[mlir][int-range] Limit xor int range inference to i1 (#116968)
[llvm-project.git] / lldb / source / Symbol / Type.cpp
blobf7b44ade0da1653406ec7172a459193ac5a98dd7
1 //===-- Type.cpp ----------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include <algorithm>
10 #include <cstdio>
11 #include <iterator>
12 #include <optional>
14 #include "lldb/Core/Module.h"
15 #include "lldb/Utility/DataBufferHeap.h"
16 #include "lldb/Utility/DataExtractor.h"
17 #include "lldb/Utility/LLDBLog.h"
18 #include "lldb/Utility/Log.h"
19 #include "lldb/Utility/Scalar.h"
20 #include "lldb/Utility/StreamString.h"
22 #include "lldb/Symbol/CompilerType.h"
23 #include "lldb/Symbol/ObjectFile.h"
24 #include "lldb/Symbol/SymbolContextScope.h"
25 #include "lldb/Symbol/SymbolFile.h"
26 #include "lldb/Symbol/SymbolVendor.h"
27 #include "lldb/Symbol/Type.h"
28 #include "lldb/Symbol/TypeList.h"
29 #include "lldb/Symbol/TypeSystem.h"
31 #include "lldb/Target/ExecutionContext.h"
32 #include "lldb/Target/Process.h"
33 #include "lldb/Target/Target.h"
34 #include "lldb/lldb-enumerations.h"
35 #include "lldb/lldb-private-enumerations.h"
37 #include "llvm/ADT/StringRef.h"
39 using namespace lldb;
40 using namespace lldb_private;
42 llvm::raw_ostream &lldb_private::operator<<(llvm::raw_ostream &os,
43 const CompilerContext &rhs) {
44 StreamString lldb_stream;
45 rhs.Dump(lldb_stream);
46 return os << lldb_stream.GetString();
49 static CompilerContextKind ConvertTypeClass(lldb::TypeClass type_class) {
50 if (type_class == eTypeClassAny)
51 return CompilerContextKind::AnyType;
52 CompilerContextKind result = {};
53 if (type_class & (lldb::eTypeClassClass | lldb::eTypeClassStruct))
54 result |= CompilerContextKind::ClassOrStruct;
55 if (type_class & lldb::eTypeClassUnion)
56 result |= CompilerContextKind::Union;
57 if (type_class & lldb::eTypeClassEnumeration)
58 result |= CompilerContextKind::Enum;
59 if (type_class & lldb::eTypeClassFunction)
60 result |= CompilerContextKind::Function;
61 if (type_class & lldb::eTypeClassTypedef)
62 result |= CompilerContextKind::Typedef;
63 return result;
66 TypeQuery::TypeQuery(llvm::StringRef name, TypeQueryOptions options)
67 : m_options(options) {
68 if (std::optional<Type::ParsedName> parsed_name =
69 Type::GetTypeScopeAndBasename(name)) {
70 llvm::ArrayRef scope = parsed_name->scope;
71 if (!scope.empty()) {
72 if (scope[0] == "::") {
73 m_options |= e_exact_match;
74 scope = scope.drop_front();
76 for (llvm::StringRef s : scope) {
77 m_context.push_back(
78 {CompilerContextKind::AnyDeclContext, ConstString(s)});
81 m_context.push_back({ConvertTypeClass(parsed_name->type_class),
82 ConstString(parsed_name->basename)});
83 } else {
84 m_context.push_back({CompilerContextKind::AnyType, ConstString(name)});
88 TypeQuery::TypeQuery(const CompilerDeclContext &decl_ctx,
89 ConstString type_basename, TypeQueryOptions options)
90 : m_options(options) {
91 // Always use an exact match if we are looking for a type in compiler context.
92 m_options |= e_exact_match;
93 m_context = decl_ctx.GetCompilerContext();
94 m_context.push_back({CompilerContextKind::AnyType, type_basename});
97 TypeQuery::TypeQuery(
98 const llvm::ArrayRef<lldb_private::CompilerContext> &context,
99 TypeQueryOptions options)
100 : m_context(context), m_options(options) {
101 // Always use an exact match if we are looking for a type in compiler context.
102 m_options |= e_exact_match;
105 TypeQuery::TypeQuery(const CompilerDecl &decl, TypeQueryOptions options)
106 : m_options(options) {
107 // Always for an exact match if we are looking for a type using a declaration.
108 m_options |= e_exact_match;
109 m_context = decl.GetCompilerContext();
112 ConstString TypeQuery::GetTypeBasename() const {
113 if (m_context.empty())
114 return ConstString();
115 return m_context.back().name;
118 void TypeQuery::AddLanguage(LanguageType language) {
119 if (!m_languages)
120 m_languages = LanguageSet();
121 m_languages->Insert(language);
124 void TypeQuery::SetLanguages(LanguageSet languages) {
125 m_languages = std::move(languages);
128 bool TypeQuery::ContextMatches(
129 llvm::ArrayRef<CompilerContext> context_chain) const {
130 auto ctx = context_chain.rbegin(), ctx_end = context_chain.rend();
131 for (auto pat = m_context.rbegin(), pat_end = m_context.rend();
132 pat != pat_end;) {
134 if (ctx == ctx_end)
135 return false; // Pattern too long.
137 if (ctx->kind == CompilerContextKind::Namespace && ctx->name.IsEmpty()) {
138 // We're matching an anonymous namespace. These are optional, so we check
139 // if the pattern expects an anonymous namespace.
140 if (pat->name.IsEmpty() && (pat->kind & CompilerContextKind::Namespace) ==
141 CompilerContextKind::Namespace) {
142 // Match, advance both iterators.
