1 //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
10 // both before and after the DAG is legalized.
12 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is
13 // primarily intended to handle simplification opportunities that are implicit
14 // in the LLVM IR and exposed by the various codegen lowering phases.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/IntervalMap.h"
23 #include "llvm/ADT/None.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallBitVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/MemoryLocation.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/VectorUtils.h"
36 #include "llvm/CodeGen/DAGCombine.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/RuntimeLibcalls.h"
42 #include "llvm/CodeGen/SelectionDAG.h"
43 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
44 #include "llvm/CodeGen/SelectionDAGNodes.h"
45 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/CodeGen/ValueTypes.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/Constant.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CodeGen.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include "llvm/Target/TargetOptions.h"
80 #define DEBUG_TYPE "dagcombine"
82 STATISTIC(NodesCombined
, "Number of dag nodes combined");
83 STATISTIC(PreIndexedNodes
, "Number of pre-indexed nodes created");
84 STATISTIC(PostIndexedNodes
, "Number of post-indexed nodes created");
85 STATISTIC(OpsNarrowed
, "Number of load/op/store narrowed");
86 STATISTIC(LdStFP2Int
, "Number of fp load/store pairs transformed to int");
87 STATISTIC(SlicedLoads
, "Number of load sliced");
88 STATISTIC(NumFPLogicOpsConv
, "Number of logic ops converted to fp ops");
91 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden
,
92 cl::desc("Enable DAG combiner's use of IR alias analysis"));
95 UseTBAA("combiner-use-tbaa", cl::Hidden
, cl::init(true),
96 cl::desc("Enable DAG combiner's use of TBAA"));
99 static cl::opt
<std::string
>
100 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden
,
101 cl::desc("Only use DAG-combiner alias analysis in this"
105 /// Hidden option to stress test load slicing, i.e., when this option
106 /// is enabled, load slicing bypasses most of its profitability guards.
108 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden
,
109 cl::desc("Bypass the profitability model of load slicing"),
113 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden
, cl::init(true),
114 cl::desc("DAG combiner may split indexing from loads"));
117 EnableStoreMerging("combiner-store-merging", cl::Hidden
, cl::init(true),
118 cl::desc("DAG combiner enable merging multiple stores "
119 "into a wider store"));
121 static cl::opt
<unsigned> TokenFactorInlineLimit(
122 "combiner-tokenfactor-inline-limit", cl::Hidden
, cl::init(2048),
123 cl::desc("Limit the number of operands to inline for Token Factors"));
125 static cl::opt
<unsigned> StoreMergeDependenceLimit(
126 "combiner-store-merge-dependence-limit", cl::Hidden
, cl::init(10),
127 cl::desc("Limit the number of times for the same StoreNode and RootNode "
128 "to bail out in store merging dependence check"));
130 static cl::opt
<bool> EnableReduceLoadOpStoreWidth(
131 "combiner-reduce-load-op-store-width", cl::Hidden
, cl::init(true),
132 cl::desc("DAG cominber enable reducing the width of load/op/store "
135 static cl::opt
<bool> EnableShrinkLoadReplaceStoreWithStore(
136 "combiner-shrink-load-replace-store-with-store", cl::Hidden
, cl::init(true),
137 cl::desc("DAG cominber enable load/<replace bytes>/store with "
138 "a narrower store"));
144 const TargetLowering
&TLI
;
145 const SelectionDAGTargetInfo
*STI
;
147 CodeGenOpt::Level OptLevel
;
148 bool LegalDAG
= false;
149 bool LegalOperations
= false;
150 bool LegalTypes
= false;
152 bool DisableGenericCombines
;
154 /// Worklist of all of the nodes that need to be simplified.
156 /// This must behave as a stack -- new nodes to process are pushed onto the
157 /// back and when processing we pop off of the back.
159 /// The worklist will not contain duplicates but may contain null entries
160 /// due to nodes being deleted from the underlying DAG.
161 SmallVector
<SDNode
*, 64> Worklist
;
163 /// Mapping from an SDNode to its position on the worklist.
165 /// This is used to find and remove nodes from the worklist (by nulling
166 /// them) when they are deleted from the underlying DAG. It relies on
167 /// stable indices of nodes within the worklist.
168 DenseMap
<SDNode
*, unsigned> WorklistMap
;
169 /// This records all nodes attempted to add to the worklist since we
170 /// considered a new worklist entry. As we keep do not add duplicate nodes
171 /// in the worklist, this is different from the tail of the worklist.
172 SmallSetVector
<SDNode
*, 32> PruningList
;
174 /// Set of nodes which have been combined (at least once).
176 /// This is used to allow us to reliably add any operands of a DAG node
177 /// which have not yet been combined to the worklist.
178 SmallPtrSet
<SDNode
*, 32> CombinedNodes
;
180 /// Map from candidate StoreNode to the pair of RootNode and count.
181 /// The count is used to track how many times we have seen the StoreNode
182 /// with the same RootNode bail out in dependence check. If we have seen
183 /// the bail out for the same pair many times over a limit, we won't
184 /// consider the StoreNode with the same RootNode as store merging
186 DenseMap
<SDNode
*, std::pair
<SDNode
*, unsigned>> StoreRootCountMap
;
188 // AA - Used for DAG load/store alias analysis.
191 /// When an instruction is simplified, add all users of the instruction to
192 /// the work lists because they might get more simplified now.
193 void AddUsersToWorklist(SDNode
*N
) {
194 for (SDNode
*Node
: N
->uses())
198 /// Convenient shorthand to add a node and all of its user to the worklist.
199 void AddToWorklistWithUsers(SDNode
*N
) {
200 AddUsersToWorklist(N
);
204 // Prune potentially dangling nodes. This is called after
205 // any visit to a node, but should also be called during a visit after any
206 // failed combine which may have created a DAG node.
207 void clearAddedDanglingWorklistEntries() {
208 // Check any nodes added to the worklist to see if they are prunable.
209 while (!PruningList
.empty()) {
210 auto *N
= PruningList
.pop_back_val();
212 recursivelyDeleteUnusedNodes(N
);
216 SDNode
*getNextWorklistEntry() {
217 // Before we do any work, remove nodes that are not in use.
218 clearAddedDanglingWorklistEntries();
220 // The Worklist holds the SDNodes in order, but it may contain null
222 while (!N
&& !Worklist
.empty()) {
223 N
= Worklist
.pop_back_val();
227 bool GoodWorklistEntry
= WorklistMap
.erase(N
);
228 (void)GoodWorklistEntry
;
229 assert(GoodWorklistEntry
&&
230 "Found a worklist entry without a corresponding map entry!");
235 /// Call the node-specific routine that folds each particular type of node.
236 SDValue
visit(SDNode
*N
);
239 DAGCombiner(SelectionDAG
&D
, AliasAnalysis
*AA
, CodeGenOpt::Level OL
)
240 : DAG(D
), TLI(D
.getTargetLoweringInfo()),
241 STI(D
.getSubtarget().getSelectionDAGInfo()),
242 Level(BeforeLegalizeTypes
), OptLevel(OL
), AA(AA
) {
243 ForCodeSize
= DAG
.shouldOptForSize();
244 DisableGenericCombines
= STI
&& STI
->disableGenericCombines(OptLevel
);
246 MaximumLegalStoreInBits
= 0;
247 // We use the minimum store size here, since that's all we can guarantee
248 // for the scalable vector types.
249 for (MVT VT
: MVT::all_valuetypes())
250 if (EVT(VT
).isSimple() && VT
!= MVT::Other
&&
251 TLI
.isTypeLegal(EVT(VT
)) &&
252 VT
.getSizeInBits().getKnownMinSize() >= MaximumLegalStoreInBits
)
253 MaximumLegalStoreInBits
= VT
.getSizeInBits().getKnownMinSize();
256 void ConsiderForPruning(SDNode
*N
) {
257 // Mark this for potential pruning.
258 PruningList
.insert(N
);
261 /// Add to the worklist making sure its instance is at the back (next to be
263 void AddToWorklist(SDNode
*N
) {
264 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
265 "Deleted Node added to Worklist");
267 // Skip handle nodes as they can't usefully be combined and confuse the
268 // zero-use deletion strategy.
269 if (N
->getOpcode() == ISD::HANDLENODE
)
272 ConsiderForPruning(N
);
274 if (WorklistMap
.insert(std::make_pair(N
, Worklist
.size())).second
)
275 Worklist
.push_back(N
);
278 /// Remove all instances of N from the worklist.
279 void removeFromWorklist(SDNode
*N
) {
280 CombinedNodes
.erase(N
);
281 PruningList
.remove(N
);
282 StoreRootCountMap
.erase(N
);
284 auto It
= WorklistMap
.find(N
);
285 if (It
== WorklistMap
.end())
286 return; // Not in the worklist.
288 // Null out the entry rather than erasing it to avoid a linear operation.
289 Worklist
[It
->second
] = nullptr;
290 WorklistMap
.erase(It
);
293 void deleteAndRecombine(SDNode
*N
);
294 bool recursivelyDeleteUnusedNodes(SDNode
*N
);
296 /// Replaces all uses of the results of one DAG node with new values.
297 SDValue
CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
300 /// Replaces all uses of the results of one DAG node with new values.
301 SDValue
CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
= true) {
302 return CombineTo(N
, &Res
, 1, AddTo
);
305 /// Replaces all uses of the results of one DAG node with new values.
306 SDValue
CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
,
308 SDValue To
[] = { Res0
, Res1
};
309 return CombineTo(N
, To
, 2, AddTo
);
312 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
);
315 unsigned MaximumLegalStoreInBits
;
317 /// Check the specified integer node value to see if it can be simplified or
318 /// if things it uses can be simplified by bit propagation.
319 /// If so, return true.
320 bool SimplifyDemandedBits(SDValue Op
) {
321 unsigned BitWidth
= Op
.getScalarValueSizeInBits();
322 APInt DemandedBits
= APInt::getAllOnesValue(BitWidth
);
323 return SimplifyDemandedBits(Op
, DemandedBits
);
326 bool SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
) {
327 TargetLowering::TargetLoweringOpt
TLO(DAG
, LegalTypes
, LegalOperations
);
329 if (!TLI
.SimplifyDemandedBits(Op
, DemandedBits
, Known
, TLO
, 0, false))
333 AddToWorklist(Op
.getNode());
335 CommitTargetLoweringOpt(TLO
);
339 /// Check the specified vector node value to see if it can be simplified or
340 /// if things it uses can be simplified as it only uses some of the
341 /// elements. If so, return true.
342 bool SimplifyDemandedVectorElts(SDValue Op
) {
343 // TODO: For now just pretend it cannot be simplified.
344 if (Op
.getValueType().isScalableVector())
347 unsigned NumElts
= Op
.getValueType().getVectorNumElements();
348 APInt DemandedElts
= APInt::getAllOnesValue(NumElts
);
349 return SimplifyDemandedVectorElts(Op
, DemandedElts
);
352 bool SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
,
353 const APInt
&DemandedElts
,
354 bool AssumeSingleUse
= false);
355 bool SimplifyDemandedVectorElts(SDValue Op
, const APInt
&DemandedElts
,
356 bool AssumeSingleUse
= false);
358 bool CombineToPreIndexedLoadStore(SDNode
*N
);
359 bool CombineToPostIndexedLoadStore(SDNode
*N
);
360 SDValue
SplitIndexingFromLoad(LoadSDNode
*LD
);
361 bool SliceUpLoad(SDNode
*N
);
363 // Scalars have size 0 to distinguish from singleton vectors.
364 SDValue
ForwardStoreValueToDirectLoad(LoadSDNode
*LD
);
365 bool getTruncatedStoreValue(StoreSDNode
*ST
, SDValue
&Val
);
366 bool extendLoadedValueToExtension(LoadSDNode
*LD
, SDValue
&Val
);
368 /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
371 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
372 /// \param InVecVT type of the input vector to EVE with bitcasts resolved.
373 /// \param EltNo index of the vector element to load.
374 /// \param OriginalLoad load that EVE came from to be replaced.
375 /// \returns EVE on success SDValue() on failure.
376 SDValue
scalarizeExtractedVectorLoad(SDNode
*EVE
, EVT InVecVT
,
378 LoadSDNode
*OriginalLoad
);
379 void ReplaceLoadWithPromotedLoad(SDNode
*Load
, SDNode
*ExtLoad
);
380 SDValue
PromoteOperand(SDValue Op
, EVT PVT
, bool &Replace
);
381 SDValue
SExtPromoteOperand(SDValue Op
, EVT PVT
);
382 SDValue
ZExtPromoteOperand(SDValue Op
, EVT PVT
);
383 SDValue
PromoteIntBinOp(SDValue Op
);
384 SDValue
PromoteIntShiftOp(SDValue Op
);
385 SDValue
PromoteExtend(SDValue Op
);
386 bool PromoteLoad(SDValue Op
);
388 /// Call the node-specific routine that knows how to fold each
389 /// particular type of node. If that doesn't do anything, try the
390 /// target-specific DAG combines.
391 SDValue
combine(SDNode
*N
);
393 // Visitation implementation - Implement dag node combining for different
394 // node types. The semantics are as follows:
396 // SDValue.getNode() == 0 - No change was made
397 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
398 // otherwise - N should be replaced by the returned Operand.
400 SDValue
visitTokenFactor(SDNode
*N
);
401 SDValue
visitMERGE_VALUES(SDNode
*N
);
402 SDValue
visitADD(SDNode
*N
);
403 SDValue
visitADDLike(SDNode
*N
);
404 SDValue
visitADDLikeCommutative(SDValue N0
, SDValue N1
, SDNode
*LocReference
);
405 SDValue
visitSUB(SDNode
*N
);
406 SDValue
visitADDSAT(SDNode
*N
);
407 SDValue
visitSUBSAT(SDNode
*N
);
408 SDValue
visitADDC(SDNode
*N
);
409 SDValue
visitADDO(SDNode
*N
);
410 SDValue
visitUADDOLike(SDValue N0
, SDValue N1
, SDNode
*N
);
411 SDValue
visitSUBC(SDNode
*N
);
412 SDValue
visitSUBO(SDNode
*N
);
413 SDValue
visitADDE(SDNode
*N
);
414 SDValue
visitADDCARRY(SDNode
*N
);
415 SDValue
visitSADDO_CARRY(SDNode
*N
);
416 SDValue
visitADDCARRYLike(SDValue N0
, SDValue N1
, SDValue CarryIn
, SDNode
*N
);
417 SDValue
visitSUBE(SDNode
*N
);
418 SDValue
visitSUBCARRY(SDNode
*N
);
419 SDValue
visitSSUBO_CARRY(SDNode
*N
);
420 SDValue
visitMUL(SDNode
*N
);
421 SDValue
visitMULFIX(SDNode
*N
);
422 SDValue
useDivRem(SDNode
*N
);
423 SDValue
visitSDIV(SDNode
*N
);
424 SDValue
visitSDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
);
425 SDValue
visitUDIV(SDNode
*N
);
426 SDValue
visitUDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
);
427 SDValue
visitREM(SDNode
*N
);
428 SDValue
visitMULHU(SDNode
*N
);
429 SDValue
visitMULHS(SDNode
*N
);
430 SDValue
visitSMUL_LOHI(SDNode
*N
);
431 SDValue
visitUMUL_LOHI(SDNode
*N
);
432 SDValue
visitMULO(SDNode
*N
);
433 SDValue
visitIMINMAX(SDNode
*N
);
434 SDValue
visitAND(SDNode
*N
);
435 SDValue
visitANDLike(SDValue N0
, SDValue N1
, SDNode
*N
);
436 SDValue
visitOR(SDNode
*N
);
437 SDValue
visitORLike(SDValue N0
, SDValue N1
, SDNode
*N
);
438 SDValue
visitXOR(SDNode
*N
);
439 SDValue
SimplifyVBinOp(SDNode
*N
);
440 SDValue
visitSHL(SDNode
*N
);
441 SDValue
visitSRA(SDNode
*N
);
442 SDValue
visitSRL(SDNode
*N
);
443 SDValue
visitFunnelShift(SDNode
*N
);
444 SDValue
visitRotate(SDNode
*N
);
445 SDValue
visitABS(SDNode
*N
);
446 SDValue
visitBSWAP(SDNode
*N
);
447 SDValue
visitBITREVERSE(SDNode
*N
);
448 SDValue
visitCTLZ(SDNode
*N
);
449 SDValue
visitCTLZ_ZERO_UNDEF(SDNode
*N
);
450 SDValue
visitCTTZ(SDNode
*N
);
451 SDValue
visitCTTZ_ZERO_UNDEF(SDNode
*N
);
452 SDValue
visitCTPOP(SDNode
*N
);
453 SDValue
visitSELECT(SDNode
*N
);
454 SDValue
visitVSELECT(SDNode
*N
);
455 SDValue
visitSELECT_CC(SDNode
*N
);
456 SDValue
visitSETCC(SDNode
*N
);
457 SDValue
visitSETCCCARRY(SDNode
*N
);
458 SDValue
visitSIGN_EXTEND(SDNode
*N
);
459 SDValue
visitZERO_EXTEND(SDNode
*N
);
460 SDValue
visitANY_EXTEND(SDNode
*N
);
461 SDValue
visitAssertExt(SDNode
*N
);
462 SDValue
visitAssertAlign(SDNode
*N
);
463 SDValue
visitSIGN_EXTEND_INREG(SDNode
*N
);
464 SDValue
visitEXTEND_VECTOR_INREG(SDNode
*N
);
465 SDValue
visitTRUNCATE(SDNode
*N
);
466 SDValue
visitBITCAST(SDNode
*N
);
467 SDValue
visitFREEZE(SDNode
*N
);
468 SDValue
visitBUILD_PAIR(SDNode
*N
);
469 SDValue
visitFADD(SDNode
*N
);
470 SDValue
visitSTRICT_FADD(SDNode
*N
);
471 SDValue
visitFSUB(SDNode
*N
);
472 SDValue
visitFMUL(SDNode
*N
);
473 SDValue
visitFMA(SDNode
*N
);
474 SDValue
visitFDIV(SDNode
*N
);
475 SDValue
visitFREM(SDNode
*N
);
476 SDValue
visitFSQRT(SDNode
*N
);
477 SDValue
visitFCOPYSIGN(SDNode
*N
);
478 SDValue
visitFPOW(SDNode
*N
);
479 SDValue
visitSINT_TO_FP(SDNode
*N
);
480 SDValue
visitUINT_TO_FP(SDNode
*N
);
481 SDValue
visitFP_TO_SINT(SDNode
*N
);
482 SDValue
visitFP_TO_UINT(SDNode
*N
);
483 SDValue
visitFP_ROUND(SDNode
*N
);
484 SDValue
visitFP_EXTEND(SDNode
*N
);
485 SDValue
visitFNEG(SDNode
*N
);
486 SDValue
visitFABS(SDNode
*N
);
487 SDValue
visitFCEIL(SDNode
*N
);
488 SDValue
visitFTRUNC(SDNode
*N
);
489 SDValue
visitFFLOOR(SDNode
*N
);
490 SDValue
visitFMINNUM(SDNode
*N
);
491 SDValue
visitFMAXNUM(SDNode
*N
);
492 SDValue
visitFMINIMUM(SDNode
*N
);
493 SDValue
visitFMAXIMUM(SDNode
*N
);
494 SDValue
visitBRCOND(SDNode
*N
);
495 SDValue
visitBR_CC(SDNode
*N
);
496 SDValue
visitLOAD(SDNode
*N
);
498 SDValue
replaceStoreChain(StoreSDNode
*ST
, SDValue BetterChain
);
499 SDValue
replaceStoreOfFPConstant(StoreSDNode
*ST
);
501 SDValue
visitSTORE(SDNode
*N
);
502 SDValue
visitLIFETIME_END(SDNode
*N
);
503 SDValue
visitINSERT_VECTOR_ELT(SDNode
*N
);
504 SDValue
visitEXTRACT_VECTOR_ELT(SDNode
*N
);
505 SDValue
visitBUILD_VECTOR(SDNode
*N
);
506 SDValue
visitCONCAT_VECTORS(SDNode
*N
);
507 SDValue
visitEXTRACT_SUBVECTOR(SDNode
*N
);
508 SDValue
visitVECTOR_SHUFFLE(SDNode
*N
);
509 SDValue
visitSCALAR_TO_VECTOR(SDNode
*N
);
510 SDValue
visitINSERT_SUBVECTOR(SDNode
*N
);
511 SDValue
visitMLOAD(SDNode
*N
);
512 SDValue
visitMSTORE(SDNode
*N
);
513 SDValue
visitMGATHER(SDNode
*N
);
514 SDValue
visitMSCATTER(SDNode
*N
);
515 SDValue
visitFP_TO_FP16(SDNode
*N
);
516 SDValue
visitFP16_TO_FP(SDNode
*N
);
517 SDValue
visitVECREDUCE(SDNode
*N
);
519 SDValue
visitFADDForFMACombine(SDNode
*N
);
520 SDValue
visitFSUBForFMACombine(SDNode
*N
);
521 SDValue
visitFMULForFMADistributiveCombine(SDNode
*N
);
523 SDValue
XformToShuffleWithZero(SDNode
*N
);
524 bool reassociationCanBreakAddressingModePattern(unsigned Opc
,
525 const SDLoc
&DL
, SDValue N0
,
527 SDValue
reassociateOpsCommutative(unsigned Opc
, const SDLoc
&DL
, SDValue N0
,
529 SDValue
reassociateOps(unsigned Opc
, const SDLoc
&DL
, SDValue N0
,
530 SDValue N1
, SDNodeFlags Flags
);
532 SDValue
visitShiftByConstant(SDNode
*N
);
534 SDValue
foldSelectOfConstants(SDNode
*N
);
535 SDValue
foldVSelectOfConstants(SDNode
*N
);
536 SDValue
foldBinOpIntoSelect(SDNode
*BO
);
537 bool SimplifySelectOps(SDNode
*SELECT
, SDValue LHS
, SDValue RHS
);
538 SDValue
hoistLogicOpWithSameOpcodeHands(SDNode
*N
);
539 SDValue
SimplifySelect(const SDLoc
&DL
, SDValue N0
, SDValue N1
, SDValue N2
);
540 SDValue
SimplifySelectCC(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
541 SDValue N2
, SDValue N3
, ISD::CondCode CC
,
542 bool NotExtCompare
= false);
543 SDValue
convertSelectOfFPConstantsToLoadOffset(
544 const SDLoc
&DL
, SDValue N0
, SDValue N1
, SDValue N2
, SDValue N3
,
546 SDValue
foldSignChangeInBitcast(SDNode
*N
);
547 SDValue
foldSelectCCToShiftAnd(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
548 SDValue N2
, SDValue N3
, ISD::CondCode CC
);
549 SDValue
foldSelectOfBinops(SDNode
*N
);
550 SDValue
foldSextSetcc(SDNode
*N
);
551 SDValue
foldLogicOfSetCCs(bool IsAnd
, SDValue N0
, SDValue N1
,
553 SDValue
foldSubToUSubSat(EVT DstVT
, SDNode
*N
);
554 SDValue
unfoldMaskedMerge(SDNode
*N
);
555 SDValue
unfoldExtremeBitClearingToShifts(SDNode
*N
);
556 SDValue
SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
, ISD::CondCode Cond
,
557 const SDLoc
&DL
, bool foldBooleans
);
558 SDValue
rebuildSetCC(SDValue N
);
560 bool isSetCCEquivalent(SDValue N
, SDValue
&LHS
, SDValue
&RHS
,
561 SDValue
&CC
, bool MatchStrict
= false) const;
562 bool isOneUseSetCC(SDValue N
) const;
564 SDValue
SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
566 SDValue
CombineConsecutiveLoads(SDNode
*N
, EVT VT
);
567 SDValue
CombineExtLoad(SDNode
*N
);
568 SDValue
CombineZExtLogicopShiftLoad(SDNode
*N
);
569 SDValue
combineRepeatedFPDivisors(SDNode
*N
);
570 SDValue
combineInsertEltToShuffle(SDNode
*N
, unsigned InsIndex
);
571 SDValue
ConstantFoldBITCASTofBUILD_VECTOR(SDNode
*, EVT
);
572 SDValue
BuildSDIV(SDNode
*N
);
573 SDValue
BuildSDIVPow2(SDNode
*N
);
574 SDValue
BuildUDIV(SDNode
*N
);
575 SDValue
BuildLogBase2(SDValue V
, const SDLoc
&DL
);
576 SDValue
BuildDivEstimate(SDValue N
, SDValue Op
, SDNodeFlags Flags
);
577 SDValue
buildRsqrtEstimate(SDValue Op
, SDNodeFlags Flags
);
578 SDValue
buildSqrtEstimate(SDValue Op
, SDNodeFlags Flags
);
579 SDValue
buildSqrtEstimateImpl(SDValue Op
, SDNodeFlags Flags
, bool Recip
);
580 SDValue
buildSqrtNROneConst(SDValue Arg
, SDValue Est
, unsigned Iterations
,
581 SDNodeFlags Flags
, bool Reciprocal
);
582 SDValue
buildSqrtNRTwoConst(SDValue Arg
, SDValue Est
, unsigned Iterations
,
583 SDNodeFlags Flags
, bool Reciprocal
);
584 SDValue
MatchBSwapHWordLow(SDNode
*N
, SDValue N0
, SDValue N1
,
585 bool DemandHighBits
= true);
586 SDValue
MatchBSwapHWord(SDNode
*N
, SDValue N0
, SDValue N1
);
587 SDValue
MatchRotatePosNeg(SDValue Shifted
, SDValue Pos
, SDValue Neg
,
588 SDValue InnerPos
, SDValue InnerNeg
,
589 unsigned PosOpcode
, unsigned NegOpcode
,
591 SDValue
MatchFunnelPosNeg(SDValue N0
, SDValue N1
, SDValue Pos
, SDValue Neg
,
592 SDValue InnerPos
, SDValue InnerNeg
,
593 unsigned PosOpcode
, unsigned NegOpcode
,
595 SDValue
MatchRotate(SDValue LHS
, SDValue RHS
, const SDLoc
&DL
);
596 SDValue
MatchLoadCombine(SDNode
*N
);
597 SDValue
mergeTruncStores(StoreSDNode
*N
);
598 SDValue
ReduceLoadWidth(SDNode
*N
);
599 SDValue
ReduceLoadOpStoreWidth(SDNode
*N
);
600 SDValue
splitMergedValStore(StoreSDNode
*ST
);
601 SDValue
TransformFPLoadStorePair(SDNode
*N
);
602 SDValue
convertBuildVecZextToZext(SDNode
*N
);
603 SDValue
reduceBuildVecExtToExtBuildVec(SDNode
*N
);
604 SDValue
reduceBuildVecTruncToBitCast(SDNode
*N
);
605 SDValue
reduceBuildVecToShuffle(SDNode
*N
);
606 SDValue
createBuildVecShuffle(const SDLoc
&DL
, SDNode
*N
,
607 ArrayRef
<int> VectorMask
, SDValue VecIn1
,
608 SDValue VecIn2
, unsigned LeftIdx
,
610 SDValue
matchVSelectOpSizesWithSetCC(SDNode
*Cast
);
612 /// Walk up chain skipping non-aliasing memory nodes,
613 /// looking for aliasing nodes and adding them to the Aliases vector.
614 void GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
615 SmallVectorImpl
<SDValue
> &Aliases
);
617 /// Return true if there is any possibility that the two addresses overlap.
618 bool isAlias(SDNode
*Op0
, SDNode
*Op1
) const;
620 /// Walk up chain skipping non-aliasing memory nodes, looking for a better
621 /// chain (aliasing node.)
622 SDValue
FindBetterChain(SDNode
*N
, SDValue Chain
);
624 /// Try to replace a store and any possibly adjacent stores on
625 /// consecutive chains with better chains. Return true only if St is
628 /// Notice that other chains may still be replaced even if the function
630 bool findBetterNeighborChains(StoreSDNode
*St
);
632 // Helper for findBetterNeighborChains. Walk up store chain add additional
633 // chained stores that do not overlap and can be parallelized.
634 bool parallelizeChainedStores(StoreSDNode
*St
);
636 /// Holds a pointer to an LSBaseSDNode as well as information on where it
637 /// is located in a sequence of memory operations connected by a chain.
639 // Ptr to the mem node.
640 LSBaseSDNode
*MemNode
;
642 // Offset from the base ptr.
643 int64_t OffsetFromBase
;
645 MemOpLink(LSBaseSDNode
*N
, int64_t Offset
)
646 : MemNode(N
), OffsetFromBase(Offset
) {}
649 // Classify the origin of a stored value.
650 enum class StoreSource
{ Unknown
, Constant
, Extract
, Load
};
651 StoreSource
getStoreSource(SDValue StoreVal
) {
652 switch (StoreVal
.getOpcode()) {
654 case ISD::ConstantFP
:
655 return StoreSource::Constant
;
656 case ISD::EXTRACT_VECTOR_ELT
:
657 case ISD::EXTRACT_SUBVECTOR
:
658 return StoreSource::Extract
;
660 return StoreSource::Load
;
662 return StoreSource::Unknown
;
666 /// This is a helper function for visitMUL to check the profitability
667 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
668 /// MulNode is the original multiply, AddNode is (add x, c1),
669 /// and ConstNode is c2.
670 bool isMulAddWithConstProfitable(SDNode
*MulNode
,
674 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns
675 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns
676 /// the type of the loaded value to be extended.
677 bool isAndLoadExtLoad(ConstantSDNode
*AndC
, LoadSDNode
*LoadN
,
678 EVT LoadResultTy
, EVT
&ExtVT
);
680 /// Helper function to calculate whether the given Load/Store can have its
681 /// width reduced to ExtVT.
682 bool isLegalNarrowLdSt(LSBaseSDNode
*LDSTN
, ISD::LoadExtType ExtType
,
683 EVT
&MemVT
, unsigned ShAmt
= 0);
685 /// Used by BackwardsPropagateMask to find suitable loads.
686 bool SearchForAndLoads(SDNode
*N
, SmallVectorImpl
<LoadSDNode
*> &Loads
,
687 SmallPtrSetImpl
<SDNode
*> &NodesWithConsts
,
688 ConstantSDNode
*Mask
, SDNode
*&NodeToMask
);
689 /// Attempt to propagate a given AND node back to load leaves so that they
690 /// can be combined into narrow loads.
691 bool BackwardsPropagateMask(SDNode
*N
);
693 /// Helper function for mergeConsecutiveStores which merges the component
695 SDValue
getMergeStoreChains(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
698 /// This is a helper function for mergeConsecutiveStores. When the source
699 /// elements of the consecutive stores are all constants or all extracted
700 /// vector elements, try to merge them into one larger store introducing
701 /// bitcasts if necessary. \return True if a merged store was created.
702 bool mergeStoresOfConstantsOrVecElts(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
703 EVT MemVT
, unsigned NumStores
,
704 bool IsConstantSrc
, bool UseVector
,
707 /// This is a helper function for mergeConsecutiveStores. Stores that
708 /// potentially may be merged with St are placed in StoreNodes. RootNode is
709 /// a chain predecessor to all store candidates.
710 void getStoreMergeCandidates(StoreSDNode
*St
,
711 SmallVectorImpl
<MemOpLink
> &StoreNodes
,
714 /// Helper function for mergeConsecutiveStores. Checks if candidate stores
715 /// have indirect dependency through their operands. RootNode is the
716 /// predecessor to all stores calculated by getStoreMergeCandidates and is
717 /// used to prune the dependency check. \return True if safe to merge.
718 bool checkMergeStoreCandidatesForDependencies(
719 SmallVectorImpl
<MemOpLink
> &StoreNodes
, unsigned NumStores
,
722 /// This is a helper function for mergeConsecutiveStores. Given a list of
723 /// store candidates, find the first N that are consecutive in memory.
724 /// Returns 0 if there are not at least 2 consecutive stores to try merging.
725 unsigned getConsecutiveStores(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
726 int64_t ElementSizeBytes
) const;
728 /// This is a helper function for mergeConsecutiveStores. It is used for
729 /// store chains that are composed entirely of constant values.
730 bool tryStoreMergeOfConstants(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
731 unsigned NumConsecutiveStores
,
732 EVT MemVT
, SDNode
*Root
, bool AllowVectors
);
734 /// This is a helper function for mergeConsecutiveStores. It is used for
735 /// store chains that are composed entirely of extracted vector elements.
736 /// When extracting multiple vector elements, try to store them in one
737 /// vector store rather than a sequence of scalar stores.
738 bool tryStoreMergeOfExtracts(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
739 unsigned NumConsecutiveStores
, EVT MemVT
,
742 /// This is a helper function for mergeConsecutiveStores. It is used for
743 /// store chains that are composed entirely of loaded values.
744 bool tryStoreMergeOfLoads(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
745 unsigned NumConsecutiveStores
, EVT MemVT
,
746 SDNode
*Root
, bool AllowVectors
,
747 bool IsNonTemporalStore
, bool IsNonTemporalLoad
);
749 /// Merge consecutive store operations into a wide store.
750 /// This optimization uses wide integers or vectors when possible.
751 /// \return true if stores were merged.
752 bool mergeConsecutiveStores(StoreSDNode
*St
);
754 /// Try to transform a truncation where C is a constant:
755 /// (trunc (and X, C)) -> (and (trunc X), (trunc C))
757 /// \p N needs to be a truncation and its first operand an AND. Other
758 /// requirements are checked by the function (e.g. that trunc is
759 /// single-use) and if missed an empty SDValue is returned.
760 SDValue
distributeTruncateThroughAnd(SDNode
*N
);
762 /// Helper function to determine whether the target supports operation
763 /// given by \p Opcode for type \p VT, that is, whether the operation
764 /// is legal or custom before legalizing operations, and whether is
765 /// legal (but not custom) after legalization.
766 bool hasOperation(unsigned Opcode
, EVT VT
) {
767 return TLI
.isOperationLegalOrCustom(Opcode
, VT
, LegalOperations
);
771 /// Runs the dag combiner on all nodes in the work list
772 void Run(CombineLevel AtLevel
);
774 SelectionDAG
&getDAG() const { return DAG
; }
776 /// Returns a type large enough to hold any valid shift amount - before type
777 /// legalization these can be huge.
778 EVT
getShiftAmountTy(EVT LHSTy
) {
779 assert(LHSTy
.isInteger() && "Shift amount is not an integer type!");
780 return TLI
.getShiftAmountTy(LHSTy
, DAG
.getDataLayout(), LegalTypes
);
783 /// This method returns true if we are running before type legalization or
784 /// if the specified VT is legal.
785 bool isTypeLegal(const EVT
&VT
) {
786 if (!LegalTypes
) return true;
787 return TLI
.isTypeLegal(VT
);
790 /// Convenience wrapper around TargetLowering::getSetCCResultType
791 EVT
getSetCCResultType(EVT VT
) const {
792 return TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
795 void ExtendSetCCUses(const SmallVectorImpl
<SDNode
*> &SetCCs
,
796 SDValue OrigLoad
, SDValue ExtLoad
,
797 ISD::NodeType ExtType
);
800 /// This class is a DAGUpdateListener that removes any deleted
801 /// nodes from the worklist.
802 class WorklistRemover
: public SelectionDAG::DAGUpdateListener
{
806 explicit WorklistRemover(DAGCombiner
&dc
)
807 : SelectionDAG::DAGUpdateListener(dc
.getDAG()), DC(dc
) {}
809 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
810 DC
.removeFromWorklist(N
);
814 class WorklistInserter
: public SelectionDAG::DAGUpdateListener
{
818 explicit WorklistInserter(DAGCombiner
&dc
)
819 : SelectionDAG::DAGUpdateListener(dc
.getDAG()), DC(dc
) {}
821 // FIXME: Ideally we could add N to the worklist, but this causes exponential
822 // compile time costs in large DAGs, e.g. Halide.
823 void NodeInserted(SDNode
*N
) override
{ DC
.ConsiderForPruning(N
); }
826 } // end anonymous namespace
828 //===----------------------------------------------------------------------===//
829 // TargetLowering::DAGCombinerInfo implementation
830 //===----------------------------------------------------------------------===//
832 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode
*N
) {
833 ((DAGCombiner
*)DC
)->AddToWorklist(N
);
836 SDValue
TargetLowering::DAGCombinerInfo::
837 CombineTo(SDNode
*N
, ArrayRef
<SDValue
> To
, bool AddTo
) {
838 return ((DAGCombiner
*)DC
)->CombineTo(N
, &To
[0], To
.size(), AddTo
);
841 SDValue
TargetLowering::DAGCombinerInfo::
842 CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
) {
843 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res
, AddTo
);
846 SDValue
TargetLowering::DAGCombinerInfo::
847 CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
, bool AddTo
) {
848 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res0
, Res1
, AddTo
);
851 bool TargetLowering::DAGCombinerInfo::
852 recursivelyDeleteUnusedNodes(SDNode
*N
) {
853 return ((DAGCombiner
*)DC
)->recursivelyDeleteUnusedNodes(N
);
856 void TargetLowering::DAGCombinerInfo::
857 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
) {
858 return ((DAGCombiner
*)DC
)->CommitTargetLoweringOpt(TLO
);
861 //===----------------------------------------------------------------------===//
863 //===----------------------------------------------------------------------===//
865 void DAGCombiner::deleteAndRecombine(SDNode
*N
) {
866 removeFromWorklist(N
);
868 // If the operands of this node are only used by the node, they will now be
869 // dead. Make sure to re-visit them and recursively delete dead nodes.
870 for (const SDValue
&Op
: N
->ops())
871 // For an operand generating multiple values, one of the values may
872 // become dead allowing further simplification (e.g. split index
873 // arithmetic from an indexed load).
874 if (Op
->hasOneUse() || Op
->getNumValues() > 1)
875 AddToWorklist(Op
.getNode());
880 // APInts must be the same size for most operations, this helper
881 // function zero extends the shorter of the pair so that they match.
882 // We provide an Offset so that we can create bitwidths that won't overflow.
883 static void zeroExtendToMatch(APInt
&LHS
, APInt
&RHS
, unsigned Offset
= 0) {
884 unsigned Bits
= Offset
+ std::max(LHS
.getBitWidth(), RHS
.getBitWidth());
885 LHS
= LHS
.zextOrSelf(Bits
);
886 RHS
= RHS
.zextOrSelf(Bits
);
889 // Return true if this node is a setcc, or is a select_cc
890 // that selects between the target values used for true and false, making it
891 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
892 // the appropriate nodes based on the type of node we are checking. This
893 // simplifies life a bit for the callers.
894 bool DAGCombiner::isSetCCEquivalent(SDValue N
, SDValue
&LHS
, SDValue
&RHS
,
895 SDValue
&CC
, bool MatchStrict
) const {
896 if (N
.getOpcode() == ISD::SETCC
) {
897 LHS
= N
.getOperand(0);
898 RHS
= N
.getOperand(1);
899 CC
= N
.getOperand(2);
904 (N
.getOpcode() == ISD::STRICT_FSETCC
||
905 N
.getOpcode() == ISD::STRICT_FSETCCS
)) {
906 LHS
= N
.getOperand(1);
907 RHS
= N
.getOperand(2);
908 CC
= N
.getOperand(3);
912 if (N
.getOpcode() != ISD::SELECT_CC
||
913 !TLI
.isConstTrueVal(N
.getOperand(2).getNode()) ||
914 !TLI
.isConstFalseVal(N
.getOperand(3).getNode()))
917 if (TLI
.getBooleanContents(N
.getValueType()) ==
918 TargetLowering::UndefinedBooleanContent
)
921 LHS
= N
.getOperand(0);
922 RHS
= N
.getOperand(1);
923 CC
= N
.getOperand(4);
927 /// Return true if this is a SetCC-equivalent operation with only one use.
928 /// If this is true, it allows the users to invert the operation for free when
929 /// it is profitable to do so.
930 bool DAGCombiner::isOneUseSetCC(SDValue N
) const {
932 if (isSetCCEquivalent(N
, N0
, N1
, N2
) && N
.getNode()->hasOneUse())
937 static bool isConstantSplatVectorMaskForType(SDNode
*N
, EVT ScalarTy
) {
938 if (!ScalarTy
.isSimple())
941 uint64_t MaskForTy
= 0ULL;
942 switch (ScalarTy
.getSimpleVT().SimpleTy
) {
947 MaskForTy
= 0xFFFFULL
;
950 MaskForTy
= 0xFFFFFFFFULL
;
958 if (ISD::isConstantSplatVector(N
, Val
))
959 return Val
.getLimitedValue() == MaskForTy
;
964 // Determines if it is a constant integer or a splat/build vector of constant
965 // integers (and undefs).
966 // Do not permit build vector implicit truncation.
967 static bool isConstantOrConstantVector(SDValue N
, bool NoOpaques
= false) {
968 if (ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(N
))
969 return !(Const
->isOpaque() && NoOpaques
);
970 if (N
.getOpcode() != ISD::BUILD_VECTOR
&& N
.getOpcode() != ISD::SPLAT_VECTOR
)
972 unsigned BitWidth
= N
.getScalarValueSizeInBits();
973 for (const SDValue
&Op
: N
->op_values()) {
976 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(Op
);
977 if (!Const
|| Const
->getAPIntValue().getBitWidth() != BitWidth
||
978 (Const
->isOpaque() && NoOpaques
))
984 // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
986 static bool isAnyConstantBuildVector(SDValue V
, bool NoOpaques
= false) {
987 if (V
.getOpcode() != ISD::BUILD_VECTOR
)
989 return isConstantOrConstantVector(V
, NoOpaques
) ||
990 ISD::isBuildVectorOfConstantFPSDNodes(V
.getNode());
993 // Determine if this an indexed load with an opaque target constant index.
994 static bool canSplitIdx(LoadSDNode
*LD
) {
995 return MaySplitLoadIndex
&&
996 (LD
->getOperand(2).getOpcode() != ISD::TargetConstant
||
997 !cast
<ConstantSDNode
>(LD
->getOperand(2))->isOpaque());
1000 bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc
,
1004 // Currently this only tries to ensure we don't undo the GEP splits done by
1005 // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this,
1006 // we check if the following transformation would be problematic:
1007 // (load/store (add, (add, x, offset1), offset2)) ->
1008 // (load/store (add, x, offset1+offset2)).
1010 if (Opc
!= ISD::ADD
|| N0
.getOpcode() != ISD::ADD
)
1016 auto *C1
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
1017 auto *C2
= dyn_cast
<ConstantSDNode
>(N1
);
1021 const APInt
&C1APIntVal
= C1
->getAPIntValue();
1022 const APInt
&C2APIntVal
= C2
->getAPIntValue();
1023 if (C1APIntVal
.getBitWidth() > 64 || C2APIntVal
.getBitWidth() > 64)
1026 const APInt CombinedValueIntVal
= C1APIntVal
+ C2APIntVal
;
1027 if (CombinedValueIntVal
.getBitWidth() > 64)
1029 const int64_t CombinedValue
= CombinedValueIntVal
.getSExtValue();
1031 for (SDNode
*Node
: N0
->uses()) {
1032 auto LoadStore
= dyn_cast
<MemSDNode
>(Node
);
1034 // Is x[offset2] already not a legal addressing mode? If so then
1035 // reassociating the constants breaks nothing (we test offset2 because
1036 // that's the one we hope to fold into the load or store).
1037 TargetLoweringBase::AddrMode AM
;
1038 AM
.HasBaseReg
= true;
1039 AM
.BaseOffs
= C2APIntVal
.getSExtValue();
1040 EVT VT
= LoadStore
->getMemoryVT();
1041 unsigned AS
= LoadStore
->getAddressSpace();
1042 Type
*AccessTy
= VT
.getTypeForEVT(*DAG
.getContext());
1043 if (!TLI
.isLegalAddressingMode(DAG
.getDataLayout(), AM
, AccessTy
, AS
))
1046 // Would x[offset1+offset2] still be a legal addressing mode?
1047 AM
.BaseOffs
= CombinedValue
;
1048 if (!TLI
.isLegalAddressingMode(DAG
.getDataLayout(), AM
, AccessTy
, AS
))
1056 // Helper for DAGCombiner::reassociateOps. Try to reassociate an expression
1057 // such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc.
1058 SDValue
DAGCombiner::reassociateOpsCommutative(unsigned Opc
, const SDLoc
&DL
,
1059 SDValue N0
, SDValue N1
) {
1060 EVT VT
= N0
.getValueType();
1062 if (N0
.getOpcode() != Opc
)
1065 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
.getOperand(1))) {
1066 if (DAG
.isConstantIntBuildVectorOrConstantInt(N1
)) {
1067 // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2))
1068 if (SDValue OpNode
=
1069 DAG
.FoldConstantArithmetic(Opc
, DL
, VT
, {N0
.getOperand(1), N1
}))
1070 return DAG
.getNode(Opc
, DL
, VT
, N0
.getOperand(0), OpNode
);
1073 if (N0
.hasOneUse()) {
1074 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1)
1075 // iff (op x, c1) has one use
1076 SDValue OpNode
= DAG
.getNode(Opc
, SDLoc(N0
), VT
, N0
.getOperand(0), N1
);
1077 if (!OpNode
.getNode())
1079 return DAG
.getNode(Opc
, DL
, VT
, OpNode
, N0
.getOperand(1));
1085 // Try to reassociate commutative binops.
1086 SDValue
DAGCombiner::reassociateOps(unsigned Opc
, const SDLoc
&DL
, SDValue N0
,
1087 SDValue N1
, SDNodeFlags Flags
) {
1088 assert(TLI
.isCommutativeBinOp(Opc
) && "Operation not commutative.");
1090 // Floating-point reassociation is not allowed without loose FP math.
1091 if (N0
.getValueType().isFloatingPoint() ||
1092 N1
.getValueType().isFloatingPoint())
1093 if (!Flags
.hasAllowReassociation() || !Flags
.hasNoSignedZeros())
1096 if (SDValue Combined
= reassociateOpsCommutative(Opc
, DL
, N0
, N1
))
1098 if (SDValue Combined
= reassociateOpsCommutative(Opc
, DL
, N1
, N0
))
1103 SDValue
DAGCombiner::CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
1105 assert(N
->getNumValues() == NumTo
&& "Broken CombineTo call!");
1107 LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N
->dump(&DAG
); dbgs() << "\nWith: ";
1108 To
[0].getNode()->dump(&DAG
);
1109 dbgs() << " and " << NumTo
- 1 << " other values\n");
1110 for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
)
1111 assert((!To
[i
].getNode() ||
1112 N
->getValueType(i
) == To
[i
].getValueType()) &&
1113 "Cannot combine value to value of different type!");
1115 WorklistRemover
DeadNodes(*this);
1116 DAG
.ReplaceAllUsesWith(N
, To
);
1118 // Push the new nodes and any users onto the worklist
1119 for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
) {
1120 if (To
[i
].getNode()) {
1121 AddToWorklist(To
[i
].getNode());
1122 AddUsersToWorklist(To
[i
].getNode());
1127 // Finally, if the node is now dead, remove it from the graph. The node
1128 // may not be dead if the replacement process recursively simplified to
1129 // something else needing this node.
1131 deleteAndRecombine(N
);
1132 return SDValue(N
, 0);
1136 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
) {
1137 // Replace the old value with the new one.
1139 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO
.Old
.getNode()->dump(&DAG
);
1140 dbgs() << "\nWith: "; TLO
.New
.getNode()->dump(&DAG
);
1143 // Replace all uses. If any nodes become isomorphic to other nodes and
1144 // are deleted, make sure to remove them from our worklist.
1145 WorklistRemover
DeadNodes(*this);
1146 DAG
.ReplaceAllUsesOfValueWith(TLO
.Old
, TLO
.New
);
1148 // Push the new node and any (possibly new) users onto the worklist.
1149 AddToWorklistWithUsers(TLO
.New
.getNode());
1151 // Finally, if the node is now dead, remove it from the graph. The node
1152 // may not be dead if the replacement process recursively simplified to
1153 // something else needing this node.
1154 if (TLO
.Old
.getNode()->use_empty())
1155 deleteAndRecombine(TLO
.Old
.getNode());
1158 /// Check the specified integer node value to see if it can be simplified or if
1159 /// things it uses can be simplified by bit propagation. If so, return true.
1160 bool DAGCombiner::SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
,
1161 const APInt
&DemandedElts
,
1162 bool AssumeSingleUse
) {
1163 TargetLowering::TargetLoweringOpt
TLO(DAG
, LegalTypes
, LegalOperations
);
1165 if (!TLI
.SimplifyDemandedBits(Op
, DemandedBits
, DemandedElts
, Known
, TLO
, 0,
1169 // Revisit the node.
1170 AddToWorklist(Op
.getNode());
1172 CommitTargetLoweringOpt(TLO
);
1176 /// Check the specified vector node value to see if it can be simplified or
1177 /// if things it uses can be simplified as it only uses some of the elements.
1178 /// If so, return true.
1179 bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op
,
1180 const APInt
&DemandedElts
,
1181 bool AssumeSingleUse
) {
1182 TargetLowering::TargetLoweringOpt
TLO(DAG
, LegalTypes
, LegalOperations
);
1183 APInt KnownUndef
, KnownZero
;
1184 if (!TLI
.SimplifyDemandedVectorElts(Op
, DemandedElts
, KnownUndef
, KnownZero
,
1185 TLO
, 0, AssumeSingleUse
))
1188 // Revisit the node.
1189 AddToWorklist(Op
.getNode());
1191 CommitTargetLoweringOpt(TLO
);
1195 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode
*Load
, SDNode
*ExtLoad
) {
1197 EVT VT
= Load
->getValueType(0);
1198 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, SDValue(ExtLoad
, 0));
1200 LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load
->dump(&DAG
); dbgs() << "\nWith: ";
1201 Trunc
.getNode()->dump(&DAG
); dbgs() << '\n');
1202 WorklistRemover
DeadNodes(*this);
1203 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 0), Trunc
);
1204 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 1), SDValue(ExtLoad
, 1));
1205 deleteAndRecombine(Load
);
1206 AddToWorklist(Trunc
.getNode());
1209 SDValue
DAGCombiner::PromoteOperand(SDValue Op
, EVT PVT
, bool &Replace
) {
1212 if (ISD::isUNINDEXEDLoad(Op
.getNode())) {
1213 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
1214 EVT MemVT
= LD
->getMemoryVT();
1215 ISD::LoadExtType ExtType
= ISD::isNON_EXTLoad(LD
) ? ISD::EXTLOAD
1216 : LD
->getExtensionType();
1218 return DAG
.getExtLoad(ExtType
, DL
, PVT
,
1219 LD
->getChain(), LD
->getBasePtr(),
1220 MemVT
, LD
->getMemOperand());
1223 unsigned Opc
= Op
.getOpcode();
1226 case ISD::AssertSext
:
1227 if (SDValue Op0
= SExtPromoteOperand(Op
.getOperand(0), PVT
))
1228 return DAG
.getNode(ISD::AssertSext
, DL
, PVT
, Op0
, Op
.getOperand(1));
1230 case ISD::AssertZext
:
1231 if (SDValue Op0
= ZExtPromoteOperand(Op
.getOperand(0), PVT
))
1232 return DAG
.getNode(ISD::AssertZext
, DL
, PVT
, Op0
, Op
.getOperand(1));
1234 case ISD::Constant
: {
1236 Op
.getValueType().isByteSized() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
1237 return DAG
.getNode(ExtOpc
, DL
, PVT
, Op
);
1241 if (!TLI
.isOperationLegal(ISD::ANY_EXTEND
, PVT
))
1243 return DAG
.getNode(ISD::ANY_EXTEND
, DL
, PVT
, Op
);
1246 SDValue
DAGCombiner::SExtPromoteOperand(SDValue Op
, EVT PVT
) {
1247 if (!TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
, PVT
))
1249 EVT OldVT
= Op
.getValueType();
1251 bool Replace
= false;
1252 SDValue NewOp
= PromoteOperand(Op
, PVT
, Replace
);
1253 if (!NewOp
.getNode())
1255 AddToWorklist(NewOp
.getNode());
1258 ReplaceLoadWithPromotedLoad(Op
.getNode(), NewOp
.getNode());
1259 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, NewOp
.getValueType(), NewOp
,
1260 DAG
.getValueType(OldVT
));
1263 SDValue
DAGCombiner::ZExtPromoteOperand(SDValue Op
, EVT PVT
) {
1264 EVT OldVT
= Op
.getValueType();
1266 bool Replace
= false;
1267 SDValue NewOp
= PromoteOperand(Op
, PVT
, Replace
);
1268 if (!NewOp
.getNode())
1270 AddToWorklist(NewOp
.getNode());
1273 ReplaceLoadWithPromotedLoad(Op
.getNode(), NewOp
.getNode());
1274 return DAG
.getZeroExtendInReg(NewOp
, DL
, OldVT
);
1277 /// Promote the specified integer binary operation if the target indicates it is
1278 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1279 /// i32 since i16 instructions are longer.
1280 SDValue
DAGCombiner::PromoteIntBinOp(SDValue Op
) {
1281 if (!LegalOperations
)
1284 EVT VT
= Op
.getValueType();
1285 if (VT
.isVector() || !VT
.isInteger())
1288 // If operation type is 'undesirable', e.g. i16 on x86, consider
1290 unsigned Opc
= Op
.getOpcode();
1291 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1295 // Consult target whether it is a good idea to promote this operation and
1296 // what's the right type to promote it to.
1297 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1298 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1300 LLVM_DEBUG(dbgs() << "\nPromoting "; Op
.getNode()->dump(&DAG
));
1302 bool Replace0
= false;
1303 SDValue N0
= Op
.getOperand(0);
1304 SDValue NN0
= PromoteOperand(N0
, PVT
, Replace0
);
1306 bool Replace1
= false;
1307 SDValue N1
= Op
.getOperand(1);
1308 SDValue NN1
= PromoteOperand(N1
, PVT
, Replace1
);
1312 DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, DAG
.getNode(Opc
, DL
, PVT
, NN0
, NN1
));
1314 // We are always replacing N0/N1's use in N and only need additional
1315 // replacements if there are additional uses.
1316 // Note: We are checking uses of the *nodes* (SDNode) rather than values
1317 // (SDValue) here because the node may reference multiple values
1318 // (for example, the chain value of a load node).
1319 Replace0
&= !N0
->hasOneUse();
1320 Replace1
&= (N0
!= N1
) && !N1
->hasOneUse();
1322 // Combine Op here so it is preserved past replacements.
1323 CombineTo(Op
.getNode(), RV
);
1325 // If operands have a use ordering, make sure we deal with
1326 // predecessor first.
1327 if (Replace0
&& Replace1
&& N0
.getNode()->isPredecessorOf(N1
.getNode())) {
1329 std::swap(NN0
, NN1
);
1333 AddToWorklist(NN0
.getNode());
1334 ReplaceLoadWithPromotedLoad(N0
.getNode(), NN0
.getNode());
1337 AddToWorklist(NN1
.getNode());
1338 ReplaceLoadWithPromotedLoad(N1
.getNode(), NN1
.getNode());
1345 /// Promote the specified integer shift operation if the target indicates it is
1346 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1347 /// i32 since i16 instructions are longer.
1348 SDValue
DAGCombiner::PromoteIntShiftOp(SDValue Op
) {
1349 if (!LegalOperations
)
1352 EVT VT
= Op
.getValueType();
1353 if (VT
.isVector() || !VT
.isInteger())
1356 // If operation type is 'undesirable', e.g. i16 on x86, consider
1358 unsigned Opc
= Op
.getOpcode();
1359 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1363 // Consult target whether it is a good idea to promote this operation and
1364 // what's the right type to promote it to.
1365 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1366 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1368 LLVM_DEBUG(dbgs() << "\nPromoting "; Op
.getNode()->dump(&DAG
));
1370 bool Replace
= false;
1371 SDValue N0
= Op
.getOperand(0);
1372 SDValue N1
= Op
.getOperand(1);
1373 if (Opc
== ISD::SRA
)
1374 N0
= SExtPromoteOperand(N0
, PVT
);
1375 else if (Opc
== ISD::SRL
)
1376 N0
= ZExtPromoteOperand(N0
, PVT
);
1378 N0
= PromoteOperand(N0
, PVT
, Replace
);
1385 DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, DAG
.getNode(Opc
, DL
, PVT
, N0
, N1
));
1388 ReplaceLoadWithPromotedLoad(Op
.getOperand(0).getNode(), N0
.getNode());
1390 // Deal with Op being deleted.
1391 if (Op
&& Op
.getOpcode() != ISD::DELETED_NODE
)
1397 SDValue
DAGCombiner::PromoteExtend(SDValue Op
) {
1398 if (!LegalOperations
)
1401 EVT VT
= Op
.getValueType();
1402 if (VT
.isVector() || !VT
.isInteger())
1405 // If operation type is 'undesirable', e.g. i16 on x86, consider
1407 unsigned Opc
= Op
.getOpcode();
1408 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1412 // Consult target whether it is a good idea to promote this operation and
1413 // what's the right type to promote it to.
1414 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1415 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1416 // fold (aext (aext x)) -> (aext x)
1417 // fold (aext (zext x)) -> (zext x)
1418 // fold (aext (sext x)) -> (sext x)
1419 LLVM_DEBUG(dbgs() << "\nPromoting "; Op
.getNode()->dump(&DAG
));
1420 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), VT
, Op
.getOperand(0));
1425 bool DAGCombiner::PromoteLoad(SDValue Op
) {
1426 if (!LegalOperations
)
1429 if (!ISD::isUNINDEXEDLoad(Op
.getNode()))
1432 EVT VT
= Op
.getValueType();
1433 if (VT
.isVector() || !VT
.isInteger())
1436 // If operation type is 'undesirable', e.g. i16 on x86, consider
1438 unsigned Opc
= Op
.getOpcode();
1439 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1443 // Consult target whether it is a good idea to promote this operation and
1444 // what's the right type to promote it to.
1445 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1446 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1449 SDNode
*N
= Op
.getNode();
1450 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
1451 EVT MemVT
= LD
->getMemoryVT();
1452 ISD::LoadExtType ExtType
= ISD::isNON_EXTLoad(LD
) ? ISD::EXTLOAD
1453 : LD
->getExtensionType();
1454 SDValue NewLD
= DAG
.getExtLoad(ExtType
, DL
, PVT
,
1455 LD
->getChain(), LD
->getBasePtr(),
1456 MemVT
, LD
->getMemOperand());
1457 SDValue Result
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, NewLD
);
1459 LLVM_DEBUG(dbgs() << "\nPromoting "; N
->dump(&DAG
); dbgs() << "\nTo: ";
1460 Result
.getNode()->dump(&DAG
); dbgs() << '\n');
1461 WorklistRemover
DeadNodes(*this);
1462 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
);
1463 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), NewLD
.getValue(1));
1464 deleteAndRecombine(N
);
1465 AddToWorklist(Result
.getNode());
1471 /// Recursively delete a node which has no uses and any operands for
1472 /// which it is the only use.
1474 /// Note that this both deletes the nodes and removes them from the worklist.
1475 /// It also adds any nodes who have had a user deleted to the worklist as they
1476 /// may now have only one use and subject to other combines.
1477 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode
*N
) {
1478 if (!N
->use_empty())
1481 SmallSetVector
<SDNode
*, 16> Nodes
;
1484 N
= Nodes
.pop_back_val();
1488 if (N
->use_empty()) {
1489 for (const SDValue
&ChildN
: N
->op_values())
1490 Nodes
.insert(ChildN
.getNode());
1492 removeFromWorklist(N
);
1497 } while (!Nodes
.empty());
1501 //===----------------------------------------------------------------------===//
1502 // Main DAG Combiner implementation
1503 //===----------------------------------------------------------------------===//
1505 void DAGCombiner::Run(CombineLevel AtLevel
) {
1506 // set the instance variables, so that the various visit routines may use it.
1508 LegalDAG
= Level
>= AfterLegalizeDAG
;
1509 LegalOperations
= Level
>= AfterLegalizeVectorOps
;
1510 LegalTypes
= Level
>= AfterLegalizeTypes
;
1512 WorklistInserter
AddNodes(*this);
1514 // Add all the dag nodes to the worklist.
1515 for (SDNode
&Node
: DAG
.allnodes())
1516 AddToWorklist(&Node
);
1518 // Create a dummy node (which is not added to allnodes), that adds a reference
1519 // to the root node, preventing it from being deleted, and tracking any
1520 // changes of the root.
1521 HandleSDNode
Dummy(DAG
.getRoot());
1523 // While we have a valid worklist entry node, try to combine it.
1524 while (SDNode
*N
= getNextWorklistEntry()) {
1525 // If N has no uses, it is dead. Make sure to revisit all N's operands once
1526 // N is deleted from the DAG, since they too may now be dead or may have a
1527 // reduced number of uses, allowing other xforms.
1528 if (recursivelyDeleteUnusedNodes(N
))
1531 WorklistRemover
DeadNodes(*this);
1533 // If this combine is running after legalizing the DAG, re-legalize any
1534 // nodes pulled off the worklist.
1536 SmallSetVector
<SDNode
*, 16> UpdatedNodes
;
1537 bool NIsValid
= DAG
.LegalizeOp(N
, UpdatedNodes
);
1539 for (SDNode
*LN
: UpdatedNodes
)
1540 AddToWorklistWithUsers(LN
);
1546 LLVM_DEBUG(dbgs() << "\nCombining: "; N
->dump(&DAG
));
1548 // Add any operands of the new node which have not yet been combined to the
1549 // worklist as well. Because the worklist uniques things already, this
1550 // won't repeatedly process the same operand.
1551 CombinedNodes
.insert(N
);
1552 for (const SDValue
&ChildN
: N
->op_values())
1553 if (!CombinedNodes
.count(ChildN
.getNode()))
1554 AddToWorklist(ChildN
.getNode());
1556 SDValue RV
= combine(N
);
1563 // If we get back the same node we passed in, rather than a new node or
1564 // zero, we know that the node must have defined multiple values and
1565 // CombineTo was used. Since CombineTo takes care of the worklist
1566 // mechanics for us, we have no work to do in this case.
1567 if (RV
.getNode() == N
)
1570 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
1571 RV
.getOpcode() != ISD::DELETED_NODE
&&
1572 "Node was deleted but visit returned new node!");
1574 LLVM_DEBUG(dbgs() << " ... into: "; RV
.getNode()->dump(&DAG
));
1576 if (N
->getNumValues() == RV
.getNode()->getNumValues())
1577 DAG
.ReplaceAllUsesWith(N
, RV
.getNode());
1579 assert(N
->getValueType(0) == RV
.getValueType() &&
1580 N
->getNumValues() == 1 && "Type mismatch");
1581 DAG
.ReplaceAllUsesWith(N
, &RV
);
1584 // Push the new node and any users onto the worklist. Omit this if the
1585 // new node is the EntryToken (e.g. if a store managed to get optimized
1586 // out), because re-visiting the EntryToken and its users will not uncover
1587 // any additional opportunities, but there may be a large number of such
1588 // users, potentially causing compile time explosion.
1589 if (RV
.getOpcode() != ISD::EntryToken
) {
1590 AddToWorklist(RV
.getNode());
1591 AddUsersToWorklist(RV
.getNode());
1594 // Finally, if the node is now dead, remove it from the graph. The node
1595 // may not be dead if the replacement process recursively simplified to
1596 // something else needing this node. This will also take care of adding any
1597 // operands which have lost a user to the worklist.
1598 recursivelyDeleteUnusedNodes(N
);
1601 // If the root changed (e.g. it was a dead load, update the root).
1602 DAG
.setRoot(Dummy
.getValue());
1603 DAG
.RemoveDeadNodes();
1606 SDValue
DAGCombiner::visit(SDNode
*N
) {
1607 switch (N
->getOpcode()) {
1609 case ISD::TokenFactor
: return visitTokenFactor(N
);
1610 case ISD::MERGE_VALUES
: return visitMERGE_VALUES(N
);
1611 case ISD::ADD
: return visitADD(N
);
1612 case ISD::SUB
: return visitSUB(N
);
1614 case ISD::UADDSAT
: return visitADDSAT(N
);
1616 case ISD::USUBSAT
: return visitSUBSAT(N
);
1617 case ISD::ADDC
: return visitADDC(N
);
1619 case ISD::UADDO
: return visitADDO(N
);
1620 case ISD::SUBC
: return visitSUBC(N
);
1622 case ISD::USUBO
: return visitSUBO(N
);
1623 case ISD::ADDE
: return visitADDE(N
);
1624 case ISD::ADDCARRY
: return visitADDCARRY(N
);
1625 case ISD::SADDO_CARRY
: return visitSADDO_CARRY(N
);
1626 case ISD::SUBE
: return visitSUBE(N
);
1627 case ISD::SUBCARRY
: return visitSUBCARRY(N
);
1628 case ISD::SSUBO_CARRY
: return visitSSUBO_CARRY(N
);
1630 case ISD::SMULFIXSAT
:
1632 case ISD::UMULFIXSAT
: return visitMULFIX(N
);
1633 case ISD::MUL
: return visitMUL(N
);
1634 case ISD::SDIV
: return visitSDIV(N
);
1635 case ISD::UDIV
: return visitUDIV(N
);
1637 case ISD::UREM
: return visitREM(N
);
1638 case ISD::MULHU
: return visitMULHU(N
);
1639 case ISD::MULHS
: return visitMULHS(N
);
1640 case ISD::SMUL_LOHI
: return visitSMUL_LOHI(N
);
1641 case ISD::UMUL_LOHI
: return visitUMUL_LOHI(N
);
1643 case ISD::UMULO
: return visitMULO(N
);
1647 case ISD::UMAX
: return visitIMINMAX(N
);
1648 case ISD::AND
: return visitAND(N
);
1649 case ISD::OR
: return visitOR(N
);
1650 case ISD::XOR
: return visitXOR(N
);
1651 case ISD::SHL
: return visitSHL(N
);
1652 case ISD::SRA
: return visitSRA(N
);
1653 case ISD::SRL
: return visitSRL(N
);
1655 case ISD::ROTL
: return visitRotate(N
);
1657 case ISD::FSHR
: return visitFunnelShift(N
);
1658 case ISD::ABS
: return visitABS(N
);
1659 case ISD::BSWAP
: return visitBSWAP(N
);
1660 case ISD::BITREVERSE
: return visitBITREVERSE(N
);
1661 case ISD::CTLZ
: return visitCTLZ(N
);
1662 case ISD::CTLZ_ZERO_UNDEF
: return visitCTLZ_ZERO_UNDEF(N
);
1663 case ISD::CTTZ
: return visitCTTZ(N
);
1664 case ISD::CTTZ_ZERO_UNDEF
: return visitCTTZ_ZERO_UNDEF(N
);
1665 case ISD::CTPOP
: return visitCTPOP(N
);
1666 case ISD::SELECT
: return visitSELECT(N
);
1667 case ISD::VSELECT
: return visitVSELECT(N
);
1668 case ISD::SELECT_CC
: return visitSELECT_CC(N
);
1669 case ISD::SETCC
: return visitSETCC(N
);
1670 case ISD::SETCCCARRY
: return visitSETCCCARRY(N
);
1671 case ISD::SIGN_EXTEND
: return visitSIGN_EXTEND(N
);
1672 case ISD::ZERO_EXTEND
: return visitZERO_EXTEND(N
);
1673 case ISD::ANY_EXTEND
: return visitANY_EXTEND(N
);
1674 case ISD::AssertSext
:
1675 case ISD::AssertZext
: return visitAssertExt(N
);
1676 case ISD::AssertAlign
: return visitAssertAlign(N
);
1677 case ISD::SIGN_EXTEND_INREG
: return visitSIGN_EXTEND_INREG(N
);
1678 case ISD::SIGN_EXTEND_VECTOR_INREG
:
1679 case ISD::ZERO_EXTEND_VECTOR_INREG
: return visitEXTEND_VECTOR_INREG(N
);
1680 case ISD::TRUNCATE
: return visitTRUNCATE(N
);
1681 case ISD::BITCAST
: return visitBITCAST(N
);
1682 case ISD::BUILD_PAIR
: return visitBUILD_PAIR(N
);
1683 case ISD::FADD
: return visitFADD(N
);
1684 case ISD::STRICT_FADD
: return visitSTRICT_FADD(N
);
1685 case ISD::FSUB
: return visitFSUB(N
);
1686 case ISD::FMUL
: return visitFMUL(N
);
1687 case ISD::FMA
: return visitFMA(N
);
1688 case ISD::FDIV
: return visitFDIV(N
);
1689 case ISD::FREM
: return visitFREM(N
);
1690 case ISD::FSQRT
: return visitFSQRT(N
);
1691 case ISD::FCOPYSIGN
: return visitFCOPYSIGN(N
);
1692 case ISD::FPOW
: return visitFPOW(N
);
1693 case ISD::SINT_TO_FP
: return visitSINT_TO_FP(N
);
1694 case ISD::UINT_TO_FP
: return visitUINT_TO_FP(N
);
1695 case ISD::FP_TO_SINT
: return visitFP_TO_SINT(N
);
1696 case ISD::FP_TO_UINT
: return visitFP_TO_UINT(N
);
1697 case ISD::FP_ROUND
: return visitFP_ROUND(N
);
1698 case ISD::FP_EXTEND
: return visitFP_EXTEND(N
);
1699 case ISD::FNEG
: return visitFNEG(N
);
1700 case ISD::FABS
: return visitFABS(N
);
1701 case ISD::FFLOOR
: return visitFFLOOR(N
);
1702 case ISD::FMINNUM
: return visitFMINNUM(N
);
1703 case ISD::FMAXNUM
: return visitFMAXNUM(N
);
1704 case ISD::FMINIMUM
: return visitFMINIMUM(N
);
1705 case ISD::FMAXIMUM
: return visitFMAXIMUM(N
);
1706 case ISD::FCEIL
: return visitFCEIL(N
);
1707 case ISD::FTRUNC
: return visitFTRUNC(N
);
1708 case ISD::BRCOND
: return visitBRCOND(N
);
1709 case ISD::BR_CC
: return visitBR_CC(N
);
1710 case ISD::LOAD
: return visitLOAD(N
);
1711 case ISD::STORE
: return visitSTORE(N
);
1712 case ISD::INSERT_VECTOR_ELT
: return visitINSERT_VECTOR_ELT(N
);
1713 case ISD::EXTRACT_VECTOR_ELT
: return visitEXTRACT_VECTOR_ELT(N
);
1714 case ISD::BUILD_VECTOR
: return visitBUILD_VECTOR(N
);
1715 case ISD::CONCAT_VECTORS
: return visitCONCAT_VECTORS(N
);
1716 case ISD::EXTRACT_SUBVECTOR
: return visitEXTRACT_SUBVECTOR(N
);
1717 case ISD::VECTOR_SHUFFLE
: return visitVECTOR_SHUFFLE(N
);
1718 case ISD::SCALAR_TO_VECTOR
: return visitSCALAR_TO_VECTOR(N
);
1719 case ISD::INSERT_SUBVECTOR
: return visitINSERT_SUBVECTOR(N
);
1720 case ISD::MGATHER
: return visitMGATHER(N
);
1721 case ISD::MLOAD
: return visitMLOAD(N
);
1722 case ISD::MSCATTER
: return visitMSCATTER(N
);
1723 case ISD::MSTORE
: return visitMSTORE(N
);
1724 case ISD::LIFETIME_END
: return visitLIFETIME_END(N
);
1725 case ISD::FP_TO_FP16
: return visitFP_TO_FP16(N
);
1726 case ISD::FP16_TO_FP
: return visitFP16_TO_FP(N
);
1727 case ISD::FREEZE
: return visitFREEZE(N
);
1728 case ISD::VECREDUCE_FADD
:
1729 case ISD::VECREDUCE_FMUL
:
1730 case ISD::VECREDUCE_ADD
:
1731 case ISD::VECREDUCE_MUL
:
1732 case ISD::VECREDUCE_AND
:
1733 case ISD::VECREDUCE_OR
:
1734 case ISD::VECREDUCE_XOR
:
1735 case ISD::VECREDUCE_SMAX
:
1736 case ISD::VECREDUCE_SMIN
:
1737 case ISD::VECREDUCE_UMAX
:
1738 case ISD::VECREDUCE_UMIN
:
1739 case ISD::VECREDUCE_FMAX
:
1740 case ISD::VECREDUCE_FMIN
: return visitVECREDUCE(N
);
1745 SDValue
DAGCombiner::combine(SDNode
*N
) {
1747 if (!DisableGenericCombines
)
1750 // If nothing happened, try a target-specific DAG combine.
1751 if (!RV
.getNode()) {
1752 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
1753 "Node was deleted but visit returned NULL!");
1755 if (N
->getOpcode() >= ISD::BUILTIN_OP_END
||
1756 TLI
.hasTargetDAGCombine((ISD::NodeType
)N
->getOpcode())) {
1758 // Expose the DAG combiner to the target combiner impls.
1759 TargetLowering::DAGCombinerInfo
1760 DagCombineInfo(DAG
, Level
, false, this);
1762 RV
= TLI
.PerformDAGCombine(N
, DagCombineInfo
);
1766 // If nothing happened still, try promoting the operation.
1767 if (!RV
.getNode()) {
1768 switch (N
->getOpcode()) {
1776 RV
= PromoteIntBinOp(SDValue(N
, 0));
1781 RV
= PromoteIntShiftOp(SDValue(N
, 0));
1783 case ISD::SIGN_EXTEND
:
1784 case ISD::ZERO_EXTEND
:
1785 case ISD::ANY_EXTEND
:
1786 RV
= PromoteExtend(SDValue(N
, 0));
1789 if (PromoteLoad(SDValue(N
, 0)))
1795 // If N is a commutative binary node, try to eliminate it if the commuted
1796 // version is already present in the DAG.
1797 if (!RV
.getNode() && TLI
.isCommutativeBinOp(N
->getOpcode()) &&
1798 N
->getNumValues() == 1) {
1799 SDValue N0
= N
->getOperand(0);
1800 SDValue N1
= N
->getOperand(1);
1802 // Constant operands are canonicalized to RHS.
1803 if (N0
!= N1
&& (isa
<ConstantSDNode
>(N0
) || !isa
<ConstantSDNode
>(N1
))) {
1804 SDValue Ops
[] = {N1
, N0
};
1805 SDNode
*CSENode
= DAG
.getNodeIfExists(N
->getOpcode(), N
->getVTList(), Ops
,
1808 return SDValue(CSENode
, 0);
1815 /// Given a node, return its input chain if it has one, otherwise return a null
1817 static SDValue
getInputChainForNode(SDNode
*N
) {
1818 if (unsigned NumOps
= N
->getNumOperands()) {
1819 if (N
->getOperand(0).getValueType() == MVT::Other
)
1820 return N
->getOperand(0);
1821 if (N
->getOperand(NumOps
-1).getValueType() == MVT::Other
)
1822 return N
->getOperand(NumOps
-1);
1823 for (unsigned i
= 1; i
< NumOps
-1; ++i
)
1824 if (N
->getOperand(i
).getValueType() == MVT::Other
)
1825 return N
->getOperand(i
);
1830 SDValue
DAGCombiner::visitTokenFactor(SDNode
*N
) {
1831 // If N has two operands, where one has an input chain equal to the other,
1832 // the 'other' chain is redundant.
1833 if (N
->getNumOperands() == 2) {
1834 if (getInputChainForNode(N
->getOperand(0).getNode()) == N
->getOperand(1))
1835 return N
->getOperand(0);
1836 if (getInputChainForNode(N
->getOperand(1).getNode()) == N
->getOperand(0))
1837 return N
->getOperand(1);
1840 // Don't simplify token factors if optnone.
1841 if (OptLevel
== CodeGenOpt::None
)
1844 // Don't simplify the token factor if the node itself has too many operands.
1845 if (N
->getNumOperands() > TokenFactorInlineLimit
)
1848 // If the sole user is a token factor, we should make sure we have a
1849 // chance to merge them together. This prevents TF chains from inhibiting
1851 if (N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::TokenFactor
)
1852 AddToWorklist(*(N
->use_begin()));
1854 SmallVector
<SDNode
*, 8> TFs
; // List of token factors to visit.
1855 SmallVector
<SDValue
, 8> Ops
; // Ops for replacing token factor.
1856 SmallPtrSet
<SDNode
*, 16> SeenOps
;
1857 bool Changed
= false; // If we should replace this token factor.
1859 // Start out with this token factor.
1862 // Iterate through token factors. The TFs grows when new token factors are
1864 for (unsigned i
= 0; i
< TFs
.size(); ++i
) {
1865 // Limit number of nodes to inline, to avoid quadratic compile times.
1866 // We have to add the outstanding Token Factors to Ops, otherwise we might
1867 // drop Ops from the resulting Token Factors.
1868 if (Ops
.size() > TokenFactorInlineLimit
) {
1869 for (unsigned j
= i
; j
< TFs
.size(); j
++)
1870 Ops
.emplace_back(TFs
[j
], 0);
1871 // Drop unprocessed Token Factors from TFs, so we do not add them to the
1872 // combiner worklist later.
1877 SDNode
*TF
= TFs
[i
];
1878 // Check each of the operands.
1879 for (const SDValue
&Op
: TF
->op_values()) {
1880 switch (Op
.getOpcode()) {
1881 case ISD::EntryToken
:
1882 // Entry tokens don't need to be added to the list. They are
1887 case ISD::TokenFactor
:
1888 if (Op
.hasOneUse() && !is_contained(TFs
, Op
.getNode())) {
1889 // Queue up for processing.
1890 TFs
.push_back(Op
.getNode());
1897 // Only add if it isn't already in the list.
1898 if (SeenOps
.insert(Op
.getNode()).second
)
1907 // Re-visit inlined Token Factors, to clean them up in case they have been
1908 // removed. Skip the first Token Factor, as this is the current node.
1909 for (unsigned i
= 1, e
= TFs
.size(); i
< e
; i
++)
1910 AddToWorklist(TFs
[i
]);
1912 // Remove Nodes that are chained to another node in the list. Do so
1913 // by walking up chains breath-first stopping when we've seen
1914 // another operand. In general we must climb to the EntryNode, but we can exit
1915 // early if we find all remaining work is associated with just one operand as
1916 // no further pruning is possible.
1918 // List of nodes to search through and original Ops from which they originate.
1919 SmallVector
<std::pair
<SDNode
*, unsigned>, 8> Worklist
;
1920 SmallVector
<unsigned, 8> OpWorkCount
; // Count of work for each Op.
1921 SmallPtrSet
<SDNode
*, 16> SeenChains
;
1922 bool DidPruneOps
= false;
1924 unsigned NumLeftToConsider
= 0;
1925 for (const SDValue
&Op
: Ops
) {
1926 Worklist
.push_back(std::make_pair(Op
.getNode(), NumLeftToConsider
++));
1927 OpWorkCount
.push_back(1);
1930 auto AddToWorklist
= [&](unsigned CurIdx
, SDNode
*Op
, unsigned OpNumber
) {
1931 // If this is an Op, we can remove the op from the list. Remark any
1932 // search associated with it as from the current OpNumber.
1933 if (SeenOps
.contains(Op
)) {
1936 unsigned OrigOpNumber
= 0;
1937 while (OrigOpNumber
< Ops
.size() && Ops
[OrigOpNumber
].getNode() != Op
)
1939 assert((OrigOpNumber
!= Ops
.size()) &&
1940 "expected to find TokenFactor Operand");
1941 // Re-mark worklist from OrigOpNumber to OpNumber
1942 for (unsigned i
= CurIdx
+ 1; i
< Worklist
.size(); ++i
) {
1943 if (Worklist
[i
].second
== OrigOpNumber
) {
1944 Worklist
[i
].second
= OpNumber
;
1947 OpWorkCount
[OpNumber
] += OpWorkCount
[OrigOpNumber
];
1948 OpWorkCount
[OrigOpNumber
] = 0;
1949 NumLeftToConsider
--;
1951 // Add if it's a new chain
1952 if (SeenChains
.insert(Op
).second
) {
1953 OpWorkCount
[OpNumber
]++;
1954 Worklist
.push_back(std::make_pair(Op
, OpNumber
));
1958 for (unsigned i
= 0; i
< Worklist
.size() && i
< 1024; ++i
) {
1959 // We need at least be consider at least 2 Ops to prune.
1960 if (NumLeftToConsider
<= 1)
1962 auto CurNode
= Worklist
[i
].first
;
1963 auto CurOpNumber
= Worklist
[i
].second
;
1964 assert((OpWorkCount
[CurOpNumber
] > 0) &&
1965 "Node should not appear in worklist");
1966 switch (CurNode
->getOpcode()) {
1967 case ISD::EntryToken
:
1968 // Hitting EntryToken is the only way for the search to terminate without
1970 // another operand's search. Prevent us from marking this operand
1972 NumLeftToConsider
++;
1974 case ISD::TokenFactor
:
1975 for (const SDValue
&Op
: CurNode
->op_values())
1976 AddToWorklist(i
, Op
.getNode(), CurOpNumber
);
1978 case ISD::LIFETIME_START
:
1979 case ISD::LIFETIME_END
:
1980 case ISD::CopyFromReg
:
1981 case ISD::CopyToReg
:
1982 AddToWorklist(i
, CurNode
->getOperand(0).getNode(), CurOpNumber
);
1985 if (auto *MemNode
= dyn_cast
<MemSDNode
>(CurNode
))
1986 AddToWorklist(i
, MemNode
->getChain().getNode(), CurOpNumber
);
1989 OpWorkCount
[CurOpNumber
]--;
1990 if (OpWorkCount
[CurOpNumber
] == 0)
1991 NumLeftToConsider
--;
1994 // If we've changed things around then replace token factor.
1998 // The entry token is the only possible outcome.
1999 Result
= DAG
.getEntryNode();
2002 SmallVector
<SDValue
, 8> PrunedOps
;
2004 for (const SDValue
&Op
: Ops
) {
2005 if (SeenChains
.count(Op
.getNode()) == 0)
2006 PrunedOps
.push_back(Op
);
2008 Result
= DAG
.getTokenFactor(SDLoc(N
), PrunedOps
);
2010 Result
= DAG
.getTokenFactor(SDLoc(N
), Ops
);
2018 /// MERGE_VALUES can always be eliminated.
2019 SDValue
DAGCombiner::visitMERGE_VALUES(SDNode
*N
) {
2020 WorklistRemover
DeadNodes(*this);
2021 // Replacing results may cause a different MERGE_VALUES to suddenly
2022 // be CSE'd with N, and carry its uses with it. Iterate until no
2023 // uses remain, to ensure that the node can be safely deleted.
2024 // First add the users of this node to the work list so that they
2025 // can be tried again once they have new operands.
2026 AddUsersToWorklist(N
);
2028 // Do as a single replacement to avoid rewalking use lists.
2029 SmallVector
<SDValue
, 8> Ops
;
2030 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
2031 Ops
.push_back(N
->getOperand(i
));
2032 DAG
.ReplaceAllUsesWith(N
, Ops
.data());
2033 } while (!N
->use_empty());
2034 deleteAndRecombine(N
);
2035 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
2038 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
2039 /// ConstantSDNode pointer else nullptr.
2040 static ConstantSDNode
*getAsNonOpaqueConstant(SDValue N
) {
2041 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(N
);
2042 return Const
!= nullptr && !Const
->isOpaque() ? Const
: nullptr;
2045 /// Return true if 'Use' is a load or a store that uses N as its base pointer
2046 /// and that N may be folded in the load / store addressing mode.
2047 static bool canFoldInAddressingMode(SDNode
*N
, SDNode
*Use
, SelectionDAG
&DAG
,
2048 const TargetLowering
&TLI
) {
2052 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Use
)) {
2053 if (LD
->isIndexed() || LD
->getBasePtr().getNode() != N
)
2055 VT
= LD
->getMemoryVT();
2056 AS
= LD
->getAddressSpace();
2057 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(Use
)) {
2058 if (ST
->isIndexed() || ST
->getBasePtr().getNode() != N
)
2060 VT
= ST
->getMemoryVT();
2061 AS
= ST
->getAddressSpace();
2062 } else if (MaskedLoadSDNode
*LD
= dyn_cast
<MaskedLoadSDNode
>(Use
)) {
2063 if (LD
->isIndexed() || LD
->getBasePtr().getNode() != N
)
2065 VT
= LD
->getMemoryVT();
2066 AS
= LD
->getAddressSpace();
2067 } else if (MaskedStoreSDNode
*ST
= dyn_cast
<MaskedStoreSDNode
>(Use
)) {
2068 if (ST
->isIndexed() || ST
->getBasePtr().getNode() != N
)
2070 VT
= ST
->getMemoryVT();
2071 AS
= ST
->getAddressSpace();
2075 TargetLowering::AddrMode AM
;
2076 if (N
->getOpcode() == ISD::ADD
) {
2077 AM
.HasBaseReg
= true;
2078 ConstantSDNode
*Offset
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2081 AM
.BaseOffs
= Offset
->getSExtValue();
2085 } else if (N
->getOpcode() == ISD::SUB
) {
2086 AM
.HasBaseReg
= true;
2087 ConstantSDNode
*Offset
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2090 AM
.BaseOffs
= -Offset
->getSExtValue();
2097 return TLI
.isLegalAddressingMode(DAG
.getDataLayout(), AM
,
2098 VT
.getTypeForEVT(*DAG
.getContext()), AS
);
2101 SDValue
DAGCombiner::foldBinOpIntoSelect(SDNode
*BO
) {
2102 assert(TLI
.isBinOp(BO
->getOpcode()) && BO
->getNumValues() == 1 &&
2103 "Unexpected binary operator");
2105 // Don't do this unless the old select is going away. We want to eliminate the
2106 // binary operator, not replace a binop with a select.
2107 // TODO: Handle ISD::SELECT_CC.
2108 unsigned SelOpNo
= 0;
2109 SDValue Sel
= BO
->getOperand(0);
2110 if (Sel
.getOpcode() != ISD::SELECT
|| !Sel
.hasOneUse()) {
2112 Sel
= BO
->getOperand(1);
2115 if (Sel
.getOpcode() != ISD::SELECT
|| !Sel
.hasOneUse())
2118 SDValue CT
= Sel
.getOperand(1);
2119 if (!isConstantOrConstantVector(CT
, true) &&
2120 !DAG
.isConstantFPBuildVectorOrConstantFP(CT
))
2123 SDValue CF
= Sel
.getOperand(2);
2124 if (!isConstantOrConstantVector(CF
, true) &&
2125 !DAG
.isConstantFPBuildVectorOrConstantFP(CF
))
2128 // Bail out if any constants are opaque because we can't constant fold those.
2129 // The exception is "and" and "or" with either 0 or -1 in which case we can
2130 // propagate non constant operands into select. I.e.:
2131 // and (select Cond, 0, -1), X --> select Cond, 0, X
2132 // or X, (select Cond, -1, 0) --> select Cond, -1, X
2133 auto BinOpcode
= BO
->getOpcode();
2134 bool CanFoldNonConst
=
2135 (BinOpcode
== ISD::AND
|| BinOpcode
== ISD::OR
) &&
2136 (isNullOrNullSplat(CT
) || isAllOnesOrAllOnesSplat(CT
)) &&
2137 (isNullOrNullSplat(CF
) || isAllOnesOrAllOnesSplat(CF
));
2139 SDValue CBO
= BO
->getOperand(SelOpNo
^ 1);
2140 if (!CanFoldNonConst
&&
2141 !isConstantOrConstantVector(CBO
, true) &&
2142 !DAG
.isConstantFPBuildVectorOrConstantFP(CBO
))
2145 EVT VT
= BO
->getValueType(0);
2147 // We have a select-of-constants followed by a binary operator with a
2148 // constant. Eliminate the binop by pulling the constant math into the select.
2149 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
2151 SDValue NewCT
= SelOpNo
? DAG
.getNode(BinOpcode
, DL
, VT
, CBO
, CT
)
2152 : DAG
.getNode(BinOpcode
, DL
, VT
, CT
, CBO
);
2153 if (!CanFoldNonConst
&& !NewCT
.isUndef() &&
2154 !isConstantOrConstantVector(NewCT
, true) &&
2155 !DAG
.isConstantFPBuildVectorOrConstantFP(NewCT
))
2158 SDValue NewCF
= SelOpNo
? DAG
.getNode(BinOpcode
, DL
, VT
, CBO
, CF
)
2159 : DAG
.getNode(BinOpcode
, DL
, VT
, CF
, CBO
);
2160 if (!CanFoldNonConst
&& !NewCF
.isUndef() &&
2161 !isConstantOrConstantVector(NewCF
, true) &&
2162 !DAG
.isConstantFPBuildVectorOrConstantFP(NewCF
))
2165 SDValue SelectOp
= DAG
.getSelect(DL
, VT
, Sel
.getOperand(0), NewCT
, NewCF
);
2166 SelectOp
->setFlags(BO
->getFlags());
2170 static SDValue
foldAddSubBoolOfMaskedVal(SDNode
*N
, SelectionDAG
&DAG
) {
2171 assert((N
->getOpcode() == ISD::ADD
|| N
->getOpcode() == ISD::SUB
) &&
2172 "Expecting add or sub");
2174 // Match a constant operand and a zext operand for the math instruction:
2177 bool IsAdd
= N
->getOpcode() == ISD::ADD
;
2178 SDValue C
= IsAdd
? N
->getOperand(1) : N
->getOperand(0);
2179 SDValue Z
= IsAdd
? N
->getOperand(0) : N
->getOperand(1);
2180 auto *CN
= dyn_cast
<ConstantSDNode
>(C
);
2181 if (!CN
|| Z
.getOpcode() != ISD::ZERO_EXTEND
)
2184 // Match the zext operand as a setcc of a boolean.
2185 if (Z
.getOperand(0).getOpcode() != ISD::SETCC
||
2186 Z
.getOperand(0).getValueType() != MVT::i1
)
2189 // Match the compare as: setcc (X & 1), 0, eq.
2190 SDValue SetCC
= Z
.getOperand(0);
2191 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
->getOperand(2))->get();
2192 if (CC
!= ISD::SETEQ
|| !isNullConstant(SetCC
.getOperand(1)) ||
2193 SetCC
.getOperand(0).getOpcode() != ISD::AND
||
2194 !isOneConstant(SetCC
.getOperand(0).getOperand(1)))
2197 // We are adding/subtracting a constant and an inverted low bit. Turn that
2198 // into a subtract/add of the low bit with incremented/decremented constant:
2199 // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1))
2200 // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1))
2201 EVT VT
= C
.getValueType();
2203 SDValue LowBit
= DAG
.getZExtOrTrunc(SetCC
.getOperand(0), DL
, VT
);
2204 SDValue C1
= IsAdd
? DAG
.getConstant(CN
->getAPIntValue() + 1, DL
, VT
) :
2205 DAG
.getConstant(CN
->getAPIntValue() - 1, DL
, VT
);
2206 return DAG
.getNode(IsAdd
? ISD::SUB
: ISD::ADD
, DL
, VT
, C1
, LowBit
);
2209 /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into
2210 /// a shift and add with a different constant.
2211 static SDValue
foldAddSubOfSignBit(SDNode
*N
, SelectionDAG
&DAG
) {
2212 assert((N
->getOpcode() == ISD::ADD
|| N
->getOpcode() == ISD::SUB
) &&
2213 "Expecting add or sub");
2215 // We need a constant operand for the add/sub, and the other operand is a
2216 // logical shift right: add (srl), C or sub C, (srl).
2217 bool IsAdd
= N
->getOpcode() == ISD::ADD
;
2218 SDValue ConstantOp
= IsAdd
? N
->getOperand(1) : N
->getOperand(0);
2219 SDValue ShiftOp
= IsAdd
? N
->getOperand(0) : N
->getOperand(1);
2220 if (!DAG
.isConstantIntBuildVectorOrConstantInt(ConstantOp
) ||
2221 ShiftOp
.getOpcode() != ISD::SRL
)
2224 // The shift must be of a 'not' value.
2225 SDValue Not
= ShiftOp
.getOperand(0);
2226 if (!Not
.hasOneUse() || !isBitwiseNot(Not
))
2229 // The shift must be moving the sign bit to the least-significant-bit.
2230 EVT VT
= ShiftOp
.getValueType();
2231 SDValue ShAmt
= ShiftOp
.getOperand(1);
2232 ConstantSDNode
*ShAmtC
= isConstOrConstSplat(ShAmt
);
2233 if (!ShAmtC
|| ShAmtC
->getAPIntValue() != (VT
.getScalarSizeInBits() - 1))
2236 // Eliminate the 'not' by adjusting the shift and add/sub constant:
2237 // add (srl (not X), 31), C --> add (sra X, 31), (C + 1)
2238 // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1)
2240 auto ShOpcode
= IsAdd
? ISD::SRA
: ISD::SRL
;
2241 SDValue NewShift
= DAG
.getNode(ShOpcode
, DL
, VT
, Not
.getOperand(0), ShAmt
);
2243 DAG
.FoldConstantArithmetic(IsAdd
? ISD::ADD
: ISD::SUB
, DL
, VT
,
2244 {ConstantOp
, DAG
.getConstant(1, DL
, VT
)}))
2245 return DAG
.getNode(ISD::ADD
, DL
, VT
, NewShift
, NewC
);
2249 /// Try to fold a node that behaves like an ADD (note that N isn't necessarily
2250 /// an ISD::ADD here, it could for example be an ISD::OR if we know that there
2251 /// are no common bits set in the operands).
2252 SDValue
DAGCombiner::visitADDLike(SDNode
*N
) {
2253 SDValue N0
= N
->getOperand(0);
2254 SDValue N1
= N
->getOperand(1);
2255 EVT VT
= N0
.getValueType();
2259 if (VT
.isVector()) {
2260 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
2263 // fold (add x, 0) -> x, vector edition
2264 if (ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
2266 if (ISD::isConstantSplatVectorAllZeros(N0
.getNode()))
2270 // fold (add x, undef) -> undef
2277 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
)) {
2278 // canonicalize constant to RHS
2279 if (!DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
2280 return DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, N0
);
2281 // fold (add c1, c2) -> c1+c2
2282 return DAG
.FoldConstantArithmetic(ISD::ADD
, DL
, VT
, {N0
, N1
});
2285 // fold (add x, 0) -> x
2286 if (isNullConstant(N1
))
2289 if (isConstantOrConstantVector(N1
, /* NoOpaque */ true)) {
2290 // fold ((A-c1)+c2) -> (A+(c2-c1))
2291 if (N0
.getOpcode() == ISD::SUB
&&
2292 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaque */ true)) {
2294 DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, {N1
, N0
.getOperand(1)});
2295 assert(Sub
&& "Constant folding failed");
2296 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), Sub
);
2299 // fold ((c1-A)+c2) -> (c1+c2)-A
2300 if (N0
.getOpcode() == ISD::SUB
&&
2301 isConstantOrConstantVector(N0
.getOperand(0), /* NoOpaque */ true)) {
2303 DAG
.FoldConstantArithmetic(ISD::ADD
, DL
, VT
, {N1
, N0
.getOperand(0)});
2304 assert(Add
&& "Constant folding failed");
2305 return DAG
.getNode(ISD::SUB
, DL
, VT
, Add
, N0
.getOperand(1));
2308 // add (sext i1 X), 1 -> zext (not i1 X)
2309 // We don't transform this pattern:
2310 // add (zext i1 X), -1 -> sext (not i1 X)
2311 // because most (?) targets generate better code for the zext form.
2312 if (N0
.getOpcode() == ISD::SIGN_EXTEND
&& N0
.hasOneUse() &&
2313 isOneOrOneSplat(N1
)) {
2314 SDValue X
= N0
.getOperand(0);
2315 if ((!LegalOperations
||
2316 (TLI
.isOperationLegal(ISD::XOR
, X
.getValueType()) &&
2317 TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
))) &&
2318 X
.getScalarValueSizeInBits() == 1) {
2319 SDValue Not
= DAG
.getNOT(DL
, X
, X
.getValueType());
2320 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Not
);
2324 // Fold (add (or x, c0), c1) -> (add x, (c0 + c1)) if (or x, c0) is
2325 // equivalent to (add x, c0).
2326 if (N0
.getOpcode() == ISD::OR
&&
2327 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaque */ true) &&
2328 DAG
.haveNoCommonBitsSet(N0
.getOperand(0), N0
.getOperand(1))) {
2329 if (SDValue Add0
= DAG
.FoldConstantArithmetic(ISD::ADD
, DL
, VT
,
2330 {N1
, N0
.getOperand(1)}))
2331 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), Add0
);
2335 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
2339 if (!reassociationCanBreakAddressingModePattern(ISD::ADD
, DL
, N0
, N1
)) {
2340 if (SDValue RADD
= reassociateOps(ISD::ADD
, DL
, N0
, N1
, N
->getFlags()))
2343 // Reassociate (add (or x, c), y) -> (add add(x, y), c)) if (or x, c) is
2344 // equivalent to (add x, c).
2345 auto ReassociateAddOr
= [&](SDValue N0
, SDValue N1
) {
2346 if (N0
.getOpcode() == ISD::OR
&& N0
.hasOneUse() &&
2347 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaque */ true) &&
2348 DAG
.haveNoCommonBitsSet(N0
.getOperand(0), N0
.getOperand(1))) {
2349 return DAG
.getNode(ISD::ADD
, DL
, VT
,
2350 DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, N0
.getOperand(0)),
2355 if (SDValue Add
= ReassociateAddOr(N0
, N1
))
2357 if (SDValue Add
= ReassociateAddOr(N1
, N0
))
2360 // fold ((0-A) + B) -> B-A
2361 if (N0
.getOpcode() == ISD::SUB
&& isNullOrNullSplat(N0
.getOperand(0)))
2362 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, N0
.getOperand(1));
2364 // fold (A + (0-B)) -> A-B
2365 if (N1
.getOpcode() == ISD::SUB
&& isNullOrNullSplat(N1
.getOperand(0)))
2366 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
.getOperand(1));
2368 // fold (A+(B-A)) -> B
2369 if (N1
.getOpcode() == ISD::SUB
&& N0
== N1
.getOperand(1))
2370 return N1
.getOperand(0);
2372 // fold ((B-A)+A) -> B
2373 if (N0
.getOpcode() == ISD::SUB
&& N1
== N0
.getOperand(1))
2374 return N0
.getOperand(0);
2376 // fold ((A-B)+(C-A)) -> (C-B)
2377 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
&&
2378 N0
.getOperand(0) == N1
.getOperand(1))
2379 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(0),
2382 // fold ((A-B)+(B-C)) -> (A-C)
2383 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
&&
2384 N0
.getOperand(1) == N1
.getOperand(0))
2385 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0),
2388 // fold (A+(B-(A+C))) to (B-C)
2389 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
2390 N0
== N1
.getOperand(1).getOperand(0))
2391 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(0),
2392 N1
.getOperand(1).getOperand(1));
2394 // fold (A+(B-(C+A))) to (B-C)
2395 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
2396 N0
== N1
.getOperand(1).getOperand(1))
2397 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(0),
2398 N1
.getOperand(1).getOperand(0));
2400 // fold (A+((B-A)+or-C)) to (B+or-C)
2401 if ((N1
.getOpcode() == ISD::SUB
|| N1
.getOpcode() == ISD::ADD
) &&
2402 N1
.getOperand(0).getOpcode() == ISD::SUB
&&
2403 N0
== N1
.getOperand(0).getOperand(1))
2404 return DAG
.getNode(N1
.getOpcode(), DL
, VT
, N1
.getOperand(0).getOperand(0),
2407 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
2408 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
) {
2409 SDValue N00
= N0
.getOperand(0);
2410 SDValue N01
= N0
.getOperand(1);
2411 SDValue N10
= N1
.getOperand(0);
2412 SDValue N11
= N1
.getOperand(1);
2414 if (isConstantOrConstantVector(N00
) || isConstantOrConstantVector(N10
))
2415 return DAG
.getNode(ISD::SUB
, DL
, VT
,
2416 DAG
.getNode(ISD::ADD
, SDLoc(N0
), VT
, N00
, N10
),
2417 DAG
.getNode(ISD::ADD
, SDLoc(N1
), VT
, N01
, N11
));
2420 // fold (add (umax X, C), -C) --> (usubsat X, C)
2421 if (N0
.getOpcode() == ISD::UMAX
&& hasOperation(ISD::USUBSAT
, VT
)) {
2422 auto MatchUSUBSAT
= [](ConstantSDNode
*Max
, ConstantSDNode
*Op
) {
2423 return (!Max
&& !Op
) ||
2424 (Max
&& Op
&& Max
->getAPIntValue() == (-Op
->getAPIntValue()));
2426 if (ISD::matchBinaryPredicate(N0
.getOperand(1), N1
, MatchUSUBSAT
,
2427 /*AllowUndefs*/ true))
2428 return DAG
.getNode(ISD::USUBSAT
, DL
, VT
, N0
.getOperand(0),
2432 if (SimplifyDemandedBits(SDValue(N
, 0)))
2433 return SDValue(N
, 0);
2435 if (isOneOrOneSplat(N1
)) {
2436 // fold (add (xor a, -1), 1) -> (sub 0, a)
2437 if (isBitwiseNot(N0
))
2438 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
),
2441 // fold (add (add (xor a, -1), b), 1) -> (sub b, a)
2442 if (N0
.getOpcode() == ISD::ADD
||
2443 N0
.getOpcode() == ISD::UADDO
||
2444 N0
.getOpcode() == ISD::SADDO
) {
2447 if (isBitwiseNot(N0
.getOperand(0))) {
2448 A
= N0
.getOperand(1);
2449 Xor
= N0
.getOperand(0);
2450 } else if (isBitwiseNot(N0
.getOperand(1))) {
2451 A
= N0
.getOperand(0);
2452 Xor
= N0
.getOperand(1);
2456 return DAG
.getNode(ISD::SUB
, DL
, VT
, A
, Xor
.getOperand(0));
2460 // add (add x, y), 1
2461 // And if the target does not like this form then turn into:
2462 // sub y, (xor x, -1)
2463 if (!TLI
.preferIncOfAddToSubOfNot(VT
) && N0
.hasOneUse() &&
2464 N0
.getOpcode() == ISD::ADD
) {
2465 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(0),
2466 DAG
.getAllOnesConstant(DL
, VT
));
2467 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(1), Not
);
2471 // (x - y) + -1 -> add (xor y, -1), x
2472 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
2473 isAllOnesOrAllOnesSplat(N1
)) {
2474 SDValue Xor
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(1), N1
);
2475 return DAG
.getNode(ISD::ADD
, DL
, VT
, Xor
, N0
.getOperand(0));
2478 if (SDValue Combined
= visitADDLikeCommutative(N0
, N1
, N
))
2481 if (SDValue Combined
= visitADDLikeCommutative(N1
, N0
, N
))
2487 SDValue
DAGCombiner::visitADD(SDNode
*N
) {
2488 SDValue N0
= N
->getOperand(0);
2489 SDValue N1
= N
->getOperand(1);
2490 EVT VT
= N0
.getValueType();
2493 if (SDValue Combined
= visitADDLike(N
))
2496 if (SDValue V
= foldAddSubBoolOfMaskedVal(N
, DAG
))
2499 if (SDValue V
= foldAddSubOfSignBit(N
, DAG
))
2502 // fold (a+b) -> (a|b) iff a and b share no bits.
2503 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::OR
, VT
)) &&
2504 DAG
.haveNoCommonBitsSet(N0
, N1
))
2505 return DAG
.getNode(ISD::OR
, DL
, VT
, N0
, N1
);
2507 // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)).
2508 if (N0
.getOpcode() == ISD::VSCALE
&& N1
.getOpcode() == ISD::VSCALE
) {
2509 const APInt
&C0
= N0
->getConstantOperandAPInt(0);
2510 const APInt
&C1
= N1
->getConstantOperandAPInt(0);
2511 return DAG
.getVScale(DL
, VT
, C0
+ C1
);
2514 // fold a+vscale(c1)+vscale(c2) -> a+vscale(c1+c2)
2515 if ((N0
.getOpcode() == ISD::ADD
) &&
2516 (N0
.getOperand(1).getOpcode() == ISD::VSCALE
) &&
2517 (N1
.getOpcode() == ISD::VSCALE
)) {
2518 const APInt
&VS0
= N0
.getOperand(1)->getConstantOperandAPInt(0);
2519 const APInt
&VS1
= N1
->getConstantOperandAPInt(0);
2520 SDValue VS
= DAG
.getVScale(DL
, VT
, VS0
+ VS1
);
2521 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), VS
);
2524 // Fold (add step_vector(c1), step_vector(c2) to step_vector(c1+c2))
2525 if (N0
.getOpcode() == ISD::STEP_VECTOR
&&
2526 N1
.getOpcode() == ISD::STEP_VECTOR
) {
2527 const APInt
&C0
= N0
->getConstantOperandAPInt(0);
2528 const APInt
&C1
= N1
->getConstantOperandAPInt(0);
2529 APInt NewStep
= C0
+ C1
;
2530 return DAG
.getStepVector(DL
, VT
, NewStep
);
2533 // Fold a + step_vector(c1) + step_vector(c2) to a + step_vector(c1+c2)
2534 if ((N0
.getOpcode() == ISD::ADD
) &&
2535 (N0
.getOperand(1).getOpcode() == ISD::STEP_VECTOR
) &&
2536 (N1
.getOpcode() == ISD::STEP_VECTOR
)) {
2537 const APInt
&SV0
= N0
.getOperand(1)->getConstantOperandAPInt(0);
2538 const APInt
&SV1
= N1
->getConstantOperandAPInt(0);
2539 APInt NewStep
= SV0
+ SV1
;
2540 SDValue SV
= DAG
.getStepVector(DL
, VT
, NewStep
);
2541 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), SV
);
2547 SDValue
DAGCombiner::visitADDSAT(SDNode
*N
) {
2548 unsigned Opcode
= N
->getOpcode();
2549 SDValue N0
= N
->getOperand(0);
2550 SDValue N1
= N
->getOperand(1);
2551 EVT VT
= N0
.getValueType();
2555 if (VT
.isVector()) {
2556 // TODO SimplifyVBinOp
2558 // fold (add_sat x, 0) -> x, vector edition
2559 if (ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
2561 if (ISD::isConstantSplatVectorAllZeros(N0
.getNode()))
2565 // fold (add_sat x, undef) -> -1
2566 if (N0
.isUndef() || N1
.isUndef())
2567 return DAG
.getAllOnesConstant(DL
, VT
);
2569 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
)) {
2570 // canonicalize constant to RHS
2571 if (!DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
2572 return DAG
.getNode(Opcode
, DL
, VT
, N1
, N0
);
2573 // fold (add_sat c1, c2) -> c3
2574 return DAG
.FoldConstantArithmetic(Opcode
, DL
, VT
, {N0
, N1
});
2577 // fold (add_sat x, 0) -> x
2578 if (isNullConstant(N1
))
2581 // If it cannot overflow, transform into an add.
2582 if (Opcode
== ISD::UADDSAT
)
2583 if (DAG
.computeOverflowKind(N0
, N1
) == SelectionDAG::OFK_Never
)
2584 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
);
2589 static SDValue
getAsCarry(const TargetLowering
&TLI
, SDValue V
) {
2590 bool Masked
= false;
2592 // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization.
2594 if (V
.getOpcode() == ISD::TRUNCATE
|| V
.getOpcode() == ISD::ZERO_EXTEND
) {
2595 V
= V
.getOperand(0);
2599 if (V
.getOpcode() == ISD::AND
&& isOneConstant(V
.getOperand(1))) {
2601 V
= V
.getOperand(0);
2608 // If this is not a carry, return.
2609 if (V
.getResNo() != 1)
2612 if (V
.getOpcode() != ISD::ADDCARRY
&& V
.getOpcode() != ISD::SUBCARRY
&&
2613 V
.getOpcode() != ISD::UADDO
&& V
.getOpcode() != ISD::USUBO
)
2616 EVT VT
= V
.getNode()->getValueType(0);
2617 if (!TLI
.isOperationLegalOrCustom(V
.getOpcode(), VT
))
2620 // If the result is masked, then no matter what kind of bool it is we can
2621 // return. If it isn't, then we need to make sure the bool type is either 0 or
2622 // 1 and not other values.
2624 TLI
.getBooleanContents(V
.getValueType()) ==
2625 TargetLoweringBase::ZeroOrOneBooleanContent
)
2631 /// Given the operands of an add/sub operation, see if the 2nd operand is a
2632 /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert
2633 /// the opcode and bypass the mask operation.
2634 static SDValue
foldAddSubMasked1(bool IsAdd
, SDValue N0
, SDValue N1
,
2635 SelectionDAG
&DAG
, const SDLoc
&DL
) {
2636 if (N1
.getOpcode() != ISD::AND
|| !isOneOrOneSplat(N1
->getOperand(1)))
2639 EVT VT
= N0
.getValueType();
2640 if (DAG
.ComputeNumSignBits(N1
.getOperand(0)) != VT
.getScalarSizeInBits())
2643 // add N0, (and (AssertSext X, i1), 1) --> sub N0, X
2644 // sub N0, (and (AssertSext X, i1), 1) --> add N0, X
2645 return DAG
.getNode(IsAdd
? ISD::SUB
: ISD::ADD
, DL
, VT
, N0
, N1
.getOperand(0));
2648 /// Helper for doing combines based on N0 and N1 being added to each other.
2649 SDValue
DAGCombiner::visitADDLikeCommutative(SDValue N0
, SDValue N1
,
2650 SDNode
*LocReference
) {
2651 EVT VT
= N0
.getValueType();
2652 SDLoc
DL(LocReference
);
2654 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
2655 if (N1
.getOpcode() == ISD::SHL
&& N1
.getOperand(0).getOpcode() == ISD::SUB
&&
2656 isNullOrNullSplat(N1
.getOperand(0).getOperand(0)))
2657 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
,
2658 DAG
.getNode(ISD::SHL
, DL
, VT
,
2659 N1
.getOperand(0).getOperand(1),
2662 if (SDValue V
= foldAddSubMasked1(true, N0
, N1
, DAG
, DL
))
2666 // add (add x, 1), y
2667 // And if the target does not like this form then turn into:
2668 // sub y, (xor x, -1)
2669 if (!TLI
.preferIncOfAddToSubOfNot(VT
) && N0
.hasOneUse() &&
2670 N0
.getOpcode() == ISD::ADD
&& isOneOrOneSplat(N0
.getOperand(1))) {
2671 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(0),
2672 DAG
.getAllOnesConstant(DL
, VT
));
2673 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, Not
);
2676 // Hoist one-use subtraction by non-opaque constant:
2677 // (x - C) + y -> (x + y) - C
2678 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
2679 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
2680 isConstantOrConstantVector(N0
.getOperand(1), /*NoOpaques=*/true)) {
2681 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), N1
);
2682 return DAG
.getNode(ISD::SUB
, DL
, VT
, Add
, N0
.getOperand(1));
2684 // Hoist one-use subtraction from non-opaque constant:
2685 // (C - x) + y -> (y - x) + C
2686 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
2687 isConstantOrConstantVector(N0
.getOperand(0), /*NoOpaques=*/true)) {
2688 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, N0
.getOperand(1));
2689 return DAG
.getNode(ISD::ADD
, DL
, VT
, Sub
, N0
.getOperand(0));
2692 // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1'
2693 // rather than 'add 0/-1' (the zext should get folded).
2694 // add (sext i1 Y), X --> sub X, (zext i1 Y)
2695 if (N0
.getOpcode() == ISD::SIGN_EXTEND
&&
2696 N0
.getOperand(0).getScalarValueSizeInBits() == 1 &&
2697 TLI
.getBooleanContents(VT
) == TargetLowering::ZeroOrOneBooleanContent
) {
2698 SDValue ZExt
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
.getOperand(0));
2699 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, ZExt
);
2702 // add X, (sextinreg Y i1) -> sub X, (and Y 1)
2703 if (N1
.getOpcode() == ISD::SIGN_EXTEND_INREG
) {
2704 VTSDNode
*TN
= cast
<VTSDNode
>(N1
.getOperand(1));
2705 if (TN
->getVT() == MVT::i1
) {
2706 SDValue ZExt
= DAG
.getNode(ISD::AND
, DL
, VT
, N1
.getOperand(0),
2707 DAG
.getConstant(1, DL
, VT
));
2708 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, ZExt
);
2712 // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2713 if (N1
.getOpcode() == ISD::ADDCARRY
&& isNullConstant(N1
.getOperand(1)) &&
2715 return DAG
.getNode(ISD::ADDCARRY
, DL
, N1
->getVTList(),
2716 N0
, N1
.getOperand(0), N1
.getOperand(2));
2718 // (add X, Carry) -> (addcarry X, 0, Carry)
2719 if (TLI
.isOperationLegalOrCustom(ISD::ADDCARRY
, VT
))
2720 if (SDValue Carry
= getAsCarry(TLI
, N1
))
2721 return DAG
.getNode(ISD::ADDCARRY
, DL
,
2722 DAG
.getVTList(VT
, Carry
.getValueType()), N0
,
2723 DAG
.getConstant(0, DL
, VT
), Carry
);
2728 SDValue
DAGCombiner::visitADDC(SDNode
*N
) {
2729 SDValue N0
= N
->getOperand(0);
2730 SDValue N1
= N
->getOperand(1);
2731 EVT VT
= N0
.getValueType();
2734 // If the flag result is dead, turn this into an ADD.
2735 if (!N
->hasAnyUseOfValue(1))
2736 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2737 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
2739 // canonicalize constant to RHS.
2740 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2741 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2743 return DAG
.getNode(ISD::ADDC
, DL
, N
->getVTList(), N1
, N0
);
2745 // fold (addc x, 0) -> x + no carry out
2746 if (isNullConstant(N1
))
2747 return CombineTo(N
, N0
, DAG
.getNode(ISD::CARRY_FALSE
,
2750 // If it cannot overflow, transform into an add.
2751 if (DAG
.computeOverflowKind(N0
, N1
) == SelectionDAG::OFK_Never
)
2752 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2753 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
2759 * Flips a boolean if it is cheaper to compute. If the Force parameters is set,
2760 * then the flip also occurs if computing the inverse is the same cost.
2761 * This function returns an empty SDValue in case it cannot flip the boolean
2762 * without increasing the cost of the computation. If you want to flip a boolean
2763 * no matter what, use DAG.getLogicalNOT.
2765 static SDValue
extractBooleanFlip(SDValue V
, SelectionDAG
&DAG
,
2766 const TargetLowering
&TLI
,
2768 if (Force
&& isa
<ConstantSDNode
>(V
))
2769 return DAG
.getLogicalNOT(SDLoc(V
), V
, V
.getValueType());
2771 if (V
.getOpcode() != ISD::XOR
)
2774 ConstantSDNode
*Const
= isConstOrConstSplat(V
.getOperand(1), false);
2778 EVT VT
= V
.getValueType();
2780 bool IsFlip
= false;
2781 switch(TLI
.getBooleanContents(VT
)) {
2782 case TargetLowering::ZeroOrOneBooleanContent
:
2783 IsFlip
= Const
->isOne();
2785 case TargetLowering::ZeroOrNegativeOneBooleanContent
:
2786 IsFlip
= Const
->isAllOnesValue();
2788 case TargetLowering::UndefinedBooleanContent
:
2789 IsFlip
= (Const
->getAPIntValue() & 0x01) == 1;
2794 return V
.getOperand(0);
2796 return DAG
.getLogicalNOT(SDLoc(V
), V
, V
.getValueType());
2800 SDValue
DAGCombiner::visitADDO(SDNode
*N
) {
2801 SDValue N0
= N
->getOperand(0);
2802 SDValue N1
= N
->getOperand(1);
2803 EVT VT
= N0
.getValueType();
2804 bool IsSigned
= (ISD::SADDO
== N
->getOpcode());
2806 EVT CarryVT
= N
->getValueType(1);
2809 // If the flag result is dead, turn this into an ADD.
2810 if (!N
->hasAnyUseOfValue(1))
2811 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2812 DAG
.getUNDEF(CarryVT
));
2814 // canonicalize constant to RHS.
2815 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
2816 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
2817 return DAG
.getNode(N
->getOpcode(), DL
, N
->getVTList(), N1
, N0
);
2819 // fold (addo x, 0) -> x + no carry out
2820 if (isNullOrNullSplat(N1
))
2821 return CombineTo(N
, N0
, DAG
.getConstant(0, DL
, CarryVT
));
2824 // If it cannot overflow, transform into an add.
2825 if (DAG
.computeOverflowKind(N0
, N1
) == SelectionDAG::OFK_Never
)
2826 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2827 DAG
.getConstant(0, DL
, CarryVT
));
2829 // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry.
2830 if (isBitwiseNot(N0
) && isOneOrOneSplat(N1
)) {
2831 SDValue Sub
= DAG
.getNode(ISD::USUBO
, DL
, N
->getVTList(),
2832 DAG
.getConstant(0, DL
, VT
), N0
.getOperand(0));
2834 N
, Sub
, DAG
.getLogicalNOT(DL
, Sub
.getValue(1), Sub
->getValueType(1)));
2837 if (SDValue Combined
= visitUADDOLike(N0
, N1
, N
))
2840 if (SDValue Combined
= visitUADDOLike(N1
, N0
, N
))
2847 SDValue
DAGCombiner::visitUADDOLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
2848 EVT VT
= N0
.getValueType();
2852 // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2853 // If Y + 1 cannot overflow.
2854 if (N1
.getOpcode() == ISD::ADDCARRY
&& isNullConstant(N1
.getOperand(1))) {
2855 SDValue Y
= N1
.getOperand(0);
2856 SDValue One
= DAG
.getConstant(1, SDLoc(N
), Y
.getValueType());
2857 if (DAG
.computeOverflowKind(Y
, One
) == SelectionDAG::OFK_Never
)
2858 return DAG
.getNode(ISD::ADDCARRY
, SDLoc(N
), N
->getVTList(), N0
, Y
,
2862 // (uaddo X, Carry) -> (addcarry X, 0, Carry)
2863 if (TLI
.isOperationLegalOrCustom(ISD::ADDCARRY
, VT
))
2864 if (SDValue Carry
= getAsCarry(TLI
, N1
))
2865 return DAG
.getNode(ISD::ADDCARRY
, SDLoc(N
), N
->getVTList(), N0
,
2866 DAG
.getConstant(0, SDLoc(N
), VT
), Carry
);
2871 SDValue
DAGCombiner::visitADDE(SDNode
*N
) {
2872 SDValue N0
= N
->getOperand(0);
2873 SDValue N1
= N
->getOperand(1);
2874 SDValue CarryIn
= N
->getOperand(2);
2876 // canonicalize constant to RHS
2877 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2878 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2880 return DAG
.getNode(ISD::ADDE
, SDLoc(N
), N
->getVTList(),
2883 // fold (adde x, y, false) -> (addc x, y)
2884 if (CarryIn
.getOpcode() == ISD::CARRY_FALSE
)
2885 return DAG
.getNode(ISD::ADDC
, SDLoc(N
), N
->getVTList(), N0
, N1
);
2890 SDValue
DAGCombiner::visitADDCARRY(SDNode
*N
) {
2891 SDValue N0
= N
->getOperand(0);
2892 SDValue N1
= N
->getOperand(1);
2893 SDValue CarryIn
= N
->getOperand(2);
2896 // canonicalize constant to RHS
2897 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2898 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2900 return DAG
.getNode(ISD::ADDCARRY
, DL
, N
->getVTList(), N1
, N0
, CarryIn
);
2902 // fold (addcarry x, y, false) -> (uaddo x, y)
2903 if (isNullConstant(CarryIn
)) {
2904 if (!LegalOperations
||
2905 TLI
.isOperationLegalOrCustom(ISD::UADDO
, N
->getValueType(0)))
2906 return DAG
.getNode(ISD::UADDO
, DL
, N
->getVTList(), N0
, N1
);
2909 // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry.
2910 if (isNullConstant(N0
) && isNullConstant(N1
)) {
2911 EVT VT
= N0
.getValueType();
2912 EVT CarryVT
= CarryIn
.getValueType();
2913 SDValue CarryExt
= DAG
.getBoolExtOrTrunc(CarryIn
, DL
, VT
, CarryVT
);
2914 AddToWorklist(CarryExt
.getNode());
2915 return CombineTo(N
, DAG
.getNode(ISD::AND
, DL
, VT
, CarryExt
,
2916 DAG
.getConstant(1, DL
, VT
)),
2917 DAG
.getConstant(0, DL
, CarryVT
));
2920 if (SDValue Combined
= visitADDCARRYLike(N0
, N1
, CarryIn
, N
))
2923 if (SDValue Combined
= visitADDCARRYLike(N1
, N0
, CarryIn
, N
))
2929 SDValue
DAGCombiner::visitSADDO_CARRY(SDNode
*N
) {
2930 SDValue N0
= N
->getOperand(0);
2931 SDValue N1
= N
->getOperand(1);
2932 SDValue CarryIn
= N
->getOperand(2);
2935 // canonicalize constant to RHS
2936 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2937 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2939 return DAG
.getNode(ISD::SADDO_CARRY
, DL
, N
->getVTList(), N1
, N0
, CarryIn
);
2941 // fold (saddo_carry x, y, false) -> (saddo x, y)
2942 if (isNullConstant(CarryIn
)) {
2943 if (!LegalOperations
||
2944 TLI
.isOperationLegalOrCustom(ISD::SADDO
, N
->getValueType(0)))
2945 return DAG
.getNode(ISD::SADDO
, DL
, N
->getVTList(), N0
, N1
);
2952 * If we are facing some sort of diamond carry propapagtion pattern try to
2953 * break it up to generate something like:
2954 * (addcarry X, 0, (addcarry A, B, Z):Carry)
2956 * The end result is usually an increase in operation required, but because the
2957 * carry is now linearized, other tranforms can kick in and optimize the DAG.
2959 * Patterns typically look something like
2964 * | (addcarry *, 0, Z)
2968 * (addcarry X, *, *)
2970 * But numerous variation exist. Our goal is to identify A, B, X and Z and
2971 * produce a combine with a single path for carry propagation.
2973 static SDValue
combineADDCARRYDiamond(DAGCombiner
&Combiner
, SelectionDAG
&DAG
,
2974 SDValue X
, SDValue Carry0
, SDValue Carry1
,
2976 if (Carry1
.getResNo() != 1 || Carry0
.getResNo() != 1)
2978 if (Carry1
.getOpcode() != ISD::UADDO
)
2984 * First look for a suitable Z. It will present itself in the form of
2985 * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true
2987 if (Carry0
.getOpcode() == ISD::ADDCARRY
&&
2988 isNullConstant(Carry0
.getOperand(1))) {
2989 Z
= Carry0
.getOperand(2);
2990 } else if (Carry0
.getOpcode() == ISD::UADDO
&&
2991 isOneConstant(Carry0
.getOperand(1))) {
2992 EVT VT
= Combiner
.getSetCCResultType(Carry0
.getValueType());
2993 Z
= DAG
.getConstant(1, SDLoc(Carry0
.getOperand(1)), VT
);
2995 // We couldn't find a suitable Z.
3000 auto cancelDiamond
= [&](SDValue A
,SDValue B
) {
3002 SDValue NewY
= DAG
.getNode(ISD::ADDCARRY
, DL
, Carry0
->getVTList(), A
, B
, Z
);
3003 Combiner
.AddToWorklist(NewY
.getNode());
3004 return DAG
.getNode(ISD::ADDCARRY
, DL
, N
->getVTList(), X
,
3005 DAG
.getConstant(0, DL
, X
.getValueType()),
3014 * (addcarry *, 0, Z)
3016 if (Carry0
.getOperand(0) == Carry1
.getValue(0)) {
3017 return cancelDiamond(Carry1
.getOperand(0), Carry1
.getOperand(1));
3021 * (addcarry A, 0, Z)
3027 if (Carry1
.getOperand(0) == Carry0
.getValue(0)) {
3028 return cancelDiamond(Carry0
.getOperand(0), Carry1
.getOperand(1));
3031 if (Carry1
.getOperand(1) == Carry0
.getValue(0)) {
3032 return cancelDiamond(Carry1
.getOperand(0), Carry0
.getOperand(0));
3038 // If we are facing some sort of diamond carry/borrow in/out pattern try to
3039 // match patterns like:
3041 // (uaddo A, B) CarryIn
3044 // PartialSum PartialCarryOutX /
3046 // | ____|____________/
3048 // (uaddo *, *) \________
3051 // | PartialCarryOutY |
3054 // AddCarrySum | ______/
3056 // CarryOut = (or *, *)
3058 // And generate ADDCARRY (or SUBCARRY) with two result values:
3060 // {AddCarrySum, CarryOut} = (addcarry A, B, CarryIn)
3062 // Our goal is to identify A, B, and CarryIn and produce ADDCARRY/SUBCARRY with
3063 // a single path for carry/borrow out propagation:
3064 static SDValue
combineCarryDiamond(DAGCombiner
&Combiner
, SelectionDAG
&DAG
,
3065 const TargetLowering
&TLI
, SDValue Carry0
,
3066 SDValue Carry1
, SDNode
*N
) {
3067 if (Carry0
.getResNo() != 1 || Carry1
.getResNo() != 1)
3069 unsigned Opcode
= Carry0
.getOpcode();
3070 if (Opcode
!= Carry1
.getOpcode())
3072 if (Opcode
!= ISD::UADDO
&& Opcode
!= ISD::USUBO
)
3075 // Canonicalize the add/sub of A and B as Carry0 and the add/sub of the
3076 // carry/borrow in as Carry1. (The top and middle uaddo nodes respectively in
3077 // the above ASCII art.)
3078 if (Carry1
.getOperand(0) != Carry0
.getValue(0) &&
3079 Carry1
.getOperand(1) != Carry0
.getValue(0))
3080 std::swap(Carry0
, Carry1
);
3081 if (Carry1
.getOperand(0) != Carry0
.getValue(0) &&
3082 Carry1
.getOperand(1) != Carry0
.getValue(0))
3085 // The carry in value must be on the righthand side for subtraction.
