1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This contains code dealing with C++ code generation of classes
11 //===----------------------------------------------------------------------===//
15 #include "CGDebugInfo.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/Basic/CodeGenOptions.h"
27 #include "clang/Basic/TargetBuiltins.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/Support/SaveAndRestore.h"
32 #include "llvm/Transforms/Utils/SanitizerStats.h"
35 using namespace clang
;
36 using namespace CodeGen
;
38 /// Return the best known alignment for an unknown pointer to a
40 CharUnits
CodeGenModule::getClassPointerAlignment(const CXXRecordDecl
*RD
) {
41 if (!RD
->hasDefinition())
42 return CharUnits::One(); // Hopefully won't be used anywhere.
44 auto &layout
= getContext().getASTRecordLayout(RD
);
46 // If the class is final, then we know that the pointer points to an
47 // object of that type and can use the full alignment.
48 if (RD
->isEffectivelyFinal())
49 return layout
.getAlignment();
51 // Otherwise, we have to assume it could be a subclass.
52 return layout
.getNonVirtualAlignment();
55 /// Return the smallest possible amount of storage that might be allocated
56 /// starting from the beginning of an object of a particular class.
58 /// This may be smaller than sizeof(RD) if RD has virtual base classes.
59 CharUnits
CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl
*RD
) {
60 if (!RD
->hasDefinition())
61 return CharUnits::One();
63 auto &layout
= getContext().getASTRecordLayout(RD
);
65 // If the class is final, then we know that the pointer points to an
66 // object of that type and can use the full alignment.
67 if (RD
->isEffectivelyFinal())
68 return layout
.getSize();
70 // Otherwise, we have to assume it could be a subclass.
71 return std::max(layout
.getNonVirtualSize(), CharUnits::One());
74 /// Return the best known alignment for a pointer to a virtual base,
75 /// given the alignment of a pointer to the derived class.
76 CharUnits
CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign
,
77 const CXXRecordDecl
*derivedClass
,
78 const CXXRecordDecl
*vbaseClass
) {
79 // The basic idea here is that an underaligned derived pointer might
80 // indicate an underaligned base pointer.
82 assert(vbaseClass
->isCompleteDefinition());
83 auto &baseLayout
= getContext().getASTRecordLayout(vbaseClass
);
84 CharUnits expectedVBaseAlign
= baseLayout
.getNonVirtualAlignment();
86 return getDynamicOffsetAlignment(actualDerivedAlign
, derivedClass
,
91 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign
,
92 const CXXRecordDecl
*baseDecl
,
93 CharUnits expectedTargetAlign
) {
94 // If the base is an incomplete type (which is, alas, possible with
95 // member pointers), be pessimistic.
96 if (!baseDecl
->isCompleteDefinition())
97 return std::min(actualBaseAlign
, expectedTargetAlign
);
99 auto &baseLayout
= getContext().getASTRecordLayout(baseDecl
);
100 CharUnits expectedBaseAlign
= baseLayout
.getNonVirtualAlignment();
102 // If the class is properly aligned, assume the target offset is, too.
104 // This actually isn't necessarily the right thing to do --- if the
105 // class is a complete object, but it's only properly aligned for a
106 // base subobject, then the alignments of things relative to it are
107 // probably off as well. (Note that this requires the alignment of
108 // the target to be greater than the NV alignment of the derived
111 // However, our approach to this kind of under-alignment can only
112 // ever be best effort; after all, we're never going to propagate
113 // alignments through variables or parameters. Note, in particular,
114 // that constructing a polymorphic type in an address that's less
115 // than pointer-aligned will generally trap in the constructor,
116 // unless we someday add some sort of attribute to change the
117 // assumed alignment of 'this'. So our goal here is pretty much
118 // just to allow the user to explicitly say that a pointer is
119 // under-aligned and then safely access its fields and vtables.
120 if (actualBaseAlign
>= expectedBaseAlign
) {
121 return expectedTargetAlign
;
124 // Otherwise, we might be offset by an arbitrary multiple of the
125 // actual alignment. The correct adjustment is to take the min of
126 // the two alignments.
127 return std::min(actualBaseAlign
, expectedTargetAlign
);
130 Address
CodeGenFunction::LoadCXXThisAddress() {
131 assert(CurFuncDecl
&& "loading 'this' without a func declaration?");
132 auto *MD
= cast
<CXXMethodDecl
>(CurFuncDecl
);
134 // Lazily compute CXXThisAlignment.
135 if (CXXThisAlignment
.isZero()) {
136 // Just use the best known alignment for the parent.
137 // TODO: if we're currently emitting a complete-object ctor/dtor,
138 // we can always use the complete-object alignment.
139 CXXThisAlignment
= CGM
.getClassPointerAlignment(MD
->getParent());
142 return makeNaturalAddressForPointer(
143 LoadCXXThis(), MD
->getFunctionObjectParameterType(), CXXThisAlignment
,
144 false, nullptr, nullptr, KnownNonNull
);
147 /// Emit the address of a field using a member data pointer.
149 /// \param E Only used for emergency diagnostics
151 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr
*E
, Address base
,
152 llvm::Value
*memberPtr
,
153 const MemberPointerType
*memberPtrType
,
154 LValueBaseInfo
*BaseInfo
,
155 TBAAAccessInfo
*TBAAInfo
) {
156 // Ask the ABI to compute the actual address.
158 CGM
.getCXXABI().EmitMemberDataPointerAddress(*this, E
, base
,
159 memberPtr
, memberPtrType
);
161 QualType memberType
= memberPtrType
->getPointeeType();
162 CharUnits memberAlign
=
163 CGM
.getNaturalTypeAlignment(memberType
, BaseInfo
, TBAAInfo
);
165 CGM
.getDynamicOffsetAlignment(base
.getAlignment(),
166 memberPtrType
->getClass()->getAsCXXRecordDecl(),
168 return Address(ptr
, ConvertTypeForMem(memberPtrType
->getPointeeType()),
172 CharUnits
CodeGenModule::computeNonVirtualBaseClassOffset(
173 const CXXRecordDecl
*DerivedClass
, CastExpr::path_const_iterator Start
,
174 CastExpr::path_const_iterator End
) {
175 CharUnits Offset
= CharUnits::Zero();
177 const ASTContext
&Context
= getContext();
178 const CXXRecordDecl
*RD
= DerivedClass
;
180 for (CastExpr::path_const_iterator I
= Start
; I
!= End
; ++I
) {
181 const CXXBaseSpecifier
*Base
= *I
;
182 assert(!Base
->isVirtual() && "Should not see virtual bases here!");
185 const ASTRecordLayout
&Layout
= Context
.getASTRecordLayout(RD
);
187 const auto *BaseDecl
=
188 cast
<CXXRecordDecl
>(Base
->getType()->castAs
<RecordType
>()->getDecl());
191 Offset
+= Layout
.getBaseClassOffset(BaseDecl
);
200 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl
*ClassDecl
,
201 CastExpr::path_const_iterator PathBegin
,
202 CastExpr::path_const_iterator PathEnd
) {
203 assert(PathBegin
!= PathEnd
&& "Base path should not be empty!");
206 computeNonVirtualBaseClassOffset(ClassDecl
, PathBegin
, PathEnd
);
210 llvm::Type
*PtrDiffTy
=
211 Types
.ConvertType(getContext().getPointerDiffType());
213 return llvm::ConstantInt::get(PtrDiffTy
, Offset
.getQuantity());
216 /// Gets the address of a direct base class within a complete object.
217 /// This should only be used for (1) non-virtual bases or (2) virtual bases
218 /// when the type is known to be complete (e.g. in complete destructors).
220 /// The object pointed to by 'This' is assumed to be non-null.
