1 //===-- DataExtractor.cpp -------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "lldb/Utility/DataExtractor.h"
11 #include "lldb/lldb-defines.h"
12 #include "lldb/lldb-enumerations.h"
13 #include "lldb/lldb-forward.h"
14 #include "lldb/lldb-types.h"
16 #include "lldb/Utility/DataBuffer.h"
17 #include "lldb/Utility/DataBufferHeap.h"
18 #include "lldb/Utility/LLDBAssert.h"
19 #include "lldb/Utility/Log.h"
20 #include "lldb/Utility/Stream.h"
21 #include "lldb/Utility/StreamString.h"
22 #include "lldb/Utility/UUID.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/Support/LEB128.h"
28 #include "llvm/Support/MD5.h"
29 #include "llvm/Support/MathExtras.h"
42 using namespace lldb_private
;
44 static inline uint16_t ReadInt16(const unsigned char *ptr
, offset_t offset
) {
46 memcpy(&value
, ptr
+ offset
, 2);
50 static inline uint32_t ReadInt32(const unsigned char *ptr
,
51 offset_t offset
= 0) {
53 memcpy(&value
, ptr
+ offset
, 4);
57 static inline uint64_t ReadInt64(const unsigned char *ptr
,
58 offset_t offset
= 0) {
60 memcpy(&value
, ptr
+ offset
, 8);
64 static inline uint16_t ReadInt16(const void *ptr
) {
66 memcpy(&value
, ptr
, 2);
70 static inline uint16_t ReadSwapInt16(const unsigned char *ptr
,
73 memcpy(&value
, ptr
+ offset
, 2);
74 return llvm::byteswap
<uint16_t>(value
);
77 static inline uint32_t ReadSwapInt32(const unsigned char *ptr
,
80 memcpy(&value
, ptr
+ offset
, 4);
81 return llvm::byteswap
<uint32_t>(value
);
84 static inline uint64_t ReadSwapInt64(const unsigned char *ptr
,
87 memcpy(&value
, ptr
+ offset
, 8);
88 return llvm::byteswap
<uint64_t>(value
);
91 static inline uint16_t ReadSwapInt16(const void *ptr
) {
93 memcpy(&value
, ptr
, 2);
94 return llvm::byteswap
<uint16_t>(value
);
97 static inline uint32_t ReadSwapInt32(const void *ptr
) {
99 memcpy(&value
, ptr
, 4);
100 return llvm::byteswap
<uint32_t>(value
);
103 static inline uint64_t ReadSwapInt64(const void *ptr
) {
105 memcpy(&value
, ptr
, 8);
106 return llvm::byteswap
<uint64_t>(value
);
109 static inline uint64_t ReadMaxInt64(const uint8_t *data
, size_t byte_size
,
110 ByteOrder byte_order
) {
112 if (byte_order
== eByteOrderBig
)
113 for (size_t i
= 0; i
< byte_size
; ++i
)
114 res
= (res
<< 8) | data
[i
];
116 assert(byte_order
== eByteOrderLittle
);
117 for (size_t i
= 0; i
< byte_size
; ++i
)
118 res
= (res
<< 8) | data
[byte_size
- 1 - i
];
123 DataExtractor::DataExtractor()
124 : m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)),
127 // This constructor allows us to use data that is owned by someone else. The
128 // data must stay around as long as this object is valid.
129 DataExtractor::DataExtractor(const void *data
, offset_t length
,
130 ByteOrder endian
, uint32_t addr_size
,
131 uint32_t target_byte_size
/*=1*/)
132 : m_start(const_cast<uint8_t *>(static_cast<const uint8_t *>(data
))),
133 m_end(const_cast<uint8_t *>(static_cast<const uint8_t *>(data
)) + length
),
134 m_byte_order(endian
), m_addr_size(addr_size
), m_data_sp(),
135 m_target_byte_size(target_byte_size
) {
136 assert(addr_size
>= 1 && addr_size
<= 8);
139 // Make a shared pointer reference to the shared data in "data_sp" and set the
140 // endian swapping setting to "swap", and the address size to "addr_size". The
141 // shared data reference will ensure the data lives as long as any
142 // DataExtractor objects exist that have a reference to this data.