3086 unsigned CarryInOperandNum
=
3087 Carry1
.getOperand(0) == Carry0
.getValue(0) ? 1 : 0;
3088 if (Opcode
== ISD::USUBO
&& CarryInOperandNum
!= 1)
3090 SDValue CarryIn
= Carry1
.getOperand(CarryInOperandNum
);
3092 unsigned NewOp
= Opcode
== ISD::UADDO
? ISD::ADDCARRY
: ISD::SUBCARRY
;
3093 if (!TLI
.isOperationLegalOrCustom(NewOp
, Carry0
.getValue(0).getValueType()))
3096 // Verify that the carry/borrow in is plausibly a carry/borrow bit.
3097 // TODO: make getAsCarry() aware of how partial carries are merged.
3098 if (CarryIn
.getOpcode() != ISD::ZERO_EXTEND
)
3100 CarryIn
= CarryIn
.getOperand(0);
3101 if (CarryIn
.getValueType() != MVT::i1
)
3106 DAG
.getNode(NewOp
, DL
, Carry1
->getVTList(), Carry0
.getOperand(0),
3107 Carry0
.getOperand(1), CarryIn
);
3109 // Please note that because we have proven that the result of the UADDO/USUBO
3110 // of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can
3111 // therefore prove that if the first UADDO/USUBO overflows, the second
3112 // UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the
3115 // 0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry
3116 // 0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow)
3118 // This is important because it means that OR and XOR can be used to merge
3119 // carry flags; and that AND can return a constant zero.
3121 // TODO: match other operations that can merge flags (ADD, etc)
3122 DAG
.ReplaceAllUsesOfValueWith(Carry1
.getValue(0), Merged
.getValue(0));
3123 if (N
->getOpcode() == ISD::AND
)
3124 return DAG
.getConstant(0, DL
, MVT::i1
);
3125 return Merged
.getValue(1);
3128 SDValue
DAGCombiner::visitADDCARRYLike(SDValue N0
, SDValue N1
, SDValue CarryIn
,
3130 // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry.
3131 if (isBitwiseNot(N0
))
3132 if (SDValue NotC
= extractBooleanFlip(CarryIn
, DAG
, TLI
, true)) {
3134 SDValue Sub
= DAG
.getNode(ISD::SUBCARRY
, DL
, N
->getVTList(), N1
,
3135 N0
.getOperand(0), NotC
);
3137 N
, Sub
, DAG
.getLogicalNOT(DL
, Sub
.getValue(1), Sub
->getValueType(1)));
3140 // Iff the flag result is dead:
3141 // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry)
3142 // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo
3143 // or the dependency between the instructions.
3144 if ((N0
.getOpcode() == ISD::ADD
||
3145 (N0
.getOpcode() == ISD::UADDO
&& N0
.getResNo() == 0 &&
3146 N0
.getValue(1) != CarryIn
)) &&
3147 isNullConstant(N1
) && !N
->hasAnyUseOfValue(1))
3148 return DAG
.getNode(ISD::ADDCARRY
, SDLoc(N
), N
->getVTList(),
3149 N0
.getOperand(0), N0
.getOperand(1), CarryIn
);
3152 * When one of the addcarry argument is itself a carry, we may be facing
3153 * a diamond carry propagation. In which case we try to transform the DAG
3154 * to ensure linear carry propagation if that is possible.
3156 if (auto Y
= getAsCarry(TLI
, N1
)) {
3157 // Because both are carries, Y and Z can be swapped.
3158 if (auto R
= combineADDCARRYDiamond(*this, DAG
, N0
, Y
, CarryIn
, N
))
3160 if (auto R
= combineADDCARRYDiamond(*this, DAG
, N0
, CarryIn
, Y
, N
))
3167 // Attempt to create a USUBSAT(LHS, RHS) node with DstVT, performing a
3168 // clamp/truncation if necessary.
3169 static SDValue
getTruncatedUSUBSAT(EVT DstVT
, EVT SrcVT
, SDValue LHS
,
3170 SDValue RHS
, SelectionDAG
&DAG
,
3172 assert(DstVT
.getScalarSizeInBits() <= SrcVT
.getScalarSizeInBits() &&
3173 "Illegal truncation");
3176 return DAG
.getNode(ISD::USUBSAT
, DL
, DstVT
, LHS
, RHS
);
3178 // If the LHS is zero-extended then we can perform the USUBSAT as DstVT by
3180 APInt UpperBits
= APInt::getBitsSetFrom(SrcVT
.getScalarSizeInBits(),
3181 DstVT
.getScalarSizeInBits());
3182 if (!DAG
.MaskedValueIsZero(LHS
, UpperBits
))
3186 DAG
.getConstant(APInt::getLowBitsSet(SrcVT
.getScalarSizeInBits(),
3187 DstVT
.getScalarSizeInBits()),
3189 RHS
= DAG
.getNode(ISD::UMIN
, DL
, SrcVT
, RHS
, SatLimit
);
3190 RHS
= DAG
.getNode(ISD::TRUNCATE
, DL
, DstVT
, RHS
);
3191 LHS
= DAG
.getNode(ISD::TRUNCATE
, DL
, DstVT
, LHS
);
3192 return DAG
.getNode(ISD::USUBSAT
, DL
, DstVT
, LHS
, RHS
);
3195 // Try to find umax(a,b) - b or a - umin(a,b) patterns that may be converted to
3196 // usubsat(a,b), optionally as a truncated type.
3197 SDValue
DAGCombiner::foldSubToUSubSat(EVT DstVT
, SDNode
*N
) {
3198 if (N
->getOpcode() != ISD::SUB
||
3199 !(!LegalOperations
|| hasOperation(ISD::USUBSAT
, DstVT
)))
3202 EVT SubVT
= N
->getValueType(0);
3203 SDValue Op0
= N
->getOperand(0);
3204 SDValue Op1
= N
->getOperand(1);
3206 // Try to find umax(a,b) - b or a - umin(a,b) patterns
3207 // they may be converted to usubsat(a,b).
3208 if (Op0
.getOpcode() == ISD::UMAX
&& Op0
.hasOneUse()) {
3209 SDValue MaxLHS
= Op0
.getOperand(0);
3210 SDValue MaxRHS
= Op0
.getOperand(1);
3212 return getTruncatedUSUBSAT(DstVT
, SubVT
, MaxRHS
, Op1
, DAG
, SDLoc(N
));
3214 return getTruncatedUSUBSAT(DstVT
, SubVT
, MaxLHS
, Op1
, DAG
, SDLoc(N
));
3217 if (Op1
.getOpcode() == ISD::UMIN
&& Op1
.hasOneUse()) {
3218 SDValue MinLHS
= Op1
.getOperand(0);
3219 SDValue MinRHS
= Op1
.getOperand(1);
3221 return getTruncatedUSUBSAT(DstVT
, SubVT
, Op0
, MinRHS
, DAG
, SDLoc(N
));
3223 return getTruncatedUSUBSAT(DstVT
, SubVT
, Op0
, MinLHS
, DAG
, SDLoc(N
));
3226 // sub(a,trunc(umin(zext(a),b))) -> usubsat(a,trunc(umin(b,SatLimit)))
3227 if (Op1
.getOpcode() == ISD::TRUNCATE
&&
3228 Op1
.getOperand(0).getOpcode() == ISD::UMIN
&&
3229 Op1
.getOperand(0).hasOneUse()) {
3230 SDValue MinLHS
= Op1
.getOperand(0).getOperand(0);
3231 SDValue MinRHS
= Op1
.getOperand(0).getOperand(1);
3232 if (MinLHS
.getOpcode() == ISD::ZERO_EXTEND
&& MinLHS
.getOperand(0) == Op0
)
3233 return getTruncatedUSUBSAT(DstVT
, MinLHS
.getValueType(), MinLHS
, MinRHS
,
3235 if (MinRHS
.getOpcode() == ISD::ZERO_EXTEND
&& MinRHS
.getOperand(0) == Op0
)
3236 return getTruncatedUSUBSAT(DstVT
, MinLHS
.getValueType(), MinRHS
, MinLHS
,
3243 // Since it may not be valid to emit a fold to zero for vector initializers
3244 // check if we can before folding.
3245 static SDValue
tryFoldToZero(const SDLoc
&DL
, const TargetLowering
&TLI
, EVT VT
,
3246 SelectionDAG
&DAG
, bool LegalOperations
) {
3248 return DAG
.getConstant(0, DL
, VT
);
3249 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
))
3250 return DAG
.getConstant(0, DL
, VT
);
3254 SDValue
DAGCombiner::visitSUB(SDNode
*N
) {
3255 SDValue N0
= N
->getOperand(0);
3256 SDValue N1
= N
->getOperand(1);
3257 EVT VT
= N0
.getValueType();
3261 if (VT
.isVector()) {
3262 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
3265 // fold (sub x, 0) -> x, vector edition
3266 if (ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
3270 // fold (sub x, x) -> 0
3271 // FIXME: Refactor this and xor and other similar operations together.
3273 return tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
3275 // fold (sub c1, c2) -> c3
3276 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, {N0
, N1
}))
3279 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
3282 ConstantSDNode
*N1C
= getAsNonOpaqueConstant(N1
);
3284 // fold (sub x, c) -> (add x, -c)
3286 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
,
3287 DAG
.getConstant(-N1C
->getAPIntValue(), DL
, VT
));
3290 if (isNullOrNullSplat(N0
)) {
3291 unsigned BitWidth
= VT
.getScalarSizeInBits();
3292 // Right-shifting everything out but the sign bit followed by negation is
3293 // the same as flipping arithmetic/logical shift type without the negation:
3294 // -(X >>u 31) -> (X >>s 31)
3295 // -(X >>s 31) -> (X >>u 31)
3296 if (N1
->getOpcode() == ISD::SRA
|| N1
->getOpcode() == ISD::SRL
) {
3297 ConstantSDNode
*ShiftAmt
= isConstOrConstSplat(N1
.getOperand(1));
3298 if (ShiftAmt
&& ShiftAmt
->getAPIntValue() == (BitWidth
- 1)) {
3299 auto NewSh
= N1
->getOpcode() == ISD::SRA
? ISD::SRL
: ISD::SRA
;
3300 if (!LegalOperations
|| TLI
.isOperationLegal(NewSh
, VT
))
3301 return DAG
.getNode(NewSh
, DL
, VT
, N1
.getOperand(0), N1
.getOperand(1));
3305 // 0 - X --> 0 if the sub is NUW.
3306 if (N
->getFlags().hasNoUnsignedWrap())
3309 if (DAG
.MaskedValueIsZero(N1
, ~APInt::getSignMask(BitWidth
))) {
3310 // N1 is either 0 or the minimum signed value. If the sub is NSW, then
3311 // N1 must be 0 because negating the minimum signed value is undefined.
3312 if (N
->getFlags().hasNoSignedWrap())
3315 // 0 - X --> X if X is 0 or the minimum signed value.
3319 // Convert 0 - abs(x).
3321 if (N1
->getOpcode() == ISD::ABS
&&
3322 !TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
) &&
3323 TLI
.expandABS(N1
.getNode(), Result
, DAG
, true))
3326 // Fold neg(splat(neg(x)) -> splat(x)
3327 if (VT
.isVector()) {
3328 SDValue N1S
= DAG
.getSplatValue(N1
, true);
3329 if (N1S
&& N1S
.getOpcode() == ISD::SUB
&&
3330 isNullConstant(N1S
.getOperand(0))) {
3331 if (VT
.isScalableVector())
3332 return DAG
.getSplatVector(VT
, DL
, N1S
.getOperand(1));
3333 return DAG
.getSplatBuildVector(VT
, DL
, N1S
.getOperand(1));
3338 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
3339 if (isAllOnesOrAllOnesSplat(N0
))
3340 return DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
);
3342 // fold (A - (0-B)) -> A+B
3343 if (N1
.getOpcode() == ISD::SUB
&& isNullOrNullSplat(N1
.getOperand(0)))
3344 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
.getOperand(1));
3346 // fold A-(A-B) -> B
3347 if (N1
.getOpcode() == ISD::SUB
&& N0
== N1
.getOperand(0))
3348 return N1
.getOperand(1);
3350 // fold (A+B)-A -> B
3351 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(0) == N1
)
3352 return N0
.getOperand(1);
3354 // fold (A+B)-B -> A
3355 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1) == N1
)
3356 return N0
.getOperand(0);
3358 // fold (A+C1)-C2 -> A+(C1-C2)
3359 if (N0
.getOpcode() == ISD::ADD
&&
3360 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
3361 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaques */ true)) {
3363 DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, {N0
.getOperand(1), N1
});
3364 assert(NewC
&& "Constant folding failed");
3365 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), NewC
);
3368 // fold C2-(A+C1) -> (C2-C1)-A
3369 if (N1
.getOpcode() == ISD::ADD
) {
3370 SDValue N11
= N1
.getOperand(1);
3371 if (isConstantOrConstantVector(N0
, /* NoOpaques */ true) &&
3372 isConstantOrConstantVector(N11
, /* NoOpaques */ true)) {
3373 SDValue NewC
= DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, {N0
, N11
});
3374 assert(NewC
&& "Constant folding failed");
3375 return DAG
.getNode(ISD::SUB
, DL
, VT
, NewC
, N1
.getOperand(0));
3379 // fold (A-C1)-C2 -> A-(C1+C2)
3380 if (N0
.getOpcode() == ISD::SUB
&&
3381 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
3382 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaques */ true)) {
3384 DAG
.FoldConstantArithmetic(ISD::ADD
, DL
, VT
, {N0
.getOperand(1), N1
});
3385 assert(NewC
&& "Constant folding failed");
3386 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), NewC
);
3389 // fold (c1-A)-c2 -> (c1-c2)-A
3390 if (N0
.getOpcode() == ISD::SUB
&&
3391 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
3392 isConstantOrConstantVector(N0
.getOperand(0), /* NoOpaques */ true)) {
3394 DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, {N0
.getOperand(0), N1
});
3395 assert(NewC
&& "Constant folding failed");
3396 return DAG
.getNode(ISD::SUB
, DL
, VT
, NewC
, N0
.getOperand(1));
3399 // fold ((A+(B+or-C))-B) -> A+or-C
3400 if (N0
.getOpcode() == ISD::ADD
&&
3401 (N0
.getOperand(1).getOpcode() == ISD::SUB
||
3402 N0
.getOperand(1).getOpcode() == ISD::ADD
) &&
3403 N0
.getOperand(1).getOperand(0) == N1
)
3404 return DAG
.getNode(N0
.getOperand(1).getOpcode(), DL
, VT
, N0
.getOperand(0),
3405 N0
.getOperand(1).getOperand(1));
3407 // fold ((A+(C+B))-B) -> A+C
3408 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1).getOpcode() == ISD::ADD
&&
3409 N0
.getOperand(1).getOperand(1) == N1
)
3410 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0),
3411 N0
.getOperand(1).getOperand(0));
3413 // fold ((A-(B-C))-C) -> A-B
3414 if (N0
.getOpcode() == ISD::SUB
&& N0
.getOperand(1).getOpcode() == ISD::SUB
&&
3415 N0
.getOperand(1).getOperand(1) == N1
)
3416 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0),
3417 N0
.getOperand(1).getOperand(0));
3419 // fold (A-(B-C)) -> A+(C-B)
3420 if (N1
.getOpcode() == ISD::SUB
&& N1
.hasOneUse())
3421 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
,
3422 DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(1),
3425 // A - (A & B) -> A & (~B)
3426 if (N1
.getOpcode() == ISD::AND
) {
3427 SDValue A
= N1
.getOperand(0);
3428 SDValue B
= N1
.getOperand(1);
3432 (N1
.hasOneUse() || isConstantOrConstantVector(B
, /*NoOpaques=*/true))) {
3434 DAG
.getNode(ISD::XOR
, DL
, VT
, B
, DAG
.getAllOnesConstant(DL
, VT
));
3435 return DAG
.getNode(ISD::AND
, DL
, VT
, A
, InvB
);
3439 // fold (X - (-Y * Z)) -> (X + (Y * Z))
3440 if (N1
.getOpcode() == ISD::MUL
&& N1
.hasOneUse()) {
3441 if (N1
.getOperand(0).getOpcode() == ISD::SUB
&&
3442 isNullOrNullSplat(N1
.getOperand(0).getOperand(0))) {
3443 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
,
3444 N1
.getOperand(0).getOperand(1),
3446 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Mul
);
3448 if (N1
.getOperand(1).getOpcode() == ISD::SUB
&&
3449 isNullOrNullSplat(N1
.getOperand(1).getOperand(0))) {
3450 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
,
3452 N1
.getOperand(1).getOperand(1));
3453 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Mul
);
3457 // If either operand of a sub is undef, the result is undef
3463 if (SDValue V
= foldAddSubBoolOfMaskedVal(N
, DAG
))
3466 if (SDValue V
= foldAddSubOfSignBit(N
, DAG
))
3469 if (SDValue V
= foldAddSubMasked1(false, N0
, N1
, DAG
, SDLoc(N
)))
3472 if (SDValue V
= foldSubToUSubSat(VT
, N
))
3475 // (x - y) - 1 -> add (xor y, -1), x
3476 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&& isOneOrOneSplat(N1
)) {
3477 SDValue Xor
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(1),
3478 DAG
.getAllOnesConstant(DL
, VT
));
3479 return DAG
.getNode(ISD::ADD
, DL
, VT
, Xor
, N0
.getOperand(0));
3483 // sub y, (xor x, -1)
3484 // And if the target does not like this form then turn into:
3485 // add (add x, y), 1
3486 if (TLI
.preferIncOfAddToSubOfNot(VT
) && N1
.hasOneUse() && isBitwiseNot(N1
)) {
3487 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
.getOperand(0));
3488 return DAG
.getNode(ISD::ADD
, DL
, VT
, Add
, DAG
.getConstant(1, DL
, VT
));
3491 // Hoist one-use addition by non-opaque constant:
3492 // (x + C) - y -> (x - y) + C
3493 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::ADD
&&
3494 isConstantOrConstantVector(N0
.getOperand(1), /*NoOpaques=*/true)) {
3495 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), N1
);
3496 return DAG
.getNode(ISD::ADD
, DL
, VT
, Sub
, N0
.getOperand(1));
3498 // y - (x + C) -> (y - x) - C
3499 if (N1
.hasOneUse() && N1
.getOpcode() == ISD::ADD
&&
3500 isConstantOrConstantVector(N1
.getOperand(1), /*NoOpaques=*/true)) {
3501 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
.getOperand(0));
3502 return DAG
.getNode(ISD::SUB
, DL
, VT
, Sub
, N1
.getOperand(1));
3504 // (x - C) - y -> (x - y) - C
3505 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
3506 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
3507 isConstantOrConstantVector(N0
.getOperand(1), /*NoOpaques=*/true)) {
3508 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), N1
);
3509 return DAG
.getNode(ISD::SUB
, DL
, VT
, Sub
, N0
.getOperand(1));
3511 // (C - x) - y -> C - (x + y)
3512 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
3513 isConstantOrConstantVector(N0
.getOperand(0), /*NoOpaques=*/true)) {
3514 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(1), N1
);
3515 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), Add
);
3518 // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1'
3519 // rather than 'sub 0/1' (the sext should get folded).
3520 // sub X, (zext i1 Y) --> add X, (sext i1 Y)
3521 if (N1
.getOpcode() == ISD::ZERO_EXTEND
&&
3522 N1
.getOperand(0).getScalarValueSizeInBits() == 1 &&
3523 TLI
.getBooleanContents(VT
) ==
3524 TargetLowering::ZeroOrNegativeOneBooleanContent
) {
3525 SDValue SExt
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, N1
.getOperand(0));
3526 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, SExt
);
3529 // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X)
3530 if (TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
)) {
3531 if (N0
.getOpcode() == ISD::XOR
&& N1
.getOpcode() == ISD::SRA
) {
3532 SDValue X0
= N0
.getOperand(0), X1
= N0
.getOperand(1);
3533 SDValue S0
= N1
.getOperand(0);
3534 if ((X0
== S0
&& X1
== N1
) || (X0
== N1
&& X1
== S0
))
3535 if (ConstantSDNode
*C
= isConstOrConstSplat(N1
.getOperand(1)))
3536 if (C
->getAPIntValue() == (VT
.getScalarSizeInBits() - 1))
3537 return DAG
.getNode(ISD::ABS
, SDLoc(N
), VT
, S0
);
3541 // If the relocation model supports it, consider symbol offsets.
3542 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N0
))
3543 if (!LegalOperations
&& TLI
.isOffsetFoldingLegal(GA
)) {
3544 // fold (sub Sym, c) -> Sym-c
3545 if (N1C
&& GA
->getOpcode() == ISD::GlobalAddress
)
3546 return DAG
.getGlobalAddress(GA
->getGlobal(), SDLoc(N1C
), VT
,
3548 (uint64_t)N1C
->getSExtValue());
3549 // fold (sub Sym+c1, Sym+c2) -> c1-c2
3550 if (GlobalAddressSDNode
*GB
= dyn_cast
<GlobalAddressSDNode
>(N1
))
3551 if (GA
->getGlobal() == GB
->getGlobal())
3552 return DAG
.getConstant((uint64_t)GA
->getOffset() - GB
->getOffset(),
3556 // sub X, (sextinreg Y i1) -> add X, (and Y 1)
3557 if (N1
.getOpcode() == ISD::SIGN_EXTEND_INREG
) {
3558 VTSDNode
*TN
= cast
<VTSDNode
>(N1
.getOperand(1));
3559 if (TN
->getVT() == MVT::i1
) {
3560 SDValue ZExt
= DAG
.getNode(ISD::AND
, DL
, VT
, N1
.getOperand(0),
3561 DAG
.getConstant(1, DL
, VT
));
3562 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, ZExt
);
3566 // canonicalize (sub X, (vscale * C)) to (add X, (vscale * -C))
3567 if (N1
.getOpcode() == ISD::VSCALE
) {
3568 const APInt
&IntVal
= N1
.getConstantOperandAPInt(0);
3569 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, DAG
.getVScale(DL
, VT
, -IntVal
));
3572 // canonicalize (sub X, step_vector(C)) to (add X, step_vector(-C))
3573 if (N1
.getOpcode() == ISD::STEP_VECTOR
&& N1
.hasOneUse()) {
3574 APInt NewStep
= -N1
.getConstantOperandAPInt(0);
3575 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
,
3576 DAG
.getStepVector(DL
, VT
, NewStep
));
3579 // Prefer an add for more folding potential and possibly better codegen:
3580 // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1)
3581 if (!LegalOperations
&& N1
.getOpcode() == ISD::SRL
&& N1
.hasOneUse()) {
3582 SDValue ShAmt
= N1
.getOperand(1);
3583 ConstantSDNode
*ShAmtC
= isConstOrConstSplat(ShAmt
);
3585 ShAmtC
->getAPIntValue() == (N1
.getScalarValueSizeInBits() - 1)) {
3586 SDValue SRA
= DAG
.getNode(ISD::SRA
, DL
, VT
, N1
.getOperand(0), ShAmt
);
3587 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, SRA
);
3591 if (TLI
.isOperationLegalOrCustom(ISD::ADDCARRY
, VT
)) {
3592 // (sub Carry, X) -> (addcarry (sub 0, X), 0, Carry)
3593 if (SDValue Carry
= getAsCarry(TLI
, N0
)) {
3595 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
3596 SDValue NegX
= DAG
.getNode(ISD::SUB
, DL
, VT
, Zero
, X
);
3597 return DAG
.getNode(ISD::ADDCARRY
, DL
,
3598 DAG
.getVTList(VT
, Carry
.getValueType()), NegX
, Zero
,
3606 SDValue
DAGCombiner::visitSUBSAT(SDNode
*N
) {
3607 SDValue N0
= N
->getOperand(0);
3608 SDValue N1
= N
->getOperand(1);
3609 EVT VT
= N0
.getValueType();
3613 if (VT
.isVector()) {
3614 // TODO SimplifyVBinOp
3616 // fold (sub_sat x, 0) -> x, vector edition
3617 if (ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
3621 // fold (sub_sat x, undef) -> 0
3622 if (N0
.isUndef() || N1
.isUndef())
3623 return DAG
.getConstant(0, DL
, VT
);
3625 // fold (sub_sat x, x) -> 0
3627 return DAG
.getConstant(0, DL
, VT
);
3629 // fold (sub_sat c1, c2) -> c3
3630 if (SDValue C
= DAG
.FoldConstantArithmetic(N
->getOpcode(), DL
, VT
, {N0
, N1
}))
3633 // fold (sub_sat x, 0) -> x
3634 if (isNullConstant(N1
))
3640 SDValue
DAGCombiner::visitSUBC(SDNode
*N
) {
3641 SDValue N0
= N
->getOperand(0);
3642 SDValue N1
= N
->getOperand(1);
3643 EVT VT
= N0
.getValueType();
3646 // If the flag result is dead, turn this into an SUB.
3647 if (!N
->hasAnyUseOfValue(1))
3648 return CombineTo(N
, DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
),
3649 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3651 // fold (subc x, x) -> 0 + no borrow
3653 return CombineTo(N
, DAG
.getConstant(0, DL
, VT
),
3654 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3656 // fold (subc x, 0) -> x + no borrow
3657 if (isNullConstant(N1
))
3658 return CombineTo(N
, N0
, DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3660 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
3661 if (isAllOnesConstant(N0
))
3662 return CombineTo(N
, DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
),
3663 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3668 SDValue
DAGCombiner::visitSUBO(SDNode
*N
) {
3669 SDValue N0
= N
->getOperand(0);
3670 SDValue N1
= N
->getOperand(1);
3671 EVT VT
= N0
.getValueType();
3672 bool IsSigned
= (ISD::SSUBO
== N
->getOpcode());
3674 EVT CarryVT
= N
->getValueType(1);
3677 // If the flag result is dead, turn this into an SUB.
3678 if (!N
->hasAnyUseOfValue(1))
3679 return CombineTo(N
, DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
),
3680 DAG
.getUNDEF(CarryVT
));
3682 // fold (subo x, x) -> 0 + no borrow
3684 return CombineTo(N
, DAG
.getConstant(0, DL
, VT
),
3685 DAG
.getConstant(0, DL
, CarryVT
));
3687 ConstantSDNode
*N1C
= getAsNonOpaqueConstant(N1
);
3689 // fold (subox, c) -> (addo x, -c)
3690 if (IsSigned
&& N1C
&& !N1C
->getAPIntValue().isMinSignedValue()) {
3691 return DAG
.getNode(ISD::SADDO
, DL
, N
->getVTList(), N0
,
3692 DAG
.getConstant(-N1C
->getAPIntValue(), DL
, VT
));
3695 // fold (subo x, 0) -> x + no borrow
3696 if (isNullOrNullSplat(N1
))
3697 return CombineTo(N
, N0
, DAG
.getConstant(0, DL
, CarryVT
));
3699 // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow
3700 if (!IsSigned
&& isAllOnesOrAllOnesSplat(N0
))
3701 return CombineTo(N
, DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
),
3702 DAG
.getConstant(0, DL
, CarryVT
));
3707 SDValue
DAGCombiner::visitSUBE(SDNode
*N
) {
3708 SDValue N0
= N
->getOperand(0);
3709 SDValue N1
= N
->getOperand(1);
3710 SDValue CarryIn
= N
->getOperand(2);
3712 // fold (sube x, y, false) -> (subc x, y)
3713 if (CarryIn
.getOpcode() == ISD::CARRY_FALSE
)
3714 return DAG
.getNode(ISD::SUBC
, SDLoc(N
), N
->getVTList(), N0
, N1
);
3719 SDValue
DAGCombiner::visitSUBCARRY(SDNode
*N
) {
3720 SDValue N0
= N
->getOperand(0);
3721 SDValue N1
= N
->getOperand(1);
3722 SDValue CarryIn
= N
->getOperand(2);
3724 // fold (subcarry x, y, false) -> (usubo x, y)
3725 if (isNullConstant(CarryIn
)) {
3726 if (!LegalOperations
||
3727 TLI
.isOperationLegalOrCustom(ISD::USUBO
, N
->getValueType(0)))
3728 return DAG
.getNode(ISD::USUBO
, SDLoc(N
), N
->getVTList(), N0
, N1
);
3734 SDValue
DAGCombiner::visitSSUBO_CARRY(SDNode
*N
) {
3735 SDValue N0
= N
->getOperand(0);
3736 SDValue N1
= N
->getOperand(1);
3737 SDValue CarryIn
= N
->getOperand(2);
3739 // fold (ssubo_carry x, y, false) -> (ssubo x, y)
3740 if (isNullConstant(CarryIn
)) {
3741 if (!LegalOperations
||
3742 TLI
.isOperationLegalOrCustom(ISD::SSUBO
, N
->getValueType(0)))
3743 return DAG
.getNode(ISD::SSUBO
, SDLoc(N
), N
->getVTList(), N0
, N1
);
3749 // Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and
3751 SDValue
DAGCombiner::visitMULFIX(SDNode
*N
) {
3752 SDValue N0
= N
->getOperand(0);
3753 SDValue N1
= N
->getOperand(1);
3754 SDValue Scale
= N
->getOperand(2);
3755 EVT VT
= N0
.getValueType();
3757 // fold (mulfix x, undef, scale) -> 0
3758 if (N0
.isUndef() || N1
.isUndef())
3759 return DAG
.getConstant(0, SDLoc(N
), VT
);
3761 // Canonicalize constant to RHS (vector doesn't have to splat)
3762 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
3763 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
3764 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N1
, N0
, Scale
);
3766 // fold (mulfix x, 0, scale) -> 0
3767 if (isNullConstant(N1
))
3768 return DAG
.getConstant(0, SDLoc(N
), VT
);
3773 SDValue
DAGCombiner::visitMUL(SDNode
*N
) {
3774 SDValue N0
= N
->getOperand(0);
3775 SDValue N1
= N
->getOperand(1);
3776 EVT VT
= N0
.getValueType();
3778 // fold (mul x, undef) -> 0
3779 if (N0
.isUndef() || N1
.isUndef())
3780 return DAG
.getConstant(0, SDLoc(N
), VT
);
3782 bool N1IsConst
= false;
3783 bool N1IsOpaqueConst
= false;
3787 if (VT
.isVector()) {
3788 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
3791 N1IsConst
= ISD::isConstantSplatVector(N1
.getNode(), ConstValue1
);
3792 assert((!N1IsConst
||
3793 ConstValue1
.getBitWidth() == VT
.getScalarSizeInBits()) &&
3794 "Splat APInt should be element width");
3796 N1IsConst
= isa
<ConstantSDNode
>(N1
);
3798 ConstValue1
= cast
<ConstantSDNode
>(N1
)->getAPIntValue();
3799 N1IsOpaqueConst
= cast
<ConstantSDNode
>(N1
)->isOpaque();
3803 // fold (mul c1, c2) -> c1*c2
3804 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::MUL
, SDLoc(N
), VT
, {N0
, N1
}))
3807 // canonicalize constant to RHS (vector doesn't have to splat)
3808 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
3809 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
3810 return DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, N1
, N0
);
3812 // fold (mul x, 0) -> 0
3813 if (N1IsConst
&& ConstValue1
.isNullValue())
3816 // fold (mul x, 1) -> x
3817 if (N1IsConst
&& ConstValue1
.isOneValue())
3820 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
3823 // fold (mul x, -1) -> 0-x
3824 if (N1IsConst
&& ConstValue1
.isAllOnesValue()) {
3826 return DAG
.getNode(ISD::SUB
, DL
, VT
,
3827 DAG
.getConstant(0, DL
, VT
), N0
);
3830 // fold (mul x, (1 << c)) -> x << c
3831 if (isConstantOrConstantVector(N1
, /*NoOpaques*/ true) &&
3832 DAG
.isKnownToBeAPowerOfTwo(N1
) &&
3833 (!VT
.isVector() || Level
<= AfterLegalizeVectorOps
)) {
3835 SDValue LogBase2
= BuildLogBase2(N1
, DL
);
3836 EVT ShiftVT
= getShiftAmountTy(N0
.getValueType());
3837 SDValue Trunc
= DAG
.getZExtOrTrunc(LogBase2
, DL
, ShiftVT
);
3838 return DAG
.getNode(ISD::SHL
, DL
, VT
, N0
, Trunc
);
3841 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
3842 if (N1IsConst
&& !N1IsOpaqueConst
&& (-ConstValue1
).isPowerOf2()) {
3843 unsigned Log2Val
= (-ConstValue1
).logBase2();
3845 // FIXME: If the input is something that is easily negated (e.g. a
3846 // single-use add), we should put the negate there.
3847 return DAG
.getNode(ISD::SUB
, DL
, VT
,
3848 DAG
.getConstant(0, DL
, VT
),
3849 DAG
.getNode(ISD::SHL
, DL
, VT
, N0
,
3850 DAG
.getConstant(Log2Val
, DL
,
3851 getShiftAmountTy(N0
.getValueType()))));
3854 // Try to transform:
3855 // (1) multiply-by-(power-of-2 +/- 1) into shift and add/sub.
3856 // mul x, (2^N + 1) --> add (shl x, N), x
3857 // mul x, (2^N - 1) --> sub (shl x, N), x
3858 // Examples: x * 33 --> (x << 5) + x
3859 // x * 15 --> (x << 4) - x
3860 // x * -33 --> -((x << 5) + x)
3861 // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4)
3862 // (2) multiply-by-(power-of-2 +/- power-of-2) into shifts and add/sub.
3863 // mul x, (2^N + 2^M) --> (add (shl x, N), (shl x, M))
3864 // mul x, (2^N - 2^M) --> (sub (shl x, N), (shl x, M))
3865 // Examples: x * 0x8800 --> (x << 15) + (x << 11)
3866 // x * 0xf800 --> (x << 16) - (x << 11)
3867 // x * -0x8800 --> -((x << 15) + (x << 11))
3868 // x * -0xf800 --> -((x << 16) - (x << 11)) ; (x << 11) - (x << 16)
3869 if (N1IsConst
&& TLI
.decomposeMulByConstant(*DAG
.getContext(), VT
, N1
)) {
3870 // TODO: We could handle more general decomposition of any constant by
3871 // having the target set a limit on number of ops and making a
3872 // callback to determine that sequence (similar to sqrt expansion).
3873 unsigned MathOp
= ISD::DELETED_NODE
;
3874 APInt MulC
= ConstValue1
.abs();
3875 // The constant `2` should be treated as (2^0 + 1).
3876 unsigned TZeros
= MulC
== 2 ? 0 : MulC
.countTrailingZeros();
3877 MulC
.lshrInPlace(TZeros
);
3878 if ((MulC
- 1).isPowerOf2())
3880 else if ((MulC
+ 1).isPowerOf2())
3883 if (MathOp
!= ISD::DELETED_NODE
) {
3885 MathOp
== ISD::ADD
? (MulC
- 1).logBase2() : (MulC
+ 1).logBase2();
3887 assert(ShAmt
< VT
.getScalarSizeInBits() &&
3888 "multiply-by-constant generated out of bounds shift");
3891 DAG
.getNode(ISD::SHL
, DL
, VT
, N0
, DAG
.getConstant(ShAmt
, DL
, VT
));
3893 TZeros
? DAG
.getNode(MathOp
, DL
, VT
, Shl
,
3894 DAG
.getNode(ISD::SHL
, DL
, VT
, N0
,
3895 DAG
.getConstant(TZeros
, DL
, VT
)))
3896 : DAG
.getNode(MathOp
, DL
, VT
, Shl
, N0
);
3897 if (ConstValue1
.isNegative())
3898 R
= DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), R
);
3903 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
3904 if (N0
.getOpcode() == ISD::SHL
&&
3905 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
3906 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaques */ true)) {
3907 SDValue C3
= DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N1
, N0
.getOperand(1));
3908 if (isConstantOrConstantVector(C3
))
3909 return DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, N0
.getOperand(0), C3
);
3912 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
3915 SDValue
Sh(nullptr, 0), Y(nullptr, 0);
3917 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
3918 if (N0
.getOpcode() == ISD::SHL
&&
3919 isConstantOrConstantVector(N0
.getOperand(1)) &&
3920 N0
.getNode()->hasOneUse()) {
3922 } else if (N1
.getOpcode() == ISD::SHL
&&
3923 isConstantOrConstantVector(N1
.getOperand(1)) &&
3924 N1
.getNode()->hasOneUse()) {
3929 SDValue Mul
= DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, Sh
.getOperand(0), Y
);
3930 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, Mul
, Sh
.getOperand(1));
3934 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
3935 if (DAG
.isConstantIntBuildVectorOrConstantInt(N1
) &&
3936 N0
.getOpcode() == ISD::ADD
&&
3937 DAG
.isConstantIntBuildVectorOrConstantInt(N0
.getOperand(1)) &&
3938 isMulAddWithConstProfitable(N
, N0
, N1
))
3939 return DAG
.getNode(ISD::ADD
, SDLoc(N
), VT
,
3940 DAG
.getNode(ISD::MUL
, SDLoc(N0
), VT
,
3941 N0
.getOperand(0), N1
),
3942 DAG
.getNode(ISD::MUL
, SDLoc(N1
), VT
,
3943 N0
.getOperand(1), N1
));
3945 // Fold (mul (vscale * C0), C1) to (vscale * (C0 * C1)).
3946 if (N0
.getOpcode() == ISD::VSCALE
)
3947 if (ConstantSDNode
*NC1
= isConstOrConstSplat(N1
)) {
3948 const APInt
&C0
= N0
.getConstantOperandAPInt(0);
3949 const APInt
&C1
= NC1
->getAPIntValue();
3950 return DAG
.getVScale(SDLoc(N
), VT
, C0
* C1
);
3953 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
3955 if (N0
.getOpcode() == ISD::STEP_VECTOR
)
3956 if (ISD::isConstantSplatVector(N1
.getNode(), MulVal
)) {
3957 const APInt
&C0
= N0
.getConstantOperandAPInt(0);
3958 APInt NewStep
= C0
* MulVal
;
3959 return DAG
.getStepVector(SDLoc(N
), VT
, NewStep
);
3962 // Fold ((mul x, 0/undef) -> 0,
3963 // (mul x, 1) -> x) -> x)
3965 // We can replace vectors with '0' and '1' factors with a clearing mask.
3966 if (VT
.isFixedLengthVector()) {
3967 unsigned NumElts
= VT
.getVectorNumElements();
3968 SmallBitVector ClearMask
;
3969 ClearMask
.reserve(NumElts
);
3970 auto IsClearMask
= [&ClearMask
](ConstantSDNode
*V
) {
3971 if (!V
|| V
->isNullValue()) {
3972 ClearMask
.push_back(true);
3975 ClearMask
.push_back(false);
3978 if ((!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::AND
, VT
)) &&
3979 ISD::matchUnaryPredicate(N1
, IsClearMask
, /*AllowUndefs*/ true)) {
3980 assert(N1
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown constant vector");
3982 EVT LegalSVT
= N1
.getOperand(0).getValueType();
3983 SDValue Zero
= DAG
.getConstant(0, DL
, LegalSVT
);
3984 SDValue AllOnes
= DAG
.getAllOnesConstant(DL
, LegalSVT
);
3985 SmallVector
<SDValue
, 16> Mask(NumElts
, AllOnes
);
3986 for (unsigned I
= 0; I
!= NumElts
; ++I
)
3989 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
, DAG
.getBuildVector(VT
, DL
, Mask
));
3994 if (SDValue RMUL
= reassociateOps(ISD::MUL
, SDLoc(N
), N0
, N1
, N
->getFlags()))
4000 /// Return true if divmod libcall is available.
4001 static bool isDivRemLibcallAvailable(SDNode
*Node
, bool isSigned
,
4002 const TargetLowering
&TLI
) {
4004 EVT NodeType
= Node
->getValueType(0);
4005 if (!NodeType
.isSimple())
4007 switch (NodeType
.getSimpleVT().SimpleTy
) {
4008 default: return false; // No libcall for vector types.
4009 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
4010 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
4011 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
4012 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
4013 case MVT::i128
: LC
= isSigned
? RTLIB::SDIVREM_I128
:RTLIB::UDIVREM_I128
; break;
4016 return TLI
.getLibcallName(LC
) != nullptr;
4019 /// Issue divrem if both quotient and remainder are needed.
4020 SDValue
DAGCombiner::useDivRem(SDNode
*Node
) {
4021 if (Node
->use_empty())
4022 return SDValue(); // This is a dead node, leave it alone.
4024 unsigned Opcode
= Node
->getOpcode();
4025 bool isSigned
= (Opcode
== ISD::SDIV
) || (Opcode
== ISD::SREM
);
4026 unsigned DivRemOpc
= isSigned
? ISD::SDIVREM
: ISD::UDIVREM
;
4028 // DivMod lib calls can still work on non-legal types if using lib-calls.
4029 EVT VT
= Node
->getValueType(0);
4030 if (VT
.isVector() || !VT
.isInteger())
4033 if (!TLI
.isTypeLegal(VT
) && !TLI
.isOperationCustom(DivRemOpc
, VT
))
4036 // If DIVREM is going to get expanded into a libcall,
4037 // but there is no libcall available, then don't combine.
4038 if (!TLI
.isOperationLegalOrCustom(DivRemOpc
, VT
) &&
4039 !isDivRemLibcallAvailable(Node
, isSigned
, TLI
))
4042 // If div is legal, it's better to do the normal expansion
4043 unsigned OtherOpcode
= 0;
4044 if ((Opcode
== ISD::SDIV
) || (Opcode
== ISD::UDIV
)) {
4045 OtherOpcode
= isSigned
? ISD::SREM
: ISD::UREM
;
4046 if (TLI
.isOperationLegalOrCustom(Opcode
, VT
))
4049 OtherOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
4050 if (TLI
.isOperationLegalOrCustom(OtherOpcode
, VT
))
4054 SDValue Op0
= Node
->getOperand(0);
4055 SDValue Op1
= Node
->getOperand(1);
4057 for (SDNode::use_iterator UI
= Op0
.getNode()->use_begin(),
4058 UE
= Op0
.getNode()->use_end(); UI
!= UE
; ++UI
) {
4060 if (User
== Node
|| User
->getOpcode() == ISD::DELETED_NODE
||
4063 // Convert the other matching node(s), too;
4064 // otherwise, the DIVREM may get target-legalized into something
4065 // target-specific that we won't be able to recognize.
4066 unsigned UserOpc
= User
->getOpcode();
4067 if ((UserOpc
== Opcode
|| UserOpc
== OtherOpcode
|| UserOpc
== DivRemOpc
) &&
4068 User
->getOperand(0) == Op0
&&
4069 User
->getOperand(1) == Op1
) {
4071 if (UserOpc
== OtherOpcode
) {
4072 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
4073 combined
= DAG
.getNode(DivRemOpc
, SDLoc(Node
), VTs
, Op0
, Op1
);
4074 } else if (UserOpc
== DivRemOpc
) {
4075 combined
= SDValue(User
, 0);
4077 assert(UserOpc
== Opcode
);
4081 if (UserOpc
== ISD::SDIV
|| UserOpc
== ISD::UDIV
)
4082 CombineTo(User
, combined
);
4083 else if (UserOpc
== ISD::SREM
|| UserOpc
== ISD::UREM
)
4084 CombineTo(User
, combined
.getValue(1));
4090 static SDValue
simplifyDivRem(SDNode
*N
, SelectionDAG
&DAG
) {
4091 SDValue N0
= N
->getOperand(0);
4092 SDValue N1
= N
->getOperand(1);
4093 EVT VT
= N
->getValueType(0);
4096 unsigned Opc
= N
->getOpcode();
4097 bool IsDiv
= (ISD::SDIV
== Opc
) || (ISD::UDIV
== Opc
);
4098 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
4100 // X / undef -> undef
4101 // X % undef -> undef
4104 // NOTE: This includes vectors where any divisor element is zero/undef.
4105 if (DAG
.isUndef(Opc
, {N0
, N1
}))
4106 return DAG
.getUNDEF(VT
);
4111 return DAG
.getConstant(0, DL
, VT
);
4115 ConstantSDNode
*N0C
= isConstOrConstSplat(N0
);
4116 if (N0C
&& N0C
->isNullValue())
4122 return DAG
.getConstant(IsDiv
? 1 : 0, DL
, VT
);
4126 // If this is a boolean op (single-bit element type), we can't have
4127 // division-by-zero or remainder-by-zero, so assume the divisor is 1.
4128 // TODO: Similarly, if we're zero-extending a boolean divisor, then assume
4130 if ((N1C
&& N1C
->isOne()) || (VT
.getScalarType() == MVT::i1
))
4131 return IsDiv
? N0
: DAG
.getConstant(0, DL
, VT
);
4136 SDValue
DAGCombiner::visitSDIV(SDNode
*N
) {
4137 SDValue N0
= N
->getOperand(0);
4138 SDValue N1
= N
->getOperand(1);
4139 EVT VT
= N
->getValueType(0);
4140 EVT CCVT
= getSetCCResultType(VT
);
4144 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
4149 // fold (sdiv c1, c2) -> c1/c2
4150 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
4151 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::SDIV
, DL
, VT
, {N0
, N1
}))
4154 // fold (sdiv X, -1) -> 0-X
4155 if (N1C
&& N1C
->isAllOnesValue())
4156 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), N0
);
4158 // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0)
4159 if (N1C
&& N1C
->getAPIntValue().isMinSignedValue())
4160 return DAG
.getSelect(DL
, VT
, DAG
.getSetCC(DL
, CCVT
, N0
, N1
, ISD::SETEQ
),
4161 DAG
.getConstant(1, DL
, VT
),
4162 DAG
.getConstant(0, DL
, VT
));
4164 if (SDValue V
= simplifyDivRem(N
, DAG
))
4167 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
4170 // If we know the sign bits of both operands are zero, strength reduce to a
4171 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
4172 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
4173 return DAG
.getNode(ISD::UDIV
, DL
, N1
.getValueType(), N0
, N1
);
4175 if (SDValue V
= visitSDIVLike(N0
, N1
, N
)) {
4176 // If the corresponding remainder node exists, update its users with
4177 // (Dividend - (Quotient * Divisor).
4178 if (SDNode
*RemNode
= DAG
.getNodeIfExists(ISD::SREM
, N
->getVTList(),
4180 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
, V
, N1
);
4181 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, Mul
);
4182 AddToWorklist(Mul
.getNode());
4183 AddToWorklist(Sub
.getNode());
4184 CombineTo(RemNode
, Sub
);
4189 // sdiv, srem -> sdivrem
4190 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
4191 // true. Otherwise, we break the simplification logic in visitREM().
4192 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4193 if (!N1C
|| TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
4194 if (SDValue DivRem
= useDivRem(N
))
4200 SDValue
DAGCombiner::visitSDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
4202 EVT VT
= N
->getValueType(0);
4203 EVT CCVT
= getSetCCResultType(VT
);
4204 unsigned BitWidth
= VT
.getScalarSizeInBits();
4206 // Helper for determining whether a value is a power-2 constant scalar or a
4207 // vector of such elements.
4208 auto IsPowerOfTwo
= [](ConstantSDNode
*C
) {
4209 if (C
->isNullValue() || C
->isOpaque())
4211 if (C
->getAPIntValue().isPowerOf2())
4213 if ((-C
->getAPIntValue()).isPowerOf2())
4218 // fold (sdiv X, pow2) -> simple ops after legalize
4219 // FIXME: We check for the exact bit here because the generic lowering gives
4220 // better results in that case. The target-specific lowering should learn how
4221 // to handle exact sdivs efficiently.
4222 if (!N
->getFlags().hasExact() && ISD::matchUnaryPredicate(N1
, IsPowerOfTwo
)) {
4223 // Target-specific implementation of sdiv x, pow2.
4224 if (SDValue Res
= BuildSDIVPow2(N
))
4227 // Create constants that are functions of the shift amount value.
4228 EVT ShiftAmtTy
= getShiftAmountTy(N0
.getValueType());
4229 SDValue Bits
= DAG
.getConstant(BitWidth
, DL
, ShiftAmtTy
);
4230 SDValue C1
= DAG
.getNode(ISD::CTTZ
, DL
, VT
, N1
);
4231 C1
= DAG
.getZExtOrTrunc(C1
, DL
, ShiftAmtTy
);
4232 SDValue Inexact
= DAG
.getNode(ISD::SUB
, DL
, ShiftAmtTy
, Bits
, C1
);
4233 if (!isConstantOrConstantVector(Inexact
))
4236 // Splat the sign bit into the register
4237 SDValue Sign
= DAG
.getNode(ISD::SRA
, DL
, VT
, N0
,
4238 DAG
.getConstant(BitWidth
- 1, DL
, ShiftAmtTy
));
4239 AddToWorklist(Sign
.getNode());
4241 // Add (N0 < 0) ? abs2 - 1 : 0;
4242 SDValue Srl
= DAG
.getNode(ISD::SRL
, DL
, VT
, Sign
, Inexact
);
4243 AddToWorklist(Srl
.getNode());
4244 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Srl
);
4245 AddToWorklist(Add
.getNode());
4246 SDValue Sra
= DAG
.getNode(ISD::SRA
, DL
, VT
, Add
, C1
);
4247 AddToWorklist(Sra
.getNode());
4249 // Special case: (sdiv X, 1) -> X
4250 // Special Case: (sdiv X, -1) -> 0-X
4251 SDValue One
= DAG
.getConstant(1, DL
, VT
);
4252 SDValue AllOnes
= DAG
.getAllOnesConstant(DL
, VT
);
4253 SDValue IsOne
= DAG
.getSetCC(DL
, CCVT
, N1
, One
, ISD::SETEQ
);
4254 SDValue IsAllOnes
= DAG
.getSetCC(DL
, CCVT
, N1
, AllOnes
, ISD::SETEQ
);
4255 SDValue IsOneOrAllOnes
= DAG
.getNode(ISD::OR
, DL
, CCVT
, IsOne
, IsAllOnes
);
4256 Sra
= DAG
.getSelect(DL
, VT
, IsOneOrAllOnes
, N0
, Sra
);
4258 // If dividing by a positive value, we're done. Otherwise, the result must
4260 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
4261 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, Zero
, Sra
);
4263 // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding.
4264 SDValue IsNeg
= DAG
.getSetCC(DL
, CCVT
, N1
, Zero
, ISD::SETLT
);
4265 SDValue Res
= DAG
.getSelect(DL
, VT
, IsNeg
, Sub
, Sra
);
4269 // If integer divide is expensive and we satisfy the requirements, emit an
4270 // alternate sequence. Targets may check function attributes for size/speed
4272 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4273 if (isConstantOrConstantVector(N1
) &&
4274 !TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
4275 if (SDValue Op
= BuildSDIV(N
))
4281 SDValue
DAGCombiner::visitUDIV(SDNode
*N
) {
4282 SDValue N0
= N
->getOperand(0);
4283 SDValue N1
= N
->getOperand(1);
4284 EVT VT
= N
->getValueType(0);
4285 EVT CCVT
= getSetCCResultType(VT
);
4289 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
4294 // fold (udiv c1, c2) -> c1/c2
4295 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
4296 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::UDIV
, DL
, VT
, {N0
, N1
}))
4299 // fold (udiv X, -1) -> select(X == -1, 1, 0)
4300 if (N1C
&& N1C
->getAPIntValue().isAllOnesValue())
4301 return DAG
.getSelect(DL
, VT
, DAG
.getSetCC(DL
, CCVT
, N0
, N1
, ISD::SETEQ
),
4302 DAG
.getConstant(1, DL
, VT
),
4303 DAG
.getConstant(0, DL
, VT
));
4305 if (SDValue V
= simplifyDivRem(N
, DAG
))
4308 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
4311 if (SDValue V
= visitUDIVLike(N0
, N1
, N
)) {
4312 // If the corresponding remainder node exists, update its users with
4313 // (Dividend - (Quotient * Divisor).
4314 if (SDNode
*RemNode
= DAG
.getNodeIfExists(ISD::UREM
, N
->getVTList(),
4316 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
, V
, N1
);
4317 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, Mul
);
4318 AddToWorklist(Mul
.getNode());
4319 AddToWorklist(Sub
.getNode());
4320 CombineTo(RemNode
, Sub
);
4325 // sdiv, srem -> sdivrem
4326 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
4327 // true. Otherwise, we break the simplification logic in visitREM().
4328 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4329 if (!N1C
|| TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
4330 if (SDValue DivRem
= useDivRem(N
))
4336 SDValue
DAGCombiner::visitUDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
4338 EVT VT
= N
->getValueType(0);
4340 // fold (udiv x, (1 << c)) -> x >>u c
4341 if (isConstantOrConstantVector(N1
, /*NoOpaques*/ true) &&
4342 DAG
.isKnownToBeAPowerOfTwo(N1
)) {
4343 SDValue LogBase2
= BuildLogBase2(N1
, DL
);
4344 AddToWorklist(LogBase2
.getNode());
4346 EVT ShiftVT
= getShiftAmountTy(N0
.getValueType());
4347 SDValue Trunc
= DAG
.getZExtOrTrunc(LogBase2
, DL
, ShiftVT
);
4348 AddToWorklist(Trunc
.getNode());
4349 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
, Trunc
);
4352 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
4353 if (N1
.getOpcode() == ISD::SHL
) {
4354 SDValue N10
= N1
.getOperand(0);
4355 if (isConstantOrConstantVector(N10
, /*NoOpaques*/ true) &&
4356 DAG
.isKnownToBeAPowerOfTwo(N10
)) {
4357 SDValue LogBase2
= BuildLogBase2(N10
, DL
);
4358 AddToWorklist(LogBase2
.getNode());
4360 EVT ADDVT
= N1
.getOperand(1).getValueType();
4361 SDValue Trunc
= DAG
.getZExtOrTrunc(LogBase2
, DL
, ADDVT
);
4362 AddToWorklist(Trunc
.getNode());
4363 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, ADDVT
, N1
.getOperand(1), Trunc
);
4364 AddToWorklist(Add
.getNode());
4365 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
, Add
);
4369 // fold (udiv x, c) -> alternate
4370 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4371 if (isConstantOrConstantVector(N1
) &&
4372 !TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
4373 if (SDValue Op
= BuildUDIV(N
))
4379 // handles ISD::SREM and ISD::UREM
4380 SDValue
DAGCombiner::visitREM(SDNode
*N
) {
4381 unsigned Opcode
= N
->getOpcode();
4382 SDValue N0
= N
->getOperand(0);
4383 SDValue N1
= N
->getOperand(1);
4384 EVT VT
= N
->getValueType(0);
4385 EVT CCVT
= getSetCCResultType(VT
);
4387 bool isSigned
= (Opcode
== ISD::SREM
);
4390 // fold (rem c1, c2) -> c1%c2
4391 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
4392 if (SDValue C
= DAG
.FoldConstantArithmetic(Opcode
, DL
, VT
, {N0
, N1
}))
4395 // fold (urem X, -1) -> select(X == -1, 0, x)
4396 if (!isSigned
&& N1C
&& N1C
->getAPIntValue().isAllOnesValue())
4397 return DAG
.getSelect(DL
, VT
, DAG
.getSetCC(DL
, CCVT
, N0
, N1
, ISD::SETEQ
),
4398 DAG
.getConstant(0, DL
, VT
), N0
);
4400 if (SDValue V
= simplifyDivRem(N
, DAG
))
4403 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
4407 // If we know the sign bits of both operands are zero, strength reduce to a
4408 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
4409 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
4410 return DAG
.getNode(ISD::UREM
, DL
, VT
, N0
, N1
);
4412 if (DAG
.isKnownToBeAPowerOfTwo(N1
)) {
4413 // fold (urem x, pow2) -> (and x, pow2-1)
4414 SDValue NegOne
= DAG
.getAllOnesConstant(DL
, VT
);
4415 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, NegOne
);
4416 AddToWorklist(Add
.getNode());
4417 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
, Add
);
4419 if (N1
.getOpcode() == ISD::SHL
&&
4420 DAG
.isKnownToBeAPowerOfTwo(N1
.getOperand(0))) {
4421 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
4422 SDValue NegOne
= DAG
.getAllOnesConstant(DL
, VT
);
4423 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, NegOne
);
4424 AddToWorklist(Add
.getNode());
4425 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
, Add
);
4429 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4431 // If X/C can be simplified by the division-by-constant logic, lower
4432 // X%C to the equivalent of X-X/C*C.
4433 // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the
4434 // speculative DIV must not cause a DIVREM conversion. We guard against this
4435 // by skipping the simplification if isIntDivCheap(). When div is not cheap,
4436 // combine will not return a DIVREM. Regardless, checking cheapness here
4437 // makes sense since the simplification results in fatter code.
4438 if (DAG
.isKnownNeverZero(N1
) && !TLI
.isIntDivCheap(VT
, Attr
)) {
4439 SDValue OptimizedDiv
=
4440 isSigned
? visitSDIVLike(N0
, N1
, N
) : visitUDIVLike(N0
, N1
, N
);
4441 if (OptimizedDiv
.getNode()) {
4442 // If the equivalent Div node also exists, update its users.
4443 unsigned DivOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
4444 if (SDNode
*DivNode
= DAG
.getNodeIfExists(DivOpcode
, N
->getVTList(),
4446 CombineTo(DivNode
, OptimizedDiv
);
4447 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
, OptimizedDiv
, N1
);
4448 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, Mul
);
4449 AddToWorklist(OptimizedDiv
.getNode());
4450 AddToWorklist(Mul
.getNode());
4455 // sdiv, srem -> sdivrem
4456 if (SDValue DivRem
= useDivRem(N
))
4457 return DivRem
.getValue(1);
4462 SDValue
DAGCombiner::visitMULHS(SDNode
*N
) {
4463 SDValue N0
= N
->getOperand(0);
4464 SDValue N1
= N
->getOperand(1);
4465 EVT VT
= N
->getValueType(0);
4468 if (VT
.isVector()) {
4469 // fold (mulhs x, 0) -> 0
4470 // do not return N0/N1, because undef node may exist.
4471 if (ISD::isConstantSplatVectorAllZeros(N0
.getNode()) ||
4472 ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
4473 return DAG
.getConstant(0, DL
, VT
);
4476 // fold (mulhs c1, c2)
4477 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::MULHS
, DL
, VT
, {N0
, N1
}))
4480 // fold (mulhs x, 0) -> 0
4481 if (isNullConstant(N1
))
4483 // fold (mulhs x, 1) -> (sra x, size(x)-1)
4484 if (isOneConstant(N1
))
4485 return DAG
.getNode(ISD::SRA
, DL
, N0
.getValueType(), N0
,
4486 DAG
.getConstant(N0
.getScalarValueSizeInBits() - 1, DL
,
4487 getShiftAmountTy(N0
.getValueType())));
4489 // fold (mulhs x, undef) -> 0
4490 if (N0
.isUndef() || N1
.isUndef())
4491 return DAG
.getConstant(0, DL
, VT
);
4493 // If the type twice as wide is legal, transform the mulhs to a wider multiply
4495 if (!TLI
.isOperationLegalOrCustom(ISD::MULHS
, VT
) && VT
.isSimple() &&
4497 MVT Simple
= VT
.getSimpleVT();
4498 unsigned SimpleSize
= Simple
.getSizeInBits();
4499 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
4500 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
4501 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N0
);
4502 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N1
);
4503 N1
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, N0
, N1
);
4504 N1
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, N1
,
4505 DAG
.getConstant(SimpleSize
, DL
,
4506 getShiftAmountTy(N1
.getValueType())));
4507 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N1
);
4514 SDValue
DAGCombiner::visitMULHU(SDNode
*N
) {
4515 SDValue N0
= N
->getOperand(0);
4516 SDValue N1
= N
->getOperand(1);
4517 EVT VT
= N
->getValueType(0);
4520 if (VT
.isVector()) {
4521 // fold (mulhu x, 0) -> 0
4522 // do not return N0/N1, because undef node may exist.
4523 if (ISD::isConstantSplatVectorAllZeros(N0
.getNode()) ||
4524 ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
4525 return DAG
.getConstant(0, DL
, VT
);
4528 // fold (mulhu c1, c2)
4529 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::MULHU
, DL
, VT
, {N0
, N1
}))
4532 // fold (mulhu x, 0) -> 0
4533 if (isNullConstant(N1
))
4535 // fold (mulhu x, 1) -> 0
4536 if (isOneConstant(N1
))
4537 return DAG
.getConstant(0, DL
, N0
.getValueType());
4538 // fold (mulhu x, undef) -> 0
4539 if (N0
.isUndef() || N1
.isUndef())
4540 return DAG
.getConstant(0, DL
, VT
);
4542 // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c)
4543 if (isConstantOrConstantVector(N1
, /*NoOpaques*/ true) &&
4544 DAG
.isKnownToBeAPowerOfTwo(N1
) && hasOperation(ISD::SRL
, VT
)) {
4545 unsigned NumEltBits
= VT
.getScalarSizeInBits();
4546 SDValue LogBase2
= BuildLogBase2(N1
, DL
);
4547 SDValue SRLAmt
= DAG
.getNode(
4548 ISD::SUB
, DL
, VT
, DAG
.getConstant(NumEltBits
, DL
, VT
), LogBase2
);
4549 EVT ShiftVT
= getShiftAmountTy(N0
.getValueType());
4550 SDValue Trunc
= DAG
.getZExtOrTrunc(SRLAmt
, DL
, ShiftVT
);
4551 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
, Trunc
);
4554 // If the type twice as wide is legal, transform the mulhu to a wider multiply
4556 if (!TLI
.isOperationLegalOrCustom(ISD::MULHU
, VT
) && VT
.isSimple() &&
4558 MVT Simple
= VT
.getSimpleVT();
4559 unsigned SimpleSize
= Simple
.getSizeInBits();
4560 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
4561 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
4562 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N0
);
4563 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N1
);
4564 N1
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, N0
, N1
);
4565 N1
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, N1
,
4566 DAG
.getConstant(SimpleSize
, DL
,
4567 getShiftAmountTy(N1
.getValueType())));
4568 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N1
);
4575 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp
4576 /// give the opcodes for the two computations that are being performed. Return
4577 /// true if a simplification was made.
4578 SDValue
DAGCombiner::SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
4580 // If the high half is not needed, just compute the low half.
4581 bool HiExists
= N
->hasAnyUseOfValue(1);
4582 if (!HiExists
&& (!LegalOperations
||
4583 TLI
.isOperationLegalOrCustom(LoOp
, N
->getValueType(0)))) {
4584 SDValue Res
= DAG
.getNode(LoOp
, SDLoc(N
), N
->getValueType(0), N
->ops());
4585 return CombineTo(N
, Res
, Res
);
4588 // If the low half is not needed, just compute the high half.
4589 bool LoExists
= N
->hasAnyUseOfValue(0);
4590 if (!LoExists
&& (!LegalOperations
||
4591 TLI
.isOperationLegalOrCustom(HiOp
, N
->getValueType(1)))) {
4592 SDValue Res
= DAG
.getNode(HiOp
, SDLoc(N
), N
->getValueType(1), N
->ops());
4593 return CombineTo(N
, Res
, Res
);
4596 // If both halves are used, return as it is.
4597 if (LoExists
&& HiExists
)
4600 // If the two computed results can be simplified separately, separate them.
4602 SDValue Lo
= DAG
.getNode(LoOp
, SDLoc(N
), N
->getValueType(0), N
->ops());
4603 AddToWorklist(Lo
.getNode());
4604 SDValue LoOpt
= combine(Lo
.getNode());
4605 if (LoOpt
.getNode() && LoOpt
.getNode() != Lo
.getNode() &&
4606 (!LegalOperations
||
4607 TLI
.isOperationLegalOrCustom(LoOpt
.getOpcode(), LoOpt
.getValueType())))
4608 return CombineTo(N
, LoOpt
, LoOpt
);
4612 SDValue Hi
= DAG
.getNode(HiOp
, SDLoc(N
), N
->getValueType(1), N
->ops());
4613 AddToWorklist(Hi
.getNode());
4614 SDValue HiOpt
= combine(Hi
.getNode());
4615 if (HiOpt
.getNode() && HiOpt
!= Hi
&&
4616 (!LegalOperations
||
4617 TLI
.isOperationLegalOrCustom(HiOpt
.getOpcode(), HiOpt
.getValueType())))
4618 return CombineTo(N
, HiOpt
, HiOpt
);
4624 SDValue
DAGCombiner::visitSMUL_LOHI(SDNode
*N
) {
4625 if (SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHS
))
4628 EVT VT
= N
->getValueType(0);
4631 // If the type is twice as wide is legal, transform the mulhu to a wider
4632 // multiply plus a shift.
4633 if (VT
.isSimple() && !VT
.isVector()) {
4634 MVT Simple
= VT
.getSimpleVT();
4635 unsigned SimpleSize
= Simple
.getSizeInBits();
4636 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
4637 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
4638 SDValue Lo
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N
->getOperand(0));
4639 SDValue Hi
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N
->getOperand(1));
4640 Lo
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, Lo
, Hi
);
4641 // Compute the high part as N1.
4642 Hi
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, Lo
,
4643 DAG
.getConstant(SimpleSize
, DL
,
4644 getShiftAmountTy(Lo
.getValueType())));
4645 Hi
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Hi
);
4646 // Compute the low part as N0.
4647 Lo
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Lo
);
4648 return CombineTo(N
, Lo
, Hi
);
4655 SDValue
DAGCombiner::visitUMUL_LOHI(SDNode
*N
) {
4656 if (SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHU
))
4659 EVT VT
= N
->getValueType(0);
4662 // (umul_lohi N0, 0) -> (0, 0)
4663 if (isNullConstant(N
->getOperand(1))) {
4664 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
4665 return CombineTo(N
, Zero
, Zero
);
4668 // (umul_lohi N0, 1) -> (N0, 0)
4669 if (isOneConstant(N
->getOperand(1))) {
4670 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
4671 return CombineTo(N
, N
->getOperand(0), Zero
);
4674 // If the type is twice as wide is legal, transform the mulhu to a wider
4675 // multiply plus a shift.
4676 if (VT
.isSimple() && !VT
.isVector()) {
4677 MVT Simple
= VT
.getSimpleVT();
4678 unsigned SimpleSize
= Simple
.getSizeInBits();
4679 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
4680 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
4681 SDValue Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N
->getOperand(0));
4682 SDValue Hi
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N
->getOperand(1));
4683 Lo
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, Lo
, Hi
);
4684 // Compute the high part as N1.
4685 Hi
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, Lo
,
4686 DAG
.getConstant(SimpleSize
, DL
,
4687 getShiftAmountTy(Lo
.getValueType())));
4688 Hi
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Hi
);
4689 // Compute the low part as N0.
4690 Lo
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Lo
);
4691 return CombineTo(N
, Lo
, Hi
);
4698 SDValue
DAGCombiner::visitMULO(SDNode
*N
) {
4699 SDValue N0
= N
->getOperand(0);
4700 SDValue N1
= N
->getOperand(1);
4701 EVT VT
= N0
.getValueType();
4702 bool IsSigned
= (ISD::SMULO
== N
->getOpcode());
4704 EVT CarryVT
= N
->getValueType(1);
4707 ConstantSDNode
*N0C
= isConstOrConstSplat(N0
);
4708 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
4710 // fold operation with constant operands.
4711 // TODO: Move this to FoldConstantArithmetic when it supports nodes with
4712 // multiple results.
4716 IsSigned
? N0C
->getAPIntValue().smul_ov(N1C
->getAPIntValue(), Overflow
)
4717 : N0C
->getAPIntValue().umul_ov(N1C
->getAPIntValue(), Overflow
);
4718 return CombineTo(N
, DAG
.getConstant(Result
, DL
, VT
),
4719 DAG
.getBoolConstant(Overflow
, DL
, CarryVT
, CarryVT
));
4722 // canonicalize constant to RHS.
4723 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
4724 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
4725 return DAG
.getNode(N
->getOpcode(), DL
, N
->getVTList(), N1
, N0
);
4727 // fold (mulo x, 0) -> 0 + no carry out
4728 if (isNullOrNullSplat(N1
))
4729 return CombineTo(N
, DAG
.getConstant(0, DL
, VT
),
4730 DAG
.getConstant(0, DL
, CarryVT
));
4732 // (mulo x, 2) -> (addo x, x)
4733 if (N1C
&& N1C
->getAPIntValue() == 2)
4734 return DAG
.getNode(IsSigned
? ISD::SADDO
: ISD::UADDO
, DL
,
4735 N
->getVTList(), N0
, N0
);
4738 // A 1 bit SMULO overflows if both inputs are 1.
4739 if (VT
.getScalarSizeInBits() == 1) {
4740 SDValue And
= DAG
.getNode(ISD::AND
, DL
, VT
, N0
, N1
);
4741 return CombineTo(N
, And
,
4742 DAG
.getSetCC(DL
, CarryVT
, And
,
4743 DAG
.getConstant(0, DL
, VT
), ISD::SETNE
));
4746 // Multiplying n * m significant bits yields a result of n + m significant
4747 // bits. If the total number of significant bits does not exceed the
4748 // result bit width (minus 1), there is no overflow.
4749 unsigned SignBits
= DAG
.ComputeNumSignBits(N0
);
4751 SignBits
+= DAG
.ComputeNumSignBits(N1
);
4752 if (SignBits
> VT
.getScalarSizeInBits() + 1)
4753 return CombineTo(N
, DAG
.getNode(ISD::MUL
, DL
, VT
, N0
, N1
),
4754 DAG
.getConstant(0, DL
, CarryVT
));
4756 KnownBits N1Known
= DAG
.computeKnownBits(N1
);
4757 KnownBits N0Known
= DAG
.computeKnownBits(N0
);
4759 (void)N0Known
.getMaxValue().umul_ov(N1Known
.getMaxValue(), Overflow
);
4761 return CombineTo(N
, DAG
.getNode(ISD::MUL
, DL
, VT
, N0
, N1
),
4762 DAG
.getConstant(0, DL
, CarryVT
));
4768 SDValue
DAGCombiner::visitIMINMAX(SDNode
*N
) {
4769 SDValue N0
= N
->getOperand(0);
4770 SDValue N1
= N
->getOperand(1);
4771 EVT VT
= N0
.getValueType();
4772 unsigned Opcode
= N
->getOpcode();
4776 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
4779 // fold operation with constant operands.
4780 if (SDValue C
= DAG
.FoldConstantArithmetic(Opcode
, SDLoc(N
), VT
, {N0
, N1
}))
4783 // canonicalize constant to RHS
4784 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
4785 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
4786 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N1
, N0
);
4788 // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX.
4789 // Only do this if the current op isn't legal and the flipped is.
4790 if (!TLI
.isOperationLegal(Opcode
, VT
) &&
4791 (N0
.isUndef() || DAG
.SignBitIsZero(N0
)) &&
4792 (N1
.isUndef() || DAG
.SignBitIsZero(N1
))) {
4795 case ISD::SMIN
: AltOpcode
= ISD::UMIN
; break;
4796 case ISD::SMAX
: AltOpcode
= ISD::UMAX
; break;
4797 case ISD::UMIN
: AltOpcode
= ISD::SMIN
; break;
4798 case ISD::UMAX
: AltOpcode
= ISD::SMAX
; break;
4799 default: llvm_unreachable("Unknown MINMAX opcode");
4801 if (TLI
.isOperationLegal(AltOpcode
, VT
))
4802 return DAG
.getNode(AltOpcode
, SDLoc(N
), VT
, N0
, N1
);
4805 // Simplify the operands using demanded-bits information.
4806 if (SimplifyDemandedBits(SDValue(N
, 0)))
4807 return SDValue(N
, 0);
4812 /// If this is a bitwise logic instruction and both operands have the same
4813 /// opcode, try to sink the other opcode after the logic instruction.
4814 SDValue
DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode
*N
) {
4815 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
4816 EVT VT
= N0
.getValueType();
4817 unsigned LogicOpcode
= N
->getOpcode();
4818 unsigned HandOpcode
= N0
.getOpcode();
4819 assert((LogicOpcode
== ISD::AND
|| LogicOpcode
== ISD::OR
||
4820 LogicOpcode
== ISD::XOR
) && "Expected logic opcode");
4821 assert(HandOpcode
== N1
.getOpcode() && "Bad input!");
4823 // Bail early if none of these transforms apply.
4824 if (N0
.getNumOperands() == 0)
4827 // FIXME: We should check number of uses of the operands to not increase
4828 // the instruction count for all transforms.
4830 // Handle size-changing casts.
4831 SDValue X
= N0
.getOperand(0);
4832 SDValue Y
= N1
.getOperand(0);
4833 EVT XVT
= X
.getValueType();
4835 if (HandOpcode
== ISD::ANY_EXTEND
|| HandOpcode
== ISD::ZERO_EXTEND
||
4836 HandOpcode
== ISD::SIGN_EXTEND
) {
4837 // If both operands have other uses, this transform would create extra
4838 // instructions without eliminating anything.
4839 if (!N0
.hasOneUse() && !N1
.hasOneUse())
4841 // We need matching integer source types.
4842 if (XVT
!= Y
.getValueType())
4844 // Don't create an illegal op during or after legalization. Don't ever
4845 // create an unsupported vector op.
4846 if ((VT
.isVector() || LegalOperations
) &&
4847 !TLI
.isOperationLegalOrCustom(LogicOpcode
, XVT
))
4849 // Avoid infinite looping with PromoteIntBinOp.
4850 // TODO: Should we apply desirable/legal constraints to all opcodes?
4851 if (HandOpcode
== ISD::ANY_EXTEND
&& LegalTypes
&&
4852 !TLI
.isTypeDesirableForOp(LogicOpcode
, XVT
))
4854 // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y)
4855 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4856 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
4859 // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y)
4860 if (HandOpcode
== ISD::TRUNCATE
) {
4861 // If both operands have other uses, this transform would create extra
4862 // instructions without eliminating anything.
4863 if (!N0
.hasOneUse() && !N1
.hasOneUse())
4865 // We need matching source types.
4866 if (XVT
!= Y
.getValueType())
4868 // Don't create an illegal op during or after legalization.
4869 if (LegalOperations
&& !TLI
.isOperationLegal(LogicOpcode
, XVT
))
4871 // Be extra careful sinking truncate. If it's free, there's no benefit in
4872 // widening a binop. Also, don't create a logic op on an illegal type.
4873 if (TLI
.isZExtFree(VT
, XVT
) && TLI
.isTruncateFree(XVT
, VT
))
4875 if (!TLI
.isTypeLegal(XVT
))
4877 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4878 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
4881 // For binops SHL/SRL/SRA/AND:
4882 // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z
4883 if ((HandOpcode
== ISD::SHL
|| HandOpcode
== ISD::SRL
||
4884 HandOpcode
== ISD::SRA
|| HandOpcode
== ISD::AND
) &&
4885 N0
.getOperand(1) == N1
.getOperand(1)) {
4886 // If either operand has other uses, this transform is not an improvement.
4887 if (!N0
.hasOneUse() || !N1
.hasOneUse())
4889 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4890 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
, N0
.getOperand(1));
4893 // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y)
4894 if (HandOpcode
== ISD::BSWAP
) {
4895 // If either operand has other uses, this transform is not an improvement.
4896 if (!N0
.hasOneUse() || !N1
.hasOneUse())
4898 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4899 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
4902 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
4903 // Only perform this optimization up until type legalization, before
4904 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
4905 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
4906 // we don't want to undo this promotion.
4907 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
4909 if ((HandOpcode
== ISD::BITCAST
|| HandOpcode
== ISD::SCALAR_TO_VECTOR
) &&
4910 Level
<= AfterLegalizeTypes
) {
4911 // Input types must be integer and the same.
4912 if (XVT
.isInteger() && XVT
== Y
.getValueType() &&
4913 !(VT
.isVector() && TLI
.isTypeLegal(VT
) &&
4914 !XVT
.isVector() && !TLI
.isTypeLegal(XVT
))) {
4915 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4916 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
4920 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
4921 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
4922 // If both shuffles use the same mask, and both shuffle within a single
4923 // vector, then it is worthwhile to move the swizzle after the operation.
4924 // The type-legalizer generates this pattern when loading illegal
4925 // vector types from memory. In many cases this allows additional shuffle
4927 // There are other cases where moving the shuffle after the xor/and/or
4928 // is profitable even if shuffles don't perform a swizzle.
4929 // If both shuffles use the same mask, and both shuffles have the same first
4930 // or second operand, then it might still be profitable to move the shuffle
4931 // after the xor/and/or operation.
4932 if (HandOpcode
== ISD::VECTOR_SHUFFLE
&& Level
< AfterLegalizeDAG
) {
4933 auto *SVN0
= cast
<ShuffleVectorSDNode
>(N0
);
4934 auto *SVN1
= cast
<ShuffleVectorSDNode
>(N1
);
4935 assert(X
.getValueType() == Y
.getValueType() &&
4936 "Inputs to shuffles are not the same type");
4938 // Check that both shuffles use the same mask. The masks are known to be of
4939 // the same length because the result vector type is the same.
4940 // Check also that shuffles have only one use to avoid introducing extra
4942 if (!SVN0
->hasOneUse() || !SVN1
->hasOneUse() ||
4943 !SVN0
->getMask().equals(SVN1
->getMask()))
4946 // Don't try to fold this node if it requires introducing a
4947 // build vector of all zeros that might be illegal at this stage.
4948 SDValue ShOp
= N0
.getOperand(1);
4949 if (LogicOpcode
== ISD::XOR
&& !ShOp
.isUndef())
4950 ShOp
= tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
4952 // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C)
4953 if (N0
.getOperand(1) == N1
.getOperand(1) && ShOp
.getNode()) {
4954 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, VT
,
4955 N0
.getOperand(0), N1
.getOperand(0));
4956 return DAG
.getVectorShuffle(VT
, DL
, Logic
, ShOp
, SVN0
->getMask());
4959 // Don't try to fold this node if it requires introducing a
4960 // build vector of all zeros that might be illegal at this stage.
4961 ShOp
= N0
.getOperand(0);
4962 if (LogicOpcode
== ISD::XOR
&& !ShOp
.isUndef())
4963 ShOp
= tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
4965 // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B))
4966 if (N0
.getOperand(0) == N1
.getOperand(0) && ShOp
.getNode()) {
4967 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, VT
, N0
.getOperand(1),
4969 return DAG
.getVectorShuffle(VT
, DL
, ShOp
, Logic
, SVN0
->getMask());
4976 /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient.
4977 SDValue
DAGCombiner::foldLogicOfSetCCs(bool IsAnd
, SDValue N0
, SDValue N1
,
4979 SDValue LL
, LR
, RL
, RR
, N0CC
, N1CC
;
4980 if (!isSetCCEquivalent(N0
, LL
, LR
, N0CC
) ||
4981 !isSetCCEquivalent(N1
, RL
, RR
, N1CC
))
4984 assert(N0
.getValueType() == N1
.getValueType() &&
4985 "Unexpected operand types for bitwise logic op");
4986 assert(LL
.getValueType() == LR
.getValueType() &&
4987 RL
.getValueType() == RR
.getValueType() &&
4988 "Unexpected operand types for setcc");
4990 // If we're here post-legalization or the logic op type is not i1, the logic
4991 // op type must match a setcc result type. Also, all folds require new
4992 // operations on the left and right operands, so those types must match.
4993 EVT VT
= N0
.getValueType();
4994 EVT OpVT
= LL
.getValueType();
4995 if (LegalOperations
|| VT
.getScalarType() != MVT::i1
)
4996 if (VT
!= getSetCCResultType(OpVT
))
4998 if (OpVT
!= RL
.getValueType())
5001 ISD::CondCode CC0
= cast
<CondCodeSDNode
>(N0CC
)->get();
5002 ISD::CondCode CC1
= cast
<CondCodeSDNode
>(N1CC
)->get();
5003 bool IsInteger
= OpVT
.isInteger();
5004 if (LR
== RR
&& CC0
== CC1
&& IsInteger
) {
5005 bool IsZero
= isNullOrNullSplat(LR
);
5006 bool IsNeg1
= isAllOnesOrAllOnesSplat(LR
);
5009 bool AndEqZero
= IsAnd
&& CC1
== ISD::SETEQ
&& IsZero
;
5010 // All sign bits clear?
5011 bool AndGtNeg1
= IsAnd
&& CC1
== ISD::SETGT
&& IsNeg1
;
5013 bool OrNeZero
= !IsAnd
&& CC1
== ISD::SETNE
&& IsZero
;
5014 // Any sign bits set?
5015 bool OrLtZero
= !IsAnd
&& CC1
== ISD::SETLT
&& IsZero
;
5017 // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0)
5018 // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1)
5019 // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0)
5020 // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0)
5021 if (AndEqZero
|| AndGtNeg1
|| OrNeZero
|| OrLtZero
) {
5022 SDValue Or
= DAG
.getNode(ISD::OR
, SDLoc(N0
), OpVT
, LL
, RL
);
5023 AddToWorklist(Or
.getNode());
5024 return DAG
.getSetCC(DL
, VT
, Or
, LR
, CC1
);
5028 bool AndEqNeg1
= IsAnd
&& CC1
== ISD::SETEQ
&& IsNeg1
;
5029 // All sign bits set?
5030 bool AndLtZero
= IsAnd
&& CC1
== ISD::SETLT
&& IsZero
;
5032 bool OrNeNeg1
= !IsAnd
&& CC1
== ISD::SETNE
&& IsNeg1
;
5033 // Any sign bits clear?
5034 bool OrGtNeg1
= !IsAnd
&& CC1
== ISD::SETGT
&& IsNeg1
;
5036 // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1)
5037 // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0)
5038 // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1)
5039 // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1)
5040 if (AndEqNeg1
|| AndLtZero
|| OrNeNeg1
|| OrGtNeg1
) {
5041 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(N0
), OpVT
, LL
, RL
);
5042 AddToWorklist(And
.getNode());
5043 return DAG
.getSetCC(DL
, VT
, And
, LR
, CC1
);
5047 // TODO: What is the 'or' equivalent of this fold?
5048 // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2)
5049 if (IsAnd
&& LL
== RL
&& CC0
== CC1
&& OpVT
.getScalarSizeInBits() > 1 &&
5050 IsInteger
&& CC0
== ISD::SETNE
&&
5051 ((isNullConstant(LR
) && isAllOnesConstant(RR
)) ||
5052 (isAllOnesConstant(LR
) && isNullConstant(RR
)))) {
5053 SDValue One
= DAG
.getConstant(1, DL
, OpVT
);
5054 SDValue Two
= DAG
.getConstant(2, DL
, OpVT
);
5055 SDValue Add
= DAG
.getNode(ISD::ADD
, SDLoc(N0
), OpVT
, LL
, One
);
5056 AddToWorklist(Add
.getNode());
5057 return DAG
.getSetCC(DL
, VT
, Add
, Two
, ISD::SETUGE
);
5060 // Try more general transforms if the predicates match and the only user of
5061 // the compares is the 'and' or 'or'.
5062 if (IsInteger
&& TLI
.convertSetCCLogicToBitwiseLogic(OpVT
) && CC0
== CC1
&&
5063 N0
.hasOneUse() && N1
.hasOneUse()) {
5064 // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
5065 // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0
5066 if ((IsAnd
&& CC1
== ISD::SETEQ
) || (!IsAnd
&& CC1
== ISD::SETNE
)) {
5067 SDValue XorL
= DAG
.getNode(ISD::XOR
, SDLoc(N0
), OpVT
, LL
, LR
);
5068 SDValue XorR
= DAG
.getNode(ISD::XOR
, SDLoc(N1
), OpVT
, RL
, RR
);
5069 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, OpVT
, XorL
, XorR
);
5070 SDValue Zero
= DAG
.getConstant(0, DL
, OpVT
);
5071 return DAG
.getSetCC(DL
, VT
, Or
, Zero
, CC1
);
5074 // Turn compare of constants whose difference is 1 bit into add+and+setcc.
5075 // TODO - support non-uniform vector amounts.
5076 if ((IsAnd
&& CC1
== ISD::SETNE
) || (!IsAnd
&& CC1
== ISD::SETEQ
)) {
5077 // Match a shared variable operand and 2 non-opaque constant operands.
5078 ConstantSDNode
*C0
= isConstOrConstSplat(LR
);
5079 ConstantSDNode
*C1
= isConstOrConstSplat(RR
);
5080 if (LL
== RL
&& C0
&& C1
&& !C0
->isOpaque() && !C1
->isOpaque()) {
5082 APIntOps::umax(C0
->getAPIntValue(), C1
->getAPIntValue());
5084 APIntOps::umin(C0
->getAPIntValue(), C1
->getAPIntValue());
5085 // The difference of the constants must be a single bit.
5086 if ((CMax
- CMin
).isPowerOf2()) {
5087 // and/or (setcc X, CMax, ne), (setcc X, CMin, ne/eq) -->
5088 // setcc ((sub X, CMin), ~(CMax - CMin)), 0, ne/eq
5089 SDValue Max
= DAG
.getNode(ISD::UMAX
, DL
, OpVT
, LR
, RR
);
5090 SDValue Min
= DAG
.getNode(ISD::UMIN
, DL
, OpVT
, LR
, RR
);
5091 SDValue Offset
= DAG
.getNode(ISD::SUB
, DL
, OpVT
, LL
, Min
);
5092 SDValue Diff
= DAG
.getNode(ISD::SUB
, DL
, OpVT
, Max
, Min
);
5093 SDValue Mask
= DAG
.getNOT(DL
, Diff
, OpVT
);
5094 SDValue And
= DAG
.getNode(ISD::AND
, DL
, OpVT
, Offset
, Mask
);
5095 SDValue Zero
= DAG
.getConstant(0, DL
, OpVT
);
5096 return DAG
.getSetCC(DL
, VT
, And
, Zero
, CC0
);
5102 // Canonicalize equivalent operands to LL == RL.
5103 if (LL
== RR
&& LR
== RL
) {
5104 CC1
= ISD::getSetCCSwappedOperands(CC1
);
5108 // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
5109 // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
5110 if (LL
== RL
&& LR
== RR
) {
5111 ISD::CondCode NewCC
= IsAnd
? ISD::getSetCCAndOperation(CC0
, CC1
, OpVT
)
5112 : ISD::getSetCCOrOperation(CC0
, CC1
, OpVT
);
5113 if (NewCC
!= ISD::SETCC_INVALID
&&
5114 (!LegalOperations
||
5115 (TLI
.isCondCodeLegal(NewCC
, LL
.getSimpleValueType()) &&
5116 TLI
.isOperationLegal(ISD::SETCC
, OpVT
))))
5117 return DAG
.getSetCC(DL
, VT
, LL
, LR
, NewCC
);
5123 /// This contains all DAGCombine rules which reduce two values combined by
5124 /// an And operation to a single value. This makes them reusable in the context
5125 /// of visitSELECT(). Rules involving constants are not included as
5126 /// visitSELECT() already handles those cases.
5127 SDValue
DAGCombiner::visitANDLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
5128 EVT VT
= N1
.getValueType();
5131 // fold (and x, undef) -> 0
5132 if (N0
.isUndef() || N1
.isUndef())
5133 return DAG
.getConstant(0, DL
, VT
);
5135 if (SDValue V
= foldLogicOfSetCCs(true, N0
, N1
, DL
))
5138 if (N0
.getOpcode() == ISD::ADD
&& N1
.getOpcode() == ISD::SRL
&&
5139 VT
.getSizeInBits() <= 64) {
5140 if (ConstantSDNode
*ADDI
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
5141 if (ConstantSDNode
*SRLI
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1))) {
5142 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
5143 // immediate for an add, but it is legal if its top c2 bits are set,
5144 // transform the ADD so the immediate doesn't need to be materialized
5146 APInt ADDC
= ADDI
->getAPIntValue();
5147 APInt SRLC
= SRLI
->getAPIntValue();
5148 if (ADDC
.getMinSignedBits() <= 64 &&
5149 SRLC
.ult(VT
.getSizeInBits()) &&
5150 !TLI
.isLegalAddImmediate(ADDC
.getSExtValue())) {
5151 APInt Mask
= APInt::getHighBitsSet(VT
.getSizeInBits(),
5152 SRLC
.getZExtValue());
5153 if (DAG
.MaskedValueIsZero(N0
.getOperand(1), Mask
)) {
5155 if (TLI
.isLegalAddImmediate(ADDC
.getSExtValue())) {
5158 DAG
.getNode(ISD::ADD
, DL0
, VT
,
5159 N0
.getOperand(0), DAG
.getConstant(ADDC
, DL
, VT
));
5160 CombineTo(N0
.getNode(), NewAdd
);
5161 // Return N so it doesn't get rechecked!
5162 return SDValue(N
, 0);
5170 // Reduce bit extract of low half of an integer to the narrower type.
5171 // (and (srl i64:x, K), KMask) ->
5172 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask)
5173 if (N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse()) {
5174 if (ConstantSDNode
*CAnd
= dyn_cast
<ConstantSDNode
>(N1
)) {
5175 if (ConstantSDNode
*CShift
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
5176 unsigned Size
= VT
.getSizeInBits();
5177 const APInt
&AndMask
= CAnd
->getAPIntValue();
5178 unsigned ShiftBits
= CShift
->getZExtValue();
5180 // Bail out, this node will probably disappear anyway.
5184 unsigned MaskBits
= AndMask
.countTrailingOnes();
5185 EVT HalfVT
= EVT::getIntegerVT(*DAG
.getContext(), Size
/ 2);
5187 if (AndMask
.isMask() &&
5188 // Required bits must not span the two halves of the integer and
5189 // must fit in the half size type.
5190 (ShiftBits
+ MaskBits
<= Size
/ 2) &&
5191 TLI
.isNarrowingProfitable(VT
, HalfVT
) &&
5192 TLI
.isTypeDesirableForOp(ISD::AND
, HalfVT
) &&
5193 TLI
.isTypeDesirableForOp(ISD::SRL
, HalfVT
) &&
5194 TLI
.isTruncateFree(VT
, HalfVT
) &&
5195 TLI
.isZExtFree(HalfVT
, VT
)) {
5196 // The isNarrowingProfitable is to avoid regressions on PPC and
5197 // AArch64 which match a few 64-bit bit insert / bit extract patterns
5198 // on downstream users of this. Those patterns could probably be
5199 // extended to handle extensions mixed in.
5202 assert(MaskBits
<= Size
);
5204 // Extracting the highest bit of the low half.
5205 EVT ShiftVT
= TLI
.getShiftAmountTy(HalfVT
, DAG
.getDataLayout());
5206 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, HalfVT
,
5209 SDValue NewMask
= DAG
.getConstant(AndMask
.trunc(Size
/ 2), SL
, HalfVT
);
5210 SDValue ShiftK
= DAG
.getConstant(ShiftBits
, SL
, ShiftVT
);
5211 SDValue Shift
= DAG
.getNode(ISD::SRL
, SL
, HalfVT
, Trunc
, ShiftK
);
5212 SDValue And
= DAG
.getNode(ISD::AND
, SL
, HalfVT
, Shift
, NewMask
);
5213 return DAG
.getNode(ISD::ZERO_EXTEND
, SL
, VT
, And
);
5222 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode
*AndC
, LoadSDNode
*LoadN
,
5223 EVT LoadResultTy
, EVT
&ExtVT
) {
5224 if (!AndC
->getAPIntValue().isMask())
5227 unsigned ActiveBits
= AndC
->getAPIntValue().countTrailingOnes();
5229 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
5230 EVT LoadedVT
= LoadN
->getMemoryVT();
5232 if (ExtVT
== LoadedVT
&&
5233 (!LegalOperations
||
5234 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, LoadResultTy
, ExtVT
))) {
5235 // ZEXTLOAD will match without needing to change the size of the value being
5240 // Do not change the width of a volatile or atomic loads.
5241 if (!LoadN
->isSimple())
5244 // Do not generate loads of non-round integer types since these can
5245 // be expensive (and would be wrong if the type is not byte sized).
5246 if (!LoadedVT
.bitsGT(ExtVT
) || !ExtVT
.isRound())
5249 if (LegalOperations
&&
5250 !TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, LoadResultTy
, ExtVT
))
5253 if (!TLI
.shouldReduceLoadWidth(LoadN
, ISD::ZEXTLOAD
, ExtVT
))
5259 bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode
*LDST
,
5260 ISD::LoadExtType ExtType
, EVT
&MemVT
,
5264 // Only allow byte offsets.
5268 // Do not generate loads of non-round integer types since these can
5269 // be expensive (and would be wrong if the type is not byte sized).
5270 if (!MemVT
.isRound())
5273 // Don't change the width of a volatile or atomic loads.
5274 if (!LDST
->isSimple())
5277 EVT LdStMemVT
= LDST
->getMemoryVT();
5279 // Bail out when changing the scalable property, since we can't be sure that
5280 // we're actually narrowing here.
5281 if (LdStMemVT
.isScalableVector() != MemVT
.isScalableVector())
5284 // Verify that we are actually reducing a load width here.
5285 if (LdStMemVT
.bitsLT(MemVT
))
5288 // Ensure that this isn't going to produce an unsupported memory access.
5290 assert(ShAmt
% 8 == 0 && "ShAmt is byte offset");
5291 const unsigned ByteShAmt
= ShAmt
/ 8;
5292 const Align LDSTAlign
= LDST
->getAlign();
5293 const Align NarrowAlign
= commonAlignment(LDSTAlign
, ByteShAmt
);
5294 if (!TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), MemVT
,
5295 LDST
->getAddressSpace(), NarrowAlign
,
5296 LDST
->getMemOperand()->getFlags()))
5300 // It's not possible to generate a constant of extended or untyped type.
5301 EVT PtrType
= LDST
->getBasePtr().getValueType();
5302 if (PtrType
== MVT::Untyped
|| PtrType
.isExtended())
5305 if (isa
<LoadSDNode
>(LDST
)) {
5306 LoadSDNode
*Load
= cast
<LoadSDNode
>(LDST
);
5307 // Don't transform one with multiple uses, this would require adding a new
5309 if (!SDValue(Load
, 0).hasOneUse())
5312 if (LegalOperations
&&
5313 !TLI
.isLoadExtLegal(ExtType
, Load
->getValueType(0), MemVT
))
5316 // For the transform to be legal, the load must produce only two values
5317 // (the value loaded and the chain). Don't transform a pre-increment
5318 // load, for example, which produces an extra value. Otherwise the
5319 // transformation is not equivalent, and the downstream logic to replace
5320 // uses gets things wrong.
5321 if (Load
->getNumValues() > 2)
5324 // If the load that we're shrinking is an extload and we're not just
5325 // discarding the extension we can't simply shrink the load. Bail.
5326 // TODO: It would be possible to merge the extensions in some cases.
5327 if (Load
->getExtensionType() != ISD::NON_EXTLOAD
&&
5328 Load
->getMemoryVT().getSizeInBits() < MemVT
.getSizeInBits() + ShAmt
)
5331 if (!TLI
.shouldReduceLoadWidth(Load
, ExtType
, MemVT
))
5334 assert(isa
<StoreSDNode
>(LDST
) && "It is not a Load nor a Store SDNode");
5335 StoreSDNode
*Store
= cast
<StoreSDNode
>(LDST
);
5336 // Can't write outside the original store
5337 if (Store
->getMemoryVT().getSizeInBits() < MemVT
.getSizeInBits() + ShAmt
)
5340 if (LegalOperations
&&
5341 !TLI
.isTruncStoreLegal(Store
->getValue().getValueType(), MemVT
))
5347 bool DAGCombiner::SearchForAndLoads(SDNode
*N
,
5348 SmallVectorImpl
<LoadSDNode
*> &Loads
,
5349 SmallPtrSetImpl
<SDNode
*> &NodesWithConsts
,
5350 ConstantSDNode
*Mask
,
5351 SDNode
*&NodeToMask
) {
5352 // Recursively search for the operands, looking for loads which can be
5354 for (SDValue Op
: N
->op_values()) {
5355 if (Op
.getValueType().isVector())
5358 // Some constants may need fixing up later if they are too large.
5359 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
)) {
5360 if ((N
->getOpcode() == ISD::OR
|| N
->getOpcode() == ISD::XOR
) &&
5361 (Mask
->getAPIntValue() & C
->getAPIntValue()) != C
->getAPIntValue())
5362 NodesWithConsts
.insert(N
);
5366 if (!Op
.hasOneUse())
5369 switch(Op
.getOpcode()) {
5371 auto *Load
= cast
<LoadSDNode
>(Op
);
5373 if (isAndLoadExtLoad(Mask
, Load
, Load
->getValueType(0), ExtVT
) &&
5374 isLegalNarrowLdSt(Load
, ISD::ZEXTLOAD
, ExtVT
)) {
5376 // ZEXTLOAD is already small enough.
5377 if (Load
->getExtensionType() == ISD::ZEXTLOAD
&&
5378 ExtVT
.bitsGE(Load
->getMemoryVT()))
5381 // Use LE to convert equal sized loads to zext.
5382 if (ExtVT
.bitsLE(Load
->getMemoryVT()))
5383 Loads
.push_back(Load
);
5389 case ISD::ZERO_EXTEND
:
5390 case ISD::AssertZext
: {
5391 unsigned ActiveBits
= Mask
->getAPIntValue().countTrailingOnes();
5392 EVT ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
5393 EVT VT
= Op
.getOpcode() == ISD::AssertZext
?
5394 cast
<VTSDNode
>(Op
.getOperand(1))->getVT() :
5395 Op
.getOperand(0).getValueType();
5397 // We can accept extending nodes if the mask is wider or an equal
5398 // width to the original type.
5399 if (ExtVT
.bitsGE(VT
))
5406 if (!SearchForAndLoads(Op
.getNode(), Loads
, NodesWithConsts
, Mask
,
5412 // Allow one node which will masked along with any loads found.
5416 // Also ensure that the node to be masked only produces one data result.
5417 NodeToMask
= Op
.getNode();
5418 if (NodeToMask
->getNumValues() > 1) {
5419 bool HasValue
= false;
5420 for (unsigned i
= 0, e
= NodeToMask
->getNumValues(); i
< e
; ++i
) {
5421 MVT VT
= SDValue(NodeToMask
, i
).getSimpleValueType();
5422 if (VT
!= MVT::Glue
&& VT
!= MVT::Other
) {
5424 NodeToMask
= nullptr;
5430 assert(HasValue
&& "Node to be masked has no data result?");
5436 bool DAGCombiner::BackwardsPropagateMask(SDNode
*N
) {
5437 auto *Mask
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
5441 if (!Mask
->getAPIntValue().isMask())
5444 // No need to do anything if the and directly uses a load.
5445 if (isa
<LoadSDNode
>(N
->getOperand(0)))
5448 SmallVector
<LoadSDNode
*, 8> Loads
;
5449 SmallPtrSet
<SDNode
*, 2> NodesWithConsts
;
5450 SDNode
*FixupNode
= nullptr;
5451 if (SearchForAndLoads(N
, Loads
, NodesWithConsts
, Mask
, FixupNode
)) {
5452 if (Loads
.size() == 0)
5455 LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N
->dump());
5456 SDValue MaskOp
= N
->getOperand(1);
5458 // If it exists, fixup the single node we allow in the tree that needs
5461 LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode
->dump());
5462 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(FixupNode
),
5463 FixupNode
->getValueType(0),
5464 SDValue(FixupNode
, 0), MaskOp
);
5465 DAG
.ReplaceAllUsesOfValueWith(SDValue(FixupNode
, 0), And
);
5466 if (And
.getOpcode() == ISD ::AND
)
5467 DAG
.UpdateNodeOperands(And
.getNode(), SDValue(FixupNode
, 0), MaskOp
);
5470 // Narrow any constants that need it.
5471 for (auto *LogicN
: NodesWithConsts
) {
5472 SDValue Op0
= LogicN
->getOperand(0);
5473 SDValue Op1
= LogicN
->getOperand(1);
5475 if (isa
<ConstantSDNode
>(Op0
))
5476 std::swap(Op0
, Op1
);
5478 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(Op1
), Op1
.getValueType(),
5481 DAG
.UpdateNodeOperands(LogicN
, Op0
, And
);
5484 // Create narrow loads.
5485 for (auto *Load
: Loads
) {
5486 LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load
->dump());
5487 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(Load
), Load
->getValueType(0),
5488 SDValue(Load
, 0), MaskOp
);
5489 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 0), And
);
5490 if (And
.getOpcode() == ISD ::AND
)
5492 DAG
.UpdateNodeOperands(And
.getNode(), SDValue(Load
, 0), MaskOp
), 0);
5493 SDValue NewLoad
= ReduceLoadWidth(And
.getNode());
5495 "Shouldn't be masking the load if it can't be narrowed");
5496 CombineTo(Load
, NewLoad
, NewLoad
.getValue(1));
5498 DAG
.ReplaceAllUsesWith(N
, N
->getOperand(0).getNode());
5505 // x & (-1 'logical shift' y)
5507 // (x 'opposite logical shift' y) 'logical shift' y
5508 // if it is better for performance.
5509 SDValue
DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode
*N
) {
5510 assert(N
->getOpcode() == ISD::AND
);
5512 SDValue N0
= N
->getOperand(0);
5513 SDValue N1
= N
->getOperand(1);
5515 // Do we actually prefer shifts over mask?
5516 if (!TLI
.shouldFoldMaskToVariableShiftPair(N0
))
5519 // Try to match (-1 '[outer] logical shift' y)
5520 unsigned OuterShift
;
5521 unsigned InnerShift
; // The opposite direction to the OuterShift.
5522 SDValue Y
; // Shift amount.
5523 auto matchMask
= [&OuterShift
, &InnerShift
, &Y
](SDValue M
) -> bool {
5526 OuterShift
= M
->getOpcode();
5527 if (OuterShift
== ISD::SHL
)
5528 InnerShift
= ISD::SRL
;
5529 else if (OuterShift
== ISD::SRL
)
5530 InnerShift
= ISD::SHL
;
5533 if (!isAllOnesConstant(M
->getOperand(0)))
5535 Y
= M
->getOperand(1);
5542 else if (matchMask(N0
))
5548 EVT VT
= N
->getValueType(0);
5550 // tmp = x 'opposite logical shift' y
5551 SDValue T0
= DAG
.getNode(InnerShift
, DL
, VT
, X
, Y
);
5552 // ret = tmp 'logical shift' y
5553 SDValue T1
= DAG
.getNode(OuterShift
, DL
, VT
, T0
, Y
);
5558 /// Try to replace shift/logic that tests if a bit is clear with mask + setcc.
5559 /// For a target with a bit test, this is expected to become test + set and save
5560 /// at least 1 instruction.
5561 static SDValue
combineShiftAnd1ToBitTest(SDNode
*And
, SelectionDAG
&DAG
) {
5562 assert(And
->getOpcode() == ISD::AND
&& "Expected an 'and' op");
5564 // This is probably not worthwhile without a supported type.
5565 EVT VT
= And
->getValueType(0);
5566 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5567 if (!TLI
.isTypeLegal(VT
))
5570 // Look through an optional extension and find a 'not'.
5571 // TODO: Should we favor test+set even without the 'not' op?
5572 SDValue Not
= And
->getOperand(0), And1
= And
->getOperand(1);
5573 if (Not
.getOpcode() == ISD::ANY_EXTEND
)
5574 Not
= Not
.getOperand(0);
5575 if (!isBitwiseNot(Not
) || !Not
.hasOneUse() || !isOneConstant(And1
))
5578 // Look though an optional truncation. The source operand may not be the same
5579 // type as the original 'and', but that is ok because we are masking off
5580 // everything but the low bit.
5581 SDValue Srl
= Not
.getOperand(0);
5582 if (Srl
.getOpcode() == ISD::TRUNCATE
)
5583 Srl
= Srl
.getOperand(0);
5585 // Match a shift-right by constant.
5586 if (Srl
.getOpcode() != ISD::SRL
|| !Srl
.hasOneUse() ||
5587 !isa
<ConstantSDNode
>(Srl
.getOperand(1)))
5590 // We might have looked through casts that make this transform invalid.
5591 // TODO: If the source type is wider than the result type, do the mask and
5592 // compare in the source type.
5593 const APInt
&ShiftAmt
= Srl
.getConstantOperandAPInt(1);
5594 unsigned VTBitWidth
= VT
.getSizeInBits();
5595 if (ShiftAmt
.uge(VTBitWidth
))
5598 // Turn this into a bit-test pattern using mask op + setcc:
5599 // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0
5601 SDValue X
= DAG
.getZExtOrTrunc(Srl
.getOperand(0), DL
, VT
);
5602 EVT CCVT
= TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
5603 SDValue Mask
= DAG
.getConstant(
5604 APInt::getOneBitSet(VTBitWidth
, ShiftAmt
.getZExtValue()), DL
, VT
);
5605 SDValue NewAnd
= DAG
.getNode(ISD::AND
, DL
, VT
, X
, Mask
);
5606 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
5607 SDValue Setcc
= DAG
.getSetCC(DL
, CCVT
, NewAnd
, Zero
, ISD::SETEQ
);
5608 return DAG
.getZExtOrTrunc(Setcc
, DL
, VT
);
5611 SDValue
DAGCombiner::visitAND(SDNode
*N
) {
5612 SDValue N0
= N
->getOperand(0);
5613 SDValue N1
= N
->getOperand(1);
5614 EVT VT
= N1
.getValueType();
5621 if (VT
.isVector()) {
5622 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
5625 // fold (and x, 0) -> 0, vector edition
5626 if (ISD::isConstantSplatVectorAllZeros(N0
.getNode()))
5627 // do not return N0, because undef node may exist in N0
5628 return DAG
.getConstant(APInt::getNullValue(N0
.getScalarValueSizeInBits()),
5629 SDLoc(N
), N0
.getValueType());
5630 if (ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
5631 // do not return N1, because undef node may exist in N1
5632 return DAG
.getConstant(APInt::getNullValue(N1
.getScalarValueSizeInBits()),
5633 SDLoc(N
), N1
.getValueType());
5635 // fold (and x, -1) -> x, vector edition
5636 if (ISD::isConstantSplatVectorAllOnes(N0
.getNode()))
5638 if (ISD::isConstantSplatVectorAllOnes(N1
.getNode()))
5641 // fold (and (masked_load) (build_vec (x, ...))) to zext_masked_load
5642 auto *MLoad
= dyn_cast
<MaskedLoadSDNode
>(N0
);
5643 auto *BVec
= dyn_cast
<BuildVectorSDNode
>(N1
);
5644 if (MLoad
&& BVec
&& MLoad
->getExtensionType() == ISD::EXTLOAD
&&
5645 N0
.hasOneUse() && N1
.hasOneUse()) {
5646 EVT LoadVT
= MLoad
->getMemoryVT();
5648 if (TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, ExtVT
, LoadVT
)) {
5649 // For this AND to be a zero extension of the masked load the elements
5650 // of the BuildVec must mask the bottom bits of the extended element
5652 if (ConstantSDNode
*Splat
= BVec
->getConstantSplatNode()) {
5653 uint64_t ElementSize
=
5654 LoadVT
.getVectorElementType().getScalarSizeInBits();
5655 if (Splat
->getAPIntValue().isMask(ElementSize
)) {
5656 return DAG
.getMaskedLoad(
5657 ExtVT
, SDLoc(N
), MLoad
->getChain(), MLoad
->getBasePtr(),
5658 MLoad
->getOffset(), MLoad
->getMask(), MLoad
->getPassThru(),
5659 LoadVT
, MLoad
->getMemOperand(), MLoad
->getAddressingMode(),
5660 ISD::ZEXTLOAD
, MLoad
->isExpandingLoad());
5667 // fold (and c1, c2) -> c1&c2
5668 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
5669 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::AND
, SDLoc(N
), VT
, {N0
, N1
}))
5672 // canonicalize constant to RHS
5673 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
5674 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
5675 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, N1
, N0
);
5677 // fold (and x, -1) -> x
5678 if (isAllOnesConstant(N1
))
5681 // if (and x, c) is known to be zero, return 0
5682 unsigned BitWidth
= VT
.getScalarSizeInBits();
5683 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
5684 APInt::getAllOnesValue(BitWidth
)))
5685 return DAG
.getConstant(0, SDLoc(N
), VT
);
5687 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
5691 if (SDValue RAND
= reassociateOps(ISD::AND
, SDLoc(N
), N0
, N1
, N
->getFlags()))
5694 // Try to convert a constant mask AND into a shuffle clear mask.
5696 if (SDValue Shuffle
= XformToShuffleWithZero(N
))
5699 if (SDValue Combined
= combineCarryDiamond(*this, DAG
, TLI
, N0
, N1
, N
))
5702 // fold (and (or x, C), D) -> D if (C & D) == D
5703 auto MatchSubset
= [](ConstantSDNode
*LHS
, ConstantSDNode
*RHS
) {
5704 return RHS
->getAPIntValue().isSubsetOf(LHS
->getAPIntValue());
5706 if (N0
.getOpcode() == ISD::OR
&&
5707 ISD::matchBinaryPredicate(N0
.getOperand(1), N1
, MatchSubset
))
5709 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
5710 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
5711 SDValue N0Op0
= N0
.getOperand(0);
5712 APInt Mask
= ~N1C
->getAPIntValue();
5713 Mask
= Mask
.trunc(N0Op0
.getScalarValueSizeInBits());
5714 if (DAG
.MaskedValueIsZero(N0Op0
, Mask
)) {
5715 SDValue Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
),
5716 N0
.getValueType(), N0Op0
);
5718 // Replace uses of the AND with uses of the Zero extend node.
5721 // We actually want to replace all uses of the any_extend with the
5722 // zero_extend, to avoid duplicating things. This will later cause this
5723 // AND to be folded.
5724 CombineTo(N0
.getNode(), Zext
);
5725 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
5729 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
5730 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
5731 // already be zero by virtue of the width of the base type of the load.
5733 // the 'X' node here can either be nothing or an extract_vector_elt to catch
5735 if ((N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
5736 N0
.getValueSizeInBits() == N0
.getOperand(0).getScalarValueSizeInBits() &&
5737 N0
.getOperand(0).getOpcode() == ISD::LOAD
&&
5738 N0
.getOperand(0).getResNo() == 0) ||
5739 (N0
.getOpcode() == ISD::LOAD
&& N0
.getResNo() == 0)) {
5740 LoadSDNode
*Load
= cast
<LoadSDNode
>( (N0
.getOpcode() == ISD::LOAD
) ?
5741 N0
: N0
.getOperand(0) );
5743 // Get the constant (if applicable) the zero'th operand is being ANDed with.
5744 // This can be a pure constant or a vector splat, in which case we treat the
5745 // vector as a scalar and use the splat value.
5746 APInt Constant
= APInt::getNullValue(1);
5747 if (const ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
5748 Constant
= C
->getAPIntValue();
5749 } else if (BuildVectorSDNode
*Vector
= dyn_cast
<BuildVectorSDNode
>(N1
)) {
5750 APInt SplatValue
, SplatUndef
;
5751 unsigned SplatBitSize
;
5753 bool IsSplat
= Vector
->isConstantSplat(SplatValue
, SplatUndef
,
5754 SplatBitSize
, HasAnyUndefs
);
5756 // Undef bits can contribute to a possible optimisation if set, so
5758 SplatValue
|= SplatUndef
;
5760 // The splat value may be something like "0x00FFFFFF", which means 0 for
5761 // the first vector value and FF for the rest, repeating. We need a mask
5762 // that will apply equally to all members of the vector, so AND all the
5763 // lanes of the constant together.
5764 unsigned EltBitWidth
= Vector
->getValueType(0).getScalarSizeInBits();
5766 // If the splat value has been compressed to a bitlength lower
5767 // than the size of the vector lane, we need to re-expand it to
5769 if (EltBitWidth
> SplatBitSize
)
5770 for (SplatValue
= SplatValue
.zextOrTrunc(EltBitWidth
);
5771 SplatBitSize
< EltBitWidth
; SplatBitSize
= SplatBitSize
* 2)
5772 SplatValue
|= SplatValue
.shl(SplatBitSize
);
5774 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
5775 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
5776 if ((SplatBitSize
% EltBitWidth
) == 0) {
5777 Constant
= APInt::getAllOnesValue(EltBitWidth
);
5778 for (unsigned i
= 0, n
= (SplatBitSize
/ EltBitWidth
); i
< n
; ++i
)
5779 Constant
&= SplatValue
.extractBits(EltBitWidth
, i
* EltBitWidth
);
5784 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
5785 // actually legal and isn't going to get expanded, else this is a false
5787 bool CanZextLoadProfitably
= TLI
.isLoadExtLegal(ISD::ZEXTLOAD
,
5788 Load
->getValueType(0),
5789 Load
->getMemoryVT());
5791 // Resize the constant to the same size as the original memory access before
5792 // extension. If it is still the AllOnesValue then this AND is completely
5794 Constant
= Constant
.zextOrTrunc(Load
->getMemoryVT().getScalarSizeInBits());
5797 switch (Load
->getExtensionType()) {
5798 default: B
= false; break;
5799 case ISD::EXTLOAD
: B
= CanZextLoadProfitably
; break;
5801 case ISD::NON_EXTLOAD
: B
= true; break;
5804 if (B
&& Constant
.isAllOnesValue()) {
5805 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
5806 // preserve semantics once we get rid of the AND.
5807 SDValue
NewLoad(Load
, 0);
5809 // Fold the AND away. NewLoad may get replaced immediately.
5810 CombineTo(N
, (N0
.getNode() == Load
) ? NewLoad
: N0
);
5812 if (Load
->getExtensionType() == ISD::EXTLOAD
) {
5813 NewLoad
= DAG
.getLoad(Load
->getAddressingMode(), ISD::ZEXTLOAD
,
5814 Load
->getValueType(0), SDLoc(Load
),
5815 Load
->getChain(), Load
->getBasePtr(),
5816 Load
->getOffset(), Load
->getMemoryVT(),
5817 Load
->getMemOperand());
5818 // Replace uses of the EXTLOAD with the new ZEXTLOAD.
5819 if (Load
->getNumValues() == 3) {
5820 // PRE/POST_INC loads have 3 values.
5821 SDValue To
[] = { NewLoad
.getValue(0), NewLoad
.getValue(1),
5822 NewLoad
.getValue(2) };
5823 CombineTo(Load
, To
, 3, true);
5825 CombineTo(Load
, NewLoad
.getValue(0), NewLoad
.getValue(1));
5829 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
5833 // fold (and (masked_gather x)) -> (zext_masked_gather x)
5834 if (auto *GN0
= dyn_cast
<MaskedGatherSDNode
>(N0
)) {
5835 EVT MemVT
= GN0
->getMemoryVT();
5836 EVT ScalarVT
= MemVT
.getScalarType();
5838 if (SDValue(GN0
, 0).hasOneUse() &&
5839 isConstantSplatVectorMaskForType(N1
.getNode(), ScalarVT
) &&
5840 TLI
.isVectorLoadExtDesirable(SDValue(SDValue(GN0
, 0)))) {
5841 SDValue Ops
[] = {GN0
->getChain(), GN0
->getPassThru(), GN0
->getMask(),
5842 GN0
->getBasePtr(), GN0
->getIndex(), GN0
->getScale()};
5844 SDValue ZExtLoad
= DAG
.getMaskedGather(
5845 DAG
.getVTList(VT
, MVT::Other
), MemVT
, SDLoc(N
), Ops
,
5846 GN0
->getMemOperand(), GN0
->getIndexType(), ISD::ZEXTLOAD
);
5848 CombineTo(N
, ZExtLoad
);
5849 AddToWorklist(ZExtLoad
.getNode());
5850 // Avoid recheck of N.
5851 return SDValue(N
, 0);
5855 // fold (and (load x), 255) -> (zextload x, i8)
5856 // fold (and (extload x, i16), 255) -> (zextload x, i8)
5857 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
5858 if (!VT
.isVector() && N1C
&& (N0
.getOpcode() == ISD::LOAD
||
5859 (N0
.getOpcode() == ISD::ANY_EXTEND
&&
5860 N0
.getOperand(0).getOpcode() == ISD::LOAD
))) {
5861 if (SDValue Res
= ReduceLoadWidth(N
)) {
5862 LoadSDNode
*LN0
= N0
->getOpcode() == ISD::ANY_EXTEND
5863 ? cast
<LoadSDNode
>(N0
.getOperand(0)) : cast
<LoadSDNode
>(N0
);
5865 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 0), Res
);
5866 return SDValue(N
, 0);
5871 // Attempt to propagate the AND back up to the leaves which, if they're
5872 // loads, can be combined to narrow loads and the AND node can be removed.
5873 // Perform after legalization so that extend nodes will already be
5874 // combined into the loads.
5875 if (BackwardsPropagateMask(N
))
5876 return SDValue(N
, 0);
5879 if (SDValue Combined
= visitANDLike(N0
, N1
, N
))
5882 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
5883 if (N0
.getOpcode() == N1
.getOpcode())
5884 if (SDValue V
= hoistLogicOpWithSameOpcodeHands(N
))
5887 // Masking the negated extension of a boolean is just the zero-extended
5889 // and (sub 0, zext(bool X)), 1 --> zext(bool X)
5890 // and (sub 0, sext(bool X)), 1 --> zext(bool X)
5892 // Note: the SimplifyDemandedBits fold below can make an information-losing
5893 // transform, and then we have no way to find this better fold.
5894 if (N1C
&& N1C
->isOne() && N0
.getOpcode() == ISD::SUB
) {
5895 if (isNullOrNullSplat(N0
.getOperand(0))) {
5896 SDValue SubRHS
= N0
.getOperand(1);
5897 if (SubRHS
.getOpcode() == ISD::ZERO_EXTEND
&&
5898 SubRHS
.getOperand(0).getScalarValueSizeInBits() == 1)
5900 if (SubRHS
.getOpcode() == ISD::SIGN_EXTEND
&&
5901 SubRHS
.getOperand(0).getScalarValueSizeInBits() == 1)
5902 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), VT
, SubRHS
.getOperand(0));
5906 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
5907 // fold (and (sra)) -> (and (srl)) when possible.
5908 if (SimplifyDemandedBits(SDValue(N
, 0)))
5909 return SDValue(N
, 0);
5911 // fold (zext_inreg (extload x)) -> (zextload x)
5912 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
5913 if (ISD::isUNINDEXEDLoad(N0
.getNode()) &&
5914 (ISD::isEXTLoad(N0
.getNode()) ||
5915 (ISD::isSEXTLoad(N0
.getNode()) && N0
.hasOneUse()))) {
5916 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
5917 EVT MemVT
= LN0
->getMemoryVT();
5918 // If we zero all the possible extended bits, then we can turn this into
5919 // a zextload if we are running before legalize or the operation is legal.
5920 unsigned ExtBitSize
= N1
.getScalarValueSizeInBits();
5921 unsigned MemBitSize
= MemVT
.getScalarSizeInBits();
5922 APInt ExtBits
= APInt::getHighBitsSet(ExtBitSize
, ExtBitSize
- MemBitSize
);
5923 if (DAG
.MaskedValueIsZero(N1
, ExtBits
) &&
5924 ((!LegalOperations
&& LN0
->isSimple()) ||
5925 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, VT
, MemVT
))) {
5927 DAG
.getExtLoad(ISD::ZEXTLOAD
, SDLoc(N0
), VT
, LN0
->getChain(),
5928 LN0
->getBasePtr(), MemVT
, LN0
->getMemOperand());
5930 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
5931 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
5935 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
5936 if (N1C
&& N1C
->getAPIntValue() == 0xffff && N0
.getOpcode() == ISD::OR
) {
5937 if (SDValue BSwap
= MatchBSwapHWordLow(N0
.getNode(), N0
.getOperand(0),
5938 N0
.getOperand(1), false))
5942 if (SDValue Shifts
= unfoldExtremeBitClearingToShifts(N
))
5945 if (TLI
.hasBitTest(N0
, N1
))
5946 if (SDValue V
= combineShiftAnd1ToBitTest(N
, DAG
))
5949 // Recognize the following pattern:
5951 // AndVT = (and (sign_extend NarrowVT to AndVT) #bitmask)
5953 // where bitmask is a mask that clears the upper bits of AndVT. The
5954 // number of bits in bitmask must be a power of two.
5955 auto IsAndZeroExtMask
= [](SDValue LHS
, SDValue RHS
) {
5956 if (LHS
->getOpcode() != ISD::SIGN_EXTEND
)
5959 auto *C
= dyn_cast
<ConstantSDNode
>(RHS
);
5963 if (!C
->getAPIntValue().isMask(
5964 LHS
.getOperand(0).getValueType().getFixedSizeInBits()))
5970 // Replace (and (sign_extend ...) #bitmask) with (zero_extend ...).
5971 if (IsAndZeroExtMask(N0
, N1
))
5972 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), VT
, N0
.getOperand(0));
5977 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
5978 SDValue
DAGCombiner::MatchBSwapHWordLow(SDNode
*N
, SDValue N0
, SDValue N1
,
5979 bool DemandHighBits
) {
5980 if (!LegalOperations
)
5983 EVT VT
= N
->getValueType(0);
5984 if (VT
!= MVT::i64
&& VT
!= MVT::i32
&& VT
!= MVT::i16
)
5986 if (!TLI
.isOperationLegalOrCustom(ISD::BSWAP
, VT
))
5989 // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff)
5990 bool LookPassAnd0
= false;
5991 bool LookPassAnd1
= false;
5992 if (N0
.getOpcode() == ISD::AND
&& N0
.getOperand(0).getOpcode() == ISD::SRL
)
5994 if (N1
.getOpcode() == ISD::AND
&& N1
.getOperand(0).getOpcode() == ISD::SHL
)
5996 if (N0
.getOpcode() == ISD::AND
) {
5997 if (!N0
.getNode()->hasOneUse())
5999 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
6000 // Also handle 0xffff since the LHS is guaranteed to have zeros there.
6001 // This is needed for X86.
6002 if (!N01C
|| (N01C
->getZExtValue() != 0xFF00 &&
6003 N01C
->getZExtValue() != 0xFFFF))
6005 N0
= N0
.getOperand(0);
6006 LookPassAnd0
= true;
6009 if (N1
.getOpcode() == ISD::AND
) {
6010 if (!N1
.getNode()->hasOneUse())
6012 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
6013 if (!N11C
|| N11C
->getZExtValue() != 0xFF)
6015 N1
= N1
.getOperand(0);
6016 LookPassAnd1
= true;
6019 if (N0
.getOpcode() == ISD::SRL
&& N1
.getOpcode() == ISD::SHL
)
6021 if (N0
.getOpcode() != ISD::SHL
|| N1
.getOpcode() != ISD::SRL
)
6023 if (!N0
.getNode()->hasOneUse() || !N1
.getNode()->hasOneUse())
6026 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
6027 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
6030 if (N01C
->getZExtValue() != 8 || N11C
->getZExtValue() != 8)
6033 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
6034 SDValue N00
= N0
->getOperand(0);
6035 if (!LookPassAnd0
&& N00
.getOpcode() == ISD::AND
) {
6036 if (!N00
.getNode()->hasOneUse())
6038 ConstantSDNode
*N001C
= dyn_cast
<ConstantSDNode
>(N00
.getOperand(1));
6039 if (!N001C
|| N001C
->getZExtValue() != 0xFF)
6041 N00
= N00
.getOperand(0);
6042 LookPassAnd0
= true;
6045 SDValue N10
= N1
->getOperand(0);
6046 if (!LookPassAnd1
&& N10
.getOpcode() == ISD::AND
) {
6047 if (!N10
.getNode()->hasOneUse())
6049 ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N10
.getOperand(1));
6050 // Also allow 0xFFFF since the bits will be shifted out. This is needed
6052 if (!N101C
|| (N101C
->getZExtValue() != 0xFF00 &&
6053 N101C
->getZExtValue() != 0xFFFF))
6055 N10
= N10
.getOperand(0);
6056 LookPassAnd1
= true;
6062 // Make sure everything beyond the low halfword gets set to zero since the SRL
6063 // 16 will clear the top bits.
6064 unsigned OpSizeInBits
= VT
.getSizeInBits();
6065 if (DemandHighBits
&& OpSizeInBits
> 16) {
6066 // If the left-shift isn't masked out then the only way this is a bswap is
6067 // if all bits beyond the low 8 are 0. In that case the entire pattern
6068 // reduces to a left shift anyway: leave it for other parts of the combiner.
6072 // However, if the right shift isn't masked out then it might be because
6073 // it's not needed. See if we can spot that too.
6074 if (!LookPassAnd1
&&
6075 !DAG
.MaskedValueIsZero(
6076 N10
, APInt::getHighBitsSet(OpSizeInBits
, OpSizeInBits
- 16)))
6080 SDValue Res
= DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, N00
);
6081 if (OpSizeInBits
> 16) {
6083 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, Res
,
6084 DAG
.getConstant(OpSizeInBits
- 16, DL
,
6085 getShiftAmountTy(VT
)));
6090 /// Return true if the specified node is an element that makes up a 32-bit
6091 /// packed halfword byteswap.
6092 /// ((x & 0x000000ff) << 8) |
6093 /// ((x & 0x0000ff00) >> 8) |
6094 /// ((x & 0x00ff0000) << 8) |
6095 /// ((x & 0xff000000) >> 8)
6096 static bool isBSwapHWordElement(SDValue N
, MutableArrayRef
<SDNode
*> Parts
) {
6097 if (!N
.getNode()->hasOneUse())
6100 unsigned Opc
= N
.getOpcode();
6101 if (Opc
!= ISD::AND
&& Opc
!= ISD::SHL
&& Opc
!= ISD::SRL
)
6104 SDValue N0
= N
.getOperand(0);
6105 unsigned Opc0
= N0
.getOpcode();
6106 if (Opc0
!= ISD::AND
&& Opc0
!= ISD::SHL
&& Opc0
!= ISD::SRL
)
6109 ConstantSDNode
*N1C
= nullptr;
6110 // SHL or SRL: look upstream for AND mask operand
6111 if (Opc
== ISD::AND
)
6112 N1C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
6113 else if (Opc0
== ISD::AND
)
6114 N1C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
6118 unsigned MaskByteOffset
;
6119 switch (N1C
->getZExtValue()) {
6122 case 0xFF: MaskByteOffset
= 0; break;
6123 case 0xFF00: MaskByteOffset
= 1; break;
6125 // In case demanded bits didn't clear the bits that will be shifted out.
6126 // This is needed for X86.