143 ++pat;
145 // Otherwise, only advance the context to skip over the anonymous
146 // namespace, and try matching again.
147 ++ctx;
148 continue;
151 // See if there is a kind mismatch; they should have 1 bit in common.
152 if ((ctx->kind & pat->kind) == CompilerContextKind())
153 return false;
155 if (ctx->name != pat->name)
156 return false;
158 ++ctx;
159 ++pat;
162 // Skip over any remaining module and anonymous namespace entries if we were
163 // asked to do that.
164 auto should_skip = [this](const CompilerContext &ctx) {
165 if (ctx.kind == CompilerContextKind::Module)
166 return GetIgnoreModules();
167 if (ctx.kind == CompilerContextKind::Namespace && ctx.name.IsEmpty())
168 return !GetStrictNamespaces();
169 return false;
171 ctx = std::find_if_not(ctx, ctx_end, should_skip);
173 // At this point, we have exhausted the pattern and we have a partial match at
174 // least. If that's all we're looking for, we're done.
175 if (!GetExactMatch())
176 return true;
178 // We have an exact match if we've exhausted the target context as well.
179 return ctx == ctx_end;
182 bool TypeQuery::LanguageMatches(lldb::LanguageType language) const {
183 // If we have no language filterm language always matches.
184 if (!m_languages.has_value())
185 return true;
186 return (*m_languages)[language];
189 bool TypeResults::AlreadySearched(lldb_private::SymbolFile *sym_file) {
190 return !m_searched_symbol_files.insert(sym_file).second;
193 bool TypeResults::InsertUnique(const lldb::TypeSP &type_sp) {
194 if (type_sp)
195 return m_type_map.InsertUnique(type_sp);
196 return false;
199 bool TypeResults::Done(const TypeQuery &query) const {
200 if (query.GetFindOne())
201 return !m_type_map.Empty();
202 return false;
205 void CompilerContext::Dump(Stream &s) const {
206 switch (kind) {
207 default:
208 s << "Invalid";
209 break;
210 case CompilerContextKind::TranslationUnit:
211 s << "TranslationUnit";
212 break;
213 case CompilerContextKind::Module:
214 s << "Module";
215 break;
216 case CompilerContextKind::Namespace:
217 s << "Namespace";
218 break;
219 case CompilerContextKind::ClassOrStruct:
220 s << "ClassOrStruct";
221 break;
222 case CompilerContextKind::Union:
223 s << "Union";
224 break;
225 case CompilerContextKind::Function:
226 s << "Function";
227 break;
228 case CompilerContextKind::Variable:
229 s << "Variable";
230 break;
231 case CompilerContextKind::Enum:
232 s << "Enumeration";
233 break;
234 case CompilerContextKind::Typedef:
235 s << "Typedef";
236 break;
237 case CompilerContextKind::AnyType:
238 s << "AnyType";
239 break;
241 s << "(" << name << ")";
244 class TypeAppendVisitor {
245 public:
246 TypeAppendVisitor(TypeListImpl &type_list) : m_type_list(type_list) {}
248 bool operator()(const lldb::TypeSP &type) {
249 m_type_list.Append(TypeImplSP(new TypeImpl(type)));
250 return true;
253 private:
254 TypeListImpl &m_type_list;
257 void TypeListImpl::Append(const lldb_private::TypeList &type_list) {
258 TypeAppendVisitor cb(*this);
259 type_list.ForEach(cb);
262 SymbolFileType::SymbolFileType(SymbolFile &symbol_file,
263 const lldb::TypeSP &type_sp)
264 : UserID(type_sp ? type_sp->GetID() : LLDB_INVALID_UID),
265 m_symbol_file(symbol_file), m_type_sp(type_sp) {}
267 Type *SymbolFileType::GetType() {
268 if (!m_type_sp) {
269 Type *resolved_type = m_symbol_file.ResolveTypeUID(GetID());
270 if (resolved_type)
271 m_type_sp = resolved_type->shared_from_this();
273 return m_type_sp.get();
276 Type::Type(lldb::user_id_t uid, SymbolFile *symbol_file, ConstString name,
277 std::optional<uint64_t> byte_size, SymbolContextScope *context,
278 user_id_t encoding_uid, EncodingDataType encoding_uid_type,
279 const Declaration &decl, const CompilerType &compiler_type,
280 ResolveState compiler_type_resolve_state, uint32_t opaque_payload)
281 : std::enable_shared_from_this<Type>(), UserID(uid), m_name(name),
282 m_symbol_file(symbol_file), m_context(context),
283 m_encoding_uid(encoding_uid), m_encoding_uid_type(encoding_uid_type),
284 m_decl(decl), m_compiler_type(compiler_type),
285 m_compiler_type_resolve_state(compiler_type ? compiler_type_resolve_state
286 : ResolveState::Unresolved),
287 m_payload(opaque_payload) {
288 if (byte_size) {
289 m_byte_size = *byte_size;
290 m_byte_size_has_value = true;
291 } else {
292 m_byte_size = 0;
293 m_byte_size_has_value = false;
297 Type::Type()
298 : std::enable_shared_from_this<Type>(), UserID(0), m_name("<INVALID TYPE>"),
299 m_payload(0) {
300 m_byte_size = 0;
301 m_byte_size_has_value = false;
304 void Type::GetDescription(Stream *s, lldb::DescriptionLevel level,
305 bool show_name, ExecutionContextScope *exe_scope) {
306 *s << "id = " << (const UserID &)*this;
308 // Call the name accessor to make sure we resolve the type name
309 if (show_name) {
310 ConstString type_name = GetName();
311 if (type_name) {
312 *s << ", name = \"" << type_name << '"';
313 ConstString qualified_type_name(GetQualifiedName());