222 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This
,
223 const CXXRecordDecl
*Derived
,
224 const CXXRecordDecl
*Base
,
225 bool BaseIsVirtual
) {
226 // 'this' must be a pointer (in some address space) to Derived.
227 assert(This
.getElementType() == ConvertType(Derived
));
229 // Compute the offset of the virtual base.
231 const ASTRecordLayout
&Layout
= getContext().getASTRecordLayout(Derived
);
233 Offset
= Layout
.getVBaseClassOffset(Base
);
235 Offset
= Layout
.getBaseClassOffset(Base
);
237 // Shift and cast down to the base type.
238 // TODO: for complete types, this should be possible with a GEP.
240 if (!Offset
.isZero()) {
241 V
= V
.withElementType(Int8Ty
);
242 V
= Builder
.CreateConstInBoundsByteGEP(V
, Offset
);
244 return V
.withElementType(ConvertType(Base
));
248 ApplyNonVirtualAndVirtualOffset(CodeGenFunction
&CGF
, Address addr
,
249 CharUnits nonVirtualOffset
,
250 llvm::Value
*virtualOffset
,
251 const CXXRecordDecl
*derivedClass
,
252 const CXXRecordDecl
*nearestVBase
) {
253 // Assert that we have something to do.
254 assert(!nonVirtualOffset
.isZero() || virtualOffset
!= nullptr);
256 // Compute the offset from the static and dynamic components.
257 llvm::Value
*baseOffset
;
258 if (!nonVirtualOffset
.isZero()) {
259 llvm::Type
*OffsetType
=
260 (CGF
.CGM
.getTarget().getCXXABI().isItaniumFamily() &&
261 CGF
.CGM
.getItaniumVTableContext().isRelativeLayout())
265 llvm::ConstantInt::get(OffsetType
, nonVirtualOffset
.getQuantity());
267 baseOffset
= CGF
.Builder
.CreateAdd(virtualOffset
, baseOffset
);
270 baseOffset
= virtualOffset
;
273 // Apply the base offset.
274 llvm::Value
*ptr
= addr
.emitRawPointer(CGF
);
275 ptr
= CGF
.Builder
.CreateInBoundsGEP(CGF
.Int8Ty
, ptr
, baseOffset
, "add.ptr");
277 // If we have a virtual component, the alignment of the result will
278 // be relative only to the known alignment of that vbase.
281 assert(nearestVBase
&& "virtual offset without vbase?");
282 alignment
= CGF
.CGM
.getVBaseAlignment(addr
.getAlignment(),
283 derivedClass
, nearestVBase
);
285 alignment
= addr
.getAlignment();
287 alignment
= alignment
.alignmentAtOffset(nonVirtualOffset
);
289 return Address(ptr
, CGF
.Int8Ty
, alignment
);
292 Address
CodeGenFunction::GetAddressOfBaseClass(
293 Address Value
, const CXXRecordDecl
*Derived
,
294 CastExpr::path_const_iterator PathBegin
,
295 CastExpr::path_const_iterator PathEnd
, bool NullCheckValue
,
296 SourceLocation Loc
) {
297 assert(PathBegin
!= PathEnd
&& "Base path should not be empty!");
299 CastExpr::path_const_iterator Start
= PathBegin
;
300 const CXXRecordDecl
*VBase
= nullptr;
302 // Sema has done some convenient canonicalization here: if the
303 // access path involved any virtual steps, the conversion path will
304 // *start* with a step down to the correct virtual base subobject,
305 // and hence will not require any further steps.
306 if ((*Start
)->isVirtual()) {
307 VBase
= cast
<CXXRecordDecl
>(
308 (*Start
)->getType()->castAs
<RecordType
>()->getDecl());
312 // Compute the static offset of the ultimate destination within its
313 // allocating subobject (the virtual base, if there is one, or else
314 // the "complete" object that we see).
315 CharUnits NonVirtualOffset
= CGM
.computeNonVirtualBaseClassOffset(
316 VBase
? VBase
: Derived
, Start
, PathEnd
);
318 // If there's a virtual step, we can sometimes "devirtualize" it.
319 // For now, that's limited to when the derived type is final.
320 // TODO: "devirtualize" this for accesses to known-complete objects.
321 if (VBase
&& Derived
->hasAttr
<FinalAttr
>()) {
322 const ASTRecordLayout
&layout
= getContext().getASTRecordLayout(Derived
);
323 CharUnits vBaseOffset
= layout
.getVBaseClassOffset(VBase
);
324 NonVirtualOffset
+= vBaseOffset
;
325 VBase
= nullptr; // we no longer have a virtual step
328 // Get the base pointer type.
329 llvm::Type
*BaseValueTy
= ConvertType((PathEnd
[-1])->getType());
330 llvm::Type
*PtrTy
= llvm::PointerType::get(
331 CGM
.getLLVMContext(), Value
.getType()->getPointerAddressSpace());
333 QualType DerivedTy
= getContext().getRecordType(Derived
);
334 CharUnits DerivedAlign
= CGM
.getClassPointerAlignment(Derived
);
336 // If the static offset is zero and we don't have a virtual step,
337 // just do a bitcast; null checks are unnecessary.
338 if (NonVirtualOffset
.isZero() && !VBase
) {
339 if (sanitizePerformTypeCheck()) {
340 SanitizerSet SkippedChecks
;
341 SkippedChecks
.set(SanitizerKind::Null
, !NullCheckValue
);
342 EmitTypeCheck(TCK_Upcast
, Loc
, Value
.emitRawPointer(*this), DerivedTy
,
343 DerivedAlign
, SkippedChecks
);
345 return Value
.withElementType(BaseValueTy
);
348 llvm::BasicBlock
*origBB
= nullptr;
349 llvm::BasicBlock
*endBB
= nullptr;
351 // Skip over the offset (and the vtable load) if we're supposed to
352 // null-check the pointer.
353 if (NullCheckValue
) {
354 origBB
= Builder
.GetInsertBlock();
355 llvm::BasicBlock
*notNullBB
= createBasicBlock("cast.notnull");
356 endBB
= createBasicBlock("cast.end");
358 llvm::Value
*isNull
= Builder
.CreateIsNull(Value
);
359 Builder
.CreateCondBr(isNull
, endBB
, notNullBB
);
360 EmitBlock(notNullBB
);
363 if (sanitizePerformTypeCheck()) {
364 SanitizerSet SkippedChecks
;
365 SkippedChecks
.set(SanitizerKind::Null
, true);
366 EmitTypeCheck(VBase
? TCK_UpcastToVirtualBase
: TCK_Upcast
, Loc
,
367 Value
.emitRawPointer(*this), DerivedTy
, DerivedAlign
,
371 // Compute the virtual offset.
372 llvm::Value
*VirtualOffset
= nullptr;
375 CGM
.getCXXABI().GetVirtualBaseClassOffset(*this, Value
, Derived
, VBase
);
378 // Apply both offsets.
379 Value
= ApplyNonVirtualAndVirtualOffset(*this, Value
, NonVirtualOffset
,
380 VirtualOffset
, Derived
, VBase
);
382 // Cast to the destination type.
383 Value
= Value
.withElementType(BaseValueTy
);
385 // Build a phi if we needed a null check.
386 if (NullCheckValue
) {
387 llvm::BasicBlock
*notNullBB
= Builder
.GetInsertBlock();
388 Builder
.CreateBr(endBB
);
391 llvm::PHINode
*PHI
= Builder
.CreatePHI(PtrTy
, 2, "cast.result");
392 PHI
->addIncoming(Value
.emitRawPointer(*this), notNullBB
);
393 PHI
->addIncoming(llvm::Constant::getNullValue(PtrTy
), origBB
);
394 Value
= Value
.withPointer(PHI
, NotKnownNonNull
);
401 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr
,
402 const CXXRecordDecl
*Derived
,
403 CastExpr::path_const_iterator PathBegin
,
404 CastExpr::path_const_iterator PathEnd
,
405 bool NullCheckValue
) {
406 assert(PathBegin
!= PathEnd
&& "Base path should not be empty!");
409 getContext().getCanonicalType(getContext().getTagDeclType(Derived
));
410 llvm::Type
*DerivedValueTy
= ConvertType(DerivedTy
);
412 llvm::Value
*NonVirtualOffset
=
413 CGM
.GetNonVirtualBaseClassOffset(Derived
, PathBegin
, PathEnd
);
415 if (!NonVirtualOffset
) {
416 // No offset, we can just cast back.