143 DataExtractor::DataExtractor(const DataBufferSP
&data_sp
, ByteOrder endian
,
145 uint32_t target_byte_size
/*=1*/)
146 : m_byte_order(endian
), m_addr_size(addr_size
), m_data_sp(),
147 m_target_byte_size(target_byte_size
) {
148 assert(addr_size
>= 1 && addr_size
<= 8);
152 // Initialize this object with a subset of the data bytes in "data". If "data"
153 // contains shared data, then a reference to this shared data will added and
154 // the shared data will stay around as long as any object contains a reference
155 // to that data. The endian swap and address size settings are copied from
157 DataExtractor::DataExtractor(const DataExtractor
&data
, offset_t offset
,
158 offset_t length
, uint32_t target_byte_size
/*=1*/)
159 : m_byte_order(data
.m_byte_order
), m_addr_size(data
.m_addr_size
),
160 m_data_sp(), m_target_byte_size(target_byte_size
) {
161 assert(m_addr_size
>= 1 && m_addr_size
<= 8);
162 if (data
.ValidOffset(offset
)) {
163 offset_t bytes_available
= data
.GetByteSize() - offset
;
164 if (length
> bytes_available
)
165 length
= bytes_available
;
166 SetData(data
, offset
, length
);
170 DataExtractor::DataExtractor(const DataExtractor
&rhs
)
171 : m_start(rhs
.m_start
), m_end(rhs
.m_end
), m_byte_order(rhs
.m_byte_order
),
172 m_addr_size(rhs
.m_addr_size
), m_data_sp(rhs
.m_data_sp
),
173 m_target_byte_size(rhs
.m_target_byte_size
) {
174 assert(m_addr_size
>= 1 && m_addr_size
<= 8);
177 // Assignment operator
178 const DataExtractor
&DataExtractor::operator=(const DataExtractor
&rhs
) {
180 m_start
= rhs
.m_start
;
182 m_byte_order
= rhs
.m_byte_order
;
183 m_addr_size
= rhs
.m_addr_size
;
184 m_data_sp
= rhs
.m_data_sp
;
189 DataExtractor::~DataExtractor() = default;
191 // Clears the object contents back to a default invalid state, and release any
192 // references to shared data that this object may contain.
193 void DataExtractor::Clear() {
196 m_byte_order
= endian::InlHostByteOrder();
197 m_addr_size
= sizeof(void *);
201 // If this object contains shared data, this function returns the offset into
202 // that shared data. Else zero is returned.
203 size_t DataExtractor::GetSharedDataOffset() const {
204 if (m_start
!= nullptr) {
205 const DataBuffer
*data
= m_data_sp
.get();
206 if (data
!= nullptr) {
207 const uint8_t *data_bytes
= data
->GetBytes();
208 if (data_bytes
!= nullptr) {
209 assert(m_start
>= data_bytes
);
210 return m_start
- data_bytes
;
217 // Set the data with which this object will extract from to data starting at
218 // BYTES and set the length of the data to LENGTH bytes long. The data is
219 // externally owned must be around at least as long as this object points to
220 // the data. No copy of the data is made, this object just refers to this data
221 // and can extract from it. If this object refers to any shared data upon
222 // entry, the reference to that data will be released. Is SWAP is set to true,
223 // any data extracted will be endian swapped.
224 lldb::offset_t
DataExtractor::SetData(const void *bytes
, offset_t length
,
226 m_byte_order
= endian
;
228 if (bytes
== nullptr || length
== 0) {
232 m_start
= const_cast<uint8_t *>(static_cast<const uint8_t *>(bytes
));
233 m_end
= m_start
+ length
;
235 return GetByteSize();
238 // Assign the data for this object to be a subrange in "data" starting
239 // "data_offset" bytes into "data" and ending "data_length" bytes later. If
240 // "data_offset" is not a valid offset into "data", then this object will
241 // contain no bytes. If "data_offset" is within "data" yet "data_length" is too
242 // large, the length will be capped at the number of bytes remaining in "data".
243 // If "data" contains a shared pointer to other data, then a ref counted
244 // pointer to that data will be made in this object. If "data" doesn't contain
245 // a shared pointer to data, then the bytes referred to in "data" will need to
246 // exist at least as long as this object refers to those bytes. The address
247 // size and endian swap settings are copied from the current values in "data".