314 if (qualified_type_name != type_name) {
315 *s << ", qualified = \"" << qualified_type_name << '"';
320 // Call the get byte size accessor so we resolve our byte size
321 if (GetByteSize(exe_scope))
322 s->Printf(", byte-size = %" PRIu64, m_byte_size);
323 bool show_fullpaths = (level == lldb::eDescriptionLevelVerbose);
324 m_decl.Dump(s, show_fullpaths);
326 if (m_compiler_type.IsValid()) {
327 *s << ", compiler_type = \"";
328 GetForwardCompilerType().DumpTypeDescription(s);
329 *s << '"';
330 } else if (m_encoding_uid != LLDB_INVALID_UID) {
331 s->Printf(", type_uid = 0x%8.8" PRIx64, m_encoding_uid);
332 switch (m_encoding_uid_type) {
333 case eEncodingInvalid:
334 break;
335 case eEncodingIsUID:
336 s->PutCString(" (unresolved type)");
337 break;
338 case eEncodingIsConstUID:
339 s->PutCString(" (unresolved const type)");
340 break;
341 case eEncodingIsRestrictUID:
342 s->PutCString(" (unresolved restrict type)");
343 break;
344 case eEncodingIsVolatileUID:
345 s->PutCString(" (unresolved volatile type)");
346 break;
347 case eEncodingIsAtomicUID:
348 s->PutCString(" (unresolved atomic type)");
349 break;
350 case eEncodingIsTypedefUID:
351 s->PutCString(" (unresolved typedef)");
352 break;
353 case eEncodingIsPointerUID:
354 s->PutCString(" (unresolved pointer)");
355 break;
356 case eEncodingIsLValueReferenceUID:
357 s->PutCString(" (unresolved L value reference)");
358 break;
359 case eEncodingIsRValueReferenceUID:
360 s->PutCString(" (unresolved R value reference)");
361 break;
362 case eEncodingIsSyntheticUID:
363 s->PutCString(" (synthetic type)");
364 break;
365 case eEncodingIsLLVMPtrAuthUID:
366 s->PutCString(" (ptrauth type)");
367 break;
372 void Type::Dump(Stream *s, bool show_context, lldb::DescriptionLevel level) {
373 s->Printf("%p: ", static_cast<void *>(this));
374 s->Indent();
375 *s << "Type" << static_cast<const UserID &>(*this) << ' ';
376 if (m_name)
377 *s << ", name = \"" << m_name << "\"";
379 if (m_byte_size_has_value)
380 s->Printf(", size = %" PRIu64, m_byte_size);
382 if (show_context && m_context != nullptr) {
383 s->PutCString(", context = ( ");
384 m_context->DumpSymbolContext(s);
385 s->PutCString(" )");
388 bool show_fullpaths = false;
389 m_decl.Dump(s, show_fullpaths);
391 if (m_compiler_type.IsValid()) {
392 *s << ", compiler_type = " << m_compiler_type.GetOpaqueQualType() << ' ';
393 GetForwardCompilerType().DumpTypeDescription(s, level);
394 } else if (m_encoding_uid != LLDB_INVALID_UID) {
395 s->Format(", type_data = {0:x-16}", m_encoding_uid);
396 switch (m_encoding_uid_type) {
397 case eEncodingInvalid:
398 break;
399 case eEncodingIsUID:
400 s->PutCString(" (unresolved type)");
401 break;
402 case eEncodingIsConstUID:
403 s->PutCString(" (unresolved const type)");
404 break;
405 case eEncodingIsRestrictUID:
406 s->PutCString(" (unresolved restrict type)");
407 break;
408 case eEncodingIsVolatileUID:
409 s->PutCString(" (unresolved volatile type)");
410 break;
411 case eEncodingIsAtomicUID:
412 s->PutCString(" (unresolved atomic type)");
413 break;
414 case eEncodingIsTypedefUID:
415 s->PutCString(" (unresolved typedef)");
416 break;
417 case eEncodingIsPointerUID:
418 s->PutCString(" (unresolved pointer)");
419 break;
420 case eEncodingIsLValueReferenceUID:
421 s->PutCString(" (unresolved L value reference)");
422 break;
423 case eEncodingIsRValueReferenceUID:
424 s->PutCString(" (unresolved R value reference)");
425 break;
426 case eEncodingIsSyntheticUID:
427 s->PutCString(" (synthetic type)");
428 break;
429 case eEncodingIsLLVMPtrAuthUID:
430 s->PutCString(" (ptrauth type)");
435 // if (m_access)
436 // s->Printf(", access = %u", m_access);
437 s->EOL();
440 ConstString Type::GetName() {
441 if (!m_name)
442 m_name = GetForwardCompilerType().GetTypeName();
443 return m_name;
446 ConstString Type::GetBaseName() {
447 return GetForwardCompilerType().GetTypeName(/*BaseOnly*/ true);
450 void Type::DumpTypeName(Stream *s) { GetName().Dump(s, "<invalid-type-name>"); }
452 Type *Type::GetEncodingType() {
453 if (m_encoding_type == nullptr && m_encoding_uid != LLDB_INVALID_UID)
454 m_encoding_type = m_symbol_file->ResolveTypeUID(m_encoding_uid);
455 return m_encoding_type;
458 std::optional<uint64_t> Type::GetByteSize(ExecutionContextScope *exe_scope) {
459 if (m_byte_size_has_value)
460 return static_cast<uint64_t>(m_byte_size);
462 switch (m_encoding_uid_type) {
463 case eEncodingInvalid:
464 case eEncodingIsSyntheticUID:
465 break;
466 case eEncodingIsUID:
467 case eEncodingIsConstUID:
468 case eEncodingIsRestrictUID:
469 case eEncodingIsVolatileUID:
470 case eEncodingIsAtomicUID:
471 case eEncodingIsTypedefUID: {
472 Type *encoding_type = GetEncodingType();
473 if (encoding_type)
474 if (std::optional<uint64_t> size =
475 encoding_type->GetByteSize(exe_scope)) {
476 m_byte_size = *size;
477 m_byte_size_has_value = true;
478 return static_cast<uint64_t>(m_byte_size);
481 if (std::optional<uint64_t> size =