6127 if (Opc
== ISD::SRL
|| (Opc
== ISD::AND
&& Opc0
== ISD::SHL
)) {
6132 case 0xFF0000: MaskByteOffset
= 2; break;
6133 case 0xFF000000: MaskByteOffset
= 3; break;
6136 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
6137 if (Opc
== ISD::AND
) {
6138 if (MaskByteOffset
== 0 || MaskByteOffset
== 2) {
6140 // (x >> 8) & 0xff0000
6141 if (Opc0
!= ISD::SRL
)
6143 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
6144 if (!C
|| C
->getZExtValue() != 8)
6147 // (x << 8) & 0xff00
6148 // (x << 8) & 0xff000000
6149 if (Opc0
!= ISD::SHL
)
6151 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
6152 if (!C
|| C
->getZExtValue() != 8)
6155 } else if (Opc
== ISD::SHL
) {
6157 // (x & 0xff0000) << 8
6158 if (MaskByteOffset
!= 0 && MaskByteOffset
!= 2)
6160 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
6161 if (!C
|| C
->getZExtValue() != 8)
6163 } else { // Opc == ISD::SRL
6164 // (x & 0xff00) >> 8
6165 // (x & 0xff000000) >> 8
6166 if (MaskByteOffset
!= 1 && MaskByteOffset
!= 3)
6168 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
6169 if (!C
|| C
->getZExtValue() != 8)
6173 if (Parts
[MaskByteOffset
])
6176 Parts
[MaskByteOffset
] = N0
.getOperand(0).getNode();
6180 // Match 2 elements of a packed halfword bswap.
6181 static bool isBSwapHWordPair(SDValue N
, MutableArrayRef
<SDNode
*> Parts
) {
6182 if (N
.getOpcode() == ISD::OR
)
6183 return isBSwapHWordElement(N
.getOperand(0), Parts
) &&
6184 isBSwapHWordElement(N
.getOperand(1), Parts
);
6186 if (N
.getOpcode() == ISD::SRL
&& N
.getOperand(0).getOpcode() == ISD::BSWAP
) {
6187 ConstantSDNode
*C
= isConstOrConstSplat(N
.getOperand(1));
6188 if (!C
|| C
->getAPIntValue() != 16)
6190 Parts
[0] = Parts
[1] = N
.getOperand(0).getOperand(0).getNode();
6197 // Match this pattern:
6198 // (or (and (shl (A, 8)), 0xff00ff00), (and (srl (A, 8)), 0x00ff00ff))
6199 // And rewrite this to:
6200 // (rotr (bswap A), 16)
6201 static SDValue
matchBSwapHWordOrAndAnd(const TargetLowering
&TLI
,
6202 SelectionDAG
&DAG
, SDNode
*N
, SDValue N0
,
6203 SDValue N1
, EVT VT
, EVT ShiftAmountTy
) {
6204 assert(N
->getOpcode() == ISD::OR
&& VT
== MVT::i32
&&
6205 "MatchBSwapHWordOrAndAnd: expecting i32");
6206 if (!TLI
.isOperationLegalOrCustom(ISD::ROTR
, VT
))
6208 if (N0
.getOpcode() != ISD::AND
|| N1
.getOpcode() != ISD::AND
)
6210 // TODO: this is too restrictive; lifting this restriction requires more tests
6211 if (!N0
->hasOneUse() || !N1
->hasOneUse())
6213 ConstantSDNode
*Mask0
= isConstOrConstSplat(N0
.getOperand(1));
6214 ConstantSDNode
*Mask1
= isConstOrConstSplat(N1
.getOperand(1));
6215 if (!Mask0
|| !Mask1
)
6217 if (Mask0
->getAPIntValue() != 0xff00ff00 ||
6218 Mask1
->getAPIntValue() != 0x00ff00ff)
6220 SDValue Shift0
= N0
.getOperand(0);
6221 SDValue Shift1
= N1
.getOperand(0);
6222 if (Shift0
.getOpcode() != ISD::SHL
|| Shift1
.getOpcode() != ISD::SRL
)
6224 ConstantSDNode
*ShiftAmt0
= isConstOrConstSplat(Shift0
.getOperand(1));
6225 ConstantSDNode
*ShiftAmt1
= isConstOrConstSplat(Shift1
.getOperand(1));
6226 if (!ShiftAmt0
|| !ShiftAmt1
)
6228 if (ShiftAmt0
->getAPIntValue() != 8 || ShiftAmt1
->getAPIntValue() != 8)
6230 if (Shift0
.getOperand(0) != Shift1
.getOperand(0))
6234 SDValue BSwap
= DAG
.getNode(ISD::BSWAP
, DL
, VT
, Shift0
.getOperand(0));
6235 SDValue ShAmt
= DAG
.getConstant(16, DL
, ShiftAmountTy
);
6236 return DAG
.getNode(ISD::ROTR
, DL
, VT
, BSwap
, ShAmt
);
6239 /// Match a 32-bit packed halfword bswap. That is
6240 /// ((x & 0x000000ff) << 8) |
6241 /// ((x & 0x0000ff00) >> 8) |
6242 /// ((x & 0x00ff0000) << 8) |
6243 /// ((x & 0xff000000) >> 8)
6244 /// => (rotl (bswap x), 16)
6245 SDValue
DAGCombiner::MatchBSwapHWord(SDNode
*N
, SDValue N0
, SDValue N1
) {
6246 if (!LegalOperations
)
6249 EVT VT
= N
->getValueType(0);
6252 if (!TLI
.isOperationLegalOrCustom(ISD::BSWAP
, VT
))
6255 if (SDValue BSwap
= matchBSwapHWordOrAndAnd(TLI
, DAG
, N
, N0
, N1
, VT
,
6256 getShiftAmountTy(VT
)))
6259 // Try again with commuted operands.
6260 if (SDValue BSwap
= matchBSwapHWordOrAndAnd(TLI
, DAG
, N
, N1
, N0
, VT
,
6261 getShiftAmountTy(VT
)))
6266 // (or (bswaphpair), (bswaphpair))
6267 // (or (or (bswaphpair), (and)), (and))
6268 // (or (or (and), (bswaphpair)), (and))
6269 SDNode
*Parts
[4] = {};
6271 if (isBSwapHWordPair(N0
, Parts
)) {
6272 // (or (or (and), (and)), (or (and), (and)))
6273 if (!isBSwapHWordPair(N1
, Parts
))
6275 } else if (N0
.getOpcode() == ISD::OR
) {
6276 // (or (or (or (and), (and)), (and)), (and))
6277 if (!isBSwapHWordElement(N1
, Parts
))
6279 SDValue N00
= N0
.getOperand(0);
6280 SDValue N01
= N0
.getOperand(1);
6281 if (!(isBSwapHWordElement(N01
, Parts
) && isBSwapHWordPair(N00
, Parts
)) &&
6282 !(isBSwapHWordElement(N00
, Parts
) && isBSwapHWordPair(N01
, Parts
)))
6287 // Make sure the parts are all coming from the same node.
6288 if (Parts
[0] != Parts
[1] || Parts
[0] != Parts
[2] || Parts
[0] != Parts
[3])
6292 SDValue BSwap
= DAG
.getNode(ISD::BSWAP
, DL
, VT
,
6293 SDValue(Parts
[0], 0));
6295 // Result of the bswap should be rotated by 16. If it's not legal, then
6296 // do (x << 16) | (x >> 16).
6297 SDValue ShAmt
= DAG
.getConstant(16, DL
, getShiftAmountTy(VT
));
6298 if (TLI
.isOperationLegalOrCustom(ISD::ROTL
, VT
))
6299 return DAG
.getNode(ISD::ROTL
, DL
, VT
, BSwap
, ShAmt
);
6300 if (TLI
.isOperationLegalOrCustom(ISD::ROTR
, VT
))
6301 return DAG
.getNode(ISD::ROTR
, DL
, VT
, BSwap
, ShAmt
);
6302 return DAG
.getNode(ISD::OR
, DL
, VT
,
6303 DAG
.getNode(ISD::SHL
, DL
, VT
, BSwap
, ShAmt
),
6304 DAG
.getNode(ISD::SRL
, DL
, VT
, BSwap
, ShAmt
));
6307 /// This contains all DAGCombine rules which reduce two values combined by
6308 /// an Or operation to a single value \see visitANDLike().
6309 SDValue
DAGCombiner::visitORLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
6310 EVT VT
= N1
.getValueType();
6313 // fold (or x, undef) -> -1
6314 if (!LegalOperations
&& (N0
.isUndef() || N1
.isUndef()))
6315 return DAG
.getAllOnesConstant(DL
, VT
);
6317 if (SDValue V
= foldLogicOfSetCCs(false, N0
, N1
, DL
))
6320 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
6321 if (N0
.getOpcode() == ISD::AND
&& N1
.getOpcode() == ISD::AND
&&
6322 // Don't increase # computations.
6323 (N0
.getNode()->hasOneUse() || N1
.getNode()->hasOneUse())) {
6324 // We can only do this xform if we know that bits from X that are set in C2
6325 // but not in C1 are already zero. Likewise for Y.
6326 if (const ConstantSDNode
*N0O1C
=
6327 getAsNonOpaqueConstant(N0
.getOperand(1))) {
6328 if (const ConstantSDNode
*N1O1C
=
6329 getAsNonOpaqueConstant(N1
.getOperand(1))) {
6330 // We can only do this xform if we know that bits from X that are set in
6331 // C2 but not in C1 are already zero. Likewise for Y.
6332 const APInt
&LHSMask
= N0O1C
->getAPIntValue();
6333 const APInt
&RHSMask
= N1O1C
->getAPIntValue();
6335 if (DAG
.MaskedValueIsZero(N0
.getOperand(0), RHSMask
&~LHSMask
) &&
6336 DAG
.MaskedValueIsZero(N1
.getOperand(0), LHSMask
&~RHSMask
)) {
6337 SDValue X
= DAG
.getNode(ISD::OR
, SDLoc(N0
), VT
,
6338 N0
.getOperand(0), N1
.getOperand(0));
6339 return DAG
.getNode(ISD::AND
, DL
, VT
, X
,
6340 DAG
.getConstant(LHSMask
| RHSMask
, DL
, VT
));
6346 // (or (and X, M), (and X, N)) -> (and X, (or M, N))
6347 if (N0
.getOpcode() == ISD::AND
&&
6348 N1
.getOpcode() == ISD::AND
&&
6349 N0
.getOperand(0) == N1
.getOperand(0) &&
6350 // Don't increase # computations.
6351 (N0
.getNode()->hasOneUse() || N1
.getNode()->hasOneUse())) {
6352 SDValue X
= DAG
.getNode(ISD::OR
, SDLoc(N0
), VT
,
6353 N0
.getOperand(1), N1
.getOperand(1));
6354 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
.getOperand(0), X
);
6360 /// OR combines for which the commuted variant will be tried as well.
6361 static SDValue
visitORCommutative(
6362 SelectionDAG
&DAG
, SDValue N0
, SDValue N1
, SDNode
*N
) {
6363 EVT VT
= N0
.getValueType();
6364 if (N0
.getOpcode() == ISD::AND
) {
6365 // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y)
6366 if (isBitwiseNot(N0
.getOperand(1)) && N0
.getOperand(1).getOperand(0) == N1
)
6367 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, N0
.getOperand(0), N1
);
6369 // fold (or (and (xor Y, -1), X), Y) -> (or X, Y)
6370 if (isBitwiseNot(N0
.getOperand(0)) && N0
.getOperand(0).getOperand(0) == N1
)
6371 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, N0
.getOperand(1), N1
);
6377 SDValue
DAGCombiner::visitOR(SDNode
*N
) {
6378 SDValue N0
= N
->getOperand(0);
6379 SDValue N1
= N
->getOperand(1);
6380 EVT VT
= N1
.getValueType();
6387 if (VT
.isVector()) {
6388 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
6391 // fold (or x, 0) -> x, vector edition
6392 if (ISD::isConstantSplatVectorAllZeros(N0
.getNode()))
6394 if (ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
6397 // fold (or x, -1) -> -1, vector edition
6398 if (ISD::isConstantSplatVectorAllOnes(N0
.getNode()))
6399 // do not return N0, because undef node may exist in N0
6400 return DAG
.getAllOnesConstant(SDLoc(N
), N0
.getValueType());
6401 if (ISD::isConstantSplatVectorAllOnes(N1
.getNode()))
6402 // do not return N1, because undef node may exist in N1
6403 return DAG
.getAllOnesConstant(SDLoc(N
), N1
.getValueType());
6405 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
6406 // Do this only if the resulting shuffle is legal.
6407 if (isa
<ShuffleVectorSDNode
>(N0
) &&
6408 isa
<ShuffleVectorSDNode
>(N1
) &&
6409 // Avoid folding a node with illegal type.
6410 TLI
.isTypeLegal(VT
)) {
6411 bool ZeroN00
= ISD::isBuildVectorAllZeros(N0
.getOperand(0).getNode());
6412 bool ZeroN01
= ISD::isBuildVectorAllZeros(N0
.getOperand(1).getNode());
6413 bool ZeroN10
= ISD::isBuildVectorAllZeros(N1
.getOperand(0).getNode());
6414 bool ZeroN11
= ISD::isBuildVectorAllZeros(N1
.getOperand(1).getNode());
6415 // Ensure both shuffles have a zero input.
6416 if ((ZeroN00
!= ZeroN01
) && (ZeroN10
!= ZeroN11
)) {
6417 assert((!ZeroN00
|| !ZeroN01
) && "Both inputs zero!");
6418 assert((!ZeroN10
|| !ZeroN11
) && "Both inputs zero!");
6419 const ShuffleVectorSDNode
*SV0
= cast
<ShuffleVectorSDNode
>(N0
);
6420 const ShuffleVectorSDNode
*SV1
= cast
<ShuffleVectorSDNode
>(N1
);
6421 bool CanFold
= true;
6422 int NumElts
= VT
.getVectorNumElements();
6423 SmallVector
<int, 4> Mask(NumElts
);
6425 for (int i
= 0; i
!= NumElts
; ++i
) {
6426 int M0
= SV0
->getMaskElt(i
);
6427 int M1
= SV1
->getMaskElt(i
);
6429 // Determine if either index is pointing to a zero vector.
6430 bool M0Zero
= M0
< 0 || (ZeroN00
== (M0
< NumElts
));
6431 bool M1Zero
= M1
< 0 || (ZeroN10
== (M1
< NumElts
));
6433 // If one element is zero and the otherside is undef, keep undef.
6434 // This also handles the case that both are undef.
6435 if ((M0Zero
&& M1
< 0) || (M1Zero
&& M0
< 0)) {
6440 // Make sure only one of the elements is zero.
6441 if (M0Zero
== M1Zero
) {
6446 assert((M0
>= 0 || M1
>= 0) && "Undef index!");
6448 // We have a zero and non-zero element. If the non-zero came from
6449 // SV0 make the index a LHS index. If it came from SV1, make it
6450 // a RHS index. We need to mod by NumElts because we don't care
6451 // which operand it came from in the original shuffles.
6452 Mask
[i
] = M1Zero
? M0
% NumElts
: (M1
% NumElts
) + NumElts
;
6456 SDValue NewLHS
= ZeroN00
? N0
.getOperand(1) : N0
.getOperand(0);
6457 SDValue NewRHS
= ZeroN10
? N1
.getOperand(1) : N1
.getOperand(0);
6459 SDValue LegalShuffle
=
6460 TLI
.buildLegalVectorShuffle(VT
, SDLoc(N
), NewLHS
, NewRHS
,
6463 return LegalShuffle
;
6469 // fold (or c1, c2) -> c1|c2
6470 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
6471 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::OR
, SDLoc(N
), VT
, {N0
, N1
}))
6474 // canonicalize constant to RHS
6475 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
6476 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
6477 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, N1
, N0
);
6479 // fold (or x, 0) -> x
6480 if (isNullConstant(N1
))
6483 // fold (or x, -1) -> -1
6484 if (isAllOnesConstant(N1
))
6487 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
6490 // fold (or x, c) -> c iff (x & ~c) == 0
6491 if (N1C
&& DAG
.MaskedValueIsZero(N0
, ~N1C
->getAPIntValue()))
6494 if (SDValue Combined
= visitORLike(N0
, N1
, N
))
6497 if (SDValue Combined
= combineCarryDiamond(*this, DAG
, TLI
, N0
, N1
, N
))
6500 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
6501 if (SDValue BSwap
= MatchBSwapHWord(N
, N0
, N1
))
6503 if (SDValue BSwap
= MatchBSwapHWordLow(N
, N0
, N1
))
6507 if (SDValue ROR
= reassociateOps(ISD::OR
, SDLoc(N
), N0
, N1
, N
->getFlags()))
6510 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
6511 // iff (c1 & c2) != 0 or c1/c2 are undef.
6512 auto MatchIntersect
= [](ConstantSDNode
*C1
, ConstantSDNode
*C2
) {
6513 return !C1
|| !C2
|| C1
->getAPIntValue().intersects(C2
->getAPIntValue());
6515 if (N0
.getOpcode() == ISD::AND
&& N0
.getNode()->hasOneUse() &&
6516 ISD::matchBinaryPredicate(N0
.getOperand(1), N1
, MatchIntersect
, true)) {
6517 if (SDValue COR
= DAG
.FoldConstantArithmetic(ISD::OR
, SDLoc(N1
), VT
,
6518 {N1
, N0
.getOperand(1)})) {
6519 SDValue IOR
= DAG
.getNode(ISD::OR
, SDLoc(N0
), VT
, N0
.getOperand(0), N1
);
6520 AddToWorklist(IOR
.getNode());
6521 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, COR
, IOR
);
6525 if (SDValue Combined
= visitORCommutative(DAG
, N0
, N1
, N
))
6527 if (SDValue Combined
= visitORCommutative(DAG
, N1
, N0
, N
))
6530 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
6531 if (N0
.getOpcode() == N1
.getOpcode())
6532 if (SDValue V
= hoistLogicOpWithSameOpcodeHands(N
))
6535 // See if this is some rotate idiom.
6536 if (SDValue Rot
= MatchRotate(N0
, N1
, SDLoc(N
)))
6539 if (SDValue Load
= MatchLoadCombine(N
))
6542 // Simplify the operands using demanded-bits information.
6543 if (SimplifyDemandedBits(SDValue(N
, 0)))
6544 return SDValue(N
, 0);
6546 // If OR can be rewritten into ADD, try combines based on ADD.
6547 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::ADD
, VT
)) &&
6548 DAG
.haveNoCommonBitsSet(N0
, N1
))
6549 if (SDValue Combined
= visitADDLike(N
))
6555 static SDValue
stripConstantMask(SelectionDAG
&DAG
, SDValue Op
, SDValue
&Mask
) {
6556 if (Op
.getOpcode() == ISD::AND
&&
6557 DAG
.isConstantIntBuildVectorOrConstantInt(Op
.getOperand(1))) {
6558 Mask
= Op
.getOperand(1);
6559 return Op
.getOperand(0);
6564 /// Match "(X shl/srl V1) & V2" where V2 may not be present.
6565 static bool matchRotateHalf(SelectionDAG
&DAG
, SDValue Op
, SDValue
&Shift
,
6567 Op
= stripConstantMask(DAG
, Op
, Mask
);
6568 if (Op
.getOpcode() == ISD::SRL
|| Op
.getOpcode() == ISD::SHL
) {
6575 /// Helper function for visitOR to extract the needed side of a rotate idiom
6576 /// from a shl/srl/mul/udiv. This is meant to handle cases where
6577 /// InstCombine merged some outside op with one of the shifts from
6578 /// the rotate pattern.
6579 /// \returns An empty \c SDValue if the needed shift couldn't be extracted.
6580 /// Otherwise, returns an expansion of \p ExtractFrom based on the following
6583 /// (or (add v v) (shrl v bitwidth-1)):
6584 /// expands (add v v) -> (shl v 1)
6586 /// (or (mul v c0) (shrl (mul v c1) c2)):
6587 /// expands (mul v c0) -> (shl (mul v c1) c3)
6589 /// (or (udiv v c0) (shl (udiv v c1) c2)):
6590 /// expands (udiv v c0) -> (shrl (udiv v c1) c3)
6592 /// (or (shl v c0) (shrl (shl v c1) c2)):
6593 /// expands (shl v c0) -> (shl (shl v c1) c3)
6595 /// (or (shrl v c0) (shl (shrl v c1) c2)):
6596 /// expands (shrl v c0) -> (shrl (shrl v c1) c3)
6598 /// Such that in all cases, c3+c2==bitwidth(op v c1).
6599 static SDValue
extractShiftForRotate(SelectionDAG
&DAG
, SDValue OppShift
,
6600 SDValue ExtractFrom
, SDValue
&Mask
,
6602 assert(OppShift
&& ExtractFrom
&& "Empty SDValue");
6604 (OppShift
.getOpcode() == ISD::SHL
|| OppShift
.getOpcode() == ISD::SRL
) &&
6605 "Existing shift must be valid as a rotate half");
6607 ExtractFrom
= stripConstantMask(DAG
, ExtractFrom
, Mask
);
6609 // Value and Type of the shift.
6610 SDValue OppShiftLHS
= OppShift
.getOperand(0);
6611 EVT ShiftedVT
= OppShiftLHS
.getValueType();
6613 // Amount of the existing shift.
6614 ConstantSDNode
*OppShiftCst
= isConstOrConstSplat(OppShift
.getOperand(1));
6616 // (add v v) -> (shl v 1)
6617 // TODO: Should this be a general DAG canonicalization?
6618 if (OppShift
.getOpcode() == ISD::SRL
&& OppShiftCst
&&
6619 ExtractFrom
.getOpcode() == ISD::ADD
&&
6620 ExtractFrom
.getOperand(0) == ExtractFrom
.getOperand(1) &&
6621 ExtractFrom
.getOperand(0) == OppShiftLHS
&&
6622 OppShiftCst
->getAPIntValue() == ShiftedVT
.getScalarSizeInBits() - 1)
6623 return DAG
.getNode(ISD::SHL
, DL
, ShiftedVT
, OppShiftLHS
,
6624 DAG
.getShiftAmountConstant(1, ShiftedVT
, DL
));
6627 // (or (op0 v c0) (shiftl/r (op0 v c1) c2))
6629 // Find opcode of the needed shift to be extracted from (op0 v c0).
6630 unsigned Opcode
= ISD::DELETED_NODE
;
6631 bool IsMulOrDiv
= false;
6632 // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift
6633 // opcode or its arithmetic (mul or udiv) variant.
6634 auto SelectOpcode
= [&](unsigned NeededShift
, unsigned MulOrDivVariant
) {
6635 IsMulOrDiv
= ExtractFrom
.getOpcode() == MulOrDivVariant
;
6636 if (!IsMulOrDiv
&& ExtractFrom
.getOpcode() != NeededShift
)
6638 Opcode
= NeededShift
;
6641 // op0 must be either the needed shift opcode or the mul/udiv equivalent
6642 // that the needed shift can be extracted from.
6643 if ((OppShift
.getOpcode() != ISD::SRL
|| !SelectOpcode(ISD::SHL
, ISD::MUL
)) &&
6644 (OppShift
.getOpcode() != ISD::SHL
|| !SelectOpcode(ISD::SRL
, ISD::UDIV
)))
6647 // op0 must be the same opcode on both sides, have the same LHS argument,
6648 // and produce the same value type.
6649 if (OppShiftLHS
.getOpcode() != ExtractFrom
.getOpcode() ||
6650 OppShiftLHS
.getOperand(0) != ExtractFrom
.getOperand(0) ||
6651 ShiftedVT
!= ExtractFrom
.getValueType())
6654 // Constant mul/udiv/shift amount from the RHS of the shift's LHS op.
6655 ConstantSDNode
*OppLHSCst
= isConstOrConstSplat(OppShiftLHS
.getOperand(1));
6656 // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op.
6657 ConstantSDNode
*ExtractFromCst
=
6658 isConstOrConstSplat(ExtractFrom
.getOperand(1));
6659 // TODO: We should be able to handle non-uniform constant vectors for these values
6660 // Check that we have constant values.
6661 if (!OppShiftCst
|| !OppShiftCst
->getAPIntValue() ||
6662 !OppLHSCst
|| !OppLHSCst
->getAPIntValue() ||
6663 !ExtractFromCst
|| !ExtractFromCst
->getAPIntValue())
6666 // Compute the shift amount we need to extract to complete the rotate.
6667 const unsigned VTWidth
= ShiftedVT
.getScalarSizeInBits();
6668 if (OppShiftCst
->getAPIntValue().ugt(VTWidth
))
6670 APInt NeededShiftAmt
= VTWidth
- OppShiftCst
->getAPIntValue();
6671 // Normalize the bitwidth of the two mul/udiv/shift constant operands.
6672 APInt ExtractFromAmt
= ExtractFromCst
->getAPIntValue();
6673 APInt OppLHSAmt
= OppLHSCst
->getAPIntValue();
6674 zeroExtendToMatch(ExtractFromAmt
, OppLHSAmt
);
6676 // Now try extract the needed shift from the ExtractFrom op and see if the
6677 // result matches up with the existing shift's LHS op.
6679 // Op to extract from is a mul or udiv by a constant.
6681 // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0
6682 // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0
6683 const APInt ExtractDiv
= APInt::getOneBitSet(ExtractFromAmt
.getBitWidth(),
6684 NeededShiftAmt
.getZExtValue());
6687 APInt::udivrem(ExtractFromAmt
, ExtractDiv
, ResultAmt
, Rem
);
6688 if (Rem
!= 0 || ResultAmt
!= OppLHSAmt
)
6691 // Op to extract from is a shift by a constant.
6693 // c2 - (bitwidth(op0 v c0) - c1) == c0
6694 if (OppLHSAmt
!= ExtractFromAmt
- NeededShiftAmt
.zextOrTrunc(
6695 ExtractFromAmt
.getBitWidth()))
6699 // Return the expanded shift op that should allow a rotate to be formed.
6700 EVT ShiftVT
= OppShift
.getOperand(1).getValueType();
6701 EVT ResVT
= ExtractFrom
.getValueType();
6702 SDValue NewShiftNode
= DAG
.getConstant(NeededShiftAmt
, DL
, ShiftVT
);
6703 return DAG
.getNode(Opcode
, DL
, ResVT
, OppShiftLHS
, NewShiftNode
);
6706 // Return true if we can prove that, whenever Neg and Pos are both in the
6707 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that
6708 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
6710 // (or (shift1 X, Neg), (shift2 X, Pos))
6712 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
6713 // in direction shift1 by Neg. The range [0, EltSize) means that we only need
6714 // to consider shift amounts with defined behavior.
6716 // The IsRotate flag should be set when the LHS of both shifts is the same.
6717 // Otherwise if matching a general funnel shift, it should be clear.
6718 static bool matchRotateSub(SDValue Pos
, SDValue Neg
, unsigned EltSize
,
6719 SelectionDAG
&DAG
, bool IsRotate
) {
6720 // If EltSize is a power of 2 then:
6722 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
6723 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
6725 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
6726 // for the stronger condition:
6728 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A]
6730 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
6731 // we can just replace Neg with Neg' for the rest of the function.
6733 // In other cases we check for the even stronger condition:
6735 // Neg == EltSize - Pos [B]
6737 // for all Neg and Pos. Note that the (or ...) then invokes undefined
6738 // behavior if Pos == 0 (and consequently Neg == EltSize).
6740 // We could actually use [A] whenever EltSize is a power of 2, but the
6741 // only extra cases that it would match are those uninteresting ones
6742 // where Neg and Pos are never in range at the same time. E.g. for
6743 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
6744 // as well as (sub 32, Pos), but:
6746 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
6748 // always invokes undefined behavior for 32-bit X.
6750 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
6752 // NOTE: We can only do this when matching an AND and not a general
6754 unsigned MaskLoBits
= 0;
6755 if (IsRotate
&& Neg
.getOpcode() == ISD::AND
&& isPowerOf2_64(EltSize
)) {
6756 if (ConstantSDNode
*NegC
= isConstOrConstSplat(Neg
.getOperand(1))) {
6757 KnownBits Known
= DAG
.computeKnownBits(Neg
.getOperand(0));
6758 unsigned Bits
= Log2_64(EltSize
);
6759 if (NegC
->getAPIntValue().getActiveBits() <= Bits
&&
6760 ((NegC
->getAPIntValue() | Known
.Zero
).countTrailingOnes() >= Bits
)) {
6761 Neg
= Neg
.getOperand(0);
6767 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
6768 if (Neg
.getOpcode() != ISD::SUB
)
6770 ConstantSDNode
*NegC
= isConstOrConstSplat(Neg
.getOperand(0));
6773 SDValue NegOp1
= Neg
.getOperand(1);
6775 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with
6776 // Pos'. The truncation is redundant for the purpose of the equality.
6777 if (MaskLoBits
&& Pos
.getOpcode() == ISD::AND
) {
6778 if (ConstantSDNode
*PosC
= isConstOrConstSplat(Pos
.getOperand(1))) {
6779 KnownBits Known
= DAG
.computeKnownBits(Pos
.getOperand(0));
6780 if (PosC
->getAPIntValue().getActiveBits() <= MaskLoBits
&&
6781 ((PosC
->getAPIntValue() | Known
.Zero
).countTrailingOnes() >=
6783 Pos
= Pos
.getOperand(0);
6787 // The condition we need is now:
6789 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
6791 // If NegOp1 == Pos then we need:
6793 // EltSize & Mask == NegC & Mask
6795 // (because "x & Mask" is a truncation and distributes through subtraction).
6797 // We also need to account for a potential truncation of NegOp1 if the amount
6798 // has already been legalized to a shift amount type.
6800 if ((Pos
== NegOp1
) ||
6801 (NegOp1
.getOpcode() == ISD::TRUNCATE
&& Pos
== NegOp1
.getOperand(0)))
6802 Width
= NegC
->getAPIntValue();
6804 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
6805 // Then the condition we want to prove becomes:
6807 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
6809 // which, again because "x & Mask" is a truncation, becomes:
6811 // NegC & Mask == (EltSize - PosC) & Mask
6812 // EltSize & Mask == (NegC + PosC) & Mask
6813 else if (Pos
.getOpcode() == ISD::ADD
&& Pos
.getOperand(0) == NegOp1
) {
6814 if (ConstantSDNode
*PosC
= isConstOrConstSplat(Pos
.getOperand(1)))
6815 Width
= PosC
->getAPIntValue() + NegC
->getAPIntValue();
6821 // Now we just need to check that EltSize & Mask == Width & Mask.
6823 // EltSize & Mask is 0 since Mask is EltSize - 1.
6824 return Width
.getLoBits(MaskLoBits
) == 0;
6825 return Width
== EltSize
;
6828 // A subroutine of MatchRotate used once we have found an OR of two opposite
6829 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces
6830 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
6831 // former being preferred if supported. InnerPos and InnerNeg are Pos and
6832 // Neg with outer conversions stripped away.
6833 SDValue
DAGCombiner::MatchRotatePosNeg(SDValue Shifted
, SDValue Pos
,
6834 SDValue Neg
, SDValue InnerPos
,
6835 SDValue InnerNeg
, unsigned PosOpcode
,
6836 unsigned NegOpcode
, const SDLoc
&DL
) {
6837 // fold (or (shl x, (*ext y)),
6838 // (srl x, (*ext (sub 32, y)))) ->
6839 // (rotl x, y) or (rotr x, (sub 32, y))
6841 // fold (or (shl x, (*ext (sub 32, y))),
6842 // (srl x, (*ext y))) ->
6843 // (rotr x, y) or (rotl x, (sub 32, y))
6844 EVT VT
= Shifted
.getValueType();
6845 if (matchRotateSub(InnerPos
, InnerNeg
, VT
.getScalarSizeInBits(), DAG
,
6846 /*IsRotate*/ true)) {
6847 bool HasPos
= TLI
.isOperationLegalOrCustom(PosOpcode
, VT
);
6848 return DAG
.getNode(HasPos
? PosOpcode
: NegOpcode
, DL
, VT
, Shifted
,
6849 HasPos
? Pos
: Neg
);
6855 // A subroutine of MatchRotate used once we have found an OR of two opposite
6856 // shifts of N0 + N1. If Neg == <operand size> - Pos then the OR reduces
6857 // to both (PosOpcode N0, N1, Pos) and (NegOpcode N0, N1, Neg), with the
6858 // former being preferred if supported. InnerPos and InnerNeg are Pos and
6859 // Neg with outer conversions stripped away.
6860 // TODO: Merge with MatchRotatePosNeg.
6861 SDValue
DAGCombiner::MatchFunnelPosNeg(SDValue N0
, SDValue N1
, SDValue Pos
,
6862 SDValue Neg
, SDValue InnerPos
,
6863 SDValue InnerNeg
, unsigned PosOpcode
,
6864 unsigned NegOpcode
, const SDLoc
&DL
) {
6865 EVT VT
= N0
.getValueType();
6866 unsigned EltBits
= VT
.getScalarSizeInBits();
6868 // fold (or (shl x0, (*ext y)),
6869 // (srl x1, (*ext (sub 32, y)))) ->
6870 // (fshl x0, x1, y) or (fshr x0, x1, (sub 32, y))
6872 // fold (or (shl x0, (*ext (sub 32, y))),
6873 // (srl x1, (*ext y))) ->
6874 // (fshr x0, x1, y) or (fshl x0, x1, (sub 32, y))
6875 if (matchRotateSub(InnerPos
, InnerNeg
, EltBits
, DAG
, /*IsRotate*/ N0
== N1
)) {
6876 bool HasPos
= TLI
.isOperationLegalOrCustom(PosOpcode
, VT
);
6877 return DAG
.getNode(HasPos
? PosOpcode
: NegOpcode
, DL
, VT
, N0
, N1
,
6878 HasPos
? Pos
: Neg
);
6881 // Matching the shift+xor cases, we can't easily use the xor'd shift amount
6882 // so for now just use the PosOpcode case if its legal.
6883 // TODO: When can we use the NegOpcode case?
6884 if (PosOpcode
== ISD::FSHL
&& isPowerOf2_32(EltBits
)) {
6885 auto IsBinOpImm
= [](SDValue Op
, unsigned BinOpc
, unsigned Imm
) {
6886 if (Op
.getOpcode() != BinOpc
)
6888 ConstantSDNode
*Cst
= isConstOrConstSplat(Op
.getOperand(1));
6889 return Cst
&& (Cst
->getAPIntValue() == Imm
);
6892 // fold (or (shl x0, y), (srl (srl x1, 1), (xor y, 31)))
6893 // -> (fshl x0, x1, y)
6894 if (IsBinOpImm(N1
, ISD::SRL
, 1) &&
6895 IsBinOpImm(InnerNeg
, ISD::XOR
, EltBits
- 1) &&
6896 InnerPos
== InnerNeg
.getOperand(0) &&
6897 TLI
.isOperationLegalOrCustom(ISD::FSHL
, VT
)) {
6898 return DAG
.getNode(ISD::FSHL
, DL
, VT
, N0
, N1
.getOperand(0), Pos
);
6901 // fold (or (shl (shl x0, 1), (xor y, 31)), (srl x1, y))
6902 // -> (fshr x0, x1, y)
6903 if (IsBinOpImm(N0
, ISD::SHL
, 1) &&
6904 IsBinOpImm(InnerPos
, ISD::XOR
, EltBits
- 1) &&
6905 InnerNeg
== InnerPos
.getOperand(0) &&
6906 TLI
.isOperationLegalOrCustom(ISD::FSHR
, VT
)) {
6907 return DAG
.getNode(ISD::FSHR
, DL
, VT
, N0
.getOperand(0), N1
, Neg
);
6910 // fold (or (shl (add x0, x0), (xor y, 31)), (srl x1, y))
6911 // -> (fshr x0, x1, y)
6912 // TODO: Should add(x,x) -> shl(x,1) be a general DAG canonicalization?
6913 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(0) == N0
.getOperand(1) &&
6914 IsBinOpImm(InnerPos
, ISD::XOR
, EltBits
- 1) &&
6915 InnerNeg
== InnerPos
.getOperand(0) &&
6916 TLI
.isOperationLegalOrCustom(ISD::FSHR
, VT
)) {
6917 return DAG
.getNode(ISD::FSHR
, DL
, VT
, N0
.getOperand(0), N1
, Neg
);
6924 // MatchRotate - Handle an 'or' of two operands. If this is one of the many
6925 // idioms for rotate, and if the target supports rotation instructions, generate
6926 // a rot[lr]. This also matches funnel shift patterns, similar to rotation but
6927 // with different shifted sources.
6928 SDValue
DAGCombiner::MatchRotate(SDValue LHS
, SDValue RHS
, const SDLoc
&DL
) {
6929 // Must be a legal type. Expanded 'n promoted things won't work with rotates.
6930 EVT VT
= LHS
.getValueType();
6931 if (!TLI
.isTypeLegal(VT
))
6934 // The target must have at least one rotate/funnel flavor.
6935 bool HasROTL
= hasOperation(ISD::ROTL
, VT
);
6936 bool HasROTR
= hasOperation(ISD::ROTR
, VT
);
6937 bool HasFSHL
= hasOperation(ISD::FSHL
, VT
);
6938 bool HasFSHR
= hasOperation(ISD::FSHR
, VT
);
6939 if (!HasROTL
&& !HasROTR
&& !HasFSHL
&& !HasFSHR
)
6942 // Check for truncated rotate.
6943 if (LHS
.getOpcode() == ISD::TRUNCATE
&& RHS
.getOpcode() == ISD::TRUNCATE
&&
6944 LHS
.getOperand(0).getValueType() == RHS
.getOperand(0).getValueType()) {
6945 assert(LHS
.getValueType() == RHS
.getValueType());
6946 if (SDValue Rot
= MatchRotate(LHS
.getOperand(0), RHS
.getOperand(0), DL
)) {
6947 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(LHS
), LHS
.getValueType(), Rot
);
6951 // Match "(X shl/srl V1) & V2" where V2 may not be present.
6952 SDValue LHSShift
; // The shift.
6953 SDValue LHSMask
; // AND value if any.
6954 matchRotateHalf(DAG
, LHS
, LHSShift
, LHSMask
);
6956 SDValue RHSShift
; // The shift.
6957 SDValue RHSMask
; // AND value if any.
6958 matchRotateHalf(DAG
, RHS
, RHSShift
, RHSMask
);
6960 // If neither side matched a rotate half, bail
6961 if (!LHSShift
&& !RHSShift
)
6964 // InstCombine may have combined a constant shl, srl, mul, or udiv with one
6965 // side of the rotate, so try to handle that here. In all cases we need to
6966 // pass the matched shift from the opposite side to compute the opcode and
6967 // needed shift amount to extract. We still want to do this if both sides
6968 // matched a rotate half because one half may be a potential overshift that
6969 // can be broken down (ie if InstCombine merged two shl or srl ops into a
6972 // Have LHS side of the rotate, try to extract the needed shift from the RHS.
6974 if (SDValue NewRHSShift
=
6975 extractShiftForRotate(DAG
, LHSShift
, RHS
, RHSMask
, DL
))
6976 RHSShift
= NewRHSShift
;
6977 // Have RHS side of the rotate, try to extract the needed shift from the LHS.
6979 if (SDValue NewLHSShift
=
6980 extractShiftForRotate(DAG
, RHSShift
, LHS
, LHSMask
, DL
))
6981 LHSShift
= NewLHSShift
;
6983 // If a side is still missing, nothing else we can do.
6984 if (!RHSShift
|| !LHSShift
)
6987 // At this point we've matched or extracted a shift op on each side.
6989 if (LHSShift
.getOpcode() == RHSShift
.getOpcode())
6990 return SDValue(); // Shifts must disagree.
6992 bool IsRotate
= LHSShift
.getOperand(0) == RHSShift
.getOperand(0);
6993 if (!IsRotate
&& !(HasFSHL
|| HasFSHR
))
6994 return SDValue(); // Requires funnel shift support.
6996 // Canonicalize shl to left side in a shl/srl pair.
6997 if (RHSShift
.getOpcode() == ISD::SHL
) {
6998 std::swap(LHS
, RHS
);
6999 std::swap(LHSShift
, RHSShift
);
7000 std::swap(LHSMask
, RHSMask
);
7003 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
7004 SDValue LHSShiftArg
= LHSShift
.getOperand(0);
7005 SDValue LHSShiftAmt
= LHSShift
.getOperand(1);
7006 SDValue RHSShiftArg
= RHSShift
.getOperand(0);
7007 SDValue RHSShiftAmt
= RHSShift
.getOperand(1);
7009 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
7010 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
7011 // fold (or (shl x, C1), (srl y, C2)) -> (fshl x, y, C1)
7012 // fold (or (shl x, C1), (srl y, C2)) -> (fshr x, y, C2)
7013 // iff C1+C2 == EltSizeInBits
7014 auto MatchRotateSum
= [EltSizeInBits
](ConstantSDNode
*LHS
,
7015 ConstantSDNode
*RHS
) {
7016 return (LHS
->getAPIntValue() + RHS
->getAPIntValue()) == EltSizeInBits
;
7018 if (ISD::matchBinaryPredicate(LHSShiftAmt
, RHSShiftAmt
, MatchRotateSum
)) {
7020 if (IsRotate
&& (HasROTL
|| HasROTR
))
7021 Res
= DAG
.getNode(HasROTL
? ISD::ROTL
: ISD::ROTR
, DL
, VT
, LHSShiftArg
,
7022 HasROTL
? LHSShiftAmt
: RHSShiftAmt
);
7024 Res
= DAG
.getNode(HasFSHL
? ISD::FSHL
: ISD::FSHR
, DL
, VT
, LHSShiftArg
,
7025 RHSShiftArg
, HasFSHL
? LHSShiftAmt
: RHSShiftAmt
);
7027 // If there is an AND of either shifted operand, apply it to the result.
7028 if (LHSMask
.getNode() || RHSMask
.getNode()) {
7029 SDValue AllOnes
= DAG
.getAllOnesConstant(DL
, VT
);
7030 SDValue Mask
= AllOnes
;
7032 if (LHSMask
.getNode()) {
7033 SDValue RHSBits
= DAG
.getNode(ISD::SRL
, DL
, VT
, AllOnes
, RHSShiftAmt
);
7034 Mask
= DAG
.getNode(ISD::AND
, DL
, VT
, Mask
,
7035 DAG
.getNode(ISD::OR
, DL
, VT
, LHSMask
, RHSBits
));
7037 if (RHSMask
.getNode()) {
7038 SDValue LHSBits
= DAG
.getNode(ISD::SHL
, DL
, VT
, AllOnes
, LHSShiftAmt
);
7039 Mask
= DAG
.getNode(ISD::AND
, DL
, VT
, Mask
,
7040 DAG
.getNode(ISD::OR
, DL
, VT
, RHSMask
, LHSBits
));
7043 Res
= DAG
.getNode(ISD::AND
, DL
, VT
, Res
, Mask
);
7049 // If there is a mask here, and we have a variable shift, we can't be sure
7050 // that we're masking out the right stuff.
7051 if (LHSMask
.getNode() || RHSMask
.getNode())
7054 // If the shift amount is sign/zext/any-extended just peel it off.
7055 SDValue LExtOp0
= LHSShiftAmt
;
7056 SDValue RExtOp0
= RHSShiftAmt
;
7057 if ((LHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
||
7058 LHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
||
7059 LHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
||
7060 LHSShiftAmt
.getOpcode() == ISD::TRUNCATE
) &&
7061 (RHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
||
7062 RHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
||
7063 RHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
||
7064 RHSShiftAmt
.getOpcode() == ISD::TRUNCATE
)) {
7065 LExtOp0
= LHSShiftAmt
.getOperand(0);
7066 RExtOp0
= RHSShiftAmt
.getOperand(0);
7069 if (IsRotate
&& (HasROTL
|| HasROTR
)) {
7071 MatchRotatePosNeg(LHSShiftArg
, LHSShiftAmt
, RHSShiftAmt
, LExtOp0
,
7072 RExtOp0
, ISD::ROTL
, ISD::ROTR
, DL
);
7077 MatchRotatePosNeg(RHSShiftArg
, RHSShiftAmt
, LHSShiftAmt
, RExtOp0
,
7078 LExtOp0
, ISD::ROTR
, ISD::ROTL
, DL
);
7084 MatchFunnelPosNeg(LHSShiftArg
, RHSShiftArg
, LHSShiftAmt
, RHSShiftAmt
,
7085 LExtOp0
, RExtOp0
, ISD::FSHL
, ISD::FSHR
, DL
);
7090 MatchFunnelPosNeg(LHSShiftArg
, RHSShiftArg
, RHSShiftAmt
, LHSShiftAmt
,
7091 RExtOp0
, LExtOp0
, ISD::FSHR
, ISD::FSHL
, DL
);
7100 /// Represents known origin of an individual byte in load combine pattern. The
7101 /// value of the byte is either constant zero or comes from memory.
7102 struct ByteProvider
{
7103 // For constant zero providers Load is set to nullptr. For memory providers
7104 // Load represents the node which loads the byte from memory.
7105 // ByteOffset is the offset of the byte in the value produced by the load.
7106 LoadSDNode
*Load
= nullptr;
7107 unsigned ByteOffset
= 0;
7109 ByteProvider() = default;
7111 static ByteProvider
getMemory(LoadSDNode
*Load
, unsigned ByteOffset
) {
7112 return ByteProvider(Load
, ByteOffset
);
7115 static ByteProvider
getConstantZero() { return ByteProvider(nullptr, 0); }
7117 bool isConstantZero() const { return !Load
; }
7118 bool isMemory() const { return Load
; }
7120 bool operator==(const ByteProvider
&Other
) const {
7121 return Other
.Load
== Load
&& Other
.ByteOffset
== ByteOffset
;
7125 ByteProvider(LoadSDNode
*Load
, unsigned ByteOffset
)
7126 : Load(Load
), ByteOffset(ByteOffset
) {}
7129 } // end anonymous namespace
7131 /// Recursively traverses the expression calculating the origin of the requested
7132 /// byte of the given value. Returns None if the provider can't be calculated.
7134 /// For all the values except the root of the expression verifies that the value
7135 /// has exactly one use and if it's not true return None. This way if the origin
7136 /// of the byte is returned it's guaranteed that the values which contribute to
7137 /// the byte are not used outside of this expression.
7139 /// Because the parts of the expression are not allowed to have more than one
7140 /// use this function iterates over trees, not DAGs. So it never visits the same
7141 /// node more than once.
7142 static const Optional
<ByteProvider
>
7143 calculateByteProvider(SDValue Op
, unsigned Index
, unsigned Depth
,
7144 bool Root
= false) {
7145 // Typical i64 by i8 pattern requires recursion up to 8 calls depth
7149 if (!Root
&& !Op
.hasOneUse())
7152 assert(Op
.getValueType().isScalarInteger() && "can't handle other types");
7153 unsigned BitWidth
= Op
.getValueSizeInBits();
7154 if (BitWidth
% 8 != 0)
7156 unsigned ByteWidth
= BitWidth
/ 8;
7157 assert(Index
< ByteWidth
&& "invalid index requested");
7160 switch (Op
.getOpcode()) {
7162 auto LHS
= calculateByteProvider(Op
->getOperand(0), Index
, Depth
+ 1);
7165 auto RHS
= calculateByteProvider(Op
->getOperand(1), Index
, Depth
+ 1);
7169 if (LHS
->isConstantZero())
7171 if (RHS
->isConstantZero())
7176 auto ShiftOp
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
7180 uint64_t BitShift
= ShiftOp
->getZExtValue();
7181 if (BitShift
% 8 != 0)
7183 uint64_t ByteShift
= BitShift
/ 8;
7185 return Index
< ByteShift
7186 ? ByteProvider::getConstantZero()
7187 : calculateByteProvider(Op
->getOperand(0), Index
- ByteShift
,
7190 case ISD::ANY_EXTEND
:
7191 case ISD::SIGN_EXTEND
:
7192 case ISD::ZERO_EXTEND
: {
7193 SDValue NarrowOp
= Op
->getOperand(0);
7194 unsigned NarrowBitWidth
= NarrowOp
.getScalarValueSizeInBits();
7195 if (NarrowBitWidth
% 8 != 0)
7197 uint64_t NarrowByteWidth
= NarrowBitWidth
/ 8;
7199 if (Index
>= NarrowByteWidth
)
7200 return Op
.getOpcode() == ISD::ZERO_EXTEND
7201 ? Optional
<ByteProvider
>(ByteProvider::getConstantZero())
7203 return calculateByteProvider(NarrowOp
, Index
, Depth
+ 1);
7206 return calculateByteProvider(Op
->getOperand(0), ByteWidth
- Index
- 1,
7209 auto L
= cast
<LoadSDNode
>(Op
.getNode());
7210 if (!L
->isSimple() || L
->isIndexed())
7213 unsigned NarrowBitWidth
= L
->getMemoryVT().getSizeInBits();
7214 if (NarrowBitWidth
% 8 != 0)
7216 uint64_t NarrowByteWidth
= NarrowBitWidth
/ 8;
7218 if (Index
>= NarrowByteWidth
)
7219 return L
->getExtensionType() == ISD::ZEXTLOAD
7220 ? Optional
<ByteProvider
>(ByteProvider::getConstantZero())
7222 return ByteProvider::getMemory(L
, Index
);
7229 static unsigned littleEndianByteAt(unsigned BW
, unsigned i
) {
7233 static unsigned bigEndianByteAt(unsigned BW
, unsigned i
) {
7237 // Check if the bytes offsets we are looking at match with either big or
7238 // little endian value loaded. Return true for big endian, false for little
7239 // endian, and None if match failed.
7240 static Optional
<bool> isBigEndian(const ArrayRef
<int64_t> ByteOffsets
,
7241 int64_t FirstOffset
) {
7242 // The endian can be decided only when it is 2 bytes at least.
7243 unsigned Width
= ByteOffsets
.size();
7247 bool BigEndian
= true, LittleEndian
= true;
7248 for (unsigned i
= 0; i
< Width
; i
++) {
7249 int64_t CurrentByteOffset
= ByteOffsets
[i
] - FirstOffset
;
7250 LittleEndian
&= CurrentByteOffset
== littleEndianByteAt(Width
, i
);
7251 BigEndian
&= CurrentByteOffset
== bigEndianByteAt(Width
, i
);
7252 if (!BigEndian
&& !LittleEndian
)
7256 assert((BigEndian
!= LittleEndian
) && "It should be either big endian or"
7261 static SDValue
stripTruncAndExt(SDValue Value
) {
7262 switch (Value
.getOpcode()) {
7264 case ISD::ZERO_EXTEND
:
7265 case ISD::SIGN_EXTEND
:
7266 case ISD::ANY_EXTEND
:
7267 return stripTruncAndExt(Value
.getOperand(0));
7272 /// Match a pattern where a wide type scalar value is stored by several narrow
7273 /// stores. Fold it into a single store or a BSWAP and a store if the targets
7276 /// Assuming little endian target:
7279 /// p[0] = (val >> 0) & 0xFF;
7280 /// p[1] = (val >> 8) & 0xFF;
7281 /// p[2] = (val >> 16) & 0xFF;
7282 /// p[3] = (val >> 24) & 0xFF;
7284 /// *((i32)p) = val;
7288 /// p[0] = (val >> 24) & 0xFF;
7289 /// p[1] = (val >> 16) & 0xFF;
7290 /// p[2] = (val >> 8) & 0xFF;
7291 /// p[3] = (val >> 0) & 0xFF;
7293 /// *((i32)p) = BSWAP(val);
7294 SDValue
DAGCombiner::mergeTruncStores(StoreSDNode
*N
) {
7295 // The matching looks for "store (trunc x)" patterns that appear early but are
7296 // likely to be replaced by truncating store nodes during combining.
7297 // TODO: If there is evidence that running this later would help, this
7298 // limitation could be removed. Legality checks may need to be added
7299 // for the created store and optional bswap/rotate.
7300 if (LegalOperations
)
7303 // We only handle merging simple stores of 1-4 bytes.
7304 // TODO: Allow unordered atomics when wider type is legal (see D66309)
7305 EVT MemVT
= N
->getMemoryVT();
7306 if (!(MemVT
== MVT::i8
|| MemVT
== MVT::i16
|| MemVT
== MVT::i32
) ||
7307 !N
->isSimple() || N
->isIndexed())
7310 // Collect all of the stores in the chain.
7311 SDValue Chain
= N
->getChain();
7312 SmallVector
<StoreSDNode
*, 8> Stores
= {N
};
7313 while (auto *Store
= dyn_cast
<StoreSDNode
>(Chain
)) {
7314 // All stores must be the same size to ensure that we are writing all of the
7315 // bytes in the wide value.
7316 // TODO: We could allow multiple sizes by tracking each stored byte.
7317 if (Store
->getMemoryVT() != MemVT
|| !Store
->isSimple() ||
7320 Stores
.push_back(Store
);
7321 Chain
= Store
->getChain();
7323 // There is no reason to continue if we do not have at least a pair of stores.
7324 if (Stores
.size() < 2)
7327 // Handle simple types only.
7328 LLVMContext
&Context
= *DAG
.getContext();
7329 unsigned NumStores
= Stores
.size();
7330 unsigned NarrowNumBits
= N
->getMemoryVT().getScalarSizeInBits();
7331 unsigned WideNumBits
= NumStores
* NarrowNumBits
;
7332 EVT WideVT
= EVT::getIntegerVT(Context
, WideNumBits
);
7333 if (WideVT
!= MVT::i16
&& WideVT
!= MVT::i32
&& WideVT
!= MVT::i64
)
7336 // Check if all bytes of the source value that we are looking at are stored
7337 // to the same base address. Collect offsets from Base address into OffsetMap.
7338 SDValue SourceValue
;
7339 SmallVector
<int64_t, 8> OffsetMap(NumStores
, INT64_MAX
);
7340 int64_t FirstOffset
= INT64_MAX
;
7341 StoreSDNode
*FirstStore
= nullptr;
7342 Optional
<BaseIndexOffset
> Base
;
7343 for (auto Store
: Stores
) {
7344 // All the stores store different parts of the CombinedValue. A truncate is
7345 // required to get the partial value.
7346 SDValue Trunc
= Store
->getValue();
7347 if (Trunc
.getOpcode() != ISD::TRUNCATE
)
7349 // Other than the first/last part, a shift operation is required to get the
7352 SDValue WideVal
= Trunc
.getOperand(0);
7353 if ((WideVal
.getOpcode() == ISD::SRL
|| WideVal
.getOpcode() == ISD::SRA
) &&
7354 isa
<ConstantSDNode
>(WideVal
.getOperand(1))) {
7355 // The shift amount must be a constant multiple of the narrow type.
7356 // It is translated to the offset address in the wide source value "y".
7358 // x = srl y, ShiftAmtC
7361 uint64_t ShiftAmtC
= WideVal
.getConstantOperandVal(1);
7362 if (ShiftAmtC
% NarrowNumBits
!= 0)
7365 Offset
= ShiftAmtC
/ NarrowNumBits
;
7366 WideVal
= WideVal
.getOperand(0);
7369 // Stores must share the same source value with different offsets.
7370 // Truncate and extends should be stripped to get the single source value.
7372 SourceValue
= WideVal
;
7373 else if (stripTruncAndExt(SourceValue
) != stripTruncAndExt(WideVal
))
7375 else if (SourceValue
.getValueType() != WideVT
) {
7376 if (WideVal
.getValueType() == WideVT
||
7377 WideVal
.getScalarValueSizeInBits() >
7378 SourceValue
.getScalarValueSizeInBits())
7379 SourceValue
= WideVal
;
7380 // Give up if the source value type is smaller than the store size.
7381 if (SourceValue
.getScalarValueSizeInBits() < WideVT
.getScalarSizeInBits())
7385 // Stores must share the same base address.
7386 BaseIndexOffset Ptr
= BaseIndexOffset::match(Store
, DAG
);
7387 int64_t ByteOffsetFromBase
= 0;
7390 else if (!Base
->equalBaseIndex(Ptr
, DAG
, ByteOffsetFromBase
))
7393 // Remember the first store.
7394 if (ByteOffsetFromBase
< FirstOffset
) {
7396 FirstOffset
= ByteOffsetFromBase
;
7398 // Map the offset in the store and the offset in the combined value, and
7399 // early return if it has been set before.
7400 if (Offset
< 0 || Offset
>= NumStores
|| OffsetMap
[Offset
] != INT64_MAX
)
7402 OffsetMap
[Offset
] = ByteOffsetFromBase
;
7405 assert(FirstOffset
!= INT64_MAX
&& "First byte offset must be set");
7406 assert(FirstStore
&& "First store must be set");
7408 // Check that a store of the wide type is both allowed and fast on the target
7409 const DataLayout
&Layout
= DAG
.getDataLayout();
7411 bool Allowed
= TLI
.allowsMemoryAccess(Context
, Layout
, WideVT
,
7412 *FirstStore
->getMemOperand(), &Fast
);
7413 if (!Allowed
|| !Fast
)
7416 // Check if the pieces of the value are going to the expected places in memory
7417 // to merge the stores.
7418 auto checkOffsets
= [&](bool MatchLittleEndian
) {
7419 if (MatchLittleEndian
) {
7420 for (unsigned i
= 0; i
!= NumStores
; ++i
)
7421 if (OffsetMap
[i
] != i
* (NarrowNumBits
/ 8) + FirstOffset
)
7423 } else { // MatchBigEndian by reversing loop counter.
7424 for (unsigned i
= 0, j
= NumStores
- 1; i
!= NumStores
; ++i
, --j
)
7425 if (OffsetMap
[j
] != i
* (NarrowNumBits
/ 8) + FirstOffset
)
7431 // Check if the offsets line up for the native data layout of this target.
7432 bool NeedBswap
= false;
7433 bool NeedRotate
= false;
7434 if (!checkOffsets(Layout
.isLittleEndian())) {
7435 // Special-case: check if byte offsets line up for the opposite endian.
7436 if (NarrowNumBits
== 8 && checkOffsets(Layout
.isBigEndian()))
7438 else if (NumStores
== 2 && checkOffsets(Layout
.isBigEndian()))
7445 if (WideVT
!= SourceValue
.getValueType()) {
7446 assert(SourceValue
.getValueType().getScalarSizeInBits() > WideNumBits
&&
7447 "Unexpected store value to merge");
7448 SourceValue
= DAG
.getNode(ISD::TRUNCATE
, DL
, WideVT
, SourceValue
);
7451 // Before legalize we can introduce illegal bswaps/rotates which will be later
7452 // converted to an explicit bswap sequence. This way we end up with a single
7453 // store and byte shuffling instead of several stores and byte shuffling.
7455 SourceValue
= DAG
.getNode(ISD::BSWAP
, DL
, WideVT
, SourceValue
);
7456 } else if (NeedRotate
) {
7457 assert(WideNumBits
% 2 == 0 && "Unexpected type for rotate");
7458 SDValue RotAmt
= DAG
.getConstant(WideNumBits
/ 2, DL
, WideVT
);
7459 SourceValue
= DAG
.getNode(ISD::ROTR
, DL
, WideVT
, SourceValue
, RotAmt
);
7463 DAG
.getStore(Chain
, DL
, SourceValue
, FirstStore
->getBasePtr(),
7464 FirstStore
->getPointerInfo(), FirstStore
->getAlign());
7466 // Rely on other DAG combine rules to remove the other individual stores.
7467 DAG
.ReplaceAllUsesWith(N
, NewStore
.getNode());
7471 /// Match a pattern where a wide type scalar value is loaded by several narrow
7472 /// loads and combined by shifts and ors. Fold it into a single load or a load
7473 /// and a BSWAP if the targets supports it.
7475 /// Assuming little endian target:
7477 /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
7479 /// i32 val = *((i32)a)
7482 /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
7484 /// i32 val = BSWAP(*((i32)a))
7486 /// TODO: This rule matches complex patterns with OR node roots and doesn't
7487 /// interact well with the worklist mechanism. When a part of the pattern is
7488 /// updated (e.g. one of the loads) its direct users are put into the worklist,
7489 /// but the root node of the pattern which triggers the load combine is not
7490 /// necessarily a direct user of the changed node. For example, once the address
7491 /// of t28 load is reassociated load combine won't be triggered:
7492 /// t25: i32 = add t4, Constant:i32<2>
7493 /// t26: i64 = sign_extend t25
7494 /// t27: i64 = add t2, t26
7495 /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64
7496 /// t29: i32 = zero_extend t28
7497 /// t32: i32 = shl t29, Constant:i8<8>
7498 /// t33: i32 = or t23, t32
7499 /// As a possible fix visitLoad can check if the load can be a part of a load
7500 /// combine pattern and add corresponding OR roots to the worklist.
7501 SDValue
DAGCombiner::MatchLoadCombine(SDNode
*N
) {
7502 assert(N
->getOpcode() == ISD::OR
&&
7503 "Can only match load combining against OR nodes");
7505 // Handles simple types only
7506 EVT VT
= N
->getValueType(0);
7507 if (VT
!= MVT::i16
&& VT
!= MVT::i32
&& VT
!= MVT::i64
)
7509 unsigned ByteWidth
= VT
.getSizeInBits() / 8;
7511 bool IsBigEndianTarget
= DAG
.getDataLayout().isBigEndian();
7512 auto MemoryByteOffset
= [&] (ByteProvider P
) {
7513 assert(P
.isMemory() && "Must be a memory byte provider");
7514 unsigned LoadBitWidth
= P
.Load
->getMemoryVT().getSizeInBits();
7515 assert(LoadBitWidth
% 8 == 0 &&
7516 "can only analyze providers for individual bytes not bit");
7517 unsigned LoadByteWidth
= LoadBitWidth
/ 8;
7518 return IsBigEndianTarget
7519 ? bigEndianByteAt(LoadByteWidth
, P
.ByteOffset
)
7520 : littleEndianByteAt(LoadByteWidth
, P
.ByteOffset
);
7523 Optional
<BaseIndexOffset
> Base
;
7526 SmallPtrSet
<LoadSDNode
*, 8> Loads
;
7527 Optional
<ByteProvider
> FirstByteProvider
;
7528 int64_t FirstOffset
= INT64_MAX
;
7530 // Check if all the bytes of the OR we are looking at are loaded from the same
7531 // base address. Collect bytes offsets from Base address in ByteOffsets.
7532 SmallVector
<int64_t, 8> ByteOffsets(ByteWidth
);
7533 unsigned ZeroExtendedBytes
= 0;
7534 for (int i
= ByteWidth
- 1; i
>= 0; --i
) {
7535 auto P
= calculateByteProvider(SDValue(N
, 0), i
, 0, /*Root=*/true);
7539 if (P
->isConstantZero()) {
7540 // It's OK for the N most significant bytes to be 0, we can just
7541 // zero-extend the load.
7542 if (++ZeroExtendedBytes
!= (ByteWidth
- static_cast<unsigned>(i
)))
7546 assert(P
->isMemory() && "provenance should either be memory or zero");
7548 LoadSDNode
*L
= P
->Load
;
7549 assert(L
->hasNUsesOfValue(1, 0) && L
->isSimple() &&
7551 "Must be enforced by calculateByteProvider");
7552 assert(L
->getOffset().isUndef() && "Unindexed load must have undef offset");
7554 // All loads must share the same chain
7555 SDValue LChain
= L
->getChain();
7558 else if (Chain
!= LChain
)
7561 // Loads must share the same base address
7562 BaseIndexOffset Ptr
= BaseIndexOffset::match(L
, DAG
);
7563 int64_t ByteOffsetFromBase
= 0;
7566 else if (!Base
->equalBaseIndex(Ptr
, DAG
, ByteOffsetFromBase
))
7569 // Calculate the offset of the current byte from the base address
7570 ByteOffsetFromBase
+= MemoryByteOffset(*P
);
7571 ByteOffsets
[i
] = ByteOffsetFromBase
;
7573 // Remember the first byte load
7574 if (ByteOffsetFromBase
< FirstOffset
) {
7575 FirstByteProvider
= P
;
7576 FirstOffset
= ByteOffsetFromBase
;
7581 assert(!Loads
.empty() && "All the bytes of the value must be loaded from "
7582 "memory, so there must be at least one load which produces the value");
7583 assert(Base
&& "Base address of the accessed memory location must be set");
7584 assert(FirstOffset
!= INT64_MAX
&& "First byte offset must be set");
7586 bool NeedsZext
= ZeroExtendedBytes
> 0;
7589 EVT::getIntegerVT(*DAG
.getContext(), (ByteWidth
- ZeroExtendedBytes
) * 8);
7591 if (!MemVT
.isSimple())
7594 // Before legalize we can introduce too wide illegal loads which will be later
7595 // split into legal sized loads. This enables us to combine i64 load by i8
7596 // patterns to a couple of i32 loads on 32 bit targets.
7597 if (LegalOperations
&&
7598 !TLI
.isOperationLegal(NeedsZext
? ISD::ZEXTLOAD
: ISD::NON_EXTLOAD
,
7602 // Check if the bytes of the OR we are looking at match with either big or
7603 // little endian value load
7604 Optional
<bool> IsBigEndian
= isBigEndian(
7605 makeArrayRef(ByteOffsets
).drop_back(ZeroExtendedBytes
), FirstOffset
);
7606 if (!IsBigEndian
.hasValue())
7609 assert(FirstByteProvider
&& "must be set");
7611 // Ensure that the first byte is loaded from zero offset of the first load.
7612 // So the combined value can be loaded from the first load address.
7613 if (MemoryByteOffset(*FirstByteProvider
) != 0)
7615 LoadSDNode
*FirstLoad
= FirstByteProvider
->Load
;
7617 // The node we are looking at matches with the pattern, check if we can
7618 // replace it with a single (possibly zero-extended) load and bswap + shift if
7621 // If the load needs byte swap check if the target supports it
7622 bool NeedsBswap
= IsBigEndianTarget
!= *IsBigEndian
;
7624 // Before legalize we can introduce illegal bswaps which will be later
7625 // converted to an explicit bswap sequence. This way we end up with a single
7626 // load and byte shuffling instead of several loads and byte shuffling.
7627 // We do not introduce illegal bswaps when zero-extending as this tends to
7628 // introduce too many arithmetic instructions.
7629 if (NeedsBswap
&& (LegalOperations
|| NeedsZext
) &&
7630 !TLI
.isOperationLegal(ISD::BSWAP
, VT
))
7633 // If we need to bswap and zero extend, we have to insert a shift. Check that
7635 if (NeedsBswap
&& NeedsZext
&& LegalOperations
&&
7636 !TLI
.isOperationLegal(ISD::SHL
, VT
))
7639 // Check that a load of the wide type is both allowed and fast on the target
7642 TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), MemVT
,
7643 *FirstLoad
->getMemOperand(), &Fast
);
7644 if (!Allowed
|| !Fast
)
7648 DAG
.getExtLoad(NeedsZext
? ISD::ZEXTLOAD
: ISD::NON_EXTLOAD
, SDLoc(N
), VT
,
7649 Chain
, FirstLoad
->getBasePtr(),
7650 FirstLoad
->getPointerInfo(), MemVT
, FirstLoad
->getAlign());
7652 // Transfer chain users from old loads to the new load.
7653 for (LoadSDNode
*L
: Loads
)
7654 DAG
.ReplaceAllUsesOfValueWith(SDValue(L
, 1), SDValue(NewLoad
.getNode(), 1));
7659 SDValue ShiftedLoad
=
7661 ? DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, NewLoad
,
7662 DAG
.getShiftAmountConstant(ZeroExtendedBytes
* 8, VT
,
7663 SDLoc(N
), LegalOperations
))
7665 return DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, ShiftedLoad
);
7668 // If the target has andn, bsl, or a similar bit-select instruction,
7669 // we want to unfold masked merge, with canonical pattern of:
7671 // ((x ^ y) & m) ^ y
7674 // (x & m) | (y & ~m)
7675 // If y is a constant, and the 'andn' does not work with immediates,
7676 // we unfold into a different pattern:
7677 // ~(~x & m) & (m | y)
7678 // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at
7679 // the very least that breaks andnpd / andnps patterns, and because those
7680 // patterns are simplified in IR and shouldn't be created in the DAG
7681 SDValue
DAGCombiner::unfoldMaskedMerge(SDNode
*N
) {
7682 assert(N
->getOpcode() == ISD::XOR
);
7684 // Don't touch 'not' (i.e. where y = -1).
7685 if (isAllOnesOrAllOnesSplat(N
->getOperand(1)))
7688 EVT VT
= N
->getValueType(0);
7690 // There are 3 commutable operators in the pattern,
7691 // so we have to deal with 8 possible variants of the basic pattern.
7693 auto matchAndXor
= [&X
, &Y
, &M
](SDValue And
, unsigned XorIdx
, SDValue Other
) {
7694 if (And
.getOpcode() != ISD::AND
|| !And
.hasOneUse())
7696 SDValue Xor
= And
.getOperand(XorIdx
);
7697 if (Xor
.getOpcode() != ISD::XOR
|| !Xor
.hasOneUse())
7699 SDValue Xor0
= Xor
.getOperand(0);
7700 SDValue Xor1
= Xor
.getOperand(1);
7701 // Don't touch 'not' (i.e. where y = -1).
7702 if (isAllOnesOrAllOnesSplat(Xor1
))
7705 std::swap(Xor0
, Xor1
);
7710 M
= And
.getOperand(XorIdx
? 0 : 1);
7714 SDValue N0
= N
->getOperand(0);
7715 SDValue N1
= N
->getOperand(1);
7716 if (!matchAndXor(N0
, 0, N1
) && !matchAndXor(N0
, 1, N1
) &&
7717 !matchAndXor(N1
, 0, N0
) && !matchAndXor(N1
, 1, N0
))
7720 // Don't do anything if the mask is constant. This should not be reachable.
7721 // InstCombine should have already unfolded this pattern, and DAGCombiner
7722 // probably shouldn't produce it, too.
7723 if (isa
<ConstantSDNode
>(M
.getNode()))
7726 // We can transform if the target has AndNot
7727 if (!TLI
.hasAndNot(M
))
7732 // If Y is a constant, check that 'andn' works with immediates.
7733 if (!TLI
.hasAndNot(Y
)) {
7734 assert(TLI
.hasAndNot(X
) && "Only mask is a variable? Unreachable.");
7735 // If not, we need to do a bit more work to make sure andn is still used.
7736 SDValue NotX
= DAG
.getNOT(DL
, X
, VT
);
7737 SDValue LHS
= DAG
.getNode(ISD::AND
, DL
, VT
, NotX
, M
);
7738 SDValue NotLHS
= DAG
.getNOT(DL
, LHS
, VT
);
7739 SDValue RHS
= DAG
.getNode(ISD::OR
, DL
, VT
, M
, Y
);
7740 return DAG
.getNode(ISD::AND
, DL
, VT
, NotLHS
, RHS
);
7743 SDValue LHS
= DAG
.getNode(ISD::AND
, DL
, VT
, X
, M
);
7744 SDValue NotM
= DAG
.getNOT(DL
, M
, VT
);
7745 SDValue RHS
= DAG
.getNode(ISD::AND
, DL
, VT
, Y
, NotM
);
7747 return DAG
.getNode(ISD::OR
, DL
, VT
, LHS
, RHS
);
7750 SDValue
DAGCombiner::visitXOR(SDNode
*N
) {
7751 SDValue N0
= N
->getOperand(0);
7752 SDValue N1
= N
->getOperand(1);
7753 EVT VT
= N0
.getValueType();
7756 if (VT
.isVector()) {
7757 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
7760 // fold (xor x, 0) -> x, vector edition
7761 if (ISD::isConstantSplatVectorAllZeros(N0
.getNode()))
7763 if (ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
7767 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
7769 if (N0
.isUndef() && N1
.isUndef())
7770 return DAG
.getConstant(0, DL
, VT
);
7772 // fold (xor x, undef) -> undef
7778 // fold (xor c1, c2) -> c1^c2
7779 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::XOR
, DL
, VT
, {N0
, N1
}))
7782 // canonicalize constant to RHS
7783 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
7784 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
7785 return DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
);
7787 // fold (xor x, 0) -> x
7788 if (isNullConstant(N1
))
7791 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
7795 if (SDValue RXOR
= reassociateOps(ISD::XOR
, DL
, N0
, N1
, N
->getFlags()))
7798 // fold !(x cc y) -> (x !cc y)
7799 unsigned N0Opcode
= N0
.getOpcode();
7800 SDValue LHS
, RHS
, CC
;
7801 if (TLI
.isConstTrueVal(N1
.getNode()) &&
7802 isSetCCEquivalent(N0
, LHS
, RHS
, CC
, /*MatchStrict*/true)) {
7803 ISD::CondCode NotCC
= ISD::getSetCCInverse(cast
<CondCodeSDNode
>(CC
)->get(),
7804 LHS
.getValueType());
7805 if (!LegalOperations
||
7806 TLI
.isCondCodeLegal(NotCC
, LHS
.getSimpleValueType())) {
7809 llvm_unreachable("Unhandled SetCC Equivalent!");
7811 return DAG
.getSetCC(SDLoc(N0
), VT
, LHS
, RHS
, NotCC
);
7812 case ISD::SELECT_CC
:
7813 return DAG
.getSelectCC(SDLoc(N0
), LHS
, RHS
, N0
.getOperand(2),
7814 N0
.getOperand(3), NotCC
);
7815 case ISD::STRICT_FSETCC
:
7816 case ISD::STRICT_FSETCCS
: {
7817 if (N0
.hasOneUse()) {
7818 // FIXME Can we handle multiple uses? Could we token factor the chain
7819 // results from the new/old setcc?
7821 DAG
.getSetCC(SDLoc(N0
), VT
, LHS
, RHS
, NotCC
,
7822 N0
.getOperand(0), N0Opcode
== ISD::STRICT_FSETCCS
);
7823 CombineTo(N
, SetCC
);
7824 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), SetCC
.getValue(1));
7825 recursivelyDeleteUnusedNodes(N0
.getNode());
7826 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
7834 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
7835 if (isOneConstant(N1
) && N0Opcode
== ISD::ZERO_EXTEND
&& N0
.hasOneUse() &&
7836 isSetCCEquivalent(N0
.getOperand(0), LHS
, RHS
, CC
)){
7837 SDValue V
= N0
.getOperand(0);
7839 V
= DAG
.getNode(ISD::XOR
, DL0
, V
.getValueType(), V
,
7840 DAG
.getConstant(1, DL0
, V
.getValueType()));
7841 AddToWorklist(V
.getNode());
7842 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, V
);
7845 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
7846 if (isOneConstant(N1
) && VT
== MVT::i1
&& N0
.hasOneUse() &&
7847 (N0Opcode
== ISD::OR
|| N0Opcode
== ISD::AND
)) {
7848 SDValue N00
= N0
.getOperand(0), N01
= N0
.getOperand(1);
7849 if (isOneUseSetCC(N01
) || isOneUseSetCC(N00
)) {
7850 unsigned NewOpcode
= N0Opcode
== ISD::AND
? ISD::OR
: ISD::AND
;
7851 N00
= DAG
.getNode(ISD::XOR
, SDLoc(N00
), VT
, N00
, N1
); // N00 = ~N00
7852 N01
= DAG
.getNode(ISD::XOR
, SDLoc(N01
), VT
, N01
, N1
); // N01 = ~N01
7853 AddToWorklist(N00
.getNode()); AddToWorklist(N01
.getNode());
7854 return DAG
.getNode(NewOpcode
, DL
, VT
, N00
, N01
);
7857 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
7858 if (isAllOnesConstant(N1
) && N0
.hasOneUse() &&
7859 (N0Opcode
== ISD::OR
|| N0Opcode
== ISD::AND
)) {
7860 SDValue N00
= N0
.getOperand(0), N01
= N0
.getOperand(1);
7861 if (isa
<ConstantSDNode
>(N01
) || isa
<ConstantSDNode
>(N00
)) {
7862 unsigned NewOpcode
= N0Opcode
== ISD::AND
? ISD::OR
: ISD::AND
;
7863 N00
= DAG
.getNode(ISD::XOR
, SDLoc(N00
), VT
, N00
, N1
); // N00 = ~N00
7864 N01
= DAG
.getNode(ISD::XOR
, SDLoc(N01
), VT
, N01
, N1
); // N01 = ~N01
7865 AddToWorklist(N00
.getNode()); AddToWorklist(N01
.getNode());
7866 return DAG
.getNode(NewOpcode
, DL
, VT
, N00
, N01
);
7870 // fold (not (neg x)) -> (add X, -1)
7871 // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if
7872 // Y is a constant or the subtract has a single use.
7873 if (isAllOnesConstant(N1
) && N0
.getOpcode() == ISD::SUB
&&
7874 isNullConstant(N0
.getOperand(0))) {
7875 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(1),
7876 DAG
.getAllOnesConstant(DL
, VT
));
7879 // fold (not (add X, -1)) -> (neg X)
7880 if (isAllOnesConstant(N1
) && N0
.getOpcode() == ISD::ADD
&&
7881 isAllOnesOrAllOnesSplat(N0
.getOperand(1))) {
7882 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
),
7886 // fold (xor (and x, y), y) -> (and (not x), y)
7887 if (N0Opcode
== ISD::AND
&& N0
.hasOneUse() && N0
->getOperand(1) == N1
) {
7888 SDValue X
= N0
.getOperand(0);
7889 SDValue NotX
= DAG
.getNOT(SDLoc(X
), X
, VT
);
7890 AddToWorklist(NotX
.getNode());
7891 return DAG
.getNode(ISD::AND
, DL
, VT
, NotX
, N1
);
7894 if ((N0Opcode
== ISD::SRL
|| N0Opcode
== ISD::SHL
) && N0
.hasOneUse()) {
7895 ConstantSDNode
*XorC
= isConstOrConstSplat(N1
);
7896 ConstantSDNode
*ShiftC
= isConstOrConstSplat(N0
.getOperand(1));
7897 unsigned BitWidth
= VT
.getScalarSizeInBits();
7898 if (XorC
&& ShiftC
) {
7899 // Don't crash on an oversized shift. We can not guarantee that a bogus
7900 // shift has been simplified to undef.
7901 uint64_t ShiftAmt
= ShiftC
->getLimitedValue();
7902 if (ShiftAmt
< BitWidth
) {
7903 APInt Ones
= APInt::getAllOnesValue(BitWidth
);
7904 Ones
= N0Opcode
== ISD::SHL
? Ones
.shl(ShiftAmt
) : Ones
.lshr(ShiftAmt
);
7905 if (XorC
->getAPIntValue() == Ones
) {
7906 // If the xor constant is a shifted -1, do a 'not' before the shift:
7907 // xor (X << ShiftC), XorC --> (not X) << ShiftC
7908 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
7909 SDValue Not
= DAG
.getNOT(DL
, N0
.getOperand(0), VT
);
7910 return DAG
.getNode(N0Opcode
, DL
, VT
, Not
, N0
.getOperand(1));
7916 // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X)
7917 if (TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
)) {
7918 SDValue A
= N0Opcode
== ISD::ADD
? N0
: N1
;
7919 SDValue S
= N0Opcode
== ISD::SRA
? N0
: N1
;
7920 if (A
.getOpcode() == ISD::ADD
&& S
.getOpcode() == ISD::SRA
) {
7921 SDValue A0
= A
.getOperand(0), A1
= A
.getOperand(1);
7922 SDValue S0
= S
.getOperand(0);
7923 if ((A0
== S
&& A1
== S0
) || (A1
== S
&& A0
== S0
))
7924 if (ConstantSDNode
*C
= isConstOrConstSplat(S
.getOperand(1)))
7925 if (C
->getAPIntValue() == (VT
.getScalarSizeInBits() - 1))
7926 return DAG
.getNode(ISD::ABS
, DL
, VT
, S0
);
7930 // fold (xor x, x) -> 0
7932 return tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
7934 // fold (xor (shl 1, x), -1) -> (rotl ~1, x)
7935 // Here is a concrete example of this equivalence:
7937 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000
7938 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
7942 // i16 ~1 == 0b1111111111111110
7943 // i16 rol(~1, 14) == 0b1011111111111111
7945 // Some additional tips to help conceptualize this transform:
7946 // - Try to see the operation as placing a single zero in a value of all ones.
7947 // - There exists no value for x which would allow the result to contain zero.
7948 // - Values of x larger than the bitwidth are undefined and do not require a
7949 // consistent result.
7950 // - Pushing the zero left requires shifting one bits in from the right.
7951 // A rotate left of ~1 is a nice way of achieving the desired result.
7952 if (TLI
.isOperationLegalOrCustom(ISD::ROTL
, VT
) && N0Opcode
== ISD::SHL
&&
7953 isAllOnesConstant(N1
) && isOneConstant(N0
.getOperand(0))) {
7954 return DAG
.getNode(ISD::ROTL
, DL
, VT
, DAG
.getConstant(~1, DL
, VT
),
7958 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
7959 if (N0Opcode
== N1
.getOpcode())
7960 if (SDValue V
= hoistLogicOpWithSameOpcodeHands(N
))
7963 // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable
7964 if (SDValue MM
= unfoldMaskedMerge(N
))
7967 // Simplify the expression using non-local knowledge.
7968 if (SimplifyDemandedBits(SDValue(N
, 0)))
7969 return SDValue(N
, 0);
7971 if (SDValue Combined
= combineCarryDiamond(*this, DAG
, TLI
, N0
, N1
, N
))
7977 /// If we have a shift-by-constant of a bitwise logic op that itself has a
7978 /// shift-by-constant operand with identical opcode, we may be able to convert
7979 /// that into 2 independent shifts followed by the logic op. This is a
7980 /// throughput improvement.
7981 static SDValue
combineShiftOfShiftedLogic(SDNode
*Shift
, SelectionDAG
&DAG
) {
7982 // Match a one-use bitwise logic op.
7983 SDValue LogicOp
= Shift
->getOperand(0);
7984 if (!LogicOp
.hasOneUse())
7987 unsigned LogicOpcode
= LogicOp
.getOpcode();
7988 if (LogicOpcode
!= ISD::AND
&& LogicOpcode
!= ISD::OR
&&
7989 LogicOpcode
!= ISD::XOR
)
7992 // Find a matching one-use shift by constant.
7993 unsigned ShiftOpcode
= Shift
->getOpcode();
7994 SDValue C1
= Shift
->getOperand(1);
7995 ConstantSDNode
*C1Node
= isConstOrConstSplat(C1
);
7996 assert(C1Node
&& "Expected a shift with constant operand");
7997 const APInt
&C1Val
= C1Node
->getAPIntValue();
7998 auto matchFirstShift
= [&](SDValue V
, SDValue
&ShiftOp
,
7999 const APInt
*&ShiftAmtVal
) {
8000 if (V
.getOpcode() != ShiftOpcode
|| !V
.hasOneUse())
8003 ConstantSDNode
*ShiftCNode
= isConstOrConstSplat(V
.getOperand(1));
8007 // Capture the shifted operand and shift amount value.
8008 ShiftOp
= V
.getOperand(0);
8009 ShiftAmtVal
= &ShiftCNode
->getAPIntValue();
8011 // Shift amount types do not have to match their operand type, so check that
8012 // the constants are the same width.
8013 if (ShiftAmtVal
->getBitWidth() != C1Val
.getBitWidth())
8016 // The fold is not valid if the sum of the shift values exceeds bitwidth.
8017 if ((*ShiftAmtVal
+ C1Val
).uge(V
.getScalarValueSizeInBits()))
8023 // Logic ops are commutative, so check each operand for a match.
8026 if (matchFirstShift(LogicOp
.getOperand(0), X
, C0Val
))
8027 Y
= LogicOp
.getOperand(1);
8028 else if (matchFirstShift(LogicOp
.getOperand(1), X
, C0Val
))
8029 Y
= LogicOp
.getOperand(0);
8033 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
8035 EVT VT
= Shift
->getValueType(0);
8036 EVT ShiftAmtVT
= Shift
->getOperand(1).getValueType();
8037 SDValue ShiftSumC
= DAG
.getConstant(*C0Val
+ C1Val
, DL
, ShiftAmtVT
);
8038 SDValue NewShift1
= DAG
.getNode(ShiftOpcode
, DL
, VT
, X
, ShiftSumC
);
8039 SDValue NewShift2
= DAG
.getNode(ShiftOpcode
, DL
, VT
, Y
, C1
);
8040 return DAG
.getNode(LogicOpcode
, DL
, VT
, NewShift1
, NewShift2
);
8043 /// Handle transforms common to the three shifts, when the shift amount is a
8045 /// We are looking for: (shift being one of shl/sra/srl)
8046 /// shift (binop X, C0), C1
8047 /// And want to transform into:
8048 /// binop (shift X, C1), (shift C0, C1)
8049 SDValue
DAGCombiner::visitShiftByConstant(SDNode
*N
) {
8050 assert(isConstOrConstSplat(N
->getOperand(1)) && "Expected constant operand");
8052 // Do not turn a 'not' into a regular xor.
8053 if (isBitwiseNot(N
->getOperand(0)))
8056 // The inner binop must be one-use, since we want to replace it.
8057 SDValue LHS
= N
->getOperand(0);
8058 if (!LHS
.hasOneUse() || !TLI
.isDesirableToCommuteWithShift(N
, Level
))
8061 // TODO: This is limited to early combining because it may reveal regressions
8062 // otherwise. But since we just checked a target hook to see if this is
8063 // desirable, that should have filtered out cases where this interferes
8064 // with some other pattern matching.
8066 if (SDValue R
= combineShiftOfShiftedLogic(N
, DAG
))
8069 // We want to pull some binops through shifts, so that we have (and (shift))
8070 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
8071 // thing happens with address calculations, so it's important to canonicalize
8073 switch (LHS
.getOpcode()) {
8081 if (N
->getOpcode() != ISD::SHL
)
8082 return SDValue(); // only shl(add) not sr[al](add).
8086 // We require the RHS of the binop to be a constant and not opaque as well.
8087 ConstantSDNode
*BinOpCst
= getAsNonOpaqueConstant(LHS
.getOperand(1));
8091 // FIXME: disable this unless the input to the binop is a shift by a constant
8092 // or is copy/select. Enable this in other cases when figure out it's exactly
8094 SDValue BinOpLHSVal
= LHS
.getOperand(0);
8095 bool IsShiftByConstant
= (BinOpLHSVal
.getOpcode() == ISD::SHL
||
8096 BinOpLHSVal
.getOpcode() == ISD::SRA
||
8097 BinOpLHSVal
.getOpcode() == ISD::SRL
) &&
8098 isa
<ConstantSDNode
>(BinOpLHSVal
.getOperand(1));
8099 bool IsCopyOrSelect
= BinOpLHSVal
.getOpcode() == ISD::CopyFromReg
||
8100 BinOpLHSVal
.getOpcode() == ISD::SELECT
;
8102 if (!IsShiftByConstant
&& !IsCopyOrSelect
)
8105 if (IsCopyOrSelect
&& N
->hasOneUse())
8108 // Fold the constants, shifting the binop RHS by the shift amount.
8110 EVT VT
= N
->getValueType(0);
8111 SDValue NewRHS
= DAG
.getNode(N
->getOpcode(), DL
, VT
, LHS
.getOperand(1),
8113 assert(isa
<ConstantSDNode
>(NewRHS
) && "Folding was not successful!");
8115 SDValue NewShift
= DAG
.getNode(N
->getOpcode(), DL
, VT
, LHS
.getOperand(0),
8117 return DAG
.getNode(LHS
.getOpcode(), DL
, VT
, NewShift
, NewRHS
);
8120 SDValue
DAGCombiner::distributeTruncateThroughAnd(SDNode
*N
) {
8121 assert(N
->getOpcode() == ISD::TRUNCATE
);
8122 assert(N
->getOperand(0).getOpcode() == ISD::AND
);
8124 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
8125 EVT TruncVT
= N
->getValueType(0);
8126 if (N
->hasOneUse() && N
->getOperand(0).hasOneUse() &&
8127 TLI
.isTypeDesirableForOp(ISD::AND
, TruncVT
)) {
8128 SDValue N01
= N
->getOperand(0).getOperand(1);
8129 if (isConstantOrConstantVector(N01
, /* NoOpaques */ true)) {
8131 SDValue N00
= N
->getOperand(0).getOperand(0);
8132 SDValue Trunc00
= DAG
.getNode(ISD::TRUNCATE
, DL
, TruncVT
, N00
);
8133 SDValue Trunc01
= DAG
.getNode(ISD::TRUNCATE
, DL
, TruncVT
, N01
);
8134 AddToWorklist(Trunc00
.getNode());
8135 AddToWorklist(Trunc01
.getNode());
8136 return DAG
.getNode(ISD::AND
, DL
, TruncVT
, Trunc00
, Trunc01
);
8143 SDValue
DAGCombiner::visitRotate(SDNode
*N
) {
8145 SDValue N0
= N
->getOperand(0);
8146 SDValue N1
= N
->getOperand(1);
8147 EVT VT
= N
->getValueType(0);
8148 unsigned Bitsize
= VT
.getScalarSizeInBits();
8150 // fold (rot x, 0) -> x
8151 if (isNullOrNullSplat(N1
))
8154 // fold (rot x, c) -> x iff (c % BitSize) == 0
8155 if (isPowerOf2_32(Bitsize
) && Bitsize
> 1) {
8156 APInt
ModuloMask(N1
.getScalarValueSizeInBits(), Bitsize
- 1);
8157 if (DAG
.MaskedValueIsZero(N1
, ModuloMask
))
8161 // fold (rot x, c) -> (rot x, c % BitSize)
8162 bool OutOfRange
= false;
8163 auto MatchOutOfRange
= [Bitsize
, &OutOfRange
](ConstantSDNode
*C
) {
8164 OutOfRange
|= C
->getAPIntValue().uge(Bitsize
);
8167 if (ISD::matchUnaryPredicate(N1
, MatchOutOfRange
) && OutOfRange
) {
8168 EVT AmtVT
= N1
.getValueType();
8169 SDValue Bits
= DAG
.getConstant(Bitsize
, dl
, AmtVT
);
8171 DAG
.FoldConstantArithmetic(ISD::UREM
, dl
, AmtVT
, {N1
, Bits
}))
8172 return DAG
.getNode(N
->getOpcode(), dl
, VT
, N0
, Amt
);
8175 // rot i16 X, 8 --> bswap X
8176 auto *RotAmtC
= isConstOrConstSplat(N1
);
8177 if (RotAmtC
&& RotAmtC
->getAPIntValue() == 8 &&
8178 VT
.getScalarSizeInBits() == 16 && hasOperation(ISD::BSWAP
, VT
))
8179 return DAG
.getNode(ISD::BSWAP
, dl
, VT
, N0
);
8181 // Simplify the operands using demanded-bits information.
8182 if (SimplifyDemandedBits(SDValue(N
, 0)))
8183 return SDValue(N
, 0);
8185 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
8186 if (N1
.getOpcode() == ISD::TRUNCATE
&&
8187 N1
.getOperand(0).getOpcode() == ISD::AND
) {
8188 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
8189 return DAG
.getNode(N
->getOpcode(), dl
, VT
, N0
, NewOp1
);
8192 unsigned NextOp
= N0
.getOpcode();
8193 // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize)
8194 if (NextOp
== ISD::ROTL
|| NextOp
== ISD::ROTR
) {
8195 SDNode
*C1
= DAG
.isConstantIntBuildVectorOrConstantInt(N1
);
8196 SDNode
*C2
= DAG
.isConstantIntBuildVectorOrConstantInt(N0
.getOperand(1));
8197 if (C1
&& C2
&& C1
->getValueType(0) == C2
->getValueType(0)) {
8198 EVT ShiftVT
= C1
->getValueType(0);
8199 bool SameSide
= (N
->getOpcode() == NextOp
);
8200 unsigned CombineOp
= SameSide
? ISD::ADD
: ISD::SUB
;
8201 if (SDValue CombinedShift
= DAG
.FoldConstantArithmetic(
8202 CombineOp
, dl
, ShiftVT
, {N1
, N0
.getOperand(1)})) {
8203 SDValue BitsizeC
= DAG
.getConstant(Bitsize
, dl
, ShiftVT
);
8204 SDValue CombinedShiftNorm
= DAG
.FoldConstantArithmetic(
8205 ISD::SREM
, dl
, ShiftVT
, {CombinedShift
, BitsizeC
});
8206 return DAG
.getNode(N
->getOpcode(), dl
, VT
, N0
->getOperand(0),
8214 SDValue
DAGCombiner::visitSHL(SDNode
*N
) {
8215 SDValue N0
= N
->getOperand(0);
8216 SDValue N1
= N
->getOperand(1);
8217 if (SDValue V
= DAG
.simplifyShift(N0
, N1
))
8220 EVT VT
= N0
.getValueType();
8221 EVT ShiftVT
= N1
.getValueType();
8222 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
8225 if (VT
.isVector()) {
8226 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
8229 BuildVectorSDNode
*N1CV
= dyn_cast
<BuildVectorSDNode
>(N1
);
8230 // If setcc produces all-one true value then:
8231 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
8232 if (N1CV
&& N1CV
->isConstant()) {
8233 if (N0
.getOpcode() == ISD::AND
) {
8234 SDValue N00
= N0
->getOperand(0);
8235 SDValue N01
= N0
->getOperand(1);
8236 BuildVectorSDNode
*N01CV
= dyn_cast
<BuildVectorSDNode
>(N01
);
8238 if (N01CV
&& N01CV
->isConstant() && N00
.getOpcode() == ISD::SETCC
&&
8239 TLI
.getBooleanContents(N00
.getOperand(0).getValueType()) ==
8240 TargetLowering::ZeroOrNegativeOneBooleanContent
) {
8242 DAG
.FoldConstantArithmetic(ISD::SHL
, SDLoc(N
), VT
, {N01
, N1
}))
8243 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, N00
, C
);
8249 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
8251 // fold (shl c1, c2) -> c1<<c2
8252 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::SHL
, SDLoc(N
), VT
, {N0
, N1
}))
8255 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
8258 // if (shl x, c) is known to be zero, return 0
8259 if (DAG
.MaskedValueIsZero(SDValue(N
, 0),
8260 APInt::getAllOnesValue(OpSizeInBits
)))
8261 return DAG
.getConstant(0, SDLoc(N
), VT
);
8263 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
8264 if (N1
.getOpcode() == ISD::TRUNCATE
&&
8265 N1
.getOperand(0).getOpcode() == ISD::AND
) {
8266 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
8267 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N0
, NewOp1
);
8270 if (SimplifyDemandedBits(SDValue(N
, 0)))
8271 return SDValue(N
, 0);
8273 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
8274 if (N0
.getOpcode() == ISD::SHL
) {
8275 auto MatchOutOfRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
8276 ConstantSDNode
*RHS
) {
8277 APInt c1
= LHS
->getAPIntValue();
8278 APInt c2
= RHS
->getAPIntValue();
8279 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
8280 return (c1
+ c2
).uge(OpSizeInBits
);
8282 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchOutOfRange
))
8283 return DAG
.getConstant(0, SDLoc(N
), VT
);
8285 auto MatchInRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
8286 ConstantSDNode
*RHS
) {
8287 APInt c1
= LHS
->getAPIntValue();
8288 APInt c2
= RHS
->getAPIntValue();
8289 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
8290 return (c1
+ c2
).ult(OpSizeInBits
);
8292 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchInRange
)) {
8294 SDValue Sum
= DAG
.getNode(ISD::ADD
, DL
, ShiftVT
, N1
, N0
.getOperand(1));
8295 return DAG
.getNode(ISD::SHL
, DL
, VT
, N0
.getOperand(0), Sum
);
8299 // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2))
8300 // For this to be valid, the second form must not preserve any of the bits
8301 // that are shifted out by the inner shift in the first form. This means
8302 // the outer shift size must be >= the number of bits added by the ext.
8303 // As a corollary, we don't care what kind of ext it is.
8304 if ((N0
.getOpcode() == ISD::ZERO_EXTEND
||
8305 N0
.getOpcode() == ISD::ANY_EXTEND
||
8306 N0
.getOpcode() == ISD::SIGN_EXTEND
) &&
8307 N0
.getOperand(0).getOpcode() == ISD::SHL
) {
8308 SDValue N0Op0
= N0
.getOperand(0);
8309 SDValue InnerShiftAmt
= N0Op0
.getOperand(1);
8310 EVT InnerVT
= N0Op0
.getValueType();
8311 uint64_t InnerBitwidth
= InnerVT
.getScalarSizeInBits();
8313 auto MatchOutOfRange
= [OpSizeInBits
, InnerBitwidth
](ConstantSDNode
*LHS
,
8314 ConstantSDNode
*RHS
) {
8315 APInt c1
= LHS
->getAPIntValue();
8316 APInt c2
= RHS
->getAPIntValue();
8317 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
8318 return c2
.uge(OpSizeInBits
- InnerBitwidth
) &&
8319 (c1
+ c2
).uge(OpSizeInBits
);
8321 if (ISD::matchBinaryPredicate(InnerShiftAmt
, N1
, MatchOutOfRange
,
8322 /*AllowUndefs*/ false,
8323 /*AllowTypeMismatch*/ true))
8324 return DAG
.getConstant(0, SDLoc(N
), VT
);
8326 auto MatchInRange
= [OpSizeInBits
, InnerBitwidth
](ConstantSDNode
*LHS
,
8327 ConstantSDNode
*RHS
) {
8328 APInt c1
= LHS
->getAPIntValue();
8329 APInt c2
= RHS
->getAPIntValue();
8330 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
8331 return c2
.uge(OpSizeInBits
- InnerBitwidth
) &&
8332 (c1
+ c2
).ult(OpSizeInBits
);
8334 if (ISD::matchBinaryPredicate(InnerShiftAmt
, N1
, MatchInRange
,
8335 /*AllowUndefs*/ false,
8336 /*AllowTypeMismatch*/ true)) {
8338 SDValue Ext
= DAG
.getNode(N0
.getOpcode(), DL
, VT
, N0Op0
.getOperand(0));
8339 SDValue Sum
= DAG
.getZExtOrTrunc(InnerShiftAmt
, DL
, ShiftVT
);
8340 Sum
= DAG
.getNode(ISD::ADD
, DL
, ShiftVT
, Sum
, N1
);
8341 return DAG
.getNode(ISD::SHL
, DL
, VT
, Ext
, Sum
);
8345 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
8346 // Only fold this if the inner zext has no other uses to avoid increasing
8347 // the total number of instructions.
8348 if (N0
.getOpcode() == ISD::ZERO_EXTEND
&& N0
.hasOneUse() &&
8349 N0
.getOperand(0).getOpcode() == ISD::SRL
) {
8350 SDValue N0Op0
= N0
.getOperand(0);
8351 SDValue InnerShiftAmt
= N0Op0
.getOperand(1);
8353 auto MatchEqual
= [VT
](ConstantSDNode
*LHS
, ConstantSDNode
*RHS
) {
8354 APInt c1
= LHS
->getAPIntValue();
8355 APInt c2
= RHS
->getAPIntValue();
8356 zeroExtendToMatch(c1
, c2
);
8357 return c1
.ult(VT
.getScalarSizeInBits()) && (c1
== c2
);
8359 if (ISD::matchBinaryPredicate(InnerShiftAmt
, N1
, MatchEqual
,
8360 /*AllowUndefs*/ false,
8361 /*AllowTypeMismatch*/ true)) {
8363 EVT InnerShiftAmtVT
= N0Op0
.getOperand(1).getValueType();
8364 SDValue NewSHL
= DAG
.getZExtOrTrunc(N1
, DL
, InnerShiftAmtVT
);
8365 NewSHL
= DAG
.getNode(ISD::SHL
, DL
, N0Op0
.getValueType(), N0Op0
, NewSHL
);
8366 AddToWorklist(NewSHL
.getNode());
8367 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N0
), VT
, NewSHL
);
8371 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2
8372 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2
8373 // TODO - support non-uniform vector shift amounts.
8374 if (N1C
&& (N0
.getOpcode() == ISD::SRL
|| N0
.getOpcode() == ISD::SRA
) &&
8375 N0
->getFlags().hasExact()) {
8376 if (ConstantSDNode
*N0C1
= isConstOrConstSplat(N0
.getOperand(1))) {
8377 uint64_t C1
= N0C1
->getZExtValue();
8378 uint64_t C2
= N1C
->getZExtValue();
8381 return DAG
.getNode(ISD::SHL
, DL
, VT
, N0
.getOperand(0),
8382 DAG
.getConstant(C2
- C1
, DL
, ShiftVT
));
8383 return DAG
.getNode(N0
.getOpcode(), DL
, VT
, N0
.getOperand(0),
8384 DAG
.getConstant(C1
- C2
, DL
, ShiftVT
));
8388 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
8389 // (and (srl x, (sub c1, c2), MASK)
8390 // Only fold this if the inner shift has no other uses -- if it does, folding
8391 // this will increase the total number of instructions.
8392 // TODO - drop hasOneUse requirement if c1 == c2?
8393 // TODO - support non-uniform vector shift amounts.
8394 if (N1C
&& N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse() &&
8395 TLI
.shouldFoldConstantShiftPairToMask(N
, Level
)) {
8396 if (ConstantSDNode
*N0C1
= isConstOrConstSplat(N0
.getOperand(1))) {
8397 if (N0C1
->getAPIntValue().ult(OpSizeInBits
)) {
8398 uint64_t c1
= N0C1
->getZExtValue();
8399 uint64_t c2
= N1C
->getZExtValue();
8400 APInt Mask
= APInt::getHighBitsSet(OpSizeInBits
, OpSizeInBits
- c1
);
8405 Shift
= DAG
.getNode(ISD::SHL
, DL
, VT
, N0
.getOperand(0),
8406 DAG
.getConstant(c2
- c1
, DL
, ShiftVT
));
8408 Mask
.lshrInPlace(c1
- c2
);
8410 Shift
= DAG
.getNode(ISD::SRL
, DL
, VT
, N0
.getOperand(0),
8411 DAG
.getConstant(c1
- c2
, DL
, ShiftVT
));
8414 return DAG
.getNode(ISD::AND
, DL
, VT
, Shift
,
8415 DAG
.getConstant(Mask
, DL
, VT
));
8420 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
8421 if (N0
.getOpcode() == ISD::SRA
&& N1
== N0
.getOperand(1) &&
8422 isConstantOrConstantVector(N1
, /* No Opaques */ true)) {
8424 SDValue AllBits
= DAG
.getAllOnesConstant(DL
, VT
);
8425 SDValue HiBitsMask
= DAG
.getNode(ISD::SHL
, DL
, VT
, AllBits
, N1
);
8426 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
.getOperand(0), HiBitsMask
);
8429 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
8430 // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
8431 // Variant of version done on multiply, except mul by a power of 2 is turned
8433 if ((N0
.getOpcode() == ISD::ADD
|| N0
.getOpcode() == ISD::OR
) &&
8434 N0
.getNode()->hasOneUse() &&
8435 isConstantOrConstantVector(N1
, /* No Opaques */ true) &&
8436 isConstantOrConstantVector(N0
.getOperand(1), /* No Opaques */ true) &&
8437 TLI
.isDesirableToCommuteWithShift(N
, Level
)) {
8438 SDValue Shl0
= DAG
.getNode(ISD::SHL
, SDLoc(N0
), VT
, N0
.getOperand(0), N1
);
8439 SDValue Shl1
= DAG
.getNode(ISD::SHL
, SDLoc(N1
), VT
, N0
.getOperand(1), N1
);
8440 AddToWorklist(Shl0
.getNode());
8441 AddToWorklist(Shl1
.getNode());
8442 return DAG
.getNode(N0
.getOpcode(), SDLoc(N
), VT
, Shl0
, Shl1
);
8445 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
8446 if (N0
.getOpcode() == ISD::MUL
&& N0
.getNode()->hasOneUse() &&
8447 isConstantOrConstantVector(N1
, /* No Opaques */ true) &&
8448 isConstantOrConstantVector(N0
.getOperand(1), /* No Opaques */ true)) {
8449 SDValue Shl
= DAG
.getNode(ISD::SHL
, SDLoc(N1
), VT
, N0
.getOperand(1), N1
);
8450 if (isConstantOrConstantVector(Shl
))
8451 return DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, N0
.getOperand(0), Shl
);
8454 if (N1C
&& !N1C
->isOpaque())
8455 if (SDValue NewSHL
= visitShiftByConstant(N
))
8458 // Fold (shl (vscale * C0), C1) to (vscale * (C0 << C1)).
8459 if (N0
.getOpcode() == ISD::VSCALE
)
8460 if (ConstantSDNode
*NC1
= isConstOrConstSplat(N
->getOperand(1))) {
8461 const APInt
&C0
= N0
.getConstantOperandAPInt(0);
8462 const APInt
&C1
= NC1
->getAPIntValue();
8463 return DAG
.getVScale(SDLoc(N
), VT
, C0
<< C1
);
8466 // Fold (shl step_vector(C0), C1) to (step_vector(C0 << C1)).
8468 if (N0
.getOpcode() == ISD::STEP_VECTOR
)
8469 if (ISD::isConstantSplatVector(N1
.getNode(), ShlVal
)) {
8470 const APInt
&C0
= N0
.getConstantOperandAPInt(0);
8471 if (ShlVal
.ult(C0
.getBitWidth())) {
8472 APInt NewStep
= C0
<< ShlVal
;
8473 return DAG
.getStepVector(SDLoc(N
), VT
, NewStep
);
8480 // Transform a right shift of a multiply into a multiply-high.
8482 // (srl (mul (zext i32:$a to i64), (zext i32:$a to i64)), 32) -> (mulhu $a, $b)
8483 // (sra (mul (sext i32:$a to i64), (sext i32:$a to i64)), 32) -> (mulhs $a, $b)
8484 static SDValue
combineShiftToMULH(SDNode
*N
, SelectionDAG
&DAG
,
8485 const TargetLowering
&TLI
) {
8486 assert((N
->getOpcode() == ISD::SRL
|| N
->getOpcode() == ISD::SRA
) &&
8487 "SRL or SRA node is required here!");
8489 // Check the shift amount. Proceed with the transformation if the shift
8490 // amount is constant.
8491 ConstantSDNode
*ShiftAmtSrc
= isConstOrConstSplat(N
->getOperand(1));
8497 // The operation feeding into the shift must be a multiply.
8498 SDValue ShiftOperand
= N
->getOperand(0);
8499 if (ShiftOperand
.getOpcode() != ISD::MUL
)
8502 // Both operands must be equivalent extend nodes.
8503 SDValue LeftOp
= ShiftOperand
.getOperand(0);
8504 SDValue RightOp
= ShiftOperand
.getOperand(1);
8505 bool IsSignExt
= LeftOp
.getOpcode() == ISD::SIGN_EXTEND
;
8506 bool IsZeroExt
= LeftOp
.getOpcode() == ISD::ZERO_EXTEND
;
8508 if ((!(IsSignExt
|| IsZeroExt
)) || LeftOp
.getOpcode() != RightOp
.getOpcode())
8511 EVT WideVT1
= LeftOp
.getValueType();
8512 EVT WideVT2
= RightOp
.getValueType();
8514 // Proceed with the transformation if the wide types match.
8515 assert((WideVT1
== WideVT2
) &&
8516 "Cannot have a multiply node with two different operand types.");
8518 EVT NarrowVT
= LeftOp
.getOperand(0).getValueType();
8519 // Check that the two extend nodes are the same type.
8520 if (NarrowVT
!= RightOp
.getOperand(0).getValueType())
8523 // Proceed with the transformation if the wide type is twice as large
8524 // as the narrow type.
8525 unsigned NarrowVTSize
= NarrowVT
.getScalarSizeInBits();
8526 if (WideVT1
.getScalarSizeInBits() != 2 * NarrowVTSize
)
8529 // Check the shift amount with the narrow type size.
8530 // Proceed with the transformation if the shift amount is the width
8531 // of the narrow type.
8532 unsigned ShiftAmt
= ShiftAmtSrc
->getZExtValue();
8533 if (ShiftAmt
!= NarrowVTSize
)
8536 // If the operation feeding into the MUL is a sign extend (sext),
8537 // we use mulhs. Othewise, zero extends (zext) use mulhu.
8538 unsigned MulhOpcode
= IsSignExt
? ISD::MULHS
: ISD::MULHU
;
8540 // Combine to mulh if mulh is legal/custom for the narrow type on the target.
8541 if (!TLI
.isOperationLegalOrCustom(MulhOpcode
, NarrowVT
))
8544 SDValue Result
= DAG
.getNode(MulhOpcode
, DL
, NarrowVT
, LeftOp
.getOperand(0),
8545 RightOp
.getOperand(0));
8546 return (N
->getOpcode() == ISD::SRA
? DAG
.getSExtOrTrunc(Result
, DL
, WideVT1
)
8547 : DAG
.getZExtOrTrunc(Result
, DL
, WideVT1
));
8550 SDValue
DAGCombiner::visitSRA(SDNode
*N
) {
8551 SDValue N0
= N
->getOperand(0);
8552 SDValue N1
= N
->getOperand(1);
8553 if (SDValue V
= DAG
.simplifyShift(N0
, N1
))
8556 EVT VT
= N0
.getValueType();
8557 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
8559 // Arithmetic shifting an all-sign-bit value is a no-op.
8560 // fold (sra 0, x) -> 0
8561 // fold (sra -1, x) -> -1
8562 if (DAG
.ComputeNumSignBits(N0
) == OpSizeInBits
)
8567 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
8570 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
8572 // fold (sra c1, c2) -> (sra c1, c2)
8573 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::SRA
, SDLoc(N
), VT
, {N0
, N1
}))
8576 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
8579 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
8581 if (N1C
&& N0
.getOpcode() == ISD::SHL
&& N1
== N0
.getOperand(1)) {
8582 unsigned LowBits
= OpSizeInBits
- (unsigned)N1C
->getZExtValue();
8583 EVT ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), LowBits
);
8585 ExtVT
= EVT::getVectorVT(*DAG
.getContext(), ExtVT
,
8586 VT
.getVectorElementCount());
8587 if (!LegalOperations
||
8588 TLI
.getOperationAction(ISD::SIGN_EXTEND_INREG
, ExtVT
) ==
8589 TargetLowering::Legal
)
8590 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
,
8591 N0
.getOperand(0), DAG
.getValueType(ExtVT
));
8592 // Even if we can't convert to sext_inreg, we might be able to remove
8593 // this shift pair if the input is already sign extended.
8594 if (DAG
.ComputeNumSignBits(N0
.getOperand(0)) > N1C
->getZExtValue())
8595 return N0
.getOperand(0);
8598 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
8599 // clamp (add c1, c2) to max shift.
8600 if (N0
.getOpcode() == ISD::SRA
) {
8602 EVT ShiftVT
= N1
.getValueType();
8603 EVT ShiftSVT
= ShiftVT
.getScalarType();
8604 SmallVector
<SDValue
, 16> ShiftValues
;
8606 auto SumOfShifts
= [&](ConstantSDNode
*LHS
, ConstantSDNode
*RHS
) {
8607 APInt c1
= LHS
->getAPIntValue();
8608 APInt c2
= RHS
->getAPIntValue();
8609 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
8610 APInt Sum
= c1
+ c2
;
8612 Sum
.uge(OpSizeInBits
) ? (OpSizeInBits
- 1) : Sum
.getZExtValue();
8613 ShiftValues
.push_back(DAG
.getConstant(ShiftSum
, DL
, ShiftSVT
));
8616 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), SumOfShifts
)) {
8619 ShiftValue
= DAG
.getBuildVector(ShiftVT
, DL
, ShiftValues
);
8621 ShiftValue
= ShiftValues
[0];
8622 return DAG
.getNode(ISD::SRA
, DL
, VT
, N0
.getOperand(0), ShiftValue
);
8626 // fold (sra (shl X, m), (sub result_size, n))
8627 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
8628 // result_size - n != m.
8629 // If truncate is free for the target sext(shl) is likely to result in better
8631 if (N0
.getOpcode() == ISD::SHL
&& N1C
) {
8632 // Get the two constanst of the shifts, CN0 = m, CN = n.
8633 const ConstantSDNode
*N01C
= isConstOrConstSplat(N0
.getOperand(1));
8635 LLVMContext
&Ctx
= *DAG
.getContext();
8636 // Determine what the truncate's result bitsize and type would be.
8637 EVT TruncVT
= EVT::getIntegerVT(Ctx
, OpSizeInBits
- N1C
->getZExtValue());
8640 TruncVT
= EVT::getVectorVT(Ctx
, TruncVT
, VT
.getVectorElementCount());
8642 // Determine the residual right-shift amount.
8643 int ShiftAmt
= N1C
->getZExtValue() - N01C
->getZExtValue();
8645 // If the shift is not a no-op (in which case this should be just a sign
8646 // extend already), the truncated to type is legal, sign_extend is legal
8647 // on that type, and the truncate to that type is both legal and free,
8648 // perform the transform.
8649 if ((ShiftAmt
> 0) &&
8650 TLI
.isOperationLegalOrCustom(ISD::SIGN_EXTEND
, TruncVT
) &&
8651 TLI
.isOperationLegalOrCustom(ISD::TRUNCATE
, VT
) &&
8652 TLI
.isTruncateFree(VT
, TruncVT
)) {
8654 SDValue Amt
= DAG
.getConstant(ShiftAmt
, DL
,
8655 getShiftAmountTy(N0
.getOperand(0).getValueType()));
8656 SDValue Shift
= DAG
.getNode(ISD::SRL
, DL
, VT
,
8657 N0
.getOperand(0), Amt
);
8658 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, DL
, TruncVT
,
8660 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
,
8661 N
->getValueType(0), Trunc
);
8666 // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper.
8667 // sra (add (shl X, N1C), AddC), N1C -->
8668 // sext (add (trunc X to (width - N1C)), AddC')
8669 if (N0
.getOpcode() == ISD::ADD
&& N0
.hasOneUse() && N1C
&&
8670 N0
.getOperand(0).getOpcode() == ISD::SHL
&&
8671 N0
.getOperand(0).getOperand(1) == N1
&& N0
.getOperand(0).hasOneUse()) {
8672 if (ConstantSDNode
*AddC
= isConstOrConstSplat(N0
.getOperand(1))) {
8673 SDValue Shl
= N0
.getOperand(0);
8674 // Determine what the truncate's type would be and ask the target if that
8675 // is a free operation.
8676 LLVMContext
&Ctx
= *DAG
.getContext();
8677 unsigned ShiftAmt
= N1C
->getZExtValue();
8678 EVT TruncVT
= EVT::getIntegerVT(Ctx
, OpSizeInBits
- ShiftAmt
);
8680 TruncVT
= EVT::getVectorVT(Ctx
, TruncVT
, VT
.getVectorElementCount());
8682 // TODO: The simple type check probably belongs in the default hook
8683 // implementation and/or target-specific overrides (because
8684 // non-simple types likely require masking when legalized), but that
8685 // restriction may conflict with other transforms.
8686 if (TruncVT
.isSimple() && isTypeLegal(TruncVT
) &&
8687 TLI
.isTruncateFree(VT
, TruncVT
)) {
8689 SDValue Trunc
= DAG
.getZExtOrTrunc(Shl
.getOperand(0), DL
, TruncVT
);
8690 SDValue ShiftC
= DAG
.getConstant(AddC
->getAPIntValue().lshr(ShiftAmt
).
8691 trunc(TruncVT
.getScalarSizeInBits()), DL
, TruncVT
);
8692 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, TruncVT
, Trunc
, ShiftC
);
8693 return DAG
.getSExtOrTrunc(Add
, DL
, VT
);
8698 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
8699 if (N1
.getOpcode() == ISD::TRUNCATE
&&
8700 N1
.getOperand(0).getOpcode() == ISD::AND
) {
8701 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
8702 return DAG
.getNode(ISD::SRA
, SDLoc(N
), VT
, N0
, NewOp1
);
8705 // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2))
8706 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
8707 // if c1 is equal to the number of bits the trunc removes
8708 // TODO - support non-uniform vector shift amounts.
8709 if (N0
.getOpcode() == ISD::TRUNCATE
&&
8710 (N0
.getOperand(0).getOpcode() == ISD::SRL
||
8711 N0
.getOperand(0).getOpcode() == ISD::SRA
) &&
8712 N0
.getOperand(0).hasOneUse() &&
8713 N0
.getOperand(0).getOperand(1).hasOneUse() && N1C
) {
8714 SDValue N0Op0
= N0
.getOperand(0);
8715 if (ConstantSDNode
*LargeShift
= isConstOrConstSplat(N0Op0
.getOperand(1))) {
8716 EVT LargeVT
= N0Op0
.getValueType();
8717 unsigned TruncBits
= LargeVT
.getScalarSizeInBits() - OpSizeInBits
;
8718 if (LargeShift
->getAPIntValue() == TruncBits
) {
8720 SDValue Amt
= DAG
.getConstant(N1C
->getZExtValue() + TruncBits
, DL
,
8721 getShiftAmountTy(LargeVT
));
8723 DAG
.getNode(ISD::SRA
, DL
, LargeVT
, N0Op0
.getOperand(0), Amt
);
8724 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, SRA
);
8729 // Simplify, based on bits shifted out of the LHS.
8730 if (SimplifyDemandedBits(SDValue(N
, 0)))
8731 return SDValue(N
, 0);
8733 // If the sign bit is known to be zero, switch this to a SRL.
8734 if (DAG
.SignBitIsZero(N0
))
8735 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N0
, N1
);
8737 if (N1C
&& !N1C
->isOpaque())
8738 if (SDValue NewSRA
= visitShiftByConstant(N
))
8741 // Try to transform this shift into a multiply-high if
8742 // it matches the appropriate pattern detected in combineShiftToMULH.
8743 if (SDValue MULH
= combineShiftToMULH(N
, DAG
, TLI
))
8749 SDValue
DAGCombiner::visitSRL(SDNode
*N
) {
8750 SDValue N0
= N
->getOperand(0);
8751 SDValue N1
= N
->getOperand(1);
8752 if (SDValue V
= DAG
.simplifyShift(N0
, N1
))
8755 EVT VT
= N0
.getValueType();
8756 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
8760 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
8763 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
8765 // fold (srl c1, c2) -> c1 >>u c2
8766 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::SRL
, SDLoc(N
), VT
, {N0
, N1
}))
8769 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
8772 // if (srl x, c) is known to be zero, return 0
8773 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
8774 APInt::getAllOnesValue(OpSizeInBits
)))
8775 return DAG
.getConstant(0, SDLoc(N
), VT
);
8777 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
8778 if (N0
.getOpcode() == ISD::SRL
) {
8779 auto MatchOutOfRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
8780 ConstantSDNode
*RHS
) {
8781 APInt c1
= LHS
->getAPIntValue();
8782 APInt c2
= RHS
->getAPIntValue();
8783 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
8784 return (c1
+ c2
).uge(OpSizeInBits
);
8786 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchOutOfRange
))
8787 return DAG
.getConstant(0, SDLoc(N
), VT
);
8789 auto MatchInRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
8790 ConstantSDNode
*RHS
) {
8791 APInt c1
= LHS
->getAPIntValue();
8792 APInt c2
= RHS
->getAPIntValue();
8793 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
8794 return (c1
+ c2
).ult(OpSizeInBits
);
8796 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchInRange
)) {
8798 EVT ShiftVT
= N1
.getValueType();
8799 SDValue Sum
= DAG
.getNode(ISD::ADD
, DL
, ShiftVT
, N1
, N0
.getOperand(1));
8800 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
.getOperand(0), Sum
);
8804 if (N1C
&& N0
.getOpcode() == ISD::TRUNCATE
&&
8805 N0
.getOperand(0).getOpcode() == ISD::SRL
) {
8806 SDValue InnerShift
= N0
.getOperand(0);
8807 // TODO - support non-uniform vector shift amounts.
8808 if (auto *N001C
= isConstOrConstSplat(InnerShift
.getOperand(1))) {
8809 uint64_t c1
= N001C
->getZExtValue();
8810 uint64_t c2
= N1C
->getZExtValue();
8811 EVT InnerShiftVT
= InnerShift
.getValueType();
8812 EVT ShiftAmtVT
= InnerShift
.getOperand(1).getValueType();
8813 uint64_t InnerShiftSize
= InnerShiftVT
.getScalarSizeInBits();
8814 // srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2)))
8815 // This is only valid if the OpSizeInBits + c1 = size of inner shift.
8816 if (c1
+ OpSizeInBits
== InnerShiftSize
) {
8818 if (c1
+ c2
>= InnerShiftSize
)
8819 return DAG
.getConstant(0, DL
, VT
);
8820 SDValue NewShiftAmt
= DAG
.getConstant(c1
+ c2
, DL
, ShiftAmtVT
);
8821 SDValue NewShift
= DAG
.getNode(ISD::SRL
, DL
, InnerShiftVT
,
8822 InnerShift
.getOperand(0), NewShiftAmt
);
8823 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, NewShift
);
8825 // In the more general case, we can clear the high bits after the shift:
8826 // srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask)
8827 if (N0
.hasOneUse() && InnerShift
.hasOneUse() &&
8828 c1
+ c2
< InnerShiftSize
) {
8830 SDValue NewShiftAmt
= DAG
.getConstant(c1
+ c2
, DL
, ShiftAmtVT
);
8831 SDValue NewShift
= DAG
.getNode(ISD::SRL
, DL
, InnerShiftVT
,
8832 InnerShift
.getOperand(0), NewShiftAmt
);
8833 SDValue Mask
= DAG
.getConstant(APInt::getLowBitsSet(InnerShiftSize
,
8836 SDValue And
= DAG
.getNode(ISD::AND
, DL
, InnerShiftVT
, NewShift
, Mask
);
8837 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, And
);
8842 // fold (srl (shl x, c), c) -> (and x, cst2)
8843 // TODO - (srl (shl x, c1), c2).
8844 if (N0
.getOpcode() == ISD::SHL
&& N0
.getOperand(1) == N1
&&
8845 isConstantOrConstantVector(N1
, /* NoOpaques */ true)) {
8848 DAG
.getNode(ISD::SRL
, DL
, VT
, DAG
.getAllOnesConstant(DL
, VT
), N1
);
8849 AddToWorklist(Mask
.getNode());
8850 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
.getOperand(0), Mask
);
8853 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
8854 // TODO - support non-uniform vector shift amounts.
8855 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
8856 // Shifting in all undef bits?
8857 EVT SmallVT
= N0
.getOperand(0).getValueType();
8858 unsigned BitSize
= SmallVT
.getScalarSizeInBits();
8859 if (N1C
->getAPIntValue().uge(BitSize
))
8860 return DAG
.getUNDEF(VT
);
8862 if (!LegalTypes
|| TLI
.isTypeDesirableForOp(ISD::SRL
, SmallVT
)) {
8863 uint64_t ShiftAmt
= N1C
->getZExtValue();
8865 SDValue SmallShift
= DAG
.getNode(ISD::SRL
, DL0
, SmallVT
,
8867 DAG
.getConstant(ShiftAmt
, DL0
,
8868 getShiftAmountTy(SmallVT
)));
8869 AddToWorklist(SmallShift
.getNode());
8870 APInt Mask
= APInt::getLowBitsSet(OpSizeInBits
, OpSizeInBits
- ShiftAmt
);
8872 return DAG
.getNode(ISD::AND
, DL
, VT
,
8873 DAG
.getNode(ISD::ANY_EXTEND
, DL
, VT
, SmallShift
),
8874 DAG
.getConstant(Mask
, DL
, VT
));
8878 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
8879 // bit, which is unmodified by sra.
8880 if (N1C
&& N1C
->getAPIntValue() == (OpSizeInBits
- 1)) {
8881 if (N0
.getOpcode() == ISD::SRA
)
8882 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N0
.getOperand(0), N1
);
8885 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
8886 if (N1C
&& N0
.getOpcode() == ISD::CTLZ
&&
8887 N1C
->getAPIntValue() == Log2_32(OpSizeInBits
)) {
8888 KnownBits Known
= DAG
.computeKnownBits(N0
.getOperand(0));
8890 // If any of the input bits are KnownOne, then the input couldn't be all
8891 // zeros, thus the result of the srl will always be zero.
8892 if (Known
.One
.getBoolValue()) return DAG
.getConstant(0, SDLoc(N0
), VT
);
8894 // If all of the bits input the to ctlz node are known to be zero, then
8895 // the result of the ctlz is "32" and the result of the shift is one.
8896 APInt UnknownBits
= ~Known
.Zero
;
8897 if (UnknownBits
== 0) return DAG
.getConstant(1, SDLoc(N0
), VT
);
8899 // Otherwise, check to see if there is exactly one bit input to the ctlz.
8900 if (UnknownBits
.isPowerOf2()) {
8901 // Okay, we know that only that the single bit specified by UnknownBits
8902 // could be set on input to the CTLZ node. If this bit is set, the SRL
8903 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
8904 // to an SRL/XOR pair, which is likely to simplify more.
8905 unsigned ShAmt
= UnknownBits
.countTrailingZeros();
8906 SDValue Op
= N0
.getOperand(0);
8910 Op
= DAG
.getNode(ISD::SRL
, DL
, VT
, Op
,
8911 DAG
.getConstant(ShAmt
, DL
,
8912 getShiftAmountTy(Op
.getValueType())));
8913 AddToWorklist(Op
.getNode());
8917 return DAG
.getNode(ISD::XOR
, DL
, VT
,
8918 Op
, DAG
.getConstant(1, DL
, VT
));
8922 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
8923 if (N1
.getOpcode() == ISD::TRUNCATE
&&
8924 N1
.getOperand(0).getOpcode() == ISD::AND
) {
8925 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
8926 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N0
, NewOp1
);
8929 // fold operands of srl based on knowledge that the low bits are not
8931 if (SimplifyDemandedBits(SDValue(N
, 0)))
8932 return SDValue(N
, 0);
8934 if (N1C
&& !N1C
->isOpaque())
8935 if (SDValue NewSRL
= visitShiftByConstant(N
))
8938 // Attempt to convert a srl of a load into a narrower zero-extending load.
8939 if (SDValue NarrowLoad
= ReduceLoadWidth(N
))
8942 // Here is a common situation. We want to optimize:
8945 // %b = and i32 %a, 2
8946 // %c = srl i32 %b, 1
8947 // brcond i32 %c ...
8953 // %c = setcc eq %b, 0
8956 // However when after the source operand of SRL is optimized into AND, the SRL
8957 // itself may not be optimized further. Look for it and add the BRCOND into
8959 if (N
->hasOneUse()) {
8960 SDNode
*Use
= *N
->use_begin();
8961 if (Use
->getOpcode() == ISD::BRCOND
)
8963 else if (Use
->getOpcode() == ISD::TRUNCATE
&& Use
->hasOneUse()) {
8964 // Also look pass the truncate.