248 lldb::offset_t
DataExtractor::SetData(const DataExtractor
&data
,
249 offset_t data_offset
,
250 offset_t data_length
) {
251 m_addr_size
= data
.m_addr_size
;
252 assert(m_addr_size
>= 1 && m_addr_size
<= 8);
253 // If "data" contains shared pointer to data, then we can use that
254 if (data
.m_data_sp
) {
255 m_byte_order
= data
.m_byte_order
;
256 return SetData(data
.m_data_sp
, data
.GetSharedDataOffset() + data_offset
,
260 // We have a DataExtractor object that just has a pointer to bytes
261 if (data
.ValidOffset(data_offset
)) {
262 if (data_length
> data
.GetByteSize() - data_offset
)
263 data_length
= data
.GetByteSize() - data_offset
;
264 return SetData(data
.GetDataStart() + data_offset
, data_length
,
265 data
.GetByteOrder());
270 // Assign the data for this object to be a subrange of the shared data in
271 // "data_sp" starting "data_offset" bytes into "data_sp" and ending
272 // "data_length" bytes later. If "data_offset" is not a valid offset into
273 // "data_sp", then this object will contain no bytes. If "data_offset" is
274 // within "data_sp" yet "data_length" is too large, the length will be capped
275 // at the number of bytes remaining in "data_sp". A ref counted pointer to the
276 // data in "data_sp" will be made in this object IF the number of bytes this
277 // object refers to in greater than zero (if at least one byte was available
278 // starting at "data_offset") to ensure the data stays around as long as it is
279 // needed. The address size and endian swap settings will remain unchanged from
280 // their current settings.
281 lldb::offset_t
DataExtractor::SetData(const DataBufferSP
&data_sp
,
282 offset_t data_offset
,
283 offset_t data_length
) {
284 m_start
= m_end
= nullptr;
286 if (data_length
> 0) {
289 const size_t data_size
= data_sp
->GetByteSize();
290 if (data_offset
< data_size
) {
291 m_start
= data_sp
->GetBytes() + data_offset
;
292 const size_t bytes_left
= data_size
- data_offset
;
293 // Cap the length of we asked for too many
294 if (data_length
<= bytes_left
)
295 m_end
= m_start
+ data_length
; // We got all the bytes we wanted
297 m_end
= m_start
+ bytes_left
; // Not all the bytes requested were
298 // available in the shared data
303 size_t new_size
= GetByteSize();
305 // Don't hold a shared pointer to the data buffer if we don't share any valid
306 // bytes in the shared buffer.
313 // Extract a single unsigned char from the binary data and update the offset
314 // pointed to by "offset_ptr".
316 // RETURNS the byte that was extracted, or zero on failure.
317 uint8_t DataExtractor::GetU8(offset_t
*offset_ptr
) const {
318 const uint8_t *data
= static_cast<const uint8_t *>(GetData(offset_ptr
, 1));
324 // Extract "count" unsigned chars from the binary data and update the offset
325 // pointed to by "offset_ptr". The extracted data is copied into "dst".
327 // RETURNS the non-nullptr buffer pointer upon successful extraction of
328 // all the requested bytes, or nullptr when the data is not available in the
329 // buffer due to being out of bounds, or insufficient data.
330 void *DataExtractor::GetU8(offset_t
*offset_ptr
, void *dst
,
331 uint32_t count
) const {
332 const uint8_t *data
=
333 static_cast<const uint8_t *>(GetData(offset_ptr
, count
));
335 // Copy the data into the buffer
336 memcpy(dst
, data
, count
);
337 // Return a non-nullptr pointer to the converted data as an indicator of
344 // Extract a single uint16_t from the data and update the offset pointed to by
347 // RETURNS the uint16_t that was extracted, or zero on failure.
348 uint16_t DataExtractor::GetU16(offset_t
*offset_ptr
) const {
350 const uint8_t *data
=
351 static_cast<const uint8_t *>(GetData(offset_ptr
, sizeof(val
)));
353 if (m_byte_order
!= endian::InlHostByteOrder())
354 val
= ReadSwapInt16(data
);
356 val
= ReadInt16(data
);
361 uint16_t DataExtractor::GetU16_unchecked(offset_t
*offset_ptr
) const {
363 if (m_byte_order
== endian::InlHostByteOrder())
364 val
= ReadInt16(m_start
, *offset_ptr
);
366 val
= ReadSwapInt16(m_start
, *offset_ptr
);
367 *offset_ptr
+= sizeof(val
);
371 uint32_t DataExtractor::GetU32_unchecked(offset_t
*offset_ptr
) const {
373 if (m_byte_order
== endian::InlHostByteOrder())
374 val
= ReadInt32(m_start
, *offset_ptr
);
376 val
= ReadSwapInt32(m_start
, *offset_ptr
);
377 *offset_ptr
+= sizeof(val
);
381 uint64_t DataExtractor::GetU64_unchecked(offset_t
*offset_ptr
) const {
383 if (m_byte_order
== endian::InlHostByteOrder())
384 val
= ReadInt64(m_start
, *offset_ptr
);
386 val
= ReadSwapInt64(m_start
, *offset_ptr
);
387 *offset_ptr
+= sizeof(val
);
391 // Extract "count" uint16_t values from the binary data and update the offset
392 // pointed to by "offset_ptr". The extracted data is copied into "dst".