482 GetLayoutCompilerType().GetByteSize(exe_scope)) {
483 m_byte_size = *size;
484 m_byte_size_has_value = true;
485 return static_cast<uint64_t>(m_byte_size);
487 } break;
489 // If we are a pointer or reference, then this is just a pointer size;
490 case eEncodingIsPointerUID:
491 case eEncodingIsLValueReferenceUID:
492 case eEncodingIsRValueReferenceUID:
493 case eEncodingIsLLVMPtrAuthUID: {
494 if (ArchSpec arch = m_symbol_file->GetObjectFile()->GetArchitecture()) {
495 m_byte_size = arch.GetAddressByteSize();
496 m_byte_size_has_value = true;
497 return static_cast<uint64_t>(m_byte_size);
499 } break;
501 return {};
504 llvm::Expected<uint32_t> Type::GetNumChildren(bool omit_empty_base_classes) {
505 return GetForwardCompilerType().GetNumChildren(omit_empty_base_classes, nullptr);
508 bool Type::IsAggregateType() {
509 return GetForwardCompilerType().IsAggregateType();
512 bool Type::IsTemplateType() {
513 return GetForwardCompilerType().IsTemplateType();
516 lldb::TypeSP Type::GetTypedefType() {
517 lldb::TypeSP type_sp;
518 if (IsTypedef()) {
519 Type *typedef_type = m_symbol_file->ResolveTypeUID(m_encoding_uid);
520 if (typedef_type)
521 type_sp = typedef_type->shared_from_this();
523 return type_sp;
526 lldb::Format Type::GetFormat() { return GetForwardCompilerType().GetFormat(); }
528 lldb::Encoding Type::GetEncoding(uint64_t &count) {
529 // Make sure we resolve our type if it already hasn't been.
530 return GetForwardCompilerType().GetEncoding(count);
533 bool Type::ReadFromMemory(ExecutionContext *exe_ctx, lldb::addr_t addr,
534 AddressType address_type, DataExtractor &data) {
535 if (address_type == eAddressTypeFile) {
536 // Can't convert a file address to anything valid without more context
537 // (which Module it came from)
538 return false;
541 const uint64_t byte_size =
542 GetByteSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : nullptr)
543 .value_or(0);
544 if (data.GetByteSize() < byte_size) {
545 lldb::DataBufferSP data_sp(new DataBufferHeap(byte_size, '\0'));
546 data.SetData(data_sp);
549 uint8_t *dst = const_cast<uint8_t *>(data.PeekData(0, byte_size));
550 if (dst != nullptr) {
551 if (address_type == eAddressTypeHost) {
552 // The address is an address in this process, so just copy it
553 if (addr == 0)
554 return false;
555 memcpy(dst, reinterpret_cast<uint8_t *>(addr), byte_size);
556 return true;
557 } else {
558 if (exe_ctx) {
559 Process *process = exe_ctx->GetProcessPtr();
560 if (process) {
561 Status error;
562 return exe_ctx->GetProcessPtr()->ReadMemory(addr, dst, byte_size,
563 error) == byte_size;
568 return false;
571 bool Type::WriteToMemory(ExecutionContext *exe_ctx, lldb::addr_t addr,
572 AddressType address_type, DataExtractor &data) {
573 return false;
576 const Declaration &Type::GetDeclaration() const { return m_decl; }
578 bool Type::ResolveCompilerType(ResolveState compiler_type_resolve_state) {
579 // TODO: This needs to consider the correct type system to use.
580 Type *encoding_type = nullptr;
581 if (!m_compiler_type.IsValid()) {
582 encoding_type = GetEncodingType();
583 if (encoding_type) {
584 switch (m_encoding_uid_type) {
585 case eEncodingIsUID: {
586 CompilerType encoding_compiler_type =
587 encoding_type->GetForwardCompilerType();
588 if (encoding_compiler_type.IsValid()) {
589 m_compiler_type = encoding_compiler_type;
590 m_compiler_type_resolve_state =
591 encoding_type->m_compiler_type_resolve_state;
593 } break;
595 case eEncodingIsConstUID:
596 m_compiler_type =
597 encoding_type->GetForwardCompilerType().AddConstModifier();
598 break;
600 case eEncodingIsRestrictUID:
601 m_compiler_type =
602 encoding_type->GetForwardCompilerType().AddRestrictModifier();
603 break;
605 case eEncodingIsVolatileUID:
606 m_compiler_type =
607 encoding_type->GetForwardCompilerType().AddVolatileModifier();
608 break;
610 case eEncodingIsAtomicUID:
611 m_compiler_type =
612 encoding_type->GetForwardCompilerType().GetAtomicType();
613 break;
615 case eEncodingIsTypedefUID:
616 m_compiler_type = encoding_type->GetForwardCompilerType().CreateTypedef(
617 m_name.AsCString("__lldb_invalid_typedef_name"),
618 GetSymbolFile()->GetDeclContextContainingUID(GetID()), m_payload);
619 m_name.Clear();
620 break;
622 case eEncodingIsPointerUID:
623 m_compiler_type =
624 encoding_type->GetForwardCompilerType().GetPointerType();
625 break;
627 case eEncodingIsLValueReferenceUID:
628 m_compiler_type =
629 encoding_type->GetForwardCompilerType().GetLValueReferenceType();
630 break;
632 case eEncodingIsRValueReferenceUID:
633 m_compiler_type =
634 encoding_type->GetForwardCompilerType().GetRValueReferenceType();
635 break;
637 case eEncodingIsLLVMPtrAuthUID:
638 m_compiler_type =
639 encoding_type->GetForwardCompilerType().AddPtrAuthModifier(
640 m_payload);
641 break;
643 default:
644 llvm_unreachable("Unhandled encoding_data_type.");
646 } else {
647 // We have no encoding type, return void?
