.getStart()) &&
2361 "No edge between these basic blocks!");
2362 return Pred != nullptr;
2365 void GVNPass::assignBlockRPONumber(Function &F) {
2366 BlockRPONumber.clear();
2367 uint32_t NextBlockNumber = 1;
2368 ReversePostOrderTraversal<Function *> RPOT(&F);
2369 for (BasicBlock *BB : RPOT)
2370 BlockRPONumber[BB] = NextBlockNumber++;
2371 InvalidBlockRPONumbers = false;
2374 bool GVNPass::replaceOperandsForInBlockEquality(Instruction *Instr) const {
2375 bool Changed = false;
2376 for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
2377 Value *Operand = Instr->getOperand(OpNum);
2378 auto it = ReplaceOperandsWithMap.find(Operand);
2379 if (it != ReplaceOperandsWithMap.end()) {
2380 LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with "
2381 << *it->second << " in instruction " << *Instr << '\n');
2382 Instr->setOperand(OpNum, it->second);
2383 Changed = true;
2386 return Changed;
2389 /// The given values are known to be equal in every block
2390 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with
2391 /// 'RHS' everywhere in the scope. Returns whether a change was made.
2392 /// If DominatesByEdge is false, then it means that we will propagate the RHS
2393 /// value starting from the end of Root.Start.
2394 bool GVNPass::propagateEquality(Value *LHS, Value *RHS,
2395 const BasicBlockEdge &Root,
2396 bool DominatesByEdge) {
2397 SmallVector<std::pair<Value*, Value*>, 4> Worklist;
2398 Worklist.push_back(std::make_pair(LHS, RHS));
2399 bool Changed = false;
2400 // For speed, compute a conservative fast approximation to
2401 // DT->dominates(Root, Root.getEnd());
2402 const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
2404 while (!Worklist.empty()) {
2405 std::pair<Value*, Value*> Item = Worklist.pop_back_val();
2406 LHS = Item.first; RHS = Item.second;
2408 if (LHS == RHS)
2409 continue;
2410 assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
2412 // Don't try to propagate equalities between constants.
2413 if (isa<Constant>(LHS) && isa<Constant>(RHS))
2414 continue;
2416 // Prefer a constant on the right-hand side, or an Argument if no constants.
2417 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
2418 std::swap(LHS, RHS);
2419 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
2421 // If there is no obvious reason to prefer the left-hand side over the
2422 // right-hand side, ensure the longest lived term is on the right-hand side,
2423 // so the shortest lived term will be replaced by the longest lived.
2424 // This tends to expose more simplifications.
2425 uint32_t LVN = VN.lookupOrAdd(LHS);
2426 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
2427 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
2428 // Move the 'oldest' value to the right-hand side, using the value number
2429 // as a proxy for age.
2430 uint32_t RVN = VN.lookupOrAdd(RHS);
2431 if (LVN < RVN) {
2432 std::swap(LHS, RHS);
2433 LVN = RVN;
2437 // If value numbering later sees that an instruction in the scope is equal
2438 // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve
2439 // the invariant that instructions only occur in the leader table for their
2440 // own value number (this is used by removeFromLeaderTable), do not do this
2441 // if RHS is an instruction (if an instruction in the scope is morphed into
2442 // LHS then it will be turned into RHS by the next GVN iteration anyway, so
2443 // using the leader table is about compiling faster, not optimizing better).
2444 // The leader table only tracks basic blocks, not edges. Only add to if we
2445 // have the simple case where the edge dominates the end.
2446 if (RootDominatesEnd && !isa<Instruction>(RHS))
2447 addToLeaderTable(LVN, RHS, Root.getEnd());
2449 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As
2450 // LHS always has at least one use that is not dominated by Root, this will
2451 // never do anything if LHS has only one use.
2452 if (!LHS->hasOneUse()) {
2453 unsigned NumReplacements =
2454 DominatesByEdge
2455 ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
2456 : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());
2458 Changed |= NumReplacements > 0;
2459 NumGVNEqProp += NumReplacements;
2460 // Cached information for anything that uses LHS will be invalid.
2461 if (MD)
2462 MD->invalidateCachedPointerInfo(LHS);
2465 // Now try to deduce additional equalities from this one. For example, if
2466 // the known equality was "(A != B)" == "false" then it follows that A and B
2467 // are equal in the scope. Only boolean equalities with an explicit true or
2468 // false RHS are currently supported.
