[mlir][int-range] Limit xor int range inference to i1 (#116968)
[llvm-project.git] / lldb / source / Commands / CommandObjectMemory.cpp
blobb5612f21f11563d4f4455cf7952e832603f6f38a
1 //===-- CommandObjectMemory.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "CommandObjectMemory.h"
10 #include "CommandObjectMemoryTag.h"
11 #include "lldb/Core/DumpDataExtractor.h"
12 #include "lldb/Core/Section.h"
13 #include "lldb/Expression/ExpressionVariable.h"
14 #include "lldb/Host/OptionParser.h"
15 #include "lldb/Interpreter/CommandOptionArgumentTable.h"
16 #include "lldb/Interpreter/CommandReturnObject.h"
17 #include "lldb/Interpreter/OptionArgParser.h"
18 #include "lldb/Interpreter/OptionGroupFormat.h"
19 #include "lldb/Interpreter/OptionGroupMemoryTag.h"
20 #include "lldb/Interpreter/OptionGroupOutputFile.h"
21 #include "lldb/Interpreter/OptionGroupValueObjectDisplay.h"
22 #include "lldb/Interpreter/OptionValueLanguage.h"
23 #include "lldb/Interpreter/OptionValueString.h"
24 #include "lldb/Interpreter/Options.h"
25 #include "lldb/Symbol/SymbolFile.h"
26 #include "lldb/Symbol/TypeList.h"
27 #include "lldb/Target/ABI.h"
28 #include "lldb/Target/Language.h"
29 #include "lldb/Target/MemoryHistory.h"
30 #include "lldb/Target/MemoryRegionInfo.h"
31 #include "lldb/Target/Process.h"
32 #include "lldb/Target/StackFrame.h"
33 #include "lldb/Target/Target.h"
34 #include "lldb/Target/Thread.h"
35 #include "lldb/Utility/Args.h"
36 #include "lldb/Utility/DataBufferHeap.h"
37 #include "lldb/Utility/StreamString.h"
38 #include "lldb/ValueObject/ValueObjectMemory.h"
39 #include "llvm/Support/MathExtras.h"
40 #include <cinttypes>
41 #include <memory>
42 #include <optional>
44 using namespace lldb;
45 using namespace lldb_private;
47 #define LLDB_OPTIONS_memory_read
48 #include "CommandOptions.inc"
50 class OptionGroupReadMemory : public OptionGroup {
51 public:
52 OptionGroupReadMemory()
53 : m_num_per_line(1, 1), m_offset(0, 0),
54 m_language_for_type(eLanguageTypeUnknown) {}
56 ~OptionGroupReadMemory() override = default;
58 llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
59 return llvm::ArrayRef(g_memory_read_options);
62 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
63 ExecutionContext *execution_context) override {
64 Status error;
65 const int short_option = g_memory_read_options[option_idx].short_option;
67 switch (short_option) {
68 case 'l':
69 error = m_num_per_line.SetValueFromString(option_value);
70 if (m_num_per_line.GetCurrentValue() == 0)
71 error = Status::FromErrorStringWithFormat(
72 "invalid value for --num-per-line option '%s'",
73 option_value.str().c_str());
74 break;
76 case 'b':
77 m_output_as_binary = true;
78 break;
80 case 't':
81 error = m_view_as_type.SetValueFromString(option_value);
82 break;
84 case 'r':
85 m_force = true;
86 break;
88 case 'x':
89 error = m_language_for_type.SetValueFromString(option_value);
90 break;
92 case 'E':
93 error = m_offset.SetValueFromString(option_value);
94 break;
96 default:
97 llvm_unreachable("Unimplemented option");
99 return error;
102 void OptionParsingStarting(ExecutionContext *execution_context) override {
103 m_num_per_line.Clear();
104 m_output_as_binary = false;
105 m_view_as_type.Clear();
106 m_force = false;
107 m_offset.Clear();
108 m_language_for_type.Clear();
111 Status FinalizeSettings(Target *target, OptionGroupFormat &format_options) {
112 Status error;
113 OptionValueUInt64 &byte_size_value = format_options.GetByteSizeValue();
114 OptionValueUInt64 &count_value = format_options.GetCountValue();
115 const bool byte_size_option_set = byte_size_value.OptionWasSet();
116 const bool num_per_line_option_set = m_num_per_line.OptionWasSet();
117 const bool count_option_set = format_options.GetCountValue().OptionWasSet();
119 switch (format_options.GetFormat()) {
120 default:
121 break;
123 case eFormatBoolean:
124 if (!byte_size_option_set)
125 byte_size_value = 1;
126 if (!num_per_line_option_set)
127 m_num_per_line = 1;
128 if (!count_option_set)
129 format_options.GetCountValue() = 8;
130 break;
132 case eFormatCString:
133 break;
135 case eFormatInstruction:
136 if (count_option_set)
137 byte_size_value = target->GetArchitecture().GetMaximumOpcodeByteSize();
138 m_num_per_line = 1;
139 break;
141 case eFormatAddressInfo:
142 if (!byte_size_option_set)
143 byte_size_value = target->GetArchitecture().GetAddressByteSize();
144 m_num_per_line = 1;
145 if (!count_option_set)
146 format_options.GetCountValue() = 8;
147 break;
149 case eFormatPointer:
150 byte_size_value = target->GetArchitecture().GetAddressByteSize();
151 if (!num_per_line_option_set)
152 m_num_per_line = 4;
153 if (!count_option_set)
154 format_options.GetCountValue() = 8;
155 break;
157 case eFormatBinary:
158 case eFormatFloat:
159 case eFormatOctal:
160 case eFormatDecimal:
161 case eFormatEnum:
162 case eFormatUnicode8:
163 case eFormatUnicode16:
164 case eFormatUnicode32:
165 case eFormatUnsigned:
166 case eFormatHexFloat:
167 if (!byte_size_option_set)
168 byte_size_value = 4;
169 if (!num_per_line_option_set)
170 m_num_per_line = 1;
171 if (!count_option_set)
172 format_options.GetCountValue() = 8;
173 break;
175 case eFormatBytes:
176 case eFormatBytesWithASCII:
177 if (byte_size_option_set) {
178 if (byte_size_value > 1)
179 error = Status::FromErrorStringWithFormat(
180 "display format (bytes/bytes with ASCII) conflicts with the "
181 "specified byte size %" PRIu64 "\n"
182 "\tconsider using a different display format or don't specify "
183 "the byte size.",
184 byte_size_value.GetCurrentValue());
185 } else
186 byte_size_value = 1;
187 if (!num_per_line_option_set)
188 m_num_per_line = 16;
189 if (!count_option_set)
190 format_options.GetCountValue() = 32;
191 break;
193 case eFormatCharArray:
194 case eFormatChar:
195 case eFormatCharPrintable:
196 if (!byte_size_option_set)
197 byte_size_value = 1;
198 if (!num_per_line_option_set)
199 m_num_per_line = 32;
200 if (!count_option_set)
201 format_options.GetCountValue() = 64;
202 break;
204 case eFormatComplex:
205 if (!byte_size_option_set)
206 byte_size_value = 8;
207 if (!num_per_line_option_set)
208 m_num_per_line = 1;
209 if (!count_option_set)
210 format_options.GetCountValue() = 8;
211 break;
213 case eFormatComplexInteger:
214 if (!byte_size_option_set)
215 byte_size_value = 8;
216 if (!num_per_line_option_set)
217 m_num_per_line = 1;
218 if (!count_option_set)
219 format_options.GetCountValue() = 8;
220 break;
222 case eFormatHex:
223 if (!byte_size_option_set)
224 byte_size_value = 4;
225 if (!num_per_line_option_set) {
226 switch (byte_size_value) {
227 case 1:
228 case 2:
229 m_num_per_line = 8;
230 break;
231 case 4:
232 m_num_per_line = 4;
233 break;
234 case 8:
235 m_num_per_line = 2;
236 break;
237 default:
238 m_num_per_line = 1;
239 break;
242 if (!count_option_set)
243 count_value = 8;
244 break;
246 case eFormatVectorOfChar:
247 case eFormatVectorOfSInt8:
248 case eFormatVectorOfUInt8:
249 case eFormatVectorOfSInt16:
250 case eFormatVectorOfUInt16:
251 case eFormatVectorOfSInt32:
252 case eFormatVectorOfUInt32:
253 case eFormatVectorOfSInt64:
254 case eFormatVectorOfUInt64:
255 case eFormatVectorOfFloat16:
256 case eFormatVectorOfFloat32:
257 case eFormatVectorOfFloat64:
258 case eFormatVectorOfUInt128:
259 if (!byte_size_option_set)
260 byte_size_value = 128;
261 if (!num_per_line_option_set)
262 m_num_per_line = 1;
263 if (!count_option_set)
264 count_value = 4;
265 break;
267 return error;
270 bool AnyOptionWasSet() const {
271 return m_num_per_line.OptionWasSet() || m_output_as_binary ||
272 m_view_as_type.OptionWasSet() || m_offset.OptionWasSet() ||
273 m_language_for_type.OptionWasSet();
276 OptionValueUInt64 m_num_per_line;
277 bool m_output_as_binary = false;
278 OptionValueString m_view_as_type;
279 bool m_force = false;
280 OptionValueUInt64 m_offset;
281 OptionValueLanguage m_language_for_type;
284 // Read memory from the inferior process
285 class CommandObjectMemoryRead : public CommandObjectParsed {
286 public:
287 CommandObjectMemoryRead(CommandInterpreter &interpreter)
288 : CommandObjectParsed(
289 interpreter, "memory read",
290 "Read from the memory of the current target process.", nullptr,
291 eCommandRequiresTarget | eCommandProcessMustBePaused),
292 m_format_options(eFormatBytesWithASCII, 1, 8),
293 m_memory_tag_options(/*note_binary=*/true),
294 m_prev_format_options(eFormatBytesWithASCII, 1, 8) {
295 CommandArgumentEntry arg1;
296 CommandArgumentEntry arg2;
297 CommandArgumentData start_addr_arg;
298 CommandArgumentData end_addr_arg;
300 // Define the first (and only) variant of this arg.