8965 Use
= *Use
->use_begin();
8966 if (Use
->getOpcode() == ISD::BRCOND
)
8971 // Try to transform this shift into a multiply-high if
8972 // it matches the appropriate pattern detected in combineShiftToMULH.
8973 if (SDValue MULH
= combineShiftToMULH(N
, DAG
, TLI
))
8979 SDValue
DAGCombiner::visitFunnelShift(SDNode
*N
) {
8980 EVT VT
= N
->getValueType(0);
8981 SDValue N0
= N
->getOperand(0);
8982 SDValue N1
= N
->getOperand(1);
8983 SDValue N2
= N
->getOperand(2);
8984 bool IsFSHL
= N
->getOpcode() == ISD::FSHL
;
8985 unsigned BitWidth
= VT
.getScalarSizeInBits();
8987 // fold (fshl N0, N1, 0) -> N0
8988 // fold (fshr N0, N1, 0) -> N1
8989 if (isPowerOf2_32(BitWidth
))
8990 if (DAG
.MaskedValueIsZero(
8991 N2
, APInt(N2
.getScalarValueSizeInBits(), BitWidth
- 1)))
8992 return IsFSHL
? N0
: N1
;
8994 auto IsUndefOrZero
= [](SDValue V
) {
8995 return V
.isUndef() || isNullOrNullSplat(V
, /*AllowUndefs*/ true);
8998 // TODO - support non-uniform vector shift amounts.
8999 if (ConstantSDNode
*Cst
= isConstOrConstSplat(N2
)) {
9000 EVT ShAmtTy
= N2
.getValueType();
9002 // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth)
9003 if (Cst
->getAPIntValue().uge(BitWidth
)) {
9004 uint64_t RotAmt
= Cst
->getAPIntValue().urem(BitWidth
);
9005 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N0
, N1
,
9006 DAG
.getConstant(RotAmt
, SDLoc(N
), ShAmtTy
));
9009 unsigned ShAmt
= Cst
->getZExtValue();
9011 return IsFSHL
? N0
: N1
;
9013 // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C)
9014 // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C)
9015 // fold fshl(N0, undef_or_zero, C) -> shl(N0, C)
9016 // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C)
9017 if (IsUndefOrZero(N0
))
9018 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N1
,
9019 DAG
.getConstant(IsFSHL
? BitWidth
- ShAmt
: ShAmt
,
9020 SDLoc(N
), ShAmtTy
));
9021 if (IsUndefOrZero(N1
))
9022 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N0
,
9023 DAG
.getConstant(IsFSHL
? ShAmt
: BitWidth
- ShAmt
,
9024 SDLoc(N
), ShAmtTy
));
9026 // fold (fshl ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive.
9027 // fold (fshr ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive.
9028 // TODO - bigendian support once we have test coverage.
9029 // TODO - can we merge this with CombineConseutiveLoads/MatchLoadCombine?
9030 // TODO - permit LHS EXTLOAD if extensions are shifted out.
9031 if ((BitWidth
% 8) == 0 && (ShAmt
% 8) == 0 && !VT
.isVector() &&
9032 !DAG
.getDataLayout().isBigEndian()) {
9033 auto *LHS
= dyn_cast
<LoadSDNode
>(N0
);
9034 auto *RHS
= dyn_cast
<LoadSDNode
>(N1
);
9035 if (LHS
&& RHS
&& LHS
->isSimple() && RHS
->isSimple() &&
9036 LHS
->getAddressSpace() == RHS
->getAddressSpace() &&
9037 (LHS
->hasOneUse() || RHS
->hasOneUse()) && ISD::isNON_EXTLoad(RHS
) &&
9038 ISD::isNON_EXTLoad(LHS
)) {
9039 if (DAG
.areNonVolatileConsecutiveLoads(LHS
, RHS
, BitWidth
/ 8, 1)) {
9042 IsFSHL
? (((BitWidth
- ShAmt
) % BitWidth
) / 8) : (ShAmt
/ 8);
9043 Align NewAlign
= commonAlignment(RHS
->getAlign(), PtrOff
);
9045 if (TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), VT
,
9046 RHS
->getAddressSpace(), NewAlign
,
9047 RHS
->getMemOperand()->getFlags(), &Fast
) &&
9049 SDValue NewPtr
= DAG
.getMemBasePlusOffset(
9050 RHS
->getBasePtr(), TypeSize::Fixed(PtrOff
), DL
);
9051 AddToWorklist(NewPtr
.getNode());
9052 SDValue Load
= DAG
.getLoad(
9053 VT
, DL
, RHS
->getChain(), NewPtr
,
9054 RHS
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
,
9055 RHS
->getMemOperand()->getFlags(), RHS
->getAAInfo());
9056 // Replace the old load's chain with the new load's chain.
9057 WorklistRemover
DeadNodes(*this);
9058 DAG
.ReplaceAllUsesOfValueWith(N1
.getValue(1), Load
.getValue(1));
9066 // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2)
9067 // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2)
9068 // iff We know the shift amount is in range.
9069 // TODO: when is it worth doing SUB(BW, N2) as well?
9070 if (isPowerOf2_32(BitWidth
)) {
9071 APInt
ModuloBits(N2
.getScalarValueSizeInBits(), BitWidth
- 1);
9072 if (IsUndefOrZero(N0
) && !IsFSHL
&& DAG
.MaskedValueIsZero(N2
, ~ModuloBits
))
9073 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N1
, N2
);
9074 if (IsUndefOrZero(N1
) && IsFSHL
&& DAG
.MaskedValueIsZero(N2
, ~ModuloBits
))
9075 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N0
, N2
);
9078 // fold (fshl N0, N0, N2) -> (rotl N0, N2)
9079 // fold (fshr N0, N0, N2) -> (rotr N0, N2)
9080 // TODO: Investigate flipping this rotate if only one is legal, if funnel shift
9081 // is legal as well we might be better off avoiding non-constant (BW - N2).
9082 unsigned RotOpc
= IsFSHL
? ISD::ROTL
: ISD::ROTR
;
9083 if (N0
== N1
&& hasOperation(RotOpc
, VT
))
9084 return DAG
.getNode(RotOpc
, SDLoc(N
), VT
, N0
, N2
);
9086 // Simplify, based on bits shifted out of N0/N1.
9087 if (SimplifyDemandedBits(SDValue(N
, 0)))
9088 return SDValue(N
, 0);
9093 // Given a ABS node, detect the following pattern:
9094 // (ABS (SUB (EXTEND a), (EXTEND b))).
9095 // Generates UABD/SABD instruction.
9096 static SDValue
combineABSToABD(SDNode
*N
, SelectionDAG
&DAG
,
9097 const TargetLowering
&TLI
) {
9098 SDValue AbsOp1
= N
->getOperand(0);
9101 if (AbsOp1
.getOpcode() != ISD::SUB
)
9104 Op0
= AbsOp1
.getOperand(0);
9105 Op1
= AbsOp1
.getOperand(1);
9107 unsigned Opc0
= Op0
.getOpcode();
9108 // Check if the operands of the sub are (zero|sign)-extended.
9109 if (Opc0
!= Op1
.getOpcode() ||
9110 (Opc0
!= ISD::ZERO_EXTEND
&& Opc0
!= ISD::SIGN_EXTEND
))
9113 EVT VT1
= Op0
.getOperand(0).getValueType();
9114 EVT VT2
= Op1
.getOperand(0).getValueType();
9115 // Check if the operands are of same type and valid size.
9116 unsigned ABDOpcode
= (Opc0
== ISD::SIGN_EXTEND
) ? ISD::ABDS
: ISD::ABDU
;
9117 if (VT1
!= VT2
|| !TLI
.isOperationLegalOrCustom(ABDOpcode
, VT1
))
9120 Op0
= Op0
.getOperand(0);
9121 Op1
= Op1
.getOperand(0);
9123 DAG
.getNode(ABDOpcode
, SDLoc(N
), Op0
->getValueType(0), Op0
, Op1
);
9124 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), N
->getValueType(0), ABD
);
9127 SDValue
DAGCombiner::visitABS(SDNode
*N
) {
9128 SDValue N0
= N
->getOperand(0);
9129 EVT VT
= N
->getValueType(0);
9131 // fold (abs c1) -> c2
9132 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9133 return DAG
.getNode(ISD::ABS
, SDLoc(N
), VT
, N0
);
9134 // fold (abs (abs x)) -> (abs x)
9135 if (N0
.getOpcode() == ISD::ABS
)
9137 // fold (abs x) -> x iff not-negative
9138 if (DAG
.SignBitIsZero(N0
))
9141 if (SDValue ABD
= combineABSToABD(N
, DAG
, TLI
))
9147 SDValue
DAGCombiner::visitBSWAP(SDNode
*N
) {
9148 SDValue N0
= N
->getOperand(0);
9149 EVT VT
= N
->getValueType(0);
9151 // fold (bswap c1) -> c2
9152 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9153 return DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, N0
);
9154 // fold (bswap (bswap x)) -> x
9155 if (N0
.getOpcode() == ISD::BSWAP
)
9156 return N0
->getOperand(0);
9160 SDValue
DAGCombiner::visitBITREVERSE(SDNode
*N
) {
9161 SDValue N0
= N
->getOperand(0);
9162 EVT VT
= N
->getValueType(0);
9164 // fold (bitreverse c1) -> c2
9165 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9166 return DAG
.getNode(ISD::BITREVERSE
, SDLoc(N
), VT
, N0
);
9167 // fold (bitreverse (bitreverse x)) -> x
9168 if (N0
.getOpcode() == ISD::BITREVERSE
)
9169 return N0
.getOperand(0);
9173 SDValue
DAGCombiner::visitCTLZ(SDNode
*N
) {
9174 SDValue N0
= N
->getOperand(0);
9175 EVT VT
= N
->getValueType(0);
9177 // fold (ctlz c1) -> c2
9178 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9179 return DAG
.getNode(ISD::CTLZ
, SDLoc(N
), VT
, N0
);
9181 // If the value is known never to be zero, switch to the undef version.
9182 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTLZ_ZERO_UNDEF
, VT
)) {
9183 if (DAG
.isKnownNeverZero(N0
))
9184 return DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
9190 SDValue
DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode
*N
) {
9191 SDValue N0
= N
->getOperand(0);
9192 EVT VT
= N
->getValueType(0);
9194 // fold (ctlz_zero_undef c1) -> c2
9195 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9196 return DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
9200 SDValue
DAGCombiner::visitCTTZ(SDNode
*N
) {
9201 SDValue N0
= N
->getOperand(0);
9202 EVT VT
= N
->getValueType(0);
9204 // fold (cttz c1) -> c2
9205 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9206 return DAG
.getNode(ISD::CTTZ
, SDLoc(N
), VT
, N0
);
9208 // If the value is known never to be zero, switch to the undef version.
9209 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTTZ_ZERO_UNDEF
, VT
)) {
9210 if (DAG
.isKnownNeverZero(N0
))
9211 return DAG
.getNode(ISD::CTTZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
9217 SDValue
DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode
*N
) {
9218 SDValue N0
= N
->getOperand(0);
9219 EVT VT
= N
->getValueType(0);
9221 // fold (cttz_zero_undef c1) -> c2
9222 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9223 return DAG
.getNode(ISD::CTTZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
9227 SDValue
DAGCombiner::visitCTPOP(SDNode
*N
) {
9228 SDValue N0
= N
->getOperand(0);
9229 EVT VT
= N
->getValueType(0);
9231 // fold (ctpop c1) -> c2
9232 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9233 return DAG
.getNode(ISD::CTPOP
, SDLoc(N
), VT
, N0
);
9237 // FIXME: This should be checking for no signed zeros on individual operands, as
9239 static bool isLegalToCombineMinNumMaxNum(SelectionDAG
&DAG
, SDValue LHS
,
9241 const TargetLowering
&TLI
) {
9242 const TargetOptions
&Options
= DAG
.getTarget().Options
;
9243 EVT VT
= LHS
.getValueType();
9245 return Options
.NoSignedZerosFPMath
&& VT
.isFloatingPoint() &&
9246 TLI
.isProfitableToCombineMinNumMaxNum(VT
) &&
9247 DAG
.isKnownNeverNaN(LHS
) && DAG
.isKnownNeverNaN(RHS
);
9250 /// Generate Min/Max node
9251 static SDValue
combineMinNumMaxNum(const SDLoc
&DL
, EVT VT
, SDValue LHS
,
9252 SDValue RHS
, SDValue True
, SDValue False
,
9253 ISD::CondCode CC
, const TargetLowering
&TLI
,
9254 SelectionDAG
&DAG
) {
9255 if (!(LHS
== True
&& RHS
== False
) && !(LHS
== False
&& RHS
== True
))
9258 EVT TransformVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), VT
);
9266 // Since it's known never nan to get here already, either fminnum or
9267 // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is
9268 // expanded in terms of it.
9269 unsigned IEEEOpcode
= (LHS
== True
) ? ISD::FMINNUM_IEEE
: ISD::FMAXNUM_IEEE
;
9270 if (TLI
.isOperationLegalOrCustom(IEEEOpcode
, VT
))
9271 return DAG
.getNode(IEEEOpcode
, DL
, VT
, LHS
, RHS
);
9273 unsigned Opcode
= (LHS
== True
) ? ISD::FMINNUM
: ISD::FMAXNUM
;
9274 if (TLI
.isOperationLegalOrCustom(Opcode
, TransformVT
))
9275 return DAG
.getNode(Opcode
, DL
, VT
, LHS
, RHS
);
9284 unsigned IEEEOpcode
= (LHS
== True
) ? ISD::FMAXNUM_IEEE
: ISD::FMINNUM_IEEE
;
9285 if (TLI
.isOperationLegalOrCustom(IEEEOpcode
, VT
))
9286 return DAG
.getNode(IEEEOpcode
, DL
, VT
, LHS
, RHS
);
9288 unsigned Opcode
= (LHS
== True
) ? ISD::FMAXNUM
: ISD::FMINNUM
;
9289 if (TLI
.isOperationLegalOrCustom(Opcode
, TransformVT
))
9290 return DAG
.getNode(Opcode
, DL
, VT
, LHS
, RHS
);
9298 /// If a (v)select has a condition value that is a sign-bit test, try to smear
9299 /// the condition operand sign-bit across the value width and use it as a mask.
9300 static SDValue
foldSelectOfConstantsUsingSra(SDNode
*N
, SelectionDAG
&DAG
) {
9301 SDValue Cond
= N
->getOperand(0);
9302 SDValue C1
= N
->getOperand(1);
9303 SDValue C2
= N
->getOperand(2);
9304 if (!isConstantOrConstantVector(C1
) || !isConstantOrConstantVector(C2
))
9307 EVT VT
= N
->getValueType(0);
9308 if (Cond
.getOpcode() != ISD::SETCC
|| !Cond
.hasOneUse() ||
9309 VT
!= Cond
.getOperand(0).getValueType())
9312 // The inverted-condition + commuted-select variants of these patterns are
9313 // canonicalized to these forms in IR.
9314 SDValue X
= Cond
.getOperand(0);
9315 SDValue CondC
= Cond
.getOperand(1);
9316 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
9317 if (CC
== ISD::SETGT
&& isAllOnesOrAllOnesSplat(CondC
) &&
9318 isAllOnesOrAllOnesSplat(C2
)) {
9319 // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1
9321 SDValue ShAmtC
= DAG
.getConstant(X
.getScalarValueSizeInBits() - 1, DL
, VT
);
9322 SDValue Sra
= DAG
.getNode(ISD::SRA
, DL
, VT
, X
, ShAmtC
);
9323 return DAG
.getNode(ISD::OR
, DL
, VT
, Sra
, C1
);
9325 if (CC
== ISD::SETLT
&& isNullOrNullSplat(CondC
) && isNullOrNullSplat(C2
)) {
9326 // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1
9328 SDValue ShAmtC
= DAG
.getConstant(X
.getScalarValueSizeInBits() - 1, DL
, VT
);
9329 SDValue Sra
= DAG
.getNode(ISD::SRA
, DL
, VT
, X
, ShAmtC
);
9330 return DAG
.getNode(ISD::AND
, DL
, VT
, Sra
, C1
);
9335 SDValue
DAGCombiner::foldSelectOfConstants(SDNode
*N
) {
9336 SDValue Cond
= N
->getOperand(0);
9337 SDValue N1
= N
->getOperand(1);
9338 SDValue N2
= N
->getOperand(2);
9339 EVT VT
= N
->getValueType(0);
9340 EVT CondVT
= Cond
.getValueType();
9343 if (!VT
.isInteger())
9346 auto *C1
= dyn_cast
<ConstantSDNode
>(N1
);
9347 auto *C2
= dyn_cast
<ConstantSDNode
>(N2
);
9351 // Only do this before legalization to avoid conflicting with target-specific
9352 // transforms in the other direction (create a select from a zext/sext). There
9353 // is also a target-independent combine here in DAGCombiner in the other
9354 // direction for (select Cond, -1, 0) when the condition is not i1.
9355 if (CondVT
== MVT::i1
&& !LegalOperations
) {
9356 if (C1
->isNullValue() && C2
->isOne()) {
9357 // select Cond, 0, 1 --> zext (!Cond)
9358 SDValue NotCond
= DAG
.getNOT(DL
, Cond
, MVT::i1
);
9360 NotCond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, NotCond
);
9363 if (C1
->isNullValue() && C2
->isAllOnesValue()) {
9364 // select Cond, 0, -1 --> sext (!Cond)
9365 SDValue NotCond
= DAG
.getNOT(DL
, Cond
, MVT::i1
);
9367 NotCond
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, NotCond
);
9370 if (C1
->isOne() && C2
->isNullValue()) {
9371 // select Cond, 1, 0 --> zext (Cond)
9373 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Cond
);
9376 if (C1
->isAllOnesValue() && C2
->isNullValue()) {
9377 // select Cond, -1, 0 --> sext (Cond)
9379 Cond
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, Cond
);
9383 // Use a target hook because some targets may prefer to transform in the
9385 if (TLI
.convertSelectOfConstantsToMath(VT
)) {
9386 // For any constants that differ by 1, we can transform the select into an
9388 const APInt
&C1Val
= C1
->getAPIntValue();
9389 const APInt
&C2Val
= C2
->getAPIntValue();
9390 if (C1Val
- 1 == C2Val
) {
9391 // select Cond, C1, C1-1 --> add (zext Cond), C1-1
9393 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Cond
);
9394 return DAG
.getNode(ISD::ADD
, DL
, VT
, Cond
, N2
);
9396 if (C1Val
+ 1 == C2Val
) {
9397 // select Cond, C1, C1+1 --> add (sext Cond), C1+1
9399 Cond
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, Cond
);
9400 return DAG
.getNode(ISD::ADD
, DL
, VT
, Cond
, N2
);
9403 // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2)
9404 if (C1Val
.isPowerOf2() && C2Val
.isNullValue()) {
9406 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Cond
);
9407 SDValue ShAmtC
= DAG
.getConstant(C1Val
.exactLogBase2(), DL
, VT
);
9408 return DAG
.getNode(ISD::SHL
, DL
, VT
, Cond
, ShAmtC
);
9411 if (SDValue V
= foldSelectOfConstantsUsingSra(N
, DAG
))
9418 // fold (select Cond, 0, 1) -> (xor Cond, 1)
9419 // We can't do this reliably if integer based booleans have different contents
9420 // to floating point based booleans. This is because we can't tell whether we
9421 // have an integer-based boolean or a floating-point-based boolean unless we
9422 // can find the SETCC that produced it and inspect its operands. This is
9423 // fairly easy if C is the SETCC node, but it can potentially be
9424 // undiscoverable (or not reasonably discoverable). For example, it could be
9425 // in another basic block or it could require searching a complicated
9427 if (CondVT
.isInteger() &&
9428 TLI
.getBooleanContents(/*isVec*/false, /*isFloat*/true) ==
9429 TargetLowering::ZeroOrOneBooleanContent
&&
9430 TLI
.getBooleanContents(/*isVec*/false, /*isFloat*/false) ==
9431 TargetLowering::ZeroOrOneBooleanContent
&&
9432 C1
->isNullValue() && C2
->isOne()) {
9434 DAG
.getNode(ISD::XOR
, DL
, CondVT
, Cond
, DAG
.getConstant(1, DL
, CondVT
));
9435 if (VT
.bitsEq(CondVT
))
9437 return DAG
.getZExtOrTrunc(NotCond
, DL
, VT
);
9443 static SDValue
foldBoolSelectToLogic(SDNode
*N
, SelectionDAG
&DAG
) {
9444 assert((N
->getOpcode() == ISD::SELECT
|| N
->getOpcode() == ISD::VSELECT
) &&
9445 "Expected a (v)select");
9446 SDValue Cond
= N
->getOperand(0);
9447 SDValue T
= N
->getOperand(1), F
= N
->getOperand(2);
9448 EVT VT
= N
->getValueType(0);
9449 if (VT
!= Cond
.getValueType() || VT
.getScalarSizeInBits() != 1)
9452 // select Cond, Cond, F --> or Cond, F
9453 // select Cond, 1, F --> or Cond, F
9454 if (Cond
== T
|| isOneOrOneSplat(T
, /* AllowUndefs */ true))
9455 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, Cond
, F
);
9457 // select Cond, T, Cond --> and Cond, T
9458 // select Cond, T, 0 --> and Cond, T
9459 if (Cond
== F
|| isNullOrNullSplat(F
, /* AllowUndefs */ true))
9460 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, Cond
, T
);
9462 // select Cond, T, 1 --> or (not Cond), T
9463 if (isOneOrOneSplat(F
, /* AllowUndefs */ true)) {
9464 SDValue NotCond
= DAG
.getNOT(SDLoc(N
), Cond
, VT
);
9465 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, NotCond
, T
);
9468 // select Cond, 0, F --> and (not Cond), F
9469 if (isNullOrNullSplat(T
, /* AllowUndefs */ true)) {
9470 SDValue NotCond
= DAG
.getNOT(SDLoc(N
), Cond
, VT
);
9471 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, NotCond
, F
);
9477 SDValue
DAGCombiner::visitSELECT(SDNode
*N
) {
9478 SDValue N0
= N
->getOperand(0);
9479 SDValue N1
= N
->getOperand(1);
9480 SDValue N2
= N
->getOperand(2);
9481 EVT VT
= N
->getValueType(0);
9482 EVT VT0
= N0
.getValueType();
9484 SDNodeFlags Flags
= N
->getFlags();
9486 if (SDValue V
= DAG
.simplifySelect(N0
, N1
, N2
))
9489 if (SDValue V
= foldSelectOfConstants(N
))
9492 if (SDValue V
= foldBoolSelectToLogic(N
, DAG
))
9495 // If we can fold this based on the true/false value, do so.
9496 if (SimplifySelectOps(N
, N1
, N2
))
9497 return SDValue(N
, 0); // Don't revisit N.
9499 if (VT0
== MVT::i1
) {
9500 // The code in this block deals with the following 2 equivalences:
9501 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
9502 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
9503 // The target can specify its preferred form with the
9504 // shouldNormalizeToSelectSequence() callback. However we always transform
9505 // to the right anyway if we find the inner select exists in the DAG anyway
9506 // and we always transform to the left side if we know that we can further
9507 // optimize the combination of the conditions.
9508 bool normalizeToSequence
=
9509 TLI
.shouldNormalizeToSelectSequence(*DAG
.getContext(), VT
);
9510 // select (and Cond0, Cond1), X, Y
9511 // -> select Cond0, (select Cond1, X, Y), Y
9512 if (N0
->getOpcode() == ISD::AND
&& N0
->hasOneUse()) {
9513 SDValue Cond0
= N0
->getOperand(0);
9514 SDValue Cond1
= N0
->getOperand(1);
9515 SDValue InnerSelect
=
9516 DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Cond1
, N1
, N2
, Flags
);
9517 if (normalizeToSequence
|| !InnerSelect
.use_empty())
9518 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Cond0
,
9519 InnerSelect
, N2
, Flags
);
9520 // Cleanup on failure.
9521 if (InnerSelect
.use_empty())
9522 recursivelyDeleteUnusedNodes(InnerSelect
.getNode());
9524 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
9525 if (N0
->getOpcode() == ISD::OR
&& N0
->hasOneUse()) {
9526 SDValue Cond0
= N0
->getOperand(0);
9527 SDValue Cond1
= N0
->getOperand(1);
9528 SDValue InnerSelect
= DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(),
9529 Cond1
, N1
, N2
, Flags
);
9530 if (normalizeToSequence
|| !InnerSelect
.use_empty())
9531 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Cond0
, N1
,
9532 InnerSelect
, Flags
);
9533 // Cleanup on failure.
9534 if (InnerSelect
.use_empty())
9535 recursivelyDeleteUnusedNodes(InnerSelect
.getNode());
9538 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
9539 if (N1
->getOpcode() == ISD::SELECT
&& N1
->hasOneUse()) {
9540 SDValue N1_0
= N1
->getOperand(0);
9541 SDValue N1_1
= N1
->getOperand(1);
9542 SDValue N1_2
= N1
->getOperand(2);
9543 if (N1_2
== N2
&& N0
.getValueType() == N1_0
.getValueType()) {
9544 // Create the actual and node if we can generate good code for it.
9545 if (!normalizeToSequence
) {
9546 SDValue And
= DAG
.getNode(ISD::AND
, DL
, N0
.getValueType(), N0
, N1_0
);
9547 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), And
, N1_1
,
9550 // Otherwise see if we can optimize the "and" to a better pattern.
9551 if (SDValue Combined
= visitANDLike(N0
, N1_0
, N
)) {
9552 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Combined
, N1_1
,
9557 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
9558 if (N2
->getOpcode() == ISD::SELECT
&& N2
->hasOneUse()) {
9559 SDValue N2_0
= N2
->getOperand(0);
9560 SDValue N2_1
= N2
->getOperand(1);
9561 SDValue N2_2
= N2
->getOperand(2);
9562 if (N2_1
== N1
&& N0
.getValueType() == N2_0
.getValueType()) {
9563 // Create the actual or node if we can generate good code for it.
9564 if (!normalizeToSequence
) {
9565 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, N0
.getValueType(), N0
, N2_0
);
9566 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Or
, N1
,
9569 // Otherwise see if we can optimize to a better pattern.
9570 if (SDValue Combined
= visitORLike(N0
, N2_0
, N
))
9571 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Combined
, N1
,
9577 // select (not Cond), N1, N2 -> select Cond, N2, N1
9578 if (SDValue F
= extractBooleanFlip(N0
, DAG
, TLI
, false)) {
9579 SDValue SelectOp
= DAG
.getSelect(DL
, VT
, F
, N2
, N1
);
9580 SelectOp
->setFlags(Flags
);
9584 // Fold selects based on a setcc into other things, such as min/max/abs.
9585 if (N0
.getOpcode() == ISD::SETCC
) {
9586 SDValue Cond0
= N0
.getOperand(0), Cond1
= N0
.getOperand(1);
9587 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
9589 // select (fcmp lt x, y), x, y -> fminnum x, y
9590 // select (fcmp gt x, y), x, y -> fmaxnum x, y
9592 // This is OK if we don't care what happens if either operand is a NaN.
9593 if (N0
.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG
, N1
, N2
, TLI
))
9594 if (SDValue FMinMax
= combineMinNumMaxNum(DL
, VT
, Cond0
, Cond1
, N1
, N2
,
9598 // Use 'unsigned add with overflow' to optimize an unsigned saturating add.
9599 // This is conservatively limited to pre-legal-operations to give targets
9600 // a chance to reverse the transform if they want to do that. Also, it is
9601 // unlikely that the pattern would be formed late, so it's probably not
9602 // worth going through the other checks.
9603 if (!LegalOperations
&& TLI
.isOperationLegalOrCustom(ISD::UADDO
, VT
) &&
9604 CC
== ISD::SETUGT
&& N0
.hasOneUse() && isAllOnesConstant(N1
) &&
9605 N2
.getOpcode() == ISD::ADD
&& Cond0
== N2
.getOperand(0)) {
9606 auto *C
= dyn_cast
<ConstantSDNode
>(N2
.getOperand(1));
9607 auto *NotC
= dyn_cast
<ConstantSDNode
>(Cond1
);
9608 if (C
&& NotC
&& C
->getAPIntValue() == ~NotC
->getAPIntValue()) {
9609 // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) -->
9610 // uaddo Cond0, C; select uaddo.1, -1, uaddo.0
9612 // The IR equivalent of this transform would have this form:
9614 // %c = icmp ugt %x, ~C
9615 // %r = select %c, -1, %a
9617 // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C)
9618 // %u0 = extractvalue %u, 0
9619 // %u1 = extractvalue %u, 1
9620 // %r = select %u1, -1, %u0
9621 SDVTList VTs
= DAG
.getVTList(VT
, VT0
);
9622 SDValue UAO
= DAG
.getNode(ISD::UADDO
, DL
, VTs
, Cond0
, N2
.getOperand(1));
9623 return DAG
.getSelect(DL
, VT
, UAO
.getValue(1), N1
, UAO
.getValue(0));
9627 if (TLI
.isOperationLegal(ISD::SELECT_CC
, VT
) ||
9628 (!LegalOperations
&&
9629 TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, VT
))) {
9630 // Any flags available in a select/setcc fold will be on the setcc as they
9631 // migrated from fcmp
9632 Flags
= N0
.getNode()->getFlags();
9633 SDValue SelectNode
= DAG
.getNode(ISD::SELECT_CC
, DL
, VT
, Cond0
, Cond1
, N1
,
9634 N2
, N0
.getOperand(2));
9635 SelectNode
->setFlags(Flags
);
9639 if (SDValue NewSel
= SimplifySelect(DL
, N0
, N1
, N2
))
9644 if (SDValue BinOp
= foldSelectOfBinops(N
))
9650 // This function assumes all the vselect's arguments are CONCAT_VECTOR
9651 // nodes and that the condition is a BV of ConstantSDNodes (or undefs).
9652 static SDValue
ConvertSelectToConcatVector(SDNode
*N
, SelectionDAG
&DAG
) {
9654 SDValue Cond
= N
->getOperand(0);
9655 SDValue LHS
= N
->getOperand(1);
9656 SDValue RHS
= N
->getOperand(2);
9657 EVT VT
= N
->getValueType(0);
9658 int NumElems
= VT
.getVectorNumElements();
9659 assert(LHS
.getOpcode() == ISD::CONCAT_VECTORS
&&
9660 RHS
.getOpcode() == ISD::CONCAT_VECTORS
&&
9661 Cond
.getOpcode() == ISD::BUILD_VECTOR
);
9663 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
9664 // binary ones here.
9665 if (LHS
->getNumOperands() != 2 || RHS
->getNumOperands() != 2)
9668 // We're sure we have an even number of elements due to the
9669 // concat_vectors we have as arguments to vselect.
9670 // Skip BV elements until we find one that's not an UNDEF
9671 // After we find an UNDEF element, keep looping until we get to half the
9672 // length of the BV and see if all the non-undef nodes are the same.
9673 ConstantSDNode
*BottomHalf
= nullptr;
9674 for (int i
= 0; i
< NumElems
/ 2; ++i
) {
9675 if (Cond
->getOperand(i
)->isUndef())
9678 if (BottomHalf
== nullptr)
9679 BottomHalf
= cast
<ConstantSDNode
>(Cond
.getOperand(i
));
9680 else if (Cond
->getOperand(i
).getNode() != BottomHalf
)
9684 // Do the same for the second half of the BuildVector
9685 ConstantSDNode
*TopHalf
= nullptr;
9686 for (int i
= NumElems
/ 2; i
< NumElems
; ++i
) {
9687 if (Cond
->getOperand(i
)->isUndef())
9690 if (TopHalf
== nullptr)
9691 TopHalf
= cast
<ConstantSDNode
>(Cond
.getOperand(i
));
9692 else if (Cond
->getOperand(i
).getNode() != TopHalf
)
9696 assert(TopHalf
&& BottomHalf
&&
9697 "One half of the selector was all UNDEFs and the other was all the "
9698 "same value. This should have been addressed before this function.");
9700 ISD::CONCAT_VECTORS
, DL
, VT
,
9701 BottomHalf
->isNullValue() ? RHS
->getOperand(0) : LHS
->getOperand(0),
9702 TopHalf
->isNullValue() ? RHS
->getOperand(1) : LHS
->getOperand(1));
9705 bool refineUniformBase(SDValue
&BasePtr
, SDValue
&Index
, SelectionDAG
&DAG
) {
9706 if (!isNullConstant(BasePtr
) || Index
.getOpcode() != ISD::ADD
)
9709 // For now we check only the LHS of the add.
9710 SDValue LHS
= Index
.getOperand(0);
9711 SDValue SplatVal
= DAG
.getSplatValue(LHS
);
9716 Index
= Index
.getOperand(1);
9720 // Fold sext/zext of index into index type.
9721 bool refineIndexType(MaskedGatherScatterSDNode
*MGS
, SDValue
&Index
,
9722 bool Scaled
, SelectionDAG
&DAG
) {
9723 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
9725 if (Index
.getOpcode() == ISD::ZERO_EXTEND
) {
9726 SDValue Op
= Index
.getOperand(0);
9727 MGS
->setIndexType(Scaled
? ISD::UNSIGNED_SCALED
: ISD::UNSIGNED_UNSCALED
);
9728 if (TLI
.shouldRemoveExtendFromGSIndex(Op
.getValueType())) {
9734 if (Index
.getOpcode() == ISD::SIGN_EXTEND
) {
9735 SDValue Op
= Index
.getOperand(0);
9736 MGS
->setIndexType(Scaled
? ISD::SIGNED_SCALED
: ISD::SIGNED_UNSCALED
);
9737 if (TLI
.shouldRemoveExtendFromGSIndex(Op
.getValueType())) {
9746 SDValue
DAGCombiner::visitMSCATTER(SDNode
*N
) {
9747 MaskedScatterSDNode
*MSC
= cast
<MaskedScatterSDNode
>(N
);
9748 SDValue Mask
= MSC
->getMask();
9749 SDValue Chain
= MSC
->getChain();
9750 SDValue Index
= MSC
->getIndex();
9751 SDValue Scale
= MSC
->getScale();
9752 SDValue StoreVal
= MSC
->getValue();
9753 SDValue BasePtr
= MSC
->getBasePtr();
9756 // Zap scatters with a zero mask.
9757 if (ISD::isConstantSplatVectorAllZeros(Mask
.getNode()))
9760 if (refineUniformBase(BasePtr
, Index
, DAG
)) {
9761 SDValue Ops
[] = {Chain
, StoreVal
, Mask
, BasePtr
, Index
, Scale
};
9762 return DAG
.getMaskedScatter(
9763 DAG
.getVTList(MVT::Other
), MSC
->getMemoryVT(), DL
, Ops
,
9764 MSC
->getMemOperand(), MSC
->getIndexType(), MSC
->isTruncatingStore());
9767 if (refineIndexType(MSC
, Index
, MSC
->isIndexScaled(), DAG
)) {
9768 SDValue Ops
[] = {Chain
, StoreVal
, Mask
, BasePtr
, Index
, Scale
};
9769 return DAG
.getMaskedScatter(
9770 DAG
.getVTList(MVT::Other
), MSC
->getMemoryVT(), DL
, Ops
,
9771 MSC
->getMemOperand(), MSC
->getIndexType(), MSC
->isTruncatingStore());
9777 SDValue
DAGCombiner::visitMSTORE(SDNode
*N
) {
9778 MaskedStoreSDNode
*MST
= cast
<MaskedStoreSDNode
>(N
);
9779 SDValue Mask
= MST
->getMask();
9780 SDValue Chain
= MST
->getChain();
9783 // Zap masked stores with a zero mask.
9784 if (ISD::isConstantSplatVectorAllZeros(Mask
.getNode()))
9787 // If this is a masked load with an all ones mask, we can use a unmasked load.
9788 // FIXME: Can we do this for indexed, compressing, or truncating stores?
9789 if (ISD::isConstantSplatVectorAllOnes(Mask
.getNode()) &&
9790 MST
->isUnindexed() && !MST
->isCompressingStore() &&
9791 !MST
->isTruncatingStore())
9792 return DAG
.getStore(MST
->getChain(), SDLoc(N
), MST
->getValue(),
9793 MST
->getBasePtr(), MST
->getMemOperand());
9795 // Try transforming N to an indexed store.
9796 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
9797 return SDValue(N
, 0);
9802 SDValue
DAGCombiner::visitMGATHER(SDNode
*N
) {
9803 MaskedGatherSDNode
*MGT
= cast
<MaskedGatherSDNode
>(N
);
9804 SDValue Mask
= MGT
->getMask();
9805 SDValue Chain
= MGT
->getChain();
9806 SDValue Index
= MGT
->getIndex();
9807 SDValue Scale
= MGT
->getScale();
9808 SDValue PassThru
= MGT
->getPassThru();
9809 SDValue BasePtr
= MGT
->getBasePtr();
9812 // Zap gathers with a zero mask.
9813 if (ISD::isConstantSplatVectorAllZeros(Mask
.getNode()))
9814 return CombineTo(N
, PassThru
, MGT
->getChain());
9816 if (refineUniformBase(BasePtr
, Index
, DAG
)) {
9817 SDValue Ops
[] = {Chain
, PassThru
, Mask
, BasePtr
, Index
, Scale
};
9818 return DAG
.getMaskedGather(DAG
.getVTList(N
->getValueType(0), MVT::Other
),
9819 MGT
->getMemoryVT(), DL
, Ops
,
9820 MGT
->getMemOperand(), MGT
->getIndexType(),
9821 MGT
->getExtensionType());
9824 if (refineIndexType(MGT
, Index
, MGT
->isIndexScaled(), DAG
)) {
9825 SDValue Ops
[] = {Chain
, PassThru
, Mask
, BasePtr
, Index
, Scale
};
9826 return DAG
.getMaskedGather(DAG
.getVTList(N
->getValueType(0), MVT::Other
),
9827 MGT
->getMemoryVT(), DL
, Ops
,
9828 MGT
->getMemOperand(), MGT
->getIndexType(),
9829 MGT
->getExtensionType());
9835 SDValue
DAGCombiner::visitMLOAD(SDNode
*N
) {
9836 MaskedLoadSDNode
*MLD
= cast
<MaskedLoadSDNode
>(N
);
9837 SDValue Mask
= MLD
->getMask();
9840 // Zap masked loads with a zero mask.
9841 if (ISD::isConstantSplatVectorAllZeros(Mask
.getNode()))
9842 return CombineTo(N
, MLD
->getPassThru(), MLD
->getChain());
9844 // If this is a masked load with an all ones mask, we can use a unmasked load.
9845 // FIXME: Can we do this for indexed, expanding, or extending loads?
9846 if (ISD::isConstantSplatVectorAllOnes(Mask
.getNode()) &&
9847 MLD
->isUnindexed() && !MLD
->isExpandingLoad() &&
9848 MLD
->getExtensionType() == ISD::NON_EXTLOAD
) {
9849 SDValue NewLd
= DAG
.getLoad(N
->getValueType(0), SDLoc(N
), MLD
->getChain(),
9850 MLD
->getBasePtr(), MLD
->getMemOperand());
9851 return CombineTo(N
, NewLd
, NewLd
.getValue(1));
9854 // Try transforming N to an indexed load.
9855 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
9856 return SDValue(N
, 0);
9861 /// A vector select of 2 constant vectors can be simplified to math/logic to
9862 /// avoid a variable select instruction and possibly avoid constant loads.
9863 SDValue
DAGCombiner::foldVSelectOfConstants(SDNode
*N
) {
9864 SDValue Cond
= N
->getOperand(0);
9865 SDValue N1
= N
->getOperand(1);
9866 SDValue N2
= N
->getOperand(2);
9867 EVT VT
= N
->getValueType(0);
9868 if (!Cond
.hasOneUse() || Cond
.getScalarValueSizeInBits() != 1 ||
9869 !TLI
.convertSelectOfConstantsToMath(VT
) ||
9870 !ISD::isBuildVectorOfConstantSDNodes(N1
.getNode()) ||
9871 !ISD::isBuildVectorOfConstantSDNodes(N2
.getNode()))
9874 // Check if we can use the condition value to increment/decrement a single
9875 // constant value. This simplifies a select to an add and removes a constant
9876 // load/materialization from the general case.
9877 bool AllAddOne
= true;
9878 bool AllSubOne
= true;
9879 unsigned Elts
= VT
.getVectorNumElements();
9880 for (unsigned i
= 0; i
!= Elts
; ++i
) {
9881 SDValue N1Elt
= N1
.getOperand(i
);
9882 SDValue N2Elt
= N2
.getOperand(i
);
9883 if (N1Elt
.isUndef() || N2Elt
.isUndef())
9885 if (N1Elt
.getValueType() != N2Elt
.getValueType())
9888 const APInt
&C1
= cast
<ConstantSDNode
>(N1Elt
)->getAPIntValue();
9889 const APInt
&C2
= cast
<ConstantSDNode
>(N2Elt
)->getAPIntValue();
9896 // Further simplifications for the extra-special cases where the constants are
9897 // all 0 or all -1 should be implemented as folds of these patterns.
9899 if (AllAddOne
|| AllSubOne
) {
9900 // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C
9901 // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C
9902 auto ExtendOpcode
= AllAddOne
? ISD::ZERO_EXTEND
: ISD::SIGN_EXTEND
;
9903 SDValue ExtendedCond
= DAG
.getNode(ExtendOpcode
, DL
, VT
, Cond
);
9904 return DAG
.getNode(ISD::ADD
, DL
, VT
, ExtendedCond
, N2
);
9907 // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C)
9909 if (ISD::isConstantSplatVector(N1
.getNode(), Pow2C
) && Pow2C
.isPowerOf2() &&
9910 isNullOrNullSplat(N2
)) {
9911 SDValue ZextCond
= DAG
.getZExtOrTrunc(Cond
, DL
, VT
);
9912 SDValue ShAmtC
= DAG
.getConstant(Pow2C
.exactLogBase2(), DL
, VT
);
9913 return DAG
.getNode(ISD::SHL
, DL
, VT
, ZextCond
, ShAmtC
);
9916 if (SDValue V
= foldSelectOfConstantsUsingSra(N
, DAG
))
9919 // The general case for select-of-constants:
9920 // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2
9921 // ...but that only makes sense if a vselect is slower than 2 logic ops, so
9922 // leave that to a machine-specific pass.
9926 SDValue
DAGCombiner::visitVSELECT(SDNode
*N
) {
9927 SDValue N0
= N
->getOperand(0);
9928 SDValue N1
= N
->getOperand(1);
9929 SDValue N2
= N
->getOperand(2);
9930 EVT VT
= N
->getValueType(0);
9933 if (SDValue V
= DAG
.simplifySelect(N0
, N1
, N2
))
9936 if (SDValue V
= foldBoolSelectToLogic(N
, DAG
))
9939 // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1
9940 if (SDValue F
= extractBooleanFlip(N0
, DAG
, TLI
, false))
9941 return DAG
.getSelect(DL
, VT
, F
, N2
, N1
);
9943 // Canonicalize integer abs.
9944 // vselect (setg[te] X, 0), X, -X ->
9945 // vselect (setgt X, -1), X, -X ->
9946 // vselect (setl[te] X, 0), -X, X ->
9947 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
9948 if (N0
.getOpcode() == ISD::SETCC
) {
9949 SDValue LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
9950 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
9952 bool RHSIsAllZeros
= ISD::isBuildVectorAllZeros(RHS
.getNode());
9954 if (((RHSIsAllZeros
&& (CC
== ISD::SETGT
|| CC
== ISD::SETGE
)) ||
9955 (ISD::isBuildVectorAllOnes(RHS
.getNode()) && CC
== ISD::SETGT
)) &&
9956 N1
== LHS
&& N2
.getOpcode() == ISD::SUB
&& N1
== N2
.getOperand(1))
9957 isAbs
= ISD::isBuildVectorAllZeros(N2
.getOperand(0).getNode());
9958 else if ((RHSIsAllZeros
&& (CC
== ISD::SETLT
|| CC
== ISD::SETLE
)) &&
9959 N2
== LHS
&& N1
.getOpcode() == ISD::SUB
&& N2
== N1
.getOperand(1))
9960 isAbs
= ISD::isBuildVectorAllZeros(N1
.getOperand(0).getNode());
9963 if (TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
))
9964 return DAG
.getNode(ISD::ABS
, DL
, VT
, LHS
);
9966 SDValue Shift
= DAG
.getNode(ISD::SRA
, DL
, VT
, LHS
,
9967 DAG
.getConstant(VT
.getScalarSizeInBits() - 1,
9968 DL
, getShiftAmountTy(VT
)));
9969 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, LHS
, Shift
);
9970 AddToWorklist(Shift
.getNode());
9971 AddToWorklist(Add
.getNode());
9972 return DAG
.getNode(ISD::XOR
, DL
, VT
, Add
, Shift
);
9975 // vselect x, y (fcmp lt x, y) -> fminnum x, y
9976 // vselect x, y (fcmp gt x, y) -> fmaxnum x, y
9978 // This is OK if we don't care about what happens if either operand is a
9981 if (N0
.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG
, LHS
, RHS
, TLI
)) {
9982 if (SDValue FMinMax
=
9983 combineMinNumMaxNum(DL
, VT
, LHS
, RHS
, N1
, N2
, CC
, TLI
, DAG
))
9987 // If this select has a condition (setcc) with narrower operands than the
9988 // select, try to widen the compare to match the select width.
9989 // TODO: This should be extended to handle any constant.
9990 // TODO: This could be extended to handle non-loading patterns, but that
9991 // requires thorough testing to avoid regressions.
9992 if (isNullOrNullSplat(RHS
)) {
9993 EVT NarrowVT
= LHS
.getValueType();
9994 EVT WideVT
= N1
.getValueType().changeVectorElementTypeToInteger();
9995 EVT SetCCVT
= getSetCCResultType(LHS
.getValueType());
9996 unsigned SetCCWidth
= SetCCVT
.getScalarSizeInBits();
9997 unsigned WideWidth
= WideVT
.getScalarSizeInBits();
9998 bool IsSigned
= isSignedIntSetCC(CC
);
9999 auto LoadExtOpcode
= IsSigned
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
;
10000 if (LHS
.getOpcode() == ISD::LOAD
&& LHS
.hasOneUse() &&
10001 SetCCWidth
!= 1 && SetCCWidth
< WideWidth
&&
10002 TLI
.isLoadExtLegalOrCustom(LoadExtOpcode
, WideVT
, NarrowVT
) &&
10003 TLI
.isOperationLegalOrCustom(ISD::SETCC
, WideVT
)) {
10004 // Both compare operands can be widened for free. The LHS can use an
10005 // extended load, and the RHS is a constant:
10006 // vselect (ext (setcc load(X), C)), N1, N2 -->
10007 // vselect (setcc extload(X), C'), N1, N2
10008 auto ExtOpcode
= IsSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
10009 SDValue WideLHS
= DAG
.getNode(ExtOpcode
, DL
, WideVT
, LHS
);
10010 SDValue WideRHS
= DAG
.getNode(ExtOpcode
, DL
, WideVT
, RHS
);
10011 EVT WideSetCCVT
= getSetCCResultType(WideVT
);
10012 SDValue WideSetCC
= DAG
.getSetCC(DL
, WideSetCCVT
, WideLHS
, WideRHS
, CC
);
10013 return DAG
.getSelect(DL
, N1
.getValueType(), WideSetCC
, N1
, N2
);
10017 // Match VSELECTs into add with unsigned saturation.
10018 if (hasOperation(ISD::UADDSAT
, VT
)) {
10019 // Check if one of the arms of the VSELECT is vector with all bits set.
10020 // If it's on the left side invert the predicate to simplify logic below.
10022 ISD::CondCode SatCC
= CC
;
10023 if (ISD::isBuildVectorAllOnes(N1
.getNode())) {
10025 SatCC
= ISD::getSetCCInverse(SatCC
, VT
.getScalarType());
10026 } else if (ISD::isBuildVectorAllOnes(N2
.getNode())) {
10030 if (Other
&& Other
.getOpcode() == ISD::ADD
) {
10031 SDValue CondLHS
= LHS
, CondRHS
= RHS
;
10032 SDValue OpLHS
= Other
.getOperand(0), OpRHS
= Other
.getOperand(1);
10034 // Canonicalize condition operands.
10035 if (SatCC
== ISD::SETUGE
) {
10036 std::swap(CondLHS
, CondRHS
);
10037 SatCC
= ISD::SETULE
;
10040 // We can test against either of the addition operands.
10041 // x <= x+y ? x+y : ~0 --> uaddsat x, y
10042 // x+y >= x ? x+y : ~0 --> uaddsat x, y
10043 if (SatCC
== ISD::SETULE
&& Other
== CondRHS
&&
10044 (OpLHS
== CondLHS
|| OpRHS
== CondLHS
))
10045 return DAG
.getNode(ISD::UADDSAT
, DL
, VT
, OpLHS
, OpRHS
);
10047 if (isa
<BuildVectorSDNode
>(OpRHS
) && isa
<BuildVectorSDNode
>(CondRHS
) &&
10048 CondLHS
== OpLHS
) {
10049 // If the RHS is a constant we have to reverse the const
10050 // canonicalization.
10051 // x >= ~C ? x+C : ~0 --> uaddsat x, C
10052 auto MatchUADDSAT
= [](ConstantSDNode
*Op
, ConstantSDNode
*Cond
) {
10053 return Cond
->getAPIntValue() == ~Op
->getAPIntValue();
10055 if (SatCC
== ISD::SETULE
&&
10056 ISD::matchBinaryPredicate(OpRHS
, CondRHS
, MatchUADDSAT
))
10057 return DAG
.getNode(ISD::UADDSAT
, DL
, VT
, OpLHS
, OpRHS
);
10062 // Match VSELECTs into sub with unsigned saturation.
10063 if (hasOperation(ISD::USUBSAT
, VT
)) {
10064 // Check if one of the arms of the VSELECT is a zero vector. If it's on
10065 // the left side invert the predicate to simplify logic below.
10067 ISD::CondCode SatCC
= CC
;
10068 if (ISD::isBuildVectorAllZeros(N1
.getNode())) {
10070 SatCC
= ISD::getSetCCInverse(SatCC
, VT
.getScalarType());
10071 } else if (ISD::isBuildVectorAllZeros(N2
.getNode())) {
10075 if (Other
&& Other
.getNumOperands() == 2) {
10076 SDValue CondRHS
= RHS
;
10077 SDValue OpLHS
= Other
.getOperand(0), OpRHS
= Other
.getOperand(1);
10079 if (Other
.getOpcode() == ISD::SUB
&&
10080 LHS
.getOpcode() == ISD::ZERO_EXTEND
&& LHS
.getOperand(0) == OpLHS
&&
10081 OpRHS
.getOpcode() == ISD::TRUNCATE
&& OpRHS
.getOperand(0) == RHS
) {
10082 // Look for a general sub with unsigned saturation first.
10083 // zext(x) >= y ? x - trunc(y) : 0
10084 // --> usubsat(x,trunc(umin(y,SatLimit)))
10085 // zext(x) > y ? x - trunc(y) : 0
10086 // --> usubsat(x,trunc(umin(y,SatLimit)))
10087 if (SatCC
== ISD::SETUGE
|| SatCC
== ISD::SETUGT
)
10088 return getTruncatedUSUBSAT(VT
, LHS
.getValueType(), LHS
, RHS
, DAG
,
10092 if (OpLHS
== LHS
) {
10093 // Look for a general sub with unsigned saturation first.
10094 // x >= y ? x-y : 0 --> usubsat x, y
10095 // x > y ? x-y : 0 --> usubsat x, y
10096 if ((SatCC
== ISD::SETUGE
|| SatCC
== ISD::SETUGT
) &&
10097 Other
.getOpcode() == ISD::SUB
&& OpRHS
== CondRHS
)
10098 return DAG
.getNode(ISD::USUBSAT
, DL
, VT
, OpLHS
, OpRHS
);
10100 if (auto *OpRHSBV
= dyn_cast
<BuildVectorSDNode
>(OpRHS
)) {
10101 if (isa
<BuildVectorSDNode
>(CondRHS
)) {
10102 // If the RHS is a constant we have to reverse the const
10103 // canonicalization.
10104 // x > C-1 ? x+-C : 0 --> usubsat x, C
10105 auto MatchUSUBSAT
= [](ConstantSDNode
*Op
, ConstantSDNode
*Cond
) {
10106 return (!Op
&& !Cond
) ||
10108 Cond
->getAPIntValue() == (-Op
->getAPIntValue() - 1));
10110 if (SatCC
== ISD::SETUGT
&& Other
.getOpcode() == ISD::ADD
&&
10111 ISD::matchBinaryPredicate(OpRHS
, CondRHS
, MatchUSUBSAT
,
10112 /*AllowUndefs*/ true)) {
10113 OpRHS
= DAG
.getNode(ISD::SUB
, DL
, VT
,
10114 DAG
.getConstant(0, DL
, VT
), OpRHS
);
10115 return DAG
.getNode(ISD::USUBSAT
, DL
, VT
, OpLHS
, OpRHS
);
10118 // Another special case: If C was a sign bit, the sub has been
10119 // canonicalized into a xor.
10120 // FIXME: Would it be better to use computeKnownBits to determine
10121 // whether it's safe to decanonicalize the xor?
10122 // x s< 0 ? x^C : 0 --> usubsat x, C
10123 if (auto *OpRHSConst
= OpRHSBV
->getConstantSplatNode()) {
10124 if (SatCC
== ISD::SETLT
&& Other
.getOpcode() == ISD::XOR
&&
10125 ISD::isBuildVectorAllZeros(CondRHS
.getNode()) &&
10126 OpRHSConst
->getAPIntValue().isSignMask()) {
10127 // Note that we have to rebuild the RHS constant here to
10128 // ensure we don't rely on particular values of undef lanes.
10129 OpRHS
= DAG
.getConstant(OpRHSConst
->getAPIntValue(), DL
, VT
);
10130 return DAG
.getNode(ISD::USUBSAT
, DL
, VT
, OpLHS
, OpRHS
);
10140 if (SimplifySelectOps(N
, N1
, N2
))
10141 return SDValue(N
, 0); // Don't revisit N.
10143 // Fold (vselect all_ones, N1, N2) -> N1
10144 if (ISD::isConstantSplatVectorAllOnes(N0
.getNode()))
10146 // Fold (vselect all_zeros, N1, N2) -> N2
10147 if (ISD::isConstantSplatVectorAllZeros(N0
.getNode()))
10150 // The ConvertSelectToConcatVector function is assuming both the above
10151 // checks for (vselect (build_vector all{ones,zeros) ...) have been made
10153 if (N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
10154 N2
.getOpcode() == ISD::CONCAT_VECTORS
&&
10155 ISD::isBuildVectorOfConstantSDNodes(N0
.getNode())) {
10156 if (SDValue CV
= ConvertSelectToConcatVector(N
, DAG
))
10160 if (SDValue V
= foldVSelectOfConstants(N
))
10166 SDValue
DAGCombiner::visitSELECT_CC(SDNode
*N
) {
10167 SDValue N0
= N
->getOperand(0);
10168 SDValue N1
= N
->getOperand(1);
10169 SDValue N2
= N
->getOperand(2);
10170 SDValue N3
= N
->getOperand(3);
10171 SDValue N4
= N
->getOperand(4);
10172 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N4
)->get();
10174 // fold select_cc lhs, rhs, x, x, cc -> x
10178 // Determine if the condition we're dealing with is constant
10179 if (SDValue SCC
= SimplifySetCC(getSetCCResultType(N0
.getValueType()), N0
, N1
,
10180 CC
, SDLoc(N
), false)) {
10181 AddToWorklist(SCC
.getNode());
10183 if (ConstantSDNode
*SCCC
= dyn_cast
<ConstantSDNode
>(SCC
.getNode())) {
10184 if (!SCCC
->isNullValue())
10185 return N2
; // cond always true -> true val
10187 return N3
; // cond always false -> false val
10188 } else if (SCC
->isUndef()) {
10189 // When the condition is UNDEF, just return the first operand. This is
10190 // coherent the DAG creation, no setcc node is created in this case
10192 } else if (SCC
.getOpcode() == ISD::SETCC
) {
10193 // Fold to a simpler select_cc
10194 SDValue SelectOp
= DAG
.getNode(
10195 ISD::SELECT_CC
, SDLoc(N
), N2
.getValueType(), SCC
.getOperand(0),
10196 SCC
.getOperand(1), N2
, N3
, SCC
.getOperand(2));
10197 SelectOp
->setFlags(SCC
->getFlags());
10202 // If we can fold this based on the true/false value, do so.
10203 if (SimplifySelectOps(N
, N2
, N3
))
10204 return SDValue(N
, 0); // Don't revisit N.
10206 // fold select_cc into other things, such as min/max/abs
10207 return SimplifySelectCC(SDLoc(N
), N0
, N1
, N2
, N3
, CC
);
10210 SDValue
DAGCombiner::visitSETCC(SDNode
*N
) {
10211 // setcc is very commonly used as an argument to brcond. This pattern
10212 // also lend itself to numerous combines and, as a result, it is desired
10213 // we keep the argument to a brcond as a setcc as much as possible.
10215 N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::BRCOND
;
10217 SDValue Combined
= SimplifySetCC(
10218 N
->getValueType(0), N
->getOperand(0), N
->getOperand(1),
10219 cast
<CondCodeSDNode
>(N
->getOperand(2))->get(), SDLoc(N
), !PreferSetCC
);
10224 // If we prefer to have a setcc, and we don't, we'll try our best to
10225 // recreate one using rebuildSetCC.
10226 if (PreferSetCC
&& Combined
.getOpcode() != ISD::SETCC
) {
10227 SDValue NewSetCC
= rebuildSetCC(Combined
);
10229 // We don't have anything interesting to combine to.
10230 if (NewSetCC
.getNode() == N
)
10240 SDValue
DAGCombiner::visitSETCCCARRY(SDNode
*N
) {
10241 SDValue LHS
= N
->getOperand(0);
10242 SDValue RHS
= N
->getOperand(1);
10243 SDValue Carry
= N
->getOperand(2);
10244 SDValue Cond
= N
->getOperand(3);
10246 // If Carry is false, fold to a regular SETCC.
10247 if (isNullConstant(Carry
))
10248 return DAG
.getNode(ISD::SETCC
, SDLoc(N
), N
->getVTList(), LHS
, RHS
, Cond
);
10253 /// Check if N satisfies:
10254 /// N is used once.
10256 /// The load is compatible with ExtOpcode. It means
10257 /// If load has explicit zero/sign extension, ExpOpcode must have the same
10259 /// Otherwise returns true.
10260 static bool isCompatibleLoad(SDValue N
, unsigned ExtOpcode
) {
10261 if (!N
.hasOneUse())
10264 if (!isa
<LoadSDNode
>(N
))
10267 LoadSDNode
*Load
= cast
<LoadSDNode
>(N
);
10268 ISD::LoadExtType LoadExt
= Load
->getExtensionType();
10269 if (LoadExt
== ISD::NON_EXTLOAD
|| LoadExt
== ISD::EXTLOAD
)
10272 // Now LoadExt is either SEXTLOAD or ZEXTLOAD, ExtOpcode must have the same
10274 if ((LoadExt
== ISD::SEXTLOAD
&& ExtOpcode
!= ISD::SIGN_EXTEND
) ||
10275 (LoadExt
== ISD::ZEXTLOAD
&& ExtOpcode
!= ISD::ZERO_EXTEND
))
10282 /// (sext (select c, load x, load y)) -> (select c, sextload x, sextload y)
10283 /// (zext (select c, load x, load y)) -> (select c, zextload x, zextload y)
10284 /// (aext (select c, load x, load y)) -> (select c, extload x, extload y)
10285 /// This function is called by the DAGCombiner when visiting sext/zext/aext
10286 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
10287 static SDValue
tryToFoldExtendSelectLoad(SDNode
*N
, const TargetLowering
&TLI
,
10288 SelectionDAG
&DAG
) {
10289 unsigned Opcode
= N
->getOpcode();
10290 SDValue N0
= N
->getOperand(0);
10291 EVT VT
= N
->getValueType(0);
10294 assert((Opcode
== ISD::SIGN_EXTEND
|| Opcode
== ISD::ZERO_EXTEND
||
10295 Opcode
== ISD::ANY_EXTEND
) &&
10296 "Expected EXTEND dag node in input!");
10298 if (!(N0
->getOpcode() == ISD::SELECT
|| N0
->getOpcode() == ISD::VSELECT
) ||
10302 SDValue Op1
= N0
->getOperand(1);
10303 SDValue Op2
= N0
->getOperand(2);
10304 if (!isCompatibleLoad(Op1
, Opcode
) || !isCompatibleLoad(Op2
, Opcode
))
10307 auto ExtLoadOpcode
= ISD::EXTLOAD
;
10308 if (Opcode
== ISD::SIGN_EXTEND
)
10309 ExtLoadOpcode
= ISD::SEXTLOAD
;
10310 else if (Opcode
== ISD::ZERO_EXTEND
)
10311 ExtLoadOpcode
= ISD::ZEXTLOAD
;
10313 LoadSDNode
*Load1
= cast
<LoadSDNode
>(Op1
);
10314 LoadSDNode
*Load2
= cast
<LoadSDNode
>(Op2
);
10315 if (!TLI
.isLoadExtLegal(ExtLoadOpcode
, VT
, Load1
->getMemoryVT()) ||
10316 !TLI
.isLoadExtLegal(ExtLoadOpcode
, VT
, Load2
->getMemoryVT()))
10319 SDValue Ext1
= DAG
.getNode(Opcode
, DL
, VT
, Op1
);
10320 SDValue Ext2
= DAG
.getNode(Opcode
, DL
, VT
, Op2
);
10321 return DAG
.getSelect(DL
, VT
, N0
->getOperand(0), Ext1
, Ext2
);
10324 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
10325 /// a build_vector of constants.
10326 /// This function is called by the DAGCombiner when visiting sext/zext/aext
10327 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
10328 /// Vector extends are not folded if operations are legal; this is to
10329 /// avoid introducing illegal build_vector dag nodes.
10330 static SDValue
tryToFoldExtendOfConstant(SDNode
*N
, const TargetLowering
&TLI
,
10331 SelectionDAG
&DAG
, bool LegalTypes
) {
10332 unsigned Opcode
= N
->getOpcode();
10333 SDValue N0
= N
->getOperand(0);
10334 EVT VT
= N
->getValueType(0);
10337 assert((Opcode
== ISD::SIGN_EXTEND
|| Opcode
== ISD::ZERO_EXTEND
||
10338 Opcode
== ISD::ANY_EXTEND
|| Opcode
== ISD::SIGN_EXTEND_VECTOR_INREG
||
10339 Opcode
== ISD::ZERO_EXTEND_VECTOR_INREG
)
10340 && "Expected EXTEND dag node in input!");
10342 // fold (sext c1) -> c1
10343 // fold (zext c1) -> c1
10344 // fold (aext c1) -> c1
10345 if (isa
<ConstantSDNode
>(N0
))
10346 return DAG
.getNode(Opcode
, DL
, VT
, N0
);
10348 // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
10349 // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2)
10350 // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
10351 if (N0
->getOpcode() == ISD::SELECT
) {
10352 SDValue Op1
= N0
->getOperand(1);
10353 SDValue Op2
= N0
->getOperand(2);
10354 if (isa
<ConstantSDNode
>(Op1
) && isa
<ConstantSDNode
>(Op2
) &&
10355 (Opcode
!= ISD::ZERO_EXTEND
|| !TLI
.isZExtFree(N0
.getValueType(), VT
))) {
10356 // For any_extend, choose sign extension of the constants to allow a
10357 // possible further transform to sign_extend_inreg.i.e.
10359 // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0>
10360 // t2: i64 = any_extend t1
10362 // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0>
10364 // t4: i64 = sign_extend_inreg t3
10365 unsigned FoldOpc
= Opcode
;
10366 if (FoldOpc
== ISD::ANY_EXTEND
)
10367 FoldOpc
= ISD::SIGN_EXTEND
;
10368 return DAG
.getSelect(DL
, VT
, N0
->getOperand(0),
10369 DAG
.getNode(FoldOpc
, DL
, VT
, Op1
),
10370 DAG
.getNode(FoldOpc
, DL
, VT
, Op2
));
10374 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
10375 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
10376 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
10377 EVT SVT
= VT
.getScalarType();
10378 if (!(VT
.isVector() && (!LegalTypes
|| TLI
.isTypeLegal(SVT
)) &&
10379 ISD::isBuildVectorOfConstantSDNodes(N0
.getNode())))
10382 // We can fold this node into a build_vector.
10383 unsigned VTBits
= SVT
.getSizeInBits();
10384 unsigned EVTBits
= N0
->getValueType(0).getScalarSizeInBits();
10385 SmallVector
<SDValue
, 8> Elts
;
10386 unsigned NumElts
= VT
.getVectorNumElements();
10388 // For zero-extensions, UNDEF elements still guarantee to have the upper
10389 // bits set to zero.
10391 Opcode
== ISD::ZERO_EXTEND
|| Opcode
== ISD::ZERO_EXTEND_VECTOR_INREG
;
10393 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
10394 SDValue Op
= N0
.getOperand(i
);
10395 if (Op
.isUndef()) {
10396 Elts
.push_back(IsZext
? DAG
.getConstant(0, DL
, SVT
) : DAG
.getUNDEF(SVT
));
10401 // Get the constant value and if needed trunc it to the size of the type.
10402 // Nodes like build_vector might have constants wider than the scalar type.
10403 APInt C
= cast
<ConstantSDNode
>(Op
)->getAPIntValue().zextOrTrunc(EVTBits
);
10404 if (Opcode
== ISD::SIGN_EXTEND
|| Opcode
== ISD::SIGN_EXTEND_VECTOR_INREG
)
10405 Elts
.push_back(DAG
.getConstant(C
.sext(VTBits
), DL
, SVT
));
10407 Elts
.push_back(DAG
.getConstant(C
.zext(VTBits
), DL
, SVT
));
10410 return DAG
.getBuildVector(VT
, DL
, Elts
);
10413 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
10414 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
10415 // transformation. Returns true if extension are possible and the above
10416 // mentioned transformation is profitable.
10417 static bool ExtendUsesToFormExtLoad(EVT VT
, SDNode
*N
, SDValue N0
,
10419 SmallVectorImpl
<SDNode
*> &ExtendNodes
,
10420 const TargetLowering
&TLI
) {
10421 bool HasCopyToRegUses
= false;
10422 bool isTruncFree
= TLI
.isTruncateFree(VT
, N0
.getValueType());
10423 for (SDNode::use_iterator UI
= N0
.getNode()->use_begin(),
10424 UE
= N0
.getNode()->use_end();
10426 SDNode
*User
= *UI
;
10429 if (UI
.getUse().getResNo() != N0
.getResNo())
10431 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
10432 if (ExtOpc
!= ISD::ANY_EXTEND
&& User
->getOpcode() == ISD::SETCC
) {
10433 ISD::CondCode CC
= cast
<CondCodeSDNode
>(User
->getOperand(2))->get();
10434 if (ExtOpc
== ISD::ZERO_EXTEND
&& ISD::isSignedIntSetCC(CC
))
10435 // Sign bits will be lost after a zext.
10438 for (unsigned i
= 0; i
!= 2; ++i
) {
10439 SDValue UseOp
= User
->getOperand(i
);
10442 if (!isa
<ConstantSDNode
>(UseOp
))
10447 ExtendNodes
.push_back(User
);
10450 // If truncates aren't free and there are users we can't
10451 // extend, it isn't worthwhile.
10454 // Remember if this value is live-out.
10455 if (User
->getOpcode() == ISD::CopyToReg
)
10456 HasCopyToRegUses
= true;
10459 if (HasCopyToRegUses
) {
10460 bool BothLiveOut
= false;
10461 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
10463 SDUse
&Use
= UI
.getUse();
10464 if (Use
.getResNo() == 0 && Use
.getUser()->getOpcode() == ISD::CopyToReg
) {
10465 BothLiveOut
= true;
10470 // Both unextended and extended values are live out. There had better be
10471 // a good reason for the transformation.
10472 return ExtendNodes
.size();
10477 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl
<SDNode
*> &SetCCs
,
10478 SDValue OrigLoad
, SDValue ExtLoad
,
10479 ISD::NodeType ExtType
) {
10480 // Extend SetCC uses if necessary.
10482 for (SDNode
*SetCC
: SetCCs
) {
10483 SmallVector
<SDValue
, 4> Ops
;
10485 for (unsigned j
= 0; j
!= 2; ++j
) {
10486 SDValue SOp
= SetCC
->getOperand(j
);
10487 if (SOp
== OrigLoad
)
10488 Ops
.push_back(ExtLoad
);
10490 Ops
.push_back(DAG
.getNode(ExtType
, DL
, ExtLoad
->getValueType(0), SOp
));
10493 Ops
.push_back(SetCC
->getOperand(2));
10494 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, DL
, SetCC
->getValueType(0), Ops
));
10498 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
10499 SDValue
DAGCombiner::CombineExtLoad(SDNode
*N
) {
10500 SDValue N0
= N
->getOperand(0);
10501 EVT DstVT
= N
->getValueType(0);
10502 EVT SrcVT
= N0
.getValueType();
10504 assert((N
->getOpcode() == ISD::SIGN_EXTEND
||
10505 N
->getOpcode() == ISD::ZERO_EXTEND
) &&
10506 "Unexpected node type (not an extend)!");
10508 // fold (sext (load x)) to multiple smaller sextloads; same for zext.
10509 // For example, on a target with legal v4i32, but illegal v8i32, turn:
10510 // (v8i32 (sext (v8i16 (load x))))
10512 // (v8i32 (concat_vectors (v4i32 (sextload x)),
10513 // (v4i32 (sextload (x + 16)))))
10514 // Where uses of the original load, i.e.:
10515 // (v8i16 (load x))
10516 // are replaced with:
10517 // (v8i16 (truncate
10518 // (v8i32 (concat_vectors (v4i32 (sextload x)),
10519 // (v4i32 (sextload (x + 16)))))))
10521 // This combine is only applicable to illegal, but splittable, vectors.
10522 // All legal types, and illegal non-vector types, are handled elsewhere.
10523 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
10525 if (N0
->getOpcode() != ISD::LOAD
)
10528 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
10530 if (!ISD::isNON_EXTLoad(LN0
) || !ISD::isUNINDEXEDLoad(LN0
) ||
10531 !N0
.hasOneUse() || !LN0
->isSimple() ||
10532 !DstVT
.isVector() || !DstVT
.isPow2VectorType() ||
10533 !TLI
.isVectorLoadExtDesirable(SDValue(N
, 0)))
10536 SmallVector
<SDNode
*, 4> SetCCs
;
10537 if (!ExtendUsesToFormExtLoad(DstVT
, N
, N0
, N
->getOpcode(), SetCCs
, TLI
))
10540 ISD::LoadExtType ExtType
=
10541 N
->getOpcode() == ISD::SIGN_EXTEND
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
;
10543 // Try to split the vector types to get down to legal types.
10544 EVT SplitSrcVT
= SrcVT
;
10545 EVT SplitDstVT
= DstVT
;
10546 while (!TLI
.isLoadExtLegalOrCustom(ExtType
, SplitDstVT
, SplitSrcVT
) &&
10547 SplitSrcVT
.getVectorNumElements() > 1) {
10548 SplitDstVT
= DAG
.GetSplitDestVTs(SplitDstVT
).first
;
10549 SplitSrcVT
= DAG
.GetSplitDestVTs(SplitSrcVT
).first
;
10552 if (!TLI
.isLoadExtLegalOrCustom(ExtType
, SplitDstVT
, SplitSrcVT
))
10555 assert(!DstVT
.isScalableVector() && "Unexpected scalable vector type");
10558 const unsigned NumSplits
=
10559 DstVT
.getVectorNumElements() / SplitDstVT
.getVectorNumElements();
10560 const unsigned Stride
= SplitSrcVT
.getStoreSize();
10561 SmallVector
<SDValue
, 4> Loads
;
10562 SmallVector
<SDValue
, 4> Chains
;
10564 SDValue BasePtr
= LN0
->getBasePtr();
10565 for (unsigned Idx
= 0; Idx
< NumSplits
; Idx
++) {
10566 const unsigned Offset
= Idx
* Stride
;
10567 const Align Align
= commonAlignment(LN0
->getAlign(), Offset
);
10569 SDValue SplitLoad
= DAG
.getExtLoad(
10570 ExtType
, SDLoc(LN0
), SplitDstVT
, LN0
->getChain(), BasePtr
,
10571 LN0
->getPointerInfo().getWithOffset(Offset
), SplitSrcVT
, Align
,
10572 LN0
->getMemOperand()->getFlags(), LN0
->getAAInfo());
10574 BasePtr
= DAG
.getMemBasePlusOffset(BasePtr
, TypeSize::Fixed(Stride
), DL
);
10576 Loads
.push_back(SplitLoad
.getValue(0));
10577 Chains
.push_back(SplitLoad
.getValue(1));
10580 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
10581 SDValue NewValue
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, DstVT
, Loads
);
10584 AddToWorklist(NewChain
.getNode());
10586 CombineTo(N
, NewValue
);
10588 // Replace uses of the original load (before extension)
10589 // with a truncate of the concatenated sextloaded vectors.
10591 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), N0
.getValueType(), NewValue
);
10592 ExtendSetCCUses(SetCCs
, N0
, NewValue
, (ISD::NodeType
)N
->getOpcode());
10593 CombineTo(N0
.getNode(), Trunc
, NewChain
);
10594 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
10597 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
10598 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
10599 SDValue
DAGCombiner::CombineZExtLogicopShiftLoad(SDNode
*N
) {
10600 assert(N
->getOpcode() == ISD::ZERO_EXTEND
);
10601 EVT VT
= N
->getValueType(0);
10602 EVT OrigVT
= N
->getOperand(0).getValueType();
10603 if (TLI
.isZExtFree(OrigVT
, VT
))
10607 SDValue N0
= N
->getOperand(0);
10608 if (!(N0
.getOpcode() == ISD::AND
|| N0
.getOpcode() == ISD::OR
||
10609 N0
.getOpcode() == ISD::XOR
) ||
10610 N0
.getOperand(1).getOpcode() != ISD::Constant
||
10611 (LegalOperations
&& !TLI
.isOperationLegal(N0
.getOpcode(), VT
)))
10615 SDValue N1
= N0
->getOperand(0);
10616 if (!(N1
.getOpcode() == ISD::SHL
|| N1
.getOpcode() == ISD::SRL
) ||
10617 N1
.getOperand(1).getOpcode() != ISD::Constant
||
10618 (LegalOperations
&& !TLI
.isOperationLegal(N1
.getOpcode(), VT
)))
10622 if (!isa
<LoadSDNode
>(N1
.getOperand(0)))
10624 LoadSDNode
*Load
= cast
<LoadSDNode
>(N1
.getOperand(0));
10625 EVT MemVT
= Load
->getMemoryVT();
10626 if (!TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, VT
, MemVT
) ||
10627 Load
->getExtensionType() == ISD::SEXTLOAD
|| Load
->isIndexed())
10631 // If the shift op is SHL, the logic op must be AND, otherwise the result
10633 if (N1
.getOpcode() == ISD::SHL
&& N0
.getOpcode() != ISD::AND
)
10636 if (!N0
.hasOneUse() || !N1
.hasOneUse())
10639 SmallVector
<SDNode
*, 4> SetCCs
;
10640 if (!ExtendUsesToFormExtLoad(VT
, N1
.getNode(), N1
.getOperand(0),
10641 ISD::ZERO_EXTEND
, SetCCs
, TLI
))
10644 // Actually do the transformation.
10645 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, SDLoc(Load
), VT
,
10646 Load
->getChain(), Load
->getBasePtr(),
10647 Load
->getMemoryVT(), Load
->getMemOperand());
10650 SDValue Shift
= DAG
.getNode(N1
.getOpcode(), DL1
, VT
, ExtLoad
,
10653 APInt Mask
= N0
.getConstantOperandAPInt(1).zext(VT
.getSizeInBits());
10655 SDValue And
= DAG
.getNode(N0
.getOpcode(), DL0
, VT
, Shift
,
10656 DAG
.getConstant(Mask
, DL0
, VT
));
10658 ExtendSetCCUses(SetCCs
, N1
.getOperand(0), ExtLoad
, ISD::ZERO_EXTEND
);
10660 if (SDValue(Load
, 0).hasOneUse()) {
10661 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 1), ExtLoad
.getValue(1));
10663 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(Load
),
10664 Load
->getValueType(0), ExtLoad
);
10665 CombineTo(Load
, Trunc
, ExtLoad
.getValue(1));
10668 // N0 is dead at this point.
10669 recursivelyDeleteUnusedNodes(N0
.getNode());
10671 return SDValue(N
,0); // Return N so it doesn't get rechecked!
10674 /// If we're narrowing or widening the result of a vector select and the final
10675 /// size is the same size as a setcc (compare) feeding the select, then try to
10676 /// apply the cast operation to the select's operands because matching vector
10677 /// sizes for a select condition and other operands should be more efficient.
10678 SDValue
DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode
*Cast
) {
10679 unsigned CastOpcode
= Cast
->getOpcode();
10680 assert((CastOpcode
== ISD::SIGN_EXTEND
|| CastOpcode
== ISD::ZERO_EXTEND
||
10681 CastOpcode
== ISD::TRUNCATE
|| CastOpcode
== ISD::FP_EXTEND
||
10682 CastOpcode
== ISD::FP_ROUND
) &&
10683 "Unexpected opcode for vector select narrowing/widening");
10685 // We only do this transform before legal ops because the pattern may be
10686 // obfuscated by target-specific operations after legalization. Do not create
10687 // an illegal select op, however, because that may be difficult to lower.
10688 EVT VT
= Cast
->getValueType(0);
10689 if (LegalOperations
|| !TLI
.isOperationLegalOrCustom(ISD::VSELECT
, VT
))
10692 SDValue VSel
= Cast
->getOperand(0);
10693 if (VSel
.getOpcode() != ISD::VSELECT
|| !VSel
.hasOneUse() ||
10694 VSel
.getOperand(0).getOpcode() != ISD::SETCC
)
10697 // Does the setcc have the same vector size as the casted select?
10698 SDValue SetCC
= VSel
.getOperand(0);
10699 EVT SetCCVT
= getSetCCResultType(SetCC
.getOperand(0).getValueType());
10700 if (SetCCVT
.getSizeInBits() != VT
.getSizeInBits())
10703 // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B)
10704 SDValue A
= VSel
.getOperand(1);
10705 SDValue B
= VSel
.getOperand(2);
10706 SDValue CastA
, CastB
;
10708 if (CastOpcode
== ISD::FP_ROUND
) {
10709 // FP_ROUND (fptrunc) has an extra flag operand to pass along.
10710 CastA
= DAG
.getNode(CastOpcode
, DL
, VT
, A
, Cast
->getOperand(1));
10711 CastB
= DAG
.getNode(CastOpcode
, DL
, VT
, B
, Cast
->getOperand(1));
10713 CastA
= DAG
.getNode(CastOpcode
, DL
, VT
, A
);
10714 CastB
= DAG
.getNode(CastOpcode
, DL
, VT
, B
);
10716 return DAG
.getNode(ISD::VSELECT
, DL
, VT
, SetCC
, CastA
, CastB
);
10719 // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
10720 // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
10721 static SDValue
tryToFoldExtOfExtload(SelectionDAG
&DAG
, DAGCombiner
&Combiner
,
10722 const TargetLowering
&TLI
, EVT VT
,
10723 bool LegalOperations
, SDNode
*N
,
10724 SDValue N0
, ISD::LoadExtType ExtLoadType
) {
10725 SDNode
*N0Node
= N0
.getNode();
10726 bool isAExtLoad
= (ExtLoadType
== ISD::SEXTLOAD
) ? ISD::isSEXTLoad(N0Node
)
10727 : ISD::isZEXTLoad(N0Node
);
10728 if ((!isAExtLoad
&& !ISD::isEXTLoad(N0Node
)) ||
10729 !ISD::isUNINDEXEDLoad(N0Node
) || !N0
.hasOneUse())
10732 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
10733 EVT MemVT
= LN0
->getMemoryVT();
10734 if ((LegalOperations
|| !LN0
->isSimple() ||
10736 !TLI
.isLoadExtLegal(ExtLoadType
, VT
, MemVT
))
10740 DAG
.getExtLoad(ExtLoadType
, SDLoc(LN0
), VT
, LN0
->getChain(),
10741 LN0
->getBasePtr(), MemVT
, LN0
->getMemOperand());
10742 Combiner
.CombineTo(N
, ExtLoad
);
10743 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
10744 if (LN0
->use_empty())
10745 Combiner
.recursivelyDeleteUnusedNodes(LN0
);
10746 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
10749 // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x)))
10750 // Only generate vector extloads when 1) they're legal, and 2) they are
10751 // deemed desirable by the target.
10752 static SDValue
tryToFoldExtOfLoad(SelectionDAG
&DAG
, DAGCombiner
&Combiner
,
10753 const TargetLowering
&TLI
, EVT VT
,
10754 bool LegalOperations
, SDNode
*N
, SDValue N0
,
10755 ISD::LoadExtType ExtLoadType
,
10756 ISD::NodeType ExtOpc
) {
10757 if (!ISD::isNON_EXTLoad(N0
.getNode()) ||
10758 !ISD::isUNINDEXEDLoad(N0
.getNode()) ||
10759 ((LegalOperations
|| VT
.isVector() ||
10760 !cast
<LoadSDNode
>(N0
)->isSimple()) &&
10761 !TLI
.isLoadExtLegal(ExtLoadType
, VT
, N0
.getValueType())))
10764 bool DoXform
= true;
10765 SmallVector
<SDNode
*, 4> SetCCs
;
10766 if (!N0
.hasOneUse())
10767 DoXform
= ExtendUsesToFormExtLoad(VT
, N
, N0
, ExtOpc
, SetCCs
, TLI
);
10769 DoXform
&= TLI
.isVectorLoadExtDesirable(SDValue(N
, 0));
10773 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
10774 SDValue ExtLoad
= DAG
.getExtLoad(ExtLoadType
, SDLoc(LN0
), VT
, LN0
->getChain(),
10775 LN0
->getBasePtr(), N0
.getValueType(),
10776 LN0
->getMemOperand());
10777 Combiner
.ExtendSetCCUses(SetCCs
, N0
, ExtLoad
, ExtOpc
);
10778 // If the load value is used only by N, replace it via CombineTo N.
10779 bool NoReplaceTrunc
= SDValue(LN0
, 0).hasOneUse();
10780 Combiner
.CombineTo(N
, ExtLoad
);
10781 if (NoReplaceTrunc
) {
10782 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
10783 Combiner
.recursivelyDeleteUnusedNodes(LN0
);
10786 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), N0
.getValueType(), ExtLoad
);
10787 Combiner
.CombineTo(LN0
, Trunc
, ExtLoad
.getValue(1));
10789 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
10792 static SDValue
tryToFoldExtOfMaskedLoad(SelectionDAG
&DAG
,
10793 const TargetLowering
&TLI
, EVT VT
,
10794 SDNode
*N
, SDValue N0
,
10795 ISD::LoadExtType ExtLoadType
,
10796 ISD::NodeType ExtOpc
) {
10797 if (!N0
.hasOneUse())
10800 MaskedLoadSDNode
*Ld
= dyn_cast
<MaskedLoadSDNode
>(N0
);
10801 if (!Ld
|| Ld
->getExtensionType() != ISD::NON_EXTLOAD
)
10804 if (!TLI
.isLoadExtLegal(ExtLoadType
, VT
, Ld
->getValueType(0)))
10807 if (!TLI
.isVectorLoadExtDesirable(SDValue(N
, 0)))
10811 SDValue PassThru
= DAG
.getNode(ExtOpc
, dl
, VT
, Ld
->getPassThru());
10812 SDValue NewLoad
= DAG
.getMaskedLoad(
10813 VT
, dl
, Ld
->getChain(), Ld
->getBasePtr(), Ld
->getOffset(), Ld
->getMask(),
10814 PassThru
, Ld
->getMemoryVT(), Ld
->getMemOperand(), Ld
->getAddressingMode(),
10815 ExtLoadType
, Ld
->isExpandingLoad());
10816 DAG
.ReplaceAllUsesOfValueWith(SDValue(Ld
, 1), SDValue(NewLoad
.getNode(), 1));
10820 static SDValue
foldExtendedSignBitTest(SDNode
*N
, SelectionDAG
&DAG
,
10821 bool LegalOperations
) {
10822 assert((N
->getOpcode() == ISD::SIGN_EXTEND
||
10823 N
->getOpcode() == ISD::ZERO_EXTEND
) && "Expected sext or zext");
10825 SDValue SetCC
= N
->getOperand(0);
10826 if (LegalOperations
|| SetCC
.getOpcode() != ISD::SETCC
||
10827 !SetCC
.hasOneUse() || SetCC
.getValueType() != MVT::i1
)
10830 SDValue X
= SetCC
.getOperand(0);
10831 SDValue Ones
= SetCC
.getOperand(1);
10832 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
.getOperand(2))->get();
10833 EVT VT
= N
->getValueType(0);
10834 EVT XVT
= X
.getValueType();
10835 // setge X, C is canonicalized to setgt, so we do not need to match that
10836 // pattern. The setlt sibling is folded in SimplifySelectCC() because it does
10837 // not require the 'not' op.
10838 if (CC
== ISD::SETGT
&& isAllOnesConstant(Ones
) && VT
== XVT
) {
10839 // Invert and smear/shift the sign bit:
10840 // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1)
10841 // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1)
10843 unsigned ShCt
= VT
.getSizeInBits() - 1;
10844 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10845 if (!TLI
.shouldAvoidTransformToShift(VT
, ShCt
)) {
10846 SDValue NotX
= DAG
.getNOT(DL
, X
, VT
);
10847 SDValue ShiftAmount
= DAG
.getConstant(ShCt
, DL
, VT
);
10849 N
->getOpcode() == ISD::SIGN_EXTEND
? ISD::SRA
: ISD::SRL
;
10850 return DAG
.getNode(ShiftOpcode
, DL
, VT
, NotX
, ShiftAmount
);
10856 SDValue
DAGCombiner::foldSextSetcc(SDNode
*N
) {
10857 SDValue N0
= N
->getOperand(0);
10858 if (N0
.getOpcode() != ISD::SETCC
)
10861 SDValue N00
= N0
.getOperand(0);
10862 SDValue N01
= N0
.getOperand(1);
10863 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
10864 EVT VT
= N
->getValueType(0);
10865 EVT N00VT
= N00
.getValueType();
10868 // On some architectures (such as SSE/NEON/etc) the SETCC result type is
10869 // the same size as the compared operands. Try to optimize sext(setcc())
10870 // if this is the case.
10871 if (VT
.isVector() && !LegalOperations
&&
10872 TLI
.getBooleanContents(N00VT
) ==
10873 TargetLowering::ZeroOrNegativeOneBooleanContent
) {
10874 EVT SVT
= getSetCCResultType(N00VT
);
10876 // If we already have the desired type, don't change it.
10877 if (SVT
!= N0
.getValueType()) {
10878 // We know that the # elements of the results is the same as the
10879 // # elements of the compare (and the # elements of the compare result
10880 // for that matter). Check to see that they are the same size. If so,
10881 // we know that the element size of the sext'd result matches the
10882 // element size of the compare operands.
10883 if (VT
.getSizeInBits() == SVT
.getSizeInBits())
10884 return DAG
.getSetCC(DL
, VT
, N00
, N01
, CC
);
10886 // If the desired elements are smaller or larger than the source
10887 // elements, we can use a matching integer vector type and then
10888 // truncate/sign extend.
10889 EVT MatchingVecType
= N00VT
.changeVectorElementTypeToInteger();
10890 if (SVT
== MatchingVecType
) {
10891 SDValue VsetCC
= DAG
.getSetCC(DL
, MatchingVecType
, N00
, N01
, CC
);
10892 return DAG
.getSExtOrTrunc(VsetCC
, DL
, VT
);
10896 // Try to eliminate the sext of a setcc by zexting the compare operands.
10897 if (N0
.hasOneUse() && TLI
.isOperationLegalOrCustom(ISD::SETCC
, VT
) &&
10898 !TLI
.isOperationLegalOrCustom(ISD::SETCC
, SVT
)) {
10899 bool IsSignedCmp
= ISD::isSignedIntSetCC(CC
);
10900 unsigned LoadOpcode
= IsSignedCmp
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
;
10901 unsigned ExtOpcode
= IsSignedCmp
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
10903 // We have an unsupported narrow vector compare op that would be legal
10904 // if extended to the destination type. See if the compare operands
10905 // can be freely extended to the destination type.
10906 auto IsFreeToExtend
= [&](SDValue V
) {
10907 if (isConstantOrConstantVector(V
, /*NoOpaques*/ true))
10909 // Match a simple, non-extended load that can be converted to a
10910 // legal {z/s}ext-load.
10911 // TODO: Allow widening of an existing {z/s}ext-load?
10912 if (!(ISD::isNON_EXTLoad(V
.getNode()) &&
10913 ISD::isUNINDEXEDLoad(V
.getNode()) &&
10914 cast
<LoadSDNode
>(V
)->isSimple() &&
10915 TLI
.isLoadExtLegal(LoadOpcode
, VT
, V
.getValueType())))
10918 // Non-chain users of this value must either be the setcc in this
10919 // sequence or extends that can be folded into the new {z/s}ext-load.
10920 for (SDNode::use_iterator UI
= V
->use_begin(), UE
= V
->use_end();
10922 // Skip uses of the chain and the setcc.
10923 SDNode
*User
= *UI
;
10924 if (UI
.getUse().getResNo() != 0 || User
== N0
.getNode())
10926 // Extra users must have exactly the same cast we are about to create.
10927 // TODO: This restriction could be eased if ExtendUsesToFormExtLoad()
10928 // is enhanced similarly.
10929 if (User
->getOpcode() != ExtOpcode
|| User
->getValueType(0) != VT
)
10935 if (IsFreeToExtend(N00
) && IsFreeToExtend(N01
)) {
10936 SDValue Ext0
= DAG
.getNode(ExtOpcode
, DL
, VT
, N00
);
10937 SDValue Ext1
= DAG
.getNode(ExtOpcode
, DL
, VT
, N01
);
10938 return DAG
.getSetCC(DL
, VT
, Ext0
, Ext1
, CC
);
10943 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0)
10944 // Here, T can be 1 or -1, depending on the type of the setcc and
10945 // getBooleanContents().
10946 unsigned SetCCWidth
= N0
.getScalarValueSizeInBits();
10948 // To determine the "true" side of the select, we need to know the high bit
10949 // of the value returned by the setcc if it evaluates to true.
10950 // If the type of the setcc is i1, then the true case of the select is just
10951 // sext(i1 1), that is, -1.
10952 // If the type of the setcc is larger (say, i8) then the value of the high
10953 // bit depends on getBooleanContents(), so ask TLI for a real "true" value
10954 // of the appropriate width.
10955 SDValue ExtTrueVal
= (SetCCWidth
== 1)
10956 ? DAG
.getAllOnesConstant(DL
, VT
)
10957 : DAG
.getBoolConstant(true, DL
, VT
, N00VT
);
10958 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
10959 if (SDValue SCC
= SimplifySelectCC(DL
, N00
, N01
, ExtTrueVal
, Zero
, CC
, true))
10962 if (!VT
.isVector() && !TLI
.convertSelectOfConstantsToMath(VT
)) {
10963 EVT SetCCVT
= getSetCCResultType(N00VT
);
10964 // Don't do this transform for i1 because there's a select transform
10965 // that would reverse it.
10966 // TODO: We should not do this transform at all without a target hook
10967 // because a sext is likely cheaper than a select?
10968 if (SetCCVT
.getScalarSizeInBits() != 1 &&
10969 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SETCC
, N00VT
))) {
10970 SDValue SetCC
= DAG
.getSetCC(DL
, SetCCVT
, N00
, N01
, CC
);
10971 return DAG
.getSelect(DL
, VT
, SetCC
, ExtTrueVal
, Zero
);
10978 SDValue
DAGCombiner::visitSIGN_EXTEND(SDNode
*N
) {
10979 SDValue N0
= N
->getOperand(0);
10980 EVT VT
= N
->getValueType(0);
10983 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
10986 // fold (sext (sext x)) -> (sext x)
10987 // fold (sext (aext x)) -> (sext x)
10988 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
10989 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, N0
.getOperand(0));
10991 if (N0
.getOpcode() == ISD::TRUNCATE
) {
10992 // fold (sext (truncate (load x))) -> (sext (smaller load x))
10993 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
10994 if (SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode())) {
10995 SDNode
*oye
= N0
.getOperand(0).getNode();
10996 if (NarrowLoad
.getNode() != N0
.getNode()) {
10997 CombineTo(N0
.getNode(), NarrowLoad
);
10998 // CombineTo deleted the truncate, if needed, but not what's under it.
10999 AddToWorklist(oye
);
11001 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
11004 // See if the value being truncated is already sign extended. If so, just
11005 // eliminate the trunc/sext pair.
11006 SDValue Op
= N0
.getOperand(0);
11007 unsigned OpBits
= Op
.getScalarValueSizeInBits();
11008 unsigned MidBits
= N0
.getScalarValueSizeInBits();
11009 unsigned DestBits
= VT
.getScalarSizeInBits();
11010 unsigned NumSignBits
= DAG
.ComputeNumSignBits(Op
);
11012 if (OpBits
== DestBits
) {
11013 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
11014 // bits, it is already ready.
11015 if (NumSignBits
> DestBits
-MidBits
)
11017 } else if (OpBits
< DestBits
) {
11018 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
11019 // bits, just sext from i32.
11020 if (NumSignBits
> OpBits
-MidBits
)
11021 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, Op
);
11023 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
11024 // bits, just truncate to i32.
11025 if (NumSignBits
> OpBits
-MidBits
)
11026 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Op
);
11029 // fold (sext (truncate x)) -> (sextinreg x).
11030 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
,
11031 N0
.getValueType())) {
11032 if (OpBits
< DestBits
)
11033 Op
= DAG
.getNode(ISD::ANY_EXTEND
, SDLoc(N0
), VT
, Op
);
11034 else if (OpBits
> DestBits
)
11035 Op
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), VT
, Op
);
11036 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, Op
,
11037 DAG
.getValueType(N0
.getValueType()));
11041 // Try to simplify (sext (load x)).
11042 if (SDValue foldedExt
=
11043 tryToFoldExtOfLoad(DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
,
11044 ISD::SEXTLOAD
, ISD::SIGN_EXTEND
))
11047 if (SDValue foldedExt
=
11048 tryToFoldExtOfMaskedLoad(DAG
, TLI
, VT
, N
, N0
, ISD::SEXTLOAD
,
11052 // fold (sext (load x)) to multiple smaller sextloads.
11053 // Only on illegal but splittable vectors.
11054 if (SDValue ExtLoad
= CombineExtLoad(N
))
11057 // Try to simplify (sext (sextload x)).
11058 if (SDValue foldedExt
= tryToFoldExtOfExtload(
11059 DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
, ISD::SEXTLOAD
))
11062 // fold (sext (and/or/xor (load x), cst)) ->
11063 // (and/or/xor (sextload x), (sext cst))
11064 if ((N0
.getOpcode() == ISD::AND
|| N0
.getOpcode() == ISD::OR
||
11065 N0
.getOpcode() == ISD::XOR
) &&
11066 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
11067 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
11068 (!LegalOperations
&& TLI
.isOperationLegal(N0
.getOpcode(), VT
))) {
11069 LoadSDNode
*LN00
= cast
<LoadSDNode
>(N0
.getOperand(0));
11070 EVT MemVT
= LN00
->getMemoryVT();
11071 if (TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, MemVT
) &&
11072 LN00
->getExtensionType() != ISD::ZEXTLOAD
&& LN00
->isUnindexed()) {
11073 SmallVector
<SDNode
*, 4> SetCCs
;
11074 bool DoXform
= ExtendUsesToFormExtLoad(VT
, N0
.getNode(), N0
.getOperand(0),
11075 ISD::SIGN_EXTEND
, SetCCs
, TLI
);
11077 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, SDLoc(LN00
), VT
,
11078 LN00
->getChain(), LN00
->getBasePtr(),
11079 LN00
->getMemoryVT(),
11080 LN00
->getMemOperand());
11081 APInt Mask
= N0
.getConstantOperandAPInt(1).sext(VT
.getSizeInBits());
11082 SDValue And
= DAG
.getNode(N0
.getOpcode(), DL
, VT
,
11083 ExtLoad
, DAG
.getConstant(Mask
, DL
, VT
));
11084 ExtendSetCCUses(SetCCs
, N0
.getOperand(0), ExtLoad
, ISD::SIGN_EXTEND
);
11085 bool NoReplaceTruncAnd
= !N0
.hasOneUse();
11086 bool NoReplaceTrunc
= SDValue(LN00
, 0).hasOneUse();
11088 // If N0 has multiple uses, change other uses as well.
11089 if (NoReplaceTruncAnd
) {
11091 DAG
.getNode(ISD::TRUNCATE
, DL
, N0
.getValueType(), And
);
11092 CombineTo(N0
.getNode(), TruncAnd
);
11094 if (NoReplaceTrunc
) {
11095 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN00
, 1), ExtLoad
.getValue(1));
11097 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(LN00
),
11098 LN00
->getValueType(0), ExtLoad
);
11099 CombineTo(LN00
, Trunc
, ExtLoad
.getValue(1));
11101 return SDValue(N
,0); // Return N so it doesn't get rechecked!
11106 if (SDValue V
= foldExtendedSignBitTest(N
, DAG
, LegalOperations
))
11109 if (SDValue V
= foldSextSetcc(N
))
11112 // fold (sext x) -> (zext x) if the sign bit is known zero.
11113 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
)) &&
11114 DAG
.SignBitIsZero(N0
))
11115 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
);
11117 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
11120 // Eliminate this sign extend by doing a negation in the destination type:
11121 // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64)
11122 if (N0
.getOpcode() == ISD::SUB
&& N0
.hasOneUse() &&
11123 isNullOrNullSplat(N0
.getOperand(0)) &&
11124 N0
.getOperand(1).getOpcode() == ISD::ZERO_EXTEND
&&
11125 TLI
.isOperationLegalOrCustom(ISD::SUB
, VT
)) {
11126 SDValue Zext
= DAG
.getZExtOrTrunc(N0
.getOperand(1).getOperand(0), DL
, VT
);
11127 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), Zext
);
11129 // Eliminate this sign extend by doing a decrement in the destination type:
11130 // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1)
11131 if (N0
.getOpcode() == ISD::ADD
&& N0
.hasOneUse() &&
11132 isAllOnesOrAllOnesSplat(N0
.getOperand(1)) &&
11133 N0
.getOperand(0).getOpcode() == ISD::ZERO_EXTEND
&&
11134 TLI
.isOperationLegalOrCustom(ISD::ADD
, VT
)) {
11135 SDValue Zext
= DAG
.getZExtOrTrunc(N0
.getOperand(0).getOperand(0), DL
, VT
);
11136 return DAG
.getNode(ISD::ADD
, DL
, VT
, Zext
, DAG
.getAllOnesConstant(DL
, VT
));
11139 // fold sext (not i1 X) -> add (zext i1 X), -1
11140 // TODO: This could be extended to handle bool vectors.
11141 if (N0
.getValueType() == MVT::i1
&& isBitwiseNot(N0
) && N0
.hasOneUse() &&
11142 (!LegalOperations
|| (TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
) &&
11143 TLI
.isOperationLegal(ISD::ADD
, VT
)))) {
11144 // If we can eliminate the 'not', the sext form should be better
11145 if (SDValue NewXor
= visitXOR(N0
.getNode())) {
11146 // Returning N0 is a form of in-visit replacement that may have
11148 if (NewXor
.getNode() == N0
.getNode()) {
11149 // Return SDValue here as the xor should have already been replaced in
11153 // Return a new sext with the new xor.
11154 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, NewXor
);
11158 SDValue Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
.getOperand(0));
11159 return DAG
.getNode(ISD::ADD
, DL
, VT
, Zext
, DAG
.getAllOnesConstant(DL
, VT
));
11162 if (SDValue Res
= tryToFoldExtendSelectLoad(N
, TLI
, DAG
))
11168 // isTruncateOf - If N is a truncate of some other value, return true, record
11169 // the value being truncated in Op and which of Op's bits are zero/one in Known.
11170 // This function computes KnownBits to avoid a duplicated call to
11171 // computeKnownBits in the caller.
11172 static bool isTruncateOf(SelectionDAG
&DAG
, SDValue N
, SDValue
&Op
,
11173 KnownBits
&Known
) {
11174 if (N
->getOpcode() == ISD::TRUNCATE
) {
11175 Op
= N
->getOperand(0);
11176 Known
= DAG
.computeKnownBits(Op
);
11180 if (N
.getOpcode() != ISD::SETCC
||
11181 N
.getValueType().getScalarType() != MVT::i1
||
11182 cast
<CondCodeSDNode
>(N
.getOperand(2))->get() != ISD::SETNE
)
11185 SDValue Op0
= N
->getOperand(0);
11186 SDValue Op1
= N
->getOperand(1);
11187 assert(Op0
.getValueType() == Op1
.getValueType());
11189 if (isNullOrNullSplat(Op0
))
11191 else if (isNullOrNullSplat(Op1
))
11196 Known
= DAG
.computeKnownBits(Op
);
11198 return (Known
.Zero
| 1).isAllOnesValue();
11201 /// Given an extending node with a pop-count operand, if the target does not
11202 /// support a pop-count in the narrow source type but does support it in the
11203 /// destination type, widen the pop-count to the destination type.
11204 static SDValue
widenCtPop(SDNode
*Extend
, SelectionDAG
&DAG
) {
11205 assert((Extend
->getOpcode() == ISD::ZERO_EXTEND
||
11206 Extend
->getOpcode() == ISD::ANY_EXTEND
) && "Expected extend op");
11208 SDValue CtPop
= Extend
->getOperand(0);
11209 if (CtPop
.getOpcode() != ISD::CTPOP
|| !CtPop
.hasOneUse())
11212 EVT VT
= Extend
->getValueType(0);
11213 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11214 if (TLI
.isOperationLegalOrCustom(ISD::CTPOP
, CtPop
.getValueType()) ||
11215 !TLI
.isOperationLegalOrCustom(ISD::CTPOP
, VT
))
11218 // zext (ctpop X) --> ctpop (zext X)
11220 SDValue NewZext
= DAG
.getZExtOrTrunc(CtPop
.getOperand(0), DL
, VT
);
11221 return DAG
.getNode(ISD::CTPOP
, DL
, VT
, NewZext
);
11224 SDValue
DAGCombiner::visitZERO_EXTEND(SDNode
*N
) {
11225 SDValue N0
= N
->getOperand(0);
11226 EVT VT
= N
->getValueType(0);
11228 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
11231 // fold (zext (zext x)) -> (zext x)
11232 // fold (zext (aext x)) -> (zext x)
11233 if (N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
11234 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), VT
,
11237 // fold (zext (truncate x)) -> (zext x) or
11238 // (zext (truncate x)) -> (truncate x)
11239 // This is valid when the truncated bits of x are already zero.
11242 if (isTruncateOf(DAG
, N0
, Op
, Known
)) {
11243 APInt TruncatedBits
=
11244 (Op
.getScalarValueSizeInBits() == N0
.getScalarValueSizeInBits()) ?
11245 APInt(Op
.getScalarValueSizeInBits(), 0) :
11246 APInt::getBitsSet(Op
.getScalarValueSizeInBits(),
11247 N0
.getScalarValueSizeInBits(),
11248 std::min(Op
.getScalarValueSizeInBits(),
11249 VT
.getScalarSizeInBits()));
11250 if (TruncatedBits
.isSubsetOf(Known
.Zero
))
11251 return DAG
.getZExtOrTrunc(Op
, SDLoc(N
), VT
);
11254 // fold (zext (truncate x)) -> (and x, mask)
11255 if (N0
.getOpcode() == ISD::TRUNCATE
) {
11256 // fold (zext (truncate (load x))) -> (zext (smaller load x))
11257 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
11258 if (SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode())) {
11259 SDNode
*oye
= N0
.getOperand(0).getNode();
11260 if (NarrowLoad
.getNode() != N0
.getNode()) {
11261 CombineTo(N0
.getNode(), NarrowLoad
);
11262 // CombineTo deleted the truncate, if needed, but not what's under it.
11263 AddToWorklist(oye
);
11265 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
11268 EVT SrcVT
= N0
.getOperand(0).getValueType();
11269 EVT MinVT
= N0
.getValueType();
11271 // Try to mask before the extension to avoid having to generate a larger mask,
11272 // possibly over several sub-vectors.
11273 if (SrcVT
.bitsLT(VT
) && VT
.isVector()) {
11274 if (!LegalOperations
|| (TLI
.isOperationLegal(ISD::AND
, SrcVT
) &&
11275 TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
))) {
11276 SDValue Op
= N0
.getOperand(0);
11277 Op
= DAG
.getZeroExtendInReg(Op
, SDLoc(N
), MinVT
);
11278 AddToWorklist(Op
.getNode());
11279 SDValue ZExtOrTrunc
= DAG
.getZExtOrTrunc(Op
, SDLoc(N
), VT
);
11280 // Transfer the debug info; the new node is equivalent to N0.
11281 DAG
.transferDbgValues(N0
, ZExtOrTrunc
);
11282 return ZExtOrTrunc
;
11286 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::AND
, VT
)) {
11287 SDValue Op
= DAG
.getAnyExtOrTrunc(N0
.getOperand(0), SDLoc(N
), VT
);
11288 AddToWorklist(Op
.getNode());
11289 SDValue And
= DAG
.getZeroExtendInReg(Op
, SDLoc(N
), MinVT
);
11290 // We may safely transfer the debug info describing the truncate node over
11291 // to the equivalent and operation.
11292 DAG
.transferDbgValues(N0
, And
);
11297 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
11298 // if either of the casts is not free.
11299 if (N0
.getOpcode() == ISD::AND
&&
11300 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
11301 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
11302 (!TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
11303 N0
.getValueType()) ||
11304 !TLI
.isZExtFree(N0
.getValueType(), VT
))) {
11305 SDValue X
= N0
.getOperand(0).getOperand(0);
11306 X
= DAG
.getAnyExtOrTrunc(X
, SDLoc(X
), VT
);
11307 APInt Mask
= N0
.getConstantOperandAPInt(1).zext(VT
.getSizeInBits());
11309 return DAG
.getNode(ISD::AND
, DL
, VT
,
11310 X
, DAG
.getConstant(Mask
, DL
, VT
));
11313 // Try to simplify (zext (load x)).
11314 if (SDValue foldedExt
=
11315 tryToFoldExtOfLoad(DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
,
11316 ISD::ZEXTLOAD
, ISD::ZERO_EXTEND
))
11319 if (SDValue foldedExt
=
11320 tryToFoldExtOfMaskedLoad(DAG
, TLI
, VT
, N
, N0
, ISD::ZEXTLOAD
,
11324 // fold (zext (load x)) to multiple smaller zextloads.
11325 // Only on illegal but splittable vectors.
11326 if (SDValue ExtLoad
= CombineExtLoad(N
))
11329 // fold (zext (and/or/xor (load x), cst)) ->
11330 // (and/or/xor (zextload x), (zext cst))
11331 // Unless (and (load x) cst) will match as a zextload already and has
11332 // additional users.
11333 if ((N0
.getOpcode() == ISD::AND
|| N0
.getOpcode() == ISD::OR
||
11334 N0
.getOpcode() == ISD::XOR
) &&
11335 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
11336 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
11337 (!LegalOperations
&& TLI
.isOperationLegal(N0
.getOpcode(), VT
))) {
11338 LoadSDNode
*LN00
= cast
<LoadSDNode
>(N0
.getOperand(0));
11339 EVT MemVT
= LN00
->getMemoryVT();
11340 if (TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, VT
, MemVT
) &&
11341 LN00
->getExtensionType() != ISD::SEXTLOAD
&& LN00
->isUnindexed()) {
11342 bool DoXform
= true;
11343 SmallVector
<SDNode
*, 4> SetCCs
;
11344 if (!N0
.hasOneUse()) {
11345 if (N0
.getOpcode() == ISD::AND
) {
11346 auto *AndC
= cast
<ConstantSDNode
>(N0
.getOperand(1));
11347 EVT LoadResultTy
= AndC
->getValueType(0);
11349 if (isAndLoadExtLoad(AndC
, LN00
, LoadResultTy
, ExtVT
))
11354 DoXform
= ExtendUsesToFormExtLoad(VT
, N0
.getNode(), N0
.getOperand(0),
11355 ISD::ZERO_EXTEND
, SetCCs
, TLI
);
11357 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, SDLoc(LN00
), VT
,
11358 LN00
->getChain(), LN00
->getBasePtr(),
11359 LN00
->getMemoryVT(),
11360 LN00
->getMemOperand());
11361 APInt Mask
= N0
.getConstantOperandAPInt(1).zext(VT
.getSizeInBits());
11363 SDValue And
= DAG
.getNode(N0
.getOpcode(), DL
, VT
,
11364 ExtLoad
, DAG
.getConstant(Mask
, DL
, VT
));
11365 ExtendSetCCUses(SetCCs
, N0
.getOperand(0), ExtLoad
, ISD::ZERO_EXTEND
);
11366 bool NoReplaceTruncAnd
= !N0
.hasOneUse();
11367 bool NoReplaceTrunc
= SDValue(LN00
, 0).hasOneUse();
11369 // If N0 has multiple uses, change other uses as well.
11370 if (NoReplaceTruncAnd
) {
11372 DAG
.getNode(ISD::TRUNCATE
, DL
, N0
.getValueType(), And
);
11373 CombineTo(N0
.getNode(), TruncAnd
);
11375 if (NoReplaceTrunc
) {
11376 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN00
, 1), ExtLoad
.getValue(1));
11378 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(LN00
),
11379 LN00
->getValueType(0), ExtLoad
);
11380 CombineTo(LN00
, Trunc
, ExtLoad
.getValue(1));
11382 return SDValue(N
,0); // Return N so it doesn't get rechecked!
11387 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
11388 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
11389 if (SDValue ZExtLoad
= CombineZExtLogicopShiftLoad(N
))
11392 // Try to simplify (zext (zextload x)).
11393 if (SDValue foldedExt
= tryToFoldExtOfExtload(
11394 DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
, ISD::ZEXTLOAD
))
11397 if (SDValue V
= foldExtendedSignBitTest(N
, DAG
, LegalOperations
))
11400 if (N0
.getOpcode() == ISD::SETCC
) {
11401 // Only do this before legalize for now.
11402 if (!LegalOperations
&& VT
.isVector() &&
11403 N0
.getValueType().getVectorElementType() == MVT::i1
) {
11404 EVT N00VT
= N0
.getOperand(0).getValueType();
11405 if (getSetCCResultType(N00VT
) == N0
.getValueType())
11408 // We know that the # elements of the results is the same as the #
11409 // elements of the compare (and the # elements of the compare result for
11410 // that matter). Check to see that they are the same size. If so, we know
11411 // that the element size of the sext'd result matches the element size of
11412 // the compare operands.
11414 if (VT
.getSizeInBits() == N00VT
.getSizeInBits()) {
11415 // zext(setcc) -> zext_in_reg(vsetcc) for vectors.
11416 SDValue VSetCC
= DAG
.getNode(ISD::SETCC
, DL
, VT
, N0
.getOperand(0),
11417 N0
.getOperand(1), N0
.getOperand(2));
11418 return DAG
.getZeroExtendInReg(VSetCC
, DL
, N0
.getValueType());
11421 // If the desired elements are smaller or larger than the source
11422 // elements we can use a matching integer vector type and then
11423 // truncate/any extend followed by zext_in_reg.
11424 EVT MatchingVectorType
= N00VT
.changeVectorElementTypeToInteger();
11426 DAG
.getNode(ISD::SETCC
, DL
, MatchingVectorType
, N0
.getOperand(0),
11427 N0
.getOperand(1), N0
.getOperand(2));
11428 return DAG
.getZeroExtendInReg(DAG
.getAnyExtOrTrunc(VsetCC
, DL
, VT
), DL
,
11429 N0
.getValueType());
11432 // zext(setcc x,y,cc) -> zext(select x, y, true, false, cc)
11434 EVT N0VT
= N0
.getValueType();
11435 EVT N00VT
= N0
.getOperand(0).getValueType();
11436 if (SDValue SCC
= SimplifySelectCC(
11437 DL
, N0
.getOperand(0), N0
.getOperand(1),
11438 DAG
.getBoolConstant(true, DL
, N0VT
, N00VT
),
11439 DAG
.getBoolConstant(false, DL
, N0VT
, N00VT
),
11440 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true))
11441 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, SCC
);
11444 // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
11445 if ((N0
.getOpcode() == ISD::SHL
|| N0
.getOpcode() == ISD::SRL
) &&
11446 isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
11447 N0
.getOperand(0).getOpcode() == ISD::ZERO_EXTEND
&&
11449 SDValue ShAmt
= N0
.getOperand(1);
11450 if (N0
.getOpcode() == ISD::SHL
) {
11451 SDValue InnerZExt
= N0
.getOperand(0);
11452 // If the original shl may be shifting out bits, do not perform this
11454 unsigned KnownZeroBits
= InnerZExt
.getValueSizeInBits() -
11455 InnerZExt
.getOperand(0).getValueSizeInBits();
11456 if (cast
<ConstantSDNode
>(ShAmt
)->getAPIntValue().ugt(KnownZeroBits
))
11462 // Ensure that the shift amount is wide enough for the shifted value.
11463 if (Log2_32_Ceil(VT
.getSizeInBits()) > ShAmt
.getValueSizeInBits())
11464 ShAmt
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i32
, ShAmt
);
11466 return DAG
.getNode(N0
.getOpcode(), DL
, VT
,
11467 DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
.getOperand(0)),
11471 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
11474 if (SDValue NewCtPop
= widenCtPop(N
, DAG
))
11477 if (SDValue Res
= tryToFoldExtendSelectLoad(N
, TLI
, DAG
))
11483 SDValue
DAGCombiner::visitANY_EXTEND(SDNode
*N
) {
11484 SDValue N0
= N
->getOperand(0);
11485 EVT VT
= N
->getValueType(0);
11487 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
11490 // fold (aext (aext x)) -> (aext x)
11491 // fold (aext (zext x)) -> (zext x)
11492 // fold (aext (sext x)) -> (sext x)
11493 if (N0
.getOpcode() == ISD::ANY_EXTEND
||
11494 N0
.getOpcode() == ISD::ZERO_EXTEND
||
11495 N0
.getOpcode() == ISD::SIGN_EXTEND
)
11496 return DAG
.getNode(N0
.getOpcode(), SDLoc(N
), VT
, N0
.getOperand(0));
11498 // fold (aext (truncate (load x))) -> (aext (smaller load x))
11499 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
11500 if (N0
.getOpcode() == ISD::TRUNCATE
) {
11501 if (SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode())) {
11502 SDNode
*oye
= N0
.getOperand(0).getNode();
11503 if (NarrowLoad
.getNode() != N0
.getNode()) {
11504 CombineTo(N0
.getNode(), NarrowLoad
);
11505 // CombineTo deleted the truncate, if needed, but not what's under it.
11506 AddToWorklist(oye
);
11508 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
11512 // fold (aext (truncate x))
11513 if (N0
.getOpcode() == ISD::TRUNCATE
)
11514 return DAG
.getAnyExtOrTrunc(N0
.getOperand(0), SDLoc(N
), VT
);
11516 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
11517 // if the trunc is not free.
11518 if (N0
.getOpcode() == ISD::AND
&&
11519 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
11520 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
11521 !TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
11522 N0
.getValueType())) {
11524 SDValue X
= N0
.getOperand(0).getOperand(0);
11525 X
= DAG
.getAnyExtOrTrunc(X
, DL
, VT
);
11526 APInt Mask
= N0
.getConstantOperandAPInt(1).zext(VT
.getSizeInBits());
11527 return DAG
.getNode(ISD::AND
, DL
, VT
,
11528 X
, DAG
.getConstant(Mask
, DL
, VT
));
11531 // fold (aext (load x)) -> (aext (truncate (extload x)))
11532 // None of the supported targets knows how to perform load and any_ext
11533 // on vectors in one instruction, so attempt to fold to zext instead.
11534 if (VT
.isVector()) {
11535 // Try to simplify (zext (load x)).
11536 if (SDValue foldedExt
=
11537 tryToFoldExtOfLoad(DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
,
11538 ISD::ZEXTLOAD
, ISD::ZERO_EXTEND
))
11540 } else if (ISD::isNON_EXTLoad(N0
.getNode()) &&
11541 ISD::isUNINDEXEDLoad(N0
.getNode()) &&
11542 TLI
.isLoadExtLegal(ISD::EXTLOAD
, VT
, N0
.getValueType())) {
11543 bool DoXform
= true;
11544 SmallVector
<SDNode
*, 4> SetCCs
;
11545 if (!N0
.hasOneUse())
11547 ExtendUsesToFormExtLoad(VT
, N
, N0
, ISD::ANY_EXTEND
, SetCCs
, TLI
);
11549 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
11550 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, SDLoc(N
), VT
,
11551 LN0
->getChain(), LN0
->getBasePtr(),
11552 N0
.getValueType(), LN0
->getMemOperand());
11553 ExtendSetCCUses(SetCCs
, N0
, ExtLoad
, ISD::ANY_EXTEND
);
11554 // If the load value is used only by N, replace it via CombineTo N.
11555 bool NoReplaceTrunc
= N0
.hasOneUse();
11556 CombineTo(N
, ExtLoad
);
11557 if (NoReplaceTrunc
) {
11558 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
11559 recursivelyDeleteUnusedNodes(LN0
);
11562 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), N0
.getValueType(), ExtLoad
);
11563 CombineTo(LN0
, Trunc
, ExtLoad
.getValue(1));
11565 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
11569 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
11570 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
11571 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
11572 if (N0
.getOpcode() == ISD::LOAD
&& !ISD::isNON_EXTLoad(N0
.getNode()) &&
11573 ISD::isUNINDEXEDLoad(N0
.getNode()) && N0
.hasOneUse()) {
11574 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
11575 ISD::LoadExtType ExtType
= LN0
->getExtensionType();
11576 EVT MemVT
= LN0
->getMemoryVT();
11577 if (!LegalOperations
|| TLI
.isLoadExtLegal(ExtType
, VT
, MemVT
)) {
11578 SDValue ExtLoad
= DAG
.getExtLoad(ExtType
, SDLoc(N
),
11579 VT
, LN0
->getChain(), LN0
->getBasePtr(),
11580 MemVT
, LN0
->getMemOperand());
11581 CombineTo(N
, ExtLoad
);
11582 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
11583 recursivelyDeleteUnusedNodes(LN0
);
11584 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
11588 if (N0
.getOpcode() == ISD::SETCC
) {
11590 // aext(setcc) -> vsetcc
11591 // aext(setcc) -> truncate(vsetcc)
11592 // aext(setcc) -> aext(vsetcc)
11593 // Only do this before legalize for now.
11594 if (VT
.isVector() && !LegalOperations
) {
11595 EVT N00VT
= N0
.getOperand(0).getValueType();
11596 if (getSetCCResultType(N00VT
) == N0
.getValueType())
11599 // We know that the # elements of the results is the same as the
11600 // # elements of the compare (and the # elements of the compare result
11601 // for that matter). Check to see that they are the same size. If so,
11602 // we know that the element size of the sext'd result matches the
11603 // element size of the compare operands.
11604 if (VT
.getSizeInBits() == N00VT
.getSizeInBits())
11605 return DAG
.getSetCC(SDLoc(N
), VT
, N0
.getOperand(0),
11607 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
11609 // If the desired elements are smaller or larger than the source
11610 // elements we can use a matching integer vector type and then
11611 // truncate/any extend
11612 EVT MatchingVectorType
= N00VT
.changeVectorElementTypeToInteger();
11614 DAG
.getSetCC(SDLoc(N
), MatchingVectorType
, N0
.getOperand(0),
11616 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
11617 return DAG
.getAnyExtOrTrunc(VsetCC
, SDLoc(N
), VT
);
11620 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
11622 if (SDValue SCC
= SimplifySelectCC(
11623 DL
, N0
.getOperand(0), N0
.getOperand(1), DAG
.getConstant(1, DL
, VT
),
11624 DAG
.getConstant(0, DL
, VT
),
11625 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true))
11629 if (SDValue NewCtPop
= widenCtPop(N
, DAG
))
11632 if (SDValue Res
= tryToFoldExtendSelectLoad(N
, TLI
, DAG
))
11638 SDValue
DAGCombiner::visitAssertExt(SDNode
*N
) {
11639 unsigned Opcode
= N
->getOpcode();
11640 SDValue N0
= N
->getOperand(0);
11641 SDValue N1
= N
->getOperand(1);
11642 EVT AssertVT
= cast
<VTSDNode
>(N1
)->getVT();
11644 // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt)
11645 if (N0
.getOpcode() == Opcode
&&
11646 AssertVT
== cast
<VTSDNode
>(N0
.getOperand(1))->getVT())
11649 if (N0
.getOpcode() == ISD::TRUNCATE
&& N0
.hasOneUse() &&
11650 N0
.getOperand(0).getOpcode() == Opcode
) {
11651 // We have an assert, truncate, assert sandwich. Make one stronger assert
11652 // by asserting on the smallest asserted type to the larger source type.
11653 // This eliminates the later assert:
11654 // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN
11655 // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN
11656 SDValue BigA
= N0
.getOperand(0);
11657 EVT BigA_AssertVT
= cast
<VTSDNode
>(BigA
.getOperand(1))->getVT();
11658 assert(BigA_AssertVT
.bitsLE(N0
.getValueType()) &&
11659 "Asserting zero/sign-extended bits to a type larger than the "
11660 "truncated destination does not provide information");
11663 EVT MinAssertVT
= AssertVT
.bitsLT(BigA_AssertVT
) ? AssertVT
: BigA_AssertVT
;
11664 SDValue MinAssertVTVal
= DAG
.getValueType(MinAssertVT
);
11665 SDValue NewAssert
= DAG
.getNode(Opcode
, DL
, BigA
.getValueType(),
11666 BigA
.getOperand(0), MinAssertVTVal
);
11667 return DAG
.getNode(ISD::TRUNCATE
, DL
, N
->getValueType(0), NewAssert
);
11670 // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller
11671 // than X. Just move the AssertZext in front of the truncate and drop the
11673 if (N0
.getOpcode() == ISD::TRUNCATE
&& N0
.hasOneUse() &&
11674 N0
.getOperand(0).getOpcode() == ISD::AssertSext
&&
11675 Opcode
== ISD::AssertZext
) {
11676 SDValue BigA
= N0
.getOperand(0);
11677 EVT BigA_AssertVT
= cast
<VTSDNode
>(BigA
.getOperand(1))->getVT();
11678 assert(BigA_AssertVT
.bitsLE(N0
.getValueType()) &&
11679 "Asserting zero/sign-extended bits to a type larger than the "
11680 "truncated destination does not provide information");
11682 if (AssertVT
.bitsLT(BigA_AssertVT
)) {
11684 SDValue NewAssert
= DAG
.getNode(Opcode
, DL
, BigA
.getValueType(),
11685 BigA
.getOperand(0), N1
);
11686 return DAG
.getNode(ISD::TRUNCATE
, DL
, N
->getValueType(0), NewAssert
);
11693 SDValue
DAGCombiner::visitAssertAlign(SDNode
*N
) {
11696 Align AL
= cast
<AssertAlignSDNode
>(N
)->getAlign();
11697 SDValue N0
= N
->getOperand(0);
11699 // Fold (assertalign (assertalign x, AL0), AL1) ->
11700 // (assertalign x, max(AL0, AL1))
11701 if (auto *AAN
= dyn_cast
<AssertAlignSDNode
>(N0
))
11702 return DAG
.getAssertAlign(DL
, N0
.getOperand(0),
11703 std::max(AL
, AAN
->getAlign()));
11705 // In rare cases, there are trivial arithmetic ops in source operands. Sink
11706 // this assert down to source operands so that those arithmetic ops could be
11707 // exposed to the DAG combining.
11708 switch (N0
.getOpcode()) {
11713 unsigned AlignShift
= Log2(AL
);
11714 SDValue LHS
= N0
.getOperand(0);
11715 SDValue RHS
= N0
.getOperand(1);
11716 unsigned LHSAlignShift
= DAG
.computeKnownBits(LHS
).countMinTrailingZeros();
11717 unsigned RHSAlignShift
= DAG
.computeKnownBits(RHS
).countMinTrailingZeros();
11718 if (LHSAlignShift
>= AlignShift
|| RHSAlignShift
>= AlignShift
) {
11719 if (LHSAlignShift
< AlignShift
)
11720 LHS
= DAG
.getAssertAlign(DL
, LHS
, AL
);
11721 if (RHSAlignShift
< AlignShift
)
11722 RHS
= DAG
.getAssertAlign(DL
, RHS
, AL
);
11723 return DAG
.getNode(N0
.getOpcode(), DL
, N0
.getValueType(), LHS
, RHS
);
11732 /// If the result of a wider load is shifted to right of N bits and then
11733 /// truncated to a narrower type and where N is a multiple of number of bits of
11734 /// the narrower type, transform it to a narrower load from address + N / num of
11735 /// bits of new type. Also narrow the load if the result is masked with an AND
11736 /// to effectively produce a smaller type. If the result is to be extended, also
11737 /// fold the extension to form a extending load.
11738 SDValue
DAGCombiner::ReduceLoadWidth(SDNode
*N
) {
11739 unsigned Opc
= N
->getOpcode();
11741 ISD::LoadExtType ExtType
= ISD::NON_EXTLOAD
;
11742 SDValue N0
= N
->getOperand(0);
11743 EVT VT
= N
->getValueType(0);
11746 // This transformation isn't valid for vector loads.