2469 if (!RHS->getType()->isIntegerTy(1))
2470 // Not a boolean equality - bail out.
2471 continue;
2472 ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
2473 if (!CI)
2474 // RHS neither 'true' nor 'false' - bail out.
2475 continue;
2476 // Whether RHS equals 'true'. Otherwise it equals 'false'.
2477 bool isKnownTrue = CI->isMinusOne();
2478 bool isKnownFalse = !isKnownTrue;
2480 // If "A && B" is known true then both A and B are known true. If "A || B"
2481 // is known false then both A and B are known false.
2482 Value *A, *B;
2483 if ((isKnownTrue && match(LHS, m_LogicalAnd(m_Value(A), m_Value(B)))) ||
2484 (isKnownFalse && match(LHS, m_LogicalOr(m_Value(A), m_Value(B))))) {
2485 Worklist.push_back(std::make_pair(A, RHS));
2486 Worklist.push_back(std::make_pair(B, RHS));
2487 continue;
2490 // If we are propagating an equality like "(A == B)" == "true" then also
2491 // propagate the equality A == B. When propagating a comparison such as
2492 // "(A >= B)" == "true", replace all instances of "A < B" with "false".
2493 if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
2494 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
2496 // If "A == B" is known true, or "A != B" is known false, then replace
2497 // A with B everywhere in the scope. For floating point operations, we
2498 // have to be careful since equality does not always imply equivalance.
2499 if ((isKnownTrue && impliesEquivalanceIfTrue(Cmp)) ||
2500 (isKnownFalse && impliesEquivalanceIfFalse(Cmp)))
2501 Worklist.push_back(std::make_pair(Op0, Op1));
2503 // If "A >= B" is known true, replace "A < B" with false everywhere.
2504 CmpInst::Predicate NotPred = Cmp->getInversePredicate();
2505 Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
2506 // Since we don't have the instruction "A < B" immediately to hand, work
2507 // out the value number that it would have and use that to find an
2508 // appropriate instruction (if any).
2509 uint32_t NextNum = VN.getNextUnusedValueNumber();
2510 uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
2511 // If the number we were assigned was brand new then there is no point in
2512 // looking for an instruction realizing it: there cannot be one!
2513 if (Num < NextNum) {
2514 Value *NotCmp = findLeader(Root.getEnd(), Num);
2515 if (NotCmp && isa<Instruction>(NotCmp)) {
2516 unsigned NumReplacements =
2517 DominatesByEdge
2518 ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
2519 : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
2520 Root.getStart());
2521 Changed |= NumReplacements > 0;
2522 NumGVNEqProp += NumReplacements;
2523 // Cached information for anything that uses NotCmp will be invalid.
2524 if (MD)
2525 MD->invalidateCachedPointerInfo(NotCmp);
2528 // Ensure that any instruction in scope that gets the "A < B" value number
2529 // is replaced with false.
2530 // The leader table only tracks basic blocks, not edges. Only add to if we
2531 // have the simple case where the edge dominates the end.
2532 if (RootDominatesEnd)
2533 addToLeaderTable(Num, NotVal, Root.getEnd());
2535 continue;
2539 return Changed;
2542 /// When calculating availability, handle an instruction
2543 /// by inserting it into the appropriate sets
2544 bool GVNPass::processInstruction(Instruction *I) {
2545 // Ignore dbg info intrinsics.
2546 if (isa<DbgInfoIntrinsic>(I))
2547 return false;
2549 // If the instruction can be easily simplified then do so now in preference
2550 // to value numbering it. Value numbering often exposes redundancies, for
2551 // example if it determines that %y is equal to %x then the instruction
2552 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2553 const DataLayout &DL = I->getModule()->getDataLayout();
2554 if (Value *V = simplifyInstruction(I, {DL, TLI, DT, AC})) {
2555 bool Changed = false;
2556 if (!I->use_empty()) {
2557 // Simplification can cause a special instruction to become not special.
2558 // For example, devirtualization to a willreturn function.