301 start_addr_arg.arg_type = eArgTypeAddressOrExpression;
302 start_addr_arg.arg_repetition = eArgRepeatPlain;
304 // There is only one variant this argument could be; put it into the
305 // argument entry.
306 arg1.push_back(start_addr_arg);
308 // Define the first (and only) variant of this arg.
309 end_addr_arg.arg_type = eArgTypeAddressOrExpression;
310 end_addr_arg.arg_repetition = eArgRepeatOptional;
312 // There is only one variant this argument could be; put it into the
313 // argument entry.
314 arg2.push_back(end_addr_arg);
316 // Push the data for the first argument into the m_arguments vector.
317 m_arguments.push_back(arg1);
318 m_arguments.push_back(arg2);
320 // Add the "--format" and "--count" options to group 1 and 3
321 m_option_group.Append(&m_format_options,
322 OptionGroupFormat::OPTION_GROUP_FORMAT |
323 OptionGroupFormat::OPTION_GROUP_COUNT,
324 LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3);
325 m_option_group.Append(&m_format_options,
326 OptionGroupFormat::OPTION_GROUP_GDB_FMT,
327 LLDB_OPT_SET_1 | LLDB_OPT_SET_3);
328 // Add the "--size" option to group 1 and 2
329 m_option_group.Append(&m_format_options,
330 OptionGroupFormat::OPTION_GROUP_SIZE,
331 LLDB_OPT_SET_1 | LLDB_OPT_SET_2);
332 m_option_group.Append(&m_memory_options);
333 m_option_group.Append(&m_outfile_options, LLDB_OPT_SET_ALL,
334 LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3);
335 m_option_group.Append(&m_varobj_options, LLDB_OPT_SET_ALL, LLDB_OPT_SET_3);
336 m_option_group.Append(&m_memory_tag_options, LLDB_OPT_SET_ALL,
337 LLDB_OPT_SET_ALL);
338 m_option_group.Finalize();
341 ~CommandObjectMemoryRead() override = default;
343 Options *GetOptions() override { return &m_option_group; }
345 std::optional<std::string> GetRepeatCommand(Args &current_command_args,
346 uint32_t index) override {
347 return m_cmd_name;
350 protected:
351 void DoExecute(Args &command, CommandReturnObject &result) override {
352 // No need to check "target" for validity as eCommandRequiresTarget ensures
353 // it is valid
354 Target *target = m_exe_ctx.GetTargetPtr();
356 const size_t argc = command.GetArgumentCount();
358 if ((argc == 0 && m_next_addr == LLDB_INVALID_ADDRESS) || argc > 2) {
359 result.AppendErrorWithFormat("%s takes a start address expression with "
360 "an optional end address expression.\n",
361 m_cmd_name.c_str());
362 result.AppendWarning("Expressions should be quoted if they contain "
363 "spaces or other special characters.");
364 return;
367 CompilerType compiler_type;
368 Status error;
370 const char *view_as_type_cstr =
371 m_memory_options.m_view_as_type.GetCurrentValue();
372 if (view_as_type_cstr && view_as_type_cstr[0]) {
373 // We are viewing memory as a type
375 uint32_t reference_count = 0;
376 uint32_t pointer_count = 0;
377 size_t idx;
379 #define ALL_KEYWORDS \
380 KEYWORD("const") \
381 KEYWORD("volatile") \
382 KEYWORD("restrict") \
383 KEYWORD("struct") \
384 KEYWORD("class") \
385 KEYWORD("union")
387 #define KEYWORD(s) s,
388 static const char *g_keywords[] = {ALL_KEYWORDS};
389 #undef KEYWORD
391 #define KEYWORD(s) (sizeof(s) - 1),
392 static const int g_keyword_lengths[] = {ALL_KEYWORDS};
393 #undef KEYWORD
395 #undef ALL_KEYWORDS
397 static size_t g_num_keywords = sizeof(g_keywords) / sizeof(const char *);
398 std::string type_str(view_as_type_cstr);
400 // Remove all instances of g_keywords that are followed by spaces
401 for (size_t i = 0; i < g_num_keywords; ++i) {
402 const char *keyword = g_keywords[i];
403 int keyword_len = g_keyword_lengths[i];
405 idx = 0;
406 while ((idx = type_str.find(keyword, idx)) != std::string::npos) {
407 if (type_str[idx + keyword_len] == ' ' ||
408 type_str[idx + keyword_len] == '\t') {
409 type_str.erase(idx, keyword_len + 1);
410 idx = 0;
411 } else {
412 idx += keyword_len;
416 bool done = type_str.empty();
418 idx = type_str.find_first_not_of(" \t");
419 if (idx > 0 && idx != std::string::npos)
420 type_str.erase(0, idx);
421 while (!done) {
422 // Strip trailing spaces
423 if (type_str.empty())
424 done = true;
425 else {
426 switch (type_str[type_str.size() - 1]) {
427 case '*':
428 ++pointer_count;
429 [[fallthrough]];
430 case ' ':
431 case '\t':
432 type_str.erase(type_str.size() - 1);
433 break;
435 case '&':
436 if (reference_count == 0) {
437 reference_count = 1;
438 type_str.erase(type_str.size() - 1);
439 } else {
440 result.AppendErrorWithFormat("invalid type string: '%s'\n",
441 view_as_type_cstr);
442 return;
444 break;
446 default:
447 done = true;
448 break;
453 ConstString lookup_type_name(type_str.c_str());
454 StackFrame *frame = m_exe_ctx.GetFramePtr();
455 ModuleSP search_first;
456 if (frame)
457 search_first = frame->GetSymbolContext(eSymbolContextModule).module_sp;
458 TypeQuery query(lookup_type_name.GetStringRef(),
459 TypeQueryOptions::e_find_one);
460 TypeResults results;
461 target->GetImages().FindTypes(search_first.get(), query, results);
462 TypeSP type_sp = results.GetFirstType();
464 if (!type_sp && lookup_type_name.GetCString()) {
465 LanguageType language_for_type =
466 m_memory_options.m_language_for_type.GetCurrentValue();
467 std::set<LanguageType> languages_to_check;
468 if (language_for_type != eLanguageTypeUnknown) {
469 languages_to_check.insert(language_for_type);
470 } else {
471 languages_to_check = Language::GetSupportedLanguages();
474 std::set<CompilerType> user_defined_types;
475 for (auto lang : languages_to_check) {
476 if (auto *persistent_vars =
477 target->GetPersistentExpressionStateForLanguage(lang)) {
478 if (std::optional<CompilerType> type =
479 persistent_vars->GetCompilerTypeFromPersistentDecl(
480 lookup_type_name)) {
481 user_defined_types.emplace(*type);
486 if (user_defined_types.size() > 1) {
487 result.AppendErrorWithFormat(
488 "Mutiple types found matching raw type '%s', please disambiguate "
489 "by specifying the language with -x",
490 lookup_type_name.GetCString());
491 return;
494 if (user_defined_types.size() == 1) {
495 compiler_type = *user_defined_types.begin();
499 if (!compiler_type.IsValid()) {
500 if (type_sp) {
501 compiler_type = type_sp->GetFullCompilerType();
502 } else {
503 result.AppendErrorWithFormat("unable to find any types that match "
504 "the raw type '%s' for full type '%s'\n",
505 lookup_type_name.GetCString(),
506 view_as_type_cstr);
507 return;
511 while (pointer_count > 0) {
512 CompilerType pointer_type = compiler_type.GetPointerType();
513 if (pointer_type.IsValid())
514 compiler_type = pointer_type;
515 else {
516 result.AppendError("unable make a pointer type\n");
517 return;
519 --pointer_count;
522 std::optional<uint64_t> size = compiler_type.GetByteSize(nullptr);
523 if (!size) {
524 result.AppendErrorWithFormat(
525 "unable to get the byte size of the type '%s'\n",
526 view_as_type_cstr);
527 return;
529 m_format_options.GetByteSizeValue() = *size;
531 if (!m_format_options.GetCountValue().OptionWasSet())
532 m_format_options.GetCountValue() = 1;
533 } else {
534 error = m_memory_options.FinalizeSettings(target, m_format_options);