11750 unsigned ShAmt
= 0;
11751 bool HasShiftedOffset
= false;
11752 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
11754 if (Opc
== ISD::SIGN_EXTEND_INREG
) {
11755 ExtType
= ISD::SEXTLOAD
;
11756 ExtVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
11757 } else if (Opc
== ISD::SRL
) {
11758 // Another special-case: SRL is basically zero-extending a narrower value,
11759 // or it maybe shifting a higher subword, half or byte into the lowest
11761 ExtType
= ISD::ZEXTLOAD
;
11762 N0
= SDValue(N
, 0);
11764 auto *LN0
= dyn_cast
<LoadSDNode
>(N0
.getOperand(0));
11765 auto *N01
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
11769 uint64_t ShiftAmt
= N01
->getZExtValue();
11770 uint64_t MemoryWidth
= LN0
->getMemoryVT().getScalarSizeInBits();
11771 if (LN0
->getExtensionType() != ISD::SEXTLOAD
&& MemoryWidth
> ShiftAmt
)
11772 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), MemoryWidth
- ShiftAmt
);
11774 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(),
11775 VT
.getScalarSizeInBits() - ShiftAmt
);
11776 } else if (Opc
== ISD::AND
) {
11777 // An AND with a constant mask is the same as a truncate + zero-extend.
11778 auto AndC
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11782 const APInt
&Mask
= AndC
->getAPIntValue();
11783 unsigned ActiveBits
= 0;
11784 if (Mask
.isMask()) {
11785 ActiveBits
= Mask
.countTrailingOnes();
11786 } else if (Mask
.isShiftedMask()) {
11787 ShAmt
= Mask
.countTrailingZeros();
11788 APInt ShiftedMask
= Mask
.lshr(ShAmt
);
11789 ActiveBits
= ShiftedMask
.countTrailingOnes();
11790 HasShiftedOffset
= true;
11794 ExtType
= ISD::ZEXTLOAD
;
11795 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
11798 if (N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse()) {
11800 if (auto *ConstShift
= dyn_cast
<ConstantSDNode
>(SRL
.getOperand(1))) {
11801 ShAmt
= ConstShift
->getZExtValue();
11802 unsigned EVTBits
= ExtVT
.getScalarSizeInBits();
11803 // Is the shift amount a multiple of size of VT?
11804 if ((ShAmt
& (EVTBits
-1)) == 0) {
11805 N0
= N0
.getOperand(0);
11806 // Is the load width a multiple of size of VT?
11807 if ((N0
.getScalarValueSizeInBits() & (EVTBits
- 1)) != 0)
11811 // At this point, we must have a load or else we can't do the transform.
11812 auto *LN0
= dyn_cast
<LoadSDNode
>(N0
);
11813 if (!LN0
) return SDValue();
11815 // Because a SRL must be assumed to *need* to zero-extend the high bits
11816 // (as opposed to anyext the high bits), we can't combine the zextload
11817 // lowering of SRL and an sextload.
11818 if (LN0
->getExtensionType() == ISD::SEXTLOAD
)
11821 // If the shift amount is larger than the input type then we're not
11822 // accessing any of the loaded bytes. If the load was a zextload/extload
11823 // then the result of the shift+trunc is zero/undef (handled elsewhere).
11824 if (ShAmt
>= LN0
->getMemoryVT().getSizeInBits())
11827 // If the SRL is only used by a masking AND, we may be able to adjust
11828 // the ExtVT to make the AND redundant.
11829 SDNode
*Mask
= *(SRL
->use_begin());
11830 if (Mask
->getOpcode() == ISD::AND
&&
11831 isa
<ConstantSDNode
>(Mask
->getOperand(1))) {
11832 const APInt
& ShiftMask
= Mask
->getConstantOperandAPInt(1);
11833 if (ShiftMask
.isMask()) {
11834 EVT MaskedVT
= EVT::getIntegerVT(*DAG
.getContext(),
11835 ShiftMask
.countTrailingOnes());
11836 // If the mask is smaller, recompute the type.
11837 if ((ExtVT
.getScalarSizeInBits() > MaskedVT
.getScalarSizeInBits()) &&
11838 TLI
.isLoadExtLegal(ExtType
, N0
.getValueType(), MaskedVT
))
11845 // If the load is shifted left (and the result isn't shifted back right),
11846 // we can fold the truncate through the shift.
11847 unsigned ShLeftAmt
= 0;
11848 if (ShAmt
== 0 && N0
.getOpcode() == ISD::SHL
&& N0
.hasOneUse() &&
11849 ExtVT
== VT
&& TLI
.isNarrowingProfitable(N0
.getValueType(), VT
)) {
11850 if (ConstantSDNode
*N01
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
11851 ShLeftAmt
= N01
->getZExtValue();
11852 N0
= N0
.getOperand(0);
11856 // If we haven't found a load, we can't narrow it.
11857 if (!isa
<LoadSDNode
>(N0
))
11860 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
11861 // Reducing the width of a volatile load is illegal. For atomics, we may be
11862 // able to reduce the width provided we never widen again. (see D66309)
11863 if (!LN0
->isSimple() ||
11864 !isLegalNarrowLdSt(LN0
, ExtType
, ExtVT
, ShAmt
))
11867 auto AdjustBigEndianShift
= [&](unsigned ShAmt
) {
11868 unsigned LVTStoreBits
=
11869 LN0
->getMemoryVT().getStoreSizeInBits().getFixedSize();
11870 unsigned EVTStoreBits
= ExtVT
.getStoreSizeInBits().getFixedSize();
11871 return LVTStoreBits
- EVTStoreBits
- ShAmt
;
11874 // For big endian targets, we need to adjust the offset to the pointer to
11875 // load the correct bytes.
11876 if (DAG
.getDataLayout().isBigEndian())
11877 ShAmt
= AdjustBigEndianShift(ShAmt
);
11879 uint64_t PtrOff
= ShAmt
/ 8;
11880 Align NewAlign
= commonAlignment(LN0
->getAlign(), PtrOff
);
11882 // The original load itself didn't wrap, so an offset within it doesn't.
11884 Flags
.setNoUnsignedWrap(true);
11885 SDValue NewPtr
= DAG
.getMemBasePlusOffset(LN0
->getBasePtr(),
11886 TypeSize::Fixed(PtrOff
), DL
, Flags
);
11887 AddToWorklist(NewPtr
.getNode());
11890 if (ExtType
== ISD::NON_EXTLOAD
)
11891 Load
= DAG
.getLoad(VT
, DL
, LN0
->getChain(), NewPtr
,
11892 LN0
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
,
11893 LN0
->getMemOperand()->getFlags(), LN0
->getAAInfo());
11895 Load
= DAG
.getExtLoad(ExtType
, DL
, VT
, LN0
->getChain(), NewPtr
,
11896 LN0
->getPointerInfo().getWithOffset(PtrOff
), ExtVT
,
11897 NewAlign
, LN0
->getMemOperand()->getFlags(),
11900 // Replace the old load's chain with the new load's chain.
11901 WorklistRemover
DeadNodes(*this);
11902 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), Load
.getValue(1));
11904 // Shift the result left, if we've swallowed a left shift.
11905 SDValue Result
= Load
;
11906 if (ShLeftAmt
!= 0) {
11907 EVT ShImmTy
= getShiftAmountTy(Result
.getValueType());
11908 if (!isUIntN(ShImmTy
.getScalarSizeInBits(), ShLeftAmt
))
11910 // If the shift amount is as large as the result size (but, presumably,
11911 // no larger than the source) then the useful bits of the result are
11912 // zero; we can't simply return the shortened shift, because the result
11913 // of that operation is undefined.
11914 if (ShLeftAmt
>= VT
.getScalarSizeInBits())
11915 Result
= DAG
.getConstant(0, DL
, VT
);
11917 Result
= DAG
.getNode(ISD::SHL
, DL
, VT
,
11918 Result
, DAG
.getConstant(ShLeftAmt
, DL
, ShImmTy
));
11921 if (HasShiftedOffset
) {
11922 // Recalculate the shift amount after it has been altered to calculate
11924 if (DAG
.getDataLayout().isBigEndian())
11925 ShAmt
= AdjustBigEndianShift(ShAmt
);
11927 // We're using a shifted mask, so the load now has an offset. This means
11928 // that data has been loaded into the lower bytes than it would have been
11929 // before, so we need to shl the loaded data into the correct position in the
11931 SDValue ShiftC
= DAG
.getConstant(ShAmt
, DL
, VT
);
11932 Result
= DAG
.getNode(ISD::SHL
, DL
, VT
, Result
, ShiftC
);
11933 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
);
11936 // Return the new loaded value.
11940 SDValue
DAGCombiner::visitSIGN_EXTEND_INREG(SDNode
*N
) {
11941 SDValue N0
= N
->getOperand(0);
11942 SDValue N1
= N
->getOperand(1);
11943 EVT VT
= N
->getValueType(0);
11944 EVT ExtVT
= cast
<VTSDNode
>(N1
)->getVT();
11945 unsigned VTBits
= VT
.getScalarSizeInBits();
11946 unsigned ExtVTBits
= ExtVT
.getScalarSizeInBits();
11948 // sext_vector_inreg(undef) = 0 because the top bit will all be the same.
11950 return DAG
.getConstant(0, SDLoc(N
), VT
);
11952 // fold (sext_in_reg c1) -> c1
11953 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
11954 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
, N0
, N1
);
11956 // If the input is already sign extended, just drop the extension.
11957 if (DAG
.ComputeNumSignBits(N0
) >= (VTBits
- ExtVTBits
+ 1))
11960 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
11961 if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
11962 ExtVT
.bitsLT(cast
<VTSDNode
>(N0
.getOperand(1))->getVT()))
11963 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
, N0
.getOperand(0),
11966 // fold (sext_in_reg (sext x)) -> (sext x)
11967 // fold (sext_in_reg (aext x)) -> (sext x)
11968 // if x is small enough or if we know that x has more than 1 sign bit and the
11969 // sign_extend_inreg is extending from one of them.
11970 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
) {
11971 SDValue N00
= N0
.getOperand(0);
11972 unsigned N00Bits
= N00
.getScalarValueSizeInBits();
11973 if ((N00Bits
<= ExtVTBits
||
11974 (N00Bits
- DAG
.ComputeNumSignBits(N00
)) < ExtVTBits
) &&
11975 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND
, VT
)))
11976 return DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(N
), VT
, N00
);
11979 // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x)
11980 // if x is small enough or if we know that x has more than 1 sign bit and the
11981 // sign_extend_inreg is extending from one of them.
11982 if (N0
.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG
||
11983 N0
.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG
||
11984 N0
.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG
) {
11985 SDValue N00
= N0
.getOperand(0);
11986 unsigned N00Bits
= N00
.getScalarValueSizeInBits();
11987 unsigned DstElts
= N0
.getValueType().getVectorMinNumElements();
11988 unsigned SrcElts
= N00
.getValueType().getVectorMinNumElements();
11989 bool IsZext
= N0
.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG
;
11990 APInt DemandedSrcElts
= APInt::getLowBitsSet(SrcElts
, DstElts
);
11991 if ((N00Bits
== ExtVTBits
||
11992 (!IsZext
&& (N00Bits
< ExtVTBits
||
11993 (N00Bits
- DAG
.ComputeNumSignBits(N00
, DemandedSrcElts
)) <
11995 (!LegalOperations
||
11996 TLI
.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG
, VT
)))
11997 return DAG
.getNode(ISD::SIGN_EXTEND_VECTOR_INREG
, SDLoc(N
), VT
, N00
);
12000 // fold (sext_in_reg (zext x)) -> (sext x)
12001 // iff we are extending the source sign bit.
12002 if (N0
.getOpcode() == ISD::ZERO_EXTEND
) {
12003 SDValue N00
= N0
.getOperand(0);
12004 if (N00
.getScalarValueSizeInBits() == ExtVTBits
&&
12005 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND
, VT
)))
12006 return DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(N
), VT
, N00
, N1
);
12009 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
12010 if (DAG
.MaskedValueIsZero(N0
, APInt::getOneBitSet(VTBits
, ExtVTBits
- 1)))
12011 return DAG
.getZeroExtendInReg(N0
, SDLoc(N
), ExtVT
);
12013 // fold operands of sext_in_reg based on knowledge that the top bits are not
12015 if (SimplifyDemandedBits(SDValue(N
, 0)))
12016 return SDValue(N
, 0);
12018 // fold (sext_in_reg (load x)) -> (smaller sextload x)
12019 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
12020 if (SDValue NarrowLoad
= ReduceLoadWidth(N
))
12023 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
12024 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
12025 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
12026 if (N0
.getOpcode() == ISD::SRL
) {
12027 if (auto *ShAmt
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1)))
12028 if (ShAmt
->getAPIntValue().ule(VTBits
- ExtVTBits
)) {
12029 // We can turn this into an SRA iff the input to the SRL is already sign
12030 // extended enough.
12031 unsigned InSignBits
= DAG
.ComputeNumSignBits(N0
.getOperand(0));
12032 if (((VTBits
- ExtVTBits
) - ShAmt
->getZExtValue()) < InSignBits
)
12033 return DAG
.getNode(ISD::SRA
, SDLoc(N
), VT
, N0
.getOperand(0),
12038 // fold (sext_inreg (extload x)) -> (sextload x)
12039 // If sextload is not supported by target, we can only do the combine when
12040 // load has one use. Doing otherwise can block folding the extload with other
12041 // extends that the target does support.
12042 if (ISD::isEXTLoad(N0
.getNode()) &&
12043 ISD::isUNINDEXEDLoad(N0
.getNode()) &&
12044 ExtVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
12045 ((!LegalOperations
&& cast
<LoadSDNode
>(N0
)->isSimple() &&
12047 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, ExtVT
))) {
12048 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
12049 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, SDLoc(N
), VT
,
12051 LN0
->getBasePtr(), ExtVT
,
12052 LN0
->getMemOperand());
12053 CombineTo(N
, ExtLoad
);
12054 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
12055 AddToWorklist(ExtLoad
.getNode());
12056 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
12059 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
12060 if (ISD::isZEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
12062 ExtVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
12063 ((!LegalOperations
&& cast
<LoadSDNode
>(N0
)->isSimple()) &&
12064 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, ExtVT
))) {
12065 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
12066 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, SDLoc(N
), VT
,
12068 LN0
->getBasePtr(), ExtVT
,
12069 LN0
->getMemOperand());
12070 CombineTo(N
, ExtLoad
);
12071 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
12072 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
12075 // fold (sext_inreg (masked_load x)) -> (sext_masked_load x)
12076 // ignore it if the masked load is already sign extended
12077 if (MaskedLoadSDNode
*Ld
= dyn_cast
<MaskedLoadSDNode
>(N0
)) {
12078 if (ExtVT
== Ld
->getMemoryVT() && N0
.hasOneUse() &&
12079 Ld
->getExtensionType() != ISD::LoadExtType::NON_EXTLOAD
&&
12080 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, ExtVT
)) {
12081 SDValue ExtMaskedLoad
= DAG
.getMaskedLoad(
12082 VT
, SDLoc(N
), Ld
->getChain(), Ld
->getBasePtr(), Ld
->getOffset(),
12083 Ld
->getMask(), Ld
->getPassThru(), ExtVT
, Ld
->getMemOperand(),
12084 Ld
->getAddressingMode(), ISD::SEXTLOAD
, Ld
->isExpandingLoad());
12085 CombineTo(N
, ExtMaskedLoad
);
12086 CombineTo(N0
.getNode(), ExtMaskedLoad
, ExtMaskedLoad
.getValue(1));
12087 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
12091 // fold (sext_inreg (masked_gather x)) -> (sext_masked_gather x)
12092 if (auto *GN0
= dyn_cast
<MaskedGatherSDNode
>(N0
)) {
12093 if (SDValue(GN0
, 0).hasOneUse() &&
12094 ExtVT
== GN0
->getMemoryVT() &&
12095 TLI
.isVectorLoadExtDesirable(SDValue(SDValue(GN0
, 0)))) {
12096 SDValue Ops
[] = {GN0
->getChain(), GN0
->getPassThru(), GN0
->getMask(),
12097 GN0
->getBasePtr(), GN0
->getIndex(), GN0
->getScale()};
12099 SDValue ExtLoad
= DAG
.getMaskedGather(
12100 DAG
.getVTList(VT
, MVT::Other
), ExtVT
, SDLoc(N
), Ops
,
12101 GN0
->getMemOperand(), GN0
->getIndexType(), ISD::SEXTLOAD
);
12103 CombineTo(N
, ExtLoad
);
12104 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
12105 AddToWorklist(ExtLoad
.getNode());
12106 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
12110 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
12111 if (ExtVTBits
<= 16 && N0
.getOpcode() == ISD::OR
) {
12112 if (SDValue BSwap
= MatchBSwapHWordLow(N0
.getNode(), N0
.getOperand(0),
12113 N0
.getOperand(1), false))
12114 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
, BSwap
, N1
);
12120 SDValue
DAGCombiner::visitEXTEND_VECTOR_INREG(SDNode
*N
) {
12121 SDValue N0
= N
->getOperand(0);
12122 EVT VT
= N
->getValueType(0);
12124 // {s/z}ext_vector_inreg(undef) = 0 because the top bits must be the same.
12126 return DAG
.getConstant(0, SDLoc(N
), VT
);
12128 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
12131 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
12132 return SDValue(N
, 0);
12137 SDValue
DAGCombiner::visitTRUNCATE(SDNode
*N
) {
12138 SDValue N0
= N
->getOperand(0);
12139 EVT VT
= N
->getValueType(0);
12140 EVT SrcVT
= N0
.getValueType();
12141 bool isLE
= DAG
.getDataLayout().isLittleEndian();
12147 // fold (truncate (truncate x)) -> (truncate x)
12148 if (N0
.getOpcode() == ISD::TRUNCATE
)
12149 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, N0
.getOperand(0));
12151 // fold (truncate c1) -> c1
12152 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
)) {
12153 SDValue C
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, N0
);
12154 if (C
.getNode() != N
)
12158 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
12159 if (N0
.getOpcode() == ISD::ZERO_EXTEND
||
12160 N0
.getOpcode() == ISD::SIGN_EXTEND
||
12161 N0
.getOpcode() == ISD::ANY_EXTEND
) {
12162 // if the source is smaller than the dest, we still need an extend.
12163 if (N0
.getOperand(0).getValueType().bitsLT(VT
))
12164 return DAG
.getNode(N0
.getOpcode(), SDLoc(N
), VT
, N0
.getOperand(0));
12165 // if the source is larger than the dest, than we just need the truncate.
12166 if (N0
.getOperand(0).getValueType().bitsGT(VT
))
12167 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, N0
.getOperand(0));
12168 // if the source and dest are the same type, we can drop both the extend
12169 // and the truncate.
12170 return N0
.getOperand(0);
12173 // If this is anyext(trunc), don't fold it, allow ourselves to be folded.
12174 if (N
->hasOneUse() && (N
->use_begin()->getOpcode() == ISD::ANY_EXTEND
))
12177 // Fold extract-and-trunc into a narrow extract. For example:
12178 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
12179 // i32 y = TRUNCATE(i64 x)
12181 // v16i8 b = BITCAST (v2i64 val)
12182 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
12184 // Note: We only run this optimization after type legalization (which often
12185 // creates this pattern) and before operation legalization after which
12186 // we need to be more careful about the vector instructions that we generate.
12187 if (N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
12188 LegalTypes
&& !LegalOperations
&& N0
->hasOneUse() && VT
!= MVT::i1
) {
12189 EVT VecTy
= N0
.getOperand(0).getValueType();
12190 EVT ExTy
= N0
.getValueType();
12191 EVT TrTy
= N
->getValueType(0);
12193 auto EltCnt
= VecTy
.getVectorElementCount();
12194 unsigned SizeRatio
= ExTy
.getSizeInBits()/TrTy
.getSizeInBits();
12195 auto NewEltCnt
= EltCnt
* SizeRatio
;
12197 EVT NVT
= EVT::getVectorVT(*DAG
.getContext(), TrTy
, NewEltCnt
);
12198 assert(NVT
.getSizeInBits() == VecTy
.getSizeInBits() && "Invalid Size");
12200 SDValue EltNo
= N0
->getOperand(1);
12201 if (isa
<ConstantSDNode
>(EltNo
) && isTypeLegal(NVT
)) {
12202 int Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
12203 int Index
= isLE
? (Elt
*SizeRatio
) : (Elt
*SizeRatio
+ (SizeRatio
-1));
12206 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, TrTy
,
12207 DAG
.getBitcast(NVT
, N0
.getOperand(0)),
12208 DAG
.getVectorIdxConstant(Index
, DL
));
12212 // trunc (select c, a, b) -> select c, (trunc a), (trunc b)
12213 if (N0
.getOpcode() == ISD::SELECT
&& N0
.hasOneUse()) {
12214 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::SELECT
, SrcVT
)) &&
12215 TLI
.isTruncateFree(SrcVT
, VT
)) {
12217 SDValue Cond
= N0
.getOperand(0);
12218 SDValue TruncOp0
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(1));
12219 SDValue TruncOp1
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(2));
12220 return DAG
.getNode(ISD::SELECT
, SDLoc(N
), VT
, Cond
, TruncOp0
, TruncOp1
);
12224 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits()
12225 if (N0
.getOpcode() == ISD::SHL
&& N0
.hasOneUse() &&
12226 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SHL
, VT
)) &&
12227 TLI
.isTypeDesirableForOp(ISD::SHL
, VT
)) {
12228 SDValue Amt
= N0
.getOperand(1);
12229 KnownBits Known
= DAG
.computeKnownBits(Amt
);
12230 unsigned Size
= VT
.getScalarSizeInBits();
12231 if (Known
.getBitWidth() - Known
.countMinLeadingZeros() <= Log2_32(Size
)) {
12233 EVT AmtVT
= TLI
.getShiftAmountTy(VT
, DAG
.getDataLayout());
12235 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(0));
12236 if (AmtVT
!= Amt
.getValueType()) {
12237 Amt
= DAG
.getZExtOrTrunc(Amt
, SL
, AmtVT
);
12238 AddToWorklist(Amt
.getNode());
12240 return DAG
.getNode(ISD::SHL
, SL
, VT
, Trunc
, Amt
);
12244 if (SDValue V
= foldSubToUSubSat(VT
, N0
.getNode()))
12247 // Attempt to pre-truncate BUILD_VECTOR sources.
12248 if (N0
.getOpcode() == ISD::BUILD_VECTOR
&& !LegalOperations
&&
12249 TLI
.isTruncateFree(SrcVT
.getScalarType(), VT
.getScalarType()) &&
12250 // Avoid creating illegal types if running after type legalizer.
12251 (!LegalTypes
|| TLI
.isTypeLegal(VT
.getScalarType()))) {
12253 EVT SVT
= VT
.getScalarType();
12254 SmallVector
<SDValue
, 8> TruncOps
;
12255 for (const SDValue
&Op
: N0
->op_values()) {
12256 SDValue TruncOp
= DAG
.getNode(ISD::TRUNCATE
, DL
, SVT
, Op
);
12257 TruncOps
.push_back(TruncOp
);
12259 return DAG
.getBuildVector(VT
, DL
, TruncOps
);
12262 // Fold a series of buildvector, bitcast, and truncate if possible.
12263 // For example fold
12264 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
12265 // (2xi32 (buildvector x, y)).
12266 if (Level
== AfterLegalizeVectorOps
&& VT
.isVector() &&
12267 N0
.getOpcode() == ISD::BITCAST
&& N0
.hasOneUse() &&
12268 N0
.getOperand(0).getOpcode() == ISD::BUILD_VECTOR
&&
12269 N0
.getOperand(0).hasOneUse()) {
12270 SDValue BuildVect
= N0
.getOperand(0);
12271 EVT BuildVectEltTy
= BuildVect
.getValueType().getVectorElementType();
12272 EVT TruncVecEltTy
= VT
.getVectorElementType();
12274 // Check that the element types match.
12275 if (BuildVectEltTy
== TruncVecEltTy
) {
12276 // Now we only need to compute the offset of the truncated elements.
12277 unsigned BuildVecNumElts
= BuildVect
.getNumOperands();
12278 unsigned TruncVecNumElts
= VT
.getVectorNumElements();
12279 unsigned TruncEltOffset
= BuildVecNumElts
/ TruncVecNumElts
;
12281 assert((BuildVecNumElts
% TruncVecNumElts
) == 0 &&
12282 "Invalid number of elements");
12284 SmallVector
<SDValue
, 8> Opnds
;
12285 for (unsigned i
= 0, e
= BuildVecNumElts
; i
!= e
; i
+= TruncEltOffset
)
12286 Opnds
.push_back(BuildVect
.getOperand(i
));
12288 return DAG
.getBuildVector(VT
, SDLoc(N
), Opnds
);
12292 // See if we can simplify the input to this truncate through knowledge that
12293 // only the low bits are being used.
12294 // For example "trunc (or (shl x, 8), y)" // -> trunc y
12295 // Currently we only perform this optimization on scalars because vectors
12296 // may have different active low bits.
12297 if (!VT
.isVector()) {
12299 APInt::getLowBitsSet(N0
.getValueSizeInBits(), VT
.getSizeInBits());
12300 if (SDValue Shorter
= DAG
.GetDemandedBits(N0
, Mask
))
12301 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, Shorter
);
12304 // fold (truncate (load x)) -> (smaller load x)
12305 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
12306 if (!LegalTypes
|| TLI
.isTypeDesirableForOp(N0
.getOpcode(), VT
)) {
12307 if (SDValue Reduced
= ReduceLoadWidth(N
))
12310 // Handle the case where the load remains an extending load even
12311 // after truncation.
12312 if (N0
.hasOneUse() && ISD::isUNINDEXEDLoad(N0
.getNode())) {
12313 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
12314 if (LN0
->isSimple() && LN0
->getMemoryVT().bitsLT(VT
)) {
12315 SDValue NewLoad
= DAG
.getExtLoad(LN0
->getExtensionType(), SDLoc(LN0
),
12316 VT
, LN0
->getChain(), LN0
->getBasePtr(),
12317 LN0
->getMemoryVT(),
12318 LN0
->getMemOperand());
12319 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), NewLoad
.getValue(1));
12325 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
12326 // where ... are all 'undef'.
12327 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&& !LegalTypes
) {
12328 SmallVector
<EVT
, 8> VTs
;
12331 unsigned NumDefs
= 0;
12333 for (unsigned i
= 0, e
= N0
.getNumOperands(); i
!= e
; ++i
) {
12334 SDValue X
= N0
.getOperand(i
);
12335 if (!X
.isUndef()) {
12340 // Stop if more than one members are non-undef.
12344 VTs
.push_back(EVT::getVectorVT(*DAG
.getContext(),
12345 VT
.getVectorElementType(),
12346 X
.getValueType().getVectorElementCount()));
12350 return DAG
.getUNDEF(VT
);
12352 if (NumDefs
== 1) {
12353 assert(V
.getNode() && "The single defined operand is empty!");
12354 SmallVector
<SDValue
, 8> Opnds
;
12355 for (unsigned i
= 0, e
= VTs
.size(); i
!= e
; ++i
) {
12357 Opnds
.push_back(DAG
.getUNDEF(VTs
[i
]));
12360 SDValue NV
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(V
), VTs
[i
], V
);
12361 AddToWorklist(NV
.getNode());
12362 Opnds
.push_back(NV
);
12364 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Opnds
);
12368 // Fold truncate of a bitcast of a vector to an extract of the low vector
12371 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx
12372 if (N0
.getOpcode() == ISD::BITCAST
&& !VT
.isVector()) {
12373 SDValue VecSrc
= N0
.getOperand(0);
12374 EVT VecSrcVT
= VecSrc
.getValueType();
12375 if (VecSrcVT
.isVector() && VecSrcVT
.getScalarType() == VT
&&
12376 (!LegalOperations
||
12377 TLI
.isOperationLegal(ISD::EXTRACT_VECTOR_ELT
, VecSrcVT
))) {
12380 unsigned Idx
= isLE
? 0 : VecSrcVT
.getVectorNumElements() - 1;
12381 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, VT
, VecSrc
,
12382 DAG
.getVectorIdxConstant(Idx
, SL
));
12386 // Simplify the operands using demanded-bits information.
12387 if (SimplifyDemandedBits(SDValue(N
, 0)))
12388 return SDValue(N
, 0);
12390 // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry)
12391 // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry)
12392 // When the adde's carry is not used.
12393 if ((N0
.getOpcode() == ISD::ADDE
|| N0
.getOpcode() == ISD::ADDCARRY
) &&
12394 N0
.hasOneUse() && !N0
.getNode()->hasAnyUseOfValue(1) &&
12395 // We only do for addcarry before legalize operation
12396 ((!LegalOperations
&& N0
.getOpcode() == ISD::ADDCARRY
) ||
12397 TLI
.isOperationLegal(N0
.getOpcode(), VT
))) {
12399 auto X
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(0));
12400 auto Y
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(1));
12401 auto VTs
= DAG
.getVTList(VT
, N0
->getValueType(1));
12402 return DAG
.getNode(N0
.getOpcode(), SL
, VTs
, X
, Y
, N0
.getOperand(2));
12405 // fold (truncate (extract_subvector(ext x))) ->
12406 // (extract_subvector x)
12407 // TODO: This can be generalized to cover cases where the truncate and extract
12408 // do not fully cancel each other out.
12409 if (!LegalTypes
&& N0
.getOpcode() == ISD::EXTRACT_SUBVECTOR
) {
12410 SDValue N00
= N0
.getOperand(0);
12411 if (N00
.getOpcode() == ISD::SIGN_EXTEND
||
12412 N00
.getOpcode() == ISD::ZERO_EXTEND
||
12413 N00
.getOpcode() == ISD::ANY_EXTEND
) {
12414 if (N00
.getOperand(0)->getValueType(0).getVectorElementType() ==
12415 VT
.getVectorElementType())
12416 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N0
->getOperand(0)), VT
,
12417 N00
.getOperand(0), N0
.getOperand(1));
12421 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
12424 // Narrow a suitable binary operation with a non-opaque constant operand by
12425 // moving it ahead of the truncate. This is limited to pre-legalization
12426 // because targets may prefer a wider type during later combines and invert
12428 switch (N0
.getOpcode()) {
12435 if (!LegalOperations
&& N0
.hasOneUse() &&
12436 (isConstantOrConstantVector(N0
.getOperand(0), true) ||
12437 isConstantOrConstantVector(N0
.getOperand(1), true))) {
12438 // TODO: We already restricted this to pre-legalization, but for vectors
12439 // we are extra cautious to not create an unsupported operation.
12440 // Target-specific changes are likely needed to avoid regressions here.
12441 if (VT
.isScalarInteger() || TLI
.isOperationLegal(N0
.getOpcode(), VT
)) {
12443 SDValue NarrowL
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N0
.getOperand(0));
12444 SDValue NarrowR
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N0
.getOperand(1));
12445 return DAG
.getNode(N0
.getOpcode(), DL
, VT
, NarrowL
, NarrowR
);
12450 // Truncate the USUBSAT only if LHS is a known zero-extension, its not
12451 // enough to know that the upper bits are zero we must ensure that we don't
12452 // introduce an extra truncate.
12453 if (!LegalOperations
&& N0
.hasOneUse() &&
12454 N0
.getOperand(0).getOpcode() == ISD::ZERO_EXTEND
&&
12455 N0
.getOperand(0).getOperand(0).getScalarValueSizeInBits() <=
12456 VT
.getScalarSizeInBits() &&
12457 hasOperation(N0
.getOpcode(), VT
)) {
12458 return getTruncatedUSUBSAT(VT
, SrcVT
, N0
.getOperand(0), N0
.getOperand(1),
12467 static SDNode
*getBuildPairElt(SDNode
*N
, unsigned i
) {
12468 SDValue Elt
= N
->getOperand(i
);
12469 if (Elt
.getOpcode() != ISD::MERGE_VALUES
)
12470 return Elt
.getNode();
12471 return Elt
.getOperand(Elt
.getResNo()).getNode();
12474 /// build_pair (load, load) -> load
12475 /// if load locations are consecutive.
12476 SDValue
DAGCombiner::CombineConsecutiveLoads(SDNode
*N
, EVT VT
) {
12477 assert(N
->getOpcode() == ISD::BUILD_PAIR
);
12479 LoadSDNode
*LD1
= dyn_cast
<LoadSDNode
>(getBuildPairElt(N
, 0));
12480 LoadSDNode
*LD2
= dyn_cast
<LoadSDNode
>(getBuildPairElt(N
, 1));
12482 // A BUILD_PAIR is always having the least significant part in elt 0 and the
12483 // most significant part in elt 1. So when combining into one large load, we
12484 // need to consider the endianness.
12485 if (DAG
.getDataLayout().isBigEndian())
12486 std::swap(LD1
, LD2
);
12488 if (!LD1
|| !LD2
|| !ISD::isNON_EXTLoad(LD1
) || !LD1
->hasOneUse() ||
12489 LD1
->getAddressSpace() != LD2
->getAddressSpace())
12491 EVT LD1VT
= LD1
->getValueType(0);
12492 unsigned LD1Bytes
= LD1VT
.getStoreSize();
12493 if (ISD::isNON_EXTLoad(LD2
) && LD2
->hasOneUse() &&
12494 DAG
.areNonVolatileConsecutiveLoads(LD2
, LD1
, LD1Bytes
, 1)) {
12495 Align Alignment
= LD1
->getAlign();
12496 Align NewAlign
= DAG
.getDataLayout().getABITypeAlign(
12497 VT
.getTypeForEVT(*DAG
.getContext()));
12499 if (NewAlign
<= Alignment
&&
12500 (!LegalOperations
|| TLI
.isOperationLegal(ISD::LOAD
, VT
)))
12501 return DAG
.getLoad(VT
, SDLoc(N
), LD1
->getChain(), LD1
->getBasePtr(),
12502 LD1
->getPointerInfo(), Alignment
);
12508 static unsigned getPPCf128HiElementSelector(const SelectionDAG
&DAG
) {
12509 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
12510 // and Lo parts; on big-endian machines it doesn't.
12511 return DAG
.getDataLayout().isBigEndian() ? 1 : 0;
12514 static SDValue
foldBitcastedFPLogic(SDNode
*N
, SelectionDAG
&DAG
,
12515 const TargetLowering
&TLI
) {
12516 // If this is not a bitcast to an FP type or if the target doesn't have
12517 // IEEE754-compliant FP logic, we're done.
12518 EVT VT
= N
->getValueType(0);
12519 if (!VT
.isFloatingPoint() || !TLI
.hasBitPreservingFPLogic(VT
))
12522 // TODO: Handle cases where the integer constant is a different scalar
12523 // bitwidth to the FP.
12524 SDValue N0
= N
->getOperand(0);
12525 EVT SourceVT
= N0
.getValueType();
12526 if (VT
.getScalarSizeInBits() != SourceVT
.getScalarSizeInBits())
12531 switch (N0
.getOpcode()) {
12533 FPOpcode
= ISD::FABS
;
12534 SignMask
= ~APInt::getSignMask(SourceVT
.getScalarSizeInBits());
12537 FPOpcode
= ISD::FNEG
;
12538 SignMask
= APInt::getSignMask(SourceVT
.getScalarSizeInBits());
12541 FPOpcode
= ISD::FABS
;
12542 SignMask
= APInt::getSignMask(SourceVT
.getScalarSizeInBits());
12548 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
12549 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
12550 // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) ->
12552 SDValue LogicOp0
= N0
.getOperand(0);
12553 ConstantSDNode
*LogicOp1
= isConstOrConstSplat(N0
.getOperand(1), true);
12554 if (LogicOp1
&& LogicOp1
->getAPIntValue() == SignMask
&&
12555 LogicOp0
.getOpcode() == ISD::BITCAST
&&
12556 LogicOp0
.getOperand(0).getValueType() == VT
) {
12557 SDValue FPOp
= DAG
.getNode(FPOpcode
, SDLoc(N
), VT
, LogicOp0
.getOperand(0));
12558 NumFPLogicOpsConv
++;
12559 if (N0
.getOpcode() == ISD::OR
)
12560 return DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
, FPOp
);
12567 SDValue
DAGCombiner::visitBITCAST(SDNode
*N
) {
12568 SDValue N0
= N
->getOperand(0);
12569 EVT VT
= N
->getValueType(0);
12572 return DAG
.getUNDEF(VT
);
12574 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
12575 // Only do this before legalize types, unless both types are integer and the
12576 // scalar type is legal. Only do this before legalize ops, since the target
12577 // maybe depending on the bitcast.
12578 // First check to see if this is all constant.
12579 // TODO: Support FP bitcasts after legalize types.
12580 if (VT
.isVector() &&
12582 (!LegalOperations
&& VT
.isInteger() && N0
.getValueType().isInteger() &&
12583 TLI
.isTypeLegal(VT
.getVectorElementType()))) &&
12584 N0
.getOpcode() == ISD::BUILD_VECTOR
&& N0
.getNode()->hasOneUse() &&
12585 cast
<BuildVectorSDNode
>(N0
)->isConstant())
12586 return ConstantFoldBITCASTofBUILD_VECTOR(N0
.getNode(),
12587 VT
.getVectorElementType());
12589 // If the input is a constant, let getNode fold it.
12590 if (isIntOrFPConstant(N0
)) {
12591 // If we can't allow illegal operations, we need to check that this is just
12592 // a fp -> int or int -> conversion and that the resulting operation will
12594 if (!LegalOperations
||
12595 (isa
<ConstantSDNode
>(N0
) && VT
.isFloatingPoint() && !VT
.isVector() &&
12596 TLI
.isOperationLegal(ISD::ConstantFP
, VT
)) ||
12597 (isa
<ConstantFPSDNode
>(N0
) && VT
.isInteger() && !VT
.isVector() &&
12598 TLI
.isOperationLegal(ISD::Constant
, VT
))) {
12599 SDValue C
= DAG
.getBitcast(VT
, N0
);
12600 if (C
.getNode() != N
)
12605 // (conv (conv x, t1), t2) -> (conv x, t2)
12606 if (N0
.getOpcode() == ISD::BITCAST
)
12607 return DAG
.getBitcast(VT
, N0
.getOperand(0));
12609 // fold (conv (load x)) -> (load (conv*)x)
12610 // If the resultant load doesn't need a higher alignment than the original!
12611 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
12612 // Do not remove the cast if the types differ in endian layout.
12613 TLI
.hasBigEndianPartOrdering(N0
.getValueType(), DAG
.getDataLayout()) ==
12614 TLI
.hasBigEndianPartOrdering(VT
, DAG
.getDataLayout()) &&
12615 // If the load is volatile, we only want to change the load type if the
12616 // resulting load is legal. Otherwise we might increase the number of
12617 // memory accesses. We don't care if the original type was legal or not
12618 // as we assume software couldn't rely on the number of accesses of an
12620 ((!LegalOperations
&& cast
<LoadSDNode
>(N0
)->isSimple()) ||
12621 TLI
.isOperationLegal(ISD::LOAD
, VT
))) {
12622 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
12624 if (TLI
.isLoadBitCastBeneficial(N0
.getValueType(), VT
, DAG
,
12625 *LN0
->getMemOperand())) {
12627 DAG
.getLoad(VT
, SDLoc(N
), LN0
->getChain(), LN0
->getBasePtr(),
12628 LN0
->getPointerInfo(), LN0
->getAlign(),
12629 LN0
->getMemOperand()->getFlags(), LN0
->getAAInfo());
12630 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), Load
.getValue(1));
12635 if (SDValue V
= foldBitcastedFPLogic(N
, DAG
, TLI
))
12638 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
12639 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
12642 // fold (bitcast (fneg x)) ->
12643 // flipbit = signbit
12644 // (xor (bitcast x) (build_pair flipbit, flipbit))
12646 // fold (bitcast (fabs x)) ->
12647 // flipbit = (and (extract_element (bitcast x), 0), signbit)
12648 // (xor (bitcast x) (build_pair flipbit, flipbit))
12649 // This often reduces constant pool loads.
12650 if (((N0
.getOpcode() == ISD::FNEG
&& !TLI
.isFNegFree(N0
.getValueType())) ||
12651 (N0
.getOpcode() == ISD::FABS
&& !TLI
.isFAbsFree(N0
.getValueType()))) &&
12652 N0
.getNode()->hasOneUse() && VT
.isInteger() &&
12653 !VT
.isVector() && !N0
.getValueType().isVector()) {
12654 SDValue NewConv
= DAG
.getBitcast(VT
, N0
.getOperand(0));
12655 AddToWorklist(NewConv
.getNode());
12658 if (N0
.getValueType() == MVT::ppcf128
&& !LegalTypes
) {
12659 assert(VT
.getSizeInBits() == 128);
12660 SDValue SignBit
= DAG
.getConstant(
12661 APInt::getSignMask(VT
.getSizeInBits() / 2), SDLoc(N0
), MVT::i64
);
12663 if (N0
.getOpcode() == ISD::FNEG
) {
12665 AddToWorklist(FlipBit
.getNode());
12667 assert(N0
.getOpcode() == ISD::FABS
);
12669 DAG
.getNode(ISD::EXTRACT_ELEMENT
, SDLoc(NewConv
), MVT::i64
, NewConv
,
12670 DAG
.getIntPtrConstant(getPPCf128HiElementSelector(DAG
),
12672 AddToWorklist(Hi
.getNode());
12673 FlipBit
= DAG
.getNode(ISD::AND
, SDLoc(N0
), MVT::i64
, Hi
, SignBit
);
12674 AddToWorklist(FlipBit
.getNode());
12677 DAG
.getNode(ISD::BUILD_PAIR
, SDLoc(N0
), VT
, FlipBit
, FlipBit
);
12678 AddToWorklist(FlipBits
.getNode());
12679 return DAG
.getNode(ISD::XOR
, DL
, VT
, NewConv
, FlipBits
);
12681 APInt SignBit
= APInt::getSignMask(VT
.getSizeInBits());
12682 if (N0
.getOpcode() == ISD::FNEG
)
12683 return DAG
.getNode(ISD::XOR
, DL
, VT
,
12684 NewConv
, DAG
.getConstant(SignBit
, DL
, VT
));
12685 assert(N0
.getOpcode() == ISD::FABS
);
12686 return DAG
.getNode(ISD::AND
, DL
, VT
,
12687 NewConv
, DAG
.getConstant(~SignBit
, DL
, VT
));
12690 // fold (bitconvert (fcopysign cst, x)) ->
12691 // (or (and (bitconvert x), sign), (and cst, (not sign)))
12692 // Note that we don't handle (copysign x, cst) because this can always be
12693 // folded to an fneg or fabs.
12696 // fold (bitcast (fcopysign cst, x)) ->
12697 // flipbit = (and (extract_element
12698 // (xor (bitcast cst), (bitcast x)), 0),
12700 // (xor (bitcast cst) (build_pair flipbit, flipbit))
12701 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse() &&
12702 isa
<ConstantFPSDNode
>(N0
.getOperand(0)) &&
12703 VT
.isInteger() && !VT
.isVector()) {
12704 unsigned OrigXWidth
= N0
.getOperand(1).getValueSizeInBits();
12705 EVT IntXVT
= EVT::getIntegerVT(*DAG
.getContext(), OrigXWidth
);
12706 if (isTypeLegal(IntXVT
)) {
12707 SDValue X
= DAG
.getBitcast(IntXVT
, N0
.getOperand(1));
12708 AddToWorklist(X
.getNode());
12710 // If X has a different width than the result/lhs, sext it or truncate it.
12711 unsigned VTWidth
= VT
.getSizeInBits();
12712 if (OrigXWidth
< VTWidth
) {
12713 X
= DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(N
), VT
, X
);
12714 AddToWorklist(X
.getNode());
12715 } else if (OrigXWidth
> VTWidth
) {
12716 // To get the sign bit in the right place, we have to shift it right
12717 // before truncating.
12719 X
= DAG
.getNode(ISD::SRL
, DL
,
12720 X
.getValueType(), X
,
12721 DAG
.getConstant(OrigXWidth
-VTWidth
, DL
,
12722 X
.getValueType()));
12723 AddToWorklist(X
.getNode());
12724 X
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(X
), VT
, X
);
12725 AddToWorklist(X
.getNode());
12728 if (N0
.getValueType() == MVT::ppcf128
&& !LegalTypes
) {
12729 APInt SignBit
= APInt::getSignMask(VT
.getSizeInBits() / 2);
12730 SDValue Cst
= DAG
.getBitcast(VT
, N0
.getOperand(0));
12731 AddToWorklist(Cst
.getNode());
12732 SDValue X
= DAG
.getBitcast(VT
, N0
.getOperand(1));
12733 AddToWorklist(X
.getNode());
12734 SDValue XorResult
= DAG
.getNode(ISD::XOR
, SDLoc(N0
), VT
, Cst
, X
);
12735 AddToWorklist(XorResult
.getNode());
12736 SDValue XorResult64
= DAG
.getNode(
12737 ISD::EXTRACT_ELEMENT
, SDLoc(XorResult
), MVT::i64
, XorResult
,
12738 DAG
.getIntPtrConstant(getPPCf128HiElementSelector(DAG
),
12739 SDLoc(XorResult
)));
12740 AddToWorklist(XorResult64
.getNode());
12742 DAG
.getNode(ISD::AND
, SDLoc(XorResult64
), MVT::i64
, XorResult64
,
12743 DAG
.getConstant(SignBit
, SDLoc(XorResult64
), MVT::i64
));
12744 AddToWorklist(FlipBit
.getNode());
12746 DAG
.getNode(ISD::BUILD_PAIR
, SDLoc(N0
), VT
, FlipBit
, FlipBit
);
12747 AddToWorklist(FlipBits
.getNode());
12748 return DAG
.getNode(ISD::XOR
, SDLoc(N
), VT
, Cst
, FlipBits
);
12750 APInt SignBit
= APInt::getSignMask(VT
.getSizeInBits());
12751 X
= DAG
.getNode(ISD::AND
, SDLoc(X
), VT
,
12752 X
, DAG
.getConstant(SignBit
, SDLoc(X
), VT
));
12753 AddToWorklist(X
.getNode());
12755 SDValue Cst
= DAG
.getBitcast(VT
, N0
.getOperand(0));
12756 Cst
= DAG
.getNode(ISD::AND
, SDLoc(Cst
), VT
,
12757 Cst
, DAG
.getConstant(~SignBit
, SDLoc(Cst
), VT
));
12758 AddToWorklist(Cst
.getNode());
12760 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, X
, Cst
);
12764 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
12765 if (N0
.getOpcode() == ISD::BUILD_PAIR
)
12766 if (SDValue CombineLD
= CombineConsecutiveLoads(N0
.getNode(), VT
))
12769 // Remove double bitcasts from shuffles - this is often a legacy of
12770 // XformToShuffleWithZero being used to combine bitmaskings (of
12771 // float vectors bitcast to integer vectors) into shuffles.
12772 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
12773 if (Level
< AfterLegalizeDAG
&& TLI
.isTypeLegal(VT
) && VT
.isVector() &&
12774 N0
->getOpcode() == ISD::VECTOR_SHUFFLE
&& N0
.hasOneUse() &&
12775 VT
.getVectorNumElements() >= N0
.getValueType().getVectorNumElements() &&
12776 !(VT
.getVectorNumElements() % N0
.getValueType().getVectorNumElements())) {
12777 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N0
);
12779 // If operands are a bitcast, peek through if it casts the original VT.
12780 // If operands are a constant, just bitcast back to original VT.
12781 auto PeekThroughBitcast
= [&](SDValue Op
) {
12782 if (Op
.getOpcode() == ISD::BITCAST
&&
12783 Op
.getOperand(0).getValueType() == VT
)
12784 return SDValue(Op
.getOperand(0));
12785 if (Op
.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op
.getNode()) ||
12786 ISD::isBuildVectorOfConstantFPSDNodes(Op
.getNode()))
12787 return DAG
.getBitcast(VT
, Op
);
12791 // FIXME: If either input vector is bitcast, try to convert the shuffle to
12792 // the result type of this bitcast. This would eliminate at least one
12793 // bitcast. See the transform in InstCombine.
12794 SDValue SV0
= PeekThroughBitcast(N0
->getOperand(0));
12795 SDValue SV1
= PeekThroughBitcast(N0
->getOperand(1));
12800 VT
.getVectorNumElements() / N0
.getValueType().getVectorNumElements();
12801 SmallVector
<int, 8> NewMask
;
12802 for (int M
: SVN
->getMask())
12803 for (int i
= 0; i
!= MaskScale
; ++i
)
12804 NewMask
.push_back(M
< 0 ? -1 : M
* MaskScale
+ i
);
12806 SDValue LegalShuffle
=
12807 TLI
.buildLegalVectorShuffle(VT
, SDLoc(N
), SV0
, SV1
, NewMask
, DAG
);
12809 return LegalShuffle
;
12815 SDValue
DAGCombiner::visitBUILD_PAIR(SDNode
*N
) {
12816 EVT VT
= N
->getValueType(0);
12817 return CombineConsecutiveLoads(N
, VT
);
12820 SDValue
DAGCombiner::visitFREEZE(SDNode
*N
) {
12821 SDValue N0
= N
->getOperand(0);
12823 // (freeze (freeze x)) -> (freeze x)
12824 if (N0
.getOpcode() == ISD::FREEZE
)
12827 // If the input is a constant, return it.
12828 if (isIntOrFPConstant(N0
))
12834 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef
12835 /// operands. DstEltVT indicates the destination element value type.
12836 SDValue
DAGCombiner::
12837 ConstantFoldBITCASTofBUILD_VECTOR(SDNode
*BV
, EVT DstEltVT
) {
12838 EVT SrcEltVT
= BV
->getValueType(0).getVectorElementType();
12840 // If this is already the right type, we're done.
12841 if (SrcEltVT
== DstEltVT
) return SDValue(BV
, 0);
12843 unsigned SrcBitSize
= SrcEltVT
.getSizeInBits();
12844 unsigned DstBitSize
= DstEltVT
.getSizeInBits();
12846 // If this is a conversion of N elements of one type to N elements of another
12847 // type, convert each element. This handles FP<->INT cases.
12848 if (SrcBitSize
== DstBitSize
) {
12849 SmallVector
<SDValue
, 8> Ops
;
12850 for (SDValue Op
: BV
->op_values()) {
12851 // If the vector element type is not legal, the BUILD_VECTOR operands
12852 // are promoted and implicitly truncated. Make that explicit here.
12853 if (Op
.getValueType() != SrcEltVT
)
12854 Op
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(BV
), SrcEltVT
, Op
);
12855 Ops
.push_back(DAG
.getBitcast(DstEltVT
, Op
));
12856 AddToWorklist(Ops
.back().getNode());
12858 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
,
12859 BV
->getValueType(0).getVectorNumElements());
12860 return DAG
.getBuildVector(VT
, SDLoc(BV
), Ops
);
12863 // Otherwise, we're growing or shrinking the elements. To avoid having to
12864 // handle annoying details of growing/shrinking FP values, we convert them to
12866 if (SrcEltVT
.isFloatingPoint()) {
12867 // Convert the input float vector to a int vector where the elements are the
12869 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), SrcEltVT
.getSizeInBits());
12870 BV
= ConstantFoldBITCASTofBUILD_VECTOR(BV
, IntVT
).getNode();
12874 // Now we know the input is an integer vector. If the output is a FP type,
12875 // convert to integer first, then to FP of the right size.
12876 if (DstEltVT
.isFloatingPoint()) {
12877 EVT TmpVT
= EVT::getIntegerVT(*DAG
.getContext(), DstEltVT
.getSizeInBits());
12878 SDNode
*Tmp
= ConstantFoldBITCASTofBUILD_VECTOR(BV
, TmpVT
).getNode();
12880 // Next, convert to FP elements of the same size.
12881 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp
, DstEltVT
);
12886 // Okay, we know the src/dst types are both integers of differing types.
12887 // Handling growing first.
12888 assert(SrcEltVT
.isInteger() && DstEltVT
.isInteger());
12889 if (SrcBitSize
< DstBitSize
) {
12890 unsigned NumInputsPerOutput
= DstBitSize
/SrcBitSize
;
12892 SmallVector
<SDValue
, 8> Ops
;
12893 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
;
12894 i
+= NumInputsPerOutput
) {
12895 bool isLE
= DAG
.getDataLayout().isLittleEndian();
12896 APInt NewBits
= APInt(DstBitSize
, 0);
12897 bool EltIsUndef
= true;
12898 for (unsigned j
= 0; j
!= NumInputsPerOutput
; ++j
) {
12899 // Shift the previously computed bits over.
12900 NewBits
<<= SrcBitSize
;
12901 SDValue Op
= BV
->getOperand(i
+ (isLE
? (NumInputsPerOutput
-j
-1) : j
));
12902 if (Op
.isUndef()) continue;
12903 EltIsUndef
= false;
12905 NewBits
|= cast
<ConstantSDNode
>(Op
)->getAPIntValue().
12906 zextOrTrunc(SrcBitSize
).zext(DstBitSize
);
12910 Ops
.push_back(DAG
.getUNDEF(DstEltVT
));
12912 Ops
.push_back(DAG
.getConstant(NewBits
, DL
, DstEltVT
));
12915 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
, Ops
.size());
12916 return DAG
.getBuildVector(VT
, DL
, Ops
);
12919 // Finally, this must be the case where we are shrinking elements: each input
12920 // turns into multiple outputs.
12921 unsigned NumOutputsPerInput
= SrcBitSize
/DstBitSize
;
12922 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
,
12923 NumOutputsPerInput
*BV
->getNumOperands());
12924 SmallVector
<SDValue
, 8> Ops
;
12926 for (const SDValue
&Op
: BV
->op_values()) {
12927 if (Op
.isUndef()) {
12928 Ops
.append(NumOutputsPerInput
, DAG
.getUNDEF(DstEltVT
));
12932 APInt OpVal
= cast
<ConstantSDNode
>(Op
)->
12933 getAPIntValue().zextOrTrunc(SrcBitSize
);
12935 for (unsigned j
= 0; j
!= NumOutputsPerInput
; ++j
) {
12936 APInt ThisVal
= OpVal
.trunc(DstBitSize
);
12937 Ops
.push_back(DAG
.getConstant(ThisVal
, DL
, DstEltVT
));
12938 OpVal
.lshrInPlace(DstBitSize
);
12941 // For big endian targets, swap the order of the pieces of each element.
12942 if (DAG
.getDataLayout().isBigEndian())
12943 std::reverse(Ops
.end()-NumOutputsPerInput
, Ops
.end());
12946 return DAG
.getBuildVector(VT
, DL
, Ops
);
12949 /// Try to perform FMA combining on a given FADD node.
12950 SDValue
DAGCombiner::visitFADDForFMACombine(SDNode
*N
) {
12951 SDValue N0
= N
->getOperand(0);
12952 SDValue N1
= N
->getOperand(1);
12953 EVT VT
= N
->getValueType(0);
12956 const TargetOptions
&Options
= DAG
.getTarget().Options
;
12958 // Floating-point multiply-add with intermediate rounding.
12959 bool HasFMAD
= (LegalOperations
&& TLI
.isFMADLegal(DAG
, N
));
12961 // Floating-point multiply-add without intermediate rounding.
12963 TLI
.isFMAFasterThanFMulAndFAdd(DAG
.getMachineFunction(), VT
) &&
12964 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FMA
, VT
));
12966 // No valid opcode, do not combine.
12967 if (!HasFMAD
&& !HasFMA
)
12970 bool CanReassociate
=
12971 Options
.UnsafeFPMath
|| N
->getFlags().hasAllowReassociation();
12972 bool AllowFusionGlobally
= (Options
.AllowFPOpFusion
== FPOpFusion::Fast
||
12973 Options
.UnsafeFPMath
|| HasFMAD
);
12974 // If the addition is not contractable, do not combine.
12975 if (!AllowFusionGlobally
&& !N
->getFlags().hasAllowContract())
12978 if (TLI
.generateFMAsInMachineCombiner(VT
, OptLevel
))
12981 // Always prefer FMAD to FMA for precision.
12982 unsigned PreferredFusedOpcode
= HasFMAD
? ISD::FMAD
: ISD::FMA
;
12983 bool Aggressive
= TLI
.enableAggressiveFMAFusion(VT
);
12985 // Is the node an FMUL and contractable either due to global flags or
12987 auto isContractableFMUL
= [AllowFusionGlobally
](SDValue N
) {
12988 if (N
.getOpcode() != ISD::FMUL
)
12990 return AllowFusionGlobally
|| N
->getFlags().hasAllowContract();
12992 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
12993 // prefer to fold the multiply with fewer uses.
12994 if (Aggressive
&& isContractableFMUL(N0
) && isContractableFMUL(N1
)) {
12995 if (N0
.getNode()->use_size() > N1
.getNode()->use_size())
12999 // fold (fadd (fmul x, y), z) -> (fma x, y, z)
13000 if (isContractableFMUL(N0
) && (Aggressive
|| N0
->hasOneUse())) {
13001 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, N0
.getOperand(0),
13002 N0
.getOperand(1), N1
);
13005 // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
13006 // Note: Commutes FADD operands.
13007 if (isContractableFMUL(N1
) && (Aggressive
|| N1
->hasOneUse())) {
13008 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, N1
.getOperand(0),
13009 N1
.getOperand(1), N0
);
13012 // fadd (fma A, B, (fmul C, D)), E --> fma A, B, (fma C, D, E)
13013 // fadd E, (fma A, B, (fmul C, D)) --> fma A, B, (fma C, D, E)
13014 // This requires reassociation because it changes the order of operations.
13016 if (CanReassociate
&& N0
.getOpcode() == PreferredFusedOpcode
&&
13017 N0
.getOperand(2).getOpcode() == ISD::FMUL
&& N0
.hasOneUse() &&
13018 N0
.getOperand(2).hasOneUse()) {
13021 } else if (CanReassociate
&& N1
.getOpcode() == PreferredFusedOpcode
&&
13022 N1
.getOperand(2).getOpcode() == ISD::FMUL
&& N1
.hasOneUse() &&
13023 N1
.getOperand(2).hasOneUse()) {
13028 SDValue A
= FMA
.getOperand(0);
13029 SDValue B
= FMA
.getOperand(1);
13030 SDValue C
= FMA
.getOperand(2).getOperand(0);
13031 SDValue D
= FMA
.getOperand(2).getOperand(1);
13032 SDValue CDE
= DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, C
, D
, E
);
13033 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, A
, B
, CDE
);
13036 // Look through FP_EXTEND nodes to do more combining.
13038 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
13039 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
13040 SDValue N00
= N0
.getOperand(0);
13041 if (isContractableFMUL(N00
) &&
13042 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13043 N00
.getValueType())) {
13044 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13045 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N00
.getOperand(0)),
13046 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N00
.getOperand(1)),
13051 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
13052 // Note: Commutes FADD operands.
13053 if (N1
.getOpcode() == ISD::FP_EXTEND
) {
13054 SDValue N10
= N1
.getOperand(0);
13055 if (isContractableFMUL(N10
) &&
13056 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13057 N10
.getValueType())) {
13058 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13059 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N10
.getOperand(0)),
13060 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N10
.getOperand(1)),
13065 // More folding opportunities when target permits.
13067 // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
13068 // -> (fma x, y, (fma (fpext u), (fpext v), z))
13069 auto FoldFAddFMAFPExtFMul
= [&](SDValue X
, SDValue Y
, SDValue U
, SDValue V
,
13071 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
, Y
,
13072 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13073 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, U
),
13074 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, V
),
13077 if (N0
.getOpcode() == PreferredFusedOpcode
) {
13078 SDValue N02
= N0
.getOperand(2);
13079 if (N02
.getOpcode() == ISD::FP_EXTEND
) {
13080 SDValue N020
= N02
.getOperand(0);
13081 if (isContractableFMUL(N020
) &&
13082 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13083 N020
.getValueType())) {
13084 return FoldFAddFMAFPExtFMul(N0
.getOperand(0), N0
.getOperand(1),
13085 N020
.getOperand(0), N020
.getOperand(1),
13091 // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
13092 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
13093 // FIXME: This turns two single-precision and one double-precision
13094 // operation into two double-precision operations, which might not be
13095 // interesting for all targets, especially GPUs.
13096 auto FoldFAddFPExtFMAFMul
= [&](SDValue X
, SDValue Y
, SDValue U
, SDValue V
,
13098 return DAG
.getNode(
13099 PreferredFusedOpcode
, SL
, VT
, DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, X
),
13100 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, Y
),
13101 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13102 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, U
),
13103 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, V
), Z
));
13105 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
13106 SDValue N00
= N0
.getOperand(0);
13107 if (N00
.getOpcode() == PreferredFusedOpcode
) {
13108 SDValue N002
= N00
.getOperand(2);
13109 if (isContractableFMUL(N002
) &&
13110 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13111 N00
.getValueType())) {
13112 return FoldFAddFPExtFMAFMul(N00
.getOperand(0), N00
.getOperand(1),
13113 N002
.getOperand(0), N002
.getOperand(1),
13119 // fold (fadd x, (fma y, z, (fpext (fmul u, v)))
13120 // -> (fma y, z, (fma (fpext u), (fpext v), x))
13121 if (N1
.getOpcode() == PreferredFusedOpcode
) {
13122 SDValue N12
= N1
.getOperand(2);
13123 if (N12
.getOpcode() == ISD::FP_EXTEND
) {
13124 SDValue N120
= N12
.getOperand(0);
13125 if (isContractableFMUL(N120
) &&
13126 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13127 N120
.getValueType())) {
13128 return FoldFAddFMAFPExtFMul(N1
.getOperand(0), N1
.getOperand(1),
13129 N120
.getOperand(0), N120
.getOperand(1),
13135 // fold (fadd x, (fpext (fma y, z, (fmul u, v)))
13136 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
13137 // FIXME: This turns two single-precision and one double-precision
13138 // operation into two double-precision operations, which might not be
13139 // interesting for all targets, especially GPUs.
13140 if (N1
.getOpcode() == ISD::FP_EXTEND
) {
13141 SDValue N10
= N1
.getOperand(0);
13142 if (N10
.getOpcode() == PreferredFusedOpcode
) {
13143 SDValue N102
= N10
.getOperand(2);
13144 if (isContractableFMUL(N102
) &&
13145 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13146 N10
.getValueType())) {
13147 return FoldFAddFPExtFMAFMul(N10
.getOperand(0), N10
.getOperand(1),
13148 N102
.getOperand(0), N102
.getOperand(1),
13158 /// Try to perform FMA combining on a given FSUB node.
13159 SDValue
DAGCombiner::visitFSUBForFMACombine(SDNode
*N
) {
13160 SDValue N0
= N
->getOperand(0);
13161 SDValue N1
= N
->getOperand(1);
13162 EVT VT
= N
->getValueType(0);
13165 const TargetOptions
&Options
= DAG
.getTarget().Options
;
13166 // Floating-point multiply-add with intermediate rounding.
13167 bool HasFMAD
= (LegalOperations
&& TLI
.isFMADLegal(DAG
, N
));
13169 // Floating-point multiply-add without intermediate rounding.
13171 TLI
.isFMAFasterThanFMulAndFAdd(DAG
.getMachineFunction(), VT
) &&
13172 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FMA
, VT
));
13174 // No valid opcode, do not combine.
13175 if (!HasFMAD
&& !HasFMA
)
13178 const SDNodeFlags Flags
= N
->getFlags();
13179 bool AllowFusionGlobally
= (Options
.AllowFPOpFusion
== FPOpFusion::Fast
||
13180 Options
.UnsafeFPMath
|| HasFMAD
);
13182 // If the subtraction is not contractable, do not combine.
13183 if (!AllowFusionGlobally
&& !N
->getFlags().hasAllowContract())
13186 if (TLI
.generateFMAsInMachineCombiner(VT
, OptLevel
))
13189 // Always prefer FMAD to FMA for precision.
13190 unsigned PreferredFusedOpcode
= HasFMAD
? ISD::FMAD
: ISD::FMA
;
13191 bool Aggressive
= TLI
.enableAggressiveFMAFusion(VT
);
13192 bool NoSignedZero
= Options
.NoSignedZerosFPMath
|| Flags
.hasNoSignedZeros();
13194 // Is the node an FMUL and contractable either due to global flags or
13196 auto isContractableFMUL
= [AllowFusionGlobally
](SDValue N
) {
13197 if (N
.getOpcode() != ISD::FMUL
)
13199 return AllowFusionGlobally
|| N
->getFlags().hasAllowContract();
13202 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
13203 auto tryToFoldXYSubZ
= [&](SDValue XY
, SDValue Z
) {
13204 if (isContractableFMUL(XY
) && (Aggressive
|| XY
->hasOneUse())) {
13205 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, XY
.getOperand(0),
13206 XY
.getOperand(1), DAG
.getNode(ISD::FNEG
, SL
, VT
, Z
));
13211 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
13212 // Note: Commutes FSUB operands.
13213 auto tryToFoldXSubYZ
= [&](SDValue X
, SDValue YZ
) {
13214 if (isContractableFMUL(YZ
) && (Aggressive
|| YZ
->hasOneUse())) {
13215 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13216 DAG
.getNode(ISD::FNEG
, SL
, VT
, YZ
.getOperand(0)),
13217 YZ
.getOperand(1), X
);
13222 // If we have two choices trying to fold (fsub (fmul u, v), (fmul x, y)),
13223 // prefer to fold the multiply with fewer uses.
13224 if (isContractableFMUL(N0
) && isContractableFMUL(N1
) &&
13225 (N0
.getNode()->use_size() > N1
.getNode()->use_size())) {
13226 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma (fneg c), d, (fmul a, b))
13227 if (SDValue V
= tryToFoldXSubYZ(N0
, N1
))
13229 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma a, b, (fneg (fmul c, d)))
13230 if (SDValue V
= tryToFoldXYSubZ(N0
, N1
))
13233 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
13234 if (SDValue V
= tryToFoldXYSubZ(N0
, N1
))
13236 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
13237 if (SDValue V
= tryToFoldXSubYZ(N0
, N1
))
13241 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
13242 if (N0
.getOpcode() == ISD::FNEG
&& isContractableFMUL(N0
.getOperand(0)) &&
13243 (Aggressive
|| (N0
->hasOneUse() && N0
.getOperand(0).hasOneUse()))) {
13244 SDValue N00
= N0
.getOperand(0).getOperand(0);
13245 SDValue N01
= N0
.getOperand(0).getOperand(1);
13246 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13247 DAG
.getNode(ISD::FNEG
, SL
, VT
, N00
), N01
,
13248 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
));
13251 // Look through FP_EXTEND nodes to do more combining.
13253 // fold (fsub (fpext (fmul x, y)), z)
13254 // -> (fma (fpext x), (fpext y), (fneg z))
13255 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
13256 SDValue N00
= N0
.getOperand(0);
13257 if (isContractableFMUL(N00
) &&
13258 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13259 N00
.getValueType())) {
13260 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13261 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N00
.getOperand(0)),
13262 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N00
.getOperand(1)),
13263 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
));
13267 // fold (fsub x, (fpext (fmul y, z)))
13268 // -> (fma (fneg (fpext y)), (fpext z), x)
13269 // Note: Commutes FSUB operands.
13270 if (N1
.getOpcode() == ISD::FP_EXTEND
) {
13271 SDValue N10
= N1
.getOperand(0);
13272 if (isContractableFMUL(N10
) &&
13273 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13274 N10
.getValueType())) {
13275 return DAG
.getNode(
13276 PreferredFusedOpcode
, SL
, VT
,
13277 DAG
.getNode(ISD::FNEG
, SL
, VT
,
13278 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N10
.getOperand(0))),
13279 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N10
.getOperand(1)), N0
);
13283 // fold (fsub (fpext (fneg (fmul, x, y))), z)
13284 // -> (fneg (fma (fpext x), (fpext y), z))
13285 // Note: This could be removed with appropriate canonicalization of the
13286 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
13287 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
13288 // from implementing the canonicalization in visitFSUB.
13289 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
13290 SDValue N00
= N0
.getOperand(0);
13291 if (N00
.getOpcode() == ISD::FNEG
) {
13292 SDValue N000
= N00
.getOperand(0);
13293 if (isContractableFMUL(N000
) &&
13294 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13295 N00
.getValueType())) {
13296 return DAG
.getNode(
13298 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13299 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N000
.getOperand(0)),
13300 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N000
.getOperand(1)),
13306 // fold (fsub (fneg (fpext (fmul, x, y))), z)
13307 // -> (fneg (fma (fpext x)), (fpext y), z)
13308 // Note: This could be removed with appropriate canonicalization of the
13309 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
13310 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
13311 // from implementing the canonicalization in visitFSUB.
13312 if (N0
.getOpcode() == ISD::FNEG
) {
13313 SDValue N00
= N0
.getOperand(0);
13314 if (N00
.getOpcode() == ISD::FP_EXTEND
) {
13315 SDValue N000
= N00
.getOperand(0);
13316 if (isContractableFMUL(N000
) &&
13317 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13318 N000
.getValueType())) {
13319 return DAG
.getNode(
13321 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13322 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N000
.getOperand(0)),
13323 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N000
.getOperand(1)),
13329 auto isReassociable
= [Options
](SDNode
*N
) {
13330 return Options
.UnsafeFPMath
|| N
->getFlags().hasAllowReassociation();
13333 auto isContractableAndReassociableFMUL
= [isContractableFMUL
,
13334 isReassociable
](SDValue N
) {
13335 return isContractableFMUL(N
) && isReassociable(N
.getNode());
13338 // More folding opportunities when target permits.
13339 if (Aggressive
&& isReassociable(N
)) {
13340 bool CanFuse
= Options
.UnsafeFPMath
|| N
->getFlags().hasAllowContract();
13341 // fold (fsub (fma x, y, (fmul u, v)), z)
13342 // -> (fma x, y (fma u, v, (fneg z)))
13343 if (CanFuse
&& N0
.getOpcode() == PreferredFusedOpcode
&&
13344 isContractableAndReassociableFMUL(N0
.getOperand(2)) &&
13345 N0
->hasOneUse() && N0
.getOperand(2)->hasOneUse()) {
13346 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, N0
.getOperand(0),
13348 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13349 N0
.getOperand(2).getOperand(0),
13350 N0
.getOperand(2).getOperand(1),
13351 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
)));
13354 // fold (fsub x, (fma y, z, (fmul u, v)))
13355 // -> (fma (fneg y), z, (fma (fneg u), v, x))
13356 if (CanFuse
&& N1
.getOpcode() == PreferredFusedOpcode
&&
13357 isContractableAndReassociableFMUL(N1
.getOperand(2)) &&
13358 N1
->hasOneUse() && NoSignedZero
) {
13359 SDValue N20
= N1
.getOperand(2).getOperand(0);
13360 SDValue N21
= N1
.getOperand(2).getOperand(1);
13361 return DAG
.getNode(
13362 PreferredFusedOpcode
, SL
, VT
,
13363 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
.getOperand(0)), N1
.getOperand(1),
13364 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13365 DAG
.getNode(ISD::FNEG
, SL
, VT
, N20
), N21
, N0
));
13368 // fold (fsub (fma x, y, (fpext (fmul u, v))), z)
13369 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
13370 if (N0
.getOpcode() == PreferredFusedOpcode
&&
13372 SDValue N02
= N0
.getOperand(2);
13373 if (N02
.getOpcode() == ISD::FP_EXTEND
) {
13374 SDValue N020
= N02
.getOperand(0);
13375 if (isContractableAndReassociableFMUL(N020
) &&
13376 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13377 N020
.getValueType())) {
13378 return DAG
.getNode(
13379 PreferredFusedOpcode
, SL
, VT
, N0
.getOperand(0), N0
.getOperand(1),
13381 PreferredFusedOpcode
, SL
, VT
,
13382 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N020
.getOperand(0)),
13383 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N020
.getOperand(1)),
13384 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
)));
13389 // fold (fsub (fpext (fma x, y, (fmul u, v))), z)
13390 // -> (fma (fpext x), (fpext y),
13391 // (fma (fpext u), (fpext v), (fneg z)))
13392 // FIXME: This turns two single-precision and one double-precision
13393 // operation into two double-precision operations, which might not be
13394 // interesting for all targets, especially GPUs.
13395 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
13396 SDValue N00
= N0
.getOperand(0);
13397 if (N00
.getOpcode() == PreferredFusedOpcode
) {
13398 SDValue N002
= N00
.getOperand(2);
13399 if (isContractableAndReassociableFMUL(N002
) &&
13400 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13401 N00
.getValueType())) {
13402 return DAG
.getNode(
13403 PreferredFusedOpcode
, SL
, VT
,
13404 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N00
.getOperand(0)),
13405 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N00
.getOperand(1)),
13407 PreferredFusedOpcode
, SL
, VT
,
13408 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N002
.getOperand(0)),
13409 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N002
.getOperand(1)),
13410 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
)));
13415 // fold (fsub x, (fma y, z, (fpext (fmul u, v))))
13416 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
13417 if (N1
.getOpcode() == PreferredFusedOpcode
&&
13418 N1
.getOperand(2).getOpcode() == ISD::FP_EXTEND
&&
13420 SDValue N120
= N1
.getOperand(2).getOperand(0);
13421 if (isContractableAndReassociableFMUL(N120
) &&
13422 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13423 N120
.getValueType())) {
13424 SDValue N1200
= N120
.getOperand(0);
13425 SDValue N1201
= N120
.getOperand(1);
13426 return DAG
.getNode(
13427 PreferredFusedOpcode
, SL
, VT
,
13428 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
.getOperand(0)), N1
.getOperand(1),
13429 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13430 DAG
.getNode(ISD::FNEG
, SL
, VT
,
13431 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N1200
)),
13432 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N1201
), N0
));
13436 // fold (fsub x, (fpext (fma y, z, (fmul u, v))))
13437 // -> (fma (fneg (fpext y)), (fpext z),
13438 // (fma (fneg (fpext u)), (fpext v), x))
13439 // FIXME: This turns two single-precision and one double-precision
13440 // operation into two double-precision operations, which might not be
13441 // interesting for all targets, especially GPUs.
13442 if (N1
.getOpcode() == ISD::FP_EXTEND
&&
13443 N1
.getOperand(0).getOpcode() == PreferredFusedOpcode
) {
13444 SDValue CvtSrc
= N1
.getOperand(0);
13445 SDValue N100
= CvtSrc
.getOperand(0);
13446 SDValue N101
= CvtSrc
.getOperand(1);
13447 SDValue N102
= CvtSrc
.getOperand(2);
13448 if (isContractableAndReassociableFMUL(N102
) &&
13449 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13450 CvtSrc
.getValueType())) {
13451 SDValue N1020
= N102
.getOperand(0);
13452 SDValue N1021
= N102
.getOperand(1);
13453 return DAG
.getNode(
13454 PreferredFusedOpcode
, SL
, VT
,
13455 DAG
.getNode(ISD::FNEG
, SL
, VT
,
13456 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N100
)),
13457 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N101
),
13458 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13459 DAG
.getNode(ISD::FNEG
, SL
, VT
,
13460 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N1020
)),
13461 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N1021
), N0
));
13469 /// Try to perform FMA combining on a given FMUL node based on the distributive
13470 /// law x * (y + 1) = x * y + x and variants thereof (commuted versions,
13471 /// subtraction instead of addition).
13472 SDValue
DAGCombiner::visitFMULForFMADistributiveCombine(SDNode
*N
) {
13473 SDValue N0
= N
->getOperand(0);
13474 SDValue N1
= N
->getOperand(1);
13475 EVT VT
= N
->getValueType(0);
13478 assert(N
->getOpcode() == ISD::FMUL
&& "Expected FMUL Operation");
13480 const TargetOptions
&Options
= DAG
.getTarget().Options
;
13482 // The transforms below are incorrect when x == 0 and y == inf, because the
13483 // intermediate multiplication produces a nan.
13484 if (!Options
.NoInfsFPMath
)
13487 // Floating-point multiply-add without intermediate rounding.
13489 (Options
.AllowFPOpFusion
== FPOpFusion::Fast
|| Options
.UnsafeFPMath
) &&
13490 TLI
.isFMAFasterThanFMulAndFAdd(DAG
.getMachineFunction(), VT
) &&
13491 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FMA
, VT
));
13493 // Floating-point multiply-add with intermediate rounding. This can result
13494 // in a less precise result due to the changed rounding order.
13495 bool HasFMAD
= Options
.UnsafeFPMath
&&
13496 (LegalOperations
&& TLI
.isFMADLegal(DAG
, N
));
13498 // No valid opcode, do not combine.
13499 if (!HasFMAD
&& !HasFMA
)
13502 // Always prefer FMAD to FMA for precision.
13503 unsigned PreferredFusedOpcode
= HasFMAD
? ISD::FMAD
: ISD::FMA
;
13504 bool Aggressive
= TLI
.enableAggressiveFMAFusion(VT
);
13506 // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y)
13507 // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y))
13508 auto FuseFADD
= [&](SDValue X
, SDValue Y
) {
13509 if (X
.getOpcode() == ISD::FADD
&& (Aggressive
|| X
->hasOneUse())) {
13510 if (auto *C
= isConstOrConstSplatFP(X
.getOperand(1), true)) {
13511 if (C
->isExactlyValue(+1.0))
13512 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
13514 if (C
->isExactlyValue(-1.0))
13515 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
13516 DAG
.getNode(ISD::FNEG
, SL
, VT
, Y
));
13522 if (SDValue FMA
= FuseFADD(N0
, N1
))
13524 if (SDValue FMA
= FuseFADD(N1
, N0
))
13527 // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y)
13528 // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y))
13529 // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y))
13530 // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y)
13531 auto FuseFSUB
= [&](SDValue X
, SDValue Y
) {
13532 if (X
.getOpcode() == ISD::FSUB
&& (Aggressive
|| X
->hasOneUse())) {
13533 if (auto *C0
= isConstOrConstSplatFP(X
.getOperand(0), true)) {
13534 if (C0
->isExactlyValue(+1.0))
13535 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13536 DAG
.getNode(ISD::FNEG
, SL
, VT
, X
.getOperand(1)), Y
,
13538 if (C0
->isExactlyValue(-1.0))
13539 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13540 DAG
.getNode(ISD::FNEG
, SL
, VT
, X
.getOperand(1)), Y
,
13541 DAG
.getNode(ISD::FNEG
, SL
, VT
, Y
));
13543 if (auto *C1
= isConstOrConstSplatFP(X
.getOperand(1), true)) {
13544 if (C1
->isExactlyValue(+1.0))
13545 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
13546 DAG
.getNode(ISD::FNEG
, SL
, VT
, Y
));
13547 if (C1
->isExactlyValue(-1.0))
13548 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
13555 if (SDValue FMA
= FuseFSUB(N0
, N1
))
13557 if (SDValue FMA
= FuseFSUB(N1
, N0
))
13563 SDValue
DAGCombiner::visitFADD(SDNode
*N
) {
13564 SDValue N0
= N
->getOperand(0);
13565 SDValue N1
= N
->getOperand(1);
13566 bool N0CFP
= DAG
.isConstantFPBuildVectorOrConstantFP(N0
);
13567 bool N1CFP
= DAG
.isConstantFPBuildVectorOrConstantFP(N1
);
13568 EVT VT
= N
->getValueType(0);
13570 const TargetOptions
&Options
= DAG
.getTarget().Options
;
13571 SDNodeFlags Flags
= N
->getFlags();
13572 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
13574 if (SDValue R
= DAG
.simplifyFPBinop(N
->getOpcode(), N0
, N1
, Flags
))
13579 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
13582 // fold (fadd c1, c2) -> c1 + c2
13583 if (N0CFP
&& N1CFP
)
13584 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
, N1
);
13586 // canonicalize constant to RHS
13587 if (N0CFP
&& !N1CFP
)
13588 return DAG
.getNode(ISD::FADD
, DL
, VT
, N1
, N0
);
13590 // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math)
13591 ConstantFPSDNode
*N1C
= isConstOrConstSplatFP(N1
, true);
13592 if (N1C
&& N1C
->isZero())
13593 if (N1C
->isNegative() || Options
.NoSignedZerosFPMath
|| Flags
.hasNoSignedZeros())
13596 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
13599 // fold (fadd A, (fneg B)) -> (fsub A, B)
13600 if (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FSUB
, VT
))
13601 if (SDValue NegN1
= TLI
.getCheaperNegatedExpression(
13602 N1
, DAG
, LegalOperations
, ForCodeSize
))
13603 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N0
, NegN1
);
13605 // fold (fadd (fneg A), B) -> (fsub B, A)
13606 if (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FSUB
, VT
))
13607 if (SDValue NegN0
= TLI
.getCheaperNegatedExpression(
13608 N0
, DAG
, LegalOperations
, ForCodeSize
))
13609 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N1
, NegN0
);
13611 auto isFMulNegTwo
= [](SDValue FMul
) {
13612 if (!FMul
.hasOneUse() || FMul
.getOpcode() != ISD::FMUL
)
13614 auto *C
= isConstOrConstSplatFP(FMul
.getOperand(1), true);
13615 return C
&& C
->isExactlyValue(-2.0);
13618 // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B)
13619 if (isFMulNegTwo(N0
)) {
13620 SDValue B
= N0
.getOperand(0);
13621 SDValue Add
= DAG
.getNode(ISD::FADD
, DL
, VT
, B
, B
);
13622 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N1
, Add
);
13624 // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B)
13625 if (isFMulNegTwo(N1
)) {
13626 SDValue B
= N1
.getOperand(0);
13627 SDValue Add
= DAG
.getNode(ISD::FADD
, DL
, VT
, B
, B
);
13628 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N0
, Add
);
13631 // No FP constant should be created after legalization as Instruction
13632 // Selection pass has a hard time dealing with FP constants.
13633 bool AllowNewConst
= (Level
< AfterLegalizeDAG
);
13635 // If nnan is enabled, fold lots of things.
13636 if ((Options
.NoNaNsFPMath
|| Flags
.hasNoNaNs()) && AllowNewConst
) {
13637 // If allowed, fold (fadd (fneg x), x) -> 0.0
13638 if (N0
.getOpcode() == ISD::FNEG
&& N0
.getOperand(0) == N1
)
13639 return DAG
.getConstantFP(0.0, DL
, VT
);
13641 // If allowed, fold (fadd x, (fneg x)) -> 0.0
13642 if (N1
.getOpcode() == ISD::FNEG
&& N1
.getOperand(0) == N0
)
13643 return DAG
.getConstantFP(0.0, DL
, VT
);
13646 // If 'unsafe math' or reassoc and nsz, fold lots of things.
13647 // TODO: break out portions of the transformations below for which Unsafe is
13648 // considered and which do not require both nsz and reassoc
13649 if (((Options
.UnsafeFPMath
&& Options
.NoSignedZerosFPMath
) ||
13650 (Flags
.hasAllowReassociation() && Flags
.hasNoSignedZeros())) &&
13652 // fadd (fadd x, c1), c2 -> fadd x, c1 + c2
13653 if (N1CFP
&& N0
.getOpcode() == ISD::FADD
&&
13654 DAG
.isConstantFPBuildVectorOrConstantFP(N0
.getOperand(1))) {
13655 SDValue NewC
= DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(1), N1
);
13656 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(0), NewC
);
13659 // We can fold chains of FADD's of the same value into multiplications.
13660 // This transform is not safe in general because we are reducing the number
13661 // of rounding steps.
13662 if (TLI
.isOperationLegalOrCustom(ISD::FMUL
, VT
) && !N0CFP
&& !N1CFP
) {
13663 if (N0
.getOpcode() == ISD::FMUL
) {
13664 bool CFP00
= DAG
.isConstantFPBuildVectorOrConstantFP(N0
.getOperand(0));
13665 bool CFP01
= DAG
.isConstantFPBuildVectorOrConstantFP(N0
.getOperand(1));
13667 // (fadd (fmul x, c), x) -> (fmul x, c+1)
13668 if (CFP01
&& !CFP00
&& N0
.getOperand(0) == N1
) {
13669 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(1),
13670 DAG
.getConstantFP(1.0, DL
, VT
));
13671 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
, NewCFP
);
13674 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
13675 if (CFP01
&& !CFP00
&& N1
.getOpcode() == ISD::FADD
&&
13676 N1
.getOperand(0) == N1
.getOperand(1) &&
13677 N0
.getOperand(0) == N1
.getOperand(0)) {
13678 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(1),
13679 DAG
.getConstantFP(2.0, DL
, VT
));
13680 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
.getOperand(0), NewCFP
);
13684 if (N1
.getOpcode() == ISD::FMUL
) {
13685 bool CFP10
= DAG
.isConstantFPBuildVectorOrConstantFP(N1
.getOperand(0));
13686 bool CFP11
= DAG
.isConstantFPBuildVectorOrConstantFP(N1
.getOperand(1));
13688 // (fadd x, (fmul x, c)) -> (fmul x, c+1)
13689 if (CFP11
&& !CFP10
&& N1
.getOperand(0) == N0
) {
13690 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N1
.getOperand(1),
13691 DAG
.getConstantFP(1.0, DL
, VT
));
13692 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, NewCFP
);
13695 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
13696 if (CFP11
&& !CFP10
&& N0
.getOpcode() == ISD::FADD
&&
13697 N0
.getOperand(0) == N0
.getOperand(1) &&
13698 N1
.getOperand(0) == N0
.getOperand(0)) {
13699 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N1
.getOperand(1),
13700 DAG
.getConstantFP(2.0, DL
, VT
));
13701 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
.getOperand(0), NewCFP
);
13705 if (N0
.getOpcode() == ISD::FADD
) {
13706 bool CFP00
= DAG
.isConstantFPBuildVectorOrConstantFP(N0
.getOperand(0));
13707 // (fadd (fadd x, x), x) -> (fmul x, 3.0)
13708 if (!CFP00
&& N0
.getOperand(0) == N0
.getOperand(1) &&
13709 (N0
.getOperand(0) == N1
)) {
13710 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
,
13711 DAG
.getConstantFP(3.0, DL
, VT
));
13715 if (N1
.getOpcode() == ISD::FADD
) {
13716 bool CFP10
= DAG
.isConstantFPBuildVectorOrConstantFP(N1
.getOperand(0));
13717 // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
13718 if (!CFP10
&& N1
.getOperand(0) == N1
.getOperand(1) &&
13719 N1
.getOperand(0) == N0
) {
13720 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
13721 DAG
.getConstantFP(3.0, DL
, VT
));
13725 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
13726 if (N0
.getOpcode() == ISD::FADD
&& N1
.getOpcode() == ISD::FADD
&&
13727 N0
.getOperand(0) == N0
.getOperand(1) &&
13728 N1
.getOperand(0) == N1
.getOperand(1) &&
13729 N0
.getOperand(0) == N1
.getOperand(0)) {
13730 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
.getOperand(0),
13731 DAG
.getConstantFP(4.0, DL
, VT
));
13734 } // enable-unsafe-fp-math
13736 // FADD -> FMA combines:
13737 if (SDValue Fused
= visitFADDForFMACombine(N
)) {
13738 AddToWorklist(Fused
.getNode());
13744 SDValue
DAGCombiner::visitSTRICT_FADD(SDNode
*N
) {
13745 SDValue Chain
= N
->getOperand(0);
13746 SDValue N0
= N
->getOperand(1);
13747 SDValue N1
= N
->getOperand(2);
13748 EVT VT
= N
->getValueType(0);
13749 EVT ChainVT
= N
->getValueType(1);
13751 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
13753 // fold (strict_fadd A, (fneg B)) -> (strict_fsub A, B)
13754 if (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::STRICT_FSUB
, VT
))
13755 if (SDValue NegN1
= TLI
.getCheaperNegatedExpression(
13756 N1
, DAG
, LegalOperations
, ForCodeSize
)) {
13757 return DAG
.getNode(ISD::STRICT_FSUB
, DL
, DAG
.getVTList(VT
, ChainVT
),
13758 {Chain
, N0
, NegN1
});
13761 // fold (strict_fadd (fneg A), B) -> (strict_fsub B, A)
13762 if (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::STRICT_FSUB
, VT
))
13763 if (SDValue NegN0
= TLI
.getCheaperNegatedExpression(
13764 N0
, DAG
, LegalOperations
, ForCodeSize
)) {
13765 return DAG
.getNode(ISD::STRICT_FSUB
, DL
, DAG
.getVTList(VT
, ChainVT
),
13766 {Chain
, N1
, NegN0
});
13771 SDValue
DAGCombiner::visitFSUB(SDNode
*N
) {
13772 SDValue N0
= N
->getOperand(0);
13773 SDValue N1
= N
->getOperand(1);
13774 ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
, true);
13775 ConstantFPSDNode
*N1CFP
= isConstOrConstSplatFP(N1
, true);
13776 EVT VT
= N
->getValueType(0);
13778 const TargetOptions
&Options
= DAG
.getTarget().Options
;
13779 const SDNodeFlags Flags
= N
->getFlags();
13780 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
13782 if (SDValue R
= DAG
.simplifyFPBinop(N
->getOpcode(), N0
, N1
, Flags
))
13787 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
13790 // fold (fsub c1, c2) -> c1-c2
13791 if (N0CFP
&& N1CFP
)
13792 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N0
, N1
);
13794 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
13797 // (fsub A, 0) -> A
13798 if (N1CFP
&& N1CFP
->isZero()) {
13799 if (!N1CFP
->isNegative() || Options
.NoSignedZerosFPMath
||
13800 Flags
.hasNoSignedZeros()) {
13806 // (fsub x, x) -> 0.0
13807 if (Options
.NoNaNsFPMath
|| Flags
.hasNoNaNs())
13808 return DAG
.getConstantFP(0.0f
, DL
, VT
);
13811 // (fsub -0.0, N1) -> -N1
13812 if (N0CFP
&& N0CFP
->isZero()) {
13813 if (N0CFP
->isNegative() ||
13814 (Options
.NoSignedZerosFPMath
|| Flags
.hasNoSignedZeros())) {
13815 // We cannot replace an FSUB(+-0.0,X) with FNEG(X) when denormals are
13816 // flushed to zero, unless all users treat denorms as zero (DAZ).
13817 // FIXME: This transform will change the sign of a NaN and the behavior
13818 // of a signaling NaN. It is only valid when a NoNaN flag is present.
13819 DenormalMode DenormMode
= DAG
.getDenormalMode(VT
);
13820 if (DenormMode
== DenormalMode::getIEEE()) {
13821 if (SDValue NegN1
=
13822 TLI
.getNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
))
13824 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
13825 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
);
13830 if (((Options
.UnsafeFPMath
&& Options
.NoSignedZerosFPMath
) ||
13831 (Flags
.hasAllowReassociation() && Flags
.hasNoSignedZeros())) &&
13832 N1
.getOpcode() == ISD::FADD
) {
13833 // X - (X + Y) -> -Y
13834 if (N0
== N1
->getOperand(0))
13835 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
->getOperand(1));
13836 // X - (Y + X) -> -Y
13837 if (N0
== N1
->getOperand(1))
13838 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
->getOperand(0));
13841 // fold (fsub A, (fneg B)) -> (fadd A, B)
13842 if (SDValue NegN1
=
13843 TLI
.getNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
))
13844 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
, NegN1
);
13846 // FSUB -> FMA combines:
13847 if (SDValue Fused
= visitFSUBForFMACombine(N
)) {
13848 AddToWorklist(Fused
.getNode());
13855 SDValue
DAGCombiner::visitFMUL(SDNode
*N
) {
13856 SDValue N0
= N
->getOperand(0);
13857 SDValue N1
= N
->getOperand(1);
13858 ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
, true);
13859 ConstantFPSDNode
*N1CFP
= isConstOrConstSplatFP(N1
, true);
13860 EVT VT
= N
->getValueType(0);
13862 const TargetOptions
&Options
= DAG
.getTarget().Options
;
13863 const SDNodeFlags Flags
= N
->getFlags();
13864 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
13866 if (SDValue R
= DAG
.simplifyFPBinop(N
->getOpcode(), N0
, N1
, Flags
))
13870 if (VT
.isVector()) {
13871 // This just handles C1 * C2 for vectors. Other vector folds are below.
13872 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
13876 // fold (fmul c1, c2) -> c1*c2
13877 if (N0CFP
&& N1CFP
)
13878 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, N1
);
13880 // canonicalize constant to RHS
13881 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
) &&
13882 !DAG
.isConstantFPBuildVectorOrConstantFP(N1
))
13883 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
, N0
);
13885 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
13888 if (Options
.UnsafeFPMath
|| Flags
.hasAllowReassociation()) {
13889 // fmul (fmul X, C1), C2 -> fmul X, C1 * C2
13890 if (DAG
.isConstantFPBuildVectorOrConstantFP(N1
) &&
13891 N0
.getOpcode() == ISD::FMUL
) {
13892 SDValue N00
= N0
.getOperand(0);
13893 SDValue N01
= N0
.getOperand(1);
13894 // Avoid an infinite loop by making sure that N00 is not a constant
13895 // (the inner multiply has not been constant folded yet).
13896 if (DAG
.isConstantFPBuildVectorOrConstantFP(N01
) &&
13897 !DAG
.isConstantFPBuildVectorOrConstantFP(N00
)) {
13898 SDValue MulConsts
= DAG
.getNode(ISD::FMUL
, DL
, VT
, N01
, N1
);
13899 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N00
, MulConsts
);
13903 // Match a special-case: we convert X * 2.0 into fadd.
13904 // fmul (fadd X, X), C -> fmul X, 2.0 * C
13905 if (N0
.getOpcode() == ISD::FADD
&& N0
.hasOneUse() &&
13906 N0
.getOperand(0) == N0
.getOperand(1)) {
13907 const SDValue Two
= DAG
.getConstantFP(2.0, DL
, VT
);
13908 SDValue MulConsts
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Two
, N1
);
13909 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
.getOperand(0), MulConsts
);
13913 // fold (fmul X, 2.0) -> (fadd X, X)
13914 if (N1CFP
&& N1CFP
->isExactlyValue(+2.0))
13915 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
, N0
);
13917 // fold (fmul X, -1.0) -> (fneg X)
13918 if (N1CFP
&& N1CFP
->isExactlyValue(-1.0))
13919 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
13920 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N0
);
13922 // -N0 * -N1 --> N0 * N1
13923 TargetLowering::NegatibleCost CostN0
=
13924 TargetLowering::NegatibleCost::Expensive
;
13925 TargetLowering::NegatibleCost CostN1
=
13926 TargetLowering::NegatibleCost::Expensive
;
13928 TLI
.getNegatedExpression(N0
, DAG
, LegalOperations
, ForCodeSize
, CostN0
);
13930 TLI
.getNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
, CostN1
);
13931 if (NegN0
&& NegN1
&&
13932 (CostN0
== TargetLowering::NegatibleCost::Cheaper
||
13933 CostN1
== TargetLowering::NegatibleCost::Cheaper
))
13934 return DAG
.getNode(ISD::FMUL
, DL
, VT
, NegN0
, NegN1
);
13936 // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X))
13937 // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X)
13938 if (Flags
.hasNoNaNs() && Flags
.hasNoSignedZeros() &&
13939 (N0
.getOpcode() == ISD::SELECT
|| N1
.getOpcode() == ISD::SELECT
) &&
13940 TLI
.isOperationLegal(ISD::FABS
, VT
)) {
13941 SDValue Select
= N0
, X
= N1
;
13942 if (Select
.getOpcode() != ISD::SELECT
)
13943 std::swap(Select
, X
);
13945 SDValue Cond
= Select
.getOperand(0);
13946 auto TrueOpnd
= dyn_cast
<ConstantFPSDNode
>(Select
.getOperand(1));
13947 auto FalseOpnd
= dyn_cast
<ConstantFPSDNode
>(Select
.getOperand(2));
13949 if (TrueOpnd
&& FalseOpnd
&&
13950 Cond
.getOpcode() == ISD::SETCC
&& Cond
.getOperand(0) == X
&&
13951 isa
<ConstantFPSDNode
>(Cond
.getOperand(1)) &&
13952 cast
<ConstantFPSDNode
>(Cond
.getOperand(1))->isExactlyValue(0.0)) {
13953 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
13962 std::swap(TrueOpnd
, FalseOpnd
);
13970 if (TrueOpnd
->isExactlyValue(-1.0) && FalseOpnd
->isExactlyValue(1.0) &&
13971 TLI
.isOperationLegal(ISD::FNEG
, VT
))
13972 return DAG
.getNode(ISD::FNEG
, DL
, VT
,
13973 DAG
.getNode(ISD::FABS
, DL
, VT
, X
));
13974 if (TrueOpnd
->isExactlyValue(1.0) && FalseOpnd
->isExactlyValue(-1.0))
13975 return DAG
.getNode(ISD::FABS
, DL
, VT
, X
);
13982 // FMUL -> FMA combines:
13983 if (SDValue Fused
= visitFMULForFMADistributiveCombine(N
)) {
13984 AddToWorklist(Fused
.getNode());
13991 SDValue
DAGCombiner::visitFMA(SDNode
*N
) {
13992 SDValue N0
= N
->getOperand(0);
13993 SDValue N1
= N
->getOperand(1);
13994 SDValue N2
= N
->getOperand(2);
13995 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
13996 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
13997 EVT VT
= N
->getValueType(0);
13999 const TargetOptions
&Options
= DAG
.getTarget().Options
;
14000 // FMA nodes have flags that propagate to the created nodes.
14001 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
14003 bool UnsafeFPMath
=
14004 Options
.UnsafeFPMath
|| N
->getFlags().hasAllowReassociation();
14006 // Constant fold FMA.
14007 if (isa
<ConstantFPSDNode
>(N0
) &&
14008 isa
<ConstantFPSDNode
>(N1
) &&
14009 isa
<ConstantFPSDNode
>(N2
)) {
14010 return DAG
.getNode(ISD::FMA
, DL
, VT
, N0
, N1
, N2
);
14013 // (-N0 * -N1) + N2 --> (N0 * N1) + N2
14014 TargetLowering::NegatibleCost CostN0
=
14015 TargetLowering::NegatibleCost::Expensive
;
14016 TargetLowering::NegatibleCost CostN1
=
14017 TargetLowering::NegatibleCost::Expensive
;
14019 TLI
.getNegatedExpression(N0
, DAG
, LegalOperations
, ForCodeSize
, CostN0
);
14021 TLI
.getNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
, CostN1
);
14022 if (NegN0
&& NegN1
&&
14023 (CostN0
== TargetLowering::NegatibleCost::Cheaper
||
14024 CostN1
== TargetLowering::NegatibleCost::Cheaper
))
14025 return DAG
.getNode(ISD::FMA
, DL
, VT
, NegN0
, NegN1
, N2
);
14027 if (UnsafeFPMath
) {
14028 if (N0CFP
&& N0CFP
->isZero())
14030 if (N1CFP
&& N1CFP
->isZero())
14034 if (N0CFP
&& N0CFP
->isExactlyValue(1.0))
14035 return DAG
.getNode(ISD::FADD
, SDLoc(N
), VT
, N1
, N2
);
14036 if (N1CFP
&& N1CFP
->isExactlyValue(1.0))
14037 return DAG
.getNode(ISD::FADD
, SDLoc(N
), VT
, N0
, N2
);
14039 // Canonicalize (fma c, x, y) -> (fma x, c, y)
14040 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
) &&
14041 !DAG
.isConstantFPBuildVectorOrConstantFP(N1
))
14042 return DAG
.getNode(ISD::FMA
, SDLoc(N
), VT
, N1
, N0
, N2
);
14044 if (UnsafeFPMath
) {
14045 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
14046 if (N2
.getOpcode() == ISD::FMUL
&& N0
== N2
.getOperand(0) &&
14047 DAG
.isConstantFPBuildVectorOrConstantFP(N1
) &&
14048 DAG
.isConstantFPBuildVectorOrConstantFP(N2
.getOperand(1))) {
14049 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
14050 DAG
.getNode(ISD::FADD
, DL
, VT
, N1
, N2
.getOperand(1)));
14053 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
14054 if (N0
.getOpcode() == ISD::FMUL
&&
14055 DAG
.isConstantFPBuildVectorOrConstantFP(N1
) &&
14056 DAG
.isConstantFPBuildVectorOrConstantFP(N0
.getOperand(1))) {
14057 return DAG
.getNode(ISD::FMA
, DL
, VT
, N0
.getOperand(0),
14058 DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
, N0
.getOperand(1)),
14063 // (fma x, -1, y) -> (fadd (fneg x), y)
14065 if (N1CFP
->isExactlyValue(1.0))
14066 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
, N2
);
14068 if (N1CFP
->isExactlyValue(-1.0) &&
14069 (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))) {
14070 SDValue RHSNeg
= DAG
.getNode(ISD::FNEG
, DL
, VT
, N0
);
14071 AddToWorklist(RHSNeg
.getNode());
14072 return DAG
.getNode(ISD::FADD
, DL
, VT
, N2
, RHSNeg
);
14075 // fma (fneg x), K, y -> fma x -K, y
14076 if (N0
.getOpcode() == ISD::FNEG
&&
14077 (TLI
.isOperationLegal(ISD::ConstantFP
, VT
) ||
14078 (N1
.hasOneUse() && !TLI
.isFPImmLegal(N1CFP
->getValueAPF(), VT
,
14080 return DAG
.getNode(ISD::FMA
, DL
, VT
, N0
.getOperand(0),
14081 DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
), N2
);
14085 if (UnsafeFPMath
) {
14086 // (fma x, c, x) -> (fmul x, (c+1))
14087 if (N1CFP
&& N0
== N2
) {
14088 return DAG
.getNode(
14089 ISD::FMUL
, DL
, VT
, N0
,
14090 DAG
.getNode(ISD::FADD
, DL
, VT
, N1
, DAG
.getConstantFP(1.0, DL
, VT
)));
14093 // (fma x, c, (fneg x)) -> (fmul x, (c-1))
14094 if (N1CFP
&& N2
.getOpcode() == ISD::FNEG
&& N2
.getOperand(0) == N0
) {
14095 return DAG
.getNode(
14096 ISD::FMUL
, DL
, VT
, N0
,
14097 DAG
.getNode(ISD::FADD
, DL
, VT
, N1
, DAG
.getConstantFP(-1.0, DL
, VT
)));
14101 // fold ((fma (fneg X), Y, (fneg Z)) -> fneg (fma X, Y, Z))
14102 // fold ((fma X, (fneg Y), (fneg Z)) -> fneg (fma X, Y, Z))
14103 if (!TLI
.isFNegFree(VT
))
14104 if (SDValue Neg
= TLI
.getCheaperNegatedExpression(
14105 SDValue(N
, 0), DAG
, LegalOperations
, ForCodeSize
))
14106 return DAG
.getNode(ISD::FNEG
, DL
, VT
, Neg
);
14110 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
14112 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
14113 // Notice that this is not always beneficial. One reason is different targets
14114 // may have different costs for FDIV and FMUL, so sometimes the cost of two
14115 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
14116 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
14117 SDValue
DAGCombiner::combineRepeatedFPDivisors(SDNode
*N
) {
14118 // TODO: Limit this transform based on optsize/minsize - it always creates at
14119 // least 1 extra instruction. But the perf win may be substantial enough
14120 // that only minsize should restrict this.
14121 bool UnsafeMath
= DAG
.getTarget().Options
.UnsafeFPMath
;
14122 const SDNodeFlags Flags
= N
->getFlags();
14123 if (LegalDAG
|| (!UnsafeMath
&& !Flags
.hasAllowReciprocal()))
14126 // Skip if current node is a reciprocal/fneg-reciprocal.
14127 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
14128 ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
, /* AllowUndefs */ true);
14129 if (N0CFP
&& (N0CFP
->isExactlyValue(1.0) || N0CFP
->isExactlyValue(-1.0)))
14132 // Exit early if the target does not want this transform or if there can't
14133 // possibly be enough uses of the divisor to make the transform worthwhile.
14134 unsigned MinUses
= TLI
.combineRepeatedFPDivisors();
14136 // For splat vectors, scale the number of uses by the splat factor. If we can
14137 // convert the division into a scalar op, that will likely be much faster.
14138 unsigned NumElts
= 1;
14139 EVT VT
= N
->getValueType(0);
14140 if (VT
.isVector() && DAG
.isSplatValue(N1
))
14141 NumElts
= VT
.getVectorNumElements();
14143 if (!MinUses
|| (N1
->use_size() * NumElts
) < MinUses
)
14146 // Find all FDIV users of the same divisor.
14147 // Use a set because duplicates may be present in the user list.
14148 SetVector
<SDNode
*> Users
;
14149 for (auto *U
: N1
->uses()) {
14150 if (U
->getOpcode() == ISD::FDIV
&& U
->getOperand(1) == N1
) {
14151 // Skip X/sqrt(X) that has not been simplified to sqrt(X) yet.
14152 if (U
->getOperand(1).getOpcode() == ISD::FSQRT
&&
14153 U
->getOperand(0) == U
->getOperand(1).getOperand(0) &&
14154 U
->getFlags().hasAllowReassociation() &&
14155 U
->getFlags().hasNoSignedZeros())
14158 // This division is eligible for optimization only if global unsafe math
14159 // is enabled or if this division allows reciprocal formation.
14160 if (UnsafeMath
|| U
->getFlags().hasAllowReciprocal())
14165 // Now that we have the actual number of divisor uses, make sure it meets
14166 // the minimum threshold specified by the target.
14167 if ((Users
.size() * NumElts
) < MinUses
)
14171 SDValue FPOne
= DAG
.getConstantFP(1.0, DL
, VT
);
14172 SDValue Reciprocal
= DAG
.getNode(ISD::FDIV
, DL
, VT
, FPOne
, N1
, Flags
);
14174 // Dividend / Divisor -> Dividend * Reciprocal
14175 for (auto *U
: Users
) {
14176 SDValue Dividend
= U
->getOperand(0);
14177 if (Dividend
!= FPOne
) {
14178 SDValue NewNode
= DAG
.getNode(ISD::FMUL
, SDLoc(U
), VT
, Dividend
,
14179 Reciprocal
, Flags
);
14180 CombineTo(U
, NewNode
);
14181 } else if (U
!= Reciprocal
.getNode()) {
14182 // In the absence of fast-math-flags, this user node is always the
14183 // same node as Reciprocal, but with FMF they may be different nodes.
14184 CombineTo(U
, Reciprocal
);
14187 return SDValue(N
, 0); // N was replaced.
14190 SDValue
DAGCombiner::visitFDIV(SDNode
*N
) {
14191 SDValue N0
= N
->getOperand(0);
14192 SDValue N1
= N
->getOperand(1);
14193 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
14194 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
14195 EVT VT
= N
->getValueType(0);
14197 const TargetOptions
&Options
= DAG
.getTarget().Options
;
14198 SDNodeFlags Flags
= N
->getFlags();
14199 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
14201 if (SDValue R
= DAG
.simplifyFPBinop(N
->getOpcode(), N0
, N1
, Flags
))
14206 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
14209 // fold (fdiv c1, c2) -> c1/c2
14210 if (N0CFP
&& N1CFP
)
14211 return DAG
.getNode(ISD::FDIV
, SDLoc(N
), VT
, N0
, N1
);
14213 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
14216 if (SDValue V
= combineRepeatedFPDivisors(N
))
14219 if (Options
.UnsafeFPMath
|| Flags
.hasAllowReciprocal()) {
14220 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
14222 // Compute the reciprocal 1.0 / c2.
14223 const APFloat
&N1APF
= N1CFP
->getValueAPF();
14224 APFloat
Recip(N1APF
.getSemantics(), 1); // 1.0
14225 APFloat::opStatus st
= Recip
.divide(N1APF
, APFloat::rmNearestTiesToEven
);
14226 // Only do the transform if the reciprocal is a legal fp immediate that
14227 // isn't too nasty (eg NaN, denormal, ...).
14228 if ((st
== APFloat::opOK
|| st
== APFloat::opInexact
) && // Not too nasty
14229 (!LegalOperations
||
14230 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
14231 // backend)... we should handle this gracefully after Legalize.
14232 // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) ||
14233 TLI
.isOperationLegal(ISD::ConstantFP
, VT
) ||
14234 TLI
.isFPImmLegal(Recip
, VT
, ForCodeSize
)))
14235 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
14236 DAG
.getConstantFP(Recip
, DL
, VT
));
14239 // If this FDIV is part of a reciprocal square root, it may be folded
14240 // into a target-specific square root estimate instruction.
14241 if (N1
.getOpcode() == ISD::FSQRT
) {
14242 if (SDValue RV
= buildRsqrtEstimate(N1
.getOperand(0), Flags
))
14243 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
);
14244 } else if (N1
.getOpcode() == ISD::FP_EXTEND
&&
14245 N1
.getOperand(0).getOpcode() == ISD::FSQRT
) {
14247 buildRsqrtEstimate(N1
.getOperand(0).getOperand(0), Flags
)) {
14248 RV
= DAG
.getNode(ISD::FP_EXTEND
, SDLoc(N1
), VT
, RV
);
14249 AddToWorklist(RV
.getNode());
14250 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
);
14252 } else if (N1
.getOpcode() == ISD::FP_ROUND
&&
14253 N1
.getOperand(0).getOpcode() == ISD::FSQRT
) {
14255 buildRsqrtEstimate(N1
.getOperand(0).getOperand(0), Flags
)) {
14256 RV
= DAG
.getNode(ISD::FP_ROUND
, SDLoc(N1
), VT
, RV
, N1
.getOperand(1));
14257 AddToWorklist(RV
.getNode());
14258 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
);
14260 } else if (N1
.getOpcode() == ISD::FMUL
) {
14261 // Look through an FMUL. Even though this won't remove the FDIV directly,
14262 // it's still worthwhile to get rid of the FSQRT if possible.
14264 if (N1
.getOperand(0).getOpcode() == ISD::FSQRT
) {
14265 Sqrt
= N1
.getOperand(0);
14266 Y
= N1
.getOperand(1);
14267 } else if (N1
.getOperand(1).getOpcode() == ISD::FSQRT
) {
14268 Sqrt
= N1
.getOperand(1);
14269 Y
= N1
.getOperand(0);
14271 if (Sqrt
.getNode()) {
14272 // If the other multiply operand is known positive, pull it into the
14273 // sqrt. That will eliminate the division if we convert to an estimate.
14274 if (Flags
.hasAllowReassociation() && N1
.hasOneUse() &&
14275 N1
->getFlags().hasAllowReassociation() && Sqrt
.hasOneUse()) {
14277 if (Y
.getOpcode() == ISD::FABS
&& Y
.hasOneUse())
14278 A
= Y
.getOperand(0);
14279 else if (Y
== Sqrt
.getOperand(0))
14282 // X / (fabs(A) * sqrt(Z)) --> X / sqrt(A*A*Z) --> X * rsqrt(A*A*Z)
14283 // X / (A * sqrt(A)) --> X / sqrt(A*A*A) --> X * rsqrt(A*A*A)
14284 SDValue AA
= DAG
.getNode(ISD::FMUL
, DL
, VT
, A
, A
);
14286 DAG
.getNode(ISD::FMUL
, DL
, VT
, AA
, Sqrt
.getOperand(0));
14287 if (SDValue Rsqrt
= buildRsqrtEstimate(AAZ
, Flags
))
14288 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, Rsqrt
);
14290 // Estimate creation failed. Clean up speculatively created nodes.
14291 recursivelyDeleteUnusedNodes(AAZ
.getNode());
14295 // We found a FSQRT, so try to make this fold:
14296 // X / (Y * sqrt(Z)) -> X * (rsqrt(Z) / Y)
14297 if (SDValue Rsqrt
= buildRsqrtEstimate(Sqrt
.getOperand(0), Flags
)) {
14298 SDValue Div
= DAG
.getNode(ISD::FDIV
, SDLoc(N1
), VT
, Rsqrt
, Y
);
14299 AddToWorklist(Div
.getNode());
14300 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, Div
);
14305 // Fold into a reciprocal estimate and multiply instead of a real divide.
14306 if (Options
.NoInfsFPMath
|| Flags
.hasNoInfs())
14307 if (SDValue RV
= BuildDivEstimate(N0
, N1
, Flags
))
14311 // Fold X/Sqrt(X) -> Sqrt(X)
14312 if ((Options
.NoSignedZerosFPMath
|| Flags
.hasNoSignedZeros()) &&
14313 (Options
.UnsafeFPMath
|| Flags
.hasAllowReassociation()))
14314 if (N1
.getOpcode() == ISD::FSQRT
&& N0
== N1
.getOperand(0))
14317 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
14318 TargetLowering::NegatibleCost CostN0
=
14319 TargetLowering::NegatibleCost::Expensive
;
14320 TargetLowering::NegatibleCost CostN1
=
14321 TargetLowering::NegatibleCost::Expensive
;
14323 TLI
.getNegatedExpression(N0
, DAG
, LegalOperations
, ForCodeSize
, CostN0
);
14325 TLI
.getNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
, CostN1
);
14326 if (NegN0
&& NegN1
&&
14327 (CostN0
== TargetLowering::NegatibleCost::Cheaper
||
14328 CostN1
== TargetLowering::NegatibleCost::Cheaper
))
14329 return DAG
.getNode(ISD::FDIV
, SDLoc(N
), VT
, NegN0
, NegN1
);
14334 SDValue
DAGCombiner::visitFREM(SDNode
*N
) {
14335 SDValue N0
= N
->getOperand(0);
14336 SDValue N1
= N
->getOperand(1);
14337 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
14338 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
14339 EVT VT
= N
->getValueType(0);
14340 SDNodeFlags Flags
= N
->getFlags();
14341 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
14343 if (SDValue R
= DAG
.simplifyFPBinop(N
->getOpcode(), N0
, N1
, Flags
))
14346 // fold (frem c1, c2) -> fmod(c1,c2)
14347 if (N0CFP
&& N1CFP
)
14348 return DAG
.getNode(ISD::FREM
, SDLoc(N
), VT
, N0
, N1
);
14350 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
14356 SDValue
DAGCombiner::visitFSQRT(SDNode
*N
) {
14357 SDNodeFlags Flags
= N
->getFlags();
14358 const TargetOptions
&Options
= DAG
.getTarget().Options
;
14360 // Require 'ninf' flag since sqrt(+Inf) = +Inf, but the estimation goes as:
14361 // sqrt(+Inf) == rsqrt(+Inf) * +Inf = 0 * +Inf = NaN
14362 if (!Flags
.hasApproximateFuncs() ||
14363 (!Options
.NoInfsFPMath
&& !Flags
.hasNoInfs()))
14366 SDValue N0
= N
->getOperand(0);
14367 if (TLI
.isFsqrtCheap(N0
, DAG
))
14370 // FSQRT nodes have flags that propagate to the created nodes.
14371 // TODO: If this is N0/sqrt(N0), and we reach this node before trying to
14372 // transform the fdiv, we may produce a sub-optimal estimate sequence
14373 // because the reciprocal calculation may not have to filter out a
14375 return buildSqrtEstimate(N0
, Flags
);
14378 /// copysign(x, fp_extend(y)) -> copysign(x, y)
14379 /// copysign(x, fp_round(y)) -> copysign(x, y)
14380 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode
*N
) {
14381 SDValue N1
= N
->getOperand(1);
14382 if ((N1
.getOpcode() == ISD::FP_EXTEND
||
14383 N1
.getOpcode() == ISD::FP_ROUND
)) {
14384 EVT N1VT
= N1
->getValueType(0);
14385 EVT N1Op0VT
= N1
->getOperand(0).getValueType();
14387 // Always fold no-op FP casts.
14388 if (N1VT
== N1Op0VT
)
14391 // Do not optimize out type conversion of f128 type yet.
14392 // For some targets like x86_64, configuration is changed to keep one f128
14393 // value in one SSE register, but instruction selection cannot handle
14394 // FCOPYSIGN on SSE registers yet.
14395 if (N1Op0VT
== MVT::f128
)
14398 // Avoid mismatched vector operand types, for better instruction selection.
14399 if (N1Op0VT
.isVector())
14407 SDValue
DAGCombiner::visitFCOPYSIGN(SDNode
*N
) {
14408 SDValue N0
= N
->getOperand(0);
14409 SDValue N1
= N
->getOperand(1);
14410 bool N0CFP
= DAG
.isConstantFPBuildVectorOrConstantFP(N0
);
14411 bool N1CFP
= DAG
.isConstantFPBuildVectorOrConstantFP(N1
);
14412 EVT VT
= N
->getValueType(0);
14414 if (N0CFP
&& N1CFP
) // Constant fold
14415 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
, N1
);
14417 if (ConstantFPSDNode
*N1C
= isConstOrConstSplatFP(N
->getOperand(1))) {
14418 const APFloat
&V
= N1C
->getValueAPF();
14419 // copysign(x, c1) -> fabs(x) iff ispos(c1)
14420 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
14421 if (!V
.isNegative()) {
14422 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FABS
, VT
))
14423 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
);
14425 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
14426 return DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
,
14427 DAG
.getNode(ISD::FABS
, SDLoc(N0
), VT
, N0
));
14431 // copysign(fabs(x), y) -> copysign(x, y)
14432 // copysign(fneg(x), y) -> copysign(x, y)
14433 // copysign(copysign(x,z), y) -> copysign(x, y)
14434 if (N0
.getOpcode() == ISD::FABS
|| N0
.getOpcode() == ISD::FNEG
||
14435 N0
.getOpcode() == ISD::FCOPYSIGN
)
14436 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
.getOperand(0), N1
);
14438 // copysign(x, abs(y)) -> abs(x)
14439 if (N1
.getOpcode() == ISD::FABS
)
14440 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
);
14442 // copysign(x, copysign(y,z)) -> copysign(x, z)
14443 if (N1
.getOpcode() == ISD::FCOPYSIGN
)
14444 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
, N1
.getOperand(1));
14446 // copysign(x, fp_extend(y)) -> copysign(x, y)
14447 // copysign(x, fp_round(y)) -> copysign(x, y)
14448 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N
))
14449 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
, N1
.getOperand(0));
14454 SDValue
DAGCombiner::visitFPOW(SDNode
*N
) {
14455 ConstantFPSDNode
*ExponentC
= isConstOrConstSplatFP(N
->getOperand(1));
14458 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
14460 // Try to convert x ** (1/3) into cube root.
14461 // TODO: Handle the various flavors of long double.
14462 // TODO: Since we're approximating, we don't need an exact 1/3 exponent.
14463 // Some range near 1/3 should be fine.
14464 EVT VT
= N
->getValueType(0);
14465 if ((VT
== MVT::f32
&& ExponentC
->getValueAPF().isExactlyValue(1.0f
/3.0f
)) ||
14466 (VT
== MVT::f64
&& ExponentC
->getValueAPF().isExactlyValue(1.0/3.0))) {
14467 // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0.
14468 // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf.
14469 // pow(-val, 1/3) = nan; cbrt(-val) = -num.
14470 // For regular numbers, rounding may cause the results to differ.
14471 // Therefore, we require { nsz ninf nnan afn } for this transform.
14472 // TODO: We could select out the special cases if we don't have nsz/ninf.
14473 SDNodeFlags Flags
= N
->getFlags();
14474 if (!Flags
.hasNoSignedZeros() || !Flags
.hasNoInfs() || !Flags
.hasNoNaNs() ||
14475 !Flags
.hasApproximateFuncs())
14478 // Do not create a cbrt() libcall if the target does not have it, and do not
14479 // turn a pow that has lowering support into a cbrt() libcall.
14480 if (!DAG
.getLibInfo().has(LibFunc_cbrt
) ||
14481 (!DAG
.getTargetLoweringInfo().isOperationExpand(ISD::FPOW
, VT
) &&
14482 DAG
.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT
, VT
)))
14485 return DAG
.getNode(ISD::FCBRT
, SDLoc(N
), VT
, N
->getOperand(0));
14488 // Try to convert x ** (1/4) and x ** (3/4) into square roots.
14489 // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case.
14490 // TODO: This could be extended (using a target hook) to handle smaller
14491 // power-of-2 fractional exponents.
14492 bool ExponentIs025
= ExponentC
->getValueAPF().isExactlyValue(0.25);
14493 bool ExponentIs075
= ExponentC
->getValueAPF().isExactlyValue(0.75);
14494 if (ExponentIs025
|| ExponentIs075
) {
14495 // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0.
14496 // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN.
14497 // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0.
14498 // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN.
14499 // For regular numbers, rounding may cause the results to differ.
14500 // Therefore, we require { nsz ninf afn } for this transform.
14501 // TODO: We could select out the special cases if we don't have nsz/ninf.
14502 SDNodeFlags Flags
= N
->getFlags();
14504 // We only need no signed zeros for the 0.25 case.
14505 if ((!Flags
.hasNoSignedZeros() && ExponentIs025
) || !Flags
.hasNoInfs() ||
14506 !Flags
.hasApproximateFuncs())
14509 // Don't double the number of libcalls. We are trying to inline fast code.
14510 if (!DAG
.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT
, VT
))
14513 // Assume that libcalls are the smallest code.
14514 // TODO: This restriction should probably be lifted for vectors.
14518 // pow(X, 0.25) --> sqrt(sqrt(X))
14520 SDValue Sqrt
= DAG
.getNode(ISD::FSQRT
, DL
, VT
, N
->getOperand(0));
14521 SDValue SqrtSqrt
= DAG
.getNode(ISD::FSQRT
, DL
, VT
, Sqrt
);
14524 // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X))
14525 return DAG
.getNode(ISD::FMUL
, DL
, VT
, Sqrt
, SqrtSqrt
);
14531 static SDValue
foldFPToIntToFP(SDNode
*N
, SelectionDAG
&DAG
,
14532 const TargetLowering
&TLI
) {
14533 // This optimization is guarded by a function attribute because it may produce
14534 // unexpected results. Ie, programs may be relying on the platform-specific
14535 // undefined behavior when the float-to-int conversion overflows.
14536 const Function
&F
= DAG
.getMachineFunction().getFunction();
14537 Attribute StrictOverflow
= F
.getFnAttribute("strict-float-cast-overflow");
14538 if (StrictOverflow
.getValueAsString().equals("false"))
14541 // We only do this if the target has legal ftrunc. Otherwise, we'd likely be
14542 // replacing casts with a libcall. We also must be allowed to ignore -0.0
14543 // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer
14544 // conversions would return +0.0.
14545 // FIXME: We should be able to use node-level FMF here.
14546 // TODO: If strict math, should we use FABS (+ range check for signed cast)?
14547 EVT VT
= N
->getValueType(0);
14548 if (!TLI
.isOperationLegal(ISD::FTRUNC
, VT
) ||
14549 !DAG
.getTarget().Options
.NoSignedZerosFPMath
)
14552 // fptosi/fptoui round towards zero, so converting from FP to integer and
14553 // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X
14554 SDValue N0
= N
->getOperand(0);
14555 if (N
->getOpcode() == ISD::SINT_TO_FP
&& N0
.getOpcode() == ISD::FP_TO_SINT
&&
14556 N0
.getOperand(0).getValueType() == VT
)
14557 return DAG
.getNode(ISD::FTRUNC
, SDLoc(N
), VT
, N0
.getOperand(0));
14559 if (N
->getOpcode() == ISD::UINT_TO_FP
&& N0
.getOpcode() == ISD::FP_TO_UINT
&&
14560 N0
.getOperand(0).getValueType() == VT
)
14561 return DAG
.getNode(ISD::FTRUNC
, SDLoc(N
), VT
, N0
.getOperand(0));
14566 SDValue
DAGCombiner::visitSINT_TO_FP(SDNode
*N
) {
14567 SDValue N0
= N
->getOperand(0);
14568 EVT VT
= N
->getValueType(0);
14569 EVT OpVT
= N0
.getValueType();
14571 // [us]itofp(undef) = 0, because the result value is bounded.
14573 return DAG
.getConstantFP(0.0, SDLoc(N
), VT
);
14575 // fold (sint_to_fp c1) -> c1fp
14576 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
14577 // ...but only if the target supports immediate floating-point values
14578 (!LegalOperations
||
14579 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
)))
14580 return DAG
.getNode(ISD::SINT_TO_FP
, SDLoc(N
), VT
, N0
);
14582 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
14583 // but UINT_TO_FP is legal on this target, try to convert.
14584 if (!hasOperation(ISD::SINT_TO_FP
, OpVT
) &&
14585 hasOperation(ISD::UINT_TO_FP
, OpVT
)) {
14586 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
14587 if (DAG
.SignBitIsZero(N0
))
14588 return DAG
.getNode(ISD::UINT_TO_FP
, SDLoc(N
), VT
, N0
);
14591 // The next optimizations are desirable only if SELECT_CC can be lowered.
14592 // fold (sint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), -1.0, 0.0)
14593 if (N0
.getOpcode() == ISD::SETCC
&& N0
.getValueType() == MVT::i1
&&
14595 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
))) {
14597 return DAG
.getSelect(DL
, VT
, N0
, DAG
.getConstantFP(-1.0, DL
, VT
),
14598 DAG
.getConstantFP(0.0, DL
, VT
));
14601 // fold (sint_to_fp (zext (setcc x, y, cc))) ->
14602 // (select (setcc x, y, cc), 1.0, 0.0)
14603 if (N0
.getOpcode() == ISD::ZERO_EXTEND
&&
14604 N0
.getOperand(0).getOpcode() == ISD::SETCC
&& !VT
.isVector() &&
14605 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
))) {
14607 return DAG
.getSelect(DL
, VT
, N0
.getOperand(0),
14608 DAG
.getConstantFP(1.0, DL
, VT
),
14609 DAG
.getConstantFP(0.0, DL
, VT
));
14612 if (SDValue FTrunc
= foldFPToIntToFP(N
, DAG
, TLI
))
14618 SDValue
DAGCombiner::visitUINT_TO_FP(SDNode
*N
) {
14619 SDValue N0
= N
->getOperand(0);
14620 EVT VT
= N
->getValueType(0);
14621 EVT OpVT
= N0
.getValueType();
14623 // [us]itofp(undef) = 0, because the result value is bounded.
14625 return DAG
.getConstantFP(0.0, SDLoc(N
), VT
);
14627 // fold (uint_to_fp c1) -> c1fp
14628 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
14629 // ...but only if the target supports immediate floating-point values
14630 (!LegalOperations
||
14631 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
)))
14632 return DAG
.getNode(ISD::UINT_TO_FP
, SDLoc(N
), VT
, N0
);
14634 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
14635 // but SINT_TO_FP is legal on this target, try to convert.