2559 ICF->removeUsersOf(I);
2560 I->replaceAllUsesWith(V);
2561 Changed = true;
2563 if (isInstructionTriviallyDead(I, TLI)) {
2564 markInstructionForDeletion(I);
2565 Changed = true;
2567 if (Changed) {
2568 if (MD && V->getType()->isPtrOrPtrVectorTy())
2569 MD->invalidateCachedPointerInfo(V);
2570 ++NumGVNSimpl;
2571 return true;
2575 if (auto *Assume = dyn_cast<AssumeInst>(I))
2576 return processAssumeIntrinsic(Assume);
2578 if (LoadInst *Load = dyn_cast<LoadInst>(I)) {
2579 if (processLoad(Load))
2580 return true;
2582 unsigned Num = VN.lookupOrAdd(Load);
2583 addToLeaderTable(Num, Load, Load->getParent());
2584 return false;
2587 // For conditional branches, we can perform simple conditional propagation on
2588 // the condition value itself.
2589 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2590 if (!BI->isConditional())
2591 return false;
2593 if (isa<Constant>(BI->getCondition()))
2594 return processFoldableCondBr(BI);
2596 Value *BranchCond = BI->getCondition();
2597 BasicBlock *TrueSucc = BI->getSuccessor(0);
2598 BasicBlock *FalseSucc = BI->getSuccessor(1);
2599 // Avoid multiple edges early.
2600 if (TrueSucc == FalseSucc)
2601 return false;
2603 BasicBlock *Parent = BI->getParent();
2604 bool Changed = false;
2606 Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
2607 BasicBlockEdge TrueE(Parent, TrueSucc);
2608 Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
2610 Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
2611 BasicBlockEdge FalseE(Parent, FalseSucc);
2612 Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
2614 return Changed;
2617 // For switches, propagate the case values into the case destinations.
2618 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2619 Value *SwitchCond = SI->getCondition();
2620 BasicBlock *Parent = SI->getParent();
2621 bool Changed = false;
2623 // Remember how many outgoing edges there are to every successor.
2624 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2625 for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
2626 ++SwitchEdges[SI->getSuccessor(i)];
2628 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2629 i != e; ++i) {
2630 BasicBlock *Dst = i->getCaseSuccessor();
2631 // If there is only a single edge, propagate the case value into it.
2632 if (SwitchEdges.lookup(Dst) == 1) {
2633 BasicBlockEdge E(Parent, Dst);
2634 Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true);
2637 return Changed;
2640 // Instructions with void type don't return a value, so there's
2641 // no point in trying to find redundancies in them.
2642 if (I->getType()->isVoidTy())
2643 return false;
2645 uint32_t NextNum = VN.getNextUnusedValueNumber();
2646 unsigned Num = VN.lookupOrAdd(I);
2648 // Allocations are always uniquely numbered, so we can save time and memory
2649 // by fast failing them.
2650 if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) {
2651 addToLeaderTable(Num, I, I->getParent());
2652 return false;
2655 // If the number we were assigned was a brand new VN, then we don't
2656 // need to do a lookup to see if the number already exists
2657 // somewhere in the domtree: it can't!
2658 if (Num >= NextNum) {
2659 addToLeaderTable(Num, I, I->getParent());
2660 return false;
2663 // Perform fast-path value-number based elimination of values inherited from
2664 // dominators.
2665 Value *Repl = findLeader(I->getParent(), Num);
2666 if (!Repl) {
2667 // Failure, just remember this instance for future use.
2668 addToLeaderTable(Num, I, I->getParent());
2669 return false;
2672 if (Repl == I) {
2673 // If I was the result of a shortcut PRE, it might already be in the table
2674 // and the best replacement for itself. Nothing to do.
2675 return false;
2678 // Remove it!
2679 patchAndReplaceAllUsesWith(I, Repl);
2680 if (MD && Repl->getType()->isPtrOrPtrVectorTy())
2681 MD->invalidateCachedPointerInfo(Repl);
2682 markInstructionForDeletion(I);
2683 return true;
2686 /// runOnFunction - This is the main transformation entry point for a function.
2687 bool GVNPass::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
2688 const TargetLibraryInfo &RunTLI, AAResults &RunAA,
2689 MemoryDependenceResults *RunMD, LoopInfo &LI,
2690 OptimizationRemarkEmitter *RunORE, MemorySSA *MSSA) {
2691 AC = &RunAC;
2692 DT = &RunDT;
2693 VN.setDomTree(DT);
2694 TLI = &RunTLI;
2695 VN.setAliasAnalysis(&RunAA);
2696 MD = RunMD;
2697 ImplicitControlFlowTracking ImplicitCFT;
2698 ICF = &ImplicitCFT;
2699 this->LI = &LI;
2700 VN.setMemDep(MD);
2701 ORE = RunORE;
2702 InvalidBlockRPONumbers = true;
2703 MemorySSAUpdater Updater(MSSA);
2704 MSSAU = MSSA ? &Updater : nullptr;
2706 bool Changed = false;
2707 bool ShouldContinue = true;
2709 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
2710 // Merge unconditional branches, allowing PRE to catch more
2711 // optimization opportunities.