394 // RETURNS the non-nullptr buffer pointer upon successful extraction of
395 // all the requested bytes, or nullptr when the data is not available in the
396 // buffer due to being out of bounds, or insufficient data.
397 void *DataExtractor::GetU16(offset_t
*offset_ptr
, void *void_dst
,
398 uint32_t count
) const {
399 const size_t src_size
= sizeof(uint16_t) * count
;
400 const uint16_t *src
=
401 static_cast<const uint16_t *>(GetData(offset_ptr
, src_size
));
403 if (m_byte_order
!= endian::InlHostByteOrder()) {
404 uint16_t *dst_pos
= static_cast<uint16_t *>(void_dst
);
405 uint16_t *dst_end
= dst_pos
+ count
;
406 const uint16_t *src_pos
= src
;
407 while (dst_pos
< dst_end
) {
408 *dst_pos
= ReadSwapInt16(src_pos
);
413 memcpy(void_dst
, src
, src_size
);
415 // Return a non-nullptr pointer to the converted data as an indicator of
422 // Extract a single uint32_t from the data and update the offset pointed to by
425 // RETURNS the uint32_t that was extracted, or zero on failure.
426 uint32_t DataExtractor::GetU32(offset_t
*offset_ptr
) const {
428 const uint8_t *data
=
429 static_cast<const uint8_t *>(GetData(offset_ptr
, sizeof(val
)));
431 if (m_byte_order
!= endian::InlHostByteOrder()) {
432 val
= ReadSwapInt32(data
);
434 memcpy(&val
, data
, 4);
440 // Extract "count" uint32_t values from the binary data and update the offset
441 // pointed to by "offset_ptr". The extracted data is copied into "dst".
443 // RETURNS the non-nullptr buffer pointer upon successful extraction of
444 // all the requested bytes, or nullptr when the data is not available in the
445 // buffer due to being out of bounds, or insufficient data.
446 void *DataExtractor::GetU32(offset_t
*offset_ptr
, void *void_dst
,
447 uint32_t count
) const {
448 const size_t src_size
= sizeof(uint32_t) * count
;
449 const uint32_t *src
=
450 static_cast<const uint32_t *>(GetData(offset_ptr
, src_size
));
452 if (m_byte_order
!= endian::InlHostByteOrder()) {
453 uint32_t *dst_pos
= static_cast<uint32_t *>(void_dst
);
454 uint32_t *dst_end
= dst_pos
+ count
;
455 const uint32_t *src_pos
= src
;
456 while (dst_pos
< dst_end
) {
457 *dst_pos
= ReadSwapInt32(src_pos
);
462 memcpy(void_dst
, src
, src_size
);
464 // Return a non-nullptr pointer to the converted data as an indicator of
471 // Extract a single uint64_t from the data and update the offset pointed to by
474 // RETURNS the uint64_t that was extracted, or zero on failure.
475 uint64_t DataExtractor::GetU64(offset_t
*offset_ptr
) const {
477 const uint8_t *data
=
478 static_cast<const uint8_t *>(GetData(offset_ptr
, sizeof(val
)));
480 if (m_byte_order
!= endian::InlHostByteOrder()) {
481 val
= ReadSwapInt64(data
);
483 memcpy(&val
, data
, 8);
491 // Get multiple consecutive 64 bit values. Return true if the entire read
492 // succeeds and increment the offset pointed to by offset_ptr, else return
493 // false and leave the offset pointed to by offset_ptr unchanged.