14636 if (!hasOperation(ISD::UINT_TO_FP
, OpVT
) &&
14637 hasOperation(ISD::SINT_TO_FP
, OpVT
)) {
14638 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
14639 if (DAG
.SignBitIsZero(N0
))
14640 return DAG
.getNode(ISD::SINT_TO_FP
, SDLoc(N
), VT
, N0
);
14643 // fold (uint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), 1.0, 0.0)
14644 if (N0
.getOpcode() == ISD::SETCC
&& !VT
.isVector() &&
14645 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
))) {
14647 return DAG
.getSelect(DL
, VT
, N0
, DAG
.getConstantFP(1.0, DL
, VT
),
14648 DAG
.getConstantFP(0.0, DL
, VT
));
14651 if (SDValue FTrunc
= foldFPToIntToFP(N
, DAG
, TLI
))
14657 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
14658 static SDValue
FoldIntToFPToInt(SDNode
*N
, SelectionDAG
&DAG
) {
14659 SDValue N0
= N
->getOperand(0);
14660 EVT VT
= N
->getValueType(0);
14662 if (N0
.getOpcode() != ISD::UINT_TO_FP
&& N0
.getOpcode() != ISD::SINT_TO_FP
)
14665 SDValue Src
= N0
.getOperand(0);
14666 EVT SrcVT
= Src
.getValueType();
14667 bool IsInputSigned
= N0
.getOpcode() == ISD::SINT_TO_FP
;
14668 bool IsOutputSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
14670 // We can safely assume the conversion won't overflow the output range,
14671 // because (for example) (uint8_t)18293.f is undefined behavior.
14673 // Since we can assume the conversion won't overflow, our decision as to
14674 // whether the input will fit in the float should depend on the minimum
14675 // of the input range and output range.
14677 // This means this is also safe for a signed input and unsigned output, since
14678 // a negative input would lead to undefined behavior.
14679 unsigned InputSize
= (int)SrcVT
.getScalarSizeInBits() - IsInputSigned
;
14680 unsigned OutputSize
= (int)VT
.getScalarSizeInBits() - IsOutputSigned
;
14681 unsigned ActualSize
= std::min(InputSize
, OutputSize
);
14682 const fltSemantics
&sem
= DAG
.EVTToAPFloatSemantics(N0
.getValueType());
14684 // We can only fold away the float conversion if the input range can be
14685 // represented exactly in the float range.
14686 if (APFloat::semanticsPrecision(sem
) >= ActualSize
) {
14687 if (VT
.getScalarSizeInBits() > SrcVT
.getScalarSizeInBits()) {
14688 unsigned ExtOp
= IsInputSigned
&& IsOutputSigned
? ISD::SIGN_EXTEND
14689 : ISD::ZERO_EXTEND
;
14690 return DAG
.getNode(ExtOp
, SDLoc(N
), VT
, Src
);
14692 if (VT
.getScalarSizeInBits() < SrcVT
.getScalarSizeInBits())
14693 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, Src
);
14694 return DAG
.getBitcast(VT
, Src
);
14699 SDValue
DAGCombiner::visitFP_TO_SINT(SDNode
*N
) {
14700 SDValue N0
= N
->getOperand(0);
14701 EVT VT
= N
->getValueType(0);
14703 // fold (fp_to_sint undef) -> undef
14705 return DAG
.getUNDEF(VT
);
14707 // fold (fp_to_sint c1fp) -> c1
14708 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
14709 return DAG
.getNode(ISD::FP_TO_SINT
, SDLoc(N
), VT
, N0
);
14711 return FoldIntToFPToInt(N
, DAG
);
14714 SDValue
DAGCombiner::visitFP_TO_UINT(SDNode
*N
) {
14715 SDValue N0
= N
->getOperand(0);
14716 EVT VT
= N
->getValueType(0);
14718 // fold (fp_to_uint undef) -> undef
14720 return DAG
.getUNDEF(VT
);
14722 // fold (fp_to_uint c1fp) -> c1
14723 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
14724 return DAG
.getNode(ISD::FP_TO_UINT
, SDLoc(N
), VT
, N0
);
14726 return FoldIntToFPToInt(N
, DAG
);
14729 SDValue
DAGCombiner::visitFP_ROUND(SDNode
*N
) {
14730 SDValue N0
= N
->getOperand(0);
14731 SDValue N1
= N
->getOperand(1);
14732 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
14733 EVT VT
= N
->getValueType(0);
14735 // fold (fp_round c1fp) -> c1fp
14737 return DAG
.getNode(ISD::FP_ROUND
, SDLoc(N
), VT
, N0
, N1
);
14739 // fold (fp_round (fp_extend x)) -> x
14740 if (N0
.getOpcode() == ISD::FP_EXTEND
&& VT
== N0
.getOperand(0).getValueType())
14741 return N0
.getOperand(0);
14743 // fold (fp_round (fp_round x)) -> (fp_round x)
14744 if (N0
.getOpcode() == ISD::FP_ROUND
) {
14745 const bool NIsTrunc
= N
->getConstantOperandVal(1) == 1;
14746 const bool N0IsTrunc
= N0
.getConstantOperandVal(1) == 1;
14748 // Skip this folding if it results in an fp_round from f80 to f16.
14750 // f80 to f16 always generates an expensive (and as yet, unimplemented)
14751 // libcall to __truncxfhf2 instead of selecting native f16 conversion
14752 // instructions from f32 or f64. Moreover, the first (value-preserving)
14753 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like
14755 if (N0
.getOperand(0).getValueType() == MVT::f80
&& VT
== MVT::f16
)
14758 // If the first fp_round isn't a value preserving truncation, it might
14759 // introduce a tie in the second fp_round, that wouldn't occur in the
14760 // single-step fp_round we want to fold to.
14761 // In other words, double rounding isn't the same as rounding.
14762 // Also, this is a value preserving truncation iff both fp_round's are.
14763 if (DAG
.getTarget().Options
.UnsafeFPMath
|| N0IsTrunc
) {
14765 return DAG
.getNode(ISD::FP_ROUND
, DL
, VT
, N0
.getOperand(0),
14766 DAG
.getIntPtrConstant(NIsTrunc
&& N0IsTrunc
, DL
));
14770 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
14771 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse()) {
14772 SDValue Tmp
= DAG
.getNode(ISD::FP_ROUND
, SDLoc(N0
), VT
,
14773 N0
.getOperand(0), N1
);
14774 AddToWorklist(Tmp
.getNode());
14775 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
,
14776 Tmp
, N0
.getOperand(1));
14779 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
14785 SDValue
DAGCombiner::visitFP_EXTEND(SDNode
*N
) {
14786 SDValue N0
= N
->getOperand(0);
14787 EVT VT
= N
->getValueType(0);
14789 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
14790 if (N
->hasOneUse() &&
14791 N
->use_begin()->getOpcode() == ISD::FP_ROUND
)
14794 // fold (fp_extend c1fp) -> c1fp
14795 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
14796 return DAG
.getNode(ISD::FP_EXTEND
, SDLoc(N
), VT
, N0
);
14798 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
14799 if (N0
.getOpcode() == ISD::FP16_TO_FP
&&
14800 TLI
.getOperationAction(ISD::FP16_TO_FP
, VT
) == TargetLowering::Legal
)
14801 return DAG
.getNode(ISD::FP16_TO_FP
, SDLoc(N
), VT
, N0
.getOperand(0));
14803 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
14805 if (N0
.getOpcode() == ISD::FP_ROUND
14806 && N0
.getConstantOperandVal(1) == 1) {
14807 SDValue In
= N0
.getOperand(0);
14808 if (In
.getValueType() == VT
) return In
;
14809 if (VT
.bitsLT(In
.getValueType()))
14810 return DAG
.getNode(ISD::FP_ROUND
, SDLoc(N
), VT
,
14811 In
, N0
.getOperand(1));
14812 return DAG
.getNode(ISD::FP_EXTEND
, SDLoc(N
), VT
, In
);
14815 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
14816 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
14817 TLI
.isLoadExtLegal(ISD::EXTLOAD
, VT
, N0
.getValueType())) {
14818 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
14819 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, SDLoc(N
), VT
,
14821 LN0
->getBasePtr(), N0
.getValueType(),
14822 LN0
->getMemOperand());
14823 CombineTo(N
, ExtLoad
);
14824 CombineTo(N0
.getNode(),
14825 DAG
.getNode(ISD::FP_ROUND
, SDLoc(N0
),
14826 N0
.getValueType(), ExtLoad
,
14827 DAG
.getIntPtrConstant(1, SDLoc(N0
))),
14828 ExtLoad
.getValue(1));
14829 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
14832 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
14838 SDValue
DAGCombiner::visitFCEIL(SDNode
*N
) {
14839 SDValue N0
= N
->getOperand(0);
14840 EVT VT
= N
->getValueType(0);
14842 // fold (fceil c1) -> fceil(c1)
14843 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
14844 return DAG
.getNode(ISD::FCEIL
, SDLoc(N
), VT
, N0
);
14849 SDValue
DAGCombiner::visitFTRUNC(SDNode
*N
) {
14850 SDValue N0
= N
->getOperand(0);
14851 EVT VT
= N
->getValueType(0);
14853 // fold (ftrunc c1) -> ftrunc(c1)
14854 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
14855 return DAG
.getNode(ISD::FTRUNC
, SDLoc(N
), VT
, N0
);
14857 // fold ftrunc (known rounded int x) -> x
14858 // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is
14859 // likely to be generated to extract integer from a rounded floating value.
14860 switch (N0
.getOpcode()) {
14864 case ISD::FNEARBYINT
:
14873 SDValue
DAGCombiner::visitFFLOOR(SDNode
*N
) {
14874 SDValue N0
= N
->getOperand(0);
14875 EVT VT
= N
->getValueType(0);
14877 // fold (ffloor c1) -> ffloor(c1)
14878 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
14879 return DAG
.getNode(ISD::FFLOOR
, SDLoc(N
), VT
, N0
);
14884 SDValue
DAGCombiner::visitFNEG(SDNode
*N
) {
14885 SDValue N0
= N
->getOperand(0);
14886 EVT VT
= N
->getValueType(0);
14887 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
14889 // Constant fold FNEG.
14890 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
14891 return DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
, N0
);
14893 if (SDValue NegN0
=
14894 TLI
.getNegatedExpression(N0
, DAG
, LegalOperations
, ForCodeSize
))
14897 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
14898 // FIXME: This is duplicated in getNegatibleCost, but getNegatibleCost doesn't
14899 // know it was called from a context with a nsz flag if the input fsub does
14901 if (N0
.getOpcode() == ISD::FSUB
&&
14902 (DAG
.getTarget().Options
.NoSignedZerosFPMath
||
14903 N
->getFlags().hasNoSignedZeros()) && N0
.hasOneUse()) {
14904 return DAG
.getNode(ISD::FSUB
, SDLoc(N
), VT
, N0
.getOperand(1),
14908 if (SDValue Cast
= foldSignChangeInBitcast(N
))
14914 static SDValue
visitFMinMax(SelectionDAG
&DAG
, SDNode
*N
,
14915 APFloat (*Op
)(const APFloat
&, const APFloat
&)) {
14916 SDValue N0
= N
->getOperand(0);
14917 SDValue N1
= N
->getOperand(1);
14918 EVT VT
= N
->getValueType(0);
14919 const ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
);
14920 const ConstantFPSDNode
*N1CFP
= isConstOrConstSplatFP(N1
);
14921 const SDNodeFlags Flags
= N
->getFlags();
14922 unsigned Opc
= N
->getOpcode();
14923 bool PropagatesNaN
= Opc
== ISD::FMINIMUM
|| Opc
== ISD::FMAXIMUM
;
14924 bool IsMin
= Opc
== ISD::FMINNUM
|| Opc
== ISD::FMINIMUM
;
14925 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
14927 if (N0CFP
&& N1CFP
) {
14928 const APFloat
&C0
= N0CFP
->getValueAPF();
14929 const APFloat
&C1
= N1CFP
->getValueAPF();
14930 return DAG
.getConstantFP(Op(C0
, C1
), SDLoc(N
), VT
);
14933 // Canonicalize to constant on RHS.
14934 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
) &&
14935 !DAG
.isConstantFPBuildVectorOrConstantFP(N1
))
14936 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N1
, N0
);
14939 const APFloat
&AF
= N1CFP
->getValueAPF();
14941 // minnum(X, nan) -> X
14942 // maxnum(X, nan) -> X
14943 // minimum(X, nan) -> nan
14944 // maximum(X, nan) -> nan
14946 return PropagatesNaN
? N
->getOperand(1) : N
->getOperand(0);
14948 // In the following folds, inf can be replaced with the largest finite
14949 // float, if the ninf flag is set.
14950 if (AF
.isInfinity() || (Flags
.hasNoInfs() && AF
.isLargest())) {
14951 // minnum(X, -inf) -> -inf
14952 // maxnum(X, +inf) -> +inf
14953 // minimum(X, -inf) -> -inf if nnan
14954 // maximum(X, +inf) -> +inf if nnan
14955 if (IsMin
== AF
.isNegative() && (!PropagatesNaN
|| Flags
.hasNoNaNs()))
14956 return N
->getOperand(1);
14958 // minnum(X, +inf) -> X if nnan
14959 // maxnum(X, -inf) -> X if nnan
14960 // minimum(X, +inf) -> X
14961 // maximum(X, -inf) -> X
14962 if (IsMin
!= AF
.isNegative() && (PropagatesNaN
|| Flags
.hasNoNaNs()))
14963 return N
->getOperand(0);
14970 SDValue
DAGCombiner::visitFMINNUM(SDNode
*N
) {
14971 return visitFMinMax(DAG
, N
, minnum
);
14974 SDValue
DAGCombiner::visitFMAXNUM(SDNode
*N
) {
14975 return visitFMinMax(DAG
, N
, maxnum
);
14978 SDValue
DAGCombiner::visitFMINIMUM(SDNode
*N
) {
14979 return visitFMinMax(DAG
, N
, minimum
);
14982 SDValue
DAGCombiner::visitFMAXIMUM(SDNode
*N
) {
14983 return visitFMinMax(DAG
, N
, maximum
);
14986 SDValue
DAGCombiner::visitFABS(SDNode
*N
) {
14987 SDValue N0
= N
->getOperand(0);
14988 EVT VT
= N
->getValueType(0);
14990 // fold (fabs c1) -> fabs(c1)
14991 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
14992 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
);
14994 // fold (fabs (fabs x)) -> (fabs x)
14995 if (N0
.getOpcode() == ISD::FABS
)
14996 return N
->getOperand(0);
14998 // fold (fabs (fneg x)) -> (fabs x)
14999 // fold (fabs (fcopysign x, y)) -> (fabs x)
15000 if (N0
.getOpcode() == ISD::FNEG
|| N0
.getOpcode() == ISD::FCOPYSIGN
)
15001 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
.getOperand(0));
15003 if (SDValue Cast
= foldSignChangeInBitcast(N
))
15009 SDValue
DAGCombiner::visitBRCOND(SDNode
*N
) {
15010 SDValue Chain
= N
->getOperand(0);
15011 SDValue N1
= N
->getOperand(1);
15012 SDValue N2
= N
->getOperand(2);
15014 // BRCOND(FREEZE(cond)) is equivalent to BRCOND(cond) (both are
15015 // nondeterministic jumps).
15016 if (N1
->getOpcode() == ISD::FREEZE
&& N1
.hasOneUse()) {
15017 return DAG
.getNode(ISD::BRCOND
, SDLoc(N
), MVT::Other
, Chain
,
15018 N1
->getOperand(0), N2
);
15021 // If N is a constant we could fold this into a fallthrough or unconditional
15022 // branch. However that doesn't happen very often in normal code, because
15023 // Instcombine/SimplifyCFG should have handled the available opportunities.
15024 // If we did this folding here, it would be necessary to update the
15025 // MachineBasicBlock CFG, which is awkward.
15027 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
15029 if (N1
.getOpcode() == ISD::SETCC
&&
15030 TLI
.isOperationLegalOrCustom(ISD::BR_CC
,
15031 N1
.getOperand(0).getValueType())) {
15032 return DAG
.getNode(ISD::BR_CC
, SDLoc(N
), MVT::Other
,
15033 Chain
, N1
.getOperand(2),
15034 N1
.getOperand(0), N1
.getOperand(1), N2
);
15037 if (N1
.hasOneUse()) {
15038 // rebuildSetCC calls visitXor which may change the Chain when there is a
15039 // STRICT_FSETCC/STRICT_FSETCCS involved. Use a handle to track changes.
15040 HandleSDNode
ChainHandle(Chain
);
15041 if (SDValue NewN1
= rebuildSetCC(N1
))
15042 return DAG
.getNode(ISD::BRCOND
, SDLoc(N
), MVT::Other
,
15043 ChainHandle
.getValue(), NewN1
, N2
);
15049 SDValue
DAGCombiner::rebuildSetCC(SDValue N
) {
15050 if (N
.getOpcode() == ISD::SRL
||
15051 (N
.getOpcode() == ISD::TRUNCATE
&&
15052 (N
.getOperand(0).hasOneUse() &&
15053 N
.getOperand(0).getOpcode() == ISD::SRL
))) {
15054 // Look pass the truncate.
15055 if (N
.getOpcode() == ISD::TRUNCATE
)
15056 N
= N
.getOperand(0);
15058 // Match this pattern so that we can generate simpler code:
15061 // %b = and i32 %a, 2
15062 // %c = srl i32 %b, 1
15063 // brcond i32 %c ...
15068 // %b = and i32 %a, 2
15069 // %c = setcc eq %b, 0
15072 // This applies only when the AND constant value has one bit set and the
15073 // SRL constant is equal to the log2 of the AND constant. The back-end is
15074 // smart enough to convert the result into a TEST/JMP sequence.
15075 SDValue Op0
= N
.getOperand(0);
15076 SDValue Op1
= N
.getOperand(1);
15078 if (Op0
.getOpcode() == ISD::AND
&& Op1
.getOpcode() == ISD::Constant
) {
15079 SDValue AndOp1
= Op0
.getOperand(1);
15081 if (AndOp1
.getOpcode() == ISD::Constant
) {
15082 const APInt
&AndConst
= cast
<ConstantSDNode
>(AndOp1
)->getAPIntValue();
15084 if (AndConst
.isPowerOf2() &&
15085 cast
<ConstantSDNode
>(Op1
)->getAPIntValue() == AndConst
.logBase2()) {
15087 return DAG
.getSetCC(DL
, getSetCCResultType(Op0
.getValueType()),
15088 Op0
, DAG
.getConstant(0, DL
, Op0
.getValueType()),
15095 // Transform (brcond (xor x, y)) -> (brcond (setcc, x, y, ne))
15096 // Transform (brcond (xor (xor x, y), -1)) -> (brcond (setcc, x, y, eq))
15097 if (N
.getOpcode() == ISD::XOR
) {
15098 // Because we may call this on a speculatively constructed
15099 // SimplifiedSetCC Node, we need to simplify this node first.
15100 // Ideally this should be folded into SimplifySetCC and not
15101 // here. For now, grab a handle to N so we don't lose it from
15102 // replacements interal to the visit.
15103 HandleSDNode
XORHandle(N
);
15104 while (N
.getOpcode() == ISD::XOR
) {
15105 SDValue Tmp
= visitXOR(N
.getNode());
15106 // No simplification done.
15107 if (!Tmp
.getNode())
15109 // Returning N is form in-visit replacement that may invalidated
15110 // N. Grab value from Handle.
15111 if (Tmp
.getNode() == N
.getNode())
15112 N
= XORHandle
.getValue();
15113 else // Node simplified. Try simplifying again.
15117 if (N
.getOpcode() != ISD::XOR
)
15120 SDValue Op0
= N
->getOperand(0);
15121 SDValue Op1
= N
->getOperand(1);
15123 if (Op0
.getOpcode() != ISD::SETCC
&& Op1
.getOpcode() != ISD::SETCC
) {
15124 bool Equal
= false;
15125 // (brcond (xor (xor x, y), -1)) -> (brcond (setcc x, y, eq))
15126 if (isBitwiseNot(N
) && Op0
.hasOneUse() && Op0
.getOpcode() == ISD::XOR
&&
15127 Op0
.getValueType() == MVT::i1
) {
15129 Op0
= N
->getOperand(0);
15130 Op1
= N
->getOperand(1);
15134 EVT SetCCVT
= N
.getValueType();
15136 SetCCVT
= getSetCCResultType(SetCCVT
);
15137 // Replace the uses of XOR with SETCC
15138 return DAG
.getSetCC(SDLoc(N
), SetCCVT
, Op0
, Op1
,
15139 Equal
? ISD::SETEQ
: ISD::SETNE
);
15146 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
15148 SDValue
DAGCombiner::visitBR_CC(SDNode
*N
) {
15149 CondCodeSDNode
*CC
= cast
<CondCodeSDNode
>(N
->getOperand(1));
15150 SDValue CondLHS
= N
->getOperand(2), CondRHS
= N
->getOperand(3);
15152 // If N is a constant we could fold this into a fallthrough or unconditional
15153 // branch. However that doesn't happen very often in normal code, because
15154 // Instcombine/SimplifyCFG should have handled the available opportunities.
15155 // If we did this folding here, it would be necessary to update the
15156 // MachineBasicBlock CFG, which is awkward.
15158 // Use SimplifySetCC to simplify SETCC's.
15159 SDValue Simp
= SimplifySetCC(getSetCCResultType(CondLHS
.getValueType()),
15160 CondLHS
, CondRHS
, CC
->get(), SDLoc(N
),
15162 if (Simp
.getNode()) AddToWorklist(Simp
.getNode());
15164 // fold to a simpler setcc
15165 if (Simp
.getNode() && Simp
.getOpcode() == ISD::SETCC
)
15166 return DAG
.getNode(ISD::BR_CC
, SDLoc(N
), MVT::Other
,
15167 N
->getOperand(0), Simp
.getOperand(2),
15168 Simp
.getOperand(0), Simp
.getOperand(1),
15174 static bool getCombineLoadStoreParts(SDNode
*N
, unsigned Inc
, unsigned Dec
,
15175 bool &IsLoad
, bool &IsMasked
, SDValue
&Ptr
,
15176 const TargetLowering
&TLI
) {
15177 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
15178 if (LD
->isIndexed())
15180 EVT VT
= LD
->getMemoryVT();
15181 if (!TLI
.isIndexedLoadLegal(Inc
, VT
) && !TLI
.isIndexedLoadLegal(Dec
, VT
))
15183 Ptr
= LD
->getBasePtr();
15184 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
15185 if (ST
->isIndexed())
15187 EVT VT
= ST
->getMemoryVT();
15188 if (!TLI
.isIndexedStoreLegal(Inc
, VT
) && !TLI
.isIndexedStoreLegal(Dec
, VT
))
15190 Ptr
= ST
->getBasePtr();
15192 } else if (MaskedLoadSDNode
*LD
= dyn_cast
<MaskedLoadSDNode
>(N
)) {
15193 if (LD
->isIndexed())
15195 EVT VT
= LD
->getMemoryVT();
15196 if (!TLI
.isIndexedMaskedLoadLegal(Inc
, VT
) &&
15197 !TLI
.isIndexedMaskedLoadLegal(Dec
, VT
))
15199 Ptr
= LD
->getBasePtr();
15201 } else if (MaskedStoreSDNode
*ST
= dyn_cast
<MaskedStoreSDNode
>(N
)) {
15202 if (ST
->isIndexed())
15204 EVT VT
= ST
->getMemoryVT();
15205 if (!TLI
.isIndexedMaskedStoreLegal(Inc
, VT
) &&
15206 !TLI
.isIndexedMaskedStoreLegal(Dec
, VT
))
15208 Ptr
= ST
->getBasePtr();
15217 /// Try turning a load/store into a pre-indexed load/store when the base
15218 /// pointer is an add or subtract and it has other uses besides the load/store.
15219 /// After the transformation, the new indexed load/store has effectively folded
15220 /// the add/subtract in and all of its other uses are redirected to the
15221 /// new load/store.
15222 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode
*N
) {
15223 if (Level
< AfterLegalizeDAG
)
15226 bool IsLoad
= true;
15227 bool IsMasked
= false;
15229 if (!getCombineLoadStoreParts(N
, ISD::PRE_INC
, ISD::PRE_DEC
, IsLoad
, IsMasked
,
15233 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
15234 // out. There is no reason to make this a preinc/predec.
15235 if ((Ptr
.getOpcode() != ISD::ADD
&& Ptr
.getOpcode() != ISD::SUB
) ||
15236 Ptr
.getNode()->hasOneUse())
15239 // Ask the target to do addressing mode selection.
15242 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
15243 if (!TLI
.getPreIndexedAddressParts(N
, BasePtr
, Offset
, AM
, DAG
))
15246 // Backends without true r+i pre-indexed forms may need to pass a
15247 // constant base with a variable offset so that constant coercion
15248 // will work with the patterns in canonical form.
15249 bool Swapped
= false;
15250 if (isa
<ConstantSDNode
>(BasePtr
)) {
15251 std::swap(BasePtr
, Offset
);
15255 // Don't create a indexed load / store with zero offset.
15256 if (isNullConstant(Offset
))
15259 // Try turning it into a pre-indexed load / store except when:
15260 // 1) The new base ptr is a frame index.
15261 // 2) If N is a store and the new base ptr is either the same as or is a
15262 // predecessor of the value being stored.
15263 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
15264 // that would create a cycle.
15265 // 4) All uses are load / store ops that use it as old base ptr.
15267 // Check #1. Preinc'ing a frame index would require copying the stack pointer
15268 // (plus the implicit offset) to a register to preinc anyway.
15269 if (isa
<FrameIndexSDNode
>(BasePtr
) || isa
<RegisterSDNode
>(BasePtr
))
15274 SDValue Val
= IsMasked
? cast
<MaskedStoreSDNode
>(N
)->getValue()
15275 : cast
<StoreSDNode
>(N
)->getValue();
15277 // Would require a copy.
15278 if (Val
== BasePtr
)
15281 // Would create a cycle.
15282 if (Val
== Ptr
|| Ptr
->isPredecessorOf(Val
.getNode()))
15286 // Caches for hasPredecessorHelper.
15287 SmallPtrSet
<const SDNode
*, 32> Visited
;
15288 SmallVector
<const SDNode
*, 16> Worklist
;
15289 Worklist
.push_back(N
);
15291 // If the offset is a constant, there may be other adds of constants that
15292 // can be folded with this one. We should do this to avoid having to keep
15293 // a copy of the original base pointer.
15294 SmallVector
<SDNode
*, 16> OtherUses
;
15295 if (isa
<ConstantSDNode
>(Offset
))
15296 for (SDNode::use_iterator UI
= BasePtr
.getNode()->use_begin(),
15297 UE
= BasePtr
.getNode()->use_end();
15299 SDUse
&Use
= UI
.getUse();
15300 // Skip the use that is Ptr and uses of other results from BasePtr's
15301 // node (important for nodes that return multiple results).
15302 if (Use
.getUser() == Ptr
.getNode() || Use
!= BasePtr
)
15305 if (SDNode::hasPredecessorHelper(Use
.getUser(), Visited
, Worklist
))
15308 if (Use
.getUser()->getOpcode() != ISD::ADD
&&
15309 Use
.getUser()->getOpcode() != ISD::SUB
) {
15314 SDValue Op1
= Use
.getUser()->getOperand((UI
.getOperandNo() + 1) & 1);
15315 if (!isa
<ConstantSDNode
>(Op1
)) {
15320 // FIXME: In some cases, we can be smarter about this.
15321 if (Op1
.getValueType() != Offset
.getValueType()) {
15326 OtherUses
.push_back(Use
.getUser());
15330 std::swap(BasePtr
, Offset
);
15332 // Now check for #3 and #4.
15333 bool RealUse
= false;
15335 for (SDNode
*Use
: Ptr
.getNode()->uses()) {
15338 if (SDNode::hasPredecessorHelper(Use
, Visited
, Worklist
))
15341 // If Ptr may be folded in addressing mode of other use, then it's
15342 // not profitable to do this transformation.
15343 if (!canFoldInAddressingMode(Ptr
.getNode(), Use
, DAG
, TLI
))
15353 Result
= DAG
.getIndexedLoad(SDValue(N
, 0), SDLoc(N
), BasePtr
, Offset
, AM
);
15356 DAG
.getIndexedStore(SDValue(N
, 0), SDLoc(N
), BasePtr
, Offset
, AM
);
15359 Result
= DAG
.getIndexedMaskedLoad(SDValue(N
, 0), SDLoc(N
), BasePtr
,
15362 Result
= DAG
.getIndexedMaskedStore(SDValue(N
, 0), SDLoc(N
), BasePtr
,
15367 LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N
->dump(&DAG
); dbgs() << "\nWith: ";
15368 Result
.getNode()->dump(&DAG
); dbgs() << '\n');
15369 WorklistRemover
DeadNodes(*this);
15371 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0));
15372 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2));
15374 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1));
15377 // Finally, since the node is now dead, remove it from the graph.
15378 deleteAndRecombine(N
);
15381 std::swap(BasePtr
, Offset
);
15383 // Replace other uses of BasePtr that can be updated to use Ptr
15384 for (unsigned i
= 0, e
= OtherUses
.size(); i
!= e
; ++i
) {
15385 unsigned OffsetIdx
= 1;
15386 if (OtherUses
[i
]->getOperand(OffsetIdx
).getNode() == BasePtr
.getNode())
15388 assert(OtherUses
[i
]->getOperand(!OffsetIdx
).getNode() ==
15389 BasePtr
.getNode() && "Expected BasePtr operand");
15391 // We need to replace ptr0 in the following expression:
15392 // x0 * offset0 + y0 * ptr0 = t0
15394 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
15396 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
15397 // indexed load/store and the expression that needs to be re-written.
15399 // Therefore, we have:
15400 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
15402 auto *CN
= cast
<ConstantSDNode
>(OtherUses
[i
]->getOperand(OffsetIdx
));
15403 const APInt
&Offset0
= CN
->getAPIntValue();
15404 const APInt
&Offset1
= cast
<ConstantSDNode
>(Offset
)->getAPIntValue();
15405 int X0
= (OtherUses
[i
]->getOpcode() == ISD::SUB
&& OffsetIdx
== 1) ? -1 : 1;
15406 int Y0
= (OtherUses
[i
]->getOpcode() == ISD::SUB
&& OffsetIdx
== 0) ? -1 : 1;
15407 int X1
= (AM
== ISD::PRE_DEC
&& !Swapped
) ? -1 : 1;
15408 int Y1
= (AM
== ISD::PRE_DEC
&& Swapped
) ? -1 : 1;
15410 unsigned Opcode
= (Y0
* Y1
< 0) ? ISD::SUB
: ISD::ADD
;
15412 APInt CNV
= Offset0
;
15413 if (X0
< 0) CNV
= -CNV
;
15414 if (X1
* Y0
* Y1
< 0) CNV
= CNV
+ Offset1
;
15415 else CNV
= CNV
- Offset1
;
15417 SDLoc
DL(OtherUses
[i
]);
15419 // We can now generate the new expression.
15420 SDValue NewOp1
= DAG
.getConstant(CNV
, DL
, CN
->getValueType(0));
15421 SDValue NewOp2
= Result
.getValue(IsLoad
? 1 : 0);
15423 SDValue NewUse
= DAG
.getNode(Opcode
,
15425 OtherUses
[i
]->getValueType(0), NewOp1
, NewOp2
);
15426 DAG
.ReplaceAllUsesOfValueWith(SDValue(OtherUses
[i
], 0), NewUse
);
15427 deleteAndRecombine(OtherUses
[i
]);
15430 // Replace the uses of Ptr with uses of the updated base value.
15431 DAG
.ReplaceAllUsesOfValueWith(Ptr
, Result
.getValue(IsLoad
? 1 : 0));
15432 deleteAndRecombine(Ptr
.getNode());
15433 AddToWorklist(Result
.getNode());
15438 static bool shouldCombineToPostInc(SDNode
*N
, SDValue Ptr
, SDNode
*PtrUse
,
15439 SDValue
&BasePtr
, SDValue
&Offset
,
15440 ISD::MemIndexedMode
&AM
,
15442 const TargetLowering
&TLI
) {
15444 (PtrUse
->getOpcode() != ISD::ADD
&& PtrUse
->getOpcode() != ISD::SUB
))
15447 if (!TLI
.getPostIndexedAddressParts(N
, PtrUse
, BasePtr
, Offset
, AM
, DAG
))
15450 // Don't create a indexed load / store with zero offset.
15451 if (isNullConstant(Offset
))
15454 if (isa
<FrameIndexSDNode
>(BasePtr
) || isa
<RegisterSDNode
>(BasePtr
))
15457 SmallPtrSet
<const SDNode
*, 32> Visited
;
15458 for (SDNode
*Use
: BasePtr
.getNode()->uses()) {
15459 if (Use
== Ptr
.getNode())
15462 // No if there's a later user which could perform the index instead.
15463 if (isa
<MemSDNode
>(Use
)) {
15464 bool IsLoad
= true;
15465 bool IsMasked
= false;
15467 if (getCombineLoadStoreParts(Use
, ISD::POST_INC
, ISD::POST_DEC
, IsLoad
,
15468 IsMasked
, OtherPtr
, TLI
)) {
15469 SmallVector
<const SDNode
*, 2> Worklist
;
15470 Worklist
.push_back(Use
);
15471 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
))
15476 // If all the uses are load / store addresses, then don't do the
15478 if (Use
->getOpcode() == ISD::ADD
|| Use
->getOpcode() == ISD::SUB
) {
15479 for (SDNode
*UseUse
: Use
->uses())
15480 if (canFoldInAddressingMode(Use
, UseUse
, DAG
, TLI
))
15487 static SDNode
*getPostIndexedLoadStoreOp(SDNode
*N
, bool &IsLoad
,
15488 bool &IsMasked
, SDValue
&Ptr
,
15489 SDValue
&BasePtr
, SDValue
&Offset
,
15490 ISD::MemIndexedMode
&AM
,
15492 const TargetLowering
&TLI
) {
15493 if (!getCombineLoadStoreParts(N
, ISD::POST_INC
, ISD::POST_DEC
, IsLoad
,
15494 IsMasked
, Ptr
, TLI
) ||
15495 Ptr
.getNode()->hasOneUse())
15498 // Try turning it into a post-indexed load / store except when
15499 // 1) All uses are load / store ops that use it as base ptr (and
15500 // it may be folded as addressing mmode).
15501 // 2) Op must be independent of N, i.e. Op is neither a predecessor
15502 // nor a successor of N. Otherwise, if Op is folded that would
15504 for (SDNode
*Op
: Ptr
->uses()) {
15506 if (!shouldCombineToPostInc(N
, Ptr
, Op
, BasePtr
, Offset
, AM
, DAG
, TLI
))
15510 SmallPtrSet
<const SDNode
*, 32> Visited
;
15511 SmallVector
<const SDNode
*, 8> Worklist
;
15512 // Ptr is predecessor to both N and Op.
15513 Visited
.insert(Ptr
.getNode());
15514 Worklist
.push_back(N
);
15515 Worklist
.push_back(Op
);
15516 if (!SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) &&
15517 !SDNode::hasPredecessorHelper(Op
, Visited
, Worklist
))
15523 /// Try to combine a load/store with a add/sub of the base pointer node into a
15524 /// post-indexed load/store. The transformation folded the add/subtract into the
15525 /// new indexed load/store effectively and all of its uses are redirected to the
15526 /// new load/store.
15527 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode
*N
) {
15528 if (Level
< AfterLegalizeDAG
)
15531 bool IsLoad
= true;
15532 bool IsMasked
= false;
15536 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
15537 SDNode
*Op
= getPostIndexedLoadStoreOp(N
, IsLoad
, IsMasked
, Ptr
, BasePtr
,
15538 Offset
, AM
, DAG
, TLI
);
15544 Result
= IsLoad
? DAG
.getIndexedLoad(SDValue(N
, 0), SDLoc(N
), BasePtr
,
15546 : DAG
.getIndexedStore(SDValue(N
, 0), SDLoc(N
),
15547 BasePtr
, Offset
, AM
);
15549 Result
= IsLoad
? DAG
.getIndexedMaskedLoad(SDValue(N
, 0), SDLoc(N
),
15550 BasePtr
, Offset
, AM
)
15551 : DAG
.getIndexedMaskedStore(SDValue(N
, 0), SDLoc(N
),
15552 BasePtr
, Offset
, AM
);
15553 ++PostIndexedNodes
;
15555 LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N
->dump(&DAG
);
15556 dbgs() << "\nWith: "; Result
.getNode()->dump(&DAG
);
15558 WorklistRemover
DeadNodes(*this);
15560 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0));
15561 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2));
15563 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1));
15566 // Finally, since the node is now dead, remove it from the graph.
15567 deleteAndRecombine(N
);
15569 // Replace the uses of Use with uses of the updated base value.
15570 DAG
.ReplaceAllUsesOfValueWith(SDValue(Op
, 0),
15571 Result
.getValue(IsLoad
? 1 : 0));
15572 deleteAndRecombine(Op
);
15576 /// Return the base-pointer arithmetic from an indexed \p LD.
15577 SDValue
DAGCombiner::SplitIndexingFromLoad(LoadSDNode
*LD
) {
15578 ISD::MemIndexedMode AM
= LD
->getAddressingMode();
15579 assert(AM
!= ISD::UNINDEXED
);
15580 SDValue BP
= LD
->getOperand(1);
15581 SDValue Inc
= LD
->getOperand(2);
15583 // Some backends use TargetConstants for load offsets, but don't expect
15584 // TargetConstants in general ADD nodes. We can convert these constants into
15585 // regular Constants (if the constant is not opaque).
15586 assert((Inc
.getOpcode() != ISD::TargetConstant
||
15587 !cast
<ConstantSDNode
>(Inc
)->isOpaque()) &&
15588 "Cannot split out indexing using opaque target constants");
15589 if (Inc
.getOpcode() == ISD::TargetConstant
) {
15590 ConstantSDNode
*ConstInc
= cast
<ConstantSDNode
>(Inc
);
15591 Inc
= DAG
.getConstant(*ConstInc
->getConstantIntValue(), SDLoc(Inc
),
15592 ConstInc
->getValueType(0));
15596 (AM
== ISD::PRE_INC
|| AM
== ISD::POST_INC
? ISD::ADD
: ISD::SUB
);
15597 return DAG
.getNode(Opc
, SDLoc(LD
), BP
.getSimpleValueType(), BP
, Inc
);
15600 static inline ElementCount
numVectorEltsOrZero(EVT T
) {
15601 return T
.isVector() ? T
.getVectorElementCount() : ElementCount::getFixed(0);
15604 bool DAGCombiner::getTruncatedStoreValue(StoreSDNode
*ST
, SDValue
&Val
) {
15605 Val
= ST
->getValue();
15606 EVT STType
= Val
.getValueType();
15607 EVT STMemType
= ST
->getMemoryVT();
15608 if (STType
== STMemType
)
15610 if (isTypeLegal(STMemType
))
15611 return false; // fail.
15612 if (STType
.isFloatingPoint() && STMemType
.isFloatingPoint() &&
15613 TLI
.isOperationLegal(ISD::FTRUNC
, STMemType
)) {
15614 Val
= DAG
.getNode(ISD::FTRUNC
, SDLoc(ST
), STMemType
, Val
);
15617 if (numVectorEltsOrZero(STType
) == numVectorEltsOrZero(STMemType
) &&
15618 STType
.isInteger() && STMemType
.isInteger()) {
15619 Val
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(ST
), STMemType
, Val
);
15622 if (STType
.getSizeInBits() == STMemType
.getSizeInBits()) {
15623 Val
= DAG
.getBitcast(STMemType
, Val
);
15626 return false; // fail.
15629 bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode
*LD
, SDValue
&Val
) {
15630 EVT LDMemType
= LD
->getMemoryVT();
15631 EVT LDType
= LD
->getValueType(0);
15632 assert(Val
.getValueType() == LDMemType
&&
15633 "Attempting to extend value of non-matching type");
15634 if (LDType
== LDMemType
)
15636 if (LDMemType
.isInteger() && LDType
.isInteger()) {
15637 switch (LD
->getExtensionType()) {
15638 case ISD::NON_EXTLOAD
:
15639 Val
= DAG
.getBitcast(LDType
, Val
);
15642 Val
= DAG
.getNode(ISD::ANY_EXTEND
, SDLoc(LD
), LDType
, Val
);
15644 case ISD::SEXTLOAD
:
15645 Val
= DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(LD
), LDType
, Val
);
15647 case ISD::ZEXTLOAD
:
15648 Val
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(LD
), LDType
, Val
);
15655 SDValue
DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode
*LD
) {
15656 if (OptLevel
== CodeGenOpt::None
|| !LD
->isSimple())
15658 SDValue Chain
= LD
->getOperand(0);
15659 StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(Chain
.getNode());
15660 // TODO: Relax this restriction for unordered atomics (see D66309)
15661 if (!ST
|| !ST
->isSimple())
15664 EVT LDType
= LD
->getValueType(0);
15665 EVT LDMemType
= LD
->getMemoryVT();
15666 EVT STMemType
= ST
->getMemoryVT();
15667 EVT STType
= ST
->getValue().getValueType();
15669 // There are two cases to consider here:
15670 // 1. The store is fixed width and the load is scalable. In this case we
15671 // don't know at compile time if the store completely envelops the load
15672 // so we abandon the optimisation.
15673 // 2. The store is scalable and the load is fixed width. We could
15674 // potentially support a limited number of cases here, but there has been
15675 // no cost-benefit analysis to prove it's worth it.
15676 bool LdStScalable
= LDMemType
.isScalableVector();
15677 if (LdStScalable
!= STMemType
.isScalableVector())
15680 // If we are dealing with scalable vectors on a big endian platform the
15681 // calculation of offsets below becomes trickier, since we do not know at
15682 // compile time the absolute size of the vector. Until we've done more
15683 // analysis on big-endian platforms it seems better to bail out for now.
15684 if (LdStScalable
&& DAG
.getDataLayout().isBigEndian())
15687 BaseIndexOffset BasePtrLD
= BaseIndexOffset::match(LD
, DAG
);
15688 BaseIndexOffset BasePtrST
= BaseIndexOffset::match(ST
, DAG
);
15690 if (!BasePtrST
.equalBaseIndex(BasePtrLD
, DAG
, Offset
))
15693 // Normalize for Endianness. After this Offset=0 will denote that the least
15694 // significant bit in the loaded value maps to the least significant bit in
15695 // the stored value). With Offset=n (for n > 0) the loaded value starts at the
15696 // n:th least significant byte of the stored value.
15697 if (DAG
.getDataLayout().isBigEndian())
15698 Offset
= ((int64_t)STMemType
.getStoreSizeInBits().getFixedSize() -
15699 (int64_t)LDMemType
.getStoreSizeInBits().getFixedSize()) /
15703 // Check that the stored value cover all bits that are loaded.
15706 TypeSize LdMemSize
= LDMemType
.getSizeInBits();
15707 TypeSize StMemSize
= STMemType
.getSizeInBits();
15709 STCoversLD
= (Offset
== 0) && LdMemSize
== StMemSize
;
15711 STCoversLD
= (Offset
>= 0) && (Offset
* 8 + LdMemSize
.getFixedSize() <=
15712 StMemSize
.getFixedSize());
15714 auto ReplaceLd
= [&](LoadSDNode
*LD
, SDValue Val
, SDValue Chain
) -> SDValue
{
15715 if (LD
->isIndexed()) {
15716 // Cannot handle opaque target constants and we must respect the user's
15717 // request not to split indexes from loads.
15718 if (!canSplitIdx(LD
))
15720 SDValue Idx
= SplitIndexingFromLoad(LD
);
15721 SDValue Ops
[] = {Val
, Idx
, Chain
};
15722 return CombineTo(LD
, Ops
, 3);
15724 return CombineTo(LD
, Val
, Chain
);
15730 // Memory as copy space (potentially masked).
15731 if (Offset
== 0 && LDType
== STType
&& STMemType
== LDMemType
) {
15732 // Simple case: Direct non-truncating forwarding
15733 if (LDType
.getSizeInBits() == LdMemSize
)
15734 return ReplaceLd(LD
, ST
->getValue(), Chain
);
15735 // Can we model the truncate and extension with an and mask?
15736 if (STType
.isInteger() && LDMemType
.isInteger() && !STType
.isVector() &&
15737 !LDMemType
.isVector() && LD
->getExtensionType() != ISD::SEXTLOAD
) {
15738 // Mask to size of LDMemType
15740 DAG
.getConstant(APInt::getLowBitsSet(STType
.getFixedSizeInBits(),
15741 StMemSize
.getFixedSize()),
15742 SDLoc(ST
), STType
);
15743 auto Val
= DAG
.getNode(ISD::AND
, SDLoc(LD
), LDType
, ST
->getValue(), Mask
);
15744 return ReplaceLd(LD
, Val
, Chain
);
15748 // TODO: Deal with nonzero offset.
15749 if (LD
->getBasePtr().isUndef() || Offset
!= 0)
15751 // Model necessary truncations / extenstions.
15753 // Truncate Value To Stored Memory Size.
15755 if (!getTruncatedStoreValue(ST
, Val
))
15757 if (!isTypeLegal(LDMemType
))
15759 if (STMemType
!= LDMemType
) {
15760 // TODO: Support vectors? This requires extract_subvector/bitcast.
15761 if (!STMemType
.isVector() && !LDMemType
.isVector() &&
15762 STMemType
.isInteger() && LDMemType
.isInteger())
15763 Val
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(LD
), LDMemType
, Val
);
15767 if (!extendLoadedValueToExtension(LD
, Val
))
15769 return ReplaceLd(LD
, Val
, Chain
);
15772 // On failure, cleanup dead nodes we may have created.
15773 if (Val
->use_empty())
15774 deleteAndRecombine(Val
.getNode());
15778 SDValue
DAGCombiner::visitLOAD(SDNode
*N
) {
15779 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
15780 SDValue Chain
= LD
->getChain();
15781 SDValue Ptr
= LD
->getBasePtr();
15783 // If load is not volatile and there are no uses of the loaded value (and
15784 // the updated indexed value in case of indexed loads), change uses of the
15785 // chain value into uses of the chain input (i.e. delete the dead load).
15786 // TODO: Allow this for unordered atomics (see D66309)
15787 if (LD
->isSimple()) {
15788 if (N
->getValueType(1) == MVT::Other
) {
15789 // Unindexed loads.
15790 if (!N
->hasAnyUseOfValue(0)) {
15791 // It's not safe to use the two value CombineTo variant here. e.g.
15792 // v1, chain2 = load chain1, loc
15793 // v2, chain3 = load chain2, loc
15795 // Now we replace use of chain2 with chain1. This makes the second load
15796 // isomorphic to the one we are deleting, and thus makes this load live.
15797 LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N
->dump(&DAG
);
15798 dbgs() << "\nWith chain: "; Chain
.getNode()->dump(&DAG
);
15800 WorklistRemover
DeadNodes(*this);
15801 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Chain
);
15802 AddUsersToWorklist(Chain
.getNode());
15803 if (N
->use_empty())
15804 deleteAndRecombine(N
);
15806 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
15810 assert(N
->getValueType(2) == MVT::Other
&& "Malformed indexed loads?");
15812 // If this load has an opaque TargetConstant offset, then we cannot split
15813 // the indexing into an add/sub directly (that TargetConstant may not be
15814 // valid for a different type of node, and we cannot convert an opaque
15815 // target constant into a regular constant).
15816 bool CanSplitIdx
= canSplitIdx(LD
);
15818 if (!N
->hasAnyUseOfValue(0) && (CanSplitIdx
|| !N
->hasAnyUseOfValue(1))) {
15819 SDValue Undef
= DAG
.getUNDEF(N
->getValueType(0));
15821 if (N
->hasAnyUseOfValue(1) && CanSplitIdx
) {
15822 Index
= SplitIndexingFromLoad(LD
);
15823 // Try to fold the base pointer arithmetic into subsequent loads and
15825 AddUsersToWorklist(N
);
15827 Index
= DAG
.getUNDEF(N
->getValueType(1));
15828 LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N
->dump(&DAG
);
15829 dbgs() << "\nWith: "; Undef
.getNode()->dump(&DAG
);
15830 dbgs() << " and 2 other values\n");
15831 WorklistRemover
DeadNodes(*this);
15832 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Undef
);
15833 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Index
);
15834 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 2), Chain
);
15835 deleteAndRecombine(N
);
15836 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
15841 // If this load is directly stored, replace the load value with the stored
15843 if (auto V
= ForwardStoreValueToDirectLoad(LD
))
15846 // Try to infer better alignment information than the load already has.
15847 if (OptLevel
!= CodeGenOpt::None
&& LD
->isUnindexed() && !LD
->isAtomic()) {
15848 if (MaybeAlign Alignment
= DAG
.InferPtrAlign(Ptr
)) {
15849 if (*Alignment
> LD
->getAlign() &&
15850 isAligned(*Alignment
, LD
->getSrcValueOffset())) {
15851 SDValue NewLoad
= DAG
.getExtLoad(
15852 LD
->getExtensionType(), SDLoc(N
), LD
->getValueType(0), Chain
, Ptr
,
15853 LD
->getPointerInfo(), LD
->getMemoryVT(), *Alignment
,
15854 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
15855 // NewLoad will always be N as we are only refining the alignment
15856 assert(NewLoad
.getNode() == N
);
15862 if (LD
->isUnindexed()) {
15863 // Walk up chain skipping non-aliasing memory nodes.
15864 SDValue BetterChain
= FindBetterChain(LD
, Chain
);
15866 // If there is a better chain.
15867 if (Chain
!= BetterChain
) {
15870 // Replace the chain to void dependency.
15871 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
) {
15872 ReplLoad
= DAG
.getLoad(N
->getValueType(0), SDLoc(LD
),
15873 BetterChain
, Ptr
, LD
->getMemOperand());
15875 ReplLoad
= DAG
.getExtLoad(LD
->getExtensionType(), SDLoc(LD
),
15876 LD
->getValueType(0),
15877 BetterChain
, Ptr
, LD
->getMemoryVT(),
15878 LD
->getMemOperand());
15881 // Create token factor to keep old chain connected.
15882 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, SDLoc(N
),
15883 MVT::Other
, Chain
, ReplLoad
.getValue(1));
15885 // Replace uses with load result and token factor
15886 return CombineTo(N
, ReplLoad
.getValue(0), Token
);
15890 // Try transforming N to an indexed load.
15891 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
15892 return SDValue(N
, 0);
15894 // Try to slice up N to more direct loads if the slices are mapped to
15895 // different register banks or pairing can take place.
15896 if (SliceUpLoad(N
))
15897 return SDValue(N
, 0);
15904 /// Helper structure used to slice a load in smaller loads.
15905 /// Basically a slice is obtained from the following sequence:
15906 /// Origin = load Ty1, Base
15907 /// Shift = srl Ty1 Origin, CstTy Amount
15908 /// Inst = trunc Shift to Ty2
15910 /// Then, it will be rewritten into:
15911 /// Slice = load SliceTy, Base + SliceOffset
15912 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
15914 /// SliceTy is deduced from the number of bits that are actually used to
15916 struct LoadedSlice
{
15917 /// Helper structure used to compute the cost of a slice.
15919 /// Are we optimizing for code size.
15920 bool ForCodeSize
= false;
15923 unsigned Loads
= 0;
15924 unsigned Truncates
= 0;
15925 unsigned CrossRegisterBanksCopies
= 0;
15926 unsigned ZExts
= 0;
15927 unsigned Shift
= 0;
15929 explicit Cost(bool ForCodeSize
) : ForCodeSize(ForCodeSize
) {}
15931 /// Get the cost of one isolated slice.
15932 Cost(const LoadedSlice
&LS
, bool ForCodeSize
)
15933 : ForCodeSize(ForCodeSize
), Loads(1) {
15934 EVT TruncType
= LS
.Inst
->getValueType(0);
15935 EVT LoadedType
= LS
.getLoadedType();
15936 if (TruncType
!= LoadedType
&&
15937 !LS
.DAG
->getTargetLoweringInfo().isZExtFree(LoadedType
, TruncType
))
15941 /// Account for slicing gain in the current cost.
15942 /// Slicing provide a few gains like removing a shift or a
15943 /// truncate. This method allows to grow the cost of the original
15944 /// load with the gain from this slice.
15945 void addSliceGain(const LoadedSlice
&LS
) {
15946 // Each slice saves a truncate.
15947 const TargetLowering
&TLI
= LS
.DAG
->getTargetLoweringInfo();
15948 if (!TLI
.isTruncateFree(LS
.Inst
->getOperand(0).getValueType(),
15949 LS
.Inst
->getValueType(0)))
15951 // If there is a shift amount, this slice gets rid of it.
15954 // If this slice can merge a cross register bank copy, account for it.
15955 if (LS
.canMergeExpensiveCrossRegisterBankCopy())
15956 ++CrossRegisterBanksCopies
;
15959 Cost
&operator+=(const Cost
&RHS
) {
15960 Loads
+= RHS
.Loads
;
15961 Truncates
+= RHS
.Truncates
;
15962 CrossRegisterBanksCopies
+= RHS
.CrossRegisterBanksCopies
;
15963 ZExts
+= RHS
.ZExts
;
15964 Shift
+= RHS
.Shift
;
15968 bool operator==(const Cost
&RHS
) const {
15969 return Loads
== RHS
.Loads
&& Truncates
== RHS
.Truncates
&&
15970 CrossRegisterBanksCopies
== RHS
.CrossRegisterBanksCopies
&&
15971 ZExts
== RHS
.ZExts
&& Shift
== RHS
.Shift
;
15974 bool operator!=(const Cost
&RHS
) const { return !(*this == RHS
); }
15976 bool operator<(const Cost
&RHS
) const {
15977 // Assume cross register banks copies are as expensive as loads.
15978 // FIXME: Do we want some more target hooks?
15979 unsigned ExpensiveOpsLHS
= Loads
+ CrossRegisterBanksCopies
;
15980 unsigned ExpensiveOpsRHS
= RHS
.Loads
+ RHS
.CrossRegisterBanksCopies
;
15981 // Unless we are optimizing for code size, consider the
15982 // expensive operation first.
15983 if (!ForCodeSize
&& ExpensiveOpsLHS
!= ExpensiveOpsRHS
)
15984 return ExpensiveOpsLHS
< ExpensiveOpsRHS
;
15985 return (Truncates
+ ZExts
+ Shift
+ ExpensiveOpsLHS
) <
15986 (RHS
.Truncates
+ RHS
.ZExts
+ RHS
.Shift
+ ExpensiveOpsRHS
);
15989 bool operator>(const Cost
&RHS
) const { return RHS
< *this; }
15991 bool operator<=(const Cost
&RHS
) const { return !(RHS
< *this); }
15993 bool operator>=(const Cost
&RHS
) const { return !(*this < RHS
); }
15996 // The last instruction that represent the slice. This should be a
15997 // truncate instruction.
16000 // The original load instruction.
16001 LoadSDNode
*Origin
;
16003 // The right shift amount in bits from the original load.
16006 // The DAG from which Origin came from.
16007 // This is used to get some contextual information about legal types, etc.
16010 LoadedSlice(SDNode
*Inst
= nullptr, LoadSDNode
*Origin
= nullptr,
16011 unsigned Shift
= 0, SelectionDAG
*DAG
= nullptr)
16012 : Inst(Inst
), Origin(Origin
), Shift(Shift
), DAG(DAG
) {}
16014 /// Get the bits used in a chunk of bits \p BitWidth large.
16015 /// \return Result is \p BitWidth and has used bits set to 1 and
16016 /// not used bits set to 0.
16017 APInt
getUsedBits() const {
16018 // Reproduce the trunc(lshr) sequence:
16019 // - Start from the truncated value.
16020 // - Zero extend to the desired bit width.
16022 assert(Origin
&& "No original load to compare against.");
16023 unsigned BitWidth
= Origin
->getValueSizeInBits(0);
16024 assert(Inst
&& "This slice is not bound to an instruction");
16025 assert(Inst
->getValueSizeInBits(0) <= BitWidth
&&
16026 "Extracted slice is bigger than the whole type!");
16027 APInt
UsedBits(Inst
->getValueSizeInBits(0), 0);
16028 UsedBits
.setAllBits();
16029 UsedBits
= UsedBits
.zext(BitWidth
);
16030 UsedBits
<<= Shift
;
16034 /// Get the size of the slice to be loaded in bytes.
16035 unsigned getLoadedSize() const {
16036 unsigned SliceSize
= getUsedBits().countPopulation();
16037 assert(!(SliceSize
& 0x7) && "Size is not a multiple of a byte.");
16038 return SliceSize
/ 8;
16041 /// Get the type that will be loaded for this slice.
16042 /// Note: This may not be the final type for the slice.
16043 EVT
getLoadedType() const {
16044 assert(DAG
&& "Missing context");
16045 LLVMContext
&Ctxt
= *DAG
->getContext();
16046 return EVT::getIntegerVT(Ctxt
, getLoadedSize() * 8);
16049 /// Get the alignment of the load used for this slice.
16050 Align
getAlign() const {
16051 Align Alignment
= Origin
->getAlign();
16052 uint64_t Offset
= getOffsetFromBase();
16054 Alignment
= commonAlignment(Alignment
, Alignment
.value() + Offset
);
16058 /// Check if this slice can be rewritten with legal operations.
16059 bool isLegal() const {
16060 // An invalid slice is not legal.
16061 if (!Origin
|| !Inst
|| !DAG
)
16064 // Offsets are for indexed load only, we do not handle that.
16065 if (!Origin
->getOffset().isUndef())
16068 const TargetLowering
&TLI
= DAG
->getTargetLoweringInfo();
16070 // Check that the type is legal.
16071 EVT SliceType
= getLoadedType();
16072 if (!TLI
.isTypeLegal(SliceType
))
16075 // Check that the load is legal for this type.
16076 if (!TLI
.isOperationLegal(ISD::LOAD
, SliceType
))
16079 // Check that the offset can be computed.
16080 // 1. Check its type.
16081 EVT PtrType
= Origin
->getBasePtr().getValueType();
16082 if (PtrType
== MVT::Untyped
|| PtrType
.isExtended())
16085 // 2. Check that it fits in the immediate.
16086 if (!TLI
.isLegalAddImmediate(getOffsetFromBase()))
16089 // 3. Check that the computation is legal.
16090 if (!TLI
.isOperationLegal(ISD::ADD
, PtrType
))
16093 // Check that the zext is legal if it needs one.
16094 EVT TruncateType
= Inst
->getValueType(0);
16095 if (TruncateType
!= SliceType
&&
16096 !TLI
.isOperationLegal(ISD::ZERO_EXTEND
, TruncateType
))
16102 /// Get the offset in bytes of this slice in the original chunk of
16104 /// \pre DAG != nullptr.
16105 uint64_t getOffsetFromBase() const {
16106 assert(DAG
&& "Missing context.");
16107 bool IsBigEndian
= DAG
->getDataLayout().isBigEndian();
16108 assert(!(Shift
& 0x7) && "Shifts not aligned on Bytes are not supported.");
16109 uint64_t Offset
= Shift
/ 8;
16110 unsigned TySizeInBytes
= Origin
->getValueSizeInBits(0) / 8;
16111 assert(!(Origin
->getValueSizeInBits(0) & 0x7) &&
16112 "The size of the original loaded type is not a multiple of a"
16114 // If Offset is bigger than TySizeInBytes, it means we are loading all
16115 // zeros. This should have been optimized before in the process.
16116 assert(TySizeInBytes
> Offset
&&
16117 "Invalid shift amount for given loaded size");
16119 Offset
= TySizeInBytes
- Offset
- getLoadedSize();
16123 /// Generate the sequence of instructions to load the slice
16124 /// represented by this object and redirect the uses of this slice to
16125 /// this new sequence of instructions.
16126 /// \pre this->Inst && this->Origin are valid Instructions and this
16127 /// object passed the legal check: LoadedSlice::isLegal returned true.
16128 /// \return The last instruction of the sequence used to load the slice.
16129 SDValue
loadSlice() const {
16130 assert(Inst
&& Origin
&& "Unable to replace a non-existing slice.");
16131 const SDValue
&OldBaseAddr
= Origin
->getBasePtr();
16132 SDValue BaseAddr
= OldBaseAddr
;
16133 // Get the offset in that chunk of bytes w.r.t. the endianness.
16134 int64_t Offset
= static_cast<int64_t>(getOffsetFromBase());
16135 assert(Offset
>= 0 && "Offset too big to fit in int64_t!");
16137 // BaseAddr = BaseAddr + Offset.
16138 EVT ArithType
= BaseAddr
.getValueType();
16140 BaseAddr
= DAG
->getNode(ISD::ADD
, DL
, ArithType
, BaseAddr
,
16141 DAG
->getConstant(Offset
, DL
, ArithType
));
16144 // Create the type of the loaded slice according to its size.
16145 EVT SliceType
= getLoadedType();
16147 // Create the load for the slice.
16149 DAG
->getLoad(SliceType
, SDLoc(Origin
), Origin
->getChain(), BaseAddr
,
16150 Origin
->getPointerInfo().getWithOffset(Offset
), getAlign(),
16151 Origin
->getMemOperand()->getFlags());
16152 // If the final type is not the same as the loaded type, this means that
16153 // we have to pad with zero. Create a zero extend for that.
16154 EVT FinalType
= Inst
->getValueType(0);
16155 if (SliceType
!= FinalType
)
16157 DAG
->getNode(ISD::ZERO_EXTEND
, SDLoc(LastInst
), FinalType
, LastInst
);
16161 /// Check if this slice can be merged with an expensive cross register
16162 /// bank copy. E.g.,
16164 /// f = bitcast i32 i to float
16165 bool canMergeExpensiveCrossRegisterBankCopy() const {
16166 if (!Inst
|| !Inst
->hasOneUse())
16168 SDNode
*Use
= *Inst
->use_begin();
16169 if (Use
->getOpcode() != ISD::BITCAST
)
16171 assert(DAG
&& "Missing context");
16172 const TargetLowering
&TLI
= DAG
->getTargetLoweringInfo();
16173 EVT ResVT
= Use
->getValueType(0);
16174 const TargetRegisterClass
*ResRC
=
16175 TLI
.getRegClassFor(ResVT
.getSimpleVT(), Use
->isDivergent());
16176 const TargetRegisterClass
*ArgRC
=
16177 TLI
.getRegClassFor(Use
->getOperand(0).getValueType().getSimpleVT(),
16178 Use
->getOperand(0)->isDivergent());
16179 if (ArgRC
== ResRC
|| !TLI
.isOperationLegal(ISD::LOAD
, ResVT
))
16182 // At this point, we know that we perform a cross-register-bank copy.
16183 // Check if it is expensive.
16184 const TargetRegisterInfo
*TRI
= DAG
->getSubtarget().getRegisterInfo();
16185 // Assume bitcasts are cheap, unless both register classes do not
16186 // explicitly share a common sub class.
16187 if (!TRI
|| TRI
->getCommonSubClass(ArgRC
, ResRC
))
16190 // Check if it will be merged with the load.
16191 // 1. Check the alignment constraint.
16192 Align RequiredAlignment
= DAG
->getDataLayout().getABITypeAlign(
16193 ResVT
.getTypeForEVT(*DAG
->getContext()));
16195 if (RequiredAlignment
> getAlign())
16198 // 2. Check that the load is a legal operation for that type.
16199 if (!TLI
.isOperationLegal(ISD::LOAD
, ResVT
))
16202 // 3. Check that we do not have a zext in the way.
16203 if (Inst
->getValueType(0) != getLoadedType())
16210 } // end anonymous namespace
16212 /// Check that all bits set in \p UsedBits form a dense region, i.e.,
16213 /// \p UsedBits looks like 0..0 1..1 0..0.
16214 static bool areUsedBitsDense(const APInt
&UsedBits
) {
16215 // If all the bits are one, this is dense!
16216 if (UsedBits
.isAllOnesValue())
16219 // Get rid of the unused bits on the right.
16220 APInt NarrowedUsedBits
= UsedBits
.lshr(UsedBits
.countTrailingZeros());
16221 // Get rid of the unused bits on the left.
16222 if (NarrowedUsedBits
.countLeadingZeros())
16223 NarrowedUsedBits
= NarrowedUsedBits
.trunc(NarrowedUsedBits
.getActiveBits());
16224 // Check that the chunk of bits is completely used.
16225 return NarrowedUsedBits
.isAllOnesValue();
16228 /// Check whether or not \p First and \p Second are next to each other
16229 /// in memory. This means that there is no hole between the bits loaded
16230 /// by \p First and the bits loaded by \p Second.
16231 static bool areSlicesNextToEachOther(const LoadedSlice
&First
,
16232 const LoadedSlice
&Second
) {
16233 assert(First
.Origin
== Second
.Origin
&& First
.Origin
&&
16234 "Unable to match different memory origins.");
16235 APInt UsedBits
= First
.getUsedBits();
16236 assert((UsedBits
& Second
.getUsedBits()) == 0 &&
16237 "Slices are not supposed to overlap.");
16238 UsedBits
|= Second
.getUsedBits();
16239 return areUsedBitsDense(UsedBits
);
16242 /// Adjust the \p GlobalLSCost according to the target
16243 /// paring capabilities and the layout of the slices.
16244 /// \pre \p GlobalLSCost should account for at least as many loads as
16245 /// there is in the slices in \p LoadedSlices.
16246 static void adjustCostForPairing(SmallVectorImpl
<LoadedSlice
> &LoadedSlices
,
16247 LoadedSlice::Cost
&GlobalLSCost
) {
16248 unsigned NumberOfSlices
= LoadedSlices
.size();
16249 // If there is less than 2 elements, no pairing is possible.
16250 if (NumberOfSlices
< 2)
16253 // Sort the slices so that elements that are likely to be next to each
16254 // other in memory are next to each other in the list.
16255 llvm::sort(LoadedSlices
, [](const LoadedSlice
&LHS
, const LoadedSlice
&RHS
) {
16256 assert(LHS
.Origin
== RHS
.Origin
&& "Different bases not implemented.");
16257 return LHS
.getOffsetFromBase() < RHS
.getOffsetFromBase();
16259 const TargetLowering
&TLI
= LoadedSlices
[0].DAG
->getTargetLoweringInfo();
16260 // First (resp. Second) is the first (resp. Second) potentially candidate
16261 // to be placed in a paired load.
16262 const LoadedSlice
*First
= nullptr;
16263 const LoadedSlice
*Second
= nullptr;
16264 for (unsigned CurrSlice
= 0; CurrSlice
< NumberOfSlices
; ++CurrSlice
,
16265 // Set the beginning of the pair.
16267 Second
= &LoadedSlices
[CurrSlice
];
16269 // If First is NULL, it means we start a new pair.
16270 // Get to the next slice.
16274 EVT LoadedType
= First
->getLoadedType();
16276 // If the types of the slices are different, we cannot pair them.
16277 if (LoadedType
!= Second
->getLoadedType())
16280 // Check if the target supplies paired loads for this type.
16281 Align RequiredAlignment
;
16282 if (!TLI
.hasPairedLoad(LoadedType
, RequiredAlignment
)) {
16283 // move to the next pair, this type is hopeless.
16287 // Check if we meet the alignment requirement.
16288 if (First
->getAlign() < RequiredAlignment
)
16291 // Check that both loads are next to each other in memory.
16292 if (!areSlicesNextToEachOther(*First
, *Second
))
16295 assert(GlobalLSCost
.Loads
> 0 && "We save more loads than we created!");
16296 --GlobalLSCost
.Loads
;
16297 // Move to the next pair.
16302 /// Check the profitability of all involved LoadedSlice.
16303 /// Currently, it is considered profitable if there is exactly two
16304 /// involved slices (1) which are (2) next to each other in memory, and
16305 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
16307 /// Note: The order of the elements in \p LoadedSlices may be modified, but not
16308 /// the elements themselves.
16310 /// FIXME: When the cost model will be mature enough, we can relax
16311 /// constraints (1) and (2).
16312 static bool isSlicingProfitable(SmallVectorImpl
<LoadedSlice
> &LoadedSlices
,
16313 const APInt
&UsedBits
, bool ForCodeSize
) {
16314 unsigned NumberOfSlices
= LoadedSlices
.size();
16315 if (StressLoadSlicing
)
16316 return NumberOfSlices
> 1;
16319 if (NumberOfSlices
!= 2)
16323 if (!areUsedBitsDense(UsedBits
))
16327 LoadedSlice::Cost
OrigCost(ForCodeSize
), GlobalSlicingCost(ForCodeSize
);
16328 // The original code has one big load.
16329 OrigCost
.Loads
= 1;
16330 for (unsigned CurrSlice
= 0; CurrSlice
< NumberOfSlices
; ++CurrSlice
) {
16331 const LoadedSlice
&LS
= LoadedSlices
[CurrSlice
];
16332 // Accumulate the cost of all the slices.
16333 LoadedSlice::Cost
SliceCost(LS
, ForCodeSize
);
16334 GlobalSlicingCost
+= SliceCost
;
16336 // Account as cost in the original configuration the gain obtained
16337 // with the current slices.
16338 OrigCost
.addSliceGain(LS
);
16341 // If the target supports paired load, adjust the cost accordingly.
16342 adjustCostForPairing(LoadedSlices
, GlobalSlicingCost
);
16343 return OrigCost
> GlobalSlicingCost
;
16346 /// If the given load, \p LI, is used only by trunc or trunc(lshr)
16347 /// operations, split it in the various pieces being extracted.
16349 /// This sort of thing is introduced by SROA.
16350 /// This slicing takes care not to insert overlapping loads.
16351 /// \pre LI is a simple load (i.e., not an atomic or volatile load).
16352 bool DAGCombiner::SliceUpLoad(SDNode
*N
) {
16353 if (Level
< AfterLegalizeDAG
)
16356 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
16357 if (!LD
->isSimple() || !ISD::isNormalLoad(LD
) ||
16358 !LD
->getValueType(0).isInteger())
16361 // The algorithm to split up a load of a scalable vector into individual
16362 // elements currently requires knowing the length of the loaded type,
16363 // so will need adjusting to work on scalable vectors.
16364 if (LD
->getValueType(0).isScalableVector())
16367 // Keep track of already used bits to detect overlapping values.
16368 // In that case, we will just abort the transformation.
16369 APInt
UsedBits(LD
->getValueSizeInBits(0), 0);
16371 SmallVector
<LoadedSlice
, 4> LoadedSlices
;
16373 // Check if this load is used as several smaller chunks of bits.
16374 // Basically, look for uses in trunc or trunc(lshr) and record a new chain
16375 // of computation for each trunc.
16376 for (SDNode::use_iterator UI
= LD
->use_begin(), UIEnd
= LD
->use_end();
16377 UI
!= UIEnd
; ++UI
) {
16378 // Skip the uses of the chain.
16379 if (UI
.getUse().getResNo() != 0)
16382 SDNode
*User
= *UI
;
16383 unsigned Shift
= 0;
16385 // Check if this is a trunc(lshr).
16386 if (User
->getOpcode() == ISD::SRL
&& User
->hasOneUse() &&
16387 isa
<ConstantSDNode
>(User
->getOperand(1))) {
16388 Shift
= User
->getConstantOperandVal(1);
16389 User
= *User
->use_begin();
16392 // At this point, User is a Truncate, iff we encountered, trunc or
16394 if (User
->getOpcode() != ISD::TRUNCATE
)
16397 // The width of the type must be a power of 2 and greater than 8-bits.
16398 // Otherwise the load cannot be represented in LLVM IR.
16399 // Moreover, if we shifted with a non-8-bits multiple, the slice
16400 // will be across several bytes. We do not support that.
16401 unsigned Width
= User
->getValueSizeInBits(0);
16402 if (Width
< 8 || !isPowerOf2_32(Width
) || (Shift
& 0x7))
16405 // Build the slice for this chain of computations.
16406 LoadedSlice
LS(User
, LD
, Shift
, &DAG
);
16407 APInt CurrentUsedBits
= LS
.getUsedBits();
16409 // Check if this slice overlaps with another.
16410 if ((CurrentUsedBits
& UsedBits
) != 0)
16412 // Update the bits used globally.
16413 UsedBits
|= CurrentUsedBits
;
16415 // Check if the new slice would be legal.
16419 // Record the slice.
16420 LoadedSlices
.push_back(LS
);
16423 // Abort slicing if it does not seem to be profitable.
16424 if (!isSlicingProfitable(LoadedSlices
, UsedBits
, ForCodeSize
))
16429 // Rewrite each chain to use an independent load.
16430 // By construction, each chain can be represented by a unique load.
16432 // Prepare the argument for the new token factor for all the slices.
16433 SmallVector
<SDValue
, 8> ArgChains
;
16434 for (const LoadedSlice
&LS
: LoadedSlices
) {
16435 SDValue SliceInst
= LS
.loadSlice();
16436 CombineTo(LS
.Inst
, SliceInst
, true);
16437 if (SliceInst
.getOpcode() != ISD::LOAD
)
16438 SliceInst
= SliceInst
.getOperand(0);
16439 assert(SliceInst
->getOpcode() == ISD::LOAD
&&
16440 "It takes more than a zext to get to the loaded slice!!");
16441 ArgChains
.push_back(SliceInst
.getValue(1));
16444 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, SDLoc(LD
), MVT::Other
,
16446 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Chain
);
16447 AddToWorklist(Chain
.getNode());
16451 /// Check to see if V is (and load (ptr), imm), where the load is having
16452 /// specific bytes cleared out. If so, return the byte size being masked out
16453 /// and the shift amount.
16454 static std::pair
<unsigned, unsigned>
16455 CheckForMaskedLoad(SDValue V
, SDValue Ptr
, SDValue Chain
) {
16456 std::pair
<unsigned, unsigned> Result(0, 0);
16458 // Check for the structure we're looking for.
16459 if (V
->getOpcode() != ISD::AND
||
16460 !isa
<ConstantSDNode
>(V
->getOperand(1)) ||
16461 !ISD::isNormalLoad(V
->getOperand(0).getNode()))
16464 // Check the chain and pointer.
16465 LoadSDNode
*LD
= cast
<LoadSDNode
>(V
->getOperand(0));
16466 if (LD
->getBasePtr() != Ptr
) return Result
; // Not from same pointer.
16468 // This only handles simple types.
16469 if (V
.getValueType() != MVT::i16
&&
16470 V
.getValueType() != MVT::i32
&&
16471 V
.getValueType() != MVT::i64
)
16474 // Check the constant mask. Invert it so that the bits being masked out are
16475 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits
16476 // follow the sign bit for uniformity.
16477 uint64_t NotMask
= ~cast
<ConstantSDNode
>(V
->getOperand(1))->getSExtValue();
16478 unsigned NotMaskLZ
= countLeadingZeros(NotMask
);
16479 if (NotMaskLZ
& 7) return Result
; // Must be multiple of a byte.
16480 unsigned NotMaskTZ
= countTrailingZeros(NotMask
);
16481 if (NotMaskTZ
& 7) return Result
; // Must be multiple of a byte.
16482 if (NotMaskLZ
== 64) return Result
; // All zero mask.
16484 // See if we have a continuous run of bits. If so, we have 0*1+0*
16485 if (countTrailingOnes(NotMask
>> NotMaskTZ
) + NotMaskTZ
+ NotMaskLZ
!= 64)
16488 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
16489 if (V
.getValueType() != MVT::i64
&& NotMaskLZ
)
16490 NotMaskLZ
-= 64-V
.getValueSizeInBits();
16492 unsigned MaskedBytes
= (V
.getValueSizeInBits()-NotMaskLZ
-NotMaskTZ
)/8;
16493 switch (MaskedBytes
) {
16497 default: return Result
; // All one mask, or 5-byte mask.
16500 // Verify that the first bit starts at a multiple of mask so that the access
16501 // is aligned the same as the access width.
16502 if (NotMaskTZ
&& NotMaskTZ
/8 % MaskedBytes
) return Result
;
16504 // For narrowing to be valid, it must be the case that the load the
16505 // immediately preceding memory operation before the store.
16506 if (LD
== Chain
.getNode())
16508 else if (Chain
->getOpcode() == ISD::TokenFactor
&&
16509 SDValue(LD
, 1).hasOneUse()) {
16510 // LD has only 1 chain use so they are no indirect dependencies.
16511 if (!LD
->isOperandOf(Chain
.getNode()))
16514 return Result
; // Fail.
16516 Result
.first
= MaskedBytes
;
16517 Result
.second
= NotMaskTZ
/8;
16521 /// Check to see if IVal is something that provides a value as specified by
16522 /// MaskInfo. If so, replace the specified store with a narrower store of
16523 /// truncated IVal.
16525 ShrinkLoadReplaceStoreWithStore(const std::pair
<unsigned, unsigned> &MaskInfo
,
16526 SDValue IVal
, StoreSDNode
*St
,
16528 unsigned NumBytes
= MaskInfo
.first
;
16529 unsigned ByteShift
= MaskInfo
.second
;
16530 SelectionDAG
&DAG
= DC
->getDAG();
16532 // Check to see if IVal is all zeros in the part being masked in by the 'or'
16533 // that uses this. If not, this is not a replacement.
16534 APInt Mask
= ~APInt::getBitsSet(IVal
.getValueSizeInBits(),
16535 ByteShift
*8, (ByteShift
+NumBytes
)*8);
16536 if (!DAG
.MaskedValueIsZero(IVal
, Mask
)) return SDValue();
16538 // Check that it is legal on the target to do this. It is legal if the new
16539 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
16540 // legalization (and the target doesn't explicitly think this is a bad idea).
16541 MVT VT
= MVT::getIntegerVT(NumBytes
* 8);
16542 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
16543 if (!DC
->isTypeLegal(VT
))
16545 if (St
->getMemOperand() &&
16546 !TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), VT
,
16547 *St
->getMemOperand()))
16550 // Okay, we can do this! Replace the 'St' store with a store of IVal that is
16551 // shifted by ByteShift and truncated down to NumBytes.
16554 IVal
= DAG
.getNode(ISD::SRL
, DL
, IVal
.getValueType(), IVal
,
16555 DAG
.getConstant(ByteShift
*8, DL
,
16556 DC
->getShiftAmountTy(IVal
.getValueType())));
16559 // Figure out the offset for the store and the alignment of the access.
16561 if (DAG
.getDataLayout().isLittleEndian())
16562 StOffset
= ByteShift
;
16564 StOffset
= IVal
.getValueType().getStoreSize() - ByteShift
- NumBytes
;
16566 SDValue Ptr
= St
->getBasePtr();
16569 Ptr
= DAG
.getMemBasePlusOffset(Ptr
, TypeSize::Fixed(StOffset
), DL
);
16572 // Truncate down to the new size.
16573 IVal
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(IVal
), VT
, IVal
);
16577 .getStore(St
->getChain(), SDLoc(St
), IVal
, Ptr
,
16578 St
->getPointerInfo().getWithOffset(StOffset
),
16579 St
->getOriginalAlign());
16582 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and
16583 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
16584 /// narrowing the load and store if it would end up being a win for performance
16586 SDValue
DAGCombiner::ReduceLoadOpStoreWidth(SDNode
*N
) {
16587 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
16588 if (!ST
->isSimple())
16591 SDValue Chain
= ST
->getChain();
16592 SDValue Value
= ST
->getValue();
16593 SDValue Ptr
= ST
->getBasePtr();
16594 EVT VT
= Value
.getValueType();
16596 if (ST
->isTruncatingStore() || VT
.isVector() || !Value
.hasOneUse())
16599 unsigned Opc
= Value
.getOpcode();
16601 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
16602 // is a byte mask indicating a consecutive number of bytes, check to see if
16603 // Y is known to provide just those bytes. If so, we try to replace the
16604 // load + replace + store sequence with a single (narrower) store, which makes
16606 if (Opc
== ISD::OR
&& EnableShrinkLoadReplaceStoreWithStore
) {
16607 std::pair
<unsigned, unsigned> MaskedLoad
;
16608 MaskedLoad
= CheckForMaskedLoad(Value
.getOperand(0), Ptr
, Chain
);
16609 if (MaskedLoad
.first
)
16610 if (SDValue NewST
= ShrinkLoadReplaceStoreWithStore(MaskedLoad
,
16611 Value
.getOperand(1), ST
,this))
16614 // Or is commutative, so try swapping X and Y.
16615 MaskedLoad
= CheckForMaskedLoad(Value
.getOperand(1), Ptr
, Chain
);
16616 if (MaskedLoad
.first
)
16617 if (SDValue NewST
= ShrinkLoadReplaceStoreWithStore(MaskedLoad
,
16618 Value
.getOperand(0), ST
,this))
16622 if (!EnableReduceLoadOpStoreWidth
)
16625 if ((Opc
!= ISD::OR
&& Opc
!= ISD::XOR
&& Opc
!= ISD::AND
) ||
16626 Value
.getOperand(1).getOpcode() != ISD::Constant
)
16629 SDValue N0
= Value
.getOperand(0);
16630 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
16631 Chain
== SDValue(N0
.getNode(), 1)) {
16632 LoadSDNode
*LD
= cast
<LoadSDNode
>(N0
);
16633 if (LD
->getBasePtr() != Ptr
||
16634 LD
->getPointerInfo().getAddrSpace() !=
16635 ST
->getPointerInfo().getAddrSpace())
16638 // Find the type to narrow it the load / op / store to.
16639 SDValue N1
= Value
.getOperand(1);
16640 unsigned BitWidth
= N1
.getValueSizeInBits();
16641 APInt Imm
= cast
<ConstantSDNode
>(N1
)->getAPIntValue();
16642 if (Opc
== ISD::AND
)
16643 Imm
^= APInt::getAllOnesValue(BitWidth
);
16644 if (Imm
== 0 || Imm
.isAllOnesValue())
16646 unsigned ShAmt
= Imm
.countTrailingZeros();
16647 unsigned MSB
= BitWidth
- Imm
.countLeadingZeros() - 1;
16648 unsigned NewBW
= NextPowerOf2(MSB
- ShAmt
);
16649 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), NewBW
);
16650 // The narrowing should be profitable, the load/store operation should be
16651 // legal (or custom) and the store size should be equal to the NewVT width.
16652 while (NewBW
< BitWidth
&&
16653 (NewVT
.getStoreSizeInBits() != NewBW
||
16654 !TLI
.isOperationLegalOrCustom(Opc
, NewVT
) ||
16655 !TLI
.isNarrowingProfitable(VT
, NewVT
))) {
16656 NewBW
= NextPowerOf2(NewBW
);
16657 NewVT
= EVT::getIntegerVT(*DAG
.getContext(), NewBW
);
16659 if (NewBW
>= BitWidth
)
16662 // If the lsb changed does not start at the type bitwidth boundary,
16663 // start at the previous one.
16665 ShAmt
= (((ShAmt
+ NewBW
- 1) / NewBW
) * NewBW
) - NewBW
;
16666 APInt Mask
= APInt::getBitsSet(BitWidth
, ShAmt
,
16667 std::min(BitWidth
, ShAmt
+ NewBW
));
16668 if ((Imm
& Mask
) == Imm
) {
16669 APInt NewImm
= (Imm
& Mask
).lshr(ShAmt
).trunc(NewBW
);
16670 if (Opc
== ISD::AND
)
16671 NewImm
^= APInt::getAllOnesValue(NewBW
);
16672 uint64_t PtrOff
= ShAmt
/ 8;
16673 // For big endian targets, we need to adjust the offset to the pointer to
16674 // load the correct bytes.
16675 if (DAG
.getDataLayout().isBigEndian())
16676 PtrOff
= (BitWidth
+ 7 - NewBW
) / 8 - PtrOff
;
16678 Align NewAlign
= commonAlignment(LD
->getAlign(), PtrOff
);
16679 Type
*NewVTTy
= NewVT
.getTypeForEVT(*DAG
.getContext());
16680 if (NewAlign
< DAG
.getDataLayout().getABITypeAlign(NewVTTy
))
16684 DAG
.getMemBasePlusOffset(Ptr
, TypeSize::Fixed(PtrOff
), SDLoc(LD
));
16686 DAG
.getLoad(NewVT
, SDLoc(N0
), LD
->getChain(), NewPtr
,
16687 LD
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
,
16688 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
16689 SDValue NewVal
= DAG
.getNode(Opc
, SDLoc(Value
), NewVT
, NewLD
,
16690 DAG
.getConstant(NewImm
, SDLoc(Value
),
16693 DAG
.getStore(Chain
, SDLoc(N
), NewVal
, NewPtr
,
16694 ST
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
);
16696 AddToWorklist(NewPtr
.getNode());
16697 AddToWorklist(NewLD
.getNode());
16698 AddToWorklist(NewVal
.getNode());
16699 WorklistRemover
DeadNodes(*this);
16700 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), NewLD
.getValue(1));
16709 /// For a given floating point load / store pair, if the load value isn't used
16710 /// by any other operations, then consider transforming the pair to integer
16711 /// load / store operations if the target deems the transformation profitable.
16712 SDValue
DAGCombiner::TransformFPLoadStorePair(SDNode
*N
) {
16713 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
16714 SDValue Value
= ST
->getValue();
16715 if (ISD::isNormalStore(ST
) && ISD::isNormalLoad(Value
.getNode()) &&
16716 Value
.hasOneUse()) {
16717 LoadSDNode
*LD
= cast
<LoadSDNode
>(Value
);
16718 EVT VT
= LD
->getMemoryVT();
16719 if (!VT
.isFloatingPoint() ||
16720 VT
!= ST
->getMemoryVT() ||
16721 LD
->isNonTemporal() ||
16722 ST
->isNonTemporal() ||
16723 LD
->getPointerInfo().getAddrSpace() != 0 ||
16724 ST
->getPointerInfo().getAddrSpace() != 0)
16727 TypeSize VTSize
= VT
.getSizeInBits();
16729 // We don't know the size of scalable types at compile time so we cannot
16730 // create an integer of the equivalent size.
16731 if (VTSize
.isScalable())
16734 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), VTSize
.getFixedSize());
16735 if (!TLI
.isOperationLegal(ISD::LOAD
, IntVT
) ||
16736 !TLI
.isOperationLegal(ISD::STORE
, IntVT
) ||
16737 !TLI
.isDesirableToTransformToIntegerOp(ISD::LOAD
, VT
) ||
16738 !TLI
.isDesirableToTransformToIntegerOp(ISD::STORE
, VT
))
16741 Align LDAlign
= LD
->getAlign();
16742 Align STAlign
= ST
->getAlign();
16743 Type
*IntVTTy
= IntVT
.getTypeForEVT(*DAG
.getContext());
16744 Align ABIAlign
= DAG
.getDataLayout().getABITypeAlign(IntVTTy
);
16745 if (LDAlign
< ABIAlign
|| STAlign
< ABIAlign
)
16749 DAG
.getLoad(IntVT
, SDLoc(Value
), LD
->getChain(), LD
->getBasePtr(),
16750 LD
->getPointerInfo(), LDAlign
);
16753 DAG
.getStore(ST
->getChain(), SDLoc(N
), NewLD
, ST
->getBasePtr(),
16754 ST
->getPointerInfo(), STAlign
);
16756 AddToWorklist(NewLD
.getNode());
16757 AddToWorklist(NewST
.getNode());
16758 WorklistRemover
DeadNodes(*this);
16759 DAG
.ReplaceAllUsesOfValueWith(Value
.getValue(1), NewLD
.getValue(1));
16767 // This is a helper function for visitMUL to check the profitability
16768 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
16769 // MulNode is the original multiply, AddNode is (add x, c1),
16770 // and ConstNode is c2.
16772 // If the (add x, c1) has multiple uses, we could increase
16773 // the number of adds if we make this transformation.
16774 // It would only be worth doing this if we can remove a
16775 // multiply in the process. Check for that here.
16779 // We're checking for cases where we have common "c3 * A" expressions.
16780 bool DAGCombiner::isMulAddWithConstProfitable(SDNode
*MulNode
,
16782 SDValue
&ConstNode
) {
16785 // If the add only has one use, this would be OK to do.
16786 if (AddNode
.getNode()->hasOneUse())
16789 // Walk all the users of the constant with which we're multiplying.
16790 for (SDNode
*Use
: ConstNode
->uses()) {
16791 if (Use
== MulNode
) // This use is the one we're on right now. Skip it.
16794 if (Use
->getOpcode() == ISD::MUL
) { // We have another multiply use.
16796 SDNode
*MulVar
= AddNode
.getOperand(0).getNode();
16798 // OtherOp is what we're multiplying against the constant.
16799 if (Use
->getOperand(0) == ConstNode
)
16800 OtherOp
= Use
->getOperand(1).getNode();
16802 OtherOp
= Use
->getOperand(0).getNode();
16804 // Check to see if multiply is with the same operand of our "add".
16806 // ConstNode = CONST
16807 // Use = ConstNode * A <-- visiting Use. OtherOp is A.
16809 // AddNode = (A + c1) <-- MulVar is A.
16810 // = AddNode * ConstNode <-- current visiting instruction.
16812 // If we make this transformation, we will have a common
16813 // multiply (ConstNode * A) that we can save.
16814 if (OtherOp
== MulVar
)
16817 // Now check to see if a future expansion will give us a common
16820 // ConstNode = CONST
16821 // AddNode = (A + c1)
16822 // ... = AddNode * ConstNode <-- current visiting instruction.
16824 // OtherOp = (A + c2)
16825 // Use = OtherOp * ConstNode <-- visiting Use.
16827 // If we make this transformation, we will have a common
16828 // multiply (CONST * A) after we also do the same transformation
16829 // to the "t2" instruction.
16830 if (OtherOp
->getOpcode() == ISD::ADD
&&
16831 DAG
.isConstantIntBuildVectorOrConstantInt(OtherOp
->getOperand(1)) &&
16832 OtherOp
->getOperand(0).getNode() == MulVar
)
16837 // Didn't find a case where this would be profitable.
16841 SDValue
DAGCombiner::getMergeStoreChains(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
16842 unsigned NumStores
) {
16843 SmallVector
<SDValue
, 8> Chains
;
16844 SmallPtrSet
<const SDNode
*, 8> Visited
;
16845 SDLoc
StoreDL(StoreNodes
[0].MemNode
);
16847 for (unsigned i
= 0; i
< NumStores
; ++i
) {
16848 Visited
.insert(StoreNodes
[i
].MemNode
);
16851 // don't include nodes that are children or repeated nodes.
16852 for (unsigned i
= 0; i
< NumStores
; ++i
) {
16853 if (Visited
.insert(StoreNodes
[i
].MemNode
->getChain().getNode()).second
)
16854 Chains
.push_back(StoreNodes
[i
].MemNode
->getChain());
16857 assert(Chains
.size() > 0 && "Chain should have generated a chain");
16858 return DAG
.getTokenFactor(StoreDL
, Chains
);
16861 bool DAGCombiner::mergeStoresOfConstantsOrVecElts(
16862 SmallVectorImpl
<MemOpLink
> &StoreNodes
, EVT MemVT
, unsigned NumStores
,
16863 bool IsConstantSrc
, bool UseVector
, bool UseTrunc
) {
16864 // Make sure we have something to merge.
16868 assert((!UseTrunc
|| !UseVector
) &&
16869 "This optimization cannot emit a vector truncating store");
16871 // The latest Node in the DAG.
16872 SDLoc
DL(StoreNodes
[0].MemNode
);
16874 TypeSize ElementSizeBits
= MemVT
.getStoreSizeInBits();
16875 unsigned SizeInBits
= NumStores
* ElementSizeBits
;
16876 unsigned NumMemElts
= MemVT
.isVector() ? MemVT
.getVectorNumElements() : 1;
16880 unsigned Elts
= NumStores
* NumMemElts
;
16881 // Get the type for the merged vector store.
16882 StoreTy
= EVT::getVectorVT(*DAG
.getContext(), MemVT
.getScalarType(), Elts
);
16884 StoreTy
= EVT::getIntegerVT(*DAG
.getContext(), SizeInBits
);
16888 if (IsConstantSrc
) {
16889 SmallVector
<SDValue
, 8> BuildVector
;
16890 for (unsigned I
= 0; I
!= NumStores
; ++I
) {
16891 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[I
].MemNode
);
16892 SDValue Val
= St
->getValue();
16893 // If constant is of the wrong type, convert it now.
16894 if (MemVT
!= Val
.getValueType()) {
16895 Val
= peekThroughBitcasts(Val
);
16896 // Deal with constants of wrong size.
16897 if (ElementSizeBits
!= Val
.getValueSizeInBits()) {
16899 EVT::getIntegerVT(*DAG
.getContext(), MemVT
.getSizeInBits());
16900 if (isa
<ConstantFPSDNode
>(Val
)) {
16901 // Not clear how to truncate FP values.
16903 } else if (auto *C
= dyn_cast
<ConstantSDNode
>(Val
))
16904 Val
= DAG
.getConstant(C
->getAPIntValue()
16905 .zextOrTrunc(Val
.getValueSizeInBits())
16906 .zextOrTrunc(ElementSizeBits
),
16907 SDLoc(C
), IntMemVT
);
16909 // Make sure correctly size type is the correct type.
16910 Val
= DAG
.getBitcast(MemVT
, Val
);
16912 BuildVector
.push_back(Val
);
16914 StoredVal
= DAG
.getNode(MemVT
.isVector() ? ISD::CONCAT_VECTORS
16915 : ISD::BUILD_VECTOR
,
16916 DL
, StoreTy
, BuildVector
);
16918 SmallVector
<SDValue
, 8> Ops
;
16919 for (unsigned i
= 0; i
< NumStores
; ++i
) {
16920 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[i
].MemNode
);
16921 SDValue Val
= peekThroughBitcasts(St
->getValue());
16922 // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of
16923 // type MemVT. If the underlying value is not the correct
16924 // type, but it is an extraction of an appropriate vector we
16925 // can recast Val to be of the correct type. This may require
16926 // converting between EXTRACT_VECTOR_ELT and
16927 // EXTRACT_SUBVECTOR.
16928 if ((MemVT
!= Val
.getValueType()) &&
16929 (Val
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
||
16930 Val
.getOpcode() == ISD::EXTRACT_SUBVECTOR
)) {
16931 EVT MemVTScalarTy
= MemVT
.getScalarType();
16932 // We may need to add a bitcast here to get types to line up.
16933 if (MemVTScalarTy
!= Val
.getValueType().getScalarType()) {
16934 Val
= DAG
.getBitcast(MemVT
, Val
);
16936 unsigned OpC
= MemVT
.isVector() ? ISD::EXTRACT_SUBVECTOR
16937 : ISD::EXTRACT_VECTOR_ELT
;
16938 SDValue Vec
= Val
.getOperand(0);
16939 SDValue Idx
= Val
.getOperand(1);
16940 Val
= DAG
.getNode(OpC
, SDLoc(Val
), MemVT
, Vec
, Idx
);
16943 Ops
.push_back(Val
);
16946 // Build the extracted vector elements back into a vector.
16947 StoredVal
= DAG
.getNode(MemVT
.isVector() ? ISD::CONCAT_VECTORS
16948 : ISD::BUILD_VECTOR
,
16952 // We should always use a vector store when merging extracted vector
16953 // elements, so this path implies a store of constants.
16954 assert(IsConstantSrc
&& "Merged vector elements should use vector store");
16956 APInt
StoreInt(SizeInBits
, 0);
16958 // Construct a single integer constant which is made of the smaller
16959 // constant inputs.
16960 bool IsLE
= DAG
.getDataLayout().isLittleEndian();
16961 for (unsigned i
= 0; i
< NumStores
; ++i
) {
16962 unsigned Idx
= IsLE
? (NumStores
- 1 - i
) : i
;
16963 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[Idx
].MemNode
);
16965 SDValue Val
= St
->getValue();
16966 Val
= peekThroughBitcasts(Val
);
16967 StoreInt
<<= ElementSizeBits
;
16968 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Val
)) {
16969 StoreInt
|= C
->getAPIntValue()
16970 .zextOrTrunc(ElementSizeBits
)
16971 .zextOrTrunc(SizeInBits
);
16972 } else if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Val
)) {
16973 StoreInt
|= C
->getValueAPF()
16975 .zextOrTrunc(ElementSizeBits
)
16976 .zextOrTrunc(SizeInBits
);
16977 // If fp truncation is necessary give up for now.
16978 if (MemVT
.getSizeInBits() != ElementSizeBits
)
16981 llvm_unreachable("Invalid constant element type");
16985 // Create the new Load and Store operations.
16986 StoredVal
= DAG
.getConstant(StoreInt
, DL
, StoreTy
);
16989 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
16990 SDValue NewChain
= getMergeStoreChains(StoreNodes
, NumStores
);
16992 // make sure we use trunc store if it's necessary to be legal.
16996 DAG
.getStore(NewChain
, DL
, StoredVal
, FirstInChain
->getBasePtr(),
16997 FirstInChain
->getPointerInfo(), FirstInChain
->getAlign());
16998 } else { // Must be realized as a trunc store
16999 EVT LegalizedStoredValTy
=
17000 TLI
.getTypeToTransformTo(*DAG
.getContext(), StoredVal
.getValueType());
17001 unsigned LegalizedStoreSize
= LegalizedStoredValTy
.getSizeInBits();
17002 ConstantSDNode
*C
= cast
<ConstantSDNode
>(StoredVal
);
17003 SDValue ExtendedStoreVal
=
17004 DAG
.getConstant(C
->getAPIntValue().zextOrTrunc(LegalizedStoreSize
), DL
,
17005 LegalizedStoredValTy
);
17006 NewStore
= DAG
.getTruncStore(
17007 NewChain
, DL
, ExtendedStoreVal
, FirstInChain
->getBasePtr(),
17008 FirstInChain
->getPointerInfo(), StoredVal
.getValueType() /*TVT*/,
17009 FirstInChain
->getAlign(), FirstInChain
->getMemOperand()->getFlags());
17012 // Replace all merged stores with the new store.
17013 for (unsigned i
= 0; i
< NumStores
; ++i
)
17014 CombineTo(StoreNodes
[i
].MemNode
, NewStore
);
17016 AddToWorklist(NewChain
.getNode());
17020 void DAGCombiner::getStoreMergeCandidates(
17021 StoreSDNode
*St
, SmallVectorImpl
<MemOpLink
> &StoreNodes
,
17022 SDNode
*&RootNode
) {
17023 // This holds the base pointer, index, and the offset in bytes from the base
17024 // pointer. We must have a base and an offset. Do not handle stores to undef
17026 BaseIndexOffset BasePtr
= BaseIndexOffset::match(St
, DAG
);
17027 if (!BasePtr
.getBase().getNode() || BasePtr
.getBase().isUndef())
17030 SDValue Val
= peekThroughBitcasts(St
->getValue());
17031 StoreSource StoreSrc
= getStoreSource(Val
);
17032 assert(StoreSrc
!= StoreSource::Unknown
&& "Expected known source for store");
17034 // Match on loadbaseptr if relevant.
17035 EVT MemVT
= St
->getMemoryVT();
17036 BaseIndexOffset LBasePtr
;
17038 if (StoreSrc
== StoreSource::Load
) {
17039 auto *Ld
= cast
<LoadSDNode
>(Val
);
17040 LBasePtr
= BaseIndexOffset::match(Ld
, DAG
);
17041 LoadVT
= Ld
->getMemoryVT();
17042 // Load and store should be the same type.
17043 if (MemVT
!= LoadVT
)
17045 // Loads must only have one use.
17046 if (!Ld
->hasNUsesOfValue(1, 0))
17048 // The memory operands must not be volatile/indexed/atomic.
17049 // TODO: May be able to relax for unordered atomics (see D66309)
17050 if (!Ld
->isSimple() || Ld
->isIndexed())
17053 auto CandidateMatch
= [&](StoreSDNode
*Other
, BaseIndexOffset
&Ptr
,
17054 int64_t &Offset
) -> bool {
17055 // The memory operands must not be volatile/indexed/atomic.
17056 // TODO: May be able to relax for unordered atomics (see D66309)
17057 if (!Other
->isSimple() || Other
->isIndexed())
17059 // Don't mix temporal stores with non-temporal stores.
17060 if (St
->isNonTemporal() != Other
->isNonTemporal())
17062 SDValue OtherBC
= peekThroughBitcasts(Other
->getValue());
17063 // Allow merging constants of different types as integers.
17064 bool NoTypeMatch
= (MemVT
.isInteger()) ? !MemVT
.bitsEq(Other
->getMemoryVT())
17065 : Other
->getMemoryVT() != MemVT
;
17066 switch (StoreSrc
) {
17067 case StoreSource::Load
: {
17070 // The Load's Base Ptr must also match.
17071 auto *OtherLd
= dyn_cast
<LoadSDNode
>(OtherBC
);
17074 BaseIndexOffset LPtr
= BaseIndexOffset::match(OtherLd
, DAG
);
17075 if (LoadVT
!= OtherLd
->getMemoryVT())
17077 // Loads must only have one use.
17078 if (!OtherLd
->hasNUsesOfValue(1, 0))
17080 // The memory operands must not be volatile/indexed/atomic.
17081 // TODO: May be able to relax for unordered atomics (see D66309)
17082 if (!OtherLd
->isSimple() || OtherLd
->isIndexed())
17084 // Don't mix temporal loads with non-temporal loads.
17085 if (cast
<LoadSDNode
>(Val
)->isNonTemporal() != OtherLd
->isNonTemporal())
17087 if (!(LBasePtr
.equalBaseIndex(LPtr
, DAG
)))
17091 case StoreSource::Constant
:
17094 if (!isIntOrFPConstant(OtherBC
))
17097 case StoreSource::Extract
:
17098 // Do not merge truncated stores here.
17099 if (Other
->isTruncatingStore())
17101 if (!MemVT
.bitsEq(OtherBC
.getValueType()))
17103 if (OtherBC
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
&&
17104 OtherBC
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
17108 llvm_unreachable("Unhandled store source for merging");
17110 Ptr
= BaseIndexOffset::match(Other
, DAG
);
17111 return (BasePtr
.equalBaseIndex(Ptr
, DAG
, Offset
));
17114 // Check if the pair of StoreNode and the RootNode already bail out many
17115 // times which is over the limit in dependence check.
17116 auto OverLimitInDependenceCheck
= [&](SDNode
*StoreNode
,
17117 SDNode
*RootNode
) -> bool {
17118 auto RootCount
= StoreRootCountMap
.find(StoreNode
);
17119 return RootCount
!= StoreRootCountMap
.end() &&
17120 RootCount
->second
.first
== RootNode
&&
17121 RootCount
->second
.second
> StoreMergeDependenceLimit
;
17124 auto TryToAddCandidate
= [&](SDNode::use_iterator UseIter
) {
17125 // This must be a chain use.
17126 if (UseIter
.getOperandNo() != 0)
17128 if (auto *OtherStore
= dyn_cast
<StoreSDNode
>(*UseIter
)) {
17129 BaseIndexOffset Ptr
;
17131 if (CandidateMatch(OtherStore
, Ptr
, PtrDiff
) &&
17132 !OverLimitInDependenceCheck(OtherStore
, RootNode
))
17133 StoreNodes
.push_back(MemOpLink(OtherStore
, PtrDiff
));
17137 // We looking for a root node which is an ancestor to all mergable
17138 // stores. We search up through a load, to our root and then down
17139 // through all children. For instance we will find Store{1,2,3} if
17140 // St is Store1, Store2. or Store3 where the root is not a load
17141 // which always true for nonvolatile ops. TODO: Expand
17142 // the search to find all valid candidates through multiple layers of loads.
17145 // |-------|-------|
17146 // Load Load Store3
17150 // FIXME: We should be able to climb and
17151 // descend TokenFactors to find candidates as well.
17153 RootNode
= St
->getChain().getNode();
17155 unsigned NumNodesExplored
= 0;
17156 const unsigned MaxSearchNodes
= 1024;
17157 if (auto *Ldn
= dyn_cast
<LoadSDNode
>(RootNode
)) {
17158 RootNode
= Ldn
->getChain().getNode();
17159 for (auto I
= RootNode
->use_begin(), E
= RootNode
->use_end();
17160 I
!= E
&& NumNodesExplored
< MaxSearchNodes
; ++I
, ++NumNodesExplored
) {
17161 if (I
.getOperandNo() == 0 && isa
<LoadSDNode
>(*I
)) { // walk down chain
17162 for (auto I2
= (*I
)->use_begin(), E2
= (*I
)->use_end(); I2
!= E2
; ++I2
)
17163 TryToAddCandidate(I2
);
17167 for (auto I
= RootNode
->use_begin(), E
= RootNode
->use_end();
17168 I
!= E
&& NumNodesExplored
< MaxSearchNodes
; ++I
, ++NumNodesExplored
)
17169 TryToAddCandidate(I
);
17173 // We need to check that merging these stores does not cause a loop in
17174 // the DAG. Any store candidate may depend on another candidate
17175 // indirectly through its operand (we already consider dependencies
17176 // through the chain). Check in parallel by searching up from
17177 // non-chain operands of candidates.
17178 bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
17179 SmallVectorImpl
<MemOpLink
> &StoreNodes
, unsigned NumStores
,
17180 SDNode
*RootNode
) {
17181 // FIXME: We should be able to truncate a full search of
17182 // predecessors by doing a BFS and keeping tabs the originating
17183 // stores from which worklist nodes come from in a similar way to
17184 // TokenFactor simplfication.
17186 SmallPtrSet
<const SDNode
*, 32> Visited
;
17187 SmallVector
<const SDNode
*, 8> Worklist
;
17189 // RootNode is a predecessor to all candidates so we need not search
17190 // past it. Add RootNode (peeking through TokenFactors). Do not count
17191 // these towards size check.
17193 Worklist
.push_back(RootNode
);
17194 while (!Worklist
.empty()) {
17195 auto N
= Worklist
.pop_back_val();
17196 if (!Visited
.insert(N
).second
)
17197 continue; // Already present in Visited.
17198 if (N
->getOpcode() == ISD::TokenFactor
) {
17199 for (SDValue Op
: N
->ops())
17200 Worklist
.push_back(Op
.getNode());
17204 // Don't count pruning nodes towards max.
17205 unsigned int Max
= 1024 + Visited
.size();
17206 // Search Ops of store candidates.
17207 for (unsigned i
= 0; i
< NumStores
; ++i
) {
17208 SDNode
*N
= StoreNodes
[i
].MemNode
;
17209 // Of the 4 Store Operands:
17210 // * Chain (Op 0) -> We have already considered these
17211 // in candidate selection and can be
17213 // * Value (Op 1) -> Cycles may happen (e.g. through load chains)
17214 // * Address (Op 2) -> Merged addresses may only vary by a fixed constant,
17215 // but aren't necessarily fromt the same base node, so
17216 // cycles possible (e.g. via indexed store).
17217 // * (Op 3) -> Represents the pre or post-indexing offset (or undef for
17218 // non-indexed stores). Not constant on all targets (e.g. ARM)
17219 // and so can participate in a cycle.
17220 for (unsigned j
= 1; j
< N
->getNumOperands(); ++j
)
17221 Worklist
.push_back(N
->getOperand(j
).getNode());
17223 // Search through DAG. We can stop early if we find a store node.
17224 for (unsigned i
= 0; i
< NumStores
; ++i
)
17225 if (SDNode::hasPredecessorHelper(StoreNodes
[i
].MemNode
, Visited
, Worklist
,
17227 // If the searching bail out, record the StoreNode and RootNode in the
17228 // StoreRootCountMap. If we have seen the pair many times over a limit,
17229 // we won't add the StoreNode into StoreNodes set again.
17230 if (Visited
.size() >= Max
) {
17231 auto &RootCount
= StoreRootCountMap
[StoreNodes
[i
].MemNode
];
17232 if (RootCount
.first
== RootNode
)
17233 RootCount
.second
++;
17235 RootCount
= {RootNode
, 1};
17243 DAGCombiner::getConsecutiveStores(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
17244 int64_t ElementSizeBytes
) const {
17246 // Find a store past the width of the first store.
17247 size_t StartIdx
= 0;
17248 while ((StartIdx
+ 1 < StoreNodes
.size()) &&
17249 StoreNodes
[StartIdx
].OffsetFromBase
+ ElementSizeBytes
!=
17250 StoreNodes
[StartIdx
+ 1].OffsetFromBase
)
17253 // Bail if we don't have enough candidates to merge.
17254 if (StartIdx
+ 1 >= StoreNodes
.size())
17257 // Trim stores that overlapped with the first store.
17259 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + StartIdx
);
17261 // Scan the memory operations on the chain and find the first
17262 // non-consecutive store memory address.
17263 unsigned NumConsecutiveStores
= 1;
17264 int64_t StartAddress
= StoreNodes
[0].OffsetFromBase
;
17265 // Check that the addresses are consecutive starting from the second
17266 // element in the list of stores.
17267 for (unsigned i
= 1, e
= StoreNodes
.size(); i
< e
; ++i
) {
17268 int64_t CurrAddress
= StoreNodes
[i
].OffsetFromBase
;
17269 if (CurrAddress
- StartAddress
!= (ElementSizeBytes
* i
))
17271 NumConsecutiveStores
= i
+ 1;
17273 if (NumConsecutiveStores
> 1)
17274 return NumConsecutiveStores
;
17276 // There are no consecutive stores at the start of the list.
17277 // Remove the first store and try again.
17278 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + 1);
17282 bool DAGCombiner::tryStoreMergeOfConstants(
17283 SmallVectorImpl
<MemOpLink
> &StoreNodes
, unsigned NumConsecutiveStores
,
17284 EVT MemVT
, SDNode
*RootNode
, bool AllowVectors
) {
17285 LLVMContext
&Context
= *DAG
.getContext();
17286 const DataLayout
&DL
= DAG
.getDataLayout();
17287 int64_t ElementSizeBytes
= MemVT
.getStoreSize();
17288 unsigned NumMemElts
= MemVT
.isVector() ? MemVT
.getVectorNumElements() : 1;
17289 bool MadeChange
= false;
17291 // Store the constants into memory as one consecutive store.
17292 while (NumConsecutiveStores
>= 2) {
17293 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
17294 unsigned FirstStoreAS
= FirstInChain
->getAddressSpace();
17295 unsigned FirstStoreAlign
= FirstInChain
->getAlignment();
17296 unsigned LastLegalType
= 1;
17297 unsigned LastLegalVectorType
= 1;
17298 bool LastIntegerTrunc
= false;
17299 bool NonZero
= false;
17300 unsigned FirstZeroAfterNonZero
= NumConsecutiveStores
;
17301 for (unsigned i
= 0; i
< NumConsecutiveStores
; ++i
) {
17302 StoreSDNode
*ST
= cast
<StoreSDNode
>(StoreNodes
[i
].MemNode
);
17303 SDValue StoredVal
= ST
->getValue();
17304 bool IsElementZero
= false;
17305 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(StoredVal
))
17306 IsElementZero
= C
->isNullValue();
17307 else if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(StoredVal
))
17308 IsElementZero
= C
->getConstantFPValue()->isNullValue();
17309 if (IsElementZero
) {
17310 if (NonZero
&& FirstZeroAfterNonZero
== NumConsecutiveStores
)
17311 FirstZeroAfterNonZero
= i
;
17313 NonZero
|= !IsElementZero
;
17315 // Find a legal type for the constant store.
17316 unsigned SizeInBits
= (i
+ 1) * ElementSizeBytes
* 8;
17317 EVT StoreTy
= EVT::getIntegerVT(Context
, SizeInBits
);
17318 bool IsFast
= false;
17320 // Break early when size is too large to be legal.
17321 if (StoreTy
.getSizeInBits() > MaximumLegalStoreInBits
)
17324 if (TLI
.isTypeLegal(StoreTy
) &&
17325 TLI
.canMergeStoresTo(FirstStoreAS
, StoreTy
, DAG
) &&
17326 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
17327 *FirstInChain
->getMemOperand(), &IsFast
) &&
17329 LastIntegerTrunc
= false;
17330 LastLegalType
= i
+ 1;
17331 // Or check whether a truncstore is legal.
17332 } else if (TLI
.getTypeAction(Context
, StoreTy
) ==
17333 TargetLowering::TypePromoteInteger
) {
17334 EVT LegalizedStoredValTy
=
17335 TLI
.getTypeToTransformTo(Context
, StoredVal
.getValueType());
17336 if (TLI
.isTruncStoreLegal(LegalizedStoredValTy
, StoreTy
) &&
17337 TLI
.canMergeStoresTo(FirstStoreAS
, LegalizedStoredValTy
, DAG
) &&
17338 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
17339 *FirstInChain
->getMemOperand(), &IsFast
) &&
17341 LastIntegerTrunc
= true;
17342 LastLegalType
= i
+ 1;
17346 // We only use vectors if the constant is known to be zero or the
17347 // target allows it and the function is not marked with the
17348 // noimplicitfloat attribute.
17350 TLI
.storeOfVectorConstantIsCheap(MemVT
, i
+ 1, FirstStoreAS
)) &&
17352 // Find a legal type for the vector store.
17353 unsigned Elts
= (i
+ 1) * NumMemElts
;
17354 EVT Ty
= EVT::getVectorVT(Context
, MemVT
.getScalarType(), Elts
);
17355 if (TLI
.isTypeLegal(Ty
) && TLI
.isTypeLegal(MemVT
) &&
17356 TLI
.canMergeStoresTo(FirstStoreAS
, Ty
, DAG
) &&
17357 TLI
.allowsMemoryAccess(Context
, DL
, Ty
,
17358 *FirstInChain
->getMemOperand(), &IsFast
) &&
17360 LastLegalVectorType
= i
+ 1;
17364 bool UseVector
= (LastLegalVectorType
> LastLegalType
) && AllowVectors
;
17365 unsigned NumElem
= (UseVector
) ? LastLegalVectorType
: LastLegalType
;
17366 bool UseTrunc
= LastIntegerTrunc
&& !UseVector
;
17368 // Check if we found a legal integer type that creates a meaningful
17371 // We know that candidate stores are in order and of correct
17372 // shape. While there is no mergeable sequence from the
17373 // beginning one may start later in the sequence. The only
17374 // reason a merge of size N could have failed where another of
17375 // the same size would not have, is if the alignment has
17376 // improved or we've dropped a non-zero value. Drop as many
17377 // candidates as we can here.
17378 unsigned NumSkip
= 1;
17379 while ((NumSkip
< NumConsecutiveStores
) &&
17380 (NumSkip
< FirstZeroAfterNonZero
) &&
17381 (StoreNodes
[NumSkip
].MemNode
->getAlignment() <= FirstStoreAlign
))
17384 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumSkip
);
17385 NumConsecutiveStores
-= NumSkip
;
17389 // Check that we can merge these candidates without causing a cycle.
17390 if (!checkMergeStoreCandidatesForDependencies(StoreNodes
, NumElem
,
17392 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
17393 NumConsecutiveStores
-= NumElem
;
17397 MadeChange
|= mergeStoresOfConstantsOrVecElts(StoreNodes
, MemVT
, NumElem
,
17398 /*IsConstantSrc*/ true,
17399 UseVector
, UseTrunc
);
17401 // Remove merged stores for next iteration.
17402 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
17403 NumConsecutiveStores
-= NumElem
;
17408 bool DAGCombiner::tryStoreMergeOfExtracts(
17409 SmallVectorImpl
<MemOpLink
> &StoreNodes
, unsigned NumConsecutiveStores
,
17410 EVT MemVT
, SDNode
*RootNode
) {
17411 LLVMContext
&Context
= *DAG
.getContext();
17412 const DataLayout
&DL
= DAG
.getDataLayout();
17413 unsigned NumMemElts
= MemVT
.isVector() ? MemVT
.getVectorNumElements() : 1;
17414 bool MadeChange
= false;
17416 // Loop on Consecutive Stores on success.
17417 while (NumConsecutiveStores
>= 2) {
17418 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
17419 unsigned FirstStoreAS
= FirstInChain
->getAddressSpace();
17420 unsigned FirstStoreAlign
= FirstInChain
->getAlignment();
17421 unsigned NumStoresToMerge
= 1;
17422 for (unsigned i
= 0; i
< NumConsecutiveStores
; ++i
) {
17423 // Find a legal type for the vector store.
17424 unsigned Elts
= (i
+ 1) * NumMemElts
;
17425 EVT Ty
= EVT::getVectorVT(*DAG
.getContext(), MemVT
.getScalarType(), Elts
);
17426 bool IsFast
= false;
17428 // Break early when size is too large to be legal.
17429 if (Ty
.getSizeInBits() > MaximumLegalStoreInBits
)
17432 if (TLI
.isTypeLegal(Ty
) && TLI
.canMergeStoresTo(FirstStoreAS
, Ty
, DAG
) &&
17433 TLI
.allowsMemoryAccess(Context
, DL
, Ty
,
17434 *FirstInChain
->getMemOperand(), &IsFast
) &&
17436 NumStoresToMerge
= i
+ 1;
17439 // Check if we found a legal integer type creating a meaningful
17441 if (NumStoresToMerge
< 2) {
17442 // We know that candidate stores are in order and of correct
17443 // shape. While there is no mergeable sequence from the
17444 // beginning one may start later in the sequence. The only
17445 // reason a merge of size N could have failed where another of
17446 // the same size would not have, is if the alignment has
17447 // improved. Drop as many candidates as we can here.
17448 unsigned NumSkip
= 1;
17449 while ((NumSkip
< NumConsecutiveStores
) &&
17450 (StoreNodes
[NumSkip
].MemNode
->getAlignment() <= FirstStoreAlign
))
17453 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumSkip
);
17454 NumConsecutiveStores
-= NumSkip
;
17458 // Check that we can merge these candidates without causing a cycle.
17459 if (!checkMergeStoreCandidatesForDependencies(StoreNodes
, NumStoresToMerge
,
17461 StoreNodes
.erase(StoreNodes
.begin(),
17462 StoreNodes
.begin() + NumStoresToMerge
);
17463 NumConsecutiveStores
-= NumStoresToMerge
;
17467 MadeChange
|= mergeStoresOfConstantsOrVecElts(
17468 StoreNodes
, MemVT
, NumStoresToMerge
, /*IsConstantSrc*/ false,
17469 /*UseVector*/ true, /*UseTrunc*/ false);
17471 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumStoresToMerge
);
17472 NumConsecutiveStores
-= NumStoresToMerge
;
17477 bool DAGCombiner::tryStoreMergeOfLoads(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
17478 unsigned NumConsecutiveStores
, EVT MemVT
,
17479 SDNode
*RootNode
, bool AllowVectors
,
17480 bool IsNonTemporalStore
,
17481 bool IsNonTemporalLoad
) {
17482 LLVMContext
&Context
= *DAG
.getContext();
17483 const DataLayout
&DL
= DAG
.getDataLayout();
17484 int64_t ElementSizeBytes
= MemVT
.getStoreSize();
17485 unsigned NumMemElts
= MemVT
.isVector() ? MemVT
.getVectorNumElements() : 1;
17486 bool MadeChange
= false;
17488 // Look for load nodes which are used by the stored values.
17489 SmallVector
<MemOpLink
, 8> LoadNodes
;
17491 // Find acceptable loads. Loads need to have the same chain (token factor),
17492 // must not be zext, volatile, indexed, and they must be consecutive.
17493 BaseIndexOffset LdBasePtr
;
17495 for (unsigned i
= 0; i
< NumConsecutiveStores
; ++i
) {
17496 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[i
].MemNode
);
17497 SDValue Val
= peekThroughBitcasts(St
->getValue());
17498 LoadSDNode
*Ld
= cast
<LoadSDNode
>(Val
);
17500 BaseIndexOffset LdPtr
= BaseIndexOffset::match(Ld
, DAG
);
17501 // If this is not the first ptr that we check.
17502 int64_t LdOffset
= 0;
17503 if (LdBasePtr
.getBase().getNode()) {
17504 // The base ptr must be the same.
17505 if (!LdBasePtr
.equalBaseIndex(LdPtr
, DAG
, LdOffset
))
17508 // Check that all other base pointers are the same as this one.
17512 // We found a potential memory operand to merge.
17513 LoadNodes
.push_back(MemOpLink(Ld
, LdOffset
));
17516 while (NumConsecutiveStores
>= 2 && LoadNodes
.size() >= 2) {
17517 Align RequiredAlignment
;
17518 bool NeedRotate
= false;
17519 if (LoadNodes
.size() == 2) {
17520 // If we have load/store pair instructions and we only have two values,
17521 // don't bother merging.
17522 if (TLI
.hasPairedLoad(MemVT
, RequiredAlignment
) &&
17523 StoreNodes
[0].MemNode
->getAlign() >= RequiredAlignment
) {
17524 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + 2);
17525 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + 2);
17528 // If the loads are reversed, see if we can rotate the halves into place.
17529 int64_t Offset0
= LoadNodes
[0].OffsetFromBase
;
17530 int64_t Offset1
= LoadNodes
[1].OffsetFromBase
;
17531 EVT PairVT
= EVT::getIntegerVT(Context
, ElementSizeBytes
* 8 * 2);
17532 if (Offset0
- Offset1
== ElementSizeBytes
&&
17533 (hasOperation(ISD::ROTL
, PairVT
) ||
17534 hasOperation(ISD::ROTR
, PairVT
))) {
17535 std::swap(LoadNodes
[0], LoadNodes
[1]);
17539 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
17540 unsigned FirstStoreAS
= FirstInChain
->getAddressSpace();
17541 Align FirstStoreAlign
= FirstInChain
->getAlign();
17542 LoadSDNode
*FirstLoad
= cast
<LoadSDNode
>(LoadNodes
[0].MemNode
);
17544 // Scan the memory operations on the chain and find the first
17545 // non-consecutive load memory address. These variables hold the index in
17546 // the store node array.
17548 unsigned LastConsecutiveLoad
= 1;
17550 // This variable refers to the size and not index in the array.
17551 unsigned LastLegalVectorType
= 1;
17552 unsigned LastLegalIntegerType
= 1;
17553 bool isDereferenceable
= true;
17554 bool DoIntegerTruncate
= false;
17555 int64_t StartAddress
= LoadNodes
[0].OffsetFromBase
;
17556 SDValue LoadChain
= FirstLoad
->getChain();
17557 for (unsigned i
= 1; i
< LoadNodes
.size(); ++i
) {
17558 // All loads must share the same chain.
17559 if (LoadNodes
[i
].MemNode
->getChain() != LoadChain
)
17562 int64_t CurrAddress
= LoadNodes
[i
].OffsetFromBase
;
17563 if (CurrAddress
- StartAddress
!= (ElementSizeBytes
* i
))
17565 LastConsecutiveLoad
= i
;
17567 if (isDereferenceable
&& !LoadNodes
[i
].MemNode
->isDereferenceable())
17568 isDereferenceable
= false;
17570 // Find a legal type for the vector store.
17571 unsigned Elts
= (i
+ 1) * NumMemElts
;
17572 EVT StoreTy
= EVT::getVectorVT(Context
, MemVT
.getScalarType(), Elts
);
17574 // Break early when size is too large to be legal.
17575 if (StoreTy
.getSizeInBits() > MaximumLegalStoreInBits
)
17578 bool IsFastSt
= false;
17579 bool IsFastLd
= false;
17580 if (TLI
.isTypeLegal(StoreTy
) &&
17581 TLI
.canMergeStoresTo(FirstStoreAS
, StoreTy
, DAG
) &&
17582 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
17583 *FirstInChain
->getMemOperand(), &IsFastSt
) &&
17585 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
17586 *FirstLoad
->getMemOperand(), &IsFastLd
) &&
17588 LastLegalVectorType
= i
+ 1;
17591 // Find a legal type for the integer store.
17592 unsigned SizeInBits
= (i
+ 1) * ElementSizeBytes
* 8;
17593 StoreTy
= EVT::getIntegerVT(Context
, SizeInBits
);
17594 if (TLI
.isTypeLegal(StoreTy
) &&
17595 TLI
.canMergeStoresTo(FirstStoreAS
, StoreTy
, DAG
) &&
17596 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
17597 *FirstInChain
->getMemOperand(), &IsFastSt
) &&
17599 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
17600 *FirstLoad
->getMemOperand(), &IsFastLd
) &&
17602 LastLegalIntegerType
= i
+ 1;
17603 DoIntegerTruncate
= false;
17604 // Or check whether a truncstore and extload is legal.
17605 } else if (TLI
.getTypeAction(Context
, StoreTy
) ==
17606 TargetLowering::TypePromoteInteger
) {
17607 EVT LegalizedStoredValTy
= TLI
.getTypeToTransformTo(Context
, StoreTy
);
17608 if (TLI
.isTruncStoreLegal(LegalizedStoredValTy
, StoreTy
) &&
17609 TLI
.canMergeStoresTo(FirstStoreAS
, LegalizedStoredValTy
, DAG
) &&
17610 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, LegalizedStoredValTy
, StoreTy
) &&
17611 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, LegalizedStoredValTy
, StoreTy
) &&
17612 TLI
.isLoadExtLegal(ISD::EXTLOAD
, LegalizedStoredValTy
, StoreTy
) &&
17613 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
17614 *FirstInChain
->getMemOperand(), &IsFastSt
) &&
17616 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
17617 *FirstLoad
->getMemOperand(), &IsFastLd
) &&
17619 LastLegalIntegerType
= i
+ 1;
17620 DoIntegerTruncate
= true;
17625 // Only use vector types if the vector type is larger than the integer
17626 // type. If they are the same, use integers.
17628 LastLegalVectorType
> LastLegalIntegerType
&& AllowVectors
;
17629 unsigned LastLegalType
=
17630 std::max(LastLegalVectorType
, LastLegalIntegerType
);
17632 // We add +1 here because the LastXXX variables refer to location while
17633 // the NumElem refers to array/index size.