537 // Look for invalid combinations of settings
538 if (error.Fail()) {
539 result.AppendError(error.AsCString());
540 return;
543 lldb::addr_t addr;
544 size_t total_byte_size = 0;
545 if (argc == 0) {
546 // Use the last address and byte size and all options as they were if no
547 // options have been set
548 addr = m_next_addr;
549 total_byte_size = m_prev_byte_size;
550 compiler_type = m_prev_compiler_type;
551 if (!m_format_options.AnyOptionWasSet() &&
552 !m_memory_options.AnyOptionWasSet() &&
553 !m_outfile_options.AnyOptionWasSet() &&
554 !m_varobj_options.AnyOptionWasSet() &&
555 !m_memory_tag_options.AnyOptionWasSet()) {
556 m_format_options = m_prev_format_options;
557 m_memory_options = m_prev_memory_options;
558 m_outfile_options = m_prev_outfile_options;
559 m_varobj_options = m_prev_varobj_options;
560 m_memory_tag_options = m_prev_memory_tag_options;
564 size_t item_count = m_format_options.GetCountValue().GetCurrentValue();
566 // TODO For non-8-bit byte addressable architectures this needs to be
567 // revisited to fully support all lldb's range of formatting options.
568 // Furthermore code memory reads (for those architectures) will not be
569 // correctly formatted even w/o formatting options.
570 size_t item_byte_size =
571 target->GetArchitecture().GetDataByteSize() > 1
572 ? target->GetArchitecture().GetDataByteSize()
573 : m_format_options.GetByteSizeValue().GetCurrentValue();
575 const size_t num_per_line =
576 m_memory_options.m_num_per_line.GetCurrentValue();
578 if (total_byte_size == 0) {
579 total_byte_size = item_count * item_byte_size;
580 if (total_byte_size == 0)
581 total_byte_size = 32;
584 if (argc > 0)
585 addr = OptionArgParser::ToAddress(&m_exe_ctx, command[0].ref(),
586 LLDB_INVALID_ADDRESS, &error);
588 if (addr == LLDB_INVALID_ADDRESS) {
589 result.AppendError("invalid start address expression.");
590 result.AppendError(error.AsCString());
591 return;
594 if (argc == 2) {
595 lldb::addr_t end_addr = OptionArgParser::ToAddress(
596 &m_exe_ctx, command[1].ref(), LLDB_INVALID_ADDRESS, nullptr);
598 if (end_addr == LLDB_INVALID_ADDRESS) {
599 result.AppendError("invalid end address expression.");
600 result.AppendError(error.AsCString());
601 return;
602 } else if (end_addr <= addr) {
603 result.AppendErrorWithFormat(
604 "end address (0x%" PRIx64
605 ") must be greater than the start address (0x%" PRIx64 ").\n",
606 end_addr, addr);
607 return;
608 } else if (m_format_options.GetCountValue().OptionWasSet()) {
609 result.AppendErrorWithFormat(
610 "specify either the end address (0x%" PRIx64
611 ") or the count (--count %" PRIu64 "), not both.\n",
612 end_addr, (uint64_t)item_count);
613 return;
616 total_byte_size = end_addr - addr;
617 item_count = total_byte_size / item_byte_size;
620 uint32_t max_unforced_size = target->GetMaximumMemReadSize();
622 if (total_byte_size > max_unforced_size && !m_memory_options.m_force) {
623 result.AppendErrorWithFormat(
624 "Normally, \'memory read\' will not read over %" PRIu32
625 " bytes of data.\n",
626 max_unforced_size);
627 result.AppendErrorWithFormat(
628 "Please use --force to override this restriction just once.\n");
629 result.AppendErrorWithFormat("or set target.max-memory-read-size if you "
630 "will often need a larger limit.\n");
631 return;
634 WritableDataBufferSP data_sp;
635 size_t bytes_read = 0;
636 if (compiler_type.GetOpaqueQualType()) {
637 // Make sure we don't display our type as ASCII bytes like the default
638 // memory read
639 if (!m_format_options.GetFormatValue().OptionWasSet())
640 m_format_options.GetFormatValue().SetCurrentValue(eFormatDefault);
642 std::optional<uint64_t> size = compiler_type.GetByteSize(nullptr);
643 if (!size) {
644 result.AppendError("can't get size of type");
645 return;
647 bytes_read = *size * m_format_options.GetCountValue().GetCurrentValue();
649 if (argc > 0)
650 addr = addr + (*size * m_memory_options.m_offset.GetCurrentValue());
651 } else if (m_format_options.GetFormatValue().GetCurrentValue() !=
652 eFormatCString) {
653 data_sp = std::make_shared<DataBufferHeap>(total_byte_size, '\0');
654 if (data_sp->GetBytes() == nullptr) {
655 result.AppendErrorWithFormat(
656 "can't allocate 0x%" PRIx32
657 " bytes for the memory read buffer, specify a smaller size to read",
658 (uint32_t)total_byte_size);
659 return;
662 Address address(addr, nullptr);
663 bytes_read = target->ReadMemory(address, data_sp->GetBytes(),
664 data_sp->GetByteSize(), error, true);
665 if (bytes_read == 0) {
666 const char *error_cstr = error.AsCString();
667 if (error_cstr && error_cstr[0]) {
668 result.AppendError(error_cstr);
669 } else {
670 result.AppendErrorWithFormat(
671 "failed to read memory from 0x%" PRIx64 ".\n", addr);
673 return;
676 if (bytes_read < total_byte_size)
677 result.AppendWarningWithFormat(
678 "Not all bytes (%" PRIu64 "/%" PRIu64
679 ") were able to be read from 0x%" PRIx64 ".\n",
680 (uint64_t)bytes_read, (uint64_t)total_byte_size, addr);
681 } else {
682 // we treat c-strings as a special case because they do not have a fixed
683 // size
684 if (m_format_options.GetByteSizeValue().OptionWasSet() &&
685 !m_format_options.HasGDBFormat())
686 item_byte_size = m_format_options.GetByteSizeValue().GetCurrentValue();
687 else
688 item_byte_size = target->GetMaximumSizeOfStringSummary();
689 if (!m_format_options.GetCountValue().OptionWasSet())
690 item_count = 1;
691 data_sp = std::make_shared<DataBufferHeap>(
692 (item_byte_size + 1) * item_count,
693 '\0'); // account for NULLs as necessary
694 if (data_sp->GetBytes() == nullptr) {
695 result.AppendErrorWithFormat(
696 "can't allocate 0x%" PRIx64
697 " bytes for the memory read buffer, specify a smaller size to read",
698 (uint64_t)((item_byte_size + 1) * item_count));
699 return;
701 uint8_t *data_ptr = data_sp->GetBytes();
702 auto data_addr = addr;
703 auto count = item_count;
704 item_count = 0;
705 bool break_on_no_NULL = false;
706 while (item_count < count) {
707 std::string buffer;
708 buffer.resize(item_byte_size + 1, 0);
709 Status error;
710 size_t read = target->ReadCStringFromMemory(data_addr, &buffer[0],
711 item_byte_size + 1, error);
712 if (error.Fail()) {
713 result.AppendErrorWithFormat(
714 "failed to read memory from 0x%" PRIx64 ".\n", addr);
715 return;
718 if (item_byte_size == read) {
719 result.AppendWarningWithFormat(
720 "unable to find a NULL terminated string at 0x%" PRIx64
721 ". Consider increasing the maximum read length.\n",
722 data_addr);
723 --read;
724 break_on_no_NULL = true;
725 } else
726 ++read; // account for final NULL byte
728 memcpy(data_ptr, &buffer[0], read);
729 data_ptr += read;
730 data_addr += read;
731 bytes_read += read;
732 item_count++; // if we break early we know we only read item_count
733 // strings
735 if (break_on_no_NULL)
736 break;
738 data_sp =
739 std::make_shared<DataBufferHeap>(data_sp->GetBytes(), bytes_read + 1);
742 m_next_addr = addr + bytes_read;
743 m_prev_byte_size = bytes_read;
744 m_prev_format_options = m_format_options;