417 return BaseAddr
.withElementType(DerivedValueTy
);
420 llvm::BasicBlock
*CastNull
= nullptr;
421 llvm::BasicBlock
*CastNotNull
= nullptr;
422 llvm::BasicBlock
*CastEnd
= nullptr;
424 if (NullCheckValue
) {
425 CastNull
= createBasicBlock("cast.null");
426 CastNotNull
= createBasicBlock("cast.notnull");
427 CastEnd
= createBasicBlock("cast.end");
429 llvm::Value
*IsNull
= Builder
.CreateIsNull(BaseAddr
);
430 Builder
.CreateCondBr(IsNull
, CastNull
, CastNotNull
);
431 EmitBlock(CastNotNull
);
435 Address Addr
= BaseAddr
.withElementType(Int8Ty
);
436 Addr
= Builder
.CreateInBoundsGEP(
437 Addr
, Builder
.CreateNeg(NonVirtualOffset
), Int8Ty
,
438 CGM
.getClassPointerAlignment(Derived
), "sub.ptr");
441 Addr
= Addr
.withElementType(DerivedValueTy
);
443 // Produce a PHI if we had a null-check.
444 if (NullCheckValue
) {
445 Builder
.CreateBr(CastEnd
);
447 Builder
.CreateBr(CastEnd
);
450 llvm::Value
*Value
= Addr
.emitRawPointer(*this);
451 llvm::PHINode
*PHI
= Builder
.CreatePHI(Value
->getType(), 2);
452 PHI
->addIncoming(Value
, CastNotNull
);
453 PHI
->addIncoming(llvm::Constant::getNullValue(Value
->getType()), CastNull
);
454 return Address(PHI
, Addr
.getElementType(),
455 CGM
.getClassPointerAlignment(Derived
));
461 llvm::Value
*CodeGenFunction::GetVTTParameter(GlobalDecl GD
,
464 if (!CGM
.getCXXABI().NeedsVTTParameter(GD
)) {
465 // This constructor/destructor does not need a VTT parameter.
469 const CXXRecordDecl
*RD
= cast
<CXXMethodDecl
>(CurCodeDecl
)->getParent();
470 const CXXRecordDecl
*Base
= cast
<CXXMethodDecl
>(GD
.getDecl())->getParent();
472 uint64_t SubVTTIndex
;
475 // If this is a delegating constructor call, just load the VTT.
477 } else if (RD
== Base
) {
478 // If the record matches the base, this is the complete ctor/dtor
479 // variant calling the base variant in a class with virtual bases.
480 assert(!CGM
.getCXXABI().NeedsVTTParameter(CurGD
) &&
481 "doing no-op VTT offset in base dtor/ctor?");
482 assert(!ForVirtualBase
&& "Can't have same class as virtual base!");
485 const ASTRecordLayout
&Layout
= getContext().getASTRecordLayout(RD
);
486 CharUnits BaseOffset
= ForVirtualBase
?
487 Layout
.getVBaseClassOffset(Base
) :
488 Layout
.getBaseClassOffset(Base
);
491 CGM
.getVTables().getSubVTTIndex(RD
, BaseSubobject(Base
, BaseOffset
));
492 assert(SubVTTIndex
!= 0 && "Sub-VTT index must be greater than zero!");
495 if (CGM
.getCXXABI().NeedsVTTParameter(CurGD
)) {
496 // A VTT parameter was passed to the constructor, use it.
497 llvm::Value
*VTT
= LoadCXXVTT();
498 return Builder
.CreateConstInBoundsGEP1_64(VoidPtrTy
, VTT
, SubVTTIndex
);
500 // We're the complete constructor, so get the VTT by name.
501 llvm::GlobalValue
*VTT
= CGM
.getVTables().GetAddrOfVTT(RD
);
502 return Builder
.CreateConstInBoundsGEP2_64(
503 VTT
->getValueType(), VTT
, 0, SubVTTIndex
);
508 /// Call the destructor for a direct base class.
509 struct CallBaseDtor final
: EHScopeStack::Cleanup
{
510 const CXXRecordDecl
*BaseClass
;
512 CallBaseDtor(const CXXRecordDecl
*Base
, bool BaseIsVirtual
)
513 : BaseClass(Base
), BaseIsVirtual(BaseIsVirtual
) {}
515 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
516 const CXXRecordDecl
*DerivedClass
=
517 cast
<CXXMethodDecl
>(CGF
.CurCodeDecl
)->getParent();
519 const CXXDestructorDecl
*D
= BaseClass
->getDestructor();
520 // We are already inside a destructor, so presumably the object being
521 // destroyed should have the expected type.
522 QualType ThisTy
= D
->getFunctionObjectParameterType();
524 CGF
.GetAddressOfDirectBaseInCompleteClass(CGF
.LoadCXXThisAddress(),
525 DerivedClass
, BaseClass
,
527 CGF
.EmitCXXDestructorCall(D
, Dtor_Base
, BaseIsVirtual
,
528 /*Delegating=*/false, Addr
, ThisTy
);
532 /// A visitor which checks whether an initializer uses 'this' in a
533 /// way which requires the vtable to be properly set.
534 struct DynamicThisUseChecker
: ConstEvaluatedExprVisitor
<DynamicThisUseChecker
> {
535 typedef ConstEvaluatedExprVisitor
<DynamicThisUseChecker
> super
;
539 DynamicThisUseChecker(const ASTContext
&C
) : super(C
), UsesThis(false) {}
541 // Black-list all explicit and implicit references to 'this'.
543 // Do we need to worry about external references to 'this' derived
544 // from arbitrary code? If so, then anything which runs arbitrary
545 // external code might potentially access the vtable.
546 void VisitCXXThisExpr(const CXXThisExpr
*E
) { UsesThis
= true; }
548 } // end anonymous namespace
550 static bool BaseInitializerUsesThis(ASTContext
&C
, const Expr
*Init
) {
551 DynamicThisUseChecker
Checker(C
);
553 return Checker
.UsesThis
;
556 static void EmitBaseInitializer(CodeGenFunction
&CGF
,
557 const CXXRecordDecl
*ClassDecl
,
558 CXXCtorInitializer
*BaseInit
) {
559 assert(BaseInit
->isBaseInitializer() &&
560 "Must have base initializer!");
562 Address ThisPtr
= CGF
.LoadCXXThisAddress();
564 const Type
*BaseType
= BaseInit
->getBaseClass();
565 const auto *BaseClassDecl
=
566 cast
<CXXRecordDecl
>(BaseType
->castAs
<RecordType
>()->getDecl());
568 bool isBaseVirtual
= BaseInit
->isBaseVirtual();
570 // If the initializer for the base (other than the constructor
571 // itself) accesses 'this' in any way, we need to initialize the
573 if (BaseInitializerUsesThis(CGF
.getContext(), BaseInit
->getInit()))
574 CGF
.InitializeVTablePointers(ClassDecl
);
576 // We can pretend to be a complete class because it only matters for
577 // virtual bases, and we only do virtual bases for complete ctors.