17634 unsigned NumElem
= std::min(NumConsecutiveStores
, LastConsecutiveLoad
+ 1);
17635 NumElem
= std::min(LastLegalType
, NumElem
);
17636 Align FirstLoadAlign
= FirstLoad
->getAlign();
17639 // We know that candidate stores are in order and of correct
17640 // shape. While there is no mergeable sequence from the
17641 // beginning one may start later in the sequence. The only
17642 // reason a merge of size N could have failed where another of
17643 // the same size would not have is if the alignment or either
17644 // the load or store has improved. Drop as many candidates as we
17646 unsigned NumSkip
= 1;
17647 while ((NumSkip
< LoadNodes
.size()) &&
17648 (LoadNodes
[NumSkip
].MemNode
->getAlign() <= FirstLoadAlign
) &&
17649 (StoreNodes
[NumSkip
].MemNode
->getAlign() <= FirstStoreAlign
))
17651 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumSkip
);
17652 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + NumSkip
);
17653 NumConsecutiveStores
-= NumSkip
;
17657 // Check that we can merge these candidates without causing a cycle.
17658 if (!checkMergeStoreCandidatesForDependencies(StoreNodes
, NumElem
,
17660 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
17661 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + NumElem
);
17662 NumConsecutiveStores
-= NumElem
;
17666 // Find if it is better to use vectors or integers to load and store
17670 // Find a legal type for the vector store.
17671 unsigned Elts
= NumElem
* NumMemElts
;
17672 JointMemOpVT
= EVT::getVectorVT(Context
, MemVT
.getScalarType(), Elts
);
17674 unsigned SizeInBits
= NumElem
* ElementSizeBytes
* 8;
17675 JointMemOpVT
= EVT::getIntegerVT(Context
, SizeInBits
);
17678 SDLoc
LoadDL(LoadNodes
[0].MemNode
);
17679 SDLoc
StoreDL(StoreNodes
[0].MemNode
);
17681 // The merged loads are required to have the same incoming chain, so
17682 // using the first's chain is acceptable.
17684 SDValue NewStoreChain
= getMergeStoreChains(StoreNodes
, NumElem
);
17685 AddToWorklist(NewStoreChain
.getNode());
17687 MachineMemOperand::Flags LdMMOFlags
=
17688 isDereferenceable
? MachineMemOperand::MODereferenceable
17689 : MachineMemOperand::MONone
;
17690 if (IsNonTemporalLoad
)
17691 LdMMOFlags
|= MachineMemOperand::MONonTemporal
;
17693 MachineMemOperand::Flags StMMOFlags
= IsNonTemporalStore
17694 ? MachineMemOperand::MONonTemporal
17695 : MachineMemOperand::MONone
;
17697 SDValue NewLoad
, NewStore
;
17698 if (UseVectorTy
|| !DoIntegerTruncate
) {
17699 NewLoad
= DAG
.getLoad(
17700 JointMemOpVT
, LoadDL
, FirstLoad
->getChain(), FirstLoad
->getBasePtr(),
17701 FirstLoad
->getPointerInfo(), FirstLoadAlign
, LdMMOFlags
);
17702 SDValue StoreOp
= NewLoad
;
17704 unsigned LoadWidth
= ElementSizeBytes
* 8 * 2;
17705 assert(JointMemOpVT
== EVT::getIntegerVT(Context
, LoadWidth
) &&
17706 "Unexpected type for rotate-able load pair");
17708 DAG
.getShiftAmountConstant(LoadWidth
/ 2, JointMemOpVT
, LoadDL
);
17709 // Target can convert to the identical ROTR if it does not have ROTL.
17710 StoreOp
= DAG
.getNode(ISD::ROTL
, LoadDL
, JointMemOpVT
, NewLoad
, RotAmt
);
17712 NewStore
= DAG
.getStore(
17713 NewStoreChain
, StoreDL
, StoreOp
, FirstInChain
->getBasePtr(),
17714 FirstInChain
->getPointerInfo(), FirstStoreAlign
, StMMOFlags
);
17715 } else { // This must be the truncstore/extload case
17717 TLI
.getTypeToTransformTo(*DAG
.getContext(), JointMemOpVT
);
17718 NewLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, LoadDL
, ExtendedTy
,
17719 FirstLoad
->getChain(), FirstLoad
->getBasePtr(),
17720 FirstLoad
->getPointerInfo(), JointMemOpVT
,
17721 FirstLoadAlign
, LdMMOFlags
);
17722 NewStore
= DAG
.getTruncStore(
17723 NewStoreChain
, StoreDL
, NewLoad
, FirstInChain
->getBasePtr(),
17724 FirstInChain
->getPointerInfo(), JointMemOpVT
,
17725 FirstInChain
->getAlign(), FirstInChain
->getMemOperand()->getFlags());
17728 // Transfer chain users from old loads to the new load.
17729 for (unsigned i
= 0; i
< NumElem
; ++i
) {
17730 LoadSDNode
*Ld
= cast
<LoadSDNode
>(LoadNodes
[i
].MemNode
);
17731 DAG
.ReplaceAllUsesOfValueWith(SDValue(Ld
, 1),
17732 SDValue(NewLoad
.getNode(), 1));
17735 // Replace all stores with the new store. Recursively remove corresponding
17736 // values if they are no longer used.
17737 for (unsigned i
= 0; i
< NumElem
; ++i
) {
17738 SDValue Val
= StoreNodes
[i
].MemNode
->getOperand(1);
17739 CombineTo(StoreNodes
[i
].MemNode
, NewStore
);
17740 if (Val
.getNode()->use_empty())
17741 recursivelyDeleteUnusedNodes(Val
.getNode());
17745 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
17746 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + NumElem
);
17747 NumConsecutiveStores
-= NumElem
;
17752 bool DAGCombiner::mergeConsecutiveStores(StoreSDNode
*St
) {
17753 if (OptLevel
== CodeGenOpt::None
|| !EnableStoreMerging
)
17756 // TODO: Extend this function to merge stores of scalable vectors.
17757 // (i.e. two <vscale x 8 x i8> stores can be merged to one <vscale x 16 x i8>
17758 // store since we know <vscale x 16 x i8> is exactly twice as large as
17759 // <vscale x 8 x i8>). Until then, bail out for scalable vectors.
17760 EVT MemVT
= St
->getMemoryVT();
17761 if (MemVT
.isScalableVector())
17763 if (!MemVT
.isSimple() || MemVT
.getSizeInBits() * 2 > MaximumLegalStoreInBits
)
17766 // This function cannot currently deal with non-byte-sized memory sizes.
17767 int64_t ElementSizeBytes
= MemVT
.getStoreSize();
17768 if (ElementSizeBytes
* 8 != (int64_t)MemVT
.getSizeInBits())
17771 // Do not bother looking at stored values that are not constants, loads, or
17772 // extracted vector elements.
17773 SDValue StoredVal
= peekThroughBitcasts(St
->getValue());
17774 const StoreSource StoreSrc
= getStoreSource(StoredVal
);
17775 if (StoreSrc
== StoreSource::Unknown
)
17778 SmallVector
<MemOpLink
, 8> StoreNodes
;
17780 // Find potential store merge candidates by searching through chain sub-DAG
17781 getStoreMergeCandidates(St
, StoreNodes
, RootNode
);
17783 // Check if there is anything to merge.
17784 if (StoreNodes
.size() < 2)
17787 // Sort the memory operands according to their distance from the
17789 llvm::sort(StoreNodes
, [](MemOpLink LHS
, MemOpLink RHS
) {
17790 return LHS
.OffsetFromBase
< RHS
.OffsetFromBase
;
17793 bool AllowVectors
= !DAG
.getMachineFunction().getFunction().hasFnAttribute(
17794 Attribute::NoImplicitFloat
);
17795 bool IsNonTemporalStore
= St
->isNonTemporal();
17796 bool IsNonTemporalLoad
= StoreSrc
== StoreSource::Load
&&
17797 cast
<LoadSDNode
>(StoredVal
)->isNonTemporal();
17799 // Store Merge attempts to merge the lowest stores. This generally
17800 // works out as if successful, as the remaining stores are checked
17801 // after the first collection of stores is merged. However, in the
17802 // case that a non-mergeable store is found first, e.g., {p[-2],
17803 // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent
17804 // mergeable cases. To prevent this, we prune such stores from the
17805 // front of StoreNodes here.
17806 bool MadeChange
= false;
17807 while (StoreNodes
.size() > 1) {
17808 unsigned NumConsecutiveStores
=
17809 getConsecutiveStores(StoreNodes
, ElementSizeBytes
);
17810 // There are no more stores in the list to examine.
17811 if (NumConsecutiveStores
== 0)
17814 // We have at least 2 consecutive stores. Try to merge them.
17815 assert(NumConsecutiveStores
>= 2 && "Expected at least 2 stores");
17816 switch (StoreSrc
) {
17817 case StoreSource::Constant
:
17818 MadeChange
|= tryStoreMergeOfConstants(StoreNodes
, NumConsecutiveStores
,
17819 MemVT
, RootNode
, AllowVectors
);
17822 case StoreSource::Extract
:
17823 MadeChange
|= tryStoreMergeOfExtracts(StoreNodes
, NumConsecutiveStores
,
17827 case StoreSource::Load
:
17828 MadeChange
|= tryStoreMergeOfLoads(StoreNodes
, NumConsecutiveStores
,
17829 MemVT
, RootNode
, AllowVectors
,
17830 IsNonTemporalStore
, IsNonTemporalLoad
);
17834 llvm_unreachable("Unhandled store source type");
17840 SDValue
DAGCombiner::replaceStoreChain(StoreSDNode
*ST
, SDValue BetterChain
) {
17844 // Replace the chain to avoid dependency.
17845 if (ST
->isTruncatingStore()) {
17846 ReplStore
= DAG
.getTruncStore(BetterChain
, SL
, ST
->getValue(),
17847 ST
->getBasePtr(), ST
->getMemoryVT(),
17848 ST
->getMemOperand());
17850 ReplStore
= DAG
.getStore(BetterChain
, SL
, ST
->getValue(), ST
->getBasePtr(),
17851 ST
->getMemOperand());
17854 // Create token to keep both nodes around.
17855 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, SL
,
17856 MVT::Other
, ST
->getChain(), ReplStore
);
17858 // Make sure the new and old chains are cleaned up.
17859 AddToWorklist(Token
.getNode());
17861 // Don't add users to work list.
17862 return CombineTo(ST
, Token
, false);
17865 SDValue
DAGCombiner::replaceStoreOfFPConstant(StoreSDNode
*ST
) {
17866 SDValue Value
= ST
->getValue();
17867 if (Value
.getOpcode() == ISD::TargetConstantFP
)
17870 if (!ISD::isNormalStore(ST
))
17875 SDValue Chain
= ST
->getChain();
17876 SDValue Ptr
= ST
->getBasePtr();
17878 const ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Value
);
17880 // NOTE: If the original store is volatile, this transform must not increase
17881 // the number of stores. For example, on x86-32 an f64 can be stored in one
17882 // processor operation but an i64 (which is not legal) requires two. So the
17883 // transform should not be done in this case.
17886 switch (CFP
->getSimpleValueType(0).SimpleTy
) {
17888 llvm_unreachable("Unknown FP type");
17889 case MVT::f16
: // We don't do this for these yet.
17895 if ((isTypeLegal(MVT::i32
) && !LegalOperations
&& ST
->isSimple()) ||
17896 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
17898 Tmp
= DAG
.getConstant((uint32_t)CFP
->getValueAPF().
17899 bitcastToAPInt().getZExtValue(), SDLoc(CFP
),
17901 return DAG
.getStore(Chain
, DL
, Tmp
, Ptr
, ST
->getMemOperand());
17906 if ((TLI
.isTypeLegal(MVT::i64
) && !LegalOperations
&&
17908 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i64
)) {
17910 Tmp
= DAG
.getConstant(CFP
->getValueAPF().bitcastToAPInt().
17911 getZExtValue(), SDLoc(CFP
), MVT::i64
);
17912 return DAG
.getStore(Chain
, DL
, Tmp
,
17913 Ptr
, ST
->getMemOperand());
17916 if (ST
->isSimple() &&
17917 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
17918 // Many FP stores are not made apparent until after legalize, e.g. for
17919 // argument passing. Since this is so common, custom legalize the
17920 // 64-bit integer store into two 32-bit stores.
17921 uint64_t Val
= CFP
->getValueAPF().bitcastToAPInt().getZExtValue();
17922 SDValue Lo
= DAG
.getConstant(Val
& 0xFFFFFFFF, SDLoc(CFP
), MVT::i32
);
17923 SDValue Hi
= DAG
.getConstant(Val
>> 32, SDLoc(CFP
), MVT::i32
);
17924 if (DAG
.getDataLayout().isBigEndian())
17927 MachineMemOperand::Flags MMOFlags
= ST
->getMemOperand()->getFlags();
17928 AAMDNodes AAInfo
= ST
->getAAInfo();
17930 SDValue St0
= DAG
.getStore(Chain
, DL
, Lo
, Ptr
, ST
->getPointerInfo(),
17931 ST
->getOriginalAlign(), MMOFlags
, AAInfo
);
17932 Ptr
= DAG
.getMemBasePlusOffset(Ptr
, TypeSize::Fixed(4), DL
);
17933 SDValue St1
= DAG
.getStore(Chain
, DL
, Hi
, Ptr
,
17934 ST
->getPointerInfo().getWithOffset(4),
17935 ST
->getOriginalAlign(), MMOFlags
, AAInfo
);
17936 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
,
17944 SDValue
DAGCombiner::visitSTORE(SDNode
*N
) {
17945 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
17946 SDValue Chain
= ST
->getChain();
17947 SDValue Value
= ST
->getValue();
17948 SDValue Ptr
= ST
->getBasePtr();
17950 // If this is a store of a bit convert, store the input value if the
17951 // resultant store does not need a higher alignment than the original.
17952 if (Value
.getOpcode() == ISD::BITCAST
&& !ST
->isTruncatingStore() &&
17953 ST
->isUnindexed()) {
17954 EVT SVT
= Value
.getOperand(0).getValueType();
17955 // If the store is volatile, we only want to change the store type if the
17956 // resulting store is legal. Otherwise we might increase the number of
17957 // memory accesses. We don't care if the original type was legal or not
17958 // as we assume software couldn't rely on the number of accesses of an
17960 // TODO: May be able to relax for unordered atomics (see D66309)
17961 if (((!LegalOperations
&& ST
->isSimple()) ||
17962 TLI
.isOperationLegal(ISD::STORE
, SVT
)) &&
17963 TLI
.isStoreBitCastBeneficial(Value
.getValueType(), SVT
,
17964 DAG
, *ST
->getMemOperand())) {
17965 return DAG
.getStore(Chain
, SDLoc(N
), Value
.getOperand(0), Ptr
,
17966 ST
->getMemOperand());
17970 // Turn 'store undef, Ptr' -> nothing.
17971 if (Value
.isUndef() && ST
->isUnindexed())
17974 // Try to infer better alignment information than the store already has.
17975 if (OptLevel
!= CodeGenOpt::None
&& ST
->isUnindexed() && !ST
->isAtomic()) {
17976 if (MaybeAlign Alignment
= DAG
.InferPtrAlign(Ptr
)) {
17977 if (*Alignment
> ST
->getAlign() &&
17978 isAligned(*Alignment
, ST
->getSrcValueOffset())) {
17980 DAG
.getTruncStore(Chain
, SDLoc(N
), Value
, Ptr
, ST
->getPointerInfo(),
17981 ST
->getMemoryVT(), *Alignment
,
17982 ST
->getMemOperand()->getFlags(), ST
->getAAInfo());
17983 // NewStore will always be N as we are only refining the alignment
17984 assert(NewStore
.getNode() == N
);
17990 // Try transforming a pair floating point load / store ops to integer
17991 // load / store ops.
17992 if (SDValue NewST
= TransformFPLoadStorePair(N
))
17995 // Try transforming several stores into STORE (BSWAP).
17996 if (SDValue Store
= mergeTruncStores(ST
))
17999 if (ST
->isUnindexed()) {
18000 // Walk up chain skipping non-aliasing memory nodes, on this store and any
18001 // adjacent stores.
18002 if (findBetterNeighborChains(ST
)) {
18003 // replaceStoreChain uses CombineTo, which handled all of the worklist
18004 // manipulation. Return the original node to not do anything else.
18005 return SDValue(ST
, 0);
18007 Chain
= ST
->getChain();
18010 // FIXME: is there such a thing as a truncating indexed store?
18011 if (ST
->isTruncatingStore() && ST
->isUnindexed() &&
18012 Value
.getValueType().isInteger() &&
18013 (!isa
<ConstantSDNode
>(Value
) ||
18014 !cast
<ConstantSDNode
>(Value
)->isOpaque())) {
18015 APInt TruncDemandedBits
=
18016 APInt::getLowBitsSet(Value
.getScalarValueSizeInBits(),
18017 ST
->getMemoryVT().getScalarSizeInBits());
18019 // See if we can simplify the input to this truncstore with knowledge that
18020 // only the low bits are being used. For example:
18021 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
18022 AddToWorklist(Value
.getNode());
18023 if (SDValue Shorter
= DAG
.GetDemandedBits(Value
, TruncDemandedBits
))
18024 return DAG
.getTruncStore(Chain
, SDLoc(N
), Shorter
, Ptr
, ST
->getMemoryVT(),
18025 ST
->getMemOperand());
18027 // Otherwise, see if we can simplify the operation with
18028 // SimplifyDemandedBits, which only works if the value has a single use.
18029 if (SimplifyDemandedBits(Value
, TruncDemandedBits
)) {
18030 // Re-visit the store if anything changed and the store hasn't been merged
18031 // with another node (N is deleted) SimplifyDemandedBits will add Value's
18032 // node back to the worklist if necessary, but we also need to re-visit
18033 // the Store node itself.
18034 if (N
->getOpcode() != ISD::DELETED_NODE
)
18036 return SDValue(N
, 0);
18040 // If this is a load followed by a store to the same location, then the store
18042 // TODO: Can relax for unordered atomics (see D66309)
18043 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Value
)) {
18044 if (Ld
->getBasePtr() == Ptr
&& ST
->getMemoryVT() == Ld
->getMemoryVT() &&
18045 ST
->isUnindexed() && ST
->isSimple() &&
18046 Ld
->getAddressSpace() == ST
->getAddressSpace() &&
18047 // There can't be any side effects between the load and store, such as
18048 // a call or store.
18049 Chain
.reachesChainWithoutSideEffects(SDValue(Ld
, 1))) {
18050 // The store is dead, remove it.
18055 // TODO: Can relax for unordered atomics (see D66309)
18056 if (StoreSDNode
*ST1
= dyn_cast
<StoreSDNode
>(Chain
)) {
18057 if (ST
->isUnindexed() && ST
->isSimple() &&
18058 ST1
->isUnindexed() && ST1
->isSimple()) {
18059 if (ST1
->getBasePtr() == Ptr
&& ST1
->getValue() == Value
&&
18060 ST
->getMemoryVT() == ST1
->getMemoryVT() &&
18061 ST
->getAddressSpace() == ST1
->getAddressSpace()) {
18062 // If this is a store followed by a store with the same value to the
18063 // same location, then the store is dead/noop.
18067 if (OptLevel
!= CodeGenOpt::None
&& ST1
->hasOneUse() &&
18068 !ST1
->getBasePtr().isUndef() &&
18069 // BaseIndexOffset and the code below requires knowing the size
18070 // of a vector, so bail out if MemoryVT is scalable.
18071 !ST
->getMemoryVT().isScalableVector() &&
18072 !ST1
->getMemoryVT().isScalableVector() &&
18073 ST
->getAddressSpace() == ST1
->getAddressSpace()) {
18074 const BaseIndexOffset STBase
= BaseIndexOffset::match(ST
, DAG
);
18075 const BaseIndexOffset ChainBase
= BaseIndexOffset::match(ST1
, DAG
);
18076 unsigned STBitSize
= ST
->getMemoryVT().getFixedSizeInBits();
18077 unsigned ChainBitSize
= ST1
->getMemoryVT().getFixedSizeInBits();
18078 // If this is a store who's preceding store to a subset of the current
18079 // location and no one other node is chained to that store we can
18080 // effectively drop the store. Do not remove stores to undef as they may
18081 // be used as data sinks.
18082 if (STBase
.contains(DAG
, STBitSize
, ChainBase
, ChainBitSize
)) {
18083 CombineTo(ST1
, ST1
->getChain());
18090 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
18091 // truncating store. We can do this even if this is already a truncstore.
18092 if ((Value
.getOpcode() == ISD::FP_ROUND
|| Value
.getOpcode() == ISD::TRUNCATE
)
18093 && Value
.getNode()->hasOneUse() && ST
->isUnindexed() &&
18094 TLI
.isTruncStoreLegal(Value
.getOperand(0).getValueType(),
18095 ST
->getMemoryVT())) {
18096 return DAG
.getTruncStore(Chain
, SDLoc(N
), Value
.getOperand(0),
18097 Ptr
, ST
->getMemoryVT(), ST
->getMemOperand());
18100 // Always perform this optimization before types are legal. If the target
18101 // prefers, also try this after legalization to catch stores that were created
18102 // by intrinsics or other nodes.
18103 if (!LegalTypes
|| (TLI
.mergeStoresAfterLegalization(ST
->getMemoryVT()))) {
18105 // There can be multiple store sequences on the same chain.
18106 // Keep trying to merge store sequences until we are unable to do so
18107 // or until we merge the last store on the chain.
18108 bool Changed
= mergeConsecutiveStores(ST
);
18109 if (!Changed
) break;
18110 // Return N as merge only uses CombineTo and no worklist clean
18111 // up is necessary.
18112 if (N
->getOpcode() == ISD::DELETED_NODE
|| !isa
<StoreSDNode
>(N
))
18113 return SDValue(N
, 0);
18117 // Try transforming N to an indexed store.
18118 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
18119 return SDValue(N
, 0);
18121 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
18123 // Make sure to do this only after attempting to merge stores in order to
18124 // avoid changing the types of some subset of stores due to visit order,
18125 // preventing their merging.
18126 if (isa
<ConstantFPSDNode
>(ST
->getValue())) {
18127 if (SDValue NewSt
= replaceStoreOfFPConstant(ST
))
18131 if (SDValue NewSt
= splitMergedValStore(ST
))
18134 return ReduceLoadOpStoreWidth(N
);
18137 SDValue
DAGCombiner::visitLIFETIME_END(SDNode
*N
) {
18138 const auto *LifetimeEnd
= cast
<LifetimeSDNode
>(N
);
18139 if (!LifetimeEnd
->hasOffset())
18142 const BaseIndexOffset
LifetimeEndBase(N
->getOperand(1), SDValue(),
18143 LifetimeEnd
->getOffset(), false);
18145 // We walk up the chains to find stores.
18146 SmallVector
<SDValue
, 8> Chains
= {N
->getOperand(0)};
18147 while (!Chains
.empty()) {
18148 SDValue Chain
= Chains
.pop_back_val();
18149 if (!Chain
.hasOneUse())
18151 switch (Chain
.getOpcode()) {
18152 case ISD::TokenFactor
:
18153 for (unsigned Nops
= Chain
.getNumOperands(); Nops
;)
18154 Chains
.push_back(Chain
.getOperand(--Nops
));
18156 case ISD::LIFETIME_START
:
18157 case ISD::LIFETIME_END
:
18158 // We can forward past any lifetime start/end that can be proven not to
18160 if (!isAlias(Chain
.getNode(), N
))
18161 Chains
.push_back(Chain
.getOperand(0));
18164 StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(Chain
);
18165 // TODO: Can relax for unordered atomics (see D66309)
18166 if (!ST
->isSimple() || ST
->isIndexed())
18168 const TypeSize StoreSize
= ST
->getMemoryVT().getStoreSize();
18169 // The bounds of a scalable store are not known until runtime, so this
18170 // store cannot be elided.
18171 if (StoreSize
.isScalable())
18173 const BaseIndexOffset StoreBase
= BaseIndexOffset::match(ST
, DAG
);
18174 // If we store purely within object bounds just before its lifetime ends,
18175 // we can remove the store.
18176 if (LifetimeEndBase
.contains(DAG
, LifetimeEnd
->getSize() * 8, StoreBase
,
18177 StoreSize
.getFixedSize() * 8)) {
18178 LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase
.dump();
18179 dbgs() << "\nwithin LIFETIME_END of : ";
18180 LifetimeEndBase
.dump(); dbgs() << "\n");
18181 CombineTo(ST
, ST
->getChain());
18182 return SDValue(N
, 0);
18190 /// For the instruction sequence of store below, F and I values
18191 /// are bundled together as an i64 value before being stored into memory.
18192 /// Sometimes it is more efficent to generate separate stores for F and I,
18193 /// which can remove the bitwise instructions or sink them to colder places.
18195 /// (store (or (zext (bitcast F to i32) to i64),
18196 /// (shl (zext I to i64), 32)), addr) -->
18197 /// (store F, addr) and (store I, addr+4)
18199 /// Similarly, splitting for other merged store can also be beneficial, like:
18200 /// For pair of {i32, i32}, i64 store --> two i32 stores.
18201 /// For pair of {i32, i16}, i64 store --> two i32 stores.
18202 /// For pair of {i16, i16}, i32 store --> two i16 stores.
18203 /// For pair of {i16, i8}, i32 store --> two i16 stores.
18204 /// For pair of {i8, i8}, i16 store --> two i8 stores.
18206 /// We allow each target to determine specifically which kind of splitting is
18209 /// The store patterns are commonly seen from the simple code snippet below
18210 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
18211 /// void goo(const std::pair<int, float> &);
18214 /// goo(std::make_pair(tmp, ftmp));
18218 SDValue
DAGCombiner::splitMergedValStore(StoreSDNode
*ST
) {
18219 if (OptLevel
== CodeGenOpt::None
)
18222 // Can't change the number of memory accesses for a volatile store or break
18223 // atomicity for an atomic one.
18224 if (!ST
->isSimple())
18227 SDValue Val
= ST
->getValue();
18230 // Match OR operand.
18231 if (!Val
.getValueType().isScalarInteger() || Val
.getOpcode() != ISD::OR
)
18234 // Match SHL operand and get Lower and Higher parts of Val.
18235 SDValue Op1
= Val
.getOperand(0);
18236 SDValue Op2
= Val
.getOperand(1);
18238 if (Op1
.getOpcode() != ISD::SHL
) {
18239 std::swap(Op1
, Op2
);
18240 if (Op1
.getOpcode() != ISD::SHL
)
18244 Hi
= Op1
.getOperand(0);
18245 if (!Op1
.hasOneUse())
18248 // Match shift amount to HalfValBitSize.
18249 unsigned HalfValBitSize
= Val
.getValueSizeInBits() / 2;
18250 ConstantSDNode
*ShAmt
= dyn_cast
<ConstantSDNode
>(Op1
.getOperand(1));
18251 if (!ShAmt
|| ShAmt
->getAPIntValue() != HalfValBitSize
)
18254 // Lo and Hi are zero-extended from int with size less equal than 32
18256 if (Lo
.getOpcode() != ISD::ZERO_EXTEND
|| !Lo
.hasOneUse() ||
18257 !Lo
.getOperand(0).getValueType().isScalarInteger() ||
18258 Lo
.getOperand(0).getValueSizeInBits() > HalfValBitSize
||
18259 Hi
.getOpcode() != ISD::ZERO_EXTEND
|| !Hi
.hasOneUse() ||
18260 !Hi
.getOperand(0).getValueType().isScalarInteger() ||
18261 Hi
.getOperand(0).getValueSizeInBits() > HalfValBitSize
)
18264 // Use the EVT of low and high parts before bitcast as the input
18265 // of target query.
18266 EVT LowTy
= (Lo
.getOperand(0).getOpcode() == ISD::BITCAST
)
18267 ? Lo
.getOperand(0).getValueType()
18268 : Lo
.getValueType();
18269 EVT HighTy
= (Hi
.getOperand(0).getOpcode() == ISD::BITCAST
)
18270 ? Hi
.getOperand(0).getValueType()
18271 : Hi
.getValueType();
18272 if (!TLI
.isMultiStoresCheaperThanBitsMerge(LowTy
, HighTy
))
18275 // Start to split store.
18276 MachineMemOperand::Flags MMOFlags
= ST
->getMemOperand()->getFlags();
18277 AAMDNodes AAInfo
= ST
->getAAInfo();
18279 // Change the sizes of Lo and Hi's value types to HalfValBitSize.
18280 EVT VT
= EVT::getIntegerVT(*DAG
.getContext(), HalfValBitSize
);
18281 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Lo
.getOperand(0));
18282 Hi
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Hi
.getOperand(0));
18284 SDValue Chain
= ST
->getChain();
18285 SDValue Ptr
= ST
->getBasePtr();
18286 // Lower value store.
18287 SDValue St0
= DAG
.getStore(Chain
, DL
, Lo
, Ptr
, ST
->getPointerInfo(),
18288 ST
->getOriginalAlign(), MMOFlags
, AAInfo
);
18289 Ptr
= DAG
.getMemBasePlusOffset(Ptr
, TypeSize::Fixed(HalfValBitSize
/ 8), DL
);
18290 // Higher value store.
18291 SDValue St1
= DAG
.getStore(
18292 St0
, DL
, Hi
, Ptr
, ST
->getPointerInfo().getWithOffset(HalfValBitSize
/ 8),
18293 ST
->getOriginalAlign(), MMOFlags
, AAInfo
);
18297 /// Convert a disguised subvector insertion into a shuffle:
18298 SDValue
DAGCombiner::combineInsertEltToShuffle(SDNode
*N
, unsigned InsIndex
) {
18299 assert(N
->getOpcode() == ISD::INSERT_VECTOR_ELT
&&
18300 "Expected extract_vector_elt");
18301 SDValue InsertVal
= N
->getOperand(1);
18302 SDValue Vec
= N
->getOperand(0);
18304 // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N),
18306 // --> (vector_shuffle X, Y) and variations where shuffle operands may be
18308 if (Vec
.getOpcode() == ISD::VECTOR_SHUFFLE
&& Vec
.hasOneUse() &&
18309 InsertVal
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
18310 isa
<ConstantSDNode
>(InsertVal
.getOperand(1))) {
18311 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Vec
.getNode());
18312 ArrayRef
<int> Mask
= SVN
->getMask();
18314 SDValue X
= Vec
.getOperand(0);
18315 SDValue Y
= Vec
.getOperand(1);
18317 // Vec's operand 0 is using indices from 0 to N-1 and
18318 // operand 1 from N to 2N - 1, where N is the number of
18319 // elements in the vectors.
18320 SDValue InsertVal0
= InsertVal
.getOperand(0);
18321 int ElementOffset
= -1;
18323 // We explore the inputs of the shuffle in order to see if we find the
18324 // source of the extract_vector_elt. If so, we can use it to modify the
18325 // shuffle rather than perform an insert_vector_elt.
18326 SmallVector
<std::pair
<int, SDValue
>, 8> ArgWorkList
;
18327 ArgWorkList
.emplace_back(Mask
.size(), Y
);
18328 ArgWorkList
.emplace_back(0, X
);
18330 while (!ArgWorkList
.empty()) {
18333 std::tie(ArgOffset
, ArgVal
) = ArgWorkList
.pop_back_val();
18335 if (ArgVal
== InsertVal0
) {
18336 ElementOffset
= ArgOffset
;
18340 // Peek through concat_vector.
18341 if (ArgVal
.getOpcode() == ISD::CONCAT_VECTORS
) {
18342 int CurrentArgOffset
=
18343 ArgOffset
+ ArgVal
.getValueType().getVectorNumElements();
18344 int Step
= ArgVal
.getOperand(0).getValueType().getVectorNumElements();
18345 for (SDValue Op
: reverse(ArgVal
->ops())) {
18346 CurrentArgOffset
-= Step
;
18347 ArgWorkList
.emplace_back(CurrentArgOffset
, Op
);
18350 // Make sure we went through all the elements and did not screw up index
18352 assert(CurrentArgOffset
== ArgOffset
);
18356 if (ElementOffset
!= -1) {
18357 SmallVector
<int, 16> NewMask(Mask
.begin(), Mask
.end());
18359 auto *ExtrIndex
= cast
<ConstantSDNode
>(InsertVal
.getOperand(1));
18360 NewMask
[InsIndex
] = ElementOffset
+ ExtrIndex
->getZExtValue();
18361 assert(NewMask
[InsIndex
] <
18362 (int)(2 * Vec
.getValueType().getVectorNumElements()) &&
18363 NewMask
[InsIndex
] >= 0 && "NewMask[InsIndex] is out of bound");
18365 SDValue LegalShuffle
=
18366 TLI
.buildLegalVectorShuffle(Vec
.getValueType(), SDLoc(N
), X
,
18369 return LegalShuffle
;
18373 // insert_vector_elt V, (bitcast X from vector type), IdxC -->
18374 // bitcast(shuffle (bitcast V), (extended X), Mask)
18375 // Note: We do not use an insert_subvector node because that requires a
18376 // legal subvector type.
18377 if (InsertVal
.getOpcode() != ISD::BITCAST
|| !InsertVal
.hasOneUse() ||
18378 !InsertVal
.getOperand(0).getValueType().isVector())
18381 SDValue SubVec
= InsertVal
.getOperand(0);
18382 SDValue DestVec
= N
->getOperand(0);
18383 EVT SubVecVT
= SubVec
.getValueType();
18384 EVT VT
= DestVec
.getValueType();
18385 unsigned NumSrcElts
= SubVecVT
.getVectorNumElements();
18386 // If the source only has a single vector element, the cost of creating adding
18387 // it to a vector is likely to exceed the cost of a insert_vector_elt.
18388 if (NumSrcElts
== 1)
18390 unsigned ExtendRatio
= VT
.getSizeInBits() / SubVecVT
.getSizeInBits();
18391 unsigned NumMaskVals
= ExtendRatio
* NumSrcElts
;
18393 // Step 1: Create a shuffle mask that implements this insert operation. The
18394 // vector that we are inserting into will be operand 0 of the shuffle, so
18395 // those elements are just 'i'. The inserted subvector is in the first
18396 // positions of operand 1 of the shuffle. Example:
18397 // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7}
18398 SmallVector
<int, 16> Mask(NumMaskVals
);
18399 for (unsigned i
= 0; i
!= NumMaskVals
; ++i
) {
18400 if (i
/ NumSrcElts
== InsIndex
)
18401 Mask
[i
] = (i
% NumSrcElts
) + NumMaskVals
;
18406 // Bail out if the target can not handle the shuffle we want to create.
18407 EVT SubVecEltVT
= SubVecVT
.getVectorElementType();
18408 EVT ShufVT
= EVT::getVectorVT(*DAG
.getContext(), SubVecEltVT
, NumMaskVals
);
18409 if (!TLI
.isShuffleMaskLegal(Mask
, ShufVT
))
18412 // Step 2: Create a wide vector from the inserted source vector by appending
18413 // undefined elements. This is the same size as our destination vector.
18415 SmallVector
<SDValue
, 8> ConcatOps(ExtendRatio
, DAG
.getUNDEF(SubVecVT
));
18416 ConcatOps
[0] = SubVec
;
18417 SDValue PaddedSubV
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, ShufVT
, ConcatOps
);
18419 // Step 3: Shuffle in the padded subvector.
18420 SDValue DestVecBC
= DAG
.getBitcast(ShufVT
, DestVec
);
18421 SDValue Shuf
= DAG
.getVectorShuffle(ShufVT
, DL
, DestVecBC
, PaddedSubV
, Mask
);
18422 AddToWorklist(PaddedSubV
.getNode());
18423 AddToWorklist(DestVecBC
.getNode());
18424 AddToWorklist(Shuf
.getNode());
18425 return DAG
.getBitcast(VT
, Shuf
);
18428 SDValue
DAGCombiner::visitINSERT_VECTOR_ELT(SDNode
*N
) {
18429 SDValue InVec
= N
->getOperand(0);
18430 SDValue InVal
= N
->getOperand(1);
18431 SDValue EltNo
= N
->getOperand(2);
18434 EVT VT
= InVec
.getValueType();
18435 auto *IndexC
= dyn_cast
<ConstantSDNode
>(EltNo
);
18437 // Insert into out-of-bounds element is undefined.
18438 if (IndexC
&& VT
.isFixedLengthVector() &&
18439 IndexC
->getZExtValue() >= VT
.getVectorNumElements())
18440 return DAG
.getUNDEF(VT
);
18442 // Remove redundant insertions:
18443 // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x
18444 if (InVal
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
18445 InVec
== InVal
.getOperand(0) && EltNo
== InVal
.getOperand(1))
18449 // If this is variable insert to undef vector, it might be better to splat:
18450 // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... >
18451 if (InVec
.isUndef() && TLI
.shouldSplatInsEltVarIndex(VT
)) {
18452 if (VT
.isScalableVector())
18453 return DAG
.getSplatVector(VT
, DL
, InVal
);
18455 SmallVector
<SDValue
, 8> Ops(VT
.getVectorNumElements(), InVal
);
18456 return DAG
.getBuildVector(VT
, DL
, Ops
);
18462 if (VT
.isScalableVector())
18465 unsigned NumElts
= VT
.getVectorNumElements();
18467 // We must know which element is being inserted for folds below here.
18468 unsigned Elt
= IndexC
->getZExtValue();
18469 if (SDValue Shuf
= combineInsertEltToShuffle(N
, Elt
))
18472 // Canonicalize insert_vector_elt dag nodes.
18474 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
18475 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
18477 // Do this only if the child insert_vector node has one use; also
18478 // do this only if indices are both constants and Idx1 < Idx0.
18479 if (InVec
.getOpcode() == ISD::INSERT_VECTOR_ELT
&& InVec
.hasOneUse()
18480 && isa
<ConstantSDNode
>(InVec
.getOperand(2))) {
18481 unsigned OtherElt
= InVec
.getConstantOperandVal(2);
18482 if (Elt
< OtherElt
) {
18484 SDValue NewOp
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, DL
, VT
,
18485 InVec
.getOperand(0), InVal
, EltNo
);
18486 AddToWorklist(NewOp
.getNode());
18487 return DAG
.getNode(ISD::INSERT_VECTOR_ELT
, SDLoc(InVec
.getNode()),
18488 VT
, NewOp
, InVec
.getOperand(1), InVec
.getOperand(2));
18492 // If we can't generate a legal BUILD_VECTOR, exit
18493 if (LegalOperations
&& !TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
))
18496 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
18497 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
18498 // vector elements.
18499 SmallVector
<SDValue
, 8> Ops
;
18500 // Do not combine these two vectors if the output vector will not replace
18501 // the input vector.
18502 if (InVec
.getOpcode() == ISD::BUILD_VECTOR
&& InVec
.hasOneUse()) {
18503 Ops
.append(InVec
.getNode()->op_begin(),
18504 InVec
.getNode()->op_end());
18505 } else if (InVec
.isUndef()) {
18506 Ops
.append(NumElts
, DAG
.getUNDEF(InVal
.getValueType()));
18510 assert(Ops
.size() == NumElts
&& "Unexpected vector size");
18512 // Insert the element
18513 if (Elt
< Ops
.size()) {
18514 // All the operands of BUILD_VECTOR must have the same type;
18515 // we enforce that here.
18516 EVT OpVT
= Ops
[0].getValueType();
18517 Ops
[Elt
] = OpVT
.isInteger() ? DAG
.getAnyExtOrTrunc(InVal
, DL
, OpVT
) : InVal
;
18520 // Return the new vector
18521 return DAG
.getBuildVector(VT
, DL
, Ops
);
18524 SDValue
DAGCombiner::scalarizeExtractedVectorLoad(SDNode
*EVE
, EVT InVecVT
,
18526 LoadSDNode
*OriginalLoad
) {
18527 assert(OriginalLoad
->isSimple());
18529 EVT ResultVT
= EVE
->getValueType(0);
18530 EVT VecEltVT
= InVecVT
.getVectorElementType();
18532 // If the vector element type is not a multiple of a byte then we are unable
18533 // to correctly compute an address to load only the extracted element as a
18535 if (!VecEltVT
.isByteSized())
18538 Align Alignment
= OriginalLoad
->getAlign();
18539 Align NewAlign
= DAG
.getDataLayout().getABITypeAlign(
18540 VecEltVT
.getTypeForEVT(*DAG
.getContext()));
18542 if (NewAlign
> Alignment
||
18543 !TLI
.isOperationLegalOrCustom(ISD::LOAD
, VecEltVT
))
18546 ISD::LoadExtType ExtTy
= ResultVT
.bitsGT(VecEltVT
) ?
18547 ISD::NON_EXTLOAD
: ISD::EXTLOAD
;
18548 if (!TLI
.shouldReduceLoadWidth(OriginalLoad
, ExtTy
, VecEltVT
))
18551 Alignment
= NewAlign
;
18553 MachinePointerInfo MPI
;
18555 if (auto *ConstEltNo
= dyn_cast
<ConstantSDNode
>(EltNo
)) {
18556 int Elt
= ConstEltNo
->getZExtValue();
18557 unsigned PtrOff
= VecEltVT
.getSizeInBits() * Elt
/ 8;
18558 MPI
= OriginalLoad
->getPointerInfo().getWithOffset(PtrOff
);
18560 // Discard the pointer info except the address space because the memory
18561 // operand can't represent this new access since the offset is variable.
18562 MPI
= MachinePointerInfo(OriginalLoad
->getPointerInfo().getAddrSpace());
18564 SDValue NewPtr
= TLI
.getVectorElementPointer(DAG
, OriginalLoad
->getBasePtr(),
18567 // The replacement we need to do here is a little tricky: we need to
18568 // replace an extractelement of a load with a load.
18569 // Use ReplaceAllUsesOfValuesWith to do the replacement.
18570 // Note that this replacement assumes that the extractvalue is the only
18571 // use of the load; that's okay because we don't want to perform this
18572 // transformation in other cases anyway.
18575 if (ResultVT
.bitsGT(VecEltVT
)) {
18576 // If the result type of vextract is wider than the load, then issue an
18577 // extending load instead.
18578 ISD::LoadExtType ExtType
= TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, ResultVT
,
18582 Load
= DAG
.getExtLoad(ExtType
, SDLoc(EVE
), ResultVT
,
18583 OriginalLoad
->getChain(), NewPtr
, MPI
, VecEltVT
,
18584 Alignment
, OriginalLoad
->getMemOperand()->getFlags(),
18585 OriginalLoad
->getAAInfo());
18586 Chain
= Load
.getValue(1);
18588 Load
= DAG
.getLoad(
18589 VecEltVT
, SDLoc(EVE
), OriginalLoad
->getChain(), NewPtr
, MPI
, Alignment
,
18590 OriginalLoad
->getMemOperand()->getFlags(), OriginalLoad
->getAAInfo());
18591 Chain
= Load
.getValue(1);
18592 if (ResultVT
.bitsLT(VecEltVT
))
18593 Load
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(EVE
), ResultVT
, Load
);
18595 Load
= DAG
.getBitcast(ResultVT
, Load
);
18597 WorklistRemover
DeadNodes(*this);
18598 SDValue From
[] = { SDValue(EVE
, 0), SDValue(OriginalLoad
, 1) };
18599 SDValue To
[] = { Load
, Chain
};
18600 DAG
.ReplaceAllUsesOfValuesWith(From
, To
, 2);
18601 // Make sure to revisit this node to clean it up; it will usually be dead.
18602 AddToWorklist(EVE
);
18603 // Since we're explicitly calling ReplaceAllUses, add the new node to the
18604 // worklist explicitly as well.
18605 AddToWorklistWithUsers(Load
.getNode());
18607 return SDValue(EVE
, 0);
18610 /// Transform a vector binary operation into a scalar binary operation by moving
18611 /// the math/logic after an extract element of a vector.
18612 static SDValue
scalarizeExtractedBinop(SDNode
*ExtElt
, SelectionDAG
&DAG
,
18613 bool LegalOperations
) {
18614 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
18615 SDValue Vec
= ExtElt
->getOperand(0);
18616 SDValue Index
= ExtElt
->getOperand(1);
18617 auto *IndexC
= dyn_cast
<ConstantSDNode
>(Index
);
18618 if (!IndexC
|| !TLI
.isBinOp(Vec
.getOpcode()) || !Vec
.hasOneUse() ||
18619 Vec
.getNode()->getNumValues() != 1)
18622 // Targets may want to avoid this to prevent an expensive register transfer.
18623 if (!TLI
.shouldScalarizeBinop(Vec
))
18626 // Extracting an element of a vector constant is constant-folded, so this
18627 // transform is just replacing a vector op with a scalar op while moving the
18629 SDValue Op0
= Vec
.getOperand(0);
18630 SDValue Op1
= Vec
.getOperand(1);
18631 if (isAnyConstantBuildVector(Op0
, true) ||
18632 isAnyConstantBuildVector(Op1
, true)) {
18633 // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C'
18634 // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC)
18636 EVT VT
= ExtElt
->getValueType(0);
18637 SDValue Ext0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, Op0
, Index
);
18638 SDValue Ext1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, Op1
, Index
);
18639 return DAG
.getNode(Vec
.getOpcode(), DL
, VT
, Ext0
, Ext1
);
18645 SDValue
DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode
*N
) {
18646 SDValue VecOp
= N
->getOperand(0);
18647 SDValue Index
= N
->getOperand(1);
18648 EVT ScalarVT
= N
->getValueType(0);
18649 EVT VecVT
= VecOp
.getValueType();
18650 if (VecOp
.isUndef())
18651 return DAG
.getUNDEF(ScalarVT
);
18653 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val
18655 // This only really matters if the index is non-constant since other combines
18656 // on the constant elements already work.
18658 if (VecOp
.getOpcode() == ISD::INSERT_VECTOR_ELT
&&
18659 Index
== VecOp
.getOperand(2)) {
18660 SDValue Elt
= VecOp
.getOperand(1);
18661 return VecVT
.isInteger() ? DAG
.getAnyExtOrTrunc(Elt
, DL
, ScalarVT
) : Elt
;
18664 // (vextract (scalar_to_vector val, 0) -> val
18665 if (VecOp
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
18666 // Only 0'th element of SCALAR_TO_VECTOR is defined.
18667 if (DAG
.isKnownNeverZero(Index
))
18668 return DAG
.getUNDEF(ScalarVT
);
18670 // Check if the result type doesn't match the inserted element type. A
18671 // SCALAR_TO_VECTOR may truncate the inserted element and the
18672 // EXTRACT_VECTOR_ELT may widen the extracted vector.
18673 SDValue InOp
= VecOp
.getOperand(0);
18674 if (InOp
.getValueType() != ScalarVT
) {
18675 assert(InOp
.getValueType().isInteger() && ScalarVT
.isInteger());
18676 return DAG
.getSExtOrTrunc(InOp
, DL
, ScalarVT
);
18681 // extract_vector_elt of out-of-bounds element -> UNDEF
18682 auto *IndexC
= dyn_cast
<ConstantSDNode
>(Index
);
18683 if (IndexC
&& VecVT
.isFixedLengthVector() &&
18684 IndexC
->getAPIntValue().uge(VecVT
.getVectorNumElements()))
18685 return DAG
.getUNDEF(ScalarVT
);
18687 // extract_vector_elt (build_vector x, y), 1 -> y
18688 if (((IndexC
&& VecOp
.getOpcode() == ISD::BUILD_VECTOR
) ||
18689 VecOp
.getOpcode() == ISD::SPLAT_VECTOR
) &&
18690 TLI
.isTypeLegal(VecVT
) &&
18691 (VecOp
.hasOneUse() || TLI
.aggressivelyPreferBuildVectorSources(VecVT
))) {
18692 assert((VecOp
.getOpcode() != ISD::BUILD_VECTOR
||
18693 VecVT
.isFixedLengthVector()) &&
18694 "BUILD_VECTOR used for scalable vectors");
18695 unsigned IndexVal
=
18696 VecOp
.getOpcode() == ISD::BUILD_VECTOR
? IndexC
->getZExtValue() : 0;
18697 SDValue Elt
= VecOp
.getOperand(IndexVal
);
18698 EVT InEltVT
= Elt
.getValueType();
18700 // Sometimes build_vector's scalar input types do not match result type.
18701 if (ScalarVT
== InEltVT
)
18704 // TODO: It may be useful to truncate if free if the build_vector implicitly
18708 if (VecVT
.isScalableVector())
18711 // All the code from this point onwards assumes fixed width vectors, but it's
18712 // possible that some of the combinations could be made to work for scalable
18714 unsigned NumElts
= VecVT
.getVectorNumElements();
18715 unsigned VecEltBitWidth
= VecVT
.getScalarSizeInBits();
18717 // TODO: These transforms should not require the 'hasOneUse' restriction, but
18718 // there are regressions on multiple targets without it. We can end up with a
18719 // mess of scalar and vector code if we reduce only part of the DAG to scalar.
18720 if (IndexC
&& VecOp
.getOpcode() == ISD::BITCAST
&& VecVT
.isInteger() &&
18721 VecOp
.hasOneUse()) {
18722 // The vector index of the LSBs of the source depend on the endian-ness.
18723 bool IsLE
= DAG
.getDataLayout().isLittleEndian();
18724 unsigned ExtractIndex
= IndexC
->getZExtValue();
18725 // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x)
18726 unsigned BCTruncElt
= IsLE
? 0 : NumElts
- 1;
18727 SDValue BCSrc
= VecOp
.getOperand(0);
18728 if (ExtractIndex
== BCTruncElt
&& BCSrc
.getValueType().isScalarInteger())
18729 return DAG
.getNode(ISD::TRUNCATE
, DL
, ScalarVT
, BCSrc
);
18731 if (LegalTypes
&& BCSrc
.getValueType().isInteger() &&
18732 BCSrc
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
18733 // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt -->
18734 // trunc i64 X to i32
18735 SDValue X
= BCSrc
.getOperand(0);
18736 assert(X
.getValueType().isScalarInteger() && ScalarVT
.isScalarInteger() &&
18737 "Extract element and scalar to vector can't change element type "
18738 "from FP to integer.");
18739 unsigned XBitWidth
= X
.getValueSizeInBits();
18740 BCTruncElt
= IsLE
? 0 : XBitWidth
/ VecEltBitWidth
- 1;
18742 // An extract element return value type can be wider than its vector
18743 // operand element type. In that case, the high bits are undefined, so
18744 // it's possible that we may need to extend rather than truncate.
18745 if (ExtractIndex
== BCTruncElt
&& XBitWidth
> VecEltBitWidth
) {
18746 assert(XBitWidth
% VecEltBitWidth
== 0 &&
18747 "Scalar bitwidth must be a multiple of vector element bitwidth");
18748 return DAG
.getAnyExtOrTrunc(X
, DL
, ScalarVT
);
18753 if (SDValue BO
= scalarizeExtractedBinop(N
, DAG
, LegalOperations
))
18756 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
18757 // We only perform this optimization before the op legalization phase because
18758 // we may introduce new vector instructions which are not backed by TD
18759 // patterns. For example on AVX, extracting elements from a wide vector
18760 // without using extract_subvector. However, if we can find an underlying
18761 // scalar value, then we can always use that.
18762 if (IndexC
&& VecOp
.getOpcode() == ISD::VECTOR_SHUFFLE
) {
18763 auto *Shuf
= cast
<ShuffleVectorSDNode
>(VecOp
);
18764 // Find the new index to extract from.
18765 int OrigElt
= Shuf
->getMaskElt(IndexC
->getZExtValue());
18767 // Extracting an undef index is undef.
18769 return DAG
.getUNDEF(ScalarVT
);
18771 // Select the right vector half to extract from.
18773 if (OrigElt
< (int)NumElts
) {
18774 SVInVec
= VecOp
.getOperand(0);
18776 SVInVec
= VecOp
.getOperand(1);
18777 OrigElt
-= NumElts
;
18780 if (SVInVec
.getOpcode() == ISD::BUILD_VECTOR
) {
18781 SDValue InOp
= SVInVec
.getOperand(OrigElt
);
18782 if (InOp
.getValueType() != ScalarVT
) {
18783 assert(InOp
.getValueType().isInteger() && ScalarVT
.isInteger());
18784 InOp
= DAG
.getSExtOrTrunc(InOp
, DL
, ScalarVT
);
18790 // FIXME: We should handle recursing on other vector shuffles and
18791 // scalar_to_vector here as well.
18793 if (!LegalOperations
||
18794 // FIXME: Should really be just isOperationLegalOrCustom.
18795 TLI
.isOperationLegal(ISD::EXTRACT_VECTOR_ELT
, VecVT
) ||
18796 TLI
.isOperationExpand(ISD::VECTOR_SHUFFLE
, VecVT
)) {
18797 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, ScalarVT
, SVInVec
,
18798 DAG
.getVectorIdxConstant(OrigElt
, DL
));
18802 // If only EXTRACT_VECTOR_ELT nodes use the source vector we can
18803 // simplify it based on the (valid) extraction indices.
18804 if (llvm::all_of(VecOp
->uses(), [&](SDNode
*Use
) {
18805 return Use
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
18806 Use
->getOperand(0) == VecOp
&&
18807 isa
<ConstantSDNode
>(Use
->getOperand(1));
18809 APInt DemandedElts
= APInt::getNullValue(NumElts
);
18810 for (SDNode
*Use
: VecOp
->uses()) {
18811 auto *CstElt
= cast
<ConstantSDNode
>(Use
->getOperand(1));
18812 if (CstElt
->getAPIntValue().ult(NumElts
))
18813 DemandedElts
.setBit(CstElt
->getZExtValue());
18815 if (SimplifyDemandedVectorElts(VecOp
, DemandedElts
, true)) {
18816 // We simplified the vector operand of this extract element. If this
18817 // extract is not dead, visit it again so it is folded properly.
18818 if (N
->getOpcode() != ISD::DELETED_NODE
)
18820 return SDValue(N
, 0);
18822 APInt DemandedBits
= APInt::getAllOnesValue(VecEltBitWidth
);
18823 if (SimplifyDemandedBits(VecOp
, DemandedBits
, DemandedElts
, true)) {
18824 // We simplified the vector operand of this extract element. If this
18825 // extract is not dead, visit it again so it is folded properly.
18826 if (N
->getOpcode() != ISD::DELETED_NODE
)
18828 return SDValue(N
, 0);
18832 // Everything under here is trying to match an extract of a loaded value.
18833 // If the result of load has to be truncated, then it's not necessarily
18835 bool BCNumEltsChanged
= false;
18836 EVT ExtVT
= VecVT
.getVectorElementType();
18838 if (ScalarVT
.bitsLT(LVT
) && !TLI
.isTruncateFree(LVT
, ScalarVT
))
18841 if (VecOp
.getOpcode() == ISD::BITCAST
) {
18842 // Don't duplicate a load with other uses.
18843 if (!VecOp
.hasOneUse())
18846 EVT BCVT
= VecOp
.getOperand(0).getValueType();
18847 if (!BCVT
.isVector() || ExtVT
.bitsGT(BCVT
.getVectorElementType()))
18849 if (NumElts
!= BCVT
.getVectorNumElements())
18850 BCNumEltsChanged
= true;
18851 VecOp
= VecOp
.getOperand(0);
18852 ExtVT
= BCVT
.getVectorElementType();
18855 // extract (vector load $addr), i --> load $addr + i * size
18856 if (!LegalOperations
&& !IndexC
&& VecOp
.hasOneUse() &&
18857 ISD::isNormalLoad(VecOp
.getNode()) &&
18858 !Index
->hasPredecessor(VecOp
.getNode())) {
18859 auto *VecLoad
= dyn_cast
<LoadSDNode
>(VecOp
);
18860 if (VecLoad
&& VecLoad
->isSimple())
18861 return scalarizeExtractedVectorLoad(N
, VecVT
, Index
, VecLoad
);
18864 // Perform only after legalization to ensure build_vector / vector_shuffle
18865 // optimizations have already been done.
18866 if (!LegalOperations
|| !IndexC
)
18869 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
18870 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
18871 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
18872 int Elt
= IndexC
->getZExtValue();
18873 LoadSDNode
*LN0
= nullptr;
18874 if (ISD::isNormalLoad(VecOp
.getNode())) {
18875 LN0
= cast
<LoadSDNode
>(VecOp
);
18876 } else if (VecOp
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
18877 VecOp
.getOperand(0).getValueType() == ExtVT
&&
18878 ISD::isNormalLoad(VecOp
.getOperand(0).getNode())) {
18879 // Don't duplicate a load with other uses.
18880 if (!VecOp
.hasOneUse())
18883 LN0
= cast
<LoadSDNode
>(VecOp
.getOperand(0));
18885 if (auto *Shuf
= dyn_cast
<ShuffleVectorSDNode
>(VecOp
)) {
18886 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
18888 // (load $addr+1*size)
18890 // Don't duplicate a load with other uses.
18891 if (!VecOp
.hasOneUse())
18894 // If the bit convert changed the number of elements, it is unsafe
18895 // to examine the mask.
18896 if (BCNumEltsChanged
)
18899 // Select the input vector, guarding against out of range extract vector.
18900 int Idx
= (Elt
> (int)NumElts
) ? -1 : Shuf
->getMaskElt(Elt
);
18901 VecOp
= (Idx
< (int)NumElts
) ? VecOp
.getOperand(0) : VecOp
.getOperand(1);
18903 if (VecOp
.getOpcode() == ISD::BITCAST
) {
18904 // Don't duplicate a load with other uses.
18905 if (!VecOp
.hasOneUse())
18908 VecOp
= VecOp
.getOperand(0);
18910 if (ISD::isNormalLoad(VecOp
.getNode())) {
18911 LN0
= cast
<LoadSDNode
>(VecOp
);
18912 Elt
= (Idx
< (int)NumElts
) ? Idx
: Idx
- (int)NumElts
;
18913 Index
= DAG
.getConstant(Elt
, DL
, Index
.getValueType());
18915 } else if (VecOp
.getOpcode() == ISD::CONCAT_VECTORS
&& !BCNumEltsChanged
&&
18916 VecVT
.getVectorElementType() == ScalarVT
&&
18919 VecOp
.getOperand(0).getValueType().getVectorElementType()))) {
18920 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 0
18921 // -> extract_vector_elt a, 0
18922 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 1
18923 // -> extract_vector_elt a, 1
18924 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 2
18925 // -> extract_vector_elt b, 0
18926 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 3
18927 // -> extract_vector_elt b, 1
18929 EVT ConcatVT
= VecOp
.getOperand(0).getValueType();
18930 unsigned ConcatNumElts
= ConcatVT
.getVectorNumElements();
18931 SDValue NewIdx
= DAG
.getConstant(Elt
% ConcatNumElts
, SL
,
18932 Index
.getValueType());
18934 SDValue ConcatOp
= VecOp
.getOperand(Elt
/ ConcatNumElts
);
18935 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
,
18936 ConcatVT
.getVectorElementType(),
18938 return DAG
.getNode(ISD::BITCAST
, SL
, ScalarVT
, Elt
);
18941 // Make sure we found a non-volatile load and the extractelement is
18943 if (!LN0
|| !LN0
->hasNUsesOfValue(1,0) || !LN0
->isSimple())
18946 // If Idx was -1 above, Elt is going to be -1, so just return undef.
18948 return DAG
.getUNDEF(LVT
);
18950 return scalarizeExtractedVectorLoad(N
, VecVT
, Index
, LN0
);
18953 // Simplify (build_vec (ext )) to (bitcast (build_vec ))
18954 SDValue
DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode
*N
) {
18955 // We perform this optimization post type-legalization because
18956 // the type-legalizer often scalarizes integer-promoted vectors.
18957 // Performing this optimization before may create bit-casts which
18958 // will be type-legalized to complex code sequences.
18959 // We perform this optimization only before the operation legalizer because we
18960 // may introduce illegal operations.
18961 if (Level
!= AfterLegalizeVectorOps
&& Level
!= AfterLegalizeTypes
)
18964 unsigned NumInScalars
= N
->getNumOperands();
18966 EVT VT
= N
->getValueType(0);
18968 // Check to see if this is a BUILD_VECTOR of a bunch of values
18969 // which come from any_extend or zero_extend nodes. If so, we can create
18970 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
18971 // optimizations. We do not handle sign-extend because we can't fill the sign
18973 EVT SourceType
= MVT::Other
;
18974 bool AllAnyExt
= true;
18976 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
18977 SDValue In
= N
->getOperand(i
);
18978 // Ignore undef inputs.
18979 if (In
.isUndef()) continue;
18981 bool AnyExt
= In
.getOpcode() == ISD::ANY_EXTEND
;
18982 bool ZeroExt
= In
.getOpcode() == ISD::ZERO_EXTEND
;
18984 // Abort if the element is not an extension.
18985 if (!ZeroExt
&& !AnyExt
) {
18986 SourceType
= MVT::Other
;
18990 // The input is a ZeroExt or AnyExt. Check the original type.
18991 EVT InTy
= In
.getOperand(0).getValueType();
18993 // Check that all of the widened source types are the same.
18994 if (SourceType
== MVT::Other
)
18997 else if (InTy
!= SourceType
) {
18998 // Multiple income types. Abort.
18999 SourceType
= MVT::Other
;
19003 // Check if all of the extends are ANY_EXTENDs.
19004 AllAnyExt
&= AnyExt
;
19007 // In order to have valid types, all of the inputs must be extended from the
19008 // same source type and all of the inputs must be any or zero extend.
19009 // Scalar sizes must be a power of two.
19010 EVT OutScalarTy
= VT
.getScalarType();
19011 bool ValidTypes
= SourceType
!= MVT::Other
&&
19012 isPowerOf2_32(OutScalarTy
.getSizeInBits()) &&
19013 isPowerOf2_32(SourceType
.getSizeInBits());
19015 // Create a new simpler BUILD_VECTOR sequence which other optimizations can
19016 // turn into a single shuffle instruction.
19020 // If we already have a splat buildvector, then don't fold it if it means
19021 // introducing zeros.
19022 if (!AllAnyExt
&& DAG
.isSplatValue(SDValue(N
, 0), /*AllowUndefs*/ true))
19025 bool isLE
= DAG
.getDataLayout().isLittleEndian();
19026 unsigned ElemRatio
= OutScalarTy
.getSizeInBits()/SourceType
.getSizeInBits();
19027 assert(ElemRatio
> 1 && "Invalid element size ratio");
19028 SDValue Filler
= AllAnyExt
? DAG
.getUNDEF(SourceType
):
19029 DAG
.getConstant(0, DL
, SourceType
);
19031 unsigned NewBVElems
= ElemRatio
* VT
.getVectorNumElements();
19032 SmallVector
<SDValue
, 8> Ops(NewBVElems
, Filler
);
19034 // Populate the new build_vector
19035 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
19036 SDValue Cast
= N
->getOperand(i
);
19037 assert((Cast
.getOpcode() == ISD::ANY_EXTEND
||
19038 Cast
.getOpcode() == ISD::ZERO_EXTEND
||
19039 Cast
.isUndef()) && "Invalid cast opcode");
19041 if (Cast
.isUndef())
19042 In
= DAG
.getUNDEF(SourceType
);
19044 In
= Cast
->getOperand(0);
19045 unsigned Index
= isLE
? (i
* ElemRatio
) :
19046 (i
* ElemRatio
+ (ElemRatio
- 1));
19048 assert(Index
< Ops
.size() && "Invalid index");
19052 // The type of the new BUILD_VECTOR node.
19053 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), SourceType
, NewBVElems
);
19054 assert(VecVT
.getSizeInBits() == VT
.getSizeInBits() &&
19055 "Invalid vector size");
19056 // Check if the new vector type is legal.
19057 if (!isTypeLegal(VecVT
) ||
19058 (!TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VecVT
) &&
19059 TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
)))
19062 // Make the new BUILD_VECTOR.
19063 SDValue BV
= DAG
.getBuildVector(VecVT
, DL
, Ops
);
19065 // The new BUILD_VECTOR node has the potential to be further optimized.
19066 AddToWorklist(BV
.getNode());
19067 // Bitcast to the desired type.
19068 return DAG
.getBitcast(VT
, BV
);
19071 // Simplify (build_vec (trunc $1)
19072 // (trunc (srl $1 half-width))
19073 // (trunc (srl $1 (2 * half-width))) …)
19075 SDValue
DAGCombiner::reduceBuildVecTruncToBitCast(SDNode
*N
) {
19076 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&& "Expected build vector");
19078 // Only for little endian
19079 if (!DAG
.getDataLayout().isLittleEndian())
19083 EVT VT
= N
->getValueType(0);
19084 EVT OutScalarTy
= VT
.getScalarType();
19085 uint64_t ScalarTypeBitsize
= OutScalarTy
.getSizeInBits();
19087 // Only for power of two types to be sure that bitcast works well
19088 if (!isPowerOf2_64(ScalarTypeBitsize
))
19091 unsigned NumInScalars
= N
->getNumOperands();
19093 // Look through bitcasts
19094 auto PeekThroughBitcast
= [](SDValue Op
) {
19095 if (Op
.getOpcode() == ISD::BITCAST
)
19096 return Op
.getOperand(0);
19100 // The source value where all the parts are extracted.
19102 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
19103 SDValue In
= PeekThroughBitcast(N
->getOperand(i
));
19104 // Ignore undef inputs.
19105 if (In
.isUndef()) continue;
19107 if (In
.getOpcode() != ISD::TRUNCATE
)
19110 In
= PeekThroughBitcast(In
.getOperand(0));
19112 if (In
.getOpcode() != ISD::SRL
) {
19113 // For now only build_vec without shuffling, handle shifts here in the
19121 SDValue part
= PeekThroughBitcast(In
.getOperand(0));
19125 } else if (Src
!= part
) {
19126 // Vector parts do not stem from the same variable
19130 SDValue ShiftAmtVal
= In
.getOperand(1);
19131 if (!isa
<ConstantSDNode
>(ShiftAmtVal
))
19134 uint64_t ShiftAmt
= In
.getNode()->getConstantOperandVal(1);
19136 // The extracted value is not extracted at the right position
19137 if (ShiftAmt
!= i
* ScalarTypeBitsize
)
19142 // Only cast if the size is the same
19143 if (Src
.getValueType().getSizeInBits() != VT
.getSizeInBits())
19146 return DAG
.getBitcast(VT
, Src
);
19149 SDValue
DAGCombiner::createBuildVecShuffle(const SDLoc
&DL
, SDNode
*N
,
19150 ArrayRef
<int> VectorMask
,
19151 SDValue VecIn1
, SDValue VecIn2
,
19152 unsigned LeftIdx
, bool DidSplitVec
) {
19153 SDValue ZeroIdx
= DAG
.getVectorIdxConstant(0, DL
);
19155 EVT VT
= N
->getValueType(0);
19156 EVT InVT1
= VecIn1
.getValueType();
19157 EVT InVT2
= VecIn2
.getNode() ? VecIn2
.getValueType() : InVT1
;
19159 unsigned NumElems
= VT
.getVectorNumElements();
19160 unsigned ShuffleNumElems
= NumElems
;
19162 // If we artificially split a vector in two already, then the offsets in the
19163 // operands will all be based off of VecIn1, even those in VecIn2.
19164 unsigned Vec2Offset
= DidSplitVec
? 0 : InVT1
.getVectorNumElements();
19166 uint64_t VTSize
= VT
.getFixedSizeInBits();
19167 uint64_t InVT1Size
= InVT1
.getFixedSizeInBits();
19168 uint64_t InVT2Size
= InVT2
.getFixedSizeInBits();
19170 assert(InVT2Size
<= InVT1Size
&&
19171 "Inputs must be sorted to be in non-increasing vector size order.");
19173 // We can't generate a shuffle node with mismatched input and output types.
19174 // Try to make the types match the type of the output.
19175 if (InVT1
!= VT
|| InVT2
!= VT
) {
19176 if ((VTSize
% InVT1Size
== 0) && InVT1
== InVT2
) {
19177 // If the output vector length is a multiple of both input lengths,
19178 // we can concatenate them and pad the rest with undefs.
19179 unsigned NumConcats
= VTSize
/ InVT1Size
;
19180 assert(NumConcats
>= 2 && "Concat needs at least two inputs!");
19181 SmallVector
<SDValue
, 2> ConcatOps(NumConcats
, DAG
.getUNDEF(InVT1
));
19182 ConcatOps
[0] = VecIn1
;
19183 ConcatOps
[1] = VecIn2
? VecIn2
: DAG
.getUNDEF(InVT1
);
19184 VecIn1
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
);
19185 VecIn2
= SDValue();
19186 } else if (InVT1Size
== VTSize
* 2) {
19187 if (!TLI
.isExtractSubvectorCheap(VT
, InVT1
, NumElems
))
19190 if (!VecIn2
.getNode()) {
19191 // If we only have one input vector, and it's twice the size of the
19192 // output, split it in two.
19193 VecIn2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, VecIn1
,
19194 DAG
.getVectorIdxConstant(NumElems
, DL
));
19195 VecIn1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, VecIn1
, ZeroIdx
);
19196 // Since we now have shorter input vectors, adjust the offset of the
19197 // second vector's start.
19198 Vec2Offset
= NumElems
;
19200 assert(InVT2Size
<= InVT1Size
&&
19201 "Second input is not going to be larger than the first one.");
19203 // VecIn1 is wider than the output, and we have another, possibly
19204 // smaller input. Pad the smaller input with undefs, shuffle at the
19205 // input vector width, and extract the output.
19206 // The shuffle type is different than VT, so check legality again.
19207 if (LegalOperations
&&
19208 !TLI
.isOperationLegal(ISD::VECTOR_SHUFFLE
, InVT1
))
19211 // Legalizing INSERT_SUBVECTOR is tricky - you basically have to
19212 // lower it back into a BUILD_VECTOR. So if the inserted type is
19213 // illegal, don't even try.
19214 if (InVT1
!= InVT2
) {
19215 if (!TLI
.isTypeLegal(InVT2
))
19217 VecIn2
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, InVT1
,
19218 DAG
.getUNDEF(InVT1
), VecIn2
, ZeroIdx
);
19220 ShuffleNumElems
= NumElems
* 2;
19222 } else if (InVT2Size
* 2 == VTSize
&& InVT1Size
== VTSize
) {
19223 SmallVector
<SDValue
, 2> ConcatOps(2, DAG
.getUNDEF(InVT2
));
19224 ConcatOps
[0] = VecIn2
;
19225 VecIn2
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
);
19227 // TODO: Support cases where the length mismatch isn't exactly by a
19229 // TODO: Move this check upwards, so that if we have bad type
19230 // mismatches, we don't create any DAG nodes.
19235 // Initialize mask to undef.
19236 SmallVector
<int, 8> Mask(ShuffleNumElems
, -1);
19238 // Only need to run up to the number of elements actually used, not the
19239 // total number of elements in the shuffle - if we are shuffling a wider
19240 // vector, the high lanes should be set to undef.
19241 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
19242 if (VectorMask
[i
] <= 0)
19245 unsigned ExtIndex
= N
->getOperand(i
).getConstantOperandVal(1);
19246 if (VectorMask
[i
] == (int)LeftIdx
) {
19247 Mask
[i
] = ExtIndex
;
19248 } else if (VectorMask
[i
] == (int)LeftIdx
+ 1) {
19249 Mask
[i
] = Vec2Offset
+ ExtIndex
;
19253 // The type the input vectors may have changed above.
19254 InVT1
= VecIn1
.getValueType();
19256 // If we already have a VecIn2, it should have the same type as VecIn1.
19257 // If we don't, get an undef/zero vector of the appropriate type.
19258 VecIn2
= VecIn2
.getNode() ? VecIn2
: DAG
.getUNDEF(InVT1
);
19259 assert(InVT1
== VecIn2
.getValueType() && "Unexpected second input type.");
19261 SDValue Shuffle
= DAG
.getVectorShuffle(InVT1
, DL
, VecIn1
, VecIn2
, Mask
);
19262 if (ShuffleNumElems
> NumElems
)
19263 Shuffle
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, Shuffle
, ZeroIdx
);
19268 static SDValue
reduceBuildVecToShuffleWithZero(SDNode
*BV
, SelectionDAG
&DAG
) {
19269 assert(BV
->getOpcode() == ISD::BUILD_VECTOR
&& "Expected build vector");
19271 // First, determine where the build vector is not undef.
19272 // TODO: We could extend this to handle zero elements as well as undefs.
19273 int NumBVOps
= BV
->getNumOperands();
19275 for (int i
= 0; i
!= NumBVOps
; ++i
) {
19276 SDValue Op
= BV
->getOperand(i
);
19284 // Bail out if there's no non-undef element.
19288 // The build vector contains some number of undef elements and exactly
19289 // one other element. That other element must be a zero-extended scalar
19290 // extracted from a vector at a constant index to turn this into a shuffle.
19291 // Also, require that the build vector does not implicitly truncate/extend
19293 // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND.
19294 EVT VT
= BV
->getValueType(0);
19295 SDValue Zext
= BV
->getOperand(ZextElt
);
19296 if (Zext
.getOpcode() != ISD::ZERO_EXTEND
|| !Zext
.hasOneUse() ||
19297 Zext
.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
19298 !isa
<ConstantSDNode
>(Zext
.getOperand(0).getOperand(1)) ||
19299 Zext
.getValueSizeInBits() != VT
.getScalarSizeInBits())
19302 // The zero-extend must be a multiple of the source size, and we must be
19303 // building a vector of the same size as the source of the extract element.
19304 SDValue Extract
= Zext
.getOperand(0);
19305 unsigned DestSize
= Zext
.getValueSizeInBits();
19306 unsigned SrcSize
= Extract
.getValueSizeInBits();
19307 if (DestSize
% SrcSize
!= 0 ||
19308 Extract
.getOperand(0).getValueSizeInBits() != VT
.getSizeInBits())
19311 // Create a shuffle mask that will combine the extracted element with zeros
19313 int ZextRatio
= DestSize
/ SrcSize
;
19314 int NumMaskElts
= NumBVOps
* ZextRatio
;
19315 SmallVector
<int, 32> ShufMask(NumMaskElts
, -1);
19316 for (int i
= 0; i
!= NumMaskElts
; ++i
) {
19317 if (i
/ ZextRatio
== ZextElt
) {
19318 // The low bits of the (potentially translated) extracted element map to
19319 // the source vector. The high bits map to zero. We will use a zero vector
19320 // as the 2nd source operand of the shuffle, so use the 1st element of
19321 // that vector (mask value is number-of-elements) for the high bits.
19322 if (i
% ZextRatio
== 0)
19323 ShufMask
[i
] = Extract
.getConstantOperandVal(1);
19325 ShufMask
[i
] = NumMaskElts
;
19328 // Undef elements of the build vector remain undef because we initialize
19329 // the shuffle mask with -1.
19332 // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... -->
19333 // bitcast (shuffle V, ZeroVec, VectorMask)
19335 EVT VecVT
= Extract
.getOperand(0).getValueType();
19336 SDValue ZeroVec
= DAG
.getConstant(0, DL
, VecVT
);
19337 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
19338 SDValue Shuf
= TLI
.buildLegalVectorShuffle(VecVT
, DL
, Extract
.getOperand(0),
19339 ZeroVec
, ShufMask
, DAG
);
19342 return DAG
.getBitcast(VT
, Shuf
);
19345 // FIXME: promote to STLExtras.
19346 template <typename R
, typename T
>
19347 static auto getFirstIndexOf(R
&&Range
, const T
&Val
) {
19348 auto I
= find(Range
, Val
);
19349 if (I
== Range
.end())
19350 return static_cast<decltype(std::distance(Range
.begin(), I
))>(-1);
19351 return std::distance(Range
.begin(), I
);
19354 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
19355 // operations. If the types of the vectors we're extracting from allow it,
19356 // turn this into a vector_shuffle node.
19357 SDValue
DAGCombiner::reduceBuildVecToShuffle(SDNode
*N
) {
19359 EVT VT
= N
->getValueType(0);
19361 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
19362 if (!isTypeLegal(VT
))
19365 if (SDValue V
= reduceBuildVecToShuffleWithZero(N
, DAG
))
19368 // May only combine to shuffle after legalize if shuffle is legal.
19369 if (LegalOperations
&& !TLI
.isOperationLegal(ISD::VECTOR_SHUFFLE
, VT
))
19372 bool UsesZeroVector
= false;
19373 unsigned NumElems
= N
->getNumOperands();
19375 // Record, for each element of the newly built vector, which input vector
19376 // that element comes from. -1 stands for undef, 0 for the zero vector,
19377 // and positive values for the input vectors.
19378 // VectorMask maps each element to its vector number, and VecIn maps vector
19379 // numbers to their initial SDValues.
19381 SmallVector
<int, 8> VectorMask(NumElems
, -1);
19382 SmallVector
<SDValue
, 8> VecIn
;
19383 VecIn
.push_back(SDValue());
19385 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
19386 SDValue Op
= N
->getOperand(i
);
19391 // See if we can use a blend with a zero vector.
19392 // TODO: Should we generalize this to a blend with an arbitrary constant
19394 if (isNullConstant(Op
) || isNullFPConstant(Op
)) {
19395 UsesZeroVector
= true;
19400 // Not an undef or zero. If the input is something other than an
19401 // EXTRACT_VECTOR_ELT with an in-range constant index, bail out.
19402 if (Op
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
19403 !isa
<ConstantSDNode
>(Op
.getOperand(1)))
19405 SDValue ExtractedFromVec
= Op
.getOperand(0);
19407 if (ExtractedFromVec
.getValueType().isScalableVector())
19410 const APInt
&ExtractIdx
= Op
.getConstantOperandAPInt(1);
19411 if (ExtractIdx
.uge(ExtractedFromVec
.getValueType().getVectorNumElements()))
19414 // All inputs must have the same element type as the output.
19415 if (VT
.getVectorElementType() !=
19416 ExtractedFromVec
.getValueType().getVectorElementType())
19419 // Have we seen this input vector before?
19420 // The vectors are expected to be tiny (usually 1 or 2 elements), so using
19421 // a map back from SDValues to numbers isn't worth it.
19422 int Idx
= getFirstIndexOf(VecIn
, ExtractedFromVec
);
19423 if (Idx
== -1) { // A new source vector?
19424 Idx
= VecIn
.size();
19425 VecIn
.push_back(ExtractedFromVec
);
19428 VectorMask
[i
] = Idx
;
19431 // If we didn't find at least one input vector, bail out.
19432 if (VecIn
.size() < 2)
19435 // If all the Operands of BUILD_VECTOR extract from same
19436 // vector, then split the vector efficiently based on the maximum
19437 // vector access index and adjust the VectorMask and
19438 // VecIn accordingly.
19439 bool DidSplitVec
= false;
19440 if (VecIn
.size() == 2) {
19441 unsigned MaxIndex
= 0;
19442 unsigned NearestPow2
= 0;
19443 SDValue Vec
= VecIn
.back();
19444 EVT InVT
= Vec
.getValueType();
19445 SmallVector
<unsigned, 8> IndexVec(NumElems
, 0);
19447 for (unsigned i
= 0; i
< NumElems
; i
++) {
19448 if (VectorMask
[i
] <= 0)
19450 unsigned Index
= N
->getOperand(i
).getConstantOperandVal(1);
19451 IndexVec
[i
] = Index
;
19452 MaxIndex
= std::max(MaxIndex
, Index
);
19455 NearestPow2
= PowerOf2Ceil(MaxIndex
);
19456 if (InVT
.isSimple() && NearestPow2
> 2 && MaxIndex
< NearestPow2
&&
19457 NumElems
* 2 < NearestPow2
) {
19458 unsigned SplitSize
= NearestPow2
/ 2;
19459 EVT SplitVT
= EVT::getVectorVT(*DAG
.getContext(),
19460 InVT
.getVectorElementType(), SplitSize
);
19461 if (TLI
.isTypeLegal(SplitVT
) &&
19462 SplitSize
+ SplitVT
.getVectorNumElements() <=
19463 InVT
.getVectorNumElements()) {
19464 SDValue VecIn2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, SplitVT
, Vec
,
19465 DAG
.getVectorIdxConstant(SplitSize
, DL
));
19466 SDValue VecIn1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, SplitVT
, Vec
,
19467 DAG
.getVectorIdxConstant(0, DL
));
19469 VecIn
.push_back(VecIn1
);
19470 VecIn
.push_back(VecIn2
);
19471 DidSplitVec
= true;
19473 for (unsigned i
= 0; i
< NumElems
; i
++) {
19474 if (VectorMask
[i
] <= 0)
19476 VectorMask
[i
] = (IndexVec
[i
] < SplitSize
) ? 1 : 2;
19482 // Sort input vectors by decreasing vector element count,
19483 // while preserving the relative order of equally-sized vectors.
19484 // Note that we keep the first "implicit zero vector as-is.
19485 SmallVector
<SDValue
, 8> SortedVecIn(VecIn
);
19486 llvm::stable_sort(MutableArrayRef
<SDValue
>(SortedVecIn
).drop_front(),
19487 [](const SDValue
&a
, const SDValue
&b
) {
19488 return a
.getValueType().getVectorNumElements() >
19489 b
.getValueType().getVectorNumElements();
19492 // We now also need to rebuild the VectorMask, because it referenced element
19493 // order in VecIn, and we just sorted them.
19494 for (int &SourceVectorIndex
: VectorMask
) {
19495 if (SourceVectorIndex
<= 0)
19497 unsigned Idx
= getFirstIndexOf(SortedVecIn
, VecIn
[SourceVectorIndex
]);
19498 assert(Idx
> 0 && Idx
< SortedVecIn
.size() &&
19499 VecIn
[SourceVectorIndex
] == SortedVecIn
[Idx
] && "Remapping failure");
19500 SourceVectorIndex
= Idx
;
19503 VecIn
= std::move(SortedVecIn
);
19505 // TODO: Should this fire if some of the input vectors has illegal type (like
19506 // it does now), or should we let legalization run its course first?
19509 // Take pairs of vectors, and shuffle them so that the result has elements
19510 // from these vectors in the correct places.
19511 // For example, given:
19512 // t10: i32 = extract_vector_elt t1, Constant:i64<0>
19513 // t11: i32 = extract_vector_elt t2, Constant:i64<0>
19514 // t12: i32 = extract_vector_elt t3, Constant:i64<0>
19515 // t13: i32 = extract_vector_elt t1, Constant:i64<1>
19516 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13
19517 // We will generate:
19518 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2
19519 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef
19520 SmallVector
<SDValue
, 4> Shuffles
;
19521 for (unsigned In
= 0, Len
= (VecIn
.size() / 2); In
< Len
; ++In
) {
19522 unsigned LeftIdx
= 2 * In
+ 1;
19523 SDValue VecLeft
= VecIn
[LeftIdx
];
19525 (LeftIdx
+ 1) < VecIn
.size() ? VecIn
[LeftIdx
+ 1] : SDValue();
19527 if (SDValue Shuffle
= createBuildVecShuffle(DL
, N
, VectorMask
, VecLeft
,
19528 VecRight
, LeftIdx
, DidSplitVec
))
19529 Shuffles
.push_back(Shuffle
);
19534 // If we need the zero vector as an "ingredient" in the blend tree, add it
19535 // to the list of shuffles.
19536 if (UsesZeroVector
)
19537 Shuffles
.push_back(VT
.isInteger() ? DAG
.getConstant(0, DL
, VT
)
19538 : DAG
.getConstantFP(0.0, DL
, VT
));
19540 // If we only have one shuffle, we're done.
19541 if (Shuffles
.size() == 1)
19542 return Shuffles
[0];
19544 // Update the vector mask to point to the post-shuffle vectors.
19545 for (int &Vec
: VectorMask
)
19547 Vec
= Shuffles
.size() - 1;
19549 Vec
= (Vec
- 1) / 2;
19551 // More than one shuffle. Generate a binary tree of blends, e.g. if from
19552 // the previous step we got the set of shuffles t10, t11, t12, t13, we will
19554 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2
19555 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4
19556 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6
19557 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8
19558 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11
19559 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13
19560 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21
19562 // Make sure the initial size of the shuffle list is even.
19563 if (Shuffles
.size() % 2)
19564 Shuffles
.push_back(DAG
.getUNDEF(VT
));
19566 for (unsigned CurSize
= Shuffles
.size(); CurSize
> 1; CurSize
/= 2) {
19568 Shuffles
[CurSize
] = DAG
.getUNDEF(VT
);
19571 for (unsigned In
= 0, Len
= CurSize
/ 2; In
< Len
; ++In
) {
19573 int Right
= 2 * In
+ 1;
19574 SmallVector
<int, 8> Mask(NumElems
, -1);
19575 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
19576 if (VectorMask
[i
] == Left
) {
19578 VectorMask
[i
] = In
;
19579 } else if (VectorMask
[i
] == Right
) {
19580 Mask
[i
] = i
+ NumElems
;
19581 VectorMask
[i
] = In
;
19586 DAG
.getVectorShuffle(VT
, DL
, Shuffles
[Left
], Shuffles
[Right
], Mask
);
19589 return Shuffles
[0];
19592 // Try to turn a build vector of zero extends of extract vector elts into a
19593 // a vector zero extend and possibly an extract subvector.
19594 // TODO: Support sign extend?
19595 // TODO: Allow undef elements?
19596 SDValue
DAGCombiner::convertBuildVecZextToZext(SDNode
*N
) {
19597 if (LegalOperations
)
19600 EVT VT
= N
->getValueType(0);
19602 bool FoundZeroExtend
= false;
19603 SDValue Op0
= N
->getOperand(0);
19604 auto checkElem
= [&](SDValue Op
) -> int64_t {
19605 unsigned Opc
= Op
.getOpcode();
19606 FoundZeroExtend
|= (Opc
== ISD::ZERO_EXTEND
);
19607 if ((Opc
== ISD::ZERO_EXTEND
|| Opc
== ISD::ANY_EXTEND
) &&
19608 Op
.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
19609 Op0
.getOperand(0).getOperand(0) == Op
.getOperand(0).getOperand(0))
19610 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0).getOperand(1)))
19611 return C
->getZExtValue();
19615 // Make sure the first element matches
19616 // (zext (extract_vector_elt X, C))
19617 int64_t Offset
= checkElem(Op0
);
19621 unsigned NumElems
= N
->getNumOperands();
19622 SDValue In
= Op0
.getOperand(0).getOperand(0);
19623 EVT InSVT
= In
.getValueType().getScalarType();
19624 EVT InVT
= EVT::getVectorVT(*DAG
.getContext(), InSVT
, NumElems
);
19626 // Don't create an illegal input type after type legalization.
19627 if (LegalTypes
&& !TLI
.isTypeLegal(InVT
))
19630 // Ensure all the elements come from the same vector and are adjacent.
19631 for (unsigned i
= 1; i
!= NumElems
; ++i
) {
19632 if ((Offset
+ i
) != checkElem(N
->getOperand(i
)))
19637 In
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, InVT
, In
,
19638 Op0
.getOperand(0).getOperand(1));
19639 return DAG
.getNode(FoundZeroExtend
? ISD::ZERO_EXTEND
: ISD::ANY_EXTEND
, DL
,
19643 SDValue
DAGCombiner::visitBUILD_VECTOR(SDNode
*N
) {
19644 EVT VT
= N
->getValueType(0);
19646 // A vector built entirely of undefs is undef.
19647 if (ISD::allOperandsUndef(N
))
19648 return DAG
.getUNDEF(VT
);
19650 // If this is a splat of a bitcast from another vector, change to a
19653 // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) ->
19654 // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X))))
19656 // If X is a build_vector itself, the concat can become a larger build_vector.
19657 // TODO: Maybe this is useful for non-splat too?
19658 if (!LegalOperations
) {
19659 if (SDValue Splat
= cast
<BuildVectorSDNode
>(N
)->getSplatValue()) {
19660 Splat
= peekThroughBitcasts(Splat
);
19661 EVT SrcVT
= Splat
.getValueType();
19662 if (SrcVT
.isVector()) {
19663 unsigned NumElts
= N
->getNumOperands() * SrcVT
.getVectorNumElements();
19664 EVT NewVT
= EVT::getVectorVT(*DAG
.getContext(),
19665 SrcVT
.getVectorElementType(), NumElts
);
19666 if (!LegalTypes
|| TLI
.isTypeLegal(NewVT
)) {
19667 SmallVector
<SDValue
, 8> Ops(N
->getNumOperands(), Splat
);
19668 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
),
19670 return DAG
.getBitcast(VT
, Concat
);
19676 // Check if we can express BUILD VECTOR via subvector extract.
19677 if (!LegalTypes
&& (N
->getNumOperands() > 1)) {
19678 SDValue Op0
= N
->getOperand(0);
19679 auto checkElem
= [&](SDValue Op
) -> uint64_t {
19680 if ((Op
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) &&
19681 (Op0
.getOperand(0) == Op
.getOperand(0)))
19682 if (auto CNode
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
19683 return CNode
->getZExtValue();
19687 int Offset
= checkElem(Op0
);
19688 for (unsigned i
= 0; i
< N
->getNumOperands(); ++i
) {
19689 if (Offset
+ i
!= checkElem(N
->getOperand(i
))) {
19695 if ((Offset
== 0) &&
19696 (Op0
.getOperand(0).getValueType() == N
->getValueType(0)))
19697 return Op0
.getOperand(0);
19698 if ((Offset
!= -1) &&
19699 ((Offset
% N
->getValueType(0).getVectorNumElements()) ==
19700 0)) // IDX must be multiple of output size.
19701 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), N
->getValueType(0),
19702 Op0
.getOperand(0), Op0
.getOperand(1));
19705 if (SDValue V
= convertBuildVecZextToZext(N
))
19708 if (SDValue V
= reduceBuildVecExtToExtBuildVec(N
))
19711 if (SDValue V
= reduceBuildVecTruncToBitCast(N
))
19714 if (SDValue V
= reduceBuildVecToShuffle(N
))
19717 // A splat of a single element is a SPLAT_VECTOR if supported on the target.
19718 // Do this late as some of the above may replace the splat.
19719 if (TLI
.getOperationAction(ISD::SPLAT_VECTOR
, VT
) != TargetLowering::Expand
)
19720 if (SDValue V
= cast
<BuildVectorSDNode
>(N
)->getSplatValue()) {
19721 assert(!V
.isUndef() && "Splat of undef should have been handled earlier");
19722 return DAG
.getNode(ISD::SPLAT_VECTOR
, SDLoc(N
), VT
, V
);
19728 static SDValue
combineConcatVectorOfScalars(SDNode
*N
, SelectionDAG
&DAG
) {
19729 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
19730 EVT OpVT
= N
->getOperand(0).getValueType();
19732 // If the operands are legal vectors, leave them alone.
19733 if (TLI
.isTypeLegal(OpVT
))
19737 EVT VT
= N
->getValueType(0);
19738 SmallVector
<SDValue
, 8> Ops
;
19740 EVT SVT
= EVT::getIntegerVT(*DAG
.getContext(), OpVT
.getSizeInBits());
19741 SDValue ScalarUndef
= DAG
.getNode(ISD::UNDEF
, DL
, SVT
);
19743 // Keep track of what we encounter.
19744 bool AnyInteger
= false;
19745 bool AnyFP
= false;
19746 for (const SDValue
&Op
: N
->ops()) {
19747 if (ISD::BITCAST
== Op
.getOpcode() &&
19748 !Op
.getOperand(0).getValueType().isVector())
19749 Ops
.push_back(Op
.getOperand(0));
19750 else if (ISD::UNDEF
== Op
.getOpcode())
19751 Ops
.push_back(ScalarUndef
);
19755 // Note whether we encounter an integer or floating point scalar.
19756 // If it's neither, bail out, it could be something weird like x86mmx.
19757 EVT LastOpVT
= Ops
.back().getValueType();
19758 if (LastOpVT
.isFloatingPoint())
19760 else if (LastOpVT
.isInteger())
19766 // If any of the operands is a floating point scalar bitcast to a vector,
19767 // use floating point types throughout, and bitcast everything.
19768 // Replace UNDEFs by another scalar UNDEF node, of the final desired type.
19770 SVT
= EVT::getFloatingPointVT(OpVT
.getSizeInBits());
19771 ScalarUndef
= DAG
.getNode(ISD::UNDEF
, DL
, SVT
);
19773 for (SDValue
&Op
: Ops
) {
19774 if (Op
.getValueType() == SVT
)
19779 Op
= DAG
.getBitcast(SVT
, Op
);
19784 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), SVT
,
19785 VT
.getSizeInBits() / SVT
.getSizeInBits());
19786 return DAG
.getBitcast(VT
, DAG
.getBuildVector(VecVT
, DL
, Ops
));
19789 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
19790 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
19791 // most two distinct vectors the same size as the result, attempt to turn this
19792 // into a legal shuffle.
19793 static SDValue
combineConcatVectorOfExtracts(SDNode
*N
, SelectionDAG
&DAG
) {
19794 EVT VT
= N
->getValueType(0);
19795 EVT OpVT
= N
->getOperand(0).getValueType();
19797 // We currently can't generate an appropriate shuffle for a scalable vector.
19798 if (VT
.isScalableVector())
19801 int NumElts
= VT
.getVectorNumElements();
19802 int NumOpElts
= OpVT
.getVectorNumElements();
19804 SDValue SV0
= DAG
.getUNDEF(VT
), SV1
= DAG
.getUNDEF(VT
);
19805 SmallVector
<int, 8> Mask
;
19807 for (SDValue Op
: N
->ops()) {
19808 Op
= peekThroughBitcasts(Op
);
19810 // UNDEF nodes convert to UNDEF shuffle mask values.
19811 if (Op
.isUndef()) {
19812 Mask
.append((unsigned)NumOpElts
, -1);
19816 if (Op
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
19819 // What vector are we extracting the subvector from and at what index?
19820 SDValue ExtVec
= Op
.getOperand(0);
19821 int ExtIdx
= Op
.getConstantOperandVal(1);
19823 // We want the EVT of the original extraction to correctly scale the
19824 // extraction index.
19825 EVT ExtVT
= ExtVec
.getValueType();
19826 ExtVec
= peekThroughBitcasts(ExtVec
);
19828 // UNDEF nodes convert to UNDEF shuffle mask values.
19829 if (ExtVec
.isUndef()) {
19830 Mask
.append((unsigned)NumOpElts
, -1);
19834 // Ensure that we are extracting a subvector from a vector the same
19835 // size as the result.
19836 if (ExtVT
.getSizeInBits() != VT
.getSizeInBits())
19839 // Scale the subvector index to account for any bitcast.
19840 int NumExtElts
= ExtVT
.getVectorNumElements();
19841 if (0 == (NumExtElts
% NumElts
))
19842 ExtIdx
/= (NumExtElts
/ NumElts
);
19843 else if (0 == (NumElts
% NumExtElts
))
19844 ExtIdx
*= (NumElts
/ NumExtElts
);
19848 // At most we can reference 2 inputs in the final shuffle.
19849 if (SV0
.isUndef() || SV0
== ExtVec
) {
19851 for (int i
= 0; i
!= NumOpElts
; ++i
)
19852 Mask
.push_back(i
+ ExtIdx
);
19853 } else if (SV1
.isUndef() || SV1
== ExtVec
) {
19855 for (int i
= 0; i
!= NumOpElts
; ++i
)
19856 Mask
.push_back(i
+ ExtIdx
+ NumElts
);
19862 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
19863 return TLI
.buildLegalVectorShuffle(VT
, SDLoc(N
), DAG
.getBitcast(VT
, SV0
),
19864 DAG
.getBitcast(VT
, SV1
), Mask
, DAG
);
19867 static SDValue
combineConcatVectorOfCasts(SDNode
*N
, SelectionDAG
&DAG
) {
19868 unsigned CastOpcode
= N
->getOperand(0).getOpcode();
19869 switch (CastOpcode
) {
19870 case ISD::SINT_TO_FP
:
19871 case ISD::UINT_TO_FP
:
19872 case ISD::FP_TO_SINT
:
19873 case ISD::FP_TO_UINT
:
19874 // TODO: Allow more opcodes?
19875 // case ISD::BITCAST:
19876 // case ISD::TRUNCATE:
19877 // case ISD::ZERO_EXTEND:
19878 // case ISD::SIGN_EXTEND:
19879 // case ISD::FP_EXTEND:
19885 EVT SrcVT
= N
->getOperand(0).getOperand(0).getValueType();
19886 if (!SrcVT
.isVector())
19889 // All operands of the concat must be the same kind of cast from the same
19891 SmallVector
<SDValue
, 4> SrcOps
;
19892 for (SDValue Op
: N
->ops()) {
19893 if (Op
.getOpcode() != CastOpcode
|| !Op
.hasOneUse() ||
19894 Op
.getOperand(0).getValueType() != SrcVT
)
19896 SrcOps
.push_back(Op
.getOperand(0));
19899 // The wider cast must be supported by the target. This is unusual because
19900 // the operation support type parameter depends on the opcode. In addition,
19901 // check the other type in the cast to make sure this is really legal.
19902 EVT VT
= N
->getValueType(0);
19903 EVT SrcEltVT
= SrcVT
.getVectorElementType();
19904 ElementCount NumElts
= SrcVT
.getVectorElementCount() * N
->getNumOperands();
19905 EVT ConcatSrcVT
= EVT::getVectorVT(*DAG
.getContext(), SrcEltVT
, NumElts
);
19906 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
19907 switch (CastOpcode
) {
19908 case ISD::SINT_TO_FP
:
19909 case ISD::UINT_TO_FP
:
19910 if (!TLI
.isOperationLegalOrCustom(CastOpcode
, ConcatSrcVT
) ||
19911 !TLI
.isTypeLegal(VT
))
19914 case ISD::FP_TO_SINT
:
19915 case ISD::FP_TO_UINT
:
19916 if (!TLI
.isOperationLegalOrCustom(CastOpcode
, VT
) ||
19917 !TLI
.isTypeLegal(ConcatSrcVT
))
19921 llvm_unreachable("Unexpected cast opcode");
19924 // concat (cast X), (cast Y)... -> cast (concat X, Y...)
19926 SDValue NewConcat
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, ConcatSrcVT
, SrcOps
);
19927 return DAG
.getNode(CastOpcode
, DL
, VT
, NewConcat
);
19930 SDValue
DAGCombiner::visitCONCAT_VECTORS(SDNode
*N
) {
19931 // If we only have one input vector, we don't need to do any concatenation.
19932 if (N
->getNumOperands() == 1)
19933 return N
->getOperand(0);
19935 // Check if all of the operands are undefs.
19936 EVT VT
= N
->getValueType(0);
19937 if (ISD::allOperandsUndef(N
))
19938 return DAG
.getUNDEF(VT
);
19940 // Optimize concat_vectors where all but the first of the vectors are undef.
19941 if (all_of(drop_begin(N
->ops()),
19942 [](const SDValue
&Op
) { return Op
.isUndef(); })) {
19943 SDValue In
= N
->getOperand(0);
19944 assert(In
.getValueType().isVector() && "Must concat vectors");
19946 // If the input is a concat_vectors, just make a larger concat by padding
19947 // with smaller undefs.
19948 if (In
.getOpcode() == ISD::CONCAT_VECTORS
&& In
.hasOneUse()) {
19949 unsigned NumOps
= N
->getNumOperands() * In
.getNumOperands();
19950 SmallVector
<SDValue
, 4> Ops(In
->op_begin(), In
->op_end());
19951 Ops
.resize(NumOps
, DAG
.getUNDEF(Ops
[0].getValueType()));
19952 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Ops
);
19955 SDValue Scalar
= peekThroughOneUseBitcasts(In
);
19957 // concat_vectors(scalar_to_vector(scalar), undef) ->
19958 // scalar_to_vector(scalar)
19959 if (!LegalOperations
&& Scalar
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
19960 Scalar
.hasOneUse()) {
19961 EVT SVT
= Scalar
.getValueType().getVectorElementType();
19962 if (SVT
== Scalar
.getOperand(0).getValueType())
19963 Scalar
= Scalar
.getOperand(0);
19966 // concat_vectors(scalar, undef) -> scalar_to_vector(scalar)
19967 if (!Scalar
.getValueType().isVector()) {
19968 // If the bitcast type isn't legal, it might be a trunc of a legal type;
19969 // look through the trunc so we can still do the transform:
19970 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
19971 if (Scalar
->getOpcode() == ISD::TRUNCATE
&&
19972 !TLI
.isTypeLegal(Scalar
.getValueType()) &&
19973 TLI
.isTypeLegal(Scalar
->getOperand(0).getValueType()))
19974 Scalar
= Scalar
->getOperand(0);
19976 EVT SclTy
= Scalar
.getValueType();
19978 if (!SclTy
.isFloatingPoint() && !SclTy
.isInteger())
19981 // Bail out if the vector size is not a multiple of the scalar size.
19982 if (VT
.getSizeInBits() % SclTy
.getSizeInBits())
19985 unsigned VNTNumElms
= VT
.getSizeInBits() / SclTy
.getSizeInBits();
19986 if (VNTNumElms
< 2)
19989 EVT NVT
= EVT::getVectorVT(*DAG
.getContext(), SclTy
, VNTNumElms
);
19990 if (!TLI
.isTypeLegal(NVT
) || !TLI
.isTypeLegal(Scalar
.getValueType()))
19993 SDValue Res
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, SDLoc(N
), NVT
, Scalar
);
19994 return DAG
.getBitcast(VT
, Res
);
19998 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
19999 // We have already tested above for an UNDEF only concatenation.
20000 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
20001 // -> (BUILD_VECTOR A, B, ..., C, D, ...)
20002 auto IsBuildVectorOrUndef
= [](const SDValue
&Op
) {
20003 return ISD::UNDEF
== Op
.getOpcode() || ISD::BUILD_VECTOR
== Op
.getOpcode();
20005 if (llvm::all_of(N
->ops(), IsBuildVectorOrUndef
)) {
20006 SmallVector
<SDValue
, 8> Opnds
;
20007 EVT SVT
= VT
.getScalarType();
20010 if (!SVT
.isFloatingPoint()) {
20011 // If BUILD_VECTOR are from built from integer, they may have different
20012 // operand types. Get the smallest type and truncate all operands to it.
20013 bool FoundMinVT
= false;
20014 for (const SDValue
&Op
: N
->ops())
20015 if (ISD::BUILD_VECTOR
== Op
.getOpcode()) {
20016 EVT OpSVT
= Op
.getOperand(0).getValueType();
20017 MinVT
= (!FoundMinVT
|| OpSVT
.bitsLE(MinVT
)) ? OpSVT
: MinVT
;
20020 assert(FoundMinVT
&& "Concat vector type mismatch");
20023 for (const SDValue
&Op
: N
->ops()) {
20024 EVT OpVT
= Op
.getValueType();
20025 unsigned NumElts
= OpVT
.getVectorNumElements();
20027 if (ISD::UNDEF
== Op
.getOpcode())
20028 Opnds
.append(NumElts
, DAG
.getUNDEF(MinVT
));
20030 if (ISD::BUILD_VECTOR
== Op
.getOpcode()) {
20031 if (SVT
.isFloatingPoint()) {
20032 assert(SVT
== OpVT
.getScalarType() && "Concat vector type mismatch");
20033 Opnds
.append(Op
->op_begin(), Op
->op_begin() + NumElts
);
20035 for (unsigned i
= 0; i
!= NumElts
; ++i
)
20037 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), MinVT
, Op
.getOperand(i
)));
20042 assert(VT
.getVectorNumElements() == Opnds
.size() &&
20043 "Concat vector type mismatch");
20044 return DAG
.getBuildVector(VT
, SDLoc(N
), Opnds
);
20047 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
20048 if (SDValue V
= combineConcatVectorOfScalars(N
, DAG
))
20051 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
20052 if (Level
< AfterLegalizeVectorOps
&& TLI
.isTypeLegal(VT
))
20053 if (SDValue V
= combineConcatVectorOfExtracts(N
, DAG
))
20056 if (SDValue V
= combineConcatVectorOfCasts(N
, DAG
))
20059 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
20060 // nodes often generate nop CONCAT_VECTOR nodes. Scan the CONCAT_VECTOR
20061 // operands and look for a CONCAT operations that place the incoming vectors
20062 // at the exact same location.
20064 // For scalable vectors, EXTRACT_SUBVECTOR indexes are implicitly scaled.
20065 SDValue SingleSource
= SDValue();
20066 unsigned PartNumElem
=
20067 N
->getOperand(0).getValueType().getVectorMinNumElements();
20069 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
20070 SDValue Op
= N
->getOperand(i
);
20075 // Check if this is the identity extract:
20076 if (Op
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
20079 // Find the single incoming vector for the extract_subvector.
20080 if (SingleSource
.getNode()) {
20081 if (Op
.getOperand(0) != SingleSource
)
20084 SingleSource
= Op
.getOperand(0);
20086 // Check the source type is the same as the type of the result.
20087 // If not, this concat may extend the vector, so we can not
20088 // optimize it away.
20089 if (SingleSource
.getValueType() != N
->getValueType(0))
20093 // Check that we are reading from the identity index.
20094 unsigned IdentityIndex
= i
* PartNumElem
;
20095 if (Op
.getConstantOperandAPInt(1) != IdentityIndex
)
20099 if (SingleSource
.getNode())
20100 return SingleSource
;
20105 // Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find
20106 // if the subvector can be sourced for free.
20107 static SDValue
getSubVectorSrc(SDValue V
, SDValue Index
, EVT SubVT
) {
20108 if (V
.getOpcode() == ISD::INSERT_SUBVECTOR
&&
20109 V
.getOperand(1).getValueType() == SubVT
&& V
.getOperand(2) == Index
) {
20110 return V
.getOperand(1);
20112 auto *IndexC
= dyn_cast
<ConstantSDNode
>(Index
);
20113 if (IndexC
&& V
.getOpcode() == ISD::CONCAT_VECTORS
&&
20114 V
.getOperand(0).getValueType() == SubVT
&&
20115 (IndexC
->getZExtValue() % SubVT
.getVectorMinNumElements()) == 0) {
20116 uint64_t SubIdx
= IndexC
->getZExtValue() / SubVT
.getVectorMinNumElements();
20117 return V
.getOperand(SubIdx
);
20122 static SDValue
narrowInsertExtractVectorBinOp(SDNode
*Extract
,
20124 bool LegalOperations
) {
20125 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
20126 SDValue BinOp
= Extract
->getOperand(0);
20127 unsigned BinOpcode
= BinOp
.getOpcode();
20128 if (!TLI
.isBinOp(BinOpcode
) || BinOp
.getNode()->getNumValues() != 1)
20131 EVT VecVT
= BinOp
.getValueType();
20132 SDValue Bop0
= BinOp
.getOperand(0), Bop1
= BinOp
.getOperand(1);
20133 if (VecVT
!= Bop0
.getValueType() || VecVT
!= Bop1
.getValueType())
20136 SDValue Index
= Extract
->getOperand(1);
20137 EVT SubVT
= Extract
->getValueType(0);
20138 if (!TLI
.isOperationLegalOrCustom(BinOpcode
, SubVT
, LegalOperations
))
20141 SDValue Sub0
= getSubVectorSrc(Bop0
, Index
, SubVT
);
20142 SDValue Sub1
= getSubVectorSrc(Bop1
, Index
, SubVT
);
20144 // TODO: We could handle the case where only 1 operand is being inserted by
20145 // creating an extract of the other operand, but that requires checking
20146 // number of uses and/or costs.
20147 if (!Sub0
|| !Sub1
)
20150 // We are inserting both operands of the wide binop only to extract back
20151 // to the narrow vector size. Eliminate all of the insert/extract:
20152 // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y
20153 return DAG
.getNode(BinOpcode
, SDLoc(Extract
), SubVT
, Sub0
, Sub1
,
20154 BinOp
->getFlags());
20157 /// If we are extracting a subvector produced by a wide binary operator try
20158 /// to use a narrow binary operator and/or avoid concatenation and extraction.
20159 static SDValue
narrowExtractedVectorBinOp(SDNode
*Extract
, SelectionDAG
&DAG
,
20160 bool LegalOperations
) {
20161 // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share
20162 // some of these bailouts with other transforms.
20164 if (SDValue V
= narrowInsertExtractVectorBinOp(Extract
, DAG
, LegalOperations
))
20167 // The extract index must be a constant, so we can map it to a concat operand.
20168 auto *ExtractIndexC
= dyn_cast
<ConstantSDNode
>(Extract
->getOperand(1));
20169 if (!ExtractIndexC
)
20172 // We are looking for an optionally bitcasted wide vector binary operator
20173 // feeding an extract subvector.
20174 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
20175 SDValue BinOp
= peekThroughBitcasts(Extract
->getOperand(0));
20176 unsigned BOpcode
= BinOp
.getOpcode();
20177 if (!TLI
.isBinOp(BOpcode
) || BinOp
.getNode()->getNumValues() != 1)
20180 // Exclude the fake form of fneg (fsub -0.0, x) because that is likely to be
20181 // reduced to the unary fneg when it is visited, and we probably want to deal
20182 // with fneg in a target-specific way.
20183 if (BOpcode
== ISD::FSUB
) {
20184 auto *C
= isConstOrConstSplatFP(BinOp
.getOperand(0), /*AllowUndefs*/ true);
20185 if (C
&& C
->getValueAPF().isNegZero())
20189 // The binop must be a vector type, so we can extract some fraction of it.
20190 EVT WideBVT
= BinOp
.getValueType();
20191 // The optimisations below currently assume we are dealing with fixed length
20192 // vectors. It is possible to add support for scalable vectors, but at the
20193 // moment we've done no analysis to prove whether they are profitable or not.
20194 if (!WideBVT
.isFixedLengthVector())
20197 EVT VT
= Extract
->getValueType(0);
20198 unsigned ExtractIndex
= ExtractIndexC
->getZExtValue();
20199 assert(ExtractIndex
% VT
.getVectorNumElements() == 0 &&
20200 "Extract index is not a multiple of the vector length.");
20202 // Bail out if this is not a proper multiple width extraction.
20203 unsigned WideWidth
= WideBVT
.getSizeInBits();
20204 unsigned NarrowWidth
= VT
.getSizeInBits();
20205 if (WideWidth
% NarrowWidth
!= 0)
20208 // Bail out if we are extracting a fraction of a single operation. This can
20209 // occur because we potentially looked through a bitcast of the binop.
20210 unsigned NarrowingRatio
= WideWidth
/ NarrowWidth
;
20211 unsigned WideNumElts
= WideBVT
.getVectorNumElements();
20212 if (WideNumElts
% NarrowingRatio
!= 0)
20215 // Bail out if the target does not support a narrower version of the binop.
20216 EVT NarrowBVT
= EVT::getVectorVT(*DAG
.getContext(), WideBVT
.getScalarType(),
20217 WideNumElts
/ NarrowingRatio
);
20218 if (!TLI
.isOperationLegalOrCustomOrPromote(BOpcode
, NarrowBVT
))
20221 // If extraction is cheap, we don't need to look at the binop operands
20222 // for concat ops. The narrow binop alone makes this transform profitable.
20223 // We can't just reuse the original extract index operand because we may have
20225 unsigned ConcatOpNum
= ExtractIndex
/ VT
.getVectorNumElements();
20226 unsigned ExtBOIdx
= ConcatOpNum
* NarrowBVT
.getVectorNumElements();
20227 if (TLI
.isExtractSubvectorCheap(NarrowBVT
, WideBVT
, ExtBOIdx
) &&
20228 BinOp
.hasOneUse() && Extract
->getOperand(0)->hasOneUse()) {
20229 // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N)
20231 SDValue NewExtIndex
= DAG
.getVectorIdxConstant(ExtBOIdx
, DL
);
20232 SDValue X
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
20233 BinOp
.getOperand(0), NewExtIndex
);
20234 SDValue Y
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
20235 BinOp
.getOperand(1), NewExtIndex
);
20236 SDValue NarrowBinOp
= DAG
.getNode(BOpcode
, DL
, NarrowBVT
, X
, Y
,
20237 BinOp
.getNode()->getFlags());
20238 return DAG
.getBitcast(VT
, NarrowBinOp
);
20241 // Only handle the case where we are doubling and then halving. A larger ratio
20242 // may require more than two narrow binops to replace the wide binop.
20243 if (NarrowingRatio
!= 2)
20246 // TODO: The motivating case for this transform is an x86 AVX1 target. That
20247 // target has temptingly almost legal versions of bitwise logic ops in 256-bit
20248 // flavors, but no other 256-bit integer support. This could be extended to
20249 // handle any binop, but that may require fixing/adding other folds to avoid
20250 // codegen regressions.
20251 if (BOpcode
!= ISD::AND
&& BOpcode
!= ISD::OR
&& BOpcode
!= ISD::XOR
)
20254 // We need at least one concatenation operation of a binop operand to make
20255 // this transform worthwhile. The concat must double the input vector sizes.
20256 auto GetSubVector
= [ConcatOpNum
](SDValue V
) -> SDValue
{
20257 if (V
.getOpcode() == ISD::CONCAT_VECTORS
&& V
.getNumOperands() == 2)
20258 return V
.getOperand(ConcatOpNum
);
20261 SDValue SubVecL
= GetSubVector(peekThroughBitcasts(BinOp
.getOperand(0)));
20262 SDValue SubVecR
= GetSubVector(peekThroughBitcasts(BinOp
.getOperand(1)));
20264 if (SubVecL
|| SubVecR
) {
20265 // If a binop operand was not the result of a concat, we must extract a
20266 // half-sized operand for our new narrow binop:
20267 // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN
20268 // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC)
20269 // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN
20271 SDValue IndexC
= DAG
.getVectorIdxConstant(ExtBOIdx
, DL
);
20272 SDValue X
= SubVecL
? DAG
.getBitcast(NarrowBVT
, SubVecL
)
20273 : DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
20274 BinOp
.getOperand(0), IndexC
);
20276 SDValue Y
= SubVecR
? DAG
.getBitcast(NarrowBVT
, SubVecR
)
20277 : DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
20278 BinOp
.getOperand(1), IndexC
);
20280 SDValue NarrowBinOp
= DAG
.getNode(BOpcode
, DL
, NarrowBVT
, X
, Y
);
20281 return DAG
.getBitcast(VT
, NarrowBinOp
);
20287 /// If we are extracting a subvector from a wide vector load, convert to a
20288 /// narrow load to eliminate the extraction:
20289 /// (extract_subvector (load wide vector)) --> (load narrow vector)
20290 static SDValue
narrowExtractedVectorLoad(SDNode
*Extract
, SelectionDAG
&DAG
) {
20291 // TODO: Add support for big-endian. The offset calculation must be adjusted.
20292 if (DAG
.getDataLayout().isBigEndian())
20295 auto *Ld
= dyn_cast
<LoadSDNode
>(Extract
->getOperand(0));
20296 auto *ExtIdx
= dyn_cast
<ConstantSDNode
>(Extract
->getOperand(1));
20297 if (!Ld
|| Ld
->getExtensionType() || !Ld
->isSimple() ||
20301 // Allow targets to opt-out.
20302 EVT VT
= Extract
->getValueType(0);
20304 // We can only create byte sized loads.
20305 if (!VT
.isByteSized())
20308 unsigned Index
= ExtIdx
->getZExtValue();
20309 unsigned NumElts
= VT
.getVectorMinNumElements();
20311 // The definition of EXTRACT_SUBVECTOR states that the index must be a
20312 // multiple of the minimum number of elements in the result type.
20313 assert(Index
% NumElts
== 0 && "The extract subvector index is not a "
20314 "multiple of the result's element count");
20316 // It's fine to use TypeSize here as we know the offset will not be negative.
20317 TypeSize Offset
= VT
.getStoreSize() * (Index
/ NumElts
);
20319 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
20320 if (!TLI
.shouldReduceLoadWidth(Ld
, Ld
->getExtensionType(), VT
))
20323 // The narrow load will be offset from the base address of the old load if
20324 // we are extracting from something besides index 0 (little-endian).
20327 // TODO: Use "BaseIndexOffset" to make this more effective.
20328 SDValue NewAddr
= DAG
.getMemBasePlusOffset(Ld
->getBasePtr(), Offset
, DL
);
20330 uint64_t StoreSize
= MemoryLocation::getSizeOrUnknown(VT
.getStoreSize());
20331 MachineFunction
&MF
= DAG
.getMachineFunction();
20332 MachineMemOperand
*MMO
;
20333 if (Offset
.isScalable()) {
20334 MachinePointerInfo MPI
=
20335 MachinePointerInfo(Ld
->getPointerInfo().getAddrSpace());
20336 MMO
= MF
.getMachineMemOperand(Ld
->getMemOperand(), MPI
, StoreSize
);
20338 MMO
= MF
.getMachineMemOperand(Ld
->getMemOperand(), Offset
.getFixedSize(),
20341 SDValue NewLd
= DAG
.getLoad(VT
, DL
, Ld
->getChain(), NewAddr
, MMO
);
20342 DAG
.makeEquivalentMemoryOrdering(Ld
, NewLd
);
20346 SDValue
DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode
*N
) {
20347 EVT NVT
= N
->getValueType(0);
20348 SDValue V
= N
->getOperand(0);
20349 uint64_t ExtIdx
= N
->getConstantOperandVal(1);
20351 // Extract from UNDEF is UNDEF.
20353 return DAG
.getUNDEF(NVT
);
20355 if (TLI
.isOperationLegalOrCustomOrPromote(ISD::LOAD
, NVT
))
20356 if (SDValue NarrowLoad
= narrowExtractedVectorLoad(N
, DAG
))
20359 // Combine an extract of an extract into a single extract_subvector.
20360 // ext (ext X, C), 0 --> ext X, C
20361 if (ExtIdx
== 0 && V
.getOpcode() == ISD::EXTRACT_SUBVECTOR
&& V
.hasOneUse()) {
20362 if (TLI
.isExtractSubvectorCheap(NVT
, V
.getOperand(0).getValueType(),
20363 V
.getConstantOperandVal(1)) &&
20364 TLI
.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, NVT
)) {
20365 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), NVT
, V
.getOperand(0),
20370 // Try to move vector bitcast after extract_subv by scaling extraction index:
20371 // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index')
20372 if (V
.getOpcode() == ISD::BITCAST
&&
20373 V
.getOperand(0).getValueType().isVector() &&
20374 (!LegalOperations
|| TLI
.isOperationLegal(ISD::BITCAST
, NVT
))) {
20375 SDValue SrcOp
= V
.getOperand(0);
20376 EVT SrcVT
= SrcOp
.getValueType();
20377 unsigned SrcNumElts
= SrcVT
.getVectorMinNumElements();
20378 unsigned DestNumElts
= V
.getValueType().getVectorMinNumElements();
20379 if ((SrcNumElts
% DestNumElts
) == 0) {
20380 unsigned SrcDestRatio
= SrcNumElts
/ DestNumElts
;
20381 ElementCount NewExtEC
= NVT
.getVectorElementCount() * SrcDestRatio
;
20382 EVT NewExtVT
= EVT::getVectorVT(*DAG
.getContext(), SrcVT
.getScalarType(),
20384 if (TLI
.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, NewExtVT
)) {
20386 SDValue NewIndex
= DAG
.getVectorIdxConstant(ExtIdx
* SrcDestRatio
, DL
);
20387 SDValue NewExtract
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NewExtVT
,
20388 V
.getOperand(0), NewIndex
);
20389 return DAG
.getBitcast(NVT
, NewExtract
);
20392 if ((DestNumElts
% SrcNumElts
) == 0) {
20393 unsigned DestSrcRatio
= DestNumElts
/ SrcNumElts
;
20394 if (NVT
.getVectorElementCount().isKnownMultipleOf(DestSrcRatio
)) {
20395 ElementCount NewExtEC
=
20396 NVT
.getVectorElementCount().divideCoefficientBy(DestSrcRatio
);
20397 EVT ScalarVT
= SrcVT
.getScalarType();
20398 if ((ExtIdx
% DestSrcRatio
) == 0) {
20400 unsigned IndexValScaled
= ExtIdx
/ DestSrcRatio
;
20402 EVT::getVectorVT(*DAG
.getContext(), ScalarVT
, NewExtEC
);
20403 if (TLI
.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, NewExtVT
)) {
20404 SDValue NewIndex
= DAG
.getVectorIdxConstant(IndexValScaled
, DL
);
20405 SDValue NewExtract
=
20406 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NewExtVT
,
20407 V
.getOperand(0), NewIndex
);
20408 return DAG
.getBitcast(NVT
, NewExtract
);
20410 if (NewExtEC
.isScalar() &&
20411 TLI
.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT
, ScalarVT
)) {
20412 SDValue NewIndex
= DAG
.getVectorIdxConstant(IndexValScaled
, DL
);
20413 SDValue NewExtract
=
20414 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, ScalarVT
,
20415 V
.getOperand(0), NewIndex
);
20416 return DAG
.getBitcast(NVT
, NewExtract
);
20423 if (V
.getOpcode() == ISD::CONCAT_VECTORS
) {
20424 unsigned ExtNumElts
= NVT
.getVectorMinNumElements();
20425 EVT ConcatSrcVT
= V
.getOperand(0).getValueType();
20426 assert(ConcatSrcVT
.getVectorElementType() == NVT
.getVectorElementType() &&
20427 "Concat and extract subvector do not change element type");
20428 assert((ExtIdx
% ExtNumElts
) == 0 &&
20429 "Extract index is not a multiple of the input vector length.");
20431 unsigned ConcatSrcNumElts
= ConcatSrcVT
.getVectorMinNumElements();
20432 unsigned ConcatOpIdx
= ExtIdx
/ ConcatSrcNumElts
;
20434 // If the concatenated source types match this extract, it's a direct
20436 // extract_subvec (concat V1, V2, ...), i --> Vi
20437 if (ConcatSrcNumElts
== ExtNumElts
)
20438 return V
.getOperand(ConcatOpIdx
);
20440 // If the concatenated source vectors are a multiple length of this extract,
20441 // then extract a fraction of one of those source vectors directly from a
20442 // concat operand. Example:
20443 // v2i8 extract_subvec (v16i8 concat (v8i8 X), (v8i8 Y), 14 -->
20444 // v2i8 extract_subvec v8i8 Y, 6
20445 if (NVT
.isFixedLengthVector() && ConcatSrcNumElts
% ExtNumElts
== 0) {
20447 unsigned NewExtIdx
= ExtIdx
- ConcatOpIdx
* ConcatSrcNumElts
;
20448 assert(NewExtIdx
+ ExtNumElts
<= ConcatSrcNumElts
&&
20449 "Trying to extract from >1 concat operand?");
20450 assert(NewExtIdx
% ExtNumElts
== 0 &&
20451 "Extract index is not a multiple of the input vector length.");
20452 SDValue NewIndexC
= DAG
.getVectorIdxConstant(NewExtIdx
, DL
);
20453 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NVT
,
20454 V
.getOperand(ConcatOpIdx
), NewIndexC
);
20458 V
= peekThroughBitcasts(V
);
20460 // If the input is a build vector. Try to make a smaller build vector.
20461 if (V
.getOpcode() == ISD::BUILD_VECTOR
) {
20462 EVT InVT
= V
.getValueType();
20463 unsigned ExtractSize
= NVT
.getSizeInBits();
20464 unsigned EltSize
= InVT
.getScalarSizeInBits();
20465 // Only do this if we won't split any elements.
20466 if (ExtractSize
% EltSize
== 0) {
20467 unsigned NumElems
= ExtractSize
/ EltSize
;
20468 EVT EltVT
= InVT
.getVectorElementType();
20470 NumElems
== 1 ? EltVT
20471 : EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElems
);
20472 if ((Level
< AfterLegalizeDAG
||
20474 TLI
.isOperationLegal(ISD::BUILD_VECTOR
, ExtractVT
))) &&
20475 (!LegalTypes
|| TLI
.isTypeLegal(ExtractVT
))) {
20476 unsigned IdxVal
= (ExtIdx
* NVT
.getScalarSizeInBits()) / EltSize
;
20478 if (NumElems
== 1) {
20479 SDValue Src
= V
->getOperand(IdxVal
);
20480 if (EltVT
!= Src
.getValueType())
20481 Src
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), InVT
, Src
);
20482 return DAG
.getBitcast(NVT
, Src
);
20485 // Extract the pieces from the original build_vector.
20486 SDValue BuildVec
= DAG
.getBuildVector(ExtractVT
, SDLoc(N
),
20487 V
->ops().slice(IdxVal
, NumElems
));
20488 return DAG
.getBitcast(NVT
, BuildVec
);
20493 if (V
.getOpcode() == ISD::INSERT_SUBVECTOR
) {
20494 // Handle only simple case where vector being inserted and vector
20495 // being extracted are of same size.
20496 EVT SmallVT
= V
.getOperand(1).getValueType();
20497 if (!NVT
.bitsEq(SmallVT
))
20501 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
20503 // indices are equal or bit offsets are equal => V1
20504 // otherwise => (extract_subvec V1, ExtIdx)
20505 uint64_t InsIdx
= V
.getConstantOperandVal(2);
20506 if (InsIdx
* SmallVT
.getScalarSizeInBits() ==
20507 ExtIdx
* NVT
.getScalarSizeInBits())
20508 return DAG
.getBitcast(NVT
, V
.getOperand(1));
20509 return DAG
.getNode(
20510 ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), NVT
,
20511 DAG
.getBitcast(N
->getOperand(0).getValueType(), V
.getOperand(0)),
20515 if (SDValue NarrowBOp
= narrowExtractedVectorBinOp(N
, DAG
, LegalOperations
))
20518 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
20519 return SDValue(N
, 0);
20524 /// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles
20525 /// followed by concatenation. Narrow vector ops may have better performance
20526 /// than wide ops, and this can unlock further narrowing of other vector ops.
20527 /// Targets can invert this transform later if it is not profitable.
20528 static SDValue
foldShuffleOfConcatUndefs(ShuffleVectorSDNode
*Shuf
,
20529 SelectionDAG
&DAG
) {
20530 SDValue N0
= Shuf
->getOperand(0), N1
= Shuf
->getOperand(1);
20531 if (N0
.getOpcode() != ISD::CONCAT_VECTORS
|| N0
.getNumOperands() != 2 ||
20532 N1
.getOpcode() != ISD::CONCAT_VECTORS
|| N1
.getNumOperands() != 2 ||
20533 !N0
.getOperand(1).isUndef() || !N1
.getOperand(1).isUndef())
20536 // Split the wide shuffle mask into halves. Any mask element that is accessing
20537 // operand 1 is offset down to account for narrowing of the vectors.
20538 ArrayRef
<int> Mask
= Shuf
->getMask();
20539 EVT VT
= Shuf
->getValueType(0);
20540 unsigned NumElts
= VT
.getVectorNumElements();
20541 unsigned HalfNumElts
= NumElts
/ 2;
20542 SmallVector
<int, 16> Mask0(HalfNumElts
, -1);
20543 SmallVector
<int, 16> Mask1(HalfNumElts
, -1);
20544 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
20547 // If we reference the upper (undef) subvector then the element is undef.