745 m_prev_memory_options = m_memory_options;
746 m_prev_outfile_options = m_outfile_options;
747 m_prev_varobj_options = m_varobj_options;
748 m_prev_memory_tag_options = m_memory_tag_options;
749 m_prev_compiler_type = compiler_type;
751 std::unique_ptr<Stream> output_stream_storage;
752 Stream *output_stream_p = nullptr;
753 const FileSpec &outfile_spec =
754 m_outfile_options.GetFile().GetCurrentValue();
756 std::string path = outfile_spec.GetPath();
757 if (outfile_spec) {
759 File::OpenOptions open_options =
760 File::eOpenOptionWriteOnly | File::eOpenOptionCanCreate;
761 const bool append = m_outfile_options.GetAppend().GetCurrentValue();
762 open_options |=
763 append ? File::eOpenOptionAppend : File::eOpenOptionTruncate;
765 auto outfile = FileSystem::Instance().Open(outfile_spec, open_options);
767 if (outfile) {
768 auto outfile_stream_up =
769 std::make_unique<StreamFile>(std::move(outfile.get()));
770 if (m_memory_options.m_output_as_binary) {
771 const size_t bytes_written =
772 outfile_stream_up->Write(data_sp->GetBytes(), bytes_read);
773 if (bytes_written > 0) {
774 result.GetOutputStream().Printf(
775 "%zi bytes %s to '%s'\n", bytes_written,
776 append ? "appended" : "written", path.c_str());
777 return;
778 } else {
779 result.AppendErrorWithFormat("Failed to write %" PRIu64
780 " bytes to '%s'.\n",
781 (uint64_t)bytes_read, path.c_str());
782 return;
784 } else {
785 // We are going to write ASCII to the file just point the
786 // output_stream to our outfile_stream...
787 output_stream_storage = std::move(outfile_stream_up);
788 output_stream_p = output_stream_storage.get();
790 } else {
791 result.AppendErrorWithFormat("Failed to open file '%s' for %s:\n",
792 path.c_str(), append ? "append" : "write");
794 result.AppendError(llvm::toString(outfile.takeError()));
795 return;
797 } else {
798 output_stream_p = &result.GetOutputStream();
801 ExecutionContextScope *exe_scope = m_exe_ctx.GetBestExecutionContextScope();
802 if (compiler_type.GetOpaqueQualType()) {
803 for (uint32_t i = 0; i < item_count; ++i) {
804 addr_t item_addr = addr + (i * item_byte_size);
805 Address address(item_addr);
806 StreamString name_strm;
807 name_strm.Printf("0x%" PRIx64, item_addr);
808 ValueObjectSP valobj_sp(ValueObjectMemory::Create(
809 exe_scope, name_strm.GetString(), address, compiler_type));
810 if (valobj_sp) {
811 Format format = m_format_options.GetFormat();
812 if (format != eFormatDefault)
813 valobj_sp->SetFormat(format);
815 DumpValueObjectOptions options(m_varobj_options.GetAsDumpOptions(
816 eLanguageRuntimeDescriptionDisplayVerbosityFull, format));
818 if (llvm::Error error = valobj_sp->Dump(*output_stream_p, options)) {
819 result.AppendError(toString(std::move(error)));
820 return;
822 } else {
823 result.AppendErrorWithFormat(
824 "failed to create a value object for: (%s) %s\n",
825 view_as_type_cstr, name_strm.GetData());
826 return;
829 return;
832 result.SetStatus(eReturnStatusSuccessFinishResult);
833 DataExtractor data(data_sp, target->GetArchitecture().GetByteOrder(),
834 target->GetArchitecture().GetAddressByteSize(),
835 target->GetArchitecture().GetDataByteSize());
837 Format format = m_format_options.GetFormat();
838 if (((format == eFormatChar) || (format == eFormatCharPrintable)) &&
839 (item_byte_size != 1)) {
840 // if a count was not passed, or it is 1
841 if (!m_format_options.GetCountValue().OptionWasSet() || item_count == 1) {
842 // this turns requests such as
843 // memory read -fc -s10 -c1 *charPtrPtr
844 // which make no sense (what is a char of size 10?) into a request for
845 // fetching 10 chars of size 1 from the same memory location
846 format = eFormatCharArray;
847 item_count = item_byte_size;
848 item_byte_size = 1;
849 } else {
850 // here we passed a count, and it was not 1 so we have a byte_size and
851 // a count we could well multiply those, but instead let's just fail
852 result.AppendErrorWithFormat(
853 "reading memory as characters of size %" PRIu64 " is not supported",
854 (uint64_t)item_byte_size);
855 return;
859 assert(output_stream_p);
860 size_t bytes_dumped = DumpDataExtractor(
861 data, output_stream_p, 0, format, item_byte_size, item_count,
862 num_per_line / target->GetArchitecture().GetDataByteSize(), addr, 0, 0,
863 exe_scope, m_memory_tag_options.GetShowTags().GetCurrentValue());
864 m_next_addr = addr + bytes_dumped;
865 output_stream_p->EOL();
868 OptionGroupOptions m_option_group;
869 OptionGroupFormat m_format_options;
870 OptionGroupReadMemory m_memory_options;
871 OptionGroupOutputFile m_outfile_options;
872 OptionGroupValueObjectDisplay m_varobj_options;
873 OptionGroupMemoryTag m_memory_tag_options;
874 lldb::addr_t m_next_addr = LLDB_INVALID_ADDRESS;
875 lldb::addr_t m_prev_byte_size = 0;
876 OptionGroupFormat m_prev_format_options;
877 OptionGroupReadMemory m_prev_memory_options;
878 OptionGroupOutputFile m_prev_outfile_options;
879 OptionGroupValueObjectDisplay m_prev_varobj_options;
880 OptionGroupMemoryTag m_prev_memory_tag_options;
881 CompilerType m_prev_compiler_type;
884 #define LLDB_OPTIONS_memory_find
885 #include "CommandOptions.inc"
887 // Find the specified data in memory
888 class CommandObjectMemoryFind : public CommandObjectParsed {
889 public:
890 class OptionGroupFindMemory : public OptionGroup {
891 public:
892 OptionGroupFindMemory() : m_count(1), m_offset(0) {}
894 ~OptionGroupFindMemory() override = default;
896 llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
897 return llvm::ArrayRef(g_memory_find_options);
900 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
901 ExecutionContext *execution_context) override {
902 Status error;
903 const int short_option = g_memory_find_options[option_idx].short_option;
905 switch (short_option) {
906 case 'e':
907 m_expr.SetValueFromString(option_value);
908 break;
910 case 's':
911 m_string.SetValueFromString(option_value);
912 break;
914 case 'c':
915 if (m_count.SetValueFromString(option_value).Fail())
916 error = Status::FromErrorString("unrecognized value for count");
917 break;
919 case 'o':
920 if (m_offset.SetValueFromString(option_value).Fail())
921 error = Status::FromErrorString("unrecognized value for dump-offset");
922 break;
924 default:
925 llvm_unreachable("Unimplemented option");
927 return error;
930 void OptionParsingStarting(ExecutionContext *execution_context) override {
931 m_expr.Clear();
932 m_string.Clear();
933 m_count.Clear();
936 OptionValueString m_expr;
937 OptionValueString m_string;
938 OptionValueUInt64 m_count;
939 OptionValueUInt64 m_offset;
942 CommandObjectMemoryFind(CommandInterpreter &interpreter)
943 : CommandObjectParsed(
944 interpreter, "memory find",
945 "Find a value in the memory of the current target process.",
946 nullptr, eCommandRequiresProcess | eCommandProcessMustBeLaunched) {
947 CommandArgumentEntry arg1;
948 CommandArgumentEntry arg2;
949 CommandArgumentData addr_arg;
950 CommandArgumentData value_arg;
952 // Define the first (and only) variant of this arg.