2712 for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
2713 bool removedBlock = MergeBlockIntoPredecessor(&BB, &DTU, &LI, MSSAU, MD);
2714 if (removedBlock)
2715 ++NumGVNBlocks;
2717 Changed |= removedBlock;
2720 unsigned Iteration = 0;
2721 while (ShouldContinue) {
2722 LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2723 (void) Iteration;
2724 ShouldContinue = iterateOnFunction(F);
2725 Changed |= ShouldContinue;
2726 ++Iteration;
2729 if (isPREEnabled()) {
2730 // Fabricate val-num for dead-code in order to suppress assertion in
2731 // performPRE().
2732 assignValNumForDeadCode();
2733 bool PREChanged = true;
2734 while (PREChanged) {
2735 PREChanged = performPRE(F);
2736 Changed |= PREChanged;
2740 // FIXME: Should perform GVN again after PRE does something. PRE can move
2741 // computations into blocks where they become fully redundant. Note that
2742 // we can't do this until PRE's critical edge splitting updates memdep.
2743 // Actually, when this happens, we should just fully integrate PRE into GVN.
2745 cleanupGlobalSets();
2746 // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2747 // iteration.
2748 DeadBlocks.clear();
2750 if (MSSA && VerifyMemorySSA)
2751 MSSA->verifyMemorySSA();
2753 return Changed;
2756 bool GVNPass::processBlock(BasicBlock *BB) {
2757 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2758 // (and incrementing BI before processing an instruction).
2759 assert(InstrsToErase.empty() &&
2760 "We expect InstrsToErase to be empty across iterations");
2761 if (DeadBlocks.count(BB))
2762 return false;
2764 // Clearing map before every BB because it can be used only for single BB.
2765 ReplaceOperandsWithMap.clear();
2766 bool ChangedFunction = false;
2768 // Since we may not have visited the input blocks of the phis, we can't
2769 // use our normal hash approach for phis. Instead, simply look for
2770 // obvious duplicates. The first pass of GVN will tend to create
2771 // identical phis, and the second or later passes can eliminate them.
2772 SmallPtrSet<PHINode *, 8> PHINodesToRemove;
2773 ChangedFunction |= EliminateDuplicatePHINodes(BB, PHINodesToRemove);
2774 for (PHINode *PN : PHINodesToRemove) {
2775 VN.erase(PN);
2776 removeInstruction(PN);
2779 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2780 BI != BE;) {
2781 if (!ReplaceOperandsWithMap.empty())
2782 ChangedFunction |= replaceOperandsForInBlockEquality(&*BI);
2783 ChangedFunction |= processInstruction(&*BI);
2785 if (InstrsToErase.empty()) {
2786 ++BI;
2787 continue;
2790 // If we need some instructions deleted, do it now.
2791 NumGVNInstr += InstrsToErase.size();
2793 // Avoid iterator invalidation.
2794 bool AtStart = BI == BB->begin();
2795 if (!AtStart)
2796 --BI;
2798 for (auto *I : InstrsToErase) {
2799 assert(I->getParent() == BB && "Removing instruction from wrong block?");
2800 LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n');
2801 salvageKnowledge(I, AC);
2802 salvageDebugInfo(*I);
2803 removeInstruction(I);
2805 InstrsToErase.clear();
2807 if (AtStart)
2808 BI = BB->begin();
2809 else
2810 ++BI;
2813 return ChangedFunction;
2816 // Instantiate an expression in a predecessor that lacked it.
2817 bool GVNPass::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
2818 BasicBlock *Curr, unsigned int ValNo) {
2819 // Because we are going top-down through the block, all value numbers
2820 // will be available in the predecessor by the time we need them. Any
2821 // that weren't originally present will have been instantiated earlier
2822 // in this loop.
2823 bool success = true;
2824 for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
2825 Value *Op = Instr->getOperand(i);
2826 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2827 continue;
2828 // This could be a newly inserted instruction, in which case, we won't
2829 // find a value number, and should give up before we hurt ourselves.
2830 // FIXME: Rewrite the infrastructure to let it easier to value number
2831 // and process newly inserted instructions.