648 auto type_system_or_err =
649 m_symbol_file->GetTypeSystemForLanguage(eLanguageTypeC);
650 if (auto err = type_system_or_err.takeError()) {
651 LLDB_LOG_ERROR(
652 GetLog(LLDBLog::Symbols), std::move(err),
653 "Unable to construct void type from TypeSystemClang: {0}");
654 } else {
655 CompilerType void_compiler_type;
656 auto ts = *type_system_or_err;
657 if (ts)
658 void_compiler_type = ts->GetBasicTypeFromAST(eBasicTypeVoid);
659 switch (m_encoding_uid_type) {
660 case eEncodingIsUID:
661 m_compiler_type = void_compiler_type;
662 break;
664 case eEncodingIsConstUID:
665 m_compiler_type = void_compiler_type.AddConstModifier();
666 break;
668 case eEncodingIsRestrictUID:
669 m_compiler_type = void_compiler_type.AddRestrictModifier();
670 break;
672 case eEncodingIsVolatileUID:
673 m_compiler_type = void_compiler_type.AddVolatileModifier();
674 break;
676 case eEncodingIsAtomicUID:
677 m_compiler_type = void_compiler_type.GetAtomicType();
678 break;
680 case eEncodingIsTypedefUID:
681 m_compiler_type = void_compiler_type.CreateTypedef(
682 m_name.AsCString("__lldb_invalid_typedef_name"),
683 GetSymbolFile()->GetDeclContextContainingUID(GetID()), m_payload);
684 break;
686 case eEncodingIsPointerUID:
687 m_compiler_type = void_compiler_type.GetPointerType();
688 break;
690 case eEncodingIsLValueReferenceUID:
691 m_compiler_type = void_compiler_type.GetLValueReferenceType();
692 break;
694 case eEncodingIsRValueReferenceUID:
695 m_compiler_type = void_compiler_type.GetRValueReferenceType();
696 break;
698 case eEncodingIsLLVMPtrAuthUID:
699 llvm_unreachable("Cannot handle eEncodingIsLLVMPtrAuthUID without "
700 "valid encoding_type");
702 default:
703 llvm_unreachable("Unhandled encoding_data_type.");
708 // When we have a EncodingUID, our "m_flags.compiler_type_resolve_state" is
709 // set to eResolveStateUnresolved so we need to update it to say that we
710 // now have a forward declaration since that is what we created above.
711 if (m_compiler_type.IsValid())
712 m_compiler_type_resolve_state = ResolveState::Forward;
715 // Check if we have a forward reference to a class/struct/union/enum?
716 if (compiler_type_resolve_state == ResolveState::Layout ||
717 compiler_type_resolve_state == ResolveState::Full) {
718 // Check if we have a forward reference to a class/struct/union/enum?
719 if (m_compiler_type.IsValid() &&
720 m_compiler_type_resolve_state < compiler_type_resolve_state) {
721 m_compiler_type_resolve_state = ResolveState::Full;
722 if (!m_compiler_type.IsDefined()) {
723 // We have a forward declaration, we need to resolve it to a complete
724 // definition.
725 m_symbol_file->CompleteType(m_compiler_type);
730 // If we have an encoding type, then we need to make sure it is resolved
731 // appropriately.
732 if (m_encoding_uid != LLDB_INVALID_UID) {
733 if (encoding_type == nullptr)
734 encoding_type = GetEncodingType();
735 if (encoding_type) {
736 ResolveState encoding_compiler_type_resolve_state =
737 compiler_type_resolve_state;
739 if (compiler_type_resolve_state == ResolveState::Layout) {
740 switch (m_encoding_uid_type) {
741 case eEncodingIsPointerUID:
742 case eEncodingIsLValueReferenceUID:
743 case eEncodingIsRValueReferenceUID:
744 encoding_compiler_type_resolve_state = ResolveState::Forward;
745 break;
746 default:
747 break;
750 encoding_type->ResolveCompilerType(encoding_compiler_type_resolve_state);
753 return m_compiler_type.IsValid();
755 uint32_t Type::GetEncodingMask() {
756 uint32_t encoding_mask = 1u << m_encoding_uid_type;
757 Type *encoding_type = GetEncodingType();
758 assert(encoding_type != this);
759 if (encoding_type)
760 encoding_mask |= encoding_type->GetEncodingMask();
761 return encoding_mask;
764 CompilerType Type::GetFullCompilerType() {
765 ResolveCompilerType(ResolveState::Full);
766 return m_compiler_type;
769 CompilerType Type::GetLayoutCompilerType() {
770 ResolveCompilerType(ResolveState::Layout);
771 return m_compiler_type;
774 CompilerType Type::GetForwardCompilerType() {
775 ResolveCompilerType(ResolveState::Forward);
776 return m_compiler_type;
779 ConstString Type::GetQualifiedName() {
780 return GetForwardCompilerType().GetTypeName();
783 std::optional<Type::ParsedName>
784 Type::GetTypeScopeAndBasename(llvm::StringRef name) {
785 ParsedName result;
787 if (name.empty())
788 return std::nullopt;
790 if (name.consume_front("struct "))
791 result.type_class = eTypeClassStruct;
792 else if (name.consume_front("class "))
793 result.type_class = eTypeClassClass;
794 else if (name.consume_front("union "))
795 result.type_class = eTypeClassUnion;
796 else if (name.consume_front("enum "))
797 result.type_class = eTypeClassEnumeration;
798 else if (name.consume_front("typedef "))
799 result.type_class = eTypeClassTypedef;
801 if (name.consume_front("::"))
802 result.scope.push_back("::");
804 bool prev_is_colon = false;
805 size_t template_depth = 0;
806 size_t name_begin = 0;
807 for (const auto &pos : llvm::enumerate(name)) {
808 switch (pos.value()) {
809 case ':':
810 if (prev_is_colon && template_depth == 0) {
811 llvm::StringRef scope_name = name.slice(name_begin, pos.index() - 1);
812 // The itanium demangler uses this string to represent anonymous
813 // namespaces. Convert it to a more language-agnostic form (which is
814 // also used in DWARF).