953 addr_arg.arg_type = eArgTypeAddressOrExpression;
954 addr_arg.arg_repetition = eArgRepeatPlain;
956 // There is only one variant this argument could be; put it into the
957 // argument entry.
958 arg1.push_back(addr_arg);
960 // Define the first (and only) variant of this arg.
961 value_arg.arg_type = eArgTypeAddressOrExpression;
962 value_arg.arg_repetition = eArgRepeatPlain;
964 // There is only one variant this argument could be; put it into the
965 // argument entry.
966 arg2.push_back(value_arg);
968 // Push the data for the first argument into the m_arguments vector.
969 m_arguments.push_back(arg1);
970 m_arguments.push_back(arg2);
972 m_option_group.Append(&m_memory_options);
973 m_option_group.Append(&m_memory_tag_options, LLDB_OPT_SET_ALL,
974 LLDB_OPT_SET_ALL);
975 m_option_group.Finalize();
978 ~CommandObjectMemoryFind() override = default;
980 Options *GetOptions() override { return &m_option_group; }
982 protected:
983 void DoExecute(Args &command, CommandReturnObject &result) override {
984 // No need to check "process" for validity as eCommandRequiresProcess
985 // ensures it is valid
986 Process *process = m_exe_ctx.GetProcessPtr();
988 const size_t argc = command.GetArgumentCount();
990 if (argc != 2) {
991 result.AppendError("two addresses needed for memory find");
992 return;
995 Status error;
996 lldb::addr_t low_addr = OptionArgParser::ToAddress(
997 &m_exe_ctx, command[0].ref(), LLDB_INVALID_ADDRESS, &error);
998 if (low_addr == LLDB_INVALID_ADDRESS || error.Fail()) {
999 result.AppendError("invalid low address");
1000 return;
1002 lldb::addr_t high_addr = OptionArgParser::ToAddress(
1003 &m_exe_ctx, command[1].ref(), LLDB_INVALID_ADDRESS, &error);
1004 if (high_addr == LLDB_INVALID_ADDRESS || error.Fail()) {
1005 result.AppendError("invalid high address");
1006 return;
1009 if (high_addr <= low_addr) {
1010 result.AppendError(
1011 "starting address must be smaller than ending address");
1012 return;
1015 lldb::addr_t found_location = LLDB_INVALID_ADDRESS;
1017 DataBufferHeap buffer;
1019 if (m_memory_options.m_string.OptionWasSet()) {
1020 llvm::StringRef str =
1021 m_memory_options.m_string.GetValueAs<llvm::StringRef>().value_or("");
1022 if (str.empty()) {
1023 result.AppendError("search string must have non-zero length.");
1024 return;
1026 buffer.CopyData(str);
1027 } else if (m_memory_options.m_expr.OptionWasSet()) {
1028 StackFrame *frame = m_exe_ctx.GetFramePtr();
1029 ValueObjectSP result_sp;
1030 if ((eExpressionCompleted ==
1031 process->GetTarget().EvaluateExpression(
1032 m_memory_options.m_expr.GetValueAs<llvm::StringRef>().value_or(
1033 ""),
1034 frame, result_sp)) &&
1035 result_sp) {
1036 uint64_t value = result_sp->GetValueAsUnsigned(0);
1037 std::optional<uint64_t> size =
1038 result_sp->GetCompilerType().GetByteSize(nullptr);
1039 if (!size)
1040 return;
1041 switch (*size) {
1042 case 1: {
1043 uint8_t byte = (uint8_t)value;
1044 buffer.CopyData(&byte, 1);
1045 } break;
1046 case 2: {
1047 uint16_t word = (uint16_t)value;
1048 buffer.CopyData(&word, 2);
1049 } break;
1050 case 4: {
1051 uint32_t lword = (uint32_t)value;
1052 buffer.CopyData(&lword, 4);
1053 } break;
1054 case 8: {
1055 buffer.CopyData(&value, 8);
1056 } break;
1057 case 3:
1058 case 5:
1059 case 6:
1060 case 7:
1061 result.AppendError("unknown type. pass a string instead");
1062 return;
1063 default:
1064 result.AppendError(
1065 "result size larger than 8 bytes. pass a string instead");
1066 return;
1068 } else {
1069 result.AppendError(
1070 "expression evaluation failed. pass a string instead");
1071 return;
1073 } else {
1074 result.AppendError(
1075 "please pass either a block of text, or an expression to evaluate.");
1076 return;
1079 size_t count = m_memory_options.m_count.GetCurrentValue();
1080 found_location = low_addr;
1081 bool ever_found = false;
1082 while (count) {
1083 found_location = process->FindInMemory(
1084 found_location, high_addr, buffer.GetBytes(), buffer.GetByteSize());
1085 if (found_location == LLDB_INVALID_ADDRESS) {
1086 if (!ever_found) {
1087 result.AppendMessage("data not found within the range.\n");
1088 result.SetStatus(lldb::eReturnStatusSuccessFinishNoResult);
1089 } else
1090 result.AppendMessage("no more matches within the range.\n");
1091 break;
1093 result.AppendMessageWithFormat("data found at location: 0x%" PRIx64 "\n",
1094 found_location);
1096 DataBufferHeap dumpbuffer(32, 0);
1097 process->ReadMemory(
1098 found_location + m_memory_options.m_offset.GetCurrentValue(),
1099 dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(), error);
1100 if (!error.Fail()) {
1101 DataExtractor data(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(),
1102 process->GetByteOrder(),
1103 process->GetAddressByteSize());
1104 DumpDataExtractor(
1105 data, &result.GetOutputStream(), 0, lldb::eFormatBytesWithASCII, 1,
1106 dumpbuffer.GetByteSize(), 16,
1107 found_location + m_memory_options.m_offset.GetCurrentValue(), 0, 0,
1108 m_exe_ctx.GetBestExecutionContextScope(),
1109 m_memory_tag_options.GetShowTags().GetCurrentValue());
1110 result.GetOutputStream().EOL();
1113 --count;
1114 found_location++;
1115 ever_found = true;
1118 result.SetStatus(lldb::eReturnStatusSuccessFinishResult);
1121 OptionGroupOptions m_option_group;
1122 OptionGroupFindMemory m_memory_options;
1123 OptionGroupMemoryTag m_memory_tag_options;
1126 #define LLDB_OPTIONS_memory_write
1127 #include "CommandOptions.inc"
1129 // Write memory to the inferior process
1130 class CommandObjectMemoryWrite : public CommandObjectParsed {
1131 public:
1132 class OptionGroupWriteMemory : public OptionGroup {
1133 public:
1134 OptionGroupWriteMemory() = default;
1136 ~OptionGroupWriteMemory() override = default;
1138 llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
1139 return llvm::ArrayRef(g_memory_write_options);
1142 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
1143 ExecutionContext *execution_context) override {
1144 Status error;
1145 const int short_option = g_memory_write_options[option_idx].short_option;
1147 switch (short_option) {
1148 case 'i':
1149 m_infile.SetFile(option_value, FileSpec::Style::native);
1150 FileSystem::Instance().Resolve(m_infile);
1151 if (!FileSystem::Instance().Exists(m_infile)) {
1152 m_infile.Clear();
1153 error = Status::FromErrorStringWithFormat(
1154 "input file does not exist: '%s'", option_value.str().c_str());
1156 break;
1158 case 'o': {
1159 if (option_value.getAsInteger(0, m_infile_offset)) {
1160 m_infile_offset = 0;
1161 error = Status::FromErrorStringWithFormat(
1162 "invalid offset string '%s'", option_value.str().c_str());
1164 } break;
1166 default:
1167 llvm_unreachable("Unimplemented option");
1169 return error;
1172 void OptionParsingStarting(ExecutionContext *execution_context) override {
1173 m_infile.Clear();
1174 m_infile_offset = 0;
1177 FileSpec m_infile;
1178 off_t m_infile_offset;
1181 CommandObjectMemoryWrite(CommandInterpreter &interpreter)
1182 : CommandObjectParsed(
1183 interpreter, "memory write",
1184 "Write to the memory of the current target process.", nullptr,
1185 eCommandRequiresProcess | eCommandProcessMustBeLaunched),
1186 m_format_options(
1187 eFormatBytes, 1, UINT64_MAX,
1188 {std::make_tuple(
1189 eArgTypeFormat,
1190 "The format to use for each of the value to be written."),
1191 std::make_tuple(eArgTypeByteSize,
1192 "The size in bytes to write from input file or "
1193 "each value.")}) {
1194 CommandArgumentEntry arg1;
1195 CommandArgumentEntry arg2;
1196 CommandArgumentData addr_arg;
1197 CommandArgumentData value_arg;
1199 // Define the first (and only) variant of this arg.