2832 if (!VN.exists(Op)) {
2833 success = false;
2834 break;
2836 uint32_t TValNo =
2837 VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this);
2838 if (Value *V = findLeader(Pred, TValNo)) {
2839 Instr->setOperand(i, V);
2840 } else {
2841 success = false;
2842 break;
2846 // Fail out if we encounter an operand that is not available in
2847 // the PRE predecessor. This is typically because of loads which
2848 // are not value numbered precisely.
2849 if (!success)
2850 return false;
2852 Instr->insertBefore(Pred->getTerminator());
2853 Instr->setName(Instr->getName() + ".pre");
2854 Instr->setDebugLoc(Instr->getDebugLoc());
2856 ICF->insertInstructionTo(Instr, Pred);
2858 unsigned Num = VN.lookupOrAdd(Instr);
2859 VN.add(Instr, Num);
2861 // Update the availability map to include the new instruction.
2862 addToLeaderTable(Num, Instr, Pred);
2863 return true;
2866 bool GVNPass::performScalarPRE(Instruction *CurInst) {
2867 if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() ||
2868 isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
2869 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2870 isa<DbgInfoIntrinsic>(CurInst))
2871 return false;
2873 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2874 // sinking the compare again, and it would force the code generator to
2875 // move the i1 from processor flags or predicate registers into a general
2876 // purpose register.
2877 if (isa<CmpInst>(CurInst))
2878 return false;
2880 // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from
2881 // sinking the addressing mode computation back to its uses. Extending the
2882 // GEP's live range increases the register pressure, and therefore it can
2883 // introduce unnecessary spills.
2885 // This doesn't prevent Load PRE. PHI translation will make the GEP available
2886 // to the load by moving it to the predecessor block if necessary.
2887 if (isa<GetElementPtrInst>(CurInst))
2888 return false;
2890 if (auto *CallB = dyn_cast<CallBase>(CurInst)) {
2891 // We don't currently value number ANY inline asm calls.
2892 if (CallB->isInlineAsm())
2893 return false;
2896 uint32_t ValNo = VN.lookup(CurInst);
2898 // Look for the predecessors for PRE opportunities. We're
2899 // only trying to solve the basic diamond case, where
2900 // a value is computed in the successor and one predecessor,
2901 // but not the other. We also explicitly disallow cases
2902 // where the successor is its own predecessor, because they're
2903 // more complicated to get right.
2904 unsigned NumWith = 0;
2905 unsigned NumWithout = 0;
2906 BasicBlock *PREPred = nullptr;
2907 BasicBlock *CurrentBlock = CurInst->getParent();
2909 // Update the RPO numbers for this function.
2910 if (InvalidBlockRPONumbers)
2911 assignBlockRPONumber(*CurrentBlock->getParent());
2913 SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
2914 for (BasicBlock *P : predecessors(CurrentBlock)) {
2915 // We're not interested in PRE where blocks with predecessors that are
2916 // not reachable.
2917 if (!DT->isReachableFromEntry(P)) {
2918 NumWithout = 2;
2919 break;
2921 // It is not safe to do PRE when P->CurrentBlock is a loop backedge.
2922 assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) &&
2923 "Invalid BlockRPONumber map.");
2924 if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock]) {
2925 NumWithout = 2;
2926 break;
2929 uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this);
2930 Value *predV = findLeader(P, TValNo);
2931 if (!predV) {
2932 predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
2933 PREPred = P;
2934 ++NumWithout;
2935 } else if (predV == CurInst) {
2936 /* CurInst dominates this predecessor. */
2937 NumWithout = 2;
2938 break;
2939 } else {
2940 predMap.push_back(std::make_pair(predV, P));
2941 ++NumWith;
2945 // Don't do PRE when it might increase code size, i.e. when
2946 // we would need to insert instructions in more than one pred.
2947 if (NumWithout > 1 || NumWith == 0)
2948 return false;
2950 // We may have a case where all predecessors have the instruction,
2951 // and we just need to insert a phi node. Otherwise, perform
2952 // insertion.
2953 Instruction *PREInstr = nullptr;
2955 if (NumWithout != 0) {
2956 if (!isSafeToSpeculativelyExecute(CurInst)) {
2957 // It is only valid to insert a new instruction if the current instruction
2958 // is always executed. An instruction with implicit control flow could
2959 // prevent us from doing it. If we cannot speculate the execution, then
2960 // PRE should be prohibited.
2961 if (ICF->isDominatedByICFIFromSameBlock(CurInst))
2962 return false;
2965 // Don't do PRE across indirect branch.