579 CGF
.GetAddressOfDirectBaseInCompleteClass(ThisPtr
, ClassDecl
,
582 AggValueSlot AggSlot
=
583 AggValueSlot::forAddr(
585 AggValueSlot::IsDestructed
,
586 AggValueSlot::DoesNotNeedGCBarriers
,
587 AggValueSlot::IsNotAliased
,
588 CGF
.getOverlapForBaseInit(ClassDecl
, BaseClassDecl
, isBaseVirtual
));
590 CGF
.EmitAggExpr(BaseInit
->getInit(), AggSlot
);
592 if (CGF
.CGM
.getLangOpts().Exceptions
&&
593 !BaseClassDecl
->hasTrivialDestructor())
594 CGF
.EHStack
.pushCleanup
<CallBaseDtor
>(EHCleanup
, BaseClassDecl
,
598 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl
*D
) {
599 auto *CD
= dyn_cast
<CXXConstructorDecl
>(D
);
600 if (!(CD
&& CD
->isCopyOrMoveConstructor()) &&
601 !D
->isCopyAssignmentOperator() && !D
->isMoveAssignmentOperator())
604 // We can emit a memcpy for a trivial copy or move constructor/assignment.
605 if (D
->isTrivial() && !D
->getParent()->mayInsertExtraPadding())
608 // We *must* emit a memcpy for a defaulted union copy or move op.
609 if (D
->getParent()->isUnion() && D
->isDefaulted())
615 static void EmitLValueForAnyFieldInitialization(CodeGenFunction
&CGF
,
616 CXXCtorInitializer
*MemberInit
,
618 FieldDecl
*Field
= MemberInit
->getAnyMember();
619 if (MemberInit
->isIndirectMemberInitializer()) {
620 // If we are initializing an anonymous union field, drill down to the field.
621 IndirectFieldDecl
*IndirectField
= MemberInit
->getIndirectMember();
622 for (const auto *I
: IndirectField
->chain())
623 LHS
= CGF
.EmitLValueForFieldInitialization(LHS
, cast
<FieldDecl
>(I
));
625 LHS
= CGF
.EmitLValueForFieldInitialization(LHS
, Field
);
629 static void EmitMemberInitializer(CodeGenFunction
&CGF
,
630 const CXXRecordDecl
*ClassDecl
,
631 CXXCtorInitializer
*MemberInit
,
632 const CXXConstructorDecl
*Constructor
,
633 FunctionArgList
&Args
) {
634 ApplyDebugLocation
Loc(CGF
, MemberInit
->getSourceLocation());
635 assert(MemberInit
->isAnyMemberInitializer() &&
636 "Must have member initializer!");
637 assert(MemberInit
->getInit() && "Must have initializer!");
639 // non-static data member initializers.
640 FieldDecl
*Field
= MemberInit
->getAnyMember();
641 QualType FieldType
= Field
->getType();
643 llvm::Value
*ThisPtr
= CGF
.LoadCXXThis();
644 QualType RecordTy
= CGF
.getContext().getTypeDeclType(ClassDecl
);
647 // If a base constructor is being emitted, create an LValue that has the
648 // non-virtual alignment.
649 if (CGF
.CurGD
.getCtorType() == Ctor_Base
)
650 LHS
= CGF
.MakeNaturalAlignPointeeAddrLValue(ThisPtr
, RecordTy
);
652 LHS
= CGF
.MakeNaturalAlignAddrLValue(ThisPtr
, RecordTy
);
654 EmitLValueForAnyFieldInitialization(CGF
, MemberInit
, LHS
);
656 // Special case: if we are in a copy or move constructor, and we are copying
657 // an array of PODs or classes with trivial copy constructors, ignore the
658 // AST and perform the copy we know is equivalent.
659 // FIXME: This is hacky at best... if we had a bit more explicit information
660 // in the AST, we could generalize it more easily.
661 const ConstantArrayType
*Array
662 = CGF
.getContext().getAsConstantArrayType(FieldType
);
663 if (Array
&& Constructor
->isDefaulted() &&
664 Constructor
->isCopyOrMoveConstructor()) {
665 QualType BaseElementTy
= CGF
.getContext().getBaseElementType(Array
);
666 CXXConstructExpr
*CE
= dyn_cast
<CXXConstructExpr
>(MemberInit
->getInit());
667 if (BaseElementTy
.isPODType(CGF
.getContext()) ||
668 (CE
&& isMemcpyEquivalentSpecialMember(CE
->getConstructor()))) {
669 unsigned SrcArgIndex
=
670 CGF
.CGM
.getCXXABI().getSrcArgforCopyCtor(Constructor
, Args
);
672 = CGF
.Builder
.CreateLoad(CGF
.GetAddrOfLocalVar(Args
[SrcArgIndex
]));
673 LValue ThisRHSLV
= CGF
.MakeNaturalAlignAddrLValue(SrcPtr
, RecordTy
);
674 LValue Src
= CGF
.EmitLValueForFieldInitialization(ThisRHSLV
, Field
);
676 // Copy the aggregate.
677 CGF
.EmitAggregateCopy(LHS
, Src
, FieldType
, CGF
.getOverlapForFieldInit(Field
),
678 LHS
.isVolatileQualified());
679 // Ensure that we destroy the objects if an exception is thrown later in
681 QualType::DestructionKind dtorKind
= FieldType
.isDestructedType();
682 if (CGF
.needsEHCleanup(dtorKind
))
683 CGF
.pushEHDestroy(dtorKind
, LHS
.getAddress(CGF
), FieldType
);
688 CGF
.EmitInitializerForField(Field
, LHS
, MemberInit
->getInit());
691 void CodeGenFunction::EmitInitializerForField(FieldDecl
*Field
, LValue LHS
,
693 QualType FieldType
= Field
->getType();
694 switch (getEvaluationKind(FieldType
)) {
696 if (LHS
.isSimple()) {
697 EmitExprAsInit(Init
, Field
, LHS
, false);
699 RValue RHS
= RValue::get(EmitScalarExpr(Init
));
700 EmitStoreThroughLValue(RHS
, LHS
);
704 EmitComplexExprIntoLValue(Init
, LHS
, /*isInit*/ true);
706 case TEK_Aggregate
: {
707 AggValueSlot Slot
= AggValueSlot::forLValue(
708 LHS
, *this, AggValueSlot::IsDestructed
,
709 AggValueSlot::DoesNotNeedGCBarriers
, AggValueSlot::IsNotAliased
,
710 getOverlapForFieldInit(Field
), AggValueSlot::IsNotZeroed
,
711 // Checks are made by the code that calls constructor.
712 AggValueSlot::IsSanitizerChecked
);
713 EmitAggExpr(Init
, Slot
);
718 // Ensure that we destroy this object if an exception is thrown
719 // later in the constructor.
720 QualType::DestructionKind dtorKind
= FieldType
.isDestructedType();
721 if (needsEHCleanup(dtorKind
))
722 pushEHDestroy(dtorKind
, LHS
.getAddress(*this), FieldType
);
725 /// Checks whether the given constructor is a valid subject for the
726 /// complete-to-base constructor delegation optimization, i.e.
727 /// emitting the complete constructor as a simple call to the base
729 bool CodeGenFunction::IsConstructorDelegationValid(
730 const CXXConstructorDecl
*Ctor
) {
732 // Currently we disable the optimization for classes with virtual
733 // bases because (1) the addresses of parameter variables need to be
734 // consistent across all initializers but (2) the delegate function
735 // call necessarily creates a second copy of the parameter variable.
737 // The limiting example (purely theoretical AFAIK):
738 // struct A { A(int &c) { c++; } };
739 // struct B : virtual A {
740 // B(int count) : A(count) { printf("%d\n", count); }
742 // ...although even this example could in principle be emitted as a
743 // delegation since the address of the parameter doesn't escape.
744 if (Ctor
->getParent()->getNumVBases()) {
745 // TODO: white-list trivial vbase initializers. This case wouldn't
746 // be subject to the restrictions below.