1200 addr_arg.arg_type = eArgTypeAddress;
1201 addr_arg.arg_repetition = eArgRepeatPlain;
1203 // There is only one variant this argument could be; put it into the
1204 // argument entry.
1205 arg1.push_back(addr_arg);
1207 // Define the first (and only) variant of this arg.
1208 value_arg.arg_type = eArgTypeValue;
1209 value_arg.arg_repetition = eArgRepeatPlus;
1210 value_arg.arg_opt_set_association = LLDB_OPT_SET_1;
1212 // There is only one variant this argument could be; put it into the
1213 // argument entry.
1214 arg2.push_back(value_arg);
1216 // Push the data for the first argument into the m_arguments vector.
1217 m_arguments.push_back(arg1);
1218 m_arguments.push_back(arg2);
1220 m_option_group.Append(&m_format_options,
1221 OptionGroupFormat::OPTION_GROUP_FORMAT,
1222 LLDB_OPT_SET_1);
1223 m_option_group.Append(&m_format_options,
1224 OptionGroupFormat::OPTION_GROUP_SIZE,
1225 LLDB_OPT_SET_1 | LLDB_OPT_SET_2);
1226 m_option_group.Append(&m_memory_options, LLDB_OPT_SET_ALL, LLDB_OPT_SET_2);
1227 m_option_group.Finalize();
1230 ~CommandObjectMemoryWrite() override = default;
1232 Options *GetOptions() override { return &m_option_group; }
1234 protected:
1235 void DoExecute(Args &command, CommandReturnObject &result) override {
1236 // No need to check "process" for validity as eCommandRequiresProcess
1237 // ensures it is valid
1238 Process *process = m_exe_ctx.GetProcessPtr();
1240 const size_t argc = command.GetArgumentCount();
1242 if (m_memory_options.m_infile) {
1243 if (argc < 1) {
1244 result.AppendErrorWithFormat(
1245 "%s takes a destination address when writing file contents.\n",
1246 m_cmd_name.c_str());
1247 return;
1249 if (argc > 1) {
1250 result.AppendErrorWithFormat(
1251 "%s takes only a destination address when writing file contents.\n",
1252 m_cmd_name.c_str());
1253 return;
1255 } else if (argc < 2) {
1256 result.AppendErrorWithFormat(
1257 "%s takes a destination address and at least one value.\n",
1258 m_cmd_name.c_str());
1259 return;
1262 StreamString buffer(
1263 Stream::eBinary,
1264 process->GetTarget().GetArchitecture().GetAddressByteSize(),
1265 process->GetTarget().GetArchitecture().GetByteOrder());
1267 OptionValueUInt64 &byte_size_value = m_format_options.GetByteSizeValue();
1268 size_t item_byte_size = byte_size_value.GetCurrentValue();
1270 Status error;
1271 lldb::addr_t addr = OptionArgParser::ToAddress(
1272 &m_exe_ctx, command[0].ref(), LLDB_INVALID_ADDRESS, &error);
1274 if (addr == LLDB_INVALID_ADDRESS) {
1275 result.AppendError("invalid address expression\n");
1276 result.AppendError(error.AsCString());
1277 return;
1280 if (m_memory_options.m_infile) {
1281 size_t length = SIZE_MAX;
1282 if (item_byte_size > 1)
1283 length = item_byte_size;
1284 auto data_sp = FileSystem::Instance().CreateDataBuffer(
1285 m_memory_options.m_infile.GetPath(), length,
1286 m_memory_options.m_infile_offset);
1287 if (data_sp) {
1288 length = data_sp->GetByteSize();
1289 if (length > 0) {
1290 Status error;
1291 size_t bytes_written =
1292 process->WriteMemory(addr, data_sp->GetBytes(), length, error);
1294 if (bytes_written == length) {
1295 // All bytes written
1296 result.GetOutputStream().Printf(
1297 "%" PRIu64 " bytes were written to 0x%" PRIx64 "\n",
1298 (uint64_t)bytes_written, addr);
1299 result.SetStatus(eReturnStatusSuccessFinishResult);
1300 } else if (bytes_written > 0) {
1301 // Some byte written
1302 result.GetOutputStream().Printf(
1303 "%" PRIu64 " bytes of %" PRIu64
1304 " requested were written to 0x%" PRIx64 "\n",
1305 (uint64_t)bytes_written, (uint64_t)length, addr);
1306 result.SetStatus(eReturnStatusSuccessFinishResult);
1307 } else {
1308 result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
1309 " failed: %s.\n",
1310 addr, error.AsCString());
1313 } else {
1314 result.AppendErrorWithFormat("Unable to read contents of file.\n");
1316 return;
1317 } else if (item_byte_size == 0) {
1318 if (m_format_options.GetFormat() == eFormatPointer)
1319 item_byte_size = buffer.GetAddressByteSize();
1320 else
1321 item_byte_size = 1;
1324 command.Shift(); // shift off the address argument
1325 uint64_t uval64;
1326 int64_t sval64;
1327 bool success = false;
1328 for (auto &entry : command) {
1329 switch (m_format_options.GetFormat()) {
1330 case kNumFormats:
1331 case eFormatFloat: // TODO: add support for floats soon
1332 case eFormatCharPrintable:
1333 case eFormatBytesWithASCII:
1334 case eFormatComplex:
1335 case eFormatEnum:
1336 case eFormatUnicode8:
1337 case eFormatUnicode16:
1338 case eFormatUnicode32:
1339 case eFormatVectorOfChar:
1340 case eFormatVectorOfSInt8:
1341 case eFormatVectorOfUInt8:
1342 case eFormatVectorOfSInt16:
1343 case eFormatVectorOfUInt16:
1344 case eFormatVectorOfSInt32:
1345 case eFormatVectorOfUInt32:
1346 case eFormatVectorOfSInt64:
1347 case eFormatVectorOfUInt64:
1348 case eFormatVectorOfFloat16:
1349 case eFormatVectorOfFloat32:
1350 case eFormatVectorOfFloat64:
1351 case eFormatVectorOfUInt128:
1352 case eFormatOSType:
1353 case eFormatComplexInteger:
1354 case eFormatAddressInfo:
1355 case eFormatHexFloat:
1356 case eFormatInstruction:
1357 case eFormatVoid:
1358 result.AppendError("unsupported format for writing memory");
1359 return;
1361 case eFormatDefault:
1362 case eFormatBytes:
1363 case eFormatHex:
1364 case eFormatHexUppercase:
1365 case eFormatPointer: {
1366 // Decode hex bytes
1367 // Be careful, getAsInteger with a radix of 16 rejects "0xab" so we
1368 // have to special case that:
1369 bool success = false;
1370 if (entry.ref().starts_with("0x"))
1371 success = !entry.ref().getAsInteger(0, uval64);
1372 if (!success)
1373 success = !entry.ref().getAsInteger(16, uval64);
1374 if (!success) {
1375 result.AppendErrorWithFormat(
1376 "'%s' is not a valid hex string value.\n", entry.c_str());
1377 return;
1378 } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1379 result.AppendErrorWithFormat("Value 0x%" PRIx64
1380 " is too large to fit in a %" PRIu64
1381 " byte unsigned integer value.\n",
1382 uval64, (uint64_t)item_byte_size);
1383 return;
1385 buffer.PutMaxHex64(uval64, item_byte_size);
1386 break;
1388 case eFormatBoolean:
1389 uval64 = OptionArgParser::ToBoolean(entry.ref(), false, &success);
1390 if (!success) {
1391 result.AppendErrorWithFormat(
1392 "'%s' is not a valid boolean string value.\n", entry.c_str());
1393 return;
1395 buffer.PutMaxHex64(uval64, item_byte_size);
1396 break;
1398 case eFormatBinary:
1399 if (entry.ref().getAsInteger(2, uval64)) {
1400 result.AppendErrorWithFormat(
1401 "'%s' is not a valid binary string value.\n", entry.c_str());
1402 return;
1403 } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1404 result.AppendErrorWithFormat("Value 0x%" PRIx64
1405 " is too large to fit in a %" PRIu64
1406 " byte unsigned integer value.\n",
1407 uval64, (uint64_t)item_byte_size);
1408 return;
1410 buffer.PutMaxHex64(uval64, item_byte_size);
1411 break;
1413 case eFormatCharArray:
1414 case eFormatChar:
1415 case eFormatCString: {
1416 if (entry.ref().empty())
1417 break;
1419 size_t len = entry.ref().size();
1420 // Include the NULL for C strings...