2966 if (isa<IndirectBrInst>(PREPred->getTerminator()))
2967 return false;
2969 // We can't do PRE safely on a critical edge, so instead we schedule
2970 // the edge to be split and perform the PRE the next time we iterate
2971 // on the function.
2972 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2973 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2974 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2975 return false;
2977 // We need to insert somewhere, so let's give it a shot
2978 PREInstr = CurInst->clone();
2979 if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
2980 // If we failed insertion, make sure we remove the instruction.
2981 #ifndef NDEBUG
2982 verifyRemoved(PREInstr);
2983 #endif
2984 PREInstr->deleteValue();
2985 return false;
2989 // Either we should have filled in the PRE instruction, or we should
2990 // not have needed insertions.
2991 assert(PREInstr != nullptr || NumWithout == 0);
2993 ++NumGVNPRE;
2995 // Create a PHI to make the value available in this block.
2996 PHINode *Phi = PHINode::Create(CurInst->getType(), predMap.size(),
2997 CurInst->getName() + ".pre-phi");
2998 Phi->insertBefore(CurrentBlock->begin());
2999 for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
3000 if (Value *V = predMap[i].first) {
3001 // If we use an existing value in this phi, we have to patch the original
3002 // value because the phi will be used to replace a later value.
3003 patchReplacementInstruction(CurInst, V);
3004 Phi->addIncoming(V, predMap[i].second);
3005 } else
3006 Phi->addIncoming(PREInstr, PREPred);
3009 VN.add(Phi, ValNo);
3010 // After creating a new PHI for ValNo, the phi translate result for ValNo will
3011 // be changed, so erase the related stale entries in phi translate cache.
3012 VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock);
3013 addToLeaderTable(ValNo, Phi, CurrentBlock);
3014 Phi->setDebugLoc(CurInst->getDebugLoc());
3015 CurInst->replaceAllUsesWith(Phi);
3016 if (MD && Phi->getType()->isPtrOrPtrVectorTy())
3017 MD->invalidateCachedPointerInfo(Phi);
3018 VN.erase(CurInst);
3019 removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
3021 LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
3022 removeInstruction(CurInst);
3023 ++NumGVNInstr;
3025 return true;
3028 /// Perform a purely local form of PRE that looks for diamond
3029 /// control flow patterns and attempts to perform simple PRE at the join point.
3030 bool GVNPass::performPRE(Function &F) {
3031 bool Changed = false;
3032 for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
3033 // Nothing to PRE in the entry block.
3034 if (CurrentBlock == &F.getEntryBlock())
3035 continue;
3037 // Don't perform PRE on an EH pad.
3038 if (CurrentBlock->isEHPad())
3039 continue;
3041 for (BasicBlock::iterator BI = CurrentBlock->begin(),
3042 BE = CurrentBlock->end();
3043 BI != BE;) {
3044 Instruction *CurInst = &*BI++;
3045 Changed |= performScalarPRE(CurInst);
3049 if (splitCriticalEdges())
3050 Changed = true;
3052 return Changed;
3055 /// Split the critical edge connecting the given two blocks, and return
3056 /// the block inserted to the critical edge.
3057 BasicBlock *GVNPass::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
3058 // GVN does not require loop-simplify, do not try to preserve it if it is not
3059 // possible.
3060 BasicBlock *BB = SplitCriticalEdge(
3061 Pred, Succ,
3062 CriticalEdgeSplittingOptions(DT, LI, MSSAU).unsetPreserveLoopSimplify());
3063 if (BB) {
3064 if (MD)
3065 MD->invalidateCachedPredecessors();
3066 InvalidBlockRPONumbers = true;
3068 return BB;
3071 /// Split critical edges found during the previous
3072 /// iteration that may enable further optimization.
3073 bool GVNPass::splitCriticalEdges() {
3074 if (toSplit.empty())
3075 return false;
3077 bool Changed = false;
3078 do {
3079 std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val();
3080 Changed |= SplitCriticalEdge(Edge.first, Edge.second,
3081 CriticalEdgeSplittingOptions(DT, LI, MSSAU)) !=
3082 nullptr;
3083 } while (!toSplit.empty());
3084 if (Changed) {
3085 if (MD)
3086 MD->invalidateCachedPredecessors();
3087 InvalidBlockRPONumbers = true;
3089 return Changed;
3092 /// Executes one iteration of GVN
3093 bool GVNPass::iterateOnFunction(Function &F) {
3094 cleanupGlobalSets();
3096 // Top-down walk of the dominator tree
3097 bool Changed = false;
3098 // Needed for value numbering with phi construction to work.