494 void *DataExtractor::GetU64(offset_t
*offset_ptr
, void *void_dst
,
495 uint32_t count
) const {
496 const size_t src_size
= sizeof(uint64_t) * count
;
497 const uint64_t *src
=
498 static_cast<const uint64_t *>(GetData(offset_ptr
, src_size
));
500 if (m_byte_order
!= endian::InlHostByteOrder()) {
501 uint64_t *dst_pos
= static_cast<uint64_t *>(void_dst
);
502 uint64_t *dst_end
= dst_pos
+ count
;
503 const uint64_t *src_pos
= src
;
504 while (dst_pos
< dst_end
) {
505 *dst_pos
= ReadSwapInt64(src_pos
);
510 memcpy(void_dst
, src
, src_size
);
512 // Return a non-nullptr pointer to the converted data as an indicator of
519 uint32_t DataExtractor::GetMaxU32(offset_t
*offset_ptr
,
520 size_t byte_size
) const {
521 lldbassert(byte_size
> 0 && byte_size
<= 4 && "GetMaxU32 invalid byte_size!");
522 return GetMaxU64(offset_ptr
, byte_size
);
525 uint64_t DataExtractor::GetMaxU64(offset_t
*offset_ptr
,
526 size_t byte_size
) const {
527 lldbassert(byte_size
> 0 && byte_size
<= 8 && "GetMaxU64 invalid byte_size!");
530 return GetU8(offset_ptr
);
532 return GetU16(offset_ptr
);
534 return GetU32(offset_ptr
);
536 return GetU64(offset_ptr
);
539 const uint8_t *data
=
540 static_cast<const uint8_t *>(GetData(offset_ptr
, byte_size
));
543 return ReadMaxInt64(data
, byte_size
, m_byte_order
);
549 uint64_t DataExtractor::GetMaxU64_unchecked(offset_t
*offset_ptr
,
550 size_t byte_size
) const {
553 return GetU8_unchecked(offset_ptr
);
555 return GetU16_unchecked(offset_ptr
);
557 return GetU32_unchecked(offset_ptr
);
559 return GetU64_unchecked(offset_ptr
);
561 uint64_t res
= ReadMaxInt64(&m_start
[*offset_ptr
], byte_size
, m_byte_order
);
562 *offset_ptr
+= byte_size
;
569 int64_t DataExtractor::GetMaxS64(offset_t
*offset_ptr
, size_t byte_size
) const {
570 uint64_t u64
= GetMaxU64(offset_ptr
, byte_size
);
571 return llvm::SignExtend64(u64
, 8 * byte_size
);
574 uint64_t DataExtractor::GetMaxU64Bitfield(offset_t
*offset_ptr
, size_t size
,
575 uint32_t bitfield_bit_size
,
576 uint32_t bitfield_bit_offset
) const {
577 assert(bitfield_bit_size
<= 64);
578 uint64_t uval64
= GetMaxU64(offset_ptr
, size
);
580 if (bitfield_bit_size
== 0)
583 int32_t lsbcount
= bitfield_bit_offset
;
584 if (m_byte_order
== eByteOrderBig
)
585 lsbcount
= size
* 8 - bitfield_bit_offset
- bitfield_bit_size
;
590 uint64_t bitfield_mask
=
591 (bitfield_bit_size
== 64
592 ? std::numeric_limits
<uint64_t>::max()
593 : ((static_cast<uint64_t>(1) << bitfield_bit_size
) - 1));
594 if (!bitfield_mask
&& bitfield_bit_offset
== 0 && bitfield_bit_size
== 64)
597 uval64
&= bitfield_mask
;
602 int64_t DataExtractor::GetMaxS64Bitfield(offset_t
*offset_ptr
, size_t size
,
603 uint32_t bitfield_bit_size
,
604 uint32_t bitfield_bit_offset
) const {
605 assert(size
>= 1 && "GetMaxS64Bitfield size must be >= 1");
606 assert(size
<= 8 && "GetMaxS64Bitfield size must be <= 8");
607 int64_t sval64
= GetMaxS64(offset_ptr
, size
);
608 if (bitfield_bit_size
== 0)
610 int32_t lsbcount
= bitfield_bit_offset
;
611 if (m_byte_order
== eByteOrderBig
)
612 lsbcount
= size
* 8 - bitfield_bit_offset
- bitfield_bit_size
;
615 uint64_t bitfield_mask
= llvm::maskTrailingOnes
<uint64_t>(bitfield_bit_size
);
616 sval64
&= bitfield_mask
;
617 // sign extend if needed
618 if (sval64
& ((static_cast<uint64_t>(1)) << (bitfield_bit_size
- 1)))
619 sval64
|= ~bitfield_mask
;
623 float DataExtractor::GetFloat(offset_t
*offset_ptr
) const {
624 return Get
<float>(offset_ptr
, 0.0f
);
627 double DataExtractor::GetDouble(offset_t
*offset_ptr
) const {
628 return Get
<double>(offset_ptr
, 0.0);
631 long double DataExtractor::GetLongDouble(offset_t
*offset_ptr
) const {
632 long double val
= 0.0;
633 #if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) || \
634 defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64)
635 *offset_ptr
+= CopyByteOrderedData(*offset_ptr
, 10, &val
, sizeof(val
),
636 endian::InlHostByteOrder());
638 *offset_ptr
+= CopyByteOrderedData(*offset_ptr
, sizeof(val
), &val
,
639 sizeof(val
), endian::InlHostByteOrder());
644 // Extract a single address from the data and update the offset pointed to by
645 // "offset_ptr". The size of the extracted address comes from the
646 // "this->m_addr_size" member variable and should be set correctly prior to
647 // extracting any address values.
649 // RETURNS the address that was extracted, or zero on failure.