1421 if (m_format_options.GetFormat() == eFormatCString)
1422 ++len;
1423 Status error;
1424 if (process->WriteMemory(addr, entry.c_str(), len, error) == len) {
1425 addr += len;
1426 } else {
1427 result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
1428 " failed: %s.\n",
1429 addr, error.AsCString());
1430 return;
1432 break;
1434 case eFormatDecimal:
1435 if (entry.ref().getAsInteger(0, sval64)) {
1436 result.AppendErrorWithFormat(
1437 "'%s' is not a valid signed decimal value.\n", entry.c_str());
1438 return;
1439 } else if (!llvm::isIntN(item_byte_size * 8, sval64)) {
1440 result.AppendErrorWithFormat(
1441 "Value %" PRIi64 " is too large or small to fit in a %" PRIu64
1442 " byte signed integer value.\n",
1443 sval64, (uint64_t)item_byte_size);
1444 return;
1446 buffer.PutMaxHex64(sval64, item_byte_size);
1447 break;
1449 case eFormatUnsigned:
1451 if (entry.ref().getAsInteger(0, uval64)) {
1452 result.AppendErrorWithFormat(
1453 "'%s' is not a valid unsigned decimal string value.\n",
1454 entry.c_str());
1455 return;
1456 } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1457 result.AppendErrorWithFormat("Value %" PRIu64
1458 " is too large to fit in a %" PRIu64
1459 " byte unsigned integer value.\n",
1460 uval64, (uint64_t)item_byte_size);
1461 return;
1463 buffer.PutMaxHex64(uval64, item_byte_size);
1464 break;
1466 case eFormatOctal:
1467 if (entry.ref().getAsInteger(8, uval64)) {
1468 result.AppendErrorWithFormat(
1469 "'%s' is not a valid octal string value.\n", entry.c_str());
1470 return;
1471 } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1472 result.AppendErrorWithFormat("Value %" PRIo64
1473 " is too large to fit in a %" PRIu64
1474 " byte unsigned integer value.\n",
1475 uval64, (uint64_t)item_byte_size);
1476 return;
1478 buffer.PutMaxHex64(uval64, item_byte_size);
1479 break;
1483 if (!buffer.GetString().empty()) {
1484 Status error;
1485 const char *buffer_data = buffer.GetString().data();
1486 const size_t buffer_size = buffer.GetString().size();
1487 const size_t write_size =
1488 process->WriteMemory(addr, buffer_data, buffer_size, error);
1490 if (write_size != buffer_size) {
1491 result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
1492 " failed: %s.\n",
1493 addr, error.AsCString());
1494 return;
1499 OptionGroupOptions m_option_group;
1500 OptionGroupFormat m_format_options;
1501 OptionGroupWriteMemory m_memory_options;
1504 // Get malloc/free history of a memory address.
1505 class CommandObjectMemoryHistory : public CommandObjectParsed {
1506 public:
1507 CommandObjectMemoryHistory(CommandInterpreter &interpreter)
1508 : CommandObjectParsed(interpreter, "memory history",
1509 "Print recorded stack traces for "
1510 "allocation/deallocation events "
1511 "associated with an address.",
1512 nullptr,
1513 eCommandRequiresTarget | eCommandRequiresProcess |
1514 eCommandProcessMustBePaused |
1515 eCommandProcessMustBeLaunched) {
1516 CommandArgumentEntry arg1;
1517 CommandArgumentData addr_arg;
1519 // Define the first (and only) variant of this arg.
1520 addr_arg.arg_type = eArgTypeAddress;
1521 addr_arg.arg_repetition = eArgRepeatPlain;
1523 // There is only one variant this argument could be; put it into the
1524 // argument entry.
1525 arg1.push_back(addr_arg);
1527 // Push the data for the first argument into the m_arguments vector.
1528 m_arguments.push_back(arg1);
1531 ~CommandObjectMemoryHistory() override = default;
1533 std::optional<std::string> GetRepeatCommand(Args &current_command_args,
1534 uint32_t index) override {
1535 return m_cmd_name;
1538 protected:
1539 void DoExecute(Args &command, CommandReturnObject &result) override {
1540 const size_t argc = command.GetArgumentCount();
1542 if (argc == 0 || argc > 1) {
1543 result.AppendErrorWithFormat("%s takes an address expression",
1544 m_cmd_name.c_str());
1545 return;
1548 Status error;
1549 lldb::addr_t addr = OptionArgParser::ToAddress(
1550 &m_exe_ctx, command[0].ref(), LLDB_INVALID_ADDRESS, &error);
1552 if (addr == LLDB_INVALID_ADDRESS) {
1553 result.AppendError("invalid address expression");
1554 result.AppendError(error.AsCString());
1555 return;
1558 Stream *output_stream = &result.GetOutputStream();
1560 const ProcessSP &process_sp = m_exe_ctx.GetProcessSP();
1561 const MemoryHistorySP &memory_history =
1562 MemoryHistory::FindPlugin(process_sp);
1564 if (!memory_history) {
1565 result.AppendError("no available memory history provider");
1566 return;
1569 HistoryThreads thread_list = memory_history->GetHistoryThreads(addr);
1571 const bool stop_format = false;
1572 for (auto thread : thread_list) {
1573 thread->GetStatus(*output_stream, 0, UINT32_MAX, 0, stop_format,
1574 /*should_filter*/ false);
1577 result.SetStatus(eReturnStatusSuccessFinishResult);
1581 // CommandObjectMemoryRegion
1582 #pragma mark CommandObjectMemoryRegion
1584 #define LLDB_OPTIONS_memory_region
1585 #include "CommandOptions.inc"
1587 class CommandObjectMemoryRegion : public CommandObjectParsed {
1588 public:
1589 class OptionGroupMemoryRegion : public OptionGroup {
1590 public:
1591 OptionGroupMemoryRegion() : m_all(false, false) {}
1593 ~OptionGroupMemoryRegion() override = default;
1595 llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
1596 return llvm::ArrayRef(g_memory_region_options);
1599 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
1600 ExecutionContext *execution_context) override {
1601 Status status;
1602 const int short_option = g_memory_region_options[option_idx].short_option;
1604 switch (short_option) {
1605 case 'a':
1606 m_all.SetCurrentValue(true);
1607 m_all.SetOptionWasSet();
1608 break;
1609 default:
1610 llvm_unreachable("Unimplemented option");
1613 return status;
1616 void OptionParsingStarting(ExecutionContext *execution_context) override {
1617 m_all.Clear();
1620 OptionValueBoolean m_all;
1623 CommandObjectMemoryRegion(CommandInterpreter &interpreter)
1624 : CommandObjectParsed(interpreter, "memory region",
1625 "Get information on the memory region containing "
1626 "an address in the current target process.",
1627 "memory region <address-expression> (or --all)",
1628 eCommandRequiresProcess | eCommandTryTargetAPILock |
1629 eCommandProcessMustBeLaunched) {
1630 // Address in option set 1.