3099 // RPOT walks the graph in its constructor and will not be invalidated during
3100 // processBlock.
3101 ReversePostOrderTraversal<Function *> RPOT(&F);
3103 for (BasicBlock *BB : RPOT)
3104 Changed |= processBlock(BB);
3106 return Changed;
3109 void GVNPass::cleanupGlobalSets() {
3110 VN.clear();
3111 LeaderTable.clear();
3112 BlockRPONumber.clear();
3113 TableAllocator.Reset();
3114 ICF->clear();
3115 InvalidBlockRPONumbers = true;
3118 void GVNPass::removeInstruction(Instruction *I) {
3119 if (MD) MD->removeInstruction(I);
3120 if (MSSAU)
3121 MSSAU->removeMemoryAccess(I);
3122 #ifndef NDEBUG
3123 verifyRemoved(I);
3124 #endif
3125 ICF->removeInstruction(I);
3126 I->eraseFromParent();
3129 /// Verify that the specified instruction does not occur in our
3130 /// internal data structures.
3131 void GVNPass::verifyRemoved(const Instruction *Inst) const {
3132 VN.verifyRemoved(Inst);
3134 // Walk through the value number scope to make sure the instruction isn't
3135 // ferreted away in it.
3136 for (const auto &I : LeaderTable) {
3137 const LeaderTableEntry *Node = &I.second;
3138 assert(Node->Val != Inst && "Inst still in value numbering scope!");
3140 while (Node->Next) {
3141 Node = Node->Next;
3142 assert(Node->Val != Inst && "Inst still in value numbering scope!");
3147 /// BB is declared dead, which implied other blocks become dead as well. This
3148 /// function is to add all these blocks to "DeadBlocks". For the dead blocks'
3149 /// live successors, update their phi nodes by replacing the operands
3150 /// corresponding to dead blocks with UndefVal.
3151 void GVNPass::addDeadBlock(BasicBlock *BB) {
3152 SmallVector<BasicBlock *, 4> NewDead;
3153 SmallSetVector<BasicBlock *, 4> DF;
3155 NewDead.push_back(BB);
3156 while (!NewDead.empty()) {
3157 BasicBlock *D = NewDead.pop_back_val();
3158 if (DeadBlocks.count(D))
3159 continue;
3161 // All blocks dominated by D are dead.
3162 SmallVector<BasicBlock *, 8> Dom;
3163 DT->getDescendants(D, Dom);
3164 DeadBlocks.insert(Dom.begin(), Dom.end());
3166 // Figure out the dominance-frontier(D).
3167 for (BasicBlock *B : Dom) {
3168 for (BasicBlock *S : successors(B)) {
3169 if (DeadBlocks.count(S))
3170 continue;
3172 bool AllPredDead = true;
3173 for (BasicBlock *P : predecessors(S))
3174 if (!DeadBlocks.count(P)) {
3175 AllPredDead = false;
3176 break;
3179 if (!AllPredDead) {
3180 // S could be proved dead later on. That is why we don't update phi
3181 // operands at this moment.
3182 DF.insert(S);
3183 } else {
3184 // While S is not dominated by D, it is dead by now. This could take
3185 // place if S already have a dead predecessor before D is declared
3186 // dead.
3187 NewDead.push_back(S);
3193 // For the dead blocks' live successors, update their phi nodes by replacing
3194 // the operands corresponding to dead blocks with UndefVal.
3195 for (BasicBlock *B : DF) {
3196 if (DeadBlocks.count(B))
3197 continue;
3199 // First, split the critical edges. This might also create additional blocks
3200 // to preserve LoopSimplify form and adjust edges accordingly.
3201 SmallVector<BasicBlock *, 4> Preds(predecessors(B));
3202 for (BasicBlock *P : Preds) {
3203 if (!DeadBlocks.count(P))
3204 continue;
3206 if (llvm::is_contained(successors(P), B) &&
3207 isCriticalEdge(P->getTerminator(), B)) {
3208 if (BasicBlock *S = splitCriticalEdges(P, B))
3209 DeadBlocks.insert(P = S);
3213 // Now poison the incoming values from the dead predecessors.