748 // TODO: white-list cases where:
749 // - there are no non-reference parameters to the constructor
750 // - the initializers don't access any non-reference parameters
751 // - the initializers don't take the address of non-reference
754 // If we ever add any of the above cases, remember that:
755 // - function-try-blocks will always exclude this optimization
756 // - we need to perform the constructor prologue and cleanup in
757 // EmitConstructorBody.
762 // We also disable the optimization for variadic functions because
763 // it's impossible to "re-pass" varargs.
764 if (Ctor
->getType()->castAs
<FunctionProtoType
>()->isVariadic())
767 // FIXME: Decide if we can do a delegation of a delegating constructor.
768 if (Ctor
->isDelegatingConstructor())
774 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
775 // to poison the extra field paddings inserted under
776 // -fsanitize-address-field-padding=1|2.
777 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue
) {
778 ASTContext
&Context
= getContext();
779 const CXXRecordDecl
*ClassDecl
=
780 Prologue
? cast
<CXXConstructorDecl
>(CurGD
.getDecl())->getParent()
781 : cast
<CXXDestructorDecl
>(CurGD
.getDecl())->getParent();
782 if (!ClassDecl
->mayInsertExtraPadding()) return;
784 struct SizeAndOffset
{
789 unsigned PtrSize
= CGM
.getDataLayout().getPointerSizeInBits();
790 const ASTRecordLayout
&Info
= Context
.getASTRecordLayout(ClassDecl
);
792 // Populate sizes and offsets of fields.
793 SmallVector
<SizeAndOffset
, 16> SSV(Info
.getFieldCount());
794 for (unsigned i
= 0, e
= Info
.getFieldCount(); i
!= e
; ++i
)
796 Context
.toCharUnitsFromBits(Info
.getFieldOffset(i
)).getQuantity();
798 size_t NumFields
= 0;
799 for (const auto *Field
: ClassDecl
->fields()) {
800 const FieldDecl
*D
= Field
;
801 auto FieldInfo
= Context
.getTypeInfoInChars(D
->getType());
802 CharUnits FieldSize
= FieldInfo
.Width
;
803 assert(NumFields
< SSV
.size());
804 SSV
[NumFields
].Size
= D
->isBitField() ? 0 : FieldSize
.getQuantity();
807 assert(NumFields
== SSV
.size());
808 if (SSV
.size() <= 1) return;
810 // We will insert calls to __asan_* run-time functions.
811 // LLVM AddressSanitizer pass may decide to inline them later.
812 llvm::Type
*Args
[2] = {IntPtrTy
, IntPtrTy
};
813 llvm::FunctionType
*FTy
=
814 llvm::FunctionType::get(CGM
.VoidTy
, Args
, false);
815 llvm::FunctionCallee F
= CGM
.CreateRuntimeFunction(
816 FTy
, Prologue
? "__asan_poison_intra_object_redzone"
817 : "__asan_unpoison_intra_object_redzone");
819 llvm::Value
*ThisPtr
= LoadCXXThis();
820 ThisPtr
= Builder
.CreatePtrToInt(ThisPtr
, IntPtrTy
);
821 uint64_t TypeSize
= Info
.getNonVirtualSize().getQuantity();
822 // For each field check if it has sufficient padding,
823 // if so (un)poison it with a call.
824 for (size_t i
= 0; i
< SSV
.size(); i
++) {
825 uint64_t AsanAlignment
= 8;
826 uint64_t NextField
= i
== SSV
.size() - 1 ? TypeSize
: SSV
[i
+ 1].Offset
;
827 uint64_t PoisonSize
= NextField
- SSV
[i
].Offset
- SSV
[i
].Size
;
828 uint64_t EndOffset
= SSV
[i
].Offset
+ SSV
[i
].Size
;
829 if (PoisonSize
< AsanAlignment
|| !SSV
[i
].Size
||
830 (NextField
% AsanAlignment
) != 0)
833 F
, {Builder
.CreateAdd(ThisPtr
, Builder
.getIntN(PtrSize
, EndOffset
)),
834 Builder
.getIntN(PtrSize
, PoisonSize
)});
838 /// EmitConstructorBody - Emits the body of the current constructor.
839 void CodeGenFunction::EmitConstructorBody(FunctionArgList
&Args
) {
840 EmitAsanPrologueOrEpilogue(true);
841 const CXXConstructorDecl
*Ctor
= cast
<CXXConstructorDecl
>(CurGD
.getDecl());
842 CXXCtorType CtorType
= CurGD
.getCtorType();
844 assert((CGM
.getTarget().getCXXABI().hasConstructorVariants() ||
845 CtorType
== Ctor_Complete
) &&
846 "can only generate complete ctor for this ABI");
848 // Before we go any further, try the complete->base constructor
849 // delegation optimization.
850 if (CtorType
== Ctor_Complete
&& IsConstructorDelegationValid(Ctor
) &&
851 CGM
.getTarget().getCXXABI().hasConstructorVariants()) {
852 EmitDelegateCXXConstructorCall(Ctor
, Ctor_Base
, Args
, Ctor
->getEndLoc());
856 const FunctionDecl
*Definition
= nullptr;
857 Stmt
*Body
= Ctor
->getBody(Definition
);
858 assert(Definition
== Ctor
&& "emitting wrong constructor body");
860 // Enter the function-try-block before the constructor prologue if
862 bool IsTryBody
= (Body
&& isa
<CXXTryStmt
>(Body
));
864 EnterCXXTryStmt(*cast
<CXXTryStmt
>(Body
), true);
866 incrementProfileCounter(Body
);
867 maybeCreateMCDCCondBitmap();
869 RunCleanupsScope
RunCleanups(*this);
871 // TODO: in restricted cases, we can emit the vbase initializers of
872 // a complete ctor and then delegate to the base ctor.
874 // Emit the constructor prologue, i.e. the base and member
876 EmitCtorPrologue(Ctor
, CtorType
, Args
);
878 // Emit the body of the statement.
880 EmitStmt(cast
<CXXTryStmt
>(Body
)->getTryBlock());
884 // Emit any cleanup blocks associated with the member or base
885 // initializers, which includes (along the exceptional path) the
886 // destructors for those members and bases that were fully
888 RunCleanups
.ForceCleanup();
891 ExitCXXTryStmt(*cast
<CXXTryStmt
>(Body
), true);
895 /// RAII object to indicate that codegen is copying the value representation
896 /// instead of the object representation. Useful when copying a struct or
897 /// class which has uninitialized members and we're only performing
898 /// lvalue-to-rvalue conversion on the object but not its members.
899 class CopyingValueRepresentation
{
901 explicit CopyingValueRepresentation(CodeGenFunction
&CGF
)
902 : CGF(CGF
), OldSanOpts(CGF
.SanOpts
) {
903 CGF
.SanOpts
.set(SanitizerKind::Bool
, false);
904 CGF
.SanOpts
.set(SanitizerKind::Enum
, false);
906 ~CopyingValueRepresentation() {
907 CGF
.SanOpts
= OldSanOpts
;
910 CodeGenFunction
&CGF
;
911 SanitizerSet OldSanOpts
;
913 } // end anonymous namespace
916 class FieldMemcpyizer
{
918 FieldMemcpyizer(CodeGenFunction
&CGF
, const CXXRecordDecl
*ClassDecl
,
919 const VarDecl
*SrcRec
)
920 : CGF(CGF
), ClassDecl(ClassDecl
), SrcRec(SrcRec
),
921 RecLayout(CGF
.getContext().getASTRecordLayout(ClassDecl
)),
922 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
923 LastFieldOffset(0), LastAddedFieldIndex(0) {}
925 bool isMemcpyableField(FieldDecl
*F
) const {
926 // Never memcpy fields when we are adding poisoned paddings.