1631 m_arguments.push_back(CommandArgumentEntry{CommandArgumentData(
1632 eArgTypeAddressOrExpression, eArgRepeatPlain, LLDB_OPT_SET_1)});
1633 // "--all" will go in option set 2.
1634 m_option_group.Append(&m_memory_region_options);
1635 m_option_group.Finalize();
1638 ~CommandObjectMemoryRegion() override = default;
1640 Options *GetOptions() override { return &m_option_group; }
1642 protected:
1643 void DumpRegion(CommandReturnObject &result, Target &target,
1644 const MemoryRegionInfo &range_info, lldb::addr_t load_addr) {
1645 lldb_private::Address addr;
1646 ConstString section_name;
1647 if (target.ResolveLoadAddress(load_addr, addr)) {
1648 SectionSP section_sp(addr.GetSection());
1649 if (section_sp) {
1650 // Got the top most section, not the deepest section
1651 while (section_sp->GetParent())
1652 section_sp = section_sp->GetParent();
1653 section_name = section_sp->GetName();
1657 ConstString name = range_info.GetName();
1658 result.AppendMessageWithFormatv(
1659 "[{0:x16}-{1:x16}) {2:r}{3:w}{4:x}{5}{6}{7}{8}",
1660 range_info.GetRange().GetRangeBase(),
1661 range_info.GetRange().GetRangeEnd(), range_info.GetReadable(),
1662 range_info.GetWritable(), range_info.GetExecutable(), name ? " " : "",
1663 name, section_name ? " " : "", section_name);
1664 MemoryRegionInfo::OptionalBool memory_tagged = range_info.GetMemoryTagged();
1665 if (memory_tagged == MemoryRegionInfo::OptionalBool::eYes)
1666 result.AppendMessage("memory tagging: enabled");
1668 const std::optional<std::vector<addr_t>> &dirty_page_list =
1669 range_info.GetDirtyPageList();
1670 if (dirty_page_list) {
1671 const size_t page_count = dirty_page_list->size();
1672 result.AppendMessageWithFormat(
1673 "Modified memory (dirty) page list provided, %zu entries.\n",
1674 page_count);
1675 if (page_count > 0) {
1676 bool print_comma = false;
1677 result.AppendMessageWithFormat("Dirty pages: ");
1678 for (size_t i = 0; i < page_count; i++) {
1679 if (print_comma)
1680 result.AppendMessageWithFormat(", ");
1681 else
1682 print_comma = true;
1683 result.AppendMessageWithFormat("0x%" PRIx64, (*dirty_page_list)[i]);
1685 result.AppendMessageWithFormat(".\n");
1690 void DoExecute(Args &command, CommandReturnObject &result) override {
1691 ProcessSP process_sp = m_exe_ctx.GetProcessSP();
1692 if (!process_sp) {
1693 m_prev_end_addr = LLDB_INVALID_ADDRESS;
1694 result.AppendError("invalid process");
1695 return;
1698 Status error;
1699 lldb::addr_t load_addr = m_prev_end_addr;
1700 m_prev_end_addr = LLDB_INVALID_ADDRESS;
1702 const size_t argc = command.GetArgumentCount();
1703 const lldb::ABISP &abi = process_sp->GetABI();
1705 if (argc == 1) {
1706 if (m_memory_region_options.m_all) {
1707 result.AppendError(
1708 "The \"--all\" option cannot be used when an address "
1709 "argument is given");
1710 return;
1713 auto load_addr_str = command[0].ref();
1714 load_addr = OptionArgParser::ToAddress(&m_exe_ctx, load_addr_str,
1715 LLDB_INVALID_ADDRESS, &error);
1716 if (error.Fail() || load_addr == LLDB_INVALID_ADDRESS) {
1717 result.AppendErrorWithFormat("invalid address argument \"%s\": %s\n",
1718 command[0].c_str(), error.AsCString());
1719 return;
1721 } else if (argc > 1 ||
1722 // When we're repeating the command, the previous end address is
1723 // used for load_addr. If that was 0xF...F then we must have
1724 // reached the end of memory.
1725 (argc == 0 && !m_memory_region_options.m_all &&
1726 load_addr == LLDB_INVALID_ADDRESS) ||
1727 // If the target has non-address bits (tags, limited virtual
1728 // address size, etc.), the end of mappable memory will be lower
1729 // than that. So if we find any non-address bit set, we must be
1730 // at the end of the mappable range.
1731 (abi && (abi->FixAnyAddress(load_addr) != load_addr))) {
1732 result.AppendErrorWithFormat(
1733 "'%s' takes one argument or \"--all\" option:\nUsage: %s\n",
1734 m_cmd_name.c_str(), m_cmd_syntax.c_str());
1735 return;
1738 // It is important that we track the address used to request the region as
1739 // this will give the correct section name in the case that regions overlap.
1740 // On Windows we get mutliple regions that start at the same place but are
1741 // different sizes and refer to different sections.
1742 std::vector<std::pair<lldb_private::MemoryRegionInfo, lldb::addr_t>>
1743 region_list;
1744 if (m_memory_region_options.m_all) {
1745 // We don't use GetMemoryRegions here because it doesn't include unmapped
1746 // areas like repeating the command would. So instead, emulate doing that.
1747 lldb::addr_t addr = 0;
1748 while (error.Success() && addr != LLDB_INVALID_ADDRESS &&
1749 // When there are non-address bits the last range will not extend
1750 // to LLDB_INVALID_ADDRESS but to the max virtual address.
1751 // This prevents us looping forever if that is the case.
1752 (!abi || (abi->FixAnyAddress(addr) == addr))) {
1753 lldb_private::MemoryRegionInfo region_info;
1754 error = process_sp->GetMemoryRegionInfo(addr, region_info);
1756 if (error.Success()) {
1757 region_list.push_back({region_info, addr});
1758 addr = region_info.GetRange().GetRangeEnd();
1761 } else {
1762 lldb_private::MemoryRegionInfo region_info;
1763 error = process_sp->GetMemoryRegionInfo(load_addr, region_info);
1764 if (error.Success())
1765 region_list.push_back({region_info, load_addr});
1768 if (error.Success()) {
1769 for (std::pair<MemoryRegionInfo, addr_t> &range : region_list) {
1770 DumpRegion(result, process_sp->GetTarget(), range.first, range.second);
1771 m_prev_end_addr = range.first.GetRange().GetRangeEnd();
1774 result.SetStatus(eReturnStatusSuccessFinishResult);
1775 return;
1778 result.AppendErrorWithFormat("%s\n", error.AsCString());
1781 std::optional<std::string> GetRepeatCommand(Args &current_command_args,
1782 uint32_t index) override {
1783 // If we repeat this command, repeat it without any arguments so we can
1784 // show the next memory range
1785 return m_cmd_name;
1788 lldb::addr_t m_prev_end_addr = LLDB_INVALID_ADDRESS;
1790 OptionGroupOptions m_option_group;
1791 OptionGroupMemoryRegion m_memory_region_options;
1794 // CommandObjectMemory
1796 CommandObjectMemory::CommandObjectMemory(CommandInterpreter &interpreter)
1797 : CommandObjectMultiword(
1798 interpreter, "memory",
1799 "Commands for operating on memory in the current target process.",
1800 "memory <subcommand> [<subcommand-options>]") {
1801 LoadSubCommand("find",
1802 CommandObjectSP(new CommandObjectMemoryFind(interpreter)));
1803 LoadSubCommand("read",
1804 CommandObjectSP(new CommandObjectMemoryRead(interpreter)));
1805 LoadSubCommand("write",
1806 CommandObjectSP(new CommandObjectMemoryWrite(interpreter)));
1807 LoadSubCommand("history",
1808 CommandObjectSP(new CommandObjectMemoryHistory(interpreter)));
1809 LoadSubCommand("region",
1810 CommandObjectSP(new CommandObjectMemoryRegion(interpreter)));
1811 LoadSubCommand("tag",
1812 CommandObjectSP(new CommandObjectMemoryTag(interpreter)));
1815 CommandObjectMemory::~CommandObjectMemory() = default;