650 uint64_t DataExtractor::GetAddress(offset_t
*offset_ptr
) const {
651 assert(m_addr_size
>= 1 && m_addr_size
<= 8);
652 return GetMaxU64(offset_ptr
, m_addr_size
);
655 uint64_t DataExtractor::GetAddress_unchecked(offset_t
*offset_ptr
) const {
656 assert(m_addr_size
>= 1 && m_addr_size
<= 8);
657 return GetMaxU64_unchecked(offset_ptr
, m_addr_size
);
660 size_t DataExtractor::ExtractBytes(offset_t offset
, offset_t length
,
661 ByteOrder dst_byte_order
, void *dst
) const {
662 const uint8_t *src
= PeekData(offset
, length
);
664 if (dst_byte_order
!= GetByteOrder()) {
665 // Validate that only a word- or register-sized dst is byte swapped
666 assert(length
== 1 || length
== 2 || length
== 4 || length
== 8 ||
667 length
== 10 || length
== 16 || length
== 32);
669 for (uint32_t i
= 0; i
< length
; ++i
)
670 (static_cast<uint8_t *>(dst
))[i
] = src
[length
- i
- 1];
672 ::memcpy(dst
, src
, length
);
678 // Extract data as it exists in target memory
679 lldb::offset_t
DataExtractor::CopyData(offset_t offset
, offset_t length
,
681 const uint8_t *src
= PeekData(offset
, length
);
683 ::memcpy(dst
, src
, length
);
689 // Extract data and swap if needed when doing the copy
691 DataExtractor::CopyByteOrderedData(offset_t src_offset
, offset_t src_len
,
692 void *dst_void_ptr
, offset_t dst_len
,
693 ByteOrder dst_byte_order
) const {
694 // Validate the source info
695 if (!ValidOffsetForDataOfSize(src_offset
, src_len
))
696 assert(ValidOffsetForDataOfSize(src_offset
, src_len
));
698 assert(m_byte_order
== eByteOrderBig
|| m_byte_order
== eByteOrderLittle
);
700 // Validate the destination info
701 assert(dst_void_ptr
!= nullptr);
703 assert(dst_byte_order
== eByteOrderBig
|| dst_byte_order
== eByteOrderLittle
);
705 // Validate that only a word- or register-sized dst is byte swapped
706 assert(dst_byte_order
== m_byte_order
|| dst_len
== 1 || dst_len
== 2 ||
707 dst_len
== 4 || dst_len
== 8 || dst_len
== 10 || dst_len
== 16 ||
710 // Must have valid byte orders set in this object and for destination
711 if (!(dst_byte_order
== eByteOrderBig
||
712 dst_byte_order
== eByteOrderLittle
) ||
713 !(m_byte_order
== eByteOrderBig
|| m_byte_order
== eByteOrderLittle
))
716 uint8_t *dst
= static_cast<uint8_t *>(dst_void_ptr
);
717 const uint8_t *src
= PeekData(src_offset
, src_len
);
719 if (dst_len
>= src_len
) {
720 // We are copying the entire value from src into dst. Calculate how many,
721 // if any, zeroes we need for the most significant bytes if "dst_len" is
722 // greater than "src_len"...
723 const size_t num_zeroes
= dst_len
- src_len
;
724 if (dst_byte_order
== eByteOrderBig
) {
725 // Big endian, so we lead with zeroes...
727 ::memset(dst
, 0, num_zeroes
);
728 // Then either copy or swap the rest
729 if (m_byte_order
== eByteOrderBig
) {
730 ::memcpy(dst
+ num_zeroes
, src
, src_len
);
732 for (uint32_t i
= 0; i
< src_len
; ++i
)
733 dst
[i
+ num_zeroes
] = src
[src_len
- 1 - i
];
736 // Little endian destination, so we lead the value bytes
737 if (m_byte_order
== eByteOrderBig
) {
738 for (uint32_t i
= 0; i
< src_len
; ++i
)
739 dst
[i
] = src
[src_len
- 1 - i
];
741 ::memcpy(dst
, src
, src_len
);
743 // And zero the rest...
745 ::memset(dst
+ src_len
, 0, num_zeroes
);
749 // We are only copying some of the value from src into dst..