927 if (CGF
.getContext().getLangOpts().SanitizeAddressFieldPadding
)
929 Qualifiers Qual
= F
->getType().getQualifiers();
930 if (Qual
.hasVolatile() || Qual
.hasObjCLifetime())
935 void addMemcpyableField(FieldDecl
*F
) {
936 if (F
->isZeroSize(CGF
.getContext()))
944 CharUnits
getMemcpySize(uint64_t FirstByteOffset
) const {
945 ASTContext
&Ctx
= CGF
.getContext();
946 unsigned LastFieldSize
=
947 LastField
->isBitField()
948 ? LastField
->getBitWidthValue(Ctx
)
950 Ctx
.getTypeInfoDataSizeInChars(LastField
->getType()).Width
);
951 uint64_t MemcpySizeBits
= LastFieldOffset
+ LastFieldSize
-
952 FirstByteOffset
+ Ctx
.getCharWidth() - 1;
953 CharUnits MemcpySize
= Ctx
.toCharUnitsFromBits(MemcpySizeBits
);
958 // Give the subclass a chance to bail out if it feels the memcpy isn't
959 // worth it (e.g. Hasn't aggregated enough data).
964 uint64_t FirstByteOffset
;
965 if (FirstField
->isBitField()) {
966 const CGRecordLayout
&RL
=
967 CGF
.getTypes().getCGRecordLayout(FirstField
->getParent());
968 const CGBitFieldInfo
&BFInfo
= RL
.getBitFieldInfo(FirstField
);
969 // FirstFieldOffset is not appropriate for bitfields,
970 // we need to use the storage offset instead.
971 FirstByteOffset
= CGF
.getContext().toBits(BFInfo
.StorageOffset
);
973 FirstByteOffset
= FirstFieldOffset
;
976 CharUnits MemcpySize
= getMemcpySize(FirstByteOffset
);
977 QualType RecordTy
= CGF
.getContext().getTypeDeclType(ClassDecl
);
978 Address ThisPtr
= CGF
.LoadCXXThisAddress();
979 LValue DestLV
= CGF
.MakeAddrLValue(ThisPtr
, RecordTy
);
980 LValue Dest
= CGF
.EmitLValueForFieldInitialization(DestLV
, FirstField
);
981 llvm::Value
*SrcPtr
= CGF
.Builder
.CreateLoad(CGF
.GetAddrOfLocalVar(SrcRec
));
982 LValue SrcLV
= CGF
.MakeNaturalAlignAddrLValue(SrcPtr
, RecordTy
);
983 LValue Src
= CGF
.EmitLValueForFieldInitialization(SrcLV
, FirstField
);
986 Dest
.isBitField() ? Dest
.getBitFieldAddress() : Dest
.getAddress(CGF
),
987 Src
.isBitField() ? Src
.getBitFieldAddress() : Src
.getAddress(CGF
),
993 FirstField
= nullptr;
997 CodeGenFunction
&CGF
;
998 const CXXRecordDecl
*ClassDecl
;
1001 void emitMemcpyIR(Address DestPtr
, Address SrcPtr
, CharUnits Size
) {
1002 DestPtr
= DestPtr
.withElementType(CGF
.Int8Ty
);
1003 SrcPtr
= SrcPtr
.withElementType(CGF
.Int8Ty
);
1004 CGF
.Builder
.CreateMemCpy(DestPtr
, SrcPtr
, Size
.getQuantity());
1007 void addInitialField(FieldDecl
*F
) {
1010 FirstFieldOffset
= RecLayout
.getFieldOffset(F
->getFieldIndex());
1011 LastFieldOffset
= FirstFieldOffset
;
1012 LastAddedFieldIndex
= F
->getFieldIndex();
1015 void addNextField(FieldDecl
*F
) {
1016 // For the most part, the following invariant will hold:
1017 // F->getFieldIndex() == LastAddedFieldIndex + 1
1018 // The one exception is that Sema won't add a copy-initializer for an
1019 // unnamed bitfield, which will show up here as a gap in the sequence.
1020 assert(F
->getFieldIndex() >= LastAddedFieldIndex
+ 1 &&
1021 "Cannot aggregate fields out of order.");
1022 LastAddedFieldIndex
= F
->getFieldIndex();
1024 // The 'first' and 'last' fields are chosen by offset, rather than field
1025 // index. This allows the code to support bitfields, as well as regular
1027 uint64_t FOffset
= RecLayout
.getFieldOffset(F
->getFieldIndex());
1028 if (FOffset
< FirstFieldOffset
) {
1030 FirstFieldOffset
= FOffset
;
1031 } else if (FOffset
>= LastFieldOffset
) {
1033 LastFieldOffset
= FOffset
;
1037 const VarDecl
*SrcRec
;
1038 const ASTRecordLayout
&RecLayout
;
1039 FieldDecl
*FirstField
;
1040 FieldDecl
*LastField
;
1041 uint64_t FirstFieldOffset
, LastFieldOffset
;
1042 unsigned LastAddedFieldIndex
;
1045 class ConstructorMemcpyizer
: public FieldMemcpyizer
{
1047 /// Get source argument for copy constructor. Returns null if not a copy
1049 static const VarDecl
*getTrivialCopySource(CodeGenFunction
&CGF
,
1050 const CXXConstructorDecl
*CD
,
1051 FunctionArgList
&Args
) {
1052 if (CD
->isCopyOrMoveConstructor() && CD
->isDefaulted())
1053 return Args
[CGF
.CGM
.getCXXABI().getSrcArgforCopyCtor(CD
, Args
)];
1057 // Returns true if a CXXCtorInitializer represents a member initialization
1058 // that can be rolled into a memcpy.
1059 bool isMemberInitMemcpyable(CXXCtorInitializer
*MemberInit
) const {
1060 if (!MemcpyableCtor
)
1062 FieldDecl
*Field
= MemberInit
->getMember();
1063 assert(Field
&& "No field for member init.");
1064 QualType FieldType
= Field
->getType();
1065 CXXConstructExpr
*CE
= dyn_cast
<CXXConstructExpr
>(MemberInit
->getInit());
1067 // Bail out on non-memcpyable, not-trivially-copyable members.
1068 if (!(CE
&& isMemcpyEquivalentSpecialMember(CE
->getConstructor())) &&
1069 !(FieldType
.isTriviallyCopyableType(CGF
.getContext()) ||
1070 FieldType
->isReferenceType()))
1073 // Bail out on volatile fields.
1074 if (!isMemcpyableField(Field
))
1077 // Otherwise we're good.