815 if (scope_name == "(anonymous namespace)")
816 scope_name = "";
817 result.scope.push_back(scope_name);
818 name_begin = pos.index() + 1;
820 break;
821 case '<':
822 ++template_depth;
823 break;
824 case '>':
825 if (template_depth == 0)
826 return std::nullopt; // Invalid name.
827 --template_depth;
828 break;
830 prev_is_colon = pos.value() == ':';
833 if (name_begin < name.size() && template_depth == 0)
834 result.basename = name.substr(name_begin);
835 else
836 return std::nullopt;
838 return result;
841 ModuleSP Type::GetModule() {
842 if (m_symbol_file)
843 return m_symbol_file->GetObjectFile()->GetModule();
844 return ModuleSP();
847 ModuleSP Type::GetExeModule() {
848 if (m_compiler_type) {
849 auto ts = m_compiler_type.GetTypeSystem();
850 if (!ts)
851 return {};
852 SymbolFile *symbol_file = ts->GetSymbolFile();
853 if (symbol_file)
854 return symbol_file->GetObjectFile()->GetModule();
856 return {};
859 TypeAndOrName::TypeAndOrName(TypeSP &in_type_sp) {
860 if (in_type_sp) {
861 m_compiler_type = in_type_sp->GetForwardCompilerType();
862 m_type_name = in_type_sp->GetName();
866 TypeAndOrName::TypeAndOrName(const char *in_type_str)
867 : m_type_name(in_type_str) {}
869 TypeAndOrName::TypeAndOrName(ConstString &in_type_const_string)
870 : m_type_name(in_type_const_string) {}
872 bool TypeAndOrName::operator==(const TypeAndOrName &other) const {
873 if (m_compiler_type != other.m_compiler_type)
874 return false;
875 if (m_type_name != other.m_type_name)
876 return false;
877 return true;
880 bool TypeAndOrName::operator!=(const TypeAndOrName &other) const {
881 return !(*this == other);
884 ConstString TypeAndOrName::GetName() const {
885 if (m_type_name)
886 return m_type_name;
887 if (m_compiler_type)
888 return m_compiler_type.GetTypeName();
889 return ConstString("<invalid>");
892 void TypeAndOrName::SetName(ConstString type_name) {
893 m_type_name = type_name;
896 void TypeAndOrName::SetName(const char *type_name_cstr) {
897 m_type_name.SetCString(type_name_cstr);
900 void TypeAndOrName::SetName(llvm::StringRef type_name) {
901 m_type_name.SetString(type_name);
904 void TypeAndOrName::SetTypeSP(lldb::TypeSP type_sp) {
905 if (type_sp) {
906 m_compiler_type = type_sp->GetForwardCompilerType();
907 m_type_name = type_sp->GetName();
908 } else
909 Clear();
912 void TypeAndOrName::SetCompilerType(CompilerType compiler_type) {
913 m_compiler_type = compiler_type;
914 if (m_compiler_type)
915 m_type_name = m_compiler_type.GetTypeName();
918 bool TypeAndOrName::IsEmpty() const {
919 return !((bool)m_type_name || (bool)m_compiler_type);
922 void TypeAndOrName::Clear() {
923 m_type_name.Clear();
924 m_compiler_type.Clear();
927 bool TypeAndOrName::HasName() const { return (bool)m_type_name; }
929 bool TypeAndOrName::HasCompilerType() const {
930 return m_compiler_type.IsValid();
933 TypeImpl::TypeImpl(const lldb::TypeSP &type_sp)
934 : m_module_wp(), m_static_type(), m_dynamic_type() {
935 SetType(type_sp);
938 TypeImpl::TypeImpl(const CompilerType &compiler_type)
939 : m_module_wp(), m_static_type(), m_dynamic_type() {
940 SetType(compiler_type);
943 TypeImpl::TypeImpl(const lldb::TypeSP &type_sp, const CompilerType &dynamic)
944 : m_module_wp(), m_static_type(), m_dynamic_type(dynamic) {
945 SetType(type_sp, dynamic);
948 TypeImpl::TypeImpl(const CompilerType &static_type,
949 const CompilerType &dynamic_type)
950 : m_module_wp(), m_static_type(), m_dynamic_type() {
951 SetType(static_type, dynamic_type);
954 void TypeImpl::SetType(const lldb::TypeSP &type_sp) {
955 if (type_sp) {
956 m_static_type = type_sp->GetForwardCompilerType();
957 m_exe_module_wp = type_sp->GetExeModule();
958 m_module_wp = type_sp->GetModule();
959 } else {
960 m_static_type.Clear();
961 m_module_wp = lldb::ModuleWP();
965 void TypeImpl::SetType(const CompilerType &compiler_type) {
966 m_module_wp = lldb::ModuleWP();
967 m_static_type = compiler_type;
970 void TypeImpl::SetType(const lldb::TypeSP &type_sp,
971 const CompilerType &dynamic) {
972 SetType(type_sp);
973 m_dynamic_type = dynamic;
976 void TypeImpl::SetType(const CompilerType &compiler_type,
977 const CompilerType &dynamic) {
978 m_module_wp = lldb::ModuleWP();
979 m_static_type = compiler_type;
980 m_dynamic_type = dynamic;
983 bool TypeImpl::CheckModule(lldb::ModuleSP &module_sp) const {
984 return CheckModuleCommon(m_module_wp, module_sp);
987 bool TypeImpl::CheckExeModule(lldb::ModuleSP &module_sp) const {
988 return CheckModuleCommon(m_exe_module_wp, module_sp);
991 bool TypeImpl::CheckModuleCommon(const lldb::ModuleWP &input_module_wp,
992 lldb::ModuleSP &module_sp) const {
993 // Check if we have a module for this type. If we do and the shared pointer
994 // is can be successfully initialized with m_module_wp, return true. Else
995 // return false if we didn't have a module, or if we had a module and it has
996 // been deleted. Any functions doing anything with a TypeSP in this TypeImpl
997 // class should call this function and only do anything with the ivars if
998 // this function returns true. If we have a module, the "module_sp" will be
999 // filled in with a strong reference to the module so that the module will at
1000 // least stay around long enough for the type query to succeed.