751 if (dst_byte_order
== eByteOrderBig
) {
753 if (m_byte_order
== eByteOrderBig
) {
754 // Big endian dst, with big endian src
755 ::memcpy(dst
, src
+ (src_len
- dst_len
), dst_len
);
757 // Big endian dst, with little endian src
758 for (uint32_t i
= 0; i
< dst_len
; ++i
)
759 dst
[i
] = src
[dst_len
- 1 - i
];
763 if (m_byte_order
== eByteOrderBig
) {
764 // Little endian dst, with big endian src
765 for (uint32_t i
= 0; i
< dst_len
; ++i
)
766 dst
[i
] = src
[src_len
- 1 - i
];
768 // Little endian dst, with big endian src
769 ::memcpy(dst
, src
, dst_len
);
778 // Extracts a variable length NULL terminated C string from the data at the
779 // offset pointed to by "offset_ptr". The "offset_ptr" will be updated with
780 // the offset of the byte that follows the NULL terminator byte.
782 // If the offset pointed to by "offset_ptr" is out of bounds, or if "length" is
783 // non-zero and there aren't enough available bytes, nullptr will be returned
784 // and "offset_ptr" will not be updated.
785 const char *DataExtractor::GetCStr(offset_t
*offset_ptr
) const {
786 const char *start
= reinterpret_cast<const char *>(PeekData(*offset_ptr
, 1));
787 // Already at the end of the data.
791 const char *end
= reinterpret_cast<const char *>(m_end
);
793 // Check all bytes for a null terminator that terminates a C string.
794 const char *terminator_or_end
= std::find(start
, end
, '\0');
796 // We didn't find a null terminator, so return nullptr to indicate that there
797 // is no valid C string at that offset.
798 if (terminator_or_end
== end
)
801 // Update offset_ptr for the caller to point to the data behind the
802 // terminator (which is 1 byte long).
803 *offset_ptr
+= (terminator_or_end
- start
+ 1UL);
807 // Extracts a NULL terminated C string from the fixed length field of length
808 // "len" at the offset pointed to by "offset_ptr". The "offset_ptr" will be
809 // updated with the offset of the byte that follows the fixed length field.
811 // If the offset pointed to by "offset_ptr" is out of bounds, or if the offset
812 // plus the length of the field is out of bounds, or if the field does not
813 // contain a NULL terminator byte, nullptr will be returned and "offset_ptr"
814 // will not be updated.
815 const char *DataExtractor::GetCStr(offset_t
*offset_ptr
, offset_t len
) const {
816 const char *cstr
= reinterpret_cast<const char *>(PeekData(*offset_ptr
, len
));
817 if (cstr
!= nullptr) {
818 if (memchr(cstr
, '\0', len
) == nullptr) {
827 // Peeks at a string in the contained data. No verification is done to make
828 // sure the entire string lies within the bounds of this object's data, only
829 // "offset" is verified to be a valid offset.
831 // Returns a valid C string pointer if "offset" is a valid offset in this
832 // object's data, else nullptr is returned.
833 const char *DataExtractor::PeekCStr(offset_t offset
) const {
834 return reinterpret_cast<const char *>(PeekData(offset
, 1));
837 // Extracts an unsigned LEB128 number from this object's data starting at the
838 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
839 // will be updated with the offset of the byte following the last extracted
842 // Returned the extracted integer value.
843 uint64_t DataExtractor::GetULEB128(offset_t
*offset_ptr
) const {
844 const uint8_t *src
= PeekData(*offset_ptr
, 1);
848 unsigned byte_count
= 0;
849 uint64_t result
= llvm::decodeULEB128(src
, &byte_count
, m_end
);
850 *offset_ptr
+= byte_count
;
854 // Extracts an signed LEB128 number from this object's data starting at the
855 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
856 // will be updated with the offset of the byte following the last extracted
859 // Returned the extracted integer value.
860 int64_t DataExtractor::GetSLEB128(offset_t
*offset_ptr
) const {
861 const uint8_t *src
= PeekData(*offset_ptr
, 1);
865 unsigned byte_count
= 0;
866 int64_t result
= llvm::decodeSLEB128(src
, &byte_count
, m_end
);
867 *offset_ptr
+= byte_count
;
871 // Skips a ULEB128 number (signed or unsigned) from this object's data starting
872 // at the offset pointed to by "offset_ptr". The offset pointed to by
873 // "offset_ptr" will be updated with the offset of the byte following the last
876 // Returns the number of bytes consumed during the extraction.
877 uint32_t DataExtractor::Skip_LEB128(offset_t
*offset_ptr
) const {
878 uint32_t bytes_consumed
= 0;
879 const uint8_t *src
= PeekData(*offset_ptr
, 1);
883 const uint8_t *end
= m_end
;
886 const uint8_t *src_pos
= src
;
887 while ((src_pos
< end
) && (*src_pos
++ & 0x80))
889 *offset_ptr
+= src_pos
- src
;
891 return bytes_consumed
;
894 // Dumps bytes from this object's data to the stream "s" starting
895 // "start_offset" bytes into this data, and ending with the byte before
896 // "end_offset". "base_addr" will be added to the offset into the dumped data
897 // when showing the offset into the data in the output information.