1082 ConstructorMemcpyizer(CodeGenFunction
&CGF
, const CXXConstructorDecl
*CD
,
1083 FunctionArgList
&Args
)
1084 : FieldMemcpyizer(CGF
, CD
->getParent(), getTrivialCopySource(CGF
, CD
, Args
)),
1085 ConstructorDecl(CD
),
1086 MemcpyableCtor(CD
->isDefaulted() &&
1087 CD
->isCopyOrMoveConstructor() &&
1088 CGF
.getLangOpts().getGC() == LangOptions::NonGC
),
1091 void addMemberInitializer(CXXCtorInitializer
*MemberInit
) {
1092 if (isMemberInitMemcpyable(MemberInit
)) {
1093 AggregatedInits
.push_back(MemberInit
);
1094 addMemcpyableField(MemberInit
->getMember());
1096 emitAggregatedInits();
1097 EmitMemberInitializer(CGF
, ConstructorDecl
->getParent(), MemberInit
,
1098 ConstructorDecl
, Args
);
1102 void emitAggregatedInits() {
1103 if (AggregatedInits
.size() <= 1) {
1104 // This memcpy is too small to be worthwhile. Fall back on default
1106 if (!AggregatedInits
.empty()) {
1107 CopyingValueRepresentation
CVR(CGF
);
1108 EmitMemberInitializer(CGF
, ConstructorDecl
->getParent(),
1109 AggregatedInits
[0], ConstructorDecl
, Args
);
1110 AggregatedInits
.clear();
1116 pushEHDestructors();
1118 AggregatedInits
.clear();
1121 void pushEHDestructors() {
1122 Address ThisPtr
= CGF
.LoadCXXThisAddress();
1123 QualType RecordTy
= CGF
.getContext().getTypeDeclType(ClassDecl
);
1124 LValue LHS
= CGF
.MakeAddrLValue(ThisPtr
, RecordTy
);
1126 for (unsigned i
= 0; i
< AggregatedInits
.size(); ++i
) {
1127 CXXCtorInitializer
*MemberInit
= AggregatedInits
[i
];
1128 QualType FieldType
= MemberInit
->getAnyMember()->getType();
1129 QualType::DestructionKind dtorKind
= FieldType
.isDestructedType();
1130 if (!CGF
.needsEHCleanup(dtorKind
))
1132 LValue FieldLHS
= LHS
;
1133 EmitLValueForAnyFieldInitialization(CGF
, MemberInit
, FieldLHS
);
1134 CGF
.pushEHDestroy(dtorKind
, FieldLHS
.getAddress(CGF
), FieldType
);
1139 emitAggregatedInits();
1143 const CXXConstructorDecl
*ConstructorDecl
;
1144 bool MemcpyableCtor
;
1145 FunctionArgList
&Args
;
1146 SmallVector
<CXXCtorInitializer
*, 16> AggregatedInits
;
1149 class AssignmentMemcpyizer
: public FieldMemcpyizer
{
1151 // Returns the memcpyable field copied by the given statement, if one
1152 // exists. Otherwise returns null.
1153 FieldDecl
*getMemcpyableField(Stmt
*S
) {
1154 if (!AssignmentsMemcpyable
)
1156 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(S
)) {
1157 // Recognise trivial assignments.
1158 if (BO
->getOpcode() != BO_Assign
)
1160 MemberExpr
*ME
= dyn_cast
<MemberExpr
>(BO
->getLHS());
1163 FieldDecl
*Field
= dyn_cast
<FieldDecl
>(ME
->getMemberDecl());
1164 if (!Field
|| !isMemcpyableField(Field
))
1166 Stmt
*RHS
= BO
->getRHS();
1167 if (ImplicitCastExpr
*EC
= dyn_cast
<ImplicitCastExpr
>(RHS
))
1168 RHS
= EC
->getSubExpr();
1171 if (MemberExpr
*ME2
= dyn_cast
<MemberExpr
>(RHS
)) {
1172 if (ME2
->getMemberDecl() == Field
)
1176 } else if (CXXMemberCallExpr
*MCE
= dyn_cast
<CXXMemberCallExpr
>(S
)) {
1177 CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(MCE
->getCalleeDecl());
1178 if (!(MD
&& isMemcpyEquivalentSpecialMember(MD
)))
1180 MemberExpr
*IOA
= dyn_cast
<MemberExpr
>(MCE
->getImplicitObjectArgument());
1183 FieldDecl
*Field
= dyn_cast
<FieldDecl
>(IOA
->getMemberDecl());
1184 if (!Field
|| !isMemcpyableField(Field
))
1186 MemberExpr
*Arg0
= dyn_cast
<MemberExpr
>(MCE
->getArg(0));
1187 if (!Arg0
|| Field
!= dyn_cast
<FieldDecl
>(Arg0
->getMemberDecl()))
1190 } else if (CallExpr
*CE
= dyn_cast
<CallExpr
>(S
)) {
1191 FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(CE
->getCalleeDecl());
1192 if (!FD
|| FD
->getBuiltinID() != Builtin::BI__builtin_memcpy
)
1194 Expr
*DstPtr
= CE
->getArg(0);
1195 if (ImplicitCastExpr
*DC
= dyn_cast
<ImplicitCastExpr
>(DstPtr
))
1196 DstPtr
= DC
->getSubExpr();
1197 UnaryOperator
*DUO
= dyn_cast
<UnaryOperator
>(DstPtr
);
1198 if (!DUO
|| DUO
->getOpcode() != UO_AddrOf
)
1200 MemberExpr
*ME
= dyn_cast
<MemberExpr
>(DUO
->getSubExpr());
1203 FieldDecl
*Field
= dyn_cast
<FieldDecl
>(ME
->getMemberDecl());
1204 if (!Field
|| !isMemcpyableField(Field
))
1206 Expr
*SrcPtr
= CE
->getArg(1);
1207 if (ImplicitCastExpr
*SC
= dyn_cast
<ImplicitCastExpr
>(SrcPtr
))
1208 SrcPtr
= SC
->getSubExpr();
1209 UnaryOperator
*SUO
= dyn_cast
<UnaryOperator
>(SrcPtr
);
1210 if (!SUO
|| SUO
->getOpcode() != UO_AddrOf
)
1212 MemberExpr
*ME2
= dyn_cast
<MemberExpr
>(SUO
->getSubExpr());
1213 if (!ME2
|| Field
!= dyn_cast
<FieldDecl
>(ME2
->getMemberDecl()))
1221 bool AssignmentsMemcpyable
;
1222 SmallVector
<Stmt
*, 16> AggregatedStmts
;
1225 AssignmentMemcpyizer(CodeGenFunction
&CGF
, const CXXMethodDecl
*AD
,
1226 FunctionArgList
&Args
)
1227 : FieldMemcpyizer(CGF
, AD
->getParent(), Args
[Args
.size() - 1]),
1228 AssignmentsMemcpyable(CGF
.getLangOpts().getGC() == LangOptions::NonGC
) {
1229 assert(Args
.size() == 2);
1232 void emitAssignment(Stmt
*S
) {
1233 FieldDecl
*F
= getMemcpyableField(S
);
1235 addMemcpyableField(F
);
1236 AggregatedStmts
.push_back(S
);
1238 emitAggregatedStmts();
1243 void emitAggregatedStmts() {
1244 if (AggregatedStmts
.size() <= 1) {
1245 if (!AggregatedStmts
.empty()) {
1246 CopyingValueRepresentation
CVR(CGF
);
1247 CGF
.EmitStmt(AggregatedStmts
[0]);
1253 AggregatedStmts
.clear();
1257 emitAggregatedStmts();
1260 } // end anonymous namespace
1262 static bool isInitializerOfDynamicClass(const CXXCtorInitializer
*BaseInit
) {
1263 const Type
*BaseType
= BaseInit
->getBaseClass();
1264 const auto *BaseClassDecl
=
1265 cast
<CXXRecordDecl
>(BaseType
->castAs
<RecordType
>()->getDecl());
1266 return BaseClassDecl
->isDynamicClass();
1269 /// EmitCtorPrologue - This routine generates necessary code to initialize
1270 /// base classes and non-static data members belonging to this constructor.
1271 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl
*CD
,
1272 CXXCtorType CtorType
,
1273 FunctionArgList
&Args
) {
1274 if (CD
->isDelegatingConstructor())
1275 return EmitDelegatingCXXConstructorCall(CD
, Args
);
1277 const CXXRecordDecl
*ClassDecl
= CD
->getParent();
1279 CXXConstructorDecl::init_const_iterator B
= CD
->init_begin(),
1282 // Virtual base initializers first, if any. They aren't needed if:
1283 // - This is a base ctor variant
1284 // - There are no vbases
1285 // - The class is abstract, so a complete object of it cannot be constructed
1287 // The check for an abstract class is necessary because sema may not have
1288 // marked virtual base destructors referenced.
1289 bool ConstructVBases
= CtorType
!= Ctor_Base
&&
1290 ClassDecl
->getNumVBases() != 0 &&
1291 !ClassDecl
->isAbstract();
1293 // In the Microsoft C++ ABI, there are no constructor variants. Instead, the
1294 // constructor of a class with virtual bases takes an additional parameter to
1295 // conditionally construct the virtual bases. Emit that check here.