1001 module_sp = input_module_wp.lock();
1002 if (!module_sp) {
1003 lldb::ModuleWP empty_module_wp;
1004 // If either call to "std::weak_ptr::owner_before(...) value returns true,
1005 // this indicates that m_module_wp once contained (possibly still does) a
1006 // reference to a valid shared pointer. This helps us know if we had a
1007 // valid reference to a section which is now invalid because the module it
1008 // was in was deleted
1009 if (empty_module_wp.owner_before(input_module_wp) ||
1010 input_module_wp.owner_before(empty_module_wp)) {
1011 // input_module_wp had a valid reference to a module, but all strong
1012 // references have been released and the module has been deleted
1013 return false;
1016 // We either successfully locked the module, or didn't have one to begin with
1017 return true;
1020 bool TypeImpl::operator==(const TypeImpl &rhs) const {
1021 return m_static_type == rhs.m_static_type &&
1022 m_dynamic_type == rhs.m_dynamic_type;
1025 bool TypeImpl::operator!=(const TypeImpl &rhs) const {
1026 return !(*this == rhs);
1029 bool TypeImpl::IsValid() const {
1030 // just a name is not valid
1031 ModuleSP module_sp;
1032 if (CheckModule(module_sp))
1033 return m_static_type.IsValid() || m_dynamic_type.IsValid();
1034 return false;
1037 TypeImpl::operator bool() const { return IsValid(); }
1039 void TypeImpl::Clear() {
1040 m_module_wp = lldb::ModuleWP();
1041 m_static_type.Clear();
1042 m_dynamic_type.Clear();
1045 ModuleSP TypeImpl::GetModule() const {
1046 lldb::ModuleSP module_sp;
1047 if (CheckExeModule(module_sp))
1048 return module_sp;
1049 return nullptr;
1052 ConstString TypeImpl::GetName() const {
1053 ModuleSP module_sp;
1054 if (CheckModule(module_sp)) {
1055 if (m_dynamic_type)
1056 return m_dynamic_type.GetTypeName();
1057 return m_static_type.GetTypeName();
1059 return ConstString();
1062 ConstString TypeImpl::GetDisplayTypeName() const {
1063 ModuleSP module_sp;
1064 if (CheckModule(module_sp)) {
1065 if (m_dynamic_type)
1066 return m_dynamic_type.GetDisplayTypeName();
1067 return m_static_type.GetDisplayTypeName();
1069 return ConstString();
1072 TypeImpl TypeImpl::GetPointerType() const {
1073 ModuleSP module_sp;
1074 if (CheckModule(module_sp)) {
1075 if (m_dynamic_type.IsValid()) {
1076 return TypeImpl(m_static_type.GetPointerType(),
1077 m_dynamic_type.GetPointerType());
1079 return TypeImpl(m_static_type.GetPointerType());
1081 return TypeImpl();
1084 TypeImpl TypeImpl::GetPointeeType() const {
1085 ModuleSP module_sp;
1086 if (CheckModule(module_sp)) {
1087 if (m_dynamic_type.IsValid()) {
1088 return TypeImpl(m_static_type.GetPointeeType(),
1089 m_dynamic_type.GetPointeeType());
1091 return TypeImpl(m_static_type.GetPointeeType());
1093 return TypeImpl();
1096 TypeImpl TypeImpl::GetReferenceType() const {
1097 ModuleSP module_sp;
1098 if (CheckModule(module_sp)) {
1099 if (m_dynamic_type.IsValid()) {
1100 return TypeImpl(m_static_type.GetLValueReferenceType(),
1101 m_dynamic_type.GetLValueReferenceType());
1103 return TypeImpl(m_static_type.GetLValueReferenceType());
1105 return TypeImpl();
1108 TypeImpl TypeImpl::GetTypedefedType() const {
1109 ModuleSP module_sp;
1110 if (CheckModule(module_sp)) {
1111 if (m_dynamic_type.IsValid()) {
1112 return TypeImpl(m_static_type.GetTypedefedType(),
1113 m_dynamic_type.GetTypedefedType());
1115 return TypeImpl(m_static_type.GetTypedefedType());
1117 return TypeImpl();
1120 TypeImpl TypeImpl::GetDereferencedType() const {
1121 ModuleSP module_sp;
1122 if (CheckModule(module_sp)) {
1123 if (m_dynamic_type.IsValid()) {
1124 return TypeImpl(m_static_type.GetNonReferenceType(),
1125 m_dynamic_type.GetNonReferenceType());
1127 return TypeImpl(m_static_type.GetNonReferenceType());
1129 return TypeImpl();
1132 TypeImpl TypeImpl::GetUnqualifiedType() const {
1133 ModuleSP module_sp;
1134 if (CheckModule(module_sp)) {
1135 if (m_dynamic_type.IsValid()) {