898 // "num_per_line" objects of type "type" will be dumped with the option to
899 // override the format for each object with "type_format". "type_format" is a
900 // printf style formatting string. If "type_format" is nullptr, then an
901 // appropriate format string will be used for the supplied "type". If the
902 // stream "s" is nullptr, then the output will be send to Log().
903 lldb::offset_t
DataExtractor::PutToLog(Log
*log
, offset_t start_offset
,
904 offset_t length
, uint64_t base_addr
,
905 uint32_t num_per_line
,
906 DataExtractor::Type type
) const {
914 for (offset
= start_offset
, end_offset
= offset
+ length
, count
= 0;
915 ValidOffset(offset
) && offset
< end_offset
; ++count
) {
916 if ((count
% num_per_line
) == 0) {
917 // Print out any previous string
918 if (sstr
.GetSize() > 0) {
919 log
->PutString(sstr
.GetString());
922 // Reset string offset and fill the current line string with address:
923 if (base_addr
!= LLDB_INVALID_ADDRESS
)
924 sstr
.Printf("0x%8.8" PRIx64
":",
925 static_cast<uint64_t>(base_addr
+ (offset
- start_offset
)));
930 sstr
.Printf(" %2.2x", GetU8(&offset
));
933 char ch
= GetU8(&offset
);
934 sstr
.Printf(" %c", llvm::isPrint(ch
) ? ch
: ' ');
937 sstr
.Printf(" %4.4x", GetU16(&offset
));
940 sstr
.Printf(" %8.8x", GetU32(&offset
));
943 sstr
.Printf(" %16.16" PRIx64
, GetU64(&offset
));
946 sstr
.Printf(" 0x%" PRIx64
, GetAddress(&offset
));
949 sstr
.Printf(" 0x%" PRIx64
, GetULEB128(&offset
));
952 sstr
.Printf(" %" PRId64
, GetSLEB128(&offset
));
958 log
->PutString(sstr
.GetString());
960 return offset
; // Return the offset at which we ended up
963 size_t DataExtractor::Copy(DataExtractor
&dest_data
) const {
965 // we can pass along the SP to the data
966 dest_data
.SetData(m_data_sp
);
968 const uint8_t *base_ptr
= m_start
;
969 size_t data_size
= GetByteSize();
970 dest_data
.SetData(DataBufferSP(new DataBufferHeap(base_ptr
, data_size
)));
972 return GetByteSize();
975 bool DataExtractor::Append(DataExtractor
&rhs
) {
976 if (rhs
.GetByteOrder() != GetByteOrder())
979 if (rhs
.GetByteSize() == 0)
982 if (GetByteSize() == 0)
983 return (rhs
.Copy(*this) > 0);
985 size_t bytes
= GetByteSize() + rhs
.GetByteSize();
987 DataBufferHeap
*buffer_heap_ptr
= nullptr;
988 DataBufferSP
buffer_sp(buffer_heap_ptr
= new DataBufferHeap(bytes
, 0));
990 if (!buffer_sp
|| buffer_heap_ptr
== nullptr)
993 uint8_t *bytes_ptr
= buffer_heap_ptr
->GetBytes();
995 memcpy(bytes_ptr
, GetDataStart(), GetByteSize());
996 memcpy(bytes_ptr
+ GetByteSize(), rhs
.GetDataStart(), rhs
.GetByteSize());
1003 bool DataExtractor::Append(void *buf
, offset_t length
) {
1010 size_t bytes
= GetByteSize() + length
;
1012 DataBufferHeap
*buffer_heap_ptr
= nullptr;
1013 DataBufferSP
buffer_sp(buffer_heap_ptr
= new DataBufferHeap(bytes
, 0));
1015 if (!buffer_sp
|| buffer_heap_ptr
== nullptr)
1018 uint8_t *bytes_ptr
= buffer_heap_ptr
->GetBytes();
1020 if (GetByteSize() > 0)
1021 memcpy(bytes_ptr
, GetDataStart(), GetByteSize());
1023 memcpy(bytes_ptr
+ GetByteSize(), buf
, length
);
1030 void DataExtractor::Checksum(llvm::SmallVectorImpl
<uint8_t> &dest
,
1031 uint64_t max_data
) {
1033 max_data
= GetByteSize();
1035 max_data
= std::min(max_data
, GetByteSize());
1039 const llvm::ArrayRef
<uint8_t> data(GetDataStart(), max_data
);
1042 llvm::MD5::MD5Result result
;
1046 dest
.append(result
.begin(), result
.end());