3214 for (BasicBlock *P : predecessors(B)) {
3215 if (!DeadBlocks.count(P))
3216 continue;
3217 for (PHINode &Phi : B->phis()) {
3218 Phi.setIncomingValueForBlock(P, PoisonValue::get(Phi.getType()));
3219 if (MD)
3220 MD->invalidateCachedPointerInfo(&Phi);
3226 // If the given branch is recognized as a foldable branch (i.e. conditional
3227 // branch with constant condition), it will perform following analyses and
3228 // transformation.
3229 // 1) If the dead out-coming edge is a critical-edge, split it. Let
3230 // R be the target of the dead out-coming edge.
3231 // 1) Identify the set of dead blocks implied by the branch's dead outcoming
3232 // edge. The result of this step will be {X| X is dominated by R}
3233 // 2) Identify those blocks which haves at least one dead predecessor. The
3234 // result of this step will be dominance-frontier(R).
3235 // 3) Update the PHIs in DF(R) by replacing the operands corresponding to
3236 // dead blocks with "UndefVal" in an hope these PHIs will optimized away.
3238 // Return true iff *NEW* dead code are found.
3239 bool GVNPass::processFoldableCondBr(BranchInst *BI) {
3240 if (!BI || BI->isUnconditional())
3241 return false;
3243 // If a branch has two identical successors, we cannot declare either dead.
3244 if (BI->getSuccessor(0) == BI->getSuccessor(1))
3245 return false;
3247 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
3248 if (!Cond)
3249 return false;
3251 BasicBlock *DeadRoot =
3252 Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
3253 if (DeadBlocks.count(DeadRoot))
3254 return false;
3256 if (!DeadRoot->getSinglePredecessor())
3257 DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
3259 addDeadBlock(DeadRoot);
3260 return true;
3263 // performPRE() will trigger assert if it comes across an instruction without
3264 // associated val-num. As it normally has far more live instructions than dead
3265 // instructions, it makes more sense just to "fabricate" a val-number for the
3266 // dead code than checking if instruction involved is dead or not.
3267 void GVNPass::assignValNumForDeadCode() {
3268 for (BasicBlock *BB : DeadBlocks) {
3269 for (Instruction &Inst : *BB) {
3270 unsigned ValNum = VN.lookupOrAdd(&Inst);
3271 addToLeaderTable(ValNum, &Inst, BB);
3276 class llvm::gvn::GVNLegacyPass : public FunctionPass {
3277 public:
3278 static char ID; // Pass identification, replacement for typeid
3280 explicit GVNLegacyPass(bool NoMemDepAnalysis = !GVNEnableMemDep)
3281 : FunctionPass(ID), Impl(GVNOptions().setMemDep(!NoMemDepAnalysis)) {
3282 initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
3285 bool runOnFunction(Function &F) override {
3286 if (skipFunction(F))
3287 return false;
3289 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
3290 return Impl.runImpl(
3291 F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
3292 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
3293 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
3294 getAnalysis<AAResultsWrapperPass>().getAAResults(),
3295 Impl.isMemDepEnabled()
3296 ? &getAnalysis<MemoryDependenceWrapperPass>().getMemDep()
3297 : nullptr,
3298 getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
3299 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(),
3300 MSSAWP ? &MSSAWP->getMSSA() : nullptr);
3303 void getAnalysisUsage(AnalysisUsage &AU) const override {
3304 AU.addRequired<AssumptionCacheTracker>();
3305 AU.addRequired<DominatorTreeWrapperPass>();
3306 AU.addRequired<TargetLibraryInfoWrapperPass>();
3307 AU.addRequired<LoopInfoWrapperPass>();
3308 if (Impl.isMemDepEnabled())
3309 AU.addRequired<MemoryDependenceWrapperPass>();
3310 AU.addRequired<AAResultsWrapperPass>();
3311 AU.addPreserved<DominatorTreeWrapperPass>();
3312 AU.addPreserved<GlobalsAAWrapperPass>();
3313 AU.addPreserved<TargetLibraryInfoWrapperPass>();
3314 AU.addPreserved<LoopInfoWrapperPass>();
3315 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
3316 AU.addPreserved<MemorySSAWrapperPass>();
3319 private:
3320 GVNPass Impl;
3323 char GVNLegacyPass::ID = 0;
3325 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
3326 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3327 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
3328 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3329 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3330 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3331 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3332 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
3333 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
3335 // The public interface to this file...
3336 FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) {
3337 return new GVNLegacyPass(NoMemDepAnalysis);