1136 return TypeImpl(m_static_type.GetFullyUnqualifiedType(),
1137 m_dynamic_type.GetFullyUnqualifiedType());
1139 return TypeImpl(m_static_type.GetFullyUnqualifiedType());
1141 return TypeImpl();
1144 TypeImpl TypeImpl::GetCanonicalType() const {
1145 ModuleSP module_sp;
1146 if (CheckModule(module_sp)) {
1147 if (m_dynamic_type.IsValid()) {
1148 return TypeImpl(m_static_type.GetCanonicalType(),
1149 m_dynamic_type.GetCanonicalType());
1151 return TypeImpl(m_static_type.GetCanonicalType());
1153 return TypeImpl();
1156 CompilerType TypeImpl::GetCompilerType(bool prefer_dynamic) {
1157 ModuleSP module_sp;
1158 if (CheckModule(module_sp)) {
1159 if (prefer_dynamic) {
1160 if (m_dynamic_type.IsValid())
1161 return m_dynamic_type;
1163 return m_static_type;
1165 return CompilerType();
1168 CompilerType::TypeSystemSPWrapper TypeImpl::GetTypeSystem(bool prefer_dynamic) {
1169 ModuleSP module_sp;
1170 if (CheckModule(module_sp)) {
1171 if (prefer_dynamic) {
1172 if (m_dynamic_type.IsValid())
1173 return m_dynamic_type.GetTypeSystem();
1175 return m_static_type.GetTypeSystem();
1177 return {};
1180 bool TypeImpl::GetDescription(lldb_private::Stream &strm,
1181 lldb::DescriptionLevel description_level) {
1182 ModuleSP module_sp;
1183 if (CheckModule(module_sp)) {
1184 if (m_dynamic_type.IsValid()) {
1185 strm.Printf("Dynamic:\n");
1186 m_dynamic_type.DumpTypeDescription(&strm);
1187 strm.Printf("\nStatic:\n");
1189 m_static_type.DumpTypeDescription(&strm);
1190 } else {
1191 strm.PutCString("Invalid TypeImpl module for type has been deleted\n");
1193 return true;
1196 CompilerType TypeImpl::FindDirectNestedType(llvm::StringRef name) {
1197 if (name.empty())
1198 return CompilerType();
1199 return GetCompilerType(/*prefer_dynamic=*/false)
1200 .GetDirectNestedTypeWithName(name);
1203 bool TypeMemberFunctionImpl::IsValid() {
1204 return m_type.IsValid() && m_kind != lldb::eMemberFunctionKindUnknown;
1207 ConstString TypeMemberFunctionImpl::GetName() const { return m_name; }
1209 ConstString TypeMemberFunctionImpl::GetMangledName() const {
1210 return m_decl.GetMangledName();
1213 CompilerType TypeMemberFunctionImpl::GetType() const { return m_type; }
1215 lldb::MemberFunctionKind TypeMemberFunctionImpl::GetKind() const {
1216 return m_kind;
1219 bool TypeMemberFunctionImpl::GetDescription(Stream &stream) {
1220 switch (m_kind) {
1221 case lldb::eMemberFunctionKindUnknown:
1222 return false;
1223 case lldb::eMemberFunctionKindConstructor:
1224 stream.Printf("constructor for %s",
1225 m_type.GetTypeName().AsCString("<unknown>"));
1226 break;
1227 case lldb::eMemberFunctionKindDestructor:
1228 stream.Printf("destructor for %s",
1229 m_type.GetTypeName().AsCString("<unknown>"));
1230 break;
1231 case lldb::eMemberFunctionKindInstanceMethod:
1232 stream.Printf("instance method %s of type %s", m_name.AsCString(),
1233 m_decl.GetDeclContext().GetName().AsCString());
1234 break;
1235 case lldb::eMemberFunctionKindStaticMethod:
1236 stream.Printf("static method %s of type %s", m_name.AsCString(),
1237 m_decl.GetDeclContext().GetName().AsCString());
1238 break;
1240 return true;
1243 CompilerType TypeMemberFunctionImpl::GetReturnType() const {
1244 if (m_type)
1245 return m_type.GetFunctionReturnType();
1246 return m_decl.GetFunctionReturnType();
1249 size_t TypeMemberFunctionImpl::GetNumArguments() const {
1250 if (m_type)
1251 return m_type.GetNumberOfFunctionArguments();
1252 else
1253 return m_decl.GetNumFunctionArguments();
1256 CompilerType TypeMemberFunctionImpl::GetArgumentAtIndex(size_t idx) const {
1257 if (m_type)
1258 return m_type.GetFunctionArgumentAtIndex(idx);
1259 else
1260 return m_decl.GetFunctionArgumentType(idx);
1263 TypeEnumMemberImpl::TypeEnumMemberImpl(const lldb::TypeImplSP &integer_type_sp,
1264 ConstString name,
1265 const llvm::APSInt &value)
1266 : m_integer_type_sp(integer_type_sp), m_name(name), m_value(value),
1267 m_valid((bool)name && (bool)integer_type_sp)