20548 if ((Mask
[i
] % NumElts
) >= HalfNumElts
)
20550 int M
= Mask
[i
] < (int)NumElts
? Mask
[i
] : Mask
[i
] - (int)HalfNumElts
;
20551 if (i
< HalfNumElts
)
20554 Mask1
[i
- HalfNumElts
] = M
;
20557 // Ask the target if this is a valid transform.
20558 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
20559 EVT HalfVT
= EVT::getVectorVT(*DAG
.getContext(), VT
.getScalarType(),
20561 if (!TLI
.isShuffleMaskLegal(Mask0
, HalfVT
) ||
20562 !TLI
.isShuffleMaskLegal(Mask1
, HalfVT
))
20565 // shuffle (concat X, undef), (concat Y, undef), Mask -->
20566 // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1)
20567 SDValue X
= N0
.getOperand(0), Y
= N1
.getOperand(0);
20569 SDValue Shuf0
= DAG
.getVectorShuffle(HalfVT
, DL
, X
, Y
, Mask0
);
20570 SDValue Shuf1
= DAG
.getVectorShuffle(HalfVT
, DL
, X
, Y
, Mask1
);
20571 return DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, Shuf0
, Shuf1
);
20574 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
20575 // or turn a shuffle of a single concat into simpler shuffle then concat.
20576 static SDValue
partitionShuffleOfConcats(SDNode
*N
, SelectionDAG
&DAG
) {
20577 EVT VT
= N
->getValueType(0);
20578 unsigned NumElts
= VT
.getVectorNumElements();
20580 SDValue N0
= N
->getOperand(0);
20581 SDValue N1
= N
->getOperand(1);
20582 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
20583 ArrayRef
<int> Mask
= SVN
->getMask();
20585 SmallVector
<SDValue
, 4> Ops
;
20586 EVT ConcatVT
= N0
.getOperand(0).getValueType();
20587 unsigned NumElemsPerConcat
= ConcatVT
.getVectorNumElements();
20588 unsigned NumConcats
= NumElts
/ NumElemsPerConcat
;
20590 auto IsUndefMaskElt
= [](int i
) { return i
== -1; };
20592 // Special case: shuffle(concat(A,B)) can be more efficiently represented
20593 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
20594 // half vector elements.
20595 if (NumElemsPerConcat
* 2 == NumElts
&& N1
.isUndef() &&
20596 llvm::all_of(Mask
.slice(NumElemsPerConcat
, NumElemsPerConcat
),
20598 N0
= DAG
.getVectorShuffle(ConcatVT
, SDLoc(N
), N0
.getOperand(0),
20600 Mask
.slice(0, NumElemsPerConcat
));
20601 N1
= DAG
.getUNDEF(ConcatVT
);
20602 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, N0
, N1
);
20605 // Look at every vector that's inserted. We're looking for exact
20606 // subvector-sized copies from a concatenated vector
20607 for (unsigned I
= 0; I
!= NumConcats
; ++I
) {
20608 unsigned Begin
= I
* NumElemsPerConcat
;
20609 ArrayRef
<int> SubMask
= Mask
.slice(Begin
, NumElemsPerConcat
);
20611 // Make sure we're dealing with a copy.
20612 if (llvm::all_of(SubMask
, IsUndefMaskElt
)) {
20613 Ops
.push_back(DAG
.getUNDEF(ConcatVT
));
20618 for (int i
= 0; i
!= (int)NumElemsPerConcat
; ++i
) {
20619 if (IsUndefMaskElt(SubMask
[i
]))
20621 if ((SubMask
[i
] % (int)NumElemsPerConcat
) != i
)
20623 int EltOpIdx
= SubMask
[i
] / NumElemsPerConcat
;
20624 if (0 <= OpIdx
&& EltOpIdx
!= OpIdx
)
20628 assert(0 <= OpIdx
&& "Unknown concat_vectors op");
20630 if (OpIdx
< (int)N0
.getNumOperands())
20631 Ops
.push_back(N0
.getOperand(OpIdx
));
20633 Ops
.push_back(N1
.getOperand(OpIdx
- N0
.getNumOperands()));
20636 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Ops
);
20639 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
20640 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
20642 // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always
20643 // a simplification in some sense, but it isn't appropriate in general: some
20644 // BUILD_VECTORs are substantially cheaper than others. The general case
20645 // of a BUILD_VECTOR requires inserting each element individually (or
20646 // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of
20647 // all constants is a single constant pool load. A BUILD_VECTOR where each
20648 // element is identical is a splat. A BUILD_VECTOR where most of the operands
20649 // are undef lowers to a small number of element insertions.
20651 // To deal with this, we currently use a bunch of mostly arbitrary heuristics.
20652 // We don't fold shuffles where one side is a non-zero constant, and we don't
20653 // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate
20654 // non-constant operands. This seems to work out reasonably well in practice.
20655 static SDValue
combineShuffleOfScalars(ShuffleVectorSDNode
*SVN
,
20657 const TargetLowering
&TLI
) {
20658 EVT VT
= SVN
->getValueType(0);
20659 unsigned NumElts
= VT
.getVectorNumElements();
20660 SDValue N0
= SVN
->getOperand(0);
20661 SDValue N1
= SVN
->getOperand(1);
20663 if (!N0
->hasOneUse())
20666 // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as
20667 // discussed above.
20668 if (!N1
.isUndef()) {
20669 if (!N1
->hasOneUse())
20672 bool N0AnyConst
= isAnyConstantBuildVector(N0
);
20673 bool N1AnyConst
= isAnyConstantBuildVector(N1
);
20674 if (N0AnyConst
&& !N1AnyConst
&& !ISD::isBuildVectorAllZeros(N0
.getNode()))
20676 if (!N0AnyConst
&& N1AnyConst
&& !ISD::isBuildVectorAllZeros(N1
.getNode()))
20680 // If both inputs are splats of the same value then we can safely merge this
20681 // to a single BUILD_VECTOR with undef elements based on the shuffle mask.
20682 bool IsSplat
= false;
20683 auto *BV0
= dyn_cast
<BuildVectorSDNode
>(N0
);
20684 auto *BV1
= dyn_cast
<BuildVectorSDNode
>(N1
);
20686 if (SDValue Splat0
= BV0
->getSplatValue())
20687 IsSplat
= (Splat0
== BV1
->getSplatValue());
20689 SmallVector
<SDValue
, 8> Ops
;
20690 SmallSet
<SDValue
, 16> DuplicateOps
;
20691 for (int M
: SVN
->getMask()) {
20692 SDValue Op
= DAG
.getUNDEF(VT
.getScalarType());
20694 int Idx
= M
< (int)NumElts
? M
: M
- NumElts
;
20695 SDValue
&S
= (M
< (int)NumElts
? N0
: N1
);
20696 if (S
.getOpcode() == ISD::BUILD_VECTOR
) {
20697 Op
= S
.getOperand(Idx
);
20698 } else if (S
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
20699 SDValue Op0
= S
.getOperand(0);
20700 Op
= Idx
== 0 ? Op0
: DAG
.getUNDEF(Op0
.getValueType());
20702 // Operand can't be combined - bail out.
20707 // Don't duplicate a non-constant BUILD_VECTOR operand unless we're
20708 // generating a splat; semantically, this is fine, but it's likely to
20709 // generate low-quality code if the target can't reconstruct an appropriate
20711 if (!Op
.isUndef() && !isIntOrFPConstant(Op
))
20712 if (!IsSplat
&& !DuplicateOps
.insert(Op
).second
)
20718 // BUILD_VECTOR requires all inputs to be of the same type, find the
20719 // maximum type and extend them all.
20720 EVT SVT
= VT
.getScalarType();
20721 if (SVT
.isInteger())
20722 for (SDValue
&Op
: Ops
)
20723 SVT
= (SVT
.bitsLT(Op
.getValueType()) ? Op
.getValueType() : SVT
);
20724 if (SVT
!= VT
.getScalarType())
20725 for (SDValue
&Op
: Ops
)
20726 Op
= TLI
.isZExtFree(Op
.getValueType(), SVT
)
20727 ? DAG
.getZExtOrTrunc(Op
, SDLoc(SVN
), SVT
)
20728 : DAG
.getSExtOrTrunc(Op
, SDLoc(SVN
), SVT
);
20729 return DAG
.getBuildVector(VT
, SDLoc(SVN
), Ops
);
20732 // Match shuffles that can be converted to any_vector_extend_in_reg.
20733 // This is often generated during legalization.
20734 // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src))
20735 // TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case.
20736 static SDValue
combineShuffleToVectorExtend(ShuffleVectorSDNode
*SVN
,
20738 const TargetLowering
&TLI
,
20739 bool LegalOperations
) {
20740 EVT VT
= SVN
->getValueType(0);
20741 bool IsBigEndian
= DAG
.getDataLayout().isBigEndian();
20743 // TODO Add support for big-endian when we have a test case.
20744 if (!VT
.isInteger() || IsBigEndian
)
20747 unsigned NumElts
= VT
.getVectorNumElements();
20748 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
20749 ArrayRef
<int> Mask
= SVN
->getMask();
20750 SDValue N0
= SVN
->getOperand(0);
20752 // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32))
20753 auto isAnyExtend
= [&Mask
, &NumElts
](unsigned Scale
) {
20754 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
20757 if ((i
% Scale
) == 0 && Mask
[i
] == (int)(i
/ Scale
))
20764 // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for
20765 // power-of-2 extensions as they are the most likely.
20766 for (unsigned Scale
= 2; Scale
< NumElts
; Scale
*= 2) {
20767 // Check for non power of 2 vector sizes
20768 if (NumElts
% Scale
!= 0)
20770 if (!isAnyExtend(Scale
))
20773 EVT OutSVT
= EVT::getIntegerVT(*DAG
.getContext(), EltSizeInBits
* Scale
);
20774 EVT OutVT
= EVT::getVectorVT(*DAG
.getContext(), OutSVT
, NumElts
/ Scale
);
20775 // Never create an illegal type. Only create unsupported operations if we
20776 // are pre-legalization.
20777 if (TLI
.isTypeLegal(OutVT
))
20778 if (!LegalOperations
||
20779 TLI
.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG
, OutVT
))
20780 return DAG
.getBitcast(VT
,
20781 DAG
.getNode(ISD::ANY_EXTEND_VECTOR_INREG
,
20782 SDLoc(SVN
), OutVT
, N0
));
20788 // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of
20789 // each source element of a large type into the lowest elements of a smaller
20790 // destination type. This is often generated during legalization.
20791 // If the source node itself was a '*_extend_vector_inreg' node then we should
20792 // then be able to remove it.
20793 static SDValue
combineTruncationShuffle(ShuffleVectorSDNode
*SVN
,
20794 SelectionDAG
&DAG
) {
20795 EVT VT
= SVN
->getValueType(0);
20796 bool IsBigEndian
= DAG
.getDataLayout().isBigEndian();
20798 // TODO Add support for big-endian when we have a test case.
20799 if (!VT
.isInteger() || IsBigEndian
)
20802 SDValue N0
= peekThroughBitcasts(SVN
->getOperand(0));
20804 unsigned Opcode
= N0
.getOpcode();
20805 if (Opcode
!= ISD::ANY_EXTEND_VECTOR_INREG
&&
20806 Opcode
!= ISD::SIGN_EXTEND_VECTOR_INREG
&&
20807 Opcode
!= ISD::ZERO_EXTEND_VECTOR_INREG
)
20810 SDValue N00
= N0
.getOperand(0);
20811 ArrayRef
<int> Mask
= SVN
->getMask();
20812 unsigned NumElts
= VT
.getVectorNumElements();
20813 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
20814 unsigned ExtSrcSizeInBits
= N00
.getScalarValueSizeInBits();
20815 unsigned ExtDstSizeInBits
= N0
.getScalarValueSizeInBits();
20817 if (ExtDstSizeInBits
% ExtSrcSizeInBits
!= 0)
20819 unsigned ExtScale
= ExtDstSizeInBits
/ ExtSrcSizeInBits
;
20821 // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1>
20822 // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1>
20823 // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1>
20824 auto isTruncate
= [&Mask
, &NumElts
](unsigned Scale
) {
20825 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
20828 if ((i
* Scale
) < NumElts
&& Mask
[i
] == (int)(i
* Scale
))
20835 // At the moment we just handle the case where we've truncated back to the
20836 // same size as before the extension.
20837 // TODO: handle more extension/truncation cases as cases arise.
20838 if (EltSizeInBits
!= ExtSrcSizeInBits
)
20841 // We can remove *extend_vector_inreg only if the truncation happens at
20842 // the same scale as the extension.
20843 if (isTruncate(ExtScale
))
20844 return DAG
.getBitcast(VT
, N00
);
20849 // Combine shuffles of splat-shuffles of the form:
20850 // shuffle (shuffle V, undef, splat-mask), undef, M
20851 // If splat-mask contains undef elements, we need to be careful about
20852 // introducing undef's in the folded mask which are not the result of composing
20853 // the masks of the shuffles.
20854 static SDValue
combineShuffleOfSplatVal(ShuffleVectorSDNode
*Shuf
,
20855 SelectionDAG
&DAG
) {
20856 if (!Shuf
->getOperand(1).isUndef())
20858 auto *Splat
= dyn_cast
<ShuffleVectorSDNode
>(Shuf
->getOperand(0));
20859 if (!Splat
|| !Splat
->isSplat())
20862 ArrayRef
<int> ShufMask
= Shuf
->getMask();
20863 ArrayRef
<int> SplatMask
= Splat
->getMask();
20864 assert(ShufMask
.size() == SplatMask
.size() && "Mask length mismatch");
20866 // Prefer simplifying to the splat-shuffle, if possible. This is legal if
20867 // every undef mask element in the splat-shuffle has a corresponding undef
20868 // element in the user-shuffle's mask or if the composition of mask elements
20869 // would result in undef.
20870 // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask):
20871 // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u]
20872 // In this case it is not legal to simplify to the splat-shuffle because we
20873 // may be exposing the users of the shuffle an undef element at index 1
20874 // which was not there before the combine.
20875 // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u]
20876 // In this case the composition of masks yields SplatMask, so it's ok to
20877 // simplify to the splat-shuffle.
20878 // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u]
20879 // In this case the composed mask includes all undef elements of SplatMask
20880 // and in addition sets element zero to undef. It is safe to simplify to
20881 // the splat-shuffle.
20882 auto CanSimplifyToExistingSplat
= [](ArrayRef
<int> UserMask
,
20883 ArrayRef
<int> SplatMask
) {
20884 for (unsigned i
= 0, e
= UserMask
.size(); i
!= e
; ++i
)
20885 if (UserMask
[i
] != -1 && SplatMask
[i
] == -1 &&
20886 SplatMask
[UserMask
[i
]] != -1)
20890 if (CanSimplifyToExistingSplat(ShufMask
, SplatMask
))
20891 return Shuf
->getOperand(0);
20893 // Create a new shuffle with a mask that is composed of the two shuffles'
20895 SmallVector
<int, 32> NewMask
;
20896 for (int Idx
: ShufMask
)
20897 NewMask
.push_back(Idx
== -1 ? -1 : SplatMask
[Idx
]);
20899 return DAG
.getVectorShuffle(Splat
->getValueType(0), SDLoc(Splat
),
20900 Splat
->getOperand(0), Splat
->getOperand(1),
20904 /// Combine shuffle of shuffle of the form:
20905 /// shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X
20906 static SDValue
formSplatFromShuffles(ShuffleVectorSDNode
*OuterShuf
,
20907 SelectionDAG
&DAG
) {
20908 if (!OuterShuf
->getOperand(1).isUndef())
20910 auto *InnerShuf
= dyn_cast
<ShuffleVectorSDNode
>(OuterShuf
->getOperand(0));
20911 if (!InnerShuf
|| !InnerShuf
->getOperand(1).isUndef())
20914 ArrayRef
<int> OuterMask
= OuterShuf
->getMask();
20915 ArrayRef
<int> InnerMask
= InnerShuf
->getMask();
20916 unsigned NumElts
= OuterMask
.size();
20917 assert(NumElts
== InnerMask
.size() && "Mask length mismatch");
20918 SmallVector
<int, 32> CombinedMask(NumElts
, -1);
20919 int SplatIndex
= -1;
20920 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
20921 // Undef lanes remain undef.
20922 int OuterMaskElt
= OuterMask
[i
];
20923 if (OuterMaskElt
== -1)
20926 // Peek through the shuffle masks to get the underlying source element.
20927 int InnerMaskElt
= InnerMask
[OuterMaskElt
];
20928 if (InnerMaskElt
== -1)
20931 // Initialize the splatted element.
20932 if (SplatIndex
== -1)
20933 SplatIndex
= InnerMaskElt
;
20935 // Non-matching index - this is not a splat.
20936 if (SplatIndex
!= InnerMaskElt
)
20939 CombinedMask
[i
] = InnerMaskElt
;
20941 assert((all_of(CombinedMask
, [](int M
) { return M
== -1; }) ||
20942 getSplatIndex(CombinedMask
) != -1) &&
20943 "Expected a splat mask");
20945 // TODO: The transform may be a win even if the mask is not legal.
20946 EVT VT
= OuterShuf
->getValueType(0);
20947 assert(VT
== InnerShuf
->getValueType(0) && "Expected matching shuffle types");
20948 if (!DAG
.getTargetLoweringInfo().isShuffleMaskLegal(CombinedMask
, VT
))
20951 return DAG
.getVectorShuffle(VT
, SDLoc(OuterShuf
), InnerShuf
->getOperand(0),
20952 InnerShuf
->getOperand(1), CombinedMask
);
20955 /// If the shuffle mask is taking exactly one element from the first vector
20956 /// operand and passing through all other elements from the second vector
20957 /// operand, return the index of the mask element that is choosing an element
20958 /// from the first operand. Otherwise, return -1.
20959 static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef
<int> Mask
) {
20960 int MaskSize
= Mask
.size();
20961 int EltFromOp0
= -1;
20962 // TODO: This does not match if there are undef elements in the shuffle mask.
20963 // Should we ignore undefs in the shuffle mask instead? The trade-off is
20964 // removing an instruction (a shuffle), but losing the knowledge that some
20965 // vector lanes are not needed.
20966 for (int i
= 0; i
!= MaskSize
; ++i
) {
20967 if (Mask
[i
] >= 0 && Mask
[i
] < MaskSize
) {
20968 // We're looking for a shuffle of exactly one element from operand 0.
20969 if (EltFromOp0
!= -1)
20972 } else if (Mask
[i
] != i
+ MaskSize
) {
20973 // Nothing from operand 1 can change lanes.
20980 /// If a shuffle inserts exactly one element from a source vector operand into
20981 /// another vector operand and we can access the specified element as a scalar,
20982 /// then we can eliminate the shuffle.
20983 static SDValue
replaceShuffleOfInsert(ShuffleVectorSDNode
*Shuf
,
20984 SelectionDAG
&DAG
) {
20985 // First, check if we are taking one element of a vector and shuffling that
20986 // element into another vector.
20987 ArrayRef
<int> Mask
= Shuf
->getMask();
20988 SmallVector
<int, 16> CommutedMask(Mask
.begin(), Mask
.end());
20989 SDValue Op0
= Shuf
->getOperand(0);
20990 SDValue Op1
= Shuf
->getOperand(1);
20991 int ShufOp0Index
= getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask
);
20992 if (ShufOp0Index
== -1) {
20993 // Commute mask and check again.
20994 ShuffleVectorSDNode::commuteMask(CommutedMask
);
20995 ShufOp0Index
= getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask
);
20996 if (ShufOp0Index
== -1)
20998 // Commute operands to match the commuted shuffle mask.
20999 std::swap(Op0
, Op1
);
21000 Mask
= CommutedMask
;
21003 // The shuffle inserts exactly one element from operand 0 into operand 1.
21004 // Now see if we can access that element as a scalar via a real insert element
21006 // TODO: We can try harder to locate the element as a scalar. Examples: it
21007 // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant.
21008 assert(Mask
[ShufOp0Index
] >= 0 && Mask
[ShufOp0Index
] < (int)Mask
.size() &&
21009 "Shuffle mask value must be from operand 0");
21010 if (Op0
.getOpcode() != ISD::INSERT_VECTOR_ELT
)
21013 auto *InsIndexC
= dyn_cast
<ConstantSDNode
>(Op0
.getOperand(2));
21014 if (!InsIndexC
|| InsIndexC
->getSExtValue() != Mask
[ShufOp0Index
])
21017 // There's an existing insertelement with constant insertion index, so we
21018 // don't need to check the legality/profitability of a replacement operation
21019 // that differs at most in the constant value. The target should be able to
21020 // lower any of those in a similar way. If not, legalization will expand this
21021 // to a scalar-to-vector plus shuffle.
21023 // Note that the shuffle may move the scalar from the position that the insert
21024 // element used. Therefore, our new insert element occurs at the shuffle's
21025 // mask index value, not the insert's index value.
21026 // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C'
21027 SDValue NewInsIndex
= DAG
.getVectorIdxConstant(ShufOp0Index
, SDLoc(Shuf
));
21028 return DAG
.getNode(ISD::INSERT_VECTOR_ELT
, SDLoc(Shuf
), Op0
.getValueType(),
21029 Op1
, Op0
.getOperand(1), NewInsIndex
);
21032 /// If we have a unary shuffle of a shuffle, see if it can be folded away
21033 /// completely. This has the potential to lose undef knowledge because the first
21034 /// shuffle may not have an undef mask element where the second one does. So
21035 /// only call this after doing simplifications based on demanded elements.
21036 static SDValue
simplifyShuffleOfShuffle(ShuffleVectorSDNode
*Shuf
) {
21037 // shuf (shuf0 X, Y, Mask0), undef, Mask
21038 auto *Shuf0
= dyn_cast
<ShuffleVectorSDNode
>(Shuf
->getOperand(0));
21039 if (!Shuf0
|| !Shuf
->getOperand(1).isUndef())
21042 ArrayRef
<int> Mask
= Shuf
->getMask();
21043 ArrayRef
<int> Mask0
= Shuf0
->getMask();
21044 for (int i
= 0, e
= (int)Mask
.size(); i
!= e
; ++i
) {
21045 // Ignore undef elements.
21048 assert(Mask
[i
] >= 0 && Mask
[i
] < e
&& "Unexpected shuffle mask value");
21050 // Is the element of the shuffle operand chosen by this shuffle the same as
21051 // the element chosen by the shuffle operand itself?
21052 if (Mask0
[Mask
[i
]] != Mask0
[i
])
21055 // Every element of this shuffle is identical to the result of the previous
21056 // shuffle, so we can replace this value.
21057 return Shuf
->getOperand(0);
21060 SDValue
DAGCombiner::visitVECTOR_SHUFFLE(SDNode
*N
) {
21061 EVT VT
= N
->getValueType(0);
21062 unsigned NumElts
= VT
.getVectorNumElements();
21064 SDValue N0
= N
->getOperand(0);
21065 SDValue N1
= N
->getOperand(1);
21067 assert(N0
.getValueType() == VT
&& "Vector shuffle must be normalized in DAG");
21069 // Canonicalize shuffle undef, undef -> undef
21070 if (N0
.isUndef() && N1
.isUndef())
21071 return DAG
.getUNDEF(VT
);
21073 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
21075 // Canonicalize shuffle v, v -> v, undef
21077 SmallVector
<int, 8> NewMask
;
21078 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
21079 int Idx
= SVN
->getMaskElt(i
);
21080 if (Idx
>= (int)NumElts
) Idx
-= NumElts
;
21081 NewMask
.push_back(Idx
);
21083 return DAG
.getVectorShuffle(VT
, SDLoc(N
), N0
, DAG
.getUNDEF(VT
), NewMask
);
21086 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
21088 return DAG
.getCommutedVectorShuffle(*SVN
);
21090 // Remove references to rhs if it is undef
21091 if (N1
.isUndef()) {
21092 bool Changed
= false;
21093 SmallVector
<int, 8> NewMask
;
21094 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
21095 int Idx
= SVN
->getMaskElt(i
);
21096 if (Idx
>= (int)NumElts
) {
21100 NewMask
.push_back(Idx
);
21103 return DAG
.getVectorShuffle(VT
, SDLoc(N
), N0
, N1
, NewMask
);
21106 if (SDValue InsElt
= replaceShuffleOfInsert(SVN
, DAG
))
21109 // A shuffle of a single vector that is a splatted value can always be folded.
21110 if (SDValue V
= combineShuffleOfSplatVal(SVN
, DAG
))
21113 if (SDValue V
= formSplatFromShuffles(SVN
, DAG
))
21116 // If it is a splat, check if the argument vector is another splat or a
21118 if (SVN
->isSplat() && SVN
->getSplatIndex() < (int)NumElts
) {
21119 int SplatIndex
= SVN
->getSplatIndex();
21120 if (N0
.hasOneUse() && TLI
.isExtractVecEltCheap(VT
, SplatIndex
) &&
21121 TLI
.isBinOp(N0
.getOpcode()) && N0
.getNode()->getNumValues() == 1) {
21122 // splat (vector_bo L, R), Index -->
21123 // splat (scalar_bo (extelt L, Index), (extelt R, Index))
21124 SDValue L
= N0
.getOperand(0), R
= N0
.getOperand(1);
21126 EVT EltVT
= VT
.getScalarType();
21127 SDValue Index
= DAG
.getVectorIdxConstant(SplatIndex
, DL
);
21128 SDValue ExtL
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, L
, Index
);
21129 SDValue ExtR
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, R
, Index
);
21130 SDValue NewBO
= DAG
.getNode(N0
.getOpcode(), DL
, EltVT
, ExtL
, ExtR
,
21131 N0
.getNode()->getFlags());
21132 SDValue Insert
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, DL
, VT
, NewBO
);
21133 SmallVector
<int, 16> ZeroMask(VT
.getVectorNumElements(), 0);
21134 return DAG
.getVectorShuffle(VT
, DL
, Insert
, DAG
.getUNDEF(VT
), ZeroMask
);
21137 // If this is a bit convert that changes the element type of the vector but
21138 // not the number of vector elements, look through it. Be careful not to
21139 // look though conversions that change things like v4f32 to v2f64.
21140 SDNode
*V
= N0
.getNode();
21141 if (V
->getOpcode() == ISD::BITCAST
) {
21142 SDValue ConvInput
= V
->getOperand(0);
21143 if (ConvInput
.getValueType().isVector() &&
21144 ConvInput
.getValueType().getVectorNumElements() == NumElts
)
21145 V
= ConvInput
.getNode();
21148 if (V
->getOpcode() == ISD::BUILD_VECTOR
) {
21149 assert(V
->getNumOperands() == NumElts
&&
21150 "BUILD_VECTOR has wrong number of operands");
21152 bool AllSame
= true;
21153 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
21154 if (!V
->getOperand(i
).isUndef()) {
21155 Base
= V
->getOperand(i
);
21159 // Splat of <u, u, u, u>, return <u, u, u, u>
21160 if (!Base
.getNode())
21162 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
21163 if (V
->getOperand(i
) != Base
) {
21168 // Splat of <x, x, x, x>, return <x, x, x, x>
21172 // Canonicalize any other splat as a build_vector.
21173 SDValue Splatted
= V
->getOperand(SplatIndex
);
21174 SmallVector
<SDValue
, 8> Ops(NumElts
, Splatted
);
21175 SDValue NewBV
= DAG
.getBuildVector(V
->getValueType(0), SDLoc(N
), Ops
);
21177 // We may have jumped through bitcasts, so the type of the
21178 // BUILD_VECTOR may not match the type of the shuffle.
21179 if (V
->getValueType(0) != VT
)
21180 NewBV
= DAG
.getBitcast(VT
, NewBV
);
21185 // Simplify source operands based on shuffle mask.
21186 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
21187 return SDValue(N
, 0);
21189 // This is intentionally placed after demanded elements simplification because
21190 // it could eliminate knowledge of undef elements created by this shuffle.
21191 if (SDValue ShufOp
= simplifyShuffleOfShuffle(SVN
))
21194 // Match shuffles that can be converted to any_vector_extend_in_reg.
21195 if (SDValue V
= combineShuffleToVectorExtend(SVN
, DAG
, TLI
, LegalOperations
))
21198 // Combine "truncate_vector_in_reg" style shuffles.
21199 if (SDValue V
= combineTruncationShuffle(SVN
, DAG
))
21202 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&&
21203 Level
< AfterLegalizeVectorOps
&&
21205 (N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
21206 N0
.getOperand(0).getValueType() == N1
.getOperand(0).getValueType()))) {
21207 if (SDValue V
= partitionShuffleOfConcats(N
, DAG
))
21211 // A shuffle of a concat of the same narrow vector can be reduced to use
21212 // only low-half elements of a concat with undef:
21213 // shuf (concat X, X), undef, Mask --> shuf (concat X, undef), undef, Mask'
21214 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&& N1
.isUndef() &&
21215 N0
.getNumOperands() == 2 &&
21216 N0
.getOperand(0) == N0
.getOperand(1)) {
21217 int HalfNumElts
= (int)NumElts
/ 2;
21218 SmallVector
<int, 8> NewMask
;
21219 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
21220 int Idx
= SVN
->getMaskElt(i
);
21221 if (Idx
>= HalfNumElts
) {
21222 assert(Idx
< (int)NumElts
&& "Shuffle mask chooses undef op");
21223 Idx
-= HalfNumElts
;
21225 NewMask
.push_back(Idx
);
21227 if (TLI
.isShuffleMaskLegal(NewMask
, VT
)) {
21228 SDValue UndefVec
= DAG
.getUNDEF(N0
.getOperand(0).getValueType());
21229 SDValue NewCat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
,
21230 N0
.getOperand(0), UndefVec
);
21231 return DAG
.getVectorShuffle(VT
, SDLoc(N
), NewCat
, N1
, NewMask
);
21235 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
21236 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
21237 if (Level
< AfterLegalizeDAG
&& TLI
.isTypeLegal(VT
))
21238 if (SDValue Res
= combineShuffleOfScalars(SVN
, DAG
, TLI
))
21241 // If this shuffle only has a single input that is a bitcasted shuffle,
21242 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output
21243 // back to their original types.
21244 if (N0
.getOpcode() == ISD::BITCAST
&& N0
.hasOneUse() &&
21245 N1
.isUndef() && Level
< AfterLegalizeVectorOps
&&
21246 TLI
.isTypeLegal(VT
)) {
21248 SDValue BC0
= peekThroughOneUseBitcasts(N0
);
21249 if (BC0
.getOpcode() == ISD::VECTOR_SHUFFLE
&& BC0
.hasOneUse()) {
21250 EVT SVT
= VT
.getScalarType();
21251 EVT InnerVT
= BC0
->getValueType(0);
21252 EVT InnerSVT
= InnerVT
.getScalarType();
21254 // Determine which shuffle works with the smaller scalar type.
21255 EVT ScaleVT
= SVT
.bitsLT(InnerSVT
) ? VT
: InnerVT
;
21256 EVT ScaleSVT
= ScaleVT
.getScalarType();
21258 if (TLI
.isTypeLegal(ScaleVT
) &&
21259 0 == (InnerSVT
.getSizeInBits() % ScaleSVT
.getSizeInBits()) &&
21260 0 == (SVT
.getSizeInBits() % ScaleSVT
.getSizeInBits())) {
21261 int InnerScale
= InnerSVT
.getSizeInBits() / ScaleSVT
.getSizeInBits();
21262 int OuterScale
= SVT
.getSizeInBits() / ScaleSVT
.getSizeInBits();
21264 // Scale the shuffle masks to the smaller scalar type.
21265 ShuffleVectorSDNode
*InnerSVN
= cast
<ShuffleVectorSDNode
>(BC0
);
21266 SmallVector
<int, 8> InnerMask
;
21267 SmallVector
<int, 8> OuterMask
;
21268 narrowShuffleMaskElts(InnerScale
, InnerSVN
->getMask(), InnerMask
);
21269 narrowShuffleMaskElts(OuterScale
, SVN
->getMask(), OuterMask
);
21271 // Merge the shuffle masks.
21272 SmallVector
<int, 8> NewMask
;
21273 for (int M
: OuterMask
)
21274 NewMask
.push_back(M
< 0 ? -1 : InnerMask
[M
]);
21276 // Test for shuffle mask legality over both commutations.
21277 SDValue SV0
= BC0
->getOperand(0);
21278 SDValue SV1
= BC0
->getOperand(1);
21279 bool LegalMask
= TLI
.isShuffleMaskLegal(NewMask
, ScaleVT
);
21281 std::swap(SV0
, SV1
);
21282 ShuffleVectorSDNode::commuteMask(NewMask
);
21283 LegalMask
= TLI
.isShuffleMaskLegal(NewMask
, ScaleVT
);
21287 SV0
= DAG
.getBitcast(ScaleVT
, SV0
);
21288 SV1
= DAG
.getBitcast(ScaleVT
, SV1
);
21289 return DAG
.getBitcast(
21290 VT
, DAG
.getVectorShuffle(ScaleVT
, SDLoc(N
), SV0
, SV1
, NewMask
));
21296 // Compute the combined shuffle mask for a shuffle with SV0 as the first
21297 // operand, and SV1 as the second operand.
21298 // i.e. Merge SVN(OtherSVN, N1) -> shuffle(SV0, SV1, Mask) iff Commute = false
21299 // Merge SVN(N1, OtherSVN) -> shuffle(SV0, SV1, Mask') iff Commute = true
21300 auto MergeInnerShuffle
=
21301 [NumElts
, &VT
](bool Commute
, ShuffleVectorSDNode
*SVN
,
21302 ShuffleVectorSDNode
*OtherSVN
, SDValue N1
,
21303 const TargetLowering
&TLI
, SDValue
&SV0
, SDValue
&SV1
,
21304 SmallVectorImpl
<int> &Mask
) -> bool {
21305 // Don't try to fold splats; they're likely to simplify somehow, or they
21307 if (OtherSVN
->isSplat())
21310 SV0
= SV1
= SDValue();
21313 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
21314 int Idx
= SVN
->getMaskElt(i
);
21316 // Propagate Undef.
21317 Mask
.push_back(Idx
);
21322 Idx
= (Idx
< (int)NumElts
) ? (Idx
+ NumElts
) : (Idx
- NumElts
);
21324 SDValue CurrentVec
;
21325 if (Idx
< (int)NumElts
) {
21326 // This shuffle index refers to the inner shuffle N0. Lookup the inner
21327 // shuffle mask to identify which vector is actually referenced.
21328 Idx
= OtherSVN
->getMaskElt(Idx
);
21330 // Propagate Undef.
21331 Mask
.push_back(Idx
);
21334 CurrentVec
= (Idx
< (int)NumElts
) ? OtherSVN
->getOperand(0)
21335 : OtherSVN
->getOperand(1);
21337 // This shuffle index references an element within N1.
21341 // Simple case where 'CurrentVec' is UNDEF.
21342 if (CurrentVec
.isUndef()) {
21343 Mask
.push_back(-1);
21347 // Canonicalize the shuffle index. We don't know yet if CurrentVec
21348 // will be the first or second operand of the combined shuffle.
21349 Idx
= Idx
% NumElts
;
21350 if (!SV0
.getNode() || SV0
== CurrentVec
) {
21351 // Ok. CurrentVec is the left hand side.
21352 // Update the mask accordingly.
21354 Mask
.push_back(Idx
);
21357 if (!SV1
.getNode() || SV1
== CurrentVec
) {
21358 // Ok. CurrentVec is the right hand side.
21359 // Update the mask accordingly.
21361 Mask
.push_back(Idx
+ NumElts
);
21365 // Last chance - see if the vector is another shuffle and if it
21366 // uses one of the existing candidate shuffle ops.
21367 if (auto *CurrentSVN
= dyn_cast
<ShuffleVectorSDNode
>(CurrentVec
)) {
21368 int InnerIdx
= CurrentSVN
->getMaskElt(Idx
);
21369 if (InnerIdx
< 0) {
21370 Mask
.push_back(-1);
21373 SDValue InnerVec
= (InnerIdx
< (int)NumElts
)
21374 ? CurrentSVN
->getOperand(0)
21375 : CurrentSVN
->getOperand(1);
21376 if (InnerVec
.isUndef()) {
21377 Mask
.push_back(-1);
21380 InnerIdx
%= NumElts
;
21381 if (InnerVec
== SV0
) {
21382 Mask
.push_back(InnerIdx
);
21385 if (InnerVec
== SV1
) {
21386 Mask
.push_back(InnerIdx
+ NumElts
);
21391 // Bail out if we cannot convert the shuffle pair into a single shuffle.
21395 if (llvm::all_of(Mask
, [](int M
) { return M
< 0; }))
21398 // Avoid introducing shuffles with illegal mask.
21399 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
21400 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
21401 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
21402 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
21403 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
21404 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
21405 if (TLI
.isShuffleMaskLegal(Mask
, VT
))
21408 std::swap(SV0
, SV1
);
21409 ShuffleVectorSDNode::commuteMask(Mask
);
21410 return TLI
.isShuffleMaskLegal(Mask
, VT
);
21413 if (Level
< AfterLegalizeDAG
&& TLI
.isTypeLegal(VT
)) {
21414 // Canonicalize shuffles according to rules:
21415 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
21416 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
21417 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
21418 if (N1
.getOpcode() == ISD::VECTOR_SHUFFLE
&&
21419 N0
.getOpcode() != ISD::VECTOR_SHUFFLE
) {
21420 // The incoming shuffle must be of the same type as the result of the
21421 // current shuffle.
21422 assert(N1
->getOperand(0).getValueType() == VT
&&
21423 "Shuffle types don't match");
21425 SDValue SV0
= N1
->getOperand(0);
21426 SDValue SV1
= N1
->getOperand(1);
21427 bool HasSameOp0
= N0
== SV0
;
21428 bool IsSV1Undef
= SV1
.isUndef();
21429 if (HasSameOp0
|| IsSV1Undef
|| N0
== SV1
)
21430 // Commute the operands of this shuffle so merging below will trigger.
21431 return DAG
.getCommutedVectorShuffle(*SVN
);
21434 // Canonicalize splat shuffles to the RHS to improve merging below.
21435 // shuffle(splat(A,u), shuffle(C,D)) -> shuffle'(shuffle(C,D), splat(A,u))
21436 if (N0
.getOpcode() == ISD::VECTOR_SHUFFLE
&&
21437 N1
.getOpcode() == ISD::VECTOR_SHUFFLE
&&
21438 cast
<ShuffleVectorSDNode
>(N0
)->isSplat() &&
21439 !cast
<ShuffleVectorSDNode
>(N1
)->isSplat()) {
21440 return DAG
.getCommutedVectorShuffle(*SVN
);
21443 // Try to fold according to rules:
21444 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
21445 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
21446 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
21447 // Don't try to fold shuffles with illegal type.
21448 // Only fold if this shuffle is the only user of the other shuffle.
21449 // Try matching shuffle(C,shuffle(A,B)) commutted patterns as well.
21450 for (int i
= 0; i
!= 2; ++i
) {
21451 if (N
->getOperand(i
).getOpcode() == ISD::VECTOR_SHUFFLE
&&
21452 N
->isOnlyUserOf(N
->getOperand(i
).getNode())) {
21453 // The incoming shuffle must be of the same type as the result of the
21454 // current shuffle.
21455 auto *OtherSV
= cast
<ShuffleVectorSDNode
>(N
->getOperand(i
));
21456 assert(OtherSV
->getOperand(0).getValueType() == VT
&&
21457 "Shuffle types don't match");
21460 SmallVector
<int, 4> Mask
;
21461 if (MergeInnerShuffle(i
!= 0, SVN
, OtherSV
, N
->getOperand(1 - i
), TLI
,
21463 // Check if all indices in Mask are Undef. In case, propagate Undef.
21464 if (llvm::all_of(Mask
, [](int M
) { return M
< 0; }))
21465 return DAG
.getUNDEF(VT
);
21467 return DAG
.getVectorShuffle(VT
, SDLoc(N
),
21468 SV0
? SV0
: DAG
.getUNDEF(VT
),
21469 SV1
? SV1
: DAG
.getUNDEF(VT
), Mask
);
21474 // Merge shuffles through binops if we are able to merge it with at least
21475 // one other shuffles.
21476 // shuffle(bop(shuffle(x,y),shuffle(z,w)),undef)
21477 // shuffle(bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d)))
21478 unsigned SrcOpcode
= N0
.getOpcode();
21479 if (TLI
.isBinOp(SrcOpcode
) && N
->isOnlyUserOf(N0
.getNode()) &&
21481 (SrcOpcode
== N1
.getOpcode() && N
->isOnlyUserOf(N1
.getNode())))) {
21482 // Get binop source ops, or just pass on the undef.
21483 SDValue Op00
= N0
.getOperand(0);
21484 SDValue Op01
= N0
.getOperand(1);
21485 SDValue Op10
= N1
.isUndef() ? N1
: N1
.getOperand(0);
21486 SDValue Op11
= N1
.isUndef() ? N1
: N1
.getOperand(1);
21487 // TODO: We might be able to relax the VT check but we don't currently
21488 // have any isBinOp() that has different result/ops VTs so play safe until
21489 // we have test coverage.
21490 if (Op00
.getValueType() == VT
&& Op10
.getValueType() == VT
&&
21491 Op01
.getValueType() == VT
&& Op11
.getValueType() == VT
&&
21492 (Op00
.getOpcode() == ISD::VECTOR_SHUFFLE
||
21493 Op10
.getOpcode() == ISD::VECTOR_SHUFFLE
||
21494 Op01
.getOpcode() == ISD::VECTOR_SHUFFLE
||
21495 Op11
.getOpcode() == ISD::VECTOR_SHUFFLE
)) {
21496 auto CanMergeInnerShuffle
= [&](SDValue
&SV0
, SDValue
&SV1
,
21497 SmallVectorImpl
<int> &Mask
, bool LeftOp
,
21499 SDValue InnerN
= Commute
? N1
: N0
;
21500 SDValue Op0
= LeftOp
? Op00
: Op01
;
21501 SDValue Op1
= LeftOp
? Op10
: Op11
;
21503 std::swap(Op0
, Op1
);
21504 // Only accept the merged shuffle if we don't introduce undef elements,
21505 // or the inner shuffle already contained undef elements.
21506 auto *SVN0
= dyn_cast
<ShuffleVectorSDNode
>(Op0
);
21507 return SVN0
&& InnerN
->isOnlyUserOf(SVN0
) &&
21508 MergeInnerShuffle(Commute
, SVN
, SVN0
, Op1
, TLI
, SV0
, SV1
,
21510 (llvm::any_of(SVN0
->getMask(), [](int M
) { return M
< 0; }) ||
21511 llvm::none_of(Mask
, [](int M
) { return M
< 0; }));
21514 // Ensure we don't increase the number of shuffles - we must merge a
21515 // shuffle from at least one of the LHS and RHS ops.
21516 bool MergedLeft
= false;
21517 SDValue LeftSV0
, LeftSV1
;
21518 SmallVector
<int, 4> LeftMask
;
21519 if (CanMergeInnerShuffle(LeftSV0
, LeftSV1
, LeftMask
, true, false) ||
21520 CanMergeInnerShuffle(LeftSV0
, LeftSV1
, LeftMask
, true, true)) {
21523 LeftMask
.assign(SVN
->getMask().begin(), SVN
->getMask().end());
21524 LeftSV0
= Op00
, LeftSV1
= Op10
;
21527 bool MergedRight
= false;
21528 SDValue RightSV0
, RightSV1
;
21529 SmallVector
<int, 4> RightMask
;
21530 if (CanMergeInnerShuffle(RightSV0
, RightSV1
, RightMask
, false, false) ||
21531 CanMergeInnerShuffle(RightSV0
, RightSV1
, RightMask
, false, true)) {
21532 MergedRight
= true;
21534 RightMask
.assign(SVN
->getMask().begin(), SVN
->getMask().end());
21535 RightSV0
= Op01
, RightSV1
= Op11
;
21538 if (MergedLeft
|| MergedRight
) {
21540 SDValue LHS
= DAG
.getVectorShuffle(
21541 VT
, DL
, LeftSV0
? LeftSV0
: DAG
.getUNDEF(VT
),
21542 LeftSV1
? LeftSV1
: DAG
.getUNDEF(VT
), LeftMask
);
21543 SDValue RHS
= DAG
.getVectorShuffle(
21544 VT
, DL
, RightSV0
? RightSV0
: DAG
.getUNDEF(VT
),
21545 RightSV1
? RightSV1
: DAG
.getUNDEF(VT
), RightMask
);
21546 return DAG
.getNode(SrcOpcode
, DL
, VT
, LHS
, RHS
);
21552 if (SDValue V
= foldShuffleOfConcatUndefs(SVN
, DAG
))
21558 SDValue
DAGCombiner::visitSCALAR_TO_VECTOR(SDNode
*N
) {
21559 SDValue InVal
= N
->getOperand(0);
21560 EVT VT
= N
->getValueType(0);
21562 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
21563 // with a VECTOR_SHUFFLE and possible truncate.
21564 if (InVal
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
21565 VT
.isFixedLengthVector() &&
21566 InVal
->getOperand(0).getValueType().isFixedLengthVector()) {
21567 SDValue InVec
= InVal
->getOperand(0);
21568 SDValue EltNo
= InVal
->getOperand(1);
21569 auto InVecT
= InVec
.getValueType();
21570 if (ConstantSDNode
*C0
= dyn_cast
<ConstantSDNode
>(EltNo
)) {
21571 SmallVector
<int, 8> NewMask(InVecT
.getVectorNumElements(), -1);
21572 int Elt
= C0
->getZExtValue();
21574 // If we have an implict truncate do truncate here as long as it's legal.
21575 // if it's not legal, this should
21576 if (VT
.getScalarType() != InVal
.getValueType() &&
21577 InVal
.getValueType().isScalarInteger() &&
21578 isTypeLegal(VT
.getScalarType())) {
21580 DAG
.getNode(ISD::TRUNCATE
, SDLoc(InVal
), VT
.getScalarType(), InVal
);
21581 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, SDLoc(N
), VT
, Val
);
21583 if (VT
.getScalarType() == InVecT
.getScalarType() &&
21584 VT
.getVectorNumElements() <= InVecT
.getVectorNumElements()) {
21585 SDValue LegalShuffle
=
21586 TLI
.buildLegalVectorShuffle(InVecT
, SDLoc(N
), InVec
,
21587 DAG
.getUNDEF(InVecT
), NewMask
, DAG
);
21588 if (LegalShuffle
) {
21589 // If the initial vector is the correct size this shuffle is a
21592 return LegalShuffle
;
21593 // If not we must truncate the vector.
21594 if (VT
.getVectorNumElements() != InVecT
.getVectorNumElements()) {
21595 SDValue ZeroIdx
= DAG
.getVectorIdxConstant(0, SDLoc(N
));
21596 EVT SubVT
= EVT::getVectorVT(*DAG
.getContext(),
21597 InVecT
.getVectorElementType(),
21598 VT
.getVectorNumElements());
21599 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), SubVT
,
21600 LegalShuffle
, ZeroIdx
);
21610 SDValue
DAGCombiner::visitINSERT_SUBVECTOR(SDNode
*N
) {
21611 EVT VT
= N
->getValueType(0);
21612 SDValue N0
= N
->getOperand(0);
21613 SDValue N1
= N
->getOperand(1);
21614 SDValue N2
= N
->getOperand(2);
21615 uint64_t InsIdx
= N
->getConstantOperandVal(2);
21617 // If inserting an UNDEF, just return the original vector.
21621 // If this is an insert of an extracted vector into an undef vector, we can
21622 // just use the input to the extract.
21623 if (N0
.isUndef() && N1
.getOpcode() == ISD::EXTRACT_SUBVECTOR
&&
21624 N1
.getOperand(1) == N2
&& N1
.getOperand(0).getValueType() == VT
)
21625 return N1
.getOperand(0);
21627 // If we are inserting a bitcast value into an undef, with the same
21628 // number of elements, just use the bitcast input of the extract.
21629 // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 ->
21630 // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2)
21631 if (N0
.isUndef() && N1
.getOpcode() == ISD::BITCAST
&&
21632 N1
.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR
&&
21633 N1
.getOperand(0).getOperand(1) == N2
&&
21634 N1
.getOperand(0).getOperand(0).getValueType().getVectorElementCount() ==
21635 VT
.getVectorElementCount() &&
21636 N1
.getOperand(0).getOperand(0).getValueType().getSizeInBits() ==
21637 VT
.getSizeInBits()) {
21638 return DAG
.getBitcast(VT
, N1
.getOperand(0).getOperand(0));
21641 // If both N1 and N2 are bitcast values on which insert_subvector
21642 // would makes sense, pull the bitcast through.
21643 // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 ->
21644 // BITCAST (INSERT_SUBVECTOR N0 N1 N2)
21645 if (N0
.getOpcode() == ISD::BITCAST
&& N1
.getOpcode() == ISD::BITCAST
) {
21646 SDValue CN0
= N0
.getOperand(0);
21647 SDValue CN1
= N1
.getOperand(0);
21648 EVT CN0VT
= CN0
.getValueType();
21649 EVT CN1VT
= CN1
.getValueType();
21650 if (CN0VT
.isVector() && CN1VT
.isVector() &&
21651 CN0VT
.getVectorElementType() == CN1VT
.getVectorElementType() &&
21652 CN0VT
.getVectorElementCount() == VT
.getVectorElementCount()) {
21653 SDValue NewINSERT
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
),
21654 CN0
.getValueType(), CN0
, CN1
, N2
);
21655 return DAG
.getBitcast(VT
, NewINSERT
);
21659 // Combine INSERT_SUBVECTORs where we are inserting to the same index.
21660 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx )
21661 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
21662 if (N0
.getOpcode() == ISD::INSERT_SUBVECTOR
&&
21663 N0
.getOperand(1).getValueType() == N1
.getValueType() &&
21664 N0
.getOperand(2) == N2
)
21665 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
), VT
, N0
.getOperand(0),
21668 // Eliminate an intermediate insert into an undef vector:
21669 // insert_subvector undef, (insert_subvector undef, X, 0), N2 -->
21670 // insert_subvector undef, X, N2
21671 if (N0
.isUndef() && N1
.getOpcode() == ISD::INSERT_SUBVECTOR
&&
21672 N1
.getOperand(0).isUndef() && isNullConstant(N1
.getOperand(2)))
21673 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
), VT
, N0
,
21674 N1
.getOperand(1), N2
);
21676 // Push subvector bitcasts to the output, adjusting the index as we go.
21677 // insert_subvector(bitcast(v), bitcast(s), c1)
21678 // -> bitcast(insert_subvector(v, s, c2))
21679 if ((N0
.isUndef() || N0
.getOpcode() == ISD::BITCAST
) &&
21680 N1
.getOpcode() == ISD::BITCAST
) {
21681 SDValue N0Src
= peekThroughBitcasts(N0
);
21682 SDValue N1Src
= peekThroughBitcasts(N1
);
21683 EVT N0SrcSVT
= N0Src
.getValueType().getScalarType();
21684 EVT N1SrcSVT
= N1Src
.getValueType().getScalarType();
21685 if ((N0
.isUndef() || N0SrcSVT
== N1SrcSVT
) &&
21686 N0Src
.getValueType().isVector() && N1Src
.getValueType().isVector()) {
21690 LLVMContext
&Ctx
= *DAG
.getContext();
21691 ElementCount NumElts
= VT
.getVectorElementCount();
21692 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
21693 if ((EltSizeInBits
% N1SrcSVT
.getSizeInBits()) == 0) {
21694 unsigned Scale
= EltSizeInBits
/ N1SrcSVT
.getSizeInBits();
21695 NewVT
= EVT::getVectorVT(Ctx
, N1SrcSVT
, NumElts
* Scale
);
21696 NewIdx
= DAG
.getVectorIdxConstant(InsIdx
* Scale
, DL
);
21697 } else if ((N1SrcSVT
.getSizeInBits() % EltSizeInBits
) == 0) {
21698 unsigned Scale
= N1SrcSVT
.getSizeInBits() / EltSizeInBits
;
21699 if (NumElts
.isKnownMultipleOf(Scale
) && (InsIdx
% Scale
) == 0) {
21700 NewVT
= EVT::getVectorVT(Ctx
, N1SrcSVT
,
21701 NumElts
.divideCoefficientBy(Scale
));
21702 NewIdx
= DAG
.getVectorIdxConstant(InsIdx
/ Scale
, DL
);
21705 if (NewIdx
&& hasOperation(ISD::INSERT_SUBVECTOR
, NewVT
)) {
21706 SDValue Res
= DAG
.getBitcast(NewVT
, N0Src
);
21707 Res
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, NewVT
, Res
, N1Src
, NewIdx
);
21708 return DAG
.getBitcast(VT
, Res
);
21713 // Canonicalize insert_subvector dag nodes.
21715 // (insert_subvector (insert_subvector A, Idx0), Idx1)
21716 // -> (insert_subvector (insert_subvector A, Idx1), Idx0)
21717 if (N0
.getOpcode() == ISD::INSERT_SUBVECTOR
&& N0
.hasOneUse() &&
21718 N1
.getValueType() == N0
.getOperand(1).getValueType()) {
21719 unsigned OtherIdx
= N0
.getConstantOperandVal(2);
21720 if (InsIdx
< OtherIdx
) {
21722 SDValue NewOp
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
), VT
,
21723 N0
.getOperand(0), N1
, N2
);
21724 AddToWorklist(NewOp
.getNode());
21725 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N0
.getNode()),
21726 VT
, NewOp
, N0
.getOperand(1), N0
.getOperand(2));
21730 // If the input vector is a concatenation, and the insert replaces
21731 // one of the pieces, we can optimize into a single concat_vectors.
21732 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&& N0
.hasOneUse() &&
21733 N0
.getOperand(0).getValueType() == N1
.getValueType() &&
21734 N0
.getOperand(0).getValueType().isScalableVector() ==
21735 N1
.getValueType().isScalableVector()) {
21736 unsigned Factor
= N1
.getValueType().getVectorMinNumElements();
21737 SmallVector
<SDValue
, 8> Ops(N0
->op_begin(), N0
->op_end());
21738 Ops
[InsIdx
/ Factor
] = N1
;
21739 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Ops
);
21742 // Simplify source operands based on insertion.
21743 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
21744 return SDValue(N
, 0);
21749 SDValue
DAGCombiner::visitFP_TO_FP16(SDNode
*N
) {
21750 SDValue N0
= N
->getOperand(0);
21752 // fold (fp_to_fp16 (fp16_to_fp op)) -> op
21753 if (N0
->getOpcode() == ISD::FP16_TO_FP
)
21754 return N0
->getOperand(0);
21759 SDValue
DAGCombiner::visitFP16_TO_FP(SDNode
*N
) {
21760 SDValue N0
= N
->getOperand(0);
21762 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op)
21763 if (!TLI
.shouldKeepZExtForFP16Conv() && N0
->getOpcode() == ISD::AND
) {
21764 ConstantSDNode
*AndConst
= getAsNonOpaqueConstant(N0
.getOperand(1));
21765 if (AndConst
&& AndConst
->getAPIntValue() == 0xffff) {
21766 return DAG
.getNode(ISD::FP16_TO_FP
, SDLoc(N
), N
->getValueType(0),
21774 SDValue
DAGCombiner::visitVECREDUCE(SDNode
*N
) {
21775 SDValue N0
= N
->getOperand(0);
21776 EVT VT
= N0
.getValueType();
21777 unsigned Opcode
= N
->getOpcode();
21779 // VECREDUCE over 1-element vector is just an extract.
21780 if (VT
.getVectorElementCount().isScalar()) {
21783 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, VT
.getVectorElementType(), N0
,
21784 DAG
.getVectorIdxConstant(0, dl
));
21785 if (Res
.getValueType() != N
->getValueType(0))
21786 Res
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, N
->getValueType(0), Res
);
21790 // On an boolean vector an and/or reduction is the same as a umin/umax
21791 // reduction. Convert them if the latter is legal while the former isn't.
21792 if (Opcode
== ISD::VECREDUCE_AND
|| Opcode
== ISD::VECREDUCE_OR
) {
21793 unsigned NewOpcode
= Opcode
== ISD::VECREDUCE_AND
21794 ? ISD::VECREDUCE_UMIN
: ISD::VECREDUCE_UMAX
;
21795 if (!TLI
.isOperationLegalOrCustom(Opcode
, VT
) &&
21796 TLI
.isOperationLegalOrCustom(NewOpcode
, VT
) &&
21797 DAG
.ComputeNumSignBits(N0
) == VT
.getScalarSizeInBits())
21798 return DAG
.getNode(NewOpcode
, SDLoc(N
), N
->getValueType(0), N0
);
21804 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
21805 /// with the destination vector and a zero vector.
21806 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
21807 /// vector_shuffle V, Zero, <0, 4, 2, 4>
21808 SDValue
DAGCombiner::XformToShuffleWithZero(SDNode
*N
) {
21809 assert(N
->getOpcode() == ISD::AND
&& "Unexpected opcode!");
21811 EVT VT
= N
->getValueType(0);
21812 SDValue LHS
= N
->getOperand(0);
21813 SDValue RHS
= peekThroughBitcasts(N
->getOperand(1));
21816 // Make sure we're not running after operation legalization where it
21817 // may have custom lowered the vector shuffles.
21818 if (LegalOperations
)
21821 if (RHS
.getOpcode() != ISD::BUILD_VECTOR
)
21824 EVT RVT
= RHS
.getValueType();
21825 unsigned NumElts
= RHS
.getNumOperands();
21827 // Attempt to create a valid clear mask, splitting the mask into
21828 // sub elements and checking to see if each is
21829 // all zeros or all ones - suitable for shuffle masking.
21830 auto BuildClearMask
= [&](int Split
) {
21831 int NumSubElts
= NumElts
* Split
;
21832 int NumSubBits
= RVT
.getScalarSizeInBits() / Split
;
21834 SmallVector
<int, 8> Indices
;
21835 for (int i
= 0; i
!= NumSubElts
; ++i
) {
21836 int EltIdx
= i
/ Split
;
21837 int SubIdx
= i
% Split
;
21838 SDValue Elt
= RHS
.getOperand(EltIdx
);
21839 // X & undef --> 0 (not undef). So this lane must be converted to choose
21840 // from the zero constant vector (same as if the element had all 0-bits).
21841 if (Elt
.isUndef()) {
21842 Indices
.push_back(i
+ NumSubElts
);
21847 if (isa
<ConstantSDNode
>(Elt
))
21848 Bits
= cast
<ConstantSDNode
>(Elt
)->getAPIntValue();
21849 else if (isa
<ConstantFPSDNode
>(Elt
))
21850 Bits
= cast
<ConstantFPSDNode
>(Elt
)->getValueAPF().bitcastToAPInt();
21854 // Extract the sub element from the constant bit mask.
21855 if (DAG
.getDataLayout().isBigEndian())
21856 Bits
= Bits
.extractBits(NumSubBits
, (Split
- SubIdx
- 1) * NumSubBits
);
21858 Bits
= Bits
.extractBits(NumSubBits
, SubIdx
* NumSubBits
);
21860 if (Bits
.isAllOnesValue())
21861 Indices
.push_back(i
);
21862 else if (Bits
== 0)
21863 Indices
.push_back(i
+ NumSubElts
);
21868 // Let's see if the target supports this vector_shuffle.
21869 EVT ClearSVT
= EVT::getIntegerVT(*DAG
.getContext(), NumSubBits
);
21870 EVT ClearVT
= EVT::getVectorVT(*DAG
.getContext(), ClearSVT
, NumSubElts
);
21871 if (!TLI
.isVectorClearMaskLegal(Indices
, ClearVT
))
21874 SDValue Zero
= DAG
.getConstant(0, DL
, ClearVT
);
21875 return DAG
.getBitcast(VT
, DAG
.getVectorShuffle(ClearVT
, DL
,
21876 DAG
.getBitcast(ClearVT
, LHS
),
21880 // Determine maximum split level (byte level masking).
21882 if (RVT
.getScalarSizeInBits() % 8 == 0)
21883 MaxSplit
= RVT
.getScalarSizeInBits() / 8;
21885 for (int Split
= 1; Split
<= MaxSplit
; ++Split
)
21886 if (RVT
.getScalarSizeInBits() % Split
== 0)
21887 if (SDValue S
= BuildClearMask(Split
))
21893 /// If a vector binop is performed on splat values, it may be profitable to
21894 /// extract, scalarize, and insert/splat.
21895 static SDValue
scalarizeBinOpOfSplats(SDNode
*N
, SelectionDAG
&DAG
) {
21896 SDValue N0
= N
->getOperand(0);
21897 SDValue N1
= N
->getOperand(1);
21898 unsigned Opcode
= N
->getOpcode();
21899 EVT VT
= N
->getValueType(0);
21900 EVT EltVT
= VT
.getVectorElementType();
21901 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
21903 // TODO: Remove/replace the extract cost check? If the elements are available
21904 // as scalars, then there may be no extract cost. Should we ask if
21905 // inserting a scalar back into a vector is cheap instead?
21906 int Index0
, Index1
;
21907 SDValue Src0
= DAG
.getSplatSourceVector(N0
, Index0
);
21908 SDValue Src1
= DAG
.getSplatSourceVector(N1
, Index1
);
21909 if (!Src0
|| !Src1
|| Index0
!= Index1
||
21910 Src0
.getValueType().getVectorElementType() != EltVT
||
21911 Src1
.getValueType().getVectorElementType() != EltVT
||
21912 !TLI
.isExtractVecEltCheap(VT
, Index0
) ||
21913 !TLI
.isOperationLegalOrCustom(Opcode
, EltVT
))
21917 SDValue IndexC
= DAG
.getVectorIdxConstant(Index0
, DL
);
21918 SDValue X
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, Src0
, IndexC
);
21919 SDValue Y
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, Src1
, IndexC
);
21920 SDValue ScalarBO
= DAG
.getNode(Opcode
, DL
, EltVT
, X
, Y
, N
->getFlags());
21922 // If all lanes but 1 are undefined, no need to splat the scalar result.
21923 // TODO: Keep track of undefs and use that info in the general case.
21924 if (N0
.getOpcode() == ISD::BUILD_VECTOR
&& N0
.getOpcode() == N1
.getOpcode() &&
21925 count_if(N0
->ops(), [](SDValue V
) { return !V
.isUndef(); }) == 1 &&
21926 count_if(N1
->ops(), [](SDValue V
) { return !V
.isUndef(); }) == 1) {
21927 // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) -->
21928 // build_vec ..undef, (bo X, Y), undef...
21929 SmallVector
<SDValue
, 8> Ops(VT
.getVectorNumElements(), DAG
.getUNDEF(EltVT
));
21930 Ops
[Index0
] = ScalarBO
;
21931 return DAG
.getBuildVector(VT
, DL
, Ops
);
21934 // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index
21935 SmallVector
<SDValue
, 8> Ops(VT
.getVectorNumElements(), ScalarBO
);
21936 return DAG
.getBuildVector(VT
, DL
, Ops
);
21939 /// Visit a binary vector operation, like ADD.
21940 SDValue
DAGCombiner::SimplifyVBinOp(SDNode
*N
) {
21941 assert(N
->getValueType(0).isVector() &&
21942 "SimplifyVBinOp only works on vectors!");
21944 SDValue LHS
= N
->getOperand(0);
21945 SDValue RHS
= N
->getOperand(1);
21946 SDValue Ops
[] = {LHS
, RHS
};
21947 EVT VT
= N
->getValueType(0);
21948 unsigned Opcode
= N
->getOpcode();
21949 SDNodeFlags Flags
= N
->getFlags();
21951 // See if we can constant fold the vector operation.
21952 if (SDValue Fold
= DAG
.FoldConstantVectorArithmetic(
21953 Opcode
, SDLoc(LHS
), LHS
.getValueType(), Ops
, N
->getFlags()))
21956 // Move unary shuffles with identical masks after a vector binop:
21957 // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask))
21958 // --> shuffle (VBinOp A, B), Undef, Mask
21959 // This does not require type legality checks because we are creating the
21960 // same types of operations that are in the original sequence. We do have to
21961 // restrict ops like integer div that have immediate UB (eg, div-by-zero)
21962 // though. This code is adapted from the identical transform in instcombine.
21963 if (Opcode
!= ISD::UDIV
&& Opcode
!= ISD::SDIV
&&
21964 Opcode
!= ISD::UREM
&& Opcode
!= ISD::SREM
&&
21965 Opcode
!= ISD::UDIVREM
&& Opcode
!= ISD::SDIVREM
) {
21966 auto *Shuf0
= dyn_cast
<ShuffleVectorSDNode
>(LHS
);
21967 auto *Shuf1
= dyn_cast
<ShuffleVectorSDNode
>(RHS
);
21968 if (Shuf0
&& Shuf1
&& Shuf0
->getMask().equals(Shuf1
->getMask()) &&
21969 LHS
.getOperand(1).isUndef() && RHS
.getOperand(1).isUndef() &&
21970 (LHS
.hasOneUse() || RHS
.hasOneUse() || LHS
== RHS
)) {
21972 SDValue NewBinOp
= DAG
.getNode(Opcode
, DL
, VT
, LHS
.getOperand(0),
21973 RHS
.getOperand(0), Flags
);
21974 SDValue UndefV
= LHS
.getOperand(1);
21975 return DAG
.getVectorShuffle(VT
, DL
, NewBinOp
, UndefV
, Shuf0
->getMask());
21978 // Try to sink a splat shuffle after a binop with a uniform constant.
21979 // This is limited to cases where neither the shuffle nor the constant have
21980 // undefined elements because that could be poison-unsafe or inhibit
21981 // demanded elements analysis. It is further limited to not change a splat
21982 // of an inserted scalar because that may be optimized better by
21983 // load-folding or other target-specific behaviors.
21984 if (isConstOrConstSplat(RHS
) && Shuf0
&& is_splat(Shuf0
->getMask()) &&
21985 Shuf0
->hasOneUse() && Shuf0
->getOperand(1).isUndef() &&
21986 Shuf0
->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT
) {
21987 // binop (splat X), (splat C) --> splat (binop X, C)
21989 SDValue X
= Shuf0
->getOperand(0);
21990 SDValue NewBinOp
= DAG
.getNode(Opcode
, DL
, VT
, X
, RHS
, Flags
);
21991 return DAG
.getVectorShuffle(VT
, DL
, NewBinOp
, DAG
.getUNDEF(VT
),
21994 if (isConstOrConstSplat(LHS
) && Shuf1
&& is_splat(Shuf1
->getMask()) &&
21995 Shuf1
->hasOneUse() && Shuf1
->getOperand(1).isUndef() &&
21996 Shuf1
->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT
) {
21997 // binop (splat C), (splat X) --> splat (binop C, X)
21999 SDValue X
= Shuf1
->getOperand(0);
22000 SDValue NewBinOp
= DAG
.getNode(Opcode
, DL
, VT
, LHS
, X
, Flags
);
22001 return DAG
.getVectorShuffle(VT
, DL
, NewBinOp
, DAG
.getUNDEF(VT
),
22006 // The following pattern is likely to emerge with vector reduction ops. Moving
22007 // the binary operation ahead of insertion may allow using a narrower vector
22008 // instruction that has better performance than the wide version of the op:
22009 // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z
22010 if (LHS
.getOpcode() == ISD::INSERT_SUBVECTOR
&& LHS
.getOperand(0).isUndef() &&
22011 RHS
.getOpcode() == ISD::INSERT_SUBVECTOR
&& RHS
.getOperand(0).isUndef() &&
22012 LHS
.getOperand(2) == RHS
.getOperand(2) &&
22013 (LHS
.hasOneUse() || RHS
.hasOneUse())) {
22014 SDValue X
= LHS
.getOperand(1);
22015 SDValue Y
= RHS
.getOperand(1);
22016 SDValue Z
= LHS
.getOperand(2);
22017 EVT NarrowVT
= X
.getValueType();
22018 if (NarrowVT
== Y
.getValueType() &&
22019 TLI
.isOperationLegalOrCustomOrPromote(Opcode
, NarrowVT
,
22020 LegalOperations
)) {
22021 // (binop undef, undef) may not return undef, so compute that result.
22024 DAG
.getNode(Opcode
, DL
, VT
, DAG
.getUNDEF(VT
), DAG
.getUNDEF(VT
));
22025 SDValue NarrowBO
= DAG
.getNode(Opcode
, DL
, NarrowVT
, X
, Y
);
22026 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, VT
, VecC
, NarrowBO
, Z
);
22030 // Make sure all but the first op are undef or constant.
22031 auto ConcatWithConstantOrUndef
= [](SDValue Concat
) {
22032 return Concat
.getOpcode() == ISD::CONCAT_VECTORS
&&
22033 all_of(drop_begin(Concat
->ops()), [](const SDValue
&Op
) {
22034 return Op
.isUndef() ||
22035 ISD::isBuildVectorOfConstantSDNodes(Op
.getNode());
22039 // The following pattern is likely to emerge with vector reduction ops. Moving
22040 // the binary operation ahead of the concat may allow using a narrower vector
22041 // instruction that has better performance than the wide version of the op:
22042 // VBinOp (concat X, undef/constant), (concat Y, undef/constant) -->
22043 // concat (VBinOp X, Y), VecC
22044 if (ConcatWithConstantOrUndef(LHS
) && ConcatWithConstantOrUndef(RHS
) &&
22045 (LHS
.hasOneUse() || RHS
.hasOneUse())) {
22046 EVT NarrowVT
= LHS
.getOperand(0).getValueType();
22047 if (NarrowVT
== RHS
.getOperand(0).getValueType() &&
22048 TLI
.isOperationLegalOrCustomOrPromote(Opcode
, NarrowVT
)) {
22050 unsigned NumOperands
= LHS
.getNumOperands();
22051 SmallVector
<SDValue
, 4> ConcatOps
;
22052 for (unsigned i
= 0; i
!= NumOperands
; ++i
) {
22053 // This constant fold for operands 1 and up.
22054 ConcatOps
.push_back(DAG
.getNode(Opcode
, DL
, NarrowVT
, LHS
.getOperand(i
),
22055 RHS
.getOperand(i
)));
22058 return DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
);
22062 if (SDValue V
= scalarizeBinOpOfSplats(N
, DAG
))
22068 SDValue
DAGCombiner::SimplifySelect(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
22070 assert(N0
.getOpcode() ==ISD::SETCC
&& "First argument must be a SetCC node!");
22072 SDValue SCC
= SimplifySelectCC(DL
, N0
.getOperand(0), N0
.getOperand(1), N1
, N2
,
22073 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
22075 // If we got a simplified select_cc node back from SimplifySelectCC, then
22076 // break it down into a new SETCC node, and a new SELECT node, and then return
22077 // the SELECT node, since we were called with a SELECT node.
22078 if (SCC
.getNode()) {
22079 // Check to see if we got a select_cc back (to turn into setcc/select).
22080 // Otherwise, just return whatever node we got back, like fabs.
22081 if (SCC
.getOpcode() == ISD::SELECT_CC
) {
22082 const SDNodeFlags Flags
= N0
.getNode()->getFlags();
22083 SDValue SETCC
= DAG
.getNode(ISD::SETCC
, SDLoc(N0
),
22085 SCC
.getOperand(0), SCC
.getOperand(1),
22086 SCC
.getOperand(4), Flags
);
22087 AddToWorklist(SETCC
.getNode());
22088 SDValue SelectNode
= DAG
.getSelect(SDLoc(SCC
), SCC
.getValueType(), SETCC
,
22089 SCC
.getOperand(2), SCC
.getOperand(3));
22090 SelectNode
->setFlags(Flags
);
22099 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
22100 /// being selected between, see if we can simplify the select. Callers of this
22101 /// should assume that TheSelect is deleted if this returns true. As such, they
22102 /// should return the appropriate thing (e.g. the node) back to the top-level of
22103 /// the DAG combiner loop to avoid it being looked at.
22104 bool DAGCombiner::SimplifySelectOps(SDNode
*TheSelect
, SDValue LHS
,
22106 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
22107 // The select + setcc is redundant, because fsqrt returns NaN for X < 0.
22108 if (const ConstantFPSDNode
*NaN
= isConstOrConstSplatFP(LHS
)) {
22109 if (NaN
->isNaN() && RHS
.getOpcode() == ISD::FSQRT
) {
22110 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
22111 SDValue Sqrt
= RHS
;
22114 const ConstantFPSDNode
*Zero
= nullptr;
22116 if (TheSelect
->getOpcode() == ISD::SELECT_CC
) {
22117 CC
= cast
<CondCodeSDNode
>(TheSelect
->getOperand(4))->get();
22118 CmpLHS
= TheSelect
->getOperand(0);
22119 Zero
= isConstOrConstSplatFP(TheSelect
->getOperand(1));
22121 // SELECT or VSELECT
22122 SDValue Cmp
= TheSelect
->getOperand(0);
22123 if (Cmp
.getOpcode() == ISD::SETCC
) {
22124 CC
= cast
<CondCodeSDNode
>(Cmp
.getOperand(2))->get();
22125 CmpLHS
= Cmp
.getOperand(0);
22126 Zero
= isConstOrConstSplatFP(Cmp
.getOperand(1));
22129 if (Zero
&& Zero
->isZero() &&
22130 Sqrt
.getOperand(0) == CmpLHS
&& (CC
== ISD::SETOLT
||
22131 CC
== ISD::SETULT
|| CC
== ISD::SETLT
)) {
22132 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
22133 CombineTo(TheSelect
, Sqrt
);
22138 // Cannot simplify select with vector condition
22139 if (TheSelect
->getOperand(0).getValueType().isVector()) return false;
22141 // If this is a select from two identical things, try to pull the operation
22142 // through the select.
22143 if (LHS
.getOpcode() != RHS
.getOpcode() ||
22144 !LHS
.hasOneUse() || !RHS
.hasOneUse())
22147 // If this is a load and the token chain is identical, replace the select
22148 // of two loads with a load through a select of the address to load from.
22149 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
22150 // constants have been dropped into the constant pool.
22151 if (LHS
.getOpcode() == ISD::LOAD
) {
22152 LoadSDNode
*LLD
= cast
<LoadSDNode
>(LHS
);
22153 LoadSDNode
*RLD
= cast
<LoadSDNode
>(RHS
);
22155 // Token chains must be identical.
22156 if (LHS
.getOperand(0) != RHS
.getOperand(0) ||
22157 // Do not let this transformation reduce the number of volatile loads.
22158 // Be conservative for atomics for the moment
22159 // TODO: This does appear to be legal for unordered atomics (see D66309)
22160 !LLD
->isSimple() || !RLD
->isSimple() ||
22161 // FIXME: If either is a pre/post inc/dec load,
22162 // we'd need to split out the address adjustment.
22163 LLD
->isIndexed() || RLD
->isIndexed() ||
22164 // If this is an EXTLOAD, the VT's must match.
22165 LLD
->getMemoryVT() != RLD
->getMemoryVT() ||
22166 // If this is an EXTLOAD, the kind of extension must match.
22167 (LLD
->getExtensionType() != RLD
->getExtensionType() &&
22168 // The only exception is if one of the extensions is anyext.
22169 LLD
->getExtensionType() != ISD::EXTLOAD
&&
22170 RLD
->getExtensionType() != ISD::EXTLOAD
) ||
22171 // FIXME: this discards src value information. This is
22172 // over-conservative. It would be beneficial to be able to remember
22173 // both potential memory locations. Since we are discarding
22174 // src value info, don't do the transformation if the memory
22175 // locations are not in the default address space.
22176 LLD
->getPointerInfo().getAddrSpace() != 0 ||
22177 RLD
->getPointerInfo().getAddrSpace() != 0 ||
22178 // We can't produce a CMOV of a TargetFrameIndex since we won't
22179 // generate the address generation required.
22180 LLD
->getBasePtr().getOpcode() == ISD::TargetFrameIndex
||
22181 RLD
->getBasePtr().getOpcode() == ISD::TargetFrameIndex
||
22182 !TLI
.isOperationLegalOrCustom(TheSelect
->getOpcode(),
22183 LLD
->getBasePtr().getValueType()))
22186 // The loads must not depend on one another.
22187 if (LLD
->isPredecessorOf(RLD
) || RLD
->isPredecessorOf(LLD
))
22190 // Check that the select condition doesn't reach either load. If so,
22191 // folding this will induce a cycle into the DAG. If not, this is safe to
22192 // xform, so create a select of the addresses.
22194 SmallPtrSet
<const SDNode
*, 32> Visited
;
22195 SmallVector
<const SDNode
*, 16> Worklist
;
22197 // Always fail if LLD and RLD are not independent. TheSelect is a
22198 // predecessor to all Nodes in question so we need not search past it.
22200 Visited
.insert(TheSelect
);
22201 Worklist
.push_back(LLD
);
22202 Worklist
.push_back(RLD
);
22204 if (SDNode::hasPredecessorHelper(LLD
, Visited
, Worklist
) ||
22205 SDNode::hasPredecessorHelper(RLD
, Visited
, Worklist
))
22209 if (TheSelect
->getOpcode() == ISD::SELECT
) {
22210 // We cannot do this optimization if any pair of {RLD, LLD} is a
22211 // predecessor to {RLD, LLD, CondNode}. As we've already compared the
22212 // Loads, we only need to check if CondNode is a successor to one of the
22213 // loads. We can further avoid this if there's no use of their chain
22215 SDNode
*CondNode
= TheSelect
->getOperand(0).getNode();
22216 Worklist
.push_back(CondNode
);
22218 if ((LLD
->hasAnyUseOfValue(1) &&
22219 SDNode::hasPredecessorHelper(LLD
, Visited
, Worklist
)) ||
22220 (RLD
->hasAnyUseOfValue(1) &&
22221 SDNode::hasPredecessorHelper(RLD
, Visited
, Worklist
)))
22224 Addr
= DAG
.getSelect(SDLoc(TheSelect
),
22225 LLD
->getBasePtr().getValueType(),
22226 TheSelect
->getOperand(0), LLD
->getBasePtr(),
22227 RLD
->getBasePtr());
22228 } else { // Otherwise SELECT_CC
22229 // We cannot do this optimization if any pair of {RLD, LLD} is a
22230 // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared
22231 // the Loads, we only need to check if CondLHS/CondRHS is a successor to
22232 // one of the loads. We can further avoid this if there's no use of their
22235 SDNode
*CondLHS
= TheSelect
->getOperand(0).getNode();
22236 SDNode
*CondRHS
= TheSelect
->getOperand(1).getNode();
22237 Worklist
.push_back(CondLHS
);
22238 Worklist
.push_back(CondRHS
);
22240 if ((LLD
->hasAnyUseOfValue(1) &&
22241 SDNode::hasPredecessorHelper(LLD
, Visited
, Worklist
)) ||
22242 (RLD
->hasAnyUseOfValue(1) &&
22243 SDNode::hasPredecessorHelper(RLD
, Visited
, Worklist
)))
22246 Addr
= DAG
.getNode(ISD::SELECT_CC
, SDLoc(TheSelect
),
22247 LLD
->getBasePtr().getValueType(),
22248 TheSelect
->getOperand(0),
22249 TheSelect
->getOperand(1),
22250 LLD
->getBasePtr(), RLD
->getBasePtr(),
22251 TheSelect
->getOperand(4));
22255 // It is safe to replace the two loads if they have different alignments,
22256 // but the new load must be the minimum (most restrictive) alignment of the
22258 Align Alignment
= std::min(LLD
->getAlign(), RLD
->getAlign());
22259 MachineMemOperand::Flags MMOFlags
= LLD
->getMemOperand()->getFlags();
22260 if (!RLD
->isInvariant())
22261 MMOFlags
&= ~MachineMemOperand::MOInvariant
;
22262 if (!RLD
->isDereferenceable())
22263 MMOFlags
&= ~MachineMemOperand::MODereferenceable
;
22264 if (LLD
->getExtensionType() == ISD::NON_EXTLOAD
) {
22265 // FIXME: Discards pointer and AA info.
22266 Load
= DAG
.getLoad(TheSelect
->getValueType(0), SDLoc(TheSelect
),
22267 LLD
->getChain(), Addr
, MachinePointerInfo(), Alignment
,
22270 // FIXME: Discards pointer and AA info.
22271 Load
= DAG
.getExtLoad(
22272 LLD
->getExtensionType() == ISD::EXTLOAD
? RLD
->getExtensionType()
22273 : LLD
->getExtensionType(),
22274 SDLoc(TheSelect
), TheSelect
->getValueType(0), LLD
->getChain(), Addr
,
22275 MachinePointerInfo(), LLD
->getMemoryVT(), Alignment
, MMOFlags
);
22278 // Users of the select now use the result of the load.
22279 CombineTo(TheSelect
, Load
);
22281 // Users of the old loads now use the new load's chain. We know the
22282 // old-load value is dead now.
22283 CombineTo(LHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
22284 CombineTo(RHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
22291 /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and
22293 SDValue
DAGCombiner::foldSelectCCToShiftAnd(const SDLoc
&DL
, SDValue N0
,
22294 SDValue N1
, SDValue N2
, SDValue N3
,
22295 ISD::CondCode CC
) {
22296 // If this is a select where the false operand is zero and the compare is a
22297 // check of the sign bit, see if we can perform the "gzip trick":
22298 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
22299 // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A
22300 EVT XType
= N0
.getValueType();
22301 EVT AType
= N2
.getValueType();
22302 if (!isNullConstant(N3
) || !XType
.bitsGE(AType
))
22305 // If the comparison is testing for a positive value, we have to invert
22306 // the sign bit mask, so only do that transform if the target has a bitwise
22307 // 'and not' instruction (the invert is free).
22308 if (CC
== ISD::SETGT
&& TLI
.hasAndNot(N2
)) {
22309 // (X > -1) ? A : 0
22310 // (X > 0) ? X : 0 <-- This is canonical signed max.
22311 if (!(isAllOnesConstant(N1
) || (isNullConstant(N1
) && N0
== N2
)))
22313 } else if (CC
== ISD::SETLT
) {
22315 // (X < 1) ? X : 0 <-- This is un-canonicalized signed min.
22316 if (!(isNullConstant(N1
) || (isOneConstant(N1
) && N0
== N2
)))
22322 // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit
22324 EVT ShiftAmtTy
= getShiftAmountTy(N0
.getValueType());
22325 auto *N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
22326 if (N2C
&& ((N2C
->getAPIntValue() & (N2C
->getAPIntValue() - 1)) == 0)) {
22327 unsigned ShCt
= XType
.getSizeInBits() - N2C
->getAPIntValue().logBase2() - 1;
22328 if (!TLI
.shouldAvoidTransformToShift(XType
, ShCt
)) {
22329 SDValue ShiftAmt
= DAG
.getConstant(ShCt
, DL
, ShiftAmtTy
);
22330 SDValue Shift
= DAG
.getNode(ISD::SRL
, DL
, XType
, N0
, ShiftAmt
);
22331 AddToWorklist(Shift
.getNode());
22333 if (XType
.bitsGT(AType
)) {
22334 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
22335 AddToWorklist(Shift
.getNode());
22338 if (CC
== ISD::SETGT
)
22339 Shift
= DAG
.getNOT(DL
, Shift
, AType
);
22341 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
22345 unsigned ShCt
= XType
.getSizeInBits() - 1;
22346 if (TLI
.shouldAvoidTransformToShift(XType
, ShCt
))
22349 SDValue ShiftAmt
= DAG
.getConstant(ShCt
, DL
, ShiftAmtTy
);
22350 SDValue Shift
= DAG
.getNode(ISD::SRA
, DL
, XType
, N0
, ShiftAmt
);
22351 AddToWorklist(Shift
.getNode());
22353 if (XType
.bitsGT(AType
)) {
22354 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
22355 AddToWorklist(Shift
.getNode());
22358 if (CC
== ISD::SETGT
)
22359 Shift
= DAG
.getNOT(DL
, Shift
, AType
);
22361 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
22364 // Fold select(cc, binop(), binop()) -> binop(select(), select()) etc.
22365 SDValue
DAGCombiner::foldSelectOfBinops(SDNode
*N
) {
22366 SDValue N0
= N
->getOperand(0);
22367 SDValue N1
= N
->getOperand(1);
22368 SDValue N2
= N
->getOperand(2);
22369 EVT VT
= N
->getValueType(0);
22372 unsigned BinOpc
= N1
.getOpcode();
22373 if (!TLI
.isBinOp(BinOpc
) || (N2
.getOpcode() != BinOpc
))
22376 if (!N
->isOnlyUserOf(N0
.getNode()) || !N
->isOnlyUserOf(N1
.getNode()))
22379 // Fold select(cond, binop(x, y), binop(z, y))
22380 // --> binop(select(cond, x, z), y)
22381 if (N1
.getOperand(1) == N2
.getOperand(1)) {
22383 DAG
.getSelect(DL
, VT
, N0
, N1
.getOperand(0), N2
.getOperand(0));
22384 SDValue NewBinOp
= DAG
.getNode(BinOpc
, DL
, VT
, NewSel
, N1
.getOperand(1));
22385 NewBinOp
->setFlags(N1
->getFlags());
22386 NewBinOp
->intersectFlagsWith(N2
->getFlags());
22390 // Fold select(cond, binop(x, y), binop(x, z))
22391 // --> binop(x, select(cond, y, z))
22392 // Second op VT might be different (e.g. shift amount type)
22393 if (N1
.getOperand(0) == N2
.getOperand(0) &&
22394 VT
== N1
.getOperand(1).getValueType() &&
22395 VT
== N2
.getOperand(1).getValueType()) {
22397 DAG
.getSelect(DL
, VT
, N0
, N1
.getOperand(1), N2
.getOperand(1));
22398 SDValue NewBinOp
= DAG
.getNode(BinOpc
, DL
, VT
, N1
.getOperand(0), NewSel
);
22399 NewBinOp
->setFlags(N1
->getFlags());
22400 NewBinOp
->intersectFlagsWith(N2
->getFlags());
22404 // TODO: Handle isCommutativeBinOp patterns as well?
22408 // Transform (fneg/fabs (bitconvert x)) to avoid loading constant pool values.
22409 SDValue
DAGCombiner::foldSignChangeInBitcast(SDNode
*N
) {
22410 SDValue N0
= N
->getOperand(0);
22411 EVT VT
= N
->getValueType(0);
22412 bool IsFabs
= N
->getOpcode() == ISD::FABS
;
22413 bool IsFree
= IsFabs
? TLI
.isFAbsFree(VT
) : TLI
.isFNegFree(VT
);
22415 if (IsFree
|| N0
.getOpcode() != ISD::BITCAST
|| !N0
.hasOneUse())
22418 SDValue Int
= N0
.getOperand(0);
22419 EVT IntVT
= Int
.getValueType();
22421 // The operand to cast should be integer.
22422 if (!IntVT
.isInteger() || IntVT
.isVector())
22425 // (fneg (bitconvert x)) -> (bitconvert (xor x sign))
22426 // (fabs (bitconvert x)) -> (bitconvert (and x ~sign))
22428 if (N0
.getValueType().isVector()) {
22429 // For vector, create a sign mask (0x80...) or its inverse (for fabs,
22430 // 0x7f...) per element and splat it.
22431 SignMask
= APInt::getSignMask(N0
.getScalarValueSizeInBits());
22433 SignMask
= ~SignMask
;
22434 SignMask
= APInt::getSplat(IntVT
.getSizeInBits(), SignMask
);
22436 // For scalar, just use the sign mask (0x80... or the inverse, 0x7f...)
22437 SignMask
= APInt::getSignMask(IntVT
.getSizeInBits());
22439 SignMask
= ~SignMask
;
22442 Int
= DAG
.getNode(IsFabs
? ISD::AND
: ISD::XOR
, DL
, IntVT
, Int
,
22443 DAG
.getConstant(SignMask
, DL
, IntVT
));
22444 AddToWorklist(Int
.getNode());
22445 return DAG
.getBitcast(VT
, Int
);
22448 /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
22449 /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
22450 /// in it. This may be a win when the constant is not otherwise available
22451 /// because it replaces two constant pool loads with one.
22452 SDValue
DAGCombiner::convertSelectOfFPConstantsToLoadOffset(
22453 const SDLoc
&DL
, SDValue N0
, SDValue N1
, SDValue N2
, SDValue N3
,
22454 ISD::CondCode CC
) {
22455 if (!TLI
.reduceSelectOfFPConstantLoads(N0
.getValueType()))
22458 // If we are before legalize types, we want the other legalization to happen
22459 // first (for example, to avoid messing with soft float).
22460 auto *TV
= dyn_cast
<ConstantFPSDNode
>(N2
);
22461 auto *FV
= dyn_cast
<ConstantFPSDNode
>(N3
);
22462 EVT VT
= N2
.getValueType();
22463 if (!TV
|| !FV
|| !TLI
.isTypeLegal(VT
))
22466 // If a constant can be materialized without loads, this does not make sense.
22467 if (TLI
.getOperationAction(ISD::ConstantFP
, VT
) == TargetLowering::Legal
||
22468 TLI
.isFPImmLegal(TV
->getValueAPF(), TV
->getValueType(0), ForCodeSize
) ||
22469 TLI
.isFPImmLegal(FV
->getValueAPF(), FV
->getValueType(0), ForCodeSize
))
22472 // If both constants have multiple uses, then we won't need to do an extra
22473 // load. The values are likely around in registers for other users.
22474 if (!TV
->hasOneUse() && !FV
->hasOneUse())
22477 Constant
*Elts
[] = { const_cast<ConstantFP
*>(FV
->getConstantFPValue()),
22478 const_cast<ConstantFP
*>(TV
->getConstantFPValue()) };
22479 Type
*FPTy
= Elts
[0]->getType();
22480 const DataLayout
&TD
= DAG
.getDataLayout();
22482 // Create a ConstantArray of the two constants.
22483 Constant
*CA
= ConstantArray::get(ArrayType::get(FPTy
, 2), Elts
);
22484 SDValue CPIdx
= DAG
.getConstantPool(CA
, TLI
.getPointerTy(DAG
.getDataLayout()),
22485 TD
.getPrefTypeAlign(FPTy
));
22486 Align Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlign();
22488 // Get offsets to the 0 and 1 elements of the array, so we can select between
22490 SDValue Zero
= DAG
.getIntPtrConstant(0, DL
);
22491 unsigned EltSize
= (unsigned)TD
.getTypeAllocSize(Elts
[0]->getType());
22492 SDValue One
= DAG
.getIntPtrConstant(EltSize
, SDLoc(FV
));
22494 DAG
.getSetCC(DL
, getSetCCResultType(N0
.getValueType()), N0
, N1
, CC
);
22495 AddToWorklist(Cond
.getNode());
22496 SDValue CstOffset
= DAG
.getSelect(DL
, Zero
.getValueType(), Cond
, One
, Zero
);
22497 AddToWorklist(CstOffset
.getNode());
22498 CPIdx
= DAG
.getNode(ISD::ADD
, DL
, CPIdx
.getValueType(), CPIdx
, CstOffset
);
22499 AddToWorklist(CPIdx
.getNode());
22500 return DAG
.getLoad(TV
->getValueType(0), DL
, DAG
.getEntryNode(), CPIdx
,
22501 MachinePointerInfo::getConstantPool(
22502 DAG
.getMachineFunction()), Alignment
);
22505 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3
22506 /// where 'cond' is the comparison specified by CC.
22507 SDValue
DAGCombiner::SimplifySelectCC(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
22508 SDValue N2
, SDValue N3
, ISD::CondCode CC
,
22509 bool NotExtCompare
) {
22510 // (x ? y : y) -> y.
22511 if (N2
== N3
) return N2
;
22513 EVT CmpOpVT
= N0
.getValueType();
22514 EVT CmpResVT
= getSetCCResultType(CmpOpVT
);
22515 EVT VT
= N2
.getValueType();
22516 auto *N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
22517 auto *N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
22518 auto *N3C
= dyn_cast
<ConstantSDNode
>(N3
.getNode());
22520 // Determine if the condition we're dealing with is constant.
22521 if (SDValue SCC
= DAG
.FoldSetCC(CmpResVT
, N0
, N1
, CC
, DL
)) {
22522 AddToWorklist(SCC
.getNode());
22523 if (auto *SCCC
= dyn_cast
<ConstantSDNode
>(SCC
)) {
22524 // fold select_cc true, x, y -> x
22525 // fold select_cc false, x, y -> y
22526 return !(SCCC
->isNullValue()) ? N2
: N3
;
22531 convertSelectOfFPConstantsToLoadOffset(DL
, N0
, N1
, N2
, N3
, CC
))
22534 if (SDValue V
= foldSelectCCToShiftAnd(DL
, N0
, N1
, N2
, N3
, CC
))
22537 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
22538 // where y is has a single bit set.
22539 // A plaintext description would be, we can turn the SELECT_CC into an AND
22540 // when the condition can be materialized as an all-ones register. Any
22541 // single bit-test can be materialized as an all-ones register with
22542 // shift-left and shift-right-arith.
22543 if (CC
== ISD::SETEQ
&& N0
->getOpcode() == ISD::AND
&&
22544 N0
->getValueType(0) == VT
&& isNullConstant(N1
) && isNullConstant(N2
)) {
22545 SDValue AndLHS
= N0
->getOperand(0);
22546 auto *ConstAndRHS
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
22547 if (ConstAndRHS
&& ConstAndRHS
->getAPIntValue().countPopulation() == 1) {
22548 // Shift the tested bit over the sign bit.
22549 const APInt
&AndMask
= ConstAndRHS
->getAPIntValue();
22550 unsigned ShCt
= AndMask
.getBitWidth() - 1;
22551 if (!TLI
.shouldAvoidTransformToShift(VT
, ShCt
)) {
22553 DAG
.getConstant(AndMask
.countLeadingZeros(), SDLoc(AndLHS
),
22554 getShiftAmountTy(AndLHS
.getValueType()));
22555 SDValue Shl
= DAG
.getNode(ISD::SHL
, SDLoc(N0
), VT
, AndLHS
, ShlAmt
);
22557 // Now arithmetic right shift it all the way over, so the result is
22558 // either all-ones, or zero.
22560 DAG
.getConstant(ShCt
, SDLoc(Shl
),
22561 getShiftAmountTy(Shl
.getValueType()));
22562 SDValue Shr
= DAG
.getNode(ISD::SRA
, SDLoc(N0
), VT
, Shl
, ShrAmt
);
22564 return DAG
.getNode(ISD::AND
, DL
, VT
, Shr
, N3
);
22569 // fold select C, 16, 0 -> shl C, 4
22570 bool Fold
= N2C
&& isNullConstant(N3
) && N2C
->getAPIntValue().isPowerOf2();
22571 bool Swap
= N3C
&& isNullConstant(N2
) && N3C
->getAPIntValue().isPowerOf2();
22573 if ((Fold
|| Swap
) &&
22574 TLI
.getBooleanContents(CmpOpVT
) ==
22575 TargetLowering::ZeroOrOneBooleanContent
&&
22576 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SETCC
, CmpOpVT
))) {
22579 CC
= ISD::getSetCCInverse(CC
, CmpOpVT
);
22580 std::swap(N2C
, N3C
);
22583 // If the caller doesn't want us to simplify this into a zext of a compare,
22585 if (NotExtCompare
&& N2C
->isOne())
22589 // zext (setcc n0, n1)
22591 SCC
= DAG
.getSetCC(DL
, CmpResVT
, N0
, N1
, CC
);
22592 if (VT
.bitsLT(SCC
.getValueType()))
22593 Temp
= DAG
.getZeroExtendInReg(SCC
, SDLoc(N2
), VT
);
22595 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N2
), VT
, SCC
);
22597 SCC
= DAG
.getSetCC(SDLoc(N0
), MVT::i1
, N0
, N1
, CC
);
22598 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N2
), VT
, SCC
);
22601 AddToWorklist(SCC
.getNode());
22602 AddToWorklist(Temp
.getNode());
22607 unsigned ShCt
= N2C
->getAPIntValue().logBase2();
22608 if (TLI
.shouldAvoidTransformToShift(VT
, ShCt
))
22611 // shl setcc result by log2 n2c
22612 return DAG
.getNode(ISD::SHL
, DL
, N2
.getValueType(), Temp
,
22613 DAG
.getConstant(ShCt
, SDLoc(Temp
),
22614 getShiftAmountTy(Temp
.getValueType())));
22617 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X)
22618 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X)
22619 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X)
22620 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X)
22621 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X)
22622 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X)
22623 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X)
22624 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X)
22625 if (N1C
&& N1C
->isNullValue() && (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
22626 SDValue ValueOnZero
= N2
;
22627 SDValue Count
= N3
;
22628 // If the condition is NE instead of E, swap the operands.
22629 if (CC
== ISD::SETNE
)
22630 std::swap(ValueOnZero
, Count
);
22631 // Check if the value on zero is a constant equal to the bits in the type.
22632 if (auto *ValueOnZeroC
= dyn_cast
<ConstantSDNode
>(ValueOnZero
)) {
22633 if (ValueOnZeroC
->getAPIntValue() == VT
.getSizeInBits()) {
22634 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is
22635 // legal, combine to just cttz.
22636 if ((Count
.getOpcode() == ISD::CTTZ
||
22637 Count
.getOpcode() == ISD::CTTZ_ZERO_UNDEF
) &&
22638 N0
== Count
.getOperand(0) &&
22639 (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTTZ
, VT
)))
22640 return DAG
.getNode(ISD::CTTZ
, DL
, VT
, N0
);
22641 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is
22642 // legal, combine to just ctlz.
22643 if ((Count
.getOpcode() == ISD::CTLZ
||
22644 Count
.getOpcode() == ISD::CTLZ_ZERO_UNDEF
) &&
22645 N0
== Count
.getOperand(0) &&
22646 (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTLZ
, VT
)))
22647 return DAG
.getNode(ISD::CTLZ
, DL
, VT
, N0
);
22655 /// This is a stub for TargetLowering::SimplifySetCC.
22656 SDValue
DAGCombiner::SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
,
22657 ISD::CondCode Cond
, const SDLoc
&DL
,
22658 bool foldBooleans
) {
22659 TargetLowering::DAGCombinerInfo
22660 DagCombineInfo(DAG
, Level
, false, this);
22661 return TLI
.SimplifySetCC(VT
, N0
, N1
, Cond
, foldBooleans
, DagCombineInfo
, DL
);
22664 /// Given an ISD::SDIV node expressing a divide by constant, return
22665 /// a DAG expression to select that will generate the same value by multiplying
22666 /// by a magic number.
22667 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
22668 SDValue
DAGCombiner::BuildSDIV(SDNode
*N
) {
22669 // when optimising for minimum size, we don't want to expand a div to a mul
22671 if (DAG
.getMachineFunction().getFunction().hasMinSize())
22674 SmallVector
<SDNode
*, 8> Built
;
22675 if (SDValue S
= TLI
.BuildSDIV(N
, DAG
, LegalOperations
, Built
)) {
22676 for (SDNode
*N
: Built
)
22684 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
22685 /// DAG expression that will generate the same value by right shifting.
22686 SDValue
DAGCombiner::BuildSDIVPow2(SDNode
*N
) {
22687 ConstantSDNode
*C
= isConstOrConstSplat(N
->getOperand(1));
22691 // Avoid division by zero.
22692 if (C
->isNullValue())
22695 SmallVector
<SDNode
*, 8> Built
;
22696 if (SDValue S
= TLI
.BuildSDIVPow2(N
, C
->getAPIntValue(), DAG
, Built
)) {
22697 for (SDNode
*N
: Built
)
22705 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG
22706 /// expression that will generate the same value by multiplying by a magic
22708 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
22709 SDValue
DAGCombiner::BuildUDIV(SDNode
*N
) {
22710 // when optimising for minimum size, we don't want to expand a div to a mul
22712 if (DAG
.getMachineFunction().getFunction().hasMinSize())
22715 SmallVector
<SDNode
*, 8> Built
;
22716 if (SDValue S
= TLI
.BuildUDIV(N
, DAG
, LegalOperations
, Built
)) {
22717 for (SDNode
*N
: Built
)
22725 /// Determines the LogBase2 value for a non-null input value using the
22726 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
22727 SDValue
DAGCombiner::BuildLogBase2(SDValue V
, const SDLoc
&DL
) {
22728 EVT VT
= V
.getValueType();
22729 SDValue Ctlz
= DAG
.getNode(ISD::CTLZ
, DL
, VT
, V
);
22730 SDValue Base
= DAG
.getConstant(VT
.getScalarSizeInBits() - 1, DL
, VT
);
22731 SDValue LogBase2
= DAG
.getNode(ISD::SUB
, DL
, VT
, Base
, Ctlz
);
22735 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
22736 /// For the reciprocal, we need to find the zero of the function:
22737 /// F(X) = A X - 1 [which has a zero at X = 1/A]
22739 /// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
22740 /// does not require additional intermediate precision]
22741 /// For the last iteration, put numerator N into it to gain more precision:
22742 /// Result = N X_i + X_i (N - N A X_i)
22743 SDValue
DAGCombiner::BuildDivEstimate(SDValue N
, SDValue Op
,
22744 SDNodeFlags Flags
) {
22748 // TODO: Handle half and/or extended types?
22749 EVT VT
= Op
.getValueType();
22750 if (VT
.getScalarType() != MVT::f32
&& VT
.getScalarType() != MVT::f64
)
22753 // If estimates are explicitly disabled for this function, we're done.
22754 MachineFunction
&MF
= DAG
.getMachineFunction();
22755 int Enabled
= TLI
.getRecipEstimateDivEnabled(VT
, MF
);
22756 if (Enabled
== TLI
.ReciprocalEstimate::Disabled
)
22759 // Estimates may be explicitly enabled for this type with a custom number of
22760 // refinement steps.
22761 int Iterations
= TLI
.getDivRefinementSteps(VT
, MF
);
22762 if (SDValue Est
= TLI
.getRecipEstimate(Op
, DAG
, Enabled
, Iterations
)) {
22763 AddToWorklist(Est
.getNode());
22767 SDValue FPOne
= DAG
.getConstantFP(1.0, DL
, VT
);
22769 // Newton iterations: Est = Est + Est (N - Arg * Est)
22770 // If this is the last iteration, also multiply by the numerator.
22771 for (int i
= 0; i
< Iterations
; ++i
) {
22772 SDValue MulEst
= Est
;
22774 if (i
== Iterations
- 1) {
22775 MulEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, N
, Est
, Flags
);
22776 AddToWorklist(MulEst
.getNode());
22779 SDValue NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Op
, MulEst
, Flags
);
22780 AddToWorklist(NewEst
.getNode());
22782 NewEst
= DAG
.getNode(ISD::FSUB
, DL
, VT
,
22783 (i
== Iterations
- 1 ? N
: FPOne
), NewEst
, Flags
);
22784 AddToWorklist(NewEst
.getNode());
22786 NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, NewEst
, Flags
);
22787 AddToWorklist(NewEst
.getNode());
22789 Est
= DAG
.getNode(ISD::FADD
, DL
, VT
, MulEst
, NewEst
, Flags
);
22790 AddToWorklist(Est
.getNode());
22793 // If no iterations are available, multiply with N.
22794 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, N
, Flags
);
22795 AddToWorklist(Est
.getNode());
22804 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
22805 /// For the reciprocal sqrt, we need to find the zero of the function:
22806 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
22808 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2)
22809 /// As a result, we precompute A/2 prior to the iteration loop.
22810 SDValue
DAGCombiner::buildSqrtNROneConst(SDValue Arg
, SDValue Est
,
22811 unsigned Iterations
,
22812 SDNodeFlags Flags
, bool Reciprocal
) {
22813 EVT VT
= Arg
.getValueType();
22815 SDValue ThreeHalves
= DAG
.getConstantFP(1.5, DL
, VT
);
22817 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
22818 // this entire sequence requires only one FP constant.
22819 SDValue HalfArg
= DAG
.getNode(ISD::FMUL
, DL
, VT
, ThreeHalves
, Arg
, Flags
);
22820 HalfArg
= DAG
.getNode(ISD::FSUB
, DL
, VT
, HalfArg
, Arg
, Flags
);
22822 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
22823 for (unsigned i
= 0; i
< Iterations
; ++i
) {
22824 SDValue NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, Est
, Flags
);
22825 NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, HalfArg
, NewEst
, Flags
);
22826 NewEst
= DAG
.getNode(ISD::FSUB
, DL
, VT
, ThreeHalves
, NewEst
, Flags
);
22827 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, NewEst
, Flags
);
22830 // If non-reciprocal square root is requested, multiply the result by Arg.
22832 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, Arg
, Flags
);
22837 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
22838 /// For the reciprocal sqrt, we need to find the zero of the function:
22839 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
22841 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
22842 SDValue
DAGCombiner::buildSqrtNRTwoConst(SDValue Arg
, SDValue Est
,
22843 unsigned Iterations
,
22844 SDNodeFlags Flags
, bool Reciprocal
) {
22845 EVT VT
= Arg
.getValueType();
22847 SDValue MinusThree
= DAG
.getConstantFP(-3.0, DL
, VT
);
22848 SDValue MinusHalf
= DAG
.getConstantFP(-0.5, DL
, VT
);
22850 // This routine must enter the loop below to work correctly
22851 // when (Reciprocal == false).
22852 assert(Iterations
> 0);
22854 // Newton iterations for reciprocal square root:
22855 // E = (E * -0.5) * ((A * E) * E + -3.0)
22856 for (unsigned i
= 0; i
< Iterations
; ++i
) {
22857 SDValue AE
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Arg
, Est
, Flags
);
22858 SDValue AEE
= DAG
.getNode(ISD::FMUL
, DL
, VT
, AE
, Est
, Flags
);
22859 SDValue RHS
= DAG
.getNode(ISD::FADD
, DL
, VT
, AEE
, MinusThree
, Flags
);
22861 // When calculating a square root at the last iteration build:
22862 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0)
22863 // (notice a common subexpression)
22865 if (Reciprocal
|| (i
+ 1) < Iterations
) {
22866 // RSQRT: LHS = (E * -0.5)
22867 LHS
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, MinusHalf
, Flags
);
22869 // SQRT: LHS = (A * E) * -0.5
22870 LHS
= DAG
.getNode(ISD::FMUL
, DL
, VT
, AE
, MinusHalf
, Flags
);
22873 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, LHS
, RHS
, Flags
);
22879 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case
22880 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if
22881 /// Op can be zero.
22882 SDValue
DAGCombiner::buildSqrtEstimateImpl(SDValue Op
, SDNodeFlags Flags
,
22887 // TODO: Handle half and/or extended types?
22888 EVT VT
= Op
.getValueType();
22889 if (VT
.getScalarType() != MVT::f32
&& VT
.getScalarType() != MVT::f64
)
22892 // If estimates are explicitly disabled for this function, we're done.
22893 MachineFunction
&MF
= DAG
.getMachineFunction();
22894 int Enabled
= TLI
.getRecipEstimateSqrtEnabled(VT
, MF
);
22895 if (Enabled
== TLI
.ReciprocalEstimate::Disabled
)
22898 // Estimates may be explicitly enabled for this type with a custom number of
22899 // refinement steps.
22900 int Iterations
= TLI
.getSqrtRefinementSteps(VT
, MF
);
22902 bool UseOneConstNR
= false;
22904 TLI
.getSqrtEstimate(Op
, DAG
, Enabled
, Iterations
, UseOneConstNR
,
22906 AddToWorklist(Est
.getNode());
22909 Est
= UseOneConstNR
22910 ? buildSqrtNROneConst(Op
, Est
, Iterations
, Flags
, Reciprocal
)
22911 : buildSqrtNRTwoConst(Op
, Est
, Iterations
, Flags
, Reciprocal
);
22914 // Try the target specific test first.
22915 SDValue Test
= TLI
.getSqrtInputTest(Op
, DAG
, DAG
.getDenormalMode(VT
));
22917 // The estimate is now completely wrong if the input was exactly 0.0 or
22918 // possibly a denormal. Force the answer to 0.0 or value provided by
22919 // target for those cases.
22921 Test
.getValueType().isVector() ? ISD::VSELECT
: ISD::SELECT
, DL
, VT
,
22922 Test
, TLI
.getSqrtResultForDenormInput(Op
, DAG
), Est
);
22930 SDValue
DAGCombiner::buildRsqrtEstimate(SDValue Op
, SDNodeFlags Flags
) {
22931 return buildSqrtEstimateImpl(Op
, Flags
, true);
22934 SDValue
DAGCombiner::buildSqrtEstimate(SDValue Op
, SDNodeFlags Flags
) {
22935 return buildSqrtEstimateImpl(Op
, Flags
, false);
22938 /// Return true if there is any possibility that the two addresses overlap.
22939 bool DAGCombiner::isAlias(SDNode
*Op0
, SDNode
*Op1
) const {
22941 struct MemUseCharacteristics
{
22946 Optional
<int64_t> NumBytes
;
22947 MachineMemOperand
*MMO
;
22950 auto getCharacteristics
= [](SDNode
*N
) -> MemUseCharacteristics
{
22951 if (const auto *LSN
= dyn_cast
<LSBaseSDNode
>(N
)) {
22952 int64_t Offset
= 0;
22953 if (auto *C
= dyn_cast
<ConstantSDNode
>(LSN
->getOffset()))
22954 Offset
= (LSN
->getAddressingMode() == ISD::PRE_INC
)
22955 ? C
->getSExtValue()
22956 : (LSN
->getAddressingMode() == ISD::PRE_DEC
)
22957 ? -1 * C
->getSExtValue()
22960 MemoryLocation::getSizeOrUnknown(LSN
->getMemoryVT().getStoreSize());
22961 return {LSN
->isVolatile(), LSN
->isAtomic(), LSN
->getBasePtr(),
22962 Offset
/*base offset*/,
22963 Optional
<int64_t>(Size
),
22964 LSN
->getMemOperand()};
22966 if (const auto *LN
= cast
<LifetimeSDNode
>(N
))
22967 return {false /*isVolatile*/, /*isAtomic*/ false, LN
->getOperand(1),
22968 (LN
->hasOffset()) ? LN
->getOffset() : 0,
22969 (LN
->hasOffset()) ? Optional
<int64_t>(LN
->getSize())
22970 : Optional
<int64_t>(),
22971 (MachineMemOperand
*)nullptr};
22973 return {false /*isvolatile*/, /*isAtomic*/ false, SDValue(),
22974 (int64_t)0 /*offset*/,
22975 Optional
<int64_t>() /*size*/, (MachineMemOperand
*)nullptr};
22978 MemUseCharacteristics MUC0
= getCharacteristics(Op0
),
22979 MUC1
= getCharacteristics(Op1
);
22981 // If they are to the same address, then they must be aliases.
22982 if (MUC0
.BasePtr
.getNode() && MUC0
.BasePtr
== MUC1
.BasePtr
&&
22983 MUC0
.Offset
== MUC1
.Offset
)
22986 // If they are both volatile then they cannot be reordered.
22987 if (MUC0
.IsVolatile
&& MUC1
.IsVolatile
)
22990 // Be conservative about atomics for the moment
22991 // TODO: This is way overconservative for unordered atomics (see D66309)
22992 if (MUC0
.IsAtomic
&& MUC1
.IsAtomic
)
22995 if (MUC0
.MMO
&& MUC1
.MMO
) {
22996 if ((MUC0
.MMO
->isInvariant() && MUC1
.MMO
->isStore()) ||
22997 (MUC1
.MMO
->isInvariant() && MUC0
.MMO
->isStore()))
23001 // Try to prove that there is aliasing, or that there is no aliasing. Either
23002 // way, we can return now. If nothing can be proved, proceed with more tests.
23004 if (BaseIndexOffset::computeAliasing(Op0
, MUC0
.NumBytes
, Op1
, MUC1
.NumBytes
,
23008 // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if
23009 // either are not known.
23010 if (!MUC0
.MMO
|| !MUC1
.MMO
)
23013 // If one operation reads from invariant memory, and the other may store, they
23014 // cannot alias. These should really be checking the equivalent of mayWrite,
23015 // but it only matters for memory nodes other than load /store.
23016 if ((MUC0
.MMO
->isInvariant() && MUC1
.MMO
->isStore()) ||
23017 (MUC1
.MMO
->isInvariant() && MUC0
.MMO
->isStore()))
23020 // If we know required SrcValue1 and SrcValue2 have relatively large
23021 // alignment compared to the size and offset of the access, we may be able
23022 // to prove they do not alias. This check is conservative for now to catch
23023 // cases created by splitting vector types, it only works when the offsets are
23024 // multiples of the size of the data.
23025 int64_t SrcValOffset0
= MUC0
.MMO
->getOffset();
23026 int64_t SrcValOffset1
= MUC1
.MMO
->getOffset();
23027 Align OrigAlignment0
= MUC0
.MMO
->getBaseAlign();
23028 Align OrigAlignment1
= MUC1
.MMO
->getBaseAlign();
23029 auto &Size0
= MUC0
.NumBytes
;
23030 auto &Size1
= MUC1
.NumBytes
;
23031 if (OrigAlignment0
== OrigAlignment1
&& SrcValOffset0
!= SrcValOffset1
&&
23032 Size0
.hasValue() && Size1
.hasValue() && *Size0
== *Size1
&&
23033 OrigAlignment0
> *Size0
&& SrcValOffset0
% *Size0
== 0 &&
23034 SrcValOffset1
% *Size1
== 0) {
23035 int64_t OffAlign0
= SrcValOffset0
% OrigAlignment0
.value();
23036 int64_t OffAlign1
= SrcValOffset1
% OrigAlignment1
.value();
23038 // There is no overlap between these relatively aligned accesses of
23039 // similar size. Return no alias.
23040 if ((OffAlign0
+ *Size0
) <= OffAlign1
|| (OffAlign1
+ *Size1
) <= OffAlign0
)
23044 bool UseAA
= CombinerGlobalAA
.getNumOccurrences() > 0
23046 : DAG
.getSubtarget().useAA();
23048 if (CombinerAAOnlyFunc
.getNumOccurrences() &&
23049 CombinerAAOnlyFunc
!= DAG
.getMachineFunction().getName())
23053 if (UseAA
&& AA
&& MUC0
.MMO
->getValue() && MUC1
.MMO
->getValue() &&
23054 Size0
.hasValue() && Size1
.hasValue()) {
23055 // Use alias analysis information.
23056 int64_t MinOffset
= std::min(SrcValOffset0
, SrcValOffset1
);
23057 int64_t Overlap0
= *Size0
+ SrcValOffset0
- MinOffset
;
23058 int64_t Overlap1
= *Size1
+ SrcValOffset1
- MinOffset
;
23060 MemoryLocation(MUC0
.MMO
->getValue(), Overlap0
,
23061 UseTBAA
? MUC0
.MMO
->getAAInfo() : AAMDNodes()),
23062 MemoryLocation(MUC1
.MMO
->getValue(), Overlap1
,
23063 UseTBAA
? MUC1
.MMO
->getAAInfo() : AAMDNodes())))
23067 // Otherwise we have to assume they alias.
23071 /// Walk up chain skipping non-aliasing memory nodes,
23072 /// looking for aliasing nodes and adding them to the Aliases vector.
23073 void DAGCombiner::GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
23074 SmallVectorImpl
<SDValue
> &Aliases
) {
23075 SmallVector
<SDValue
, 8> Chains
; // List of chains to visit.
23076 SmallPtrSet
<SDNode
*, 16> Visited
; // Visited node set.
23078 // Get alias information for node.
23079 // TODO: relax aliasing for unordered atomics (see D66309)
23080 const bool IsLoad
= isa
<LoadSDNode
>(N
) && cast
<LoadSDNode
>(N
)->isSimple();
23083 Chains
.push_back(OriginalChain
);
23084 unsigned Depth
= 0;
23086 // Attempt to improve chain by a single step
23087 std::function
<bool(SDValue
&)> ImproveChain
= [&](SDValue
&C
) -> bool {
23088 switch (C
.getOpcode()) {
23089 case ISD::EntryToken
:
23090 // No need to mark EntryToken.
23095 // Get alias information for C.
23096 // TODO: Relax aliasing for unordered atomics (see D66309)
23097 bool IsOpLoad
= isa
<LoadSDNode
>(C
.getNode()) &&
23098 cast
<LSBaseSDNode
>(C
.getNode())->isSimple();
23099 if ((IsLoad
&& IsOpLoad
) || !isAlias(N
, C
.getNode())) {
23100 // Look further up the chain.
23101 C
= C
.getOperand(0);
23104 // Alias, so stop here.
23108 case ISD::CopyFromReg
:
23109 // Always forward past past CopyFromReg.
23110 C
= C
.getOperand(0);
23113 case ISD::LIFETIME_START
:
23114 case ISD::LIFETIME_END
: {
23115 // We can forward past any lifetime start/end that can be proven not to
23116 // alias the memory access.
23117 if (!isAlias(N
, C
.getNode())) {
23118 // Look further up the chain.
23119 C
= C
.getOperand(0);
23129 // Look at each chain and determine if it is an alias. If so, add it to the
23130 // aliases list. If not, then continue up the chain looking for the next
23132 while (!Chains
.empty()) {
23133 SDValue Chain
= Chains
.pop_back_val();
23135 // Don't bother if we've seen Chain before.
23136 if (!Visited
.insert(Chain
.getNode()).second
)
23139 // For TokenFactor nodes, look at each operand and only continue up the
23140 // chain until we reach the depth limit.
23142 // FIXME: The depth check could be made to return the last non-aliasing
23143 // chain we found before we hit a tokenfactor rather than the original
23145 if (Depth
> TLI
.getGatherAllAliasesMaxDepth()) {
23147 Aliases
.push_back(OriginalChain
);
23151 if (Chain
.getOpcode() == ISD::TokenFactor
) {
23152 // We have to check each of the operands of the token factor for "small"
23153 // token factors, so we queue them up. Adding the operands to the queue
23154 // (stack) in reverse order maintains the original order and increases the
23155 // likelihood that getNode will find a matching token factor (CSE.)
23156 if (Chain
.getNumOperands() > 16) {
23157 Aliases
.push_back(Chain
);
23160 for (unsigned n
= Chain
.getNumOperands(); n
;)
23161 Chains
.push_back(Chain
.getOperand(--n
));
23166 if (ImproveChain(Chain
)) {
23167 // Updated Chain Found, Consider new chain if one exists.
23168 if (Chain
.getNode())
23169 Chains
.push_back(Chain
);
23173 // No Improved Chain Possible, treat as Alias.
23174 Aliases
.push_back(Chain
);
23178 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
23179 /// (aliasing node.)
23180 SDValue
DAGCombiner::FindBetterChain(SDNode
*N
, SDValue OldChain
) {
23181 if (OptLevel
== CodeGenOpt::None
)
23184 // Ops for replacing token factor.
23185 SmallVector
<SDValue
, 8> Aliases
;
23187 // Accumulate all the aliases to this node.
23188 GatherAllAliases(N
, OldChain
, Aliases
);
23190 // If no operands then chain to entry token.
23191 if (Aliases
.size() == 0)
23192 return DAG
.getEntryNode();
23194 // If a single operand then chain to it. We don't need to revisit it.
23195 if (Aliases
.size() == 1)
23198 // Construct a custom tailored token factor.
23199 return DAG
.getTokenFactor(SDLoc(N
), Aliases
);
23203 // TODO: Replace with with std::monostate when we move to C++17.
23204 struct UnitT
{ } Unit
;
23205 bool operator==(const UnitT
&, const UnitT
&) { return true; }
23206 bool operator!=(const UnitT
&, const UnitT
&) { return false; }
23209 // This function tries to collect a bunch of potentially interesting
23210 // nodes to improve the chains of, all at once. This might seem
23211 // redundant, as this function gets called when visiting every store
23212 // node, so why not let the work be done on each store as it's visited?
23214 // I believe this is mainly important because mergeConsecutiveStores
23215 // is unable to deal with merging stores of different sizes, so unless
23216 // we improve the chains of all the potential candidates up-front
23217 // before running mergeConsecutiveStores, it might only see some of
23218 // the nodes that will eventually be candidates, and then not be able
23219 // to go from a partially-merged state to the desired final
23220 // fully-merged state.
23222 bool DAGCombiner::parallelizeChainedStores(StoreSDNode
*St
) {
23223 SmallVector
<StoreSDNode
*, 8> ChainedStores
;
23224 StoreSDNode
*STChain
= St
;
23225 // Intervals records which offsets from BaseIndex have been covered. In
23226 // the common case, every store writes to the immediately previous address
23227 // space and thus merged with the previous interval at insertion time.
23230 llvm::IntervalMap
<int64_t, UnitT
, 8, IntervalMapHalfOpenInfo
<int64_t>>;
23234 // This holds the base pointer, index, and the offset in bytes from the base
23236 const BaseIndexOffset BasePtr
= BaseIndexOffset::match(St
, DAG
);
23238 // We must have a base and an offset.
23239 if (!BasePtr
.getBase().getNode())
23242 // Do not handle stores to undef base pointers.
23243 if (BasePtr
.getBase().isUndef())
23246 // BaseIndexOffset assumes that offsets are fixed-size, which
23247 // is not valid for scalable vectors where the offsets are
23248 // scaled by `vscale`, so bail out early.
23249 if (St
->getMemoryVT().isScalableVector())
23252 // Add ST's interval.
23253 Intervals
.insert(0, (St
->getMemoryVT().getSizeInBits() + 7) / 8, Unit
);
23255 while (StoreSDNode
*Chain
= dyn_cast
<StoreSDNode
>(STChain
->getChain())) {
23256 if (Chain
->getMemoryVT().isScalableVector())
23259 // If the chain has more than one use, then we can't reorder the mem ops.
23260 if (!SDValue(Chain
, 0)->hasOneUse())
23262 // TODO: Relax for unordered atomics (see D66309)
23263 if (!Chain
->isSimple() || Chain
->isIndexed())
23266 // Find the base pointer and offset for this memory node.
23267 const BaseIndexOffset Ptr
= BaseIndexOffset::match(Chain
, DAG
);
23268 // Check that the base pointer is the same as the original one.
23270 if (!BasePtr
.equalBaseIndex(Ptr
, DAG
, Offset
))
23272 int64_t Length
= (Chain
->getMemoryVT().getSizeInBits() + 7) / 8;
23273 // Make sure we don't overlap with other intervals by checking the ones to
23274 // the left or right before inserting.
23275 auto I
= Intervals
.find(Offset
);
23276 // If there's a next interval, we should end before it.
23277 if (I
!= Intervals
.end() && I
.start() < (Offset
+ Length
))
23279 // If there's a previous interval, we should start after it.
23280 if (I
!= Intervals
.begin() && (--I
).stop() <= Offset
)
23282 Intervals
.insert(Offset
, Offset
+ Length
, Unit
);
23284 ChainedStores
.push_back(Chain
);
23288 // If we didn't find a chained store, exit.
23289 if (ChainedStores
.size() == 0)
23292 // Improve all chained stores (St and ChainedStores members) starting from
23293 // where the store chain ended and return single TokenFactor.
23294 SDValue NewChain
= STChain
->getChain();
23295 SmallVector
<SDValue
, 8> TFOps
;
23296 for (unsigned I
= ChainedStores
.size(); I
;) {
23297 StoreSDNode
*S
= ChainedStores
[--I
];
23298 SDValue BetterChain
= FindBetterChain(S
, NewChain
);
23299 S
= cast
<StoreSDNode
>(DAG
.UpdateNodeOperands(
23300 S
, BetterChain
, S
->getOperand(1), S
->getOperand(2), S
->getOperand(3)));
23301 TFOps
.push_back(SDValue(S
, 0));
23302 ChainedStores
[I
] = S
;
23305 // Improve St's chain. Use a new node to avoid creating a loop from CombineTo.
23306 SDValue BetterChain
= FindBetterChain(St
, NewChain
);
23308 if (St
->isTruncatingStore())
23309 NewST
= DAG
.getTruncStore(BetterChain
, SDLoc(St
), St
->getValue(),
23310 St
->getBasePtr(), St
->getMemoryVT(),
23311 St
->getMemOperand());
23313 NewST
= DAG
.getStore(BetterChain
, SDLoc(St
), St
->getValue(),
23314 St
->getBasePtr(), St
->getMemOperand());
23316 TFOps
.push_back(NewST
);
23318 // If we improved every element of TFOps, then we've lost the dependence on
23319 // NewChain to successors of St and we need to add it back to TFOps. Do so at
23320 // the beginning to keep relative order consistent with FindBetterChains.
23321 auto hasImprovedChain
= [&](SDValue ST
) -> bool {
23322 return ST
->getOperand(0) != NewChain
;
23324 bool AddNewChain
= llvm::all_of(TFOps
, hasImprovedChain
);
23326 TFOps
.insert(TFOps
.begin(), NewChain
);
23328 SDValue TF
= DAG
.getTokenFactor(SDLoc(STChain
), TFOps
);
23331 // Add TF and its operands to the worklist.
23332 AddToWorklist(TF
.getNode());
23333 for (const SDValue
&Op
: TF
->ops())
23334 AddToWorklist(Op
.getNode());
23335 AddToWorklist(STChain
);
23339 bool DAGCombiner::findBetterNeighborChains(StoreSDNode
*St
) {
23340 if (OptLevel
== CodeGenOpt::None
)
23343 const BaseIndexOffset BasePtr
= BaseIndexOffset::match(St
, DAG
);
23345 // We must have a base and an offset.
23346 if (!BasePtr
.getBase().getNode())
23349 // Do not handle stores to undef base pointers.
23350 if (BasePtr
.getBase().isUndef())
23353 // Directly improve a chain of disjoint stores starting at St.
23354 if (parallelizeChainedStores(St
))
23357 // Improve St's Chain..
23358 SDValue BetterChain
= FindBetterChain(St
, St
->getChain());
23359 if (St
->getChain() != BetterChain
) {
23360 replaceStoreChain(St
, BetterChain
);
23366 /// This is the entry point for the file.
23367 void SelectionDAG::Combine(CombineLevel Level
, AliasAnalysis
*AA
,
23368 CodeGenOpt::Level OptLevel
) {
23369 /// This is the main entry point to this class.
23370 DAGCombiner(*this, AA
, OptLevel
).Run(Level
);