1296 llvm::BasicBlock
*BaseCtorContinueBB
= nullptr;
1297 if (ConstructVBases
&&
1298 !CGM
.getTarget().getCXXABI().hasConstructorVariants()) {
1299 BaseCtorContinueBB
=
1300 CGM
.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl
);
1301 assert(BaseCtorContinueBB
);
1304 for (; B
!= E
&& (*B
)->isBaseInitializer() && (*B
)->isBaseVirtual(); B
++) {
1305 if (!ConstructVBases
)
1307 SaveAndRestore
ThisRAII(CXXThisValue
);
1308 if (CGM
.getCodeGenOpts().StrictVTablePointers
&&
1309 CGM
.getCodeGenOpts().OptimizationLevel
> 0 &&
1310 isInitializerOfDynamicClass(*B
))
1311 CXXThisValue
= Builder
.CreateLaunderInvariantGroup(LoadCXXThis());
1312 EmitBaseInitializer(*this, ClassDecl
, *B
);
1315 if (BaseCtorContinueBB
) {
1316 // Complete object handler should continue to the remaining initializers.
1317 Builder
.CreateBr(BaseCtorContinueBB
);
1318 EmitBlock(BaseCtorContinueBB
);
1321 // Then, non-virtual base initializers.
1322 for (; B
!= E
&& (*B
)->isBaseInitializer(); B
++) {
1323 assert(!(*B
)->isBaseVirtual());
1324 SaveAndRestore
ThisRAII(CXXThisValue
);
1325 if (CGM
.getCodeGenOpts().StrictVTablePointers
&&
1326 CGM
.getCodeGenOpts().OptimizationLevel
> 0 &&
1327 isInitializerOfDynamicClass(*B
))
1328 CXXThisValue
= Builder
.CreateLaunderInvariantGroup(LoadCXXThis());
1329 EmitBaseInitializer(*this, ClassDecl
, *B
);
1332 InitializeVTablePointers(ClassDecl
);
1334 // And finally, initialize class members.
1335 FieldConstructionScope
FCS(*this, LoadCXXThisAddress());
1336 ConstructorMemcpyizer
CM(*this, CD
, Args
);
1337 for (; B
!= E
; B
++) {
1338 CXXCtorInitializer
*Member
= (*B
);
1339 assert(!Member
->isBaseInitializer());
1340 assert(Member
->isAnyMemberInitializer() &&
1341 "Delegating initializer on non-delegating constructor");
1342 CM
.addMemberInitializer(Member
);
1348 FieldHasTrivialDestructorBody(ASTContext
&Context
, const FieldDecl
*Field
);
1351 HasTrivialDestructorBody(ASTContext
&Context
,
1352 const CXXRecordDecl
*BaseClassDecl
,
1353 const CXXRecordDecl
*MostDerivedClassDecl
)
1355 // If the destructor is trivial we don't have to check anything else.
1356 if (BaseClassDecl
->hasTrivialDestructor())
1359 if (!BaseClassDecl
->getDestructor()->hasTrivialBody())
1363 for (const auto *Field
: BaseClassDecl
->fields())
1364 if (!FieldHasTrivialDestructorBody(Context
, Field
))
1367 // Check non-virtual bases.
1368 for (const auto &I
: BaseClassDecl
->bases()) {
1372 const CXXRecordDecl
*NonVirtualBase
=
1373 cast
<CXXRecordDecl
>(I
.getType()->castAs
<RecordType
>()->getDecl());
1374 if (!HasTrivialDestructorBody(Context
, NonVirtualBase
,
1375 MostDerivedClassDecl
))
1379 if (BaseClassDecl
== MostDerivedClassDecl
) {
1380 // Check virtual bases.
1381 for (const auto &I
: BaseClassDecl
->vbases()) {
1382 const CXXRecordDecl
*VirtualBase
=
1383 cast
<CXXRecordDecl
>(I
.getType()->castAs
<RecordType
>()->getDecl());
1384 if (!HasTrivialDestructorBody(Context
, VirtualBase
,
1385 MostDerivedClassDecl
))
1394 FieldHasTrivialDestructorBody(ASTContext
&Context
,
1395 const FieldDecl
*Field
)
1397 QualType FieldBaseElementType
= Context
.getBaseElementType(Field
->getType());
1399 const RecordType
*RT
= FieldBaseElementType
->getAs
<RecordType
>();
1403 CXXRecordDecl
*FieldClassDecl
= cast
<CXXRecordDecl
>(RT
->getDecl());
1405 // The destructor for an implicit anonymous union member is never invoked.
1406 if (FieldClassDecl
->isUnion() && FieldClassDecl
->isAnonymousStructOrUnion())
1409 return HasTrivialDestructorBody(Context
, FieldClassDecl
, FieldClassDecl
);
1412 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1413 /// any vtable pointers before calling this destructor.
1414 static bool CanSkipVTablePointerInitialization(CodeGenFunction
&CGF
,
1415 const CXXDestructorDecl
*Dtor
) {
1416 const CXXRecordDecl
*ClassDecl
= Dtor
->getParent();
1417 if (!ClassDecl
->isDynamicClass())
1420 // For a final class, the vtable pointer is known to already point to the
1422 if (ClassDecl
->isEffectivelyFinal())
1425 if (!Dtor
->hasTrivialBody())
1428 // Check the fields.
1429 for (const auto *Field
: ClassDecl
->fields())
1430 if (!FieldHasTrivialDestructorBody(CGF
.getContext(), Field
))
1436 /// EmitDestructorBody - Emits the body of the current destructor.
1437 void CodeGenFunction::EmitDestructorBody(FunctionArgList
&Args
) {
1438 const CXXDestructorDecl
*Dtor
= cast
<CXXDestructorDecl
>(CurGD
.getDecl());
1439 CXXDtorType DtorType
= CurGD
.getDtorType();
1441 // For an abstract class, non-base destructors are never used (and can't
1442 // be emitted in general, because vbase dtors may not have been validated
1443 // by Sema), but the Itanium ABI doesn't make them optional and Clang may
1444 // in fact emit references to them from other compilations, so emit them
1445 // as functions containing a trap instruction.
1446 if (DtorType
!= Dtor_Base
&& Dtor
->getParent()->isAbstract()) {
1447 llvm::CallInst
*TrapCall
= EmitTrapCall(llvm::Intrinsic::trap
);
1448 TrapCall
->setDoesNotReturn();
1449 TrapCall
->setDoesNotThrow();
1450 Builder
.CreateUnreachable();
1451 Builder
.ClearInsertionPoint();
1455 Stmt
*Body
= Dtor
->getBody();
1457 incrementProfileCounter(Body
);
1458 maybeCreateMCDCCondBitmap();
1461 // The call to operator delete in a deleting destructor happens
1462 // outside of the function-try-block, which means it's always
1463 // possible to delegate the destructor body to the complete
1464 // destructor. Do so.
1465 if (DtorType
== Dtor_Deleting
) {
1466 RunCleanupsScope
DtorEpilogue(*this);
1467 EnterDtorCleanups(Dtor
, Dtor_Deleting
);
1468 if (HaveInsertPoint()) {
1469 QualType ThisTy
= Dtor
->getFunctionObjectParameterType();
1470 EmitCXXDestructorCall(Dtor
, Dtor_Complete
, /*ForVirtualBase=*/false,
1471 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy
);
1476 // If the body is a function-try-block, enter the try before
1478 bool isTryBody
= (Body
&& isa
<CXXTryStmt
>(Body
));
1480 EnterCXXTryStmt(*cast
<CXXTryStmt
>(Body
), true);
1481 EmitAsanPrologueOrEpilogue(false);
1483 // Enter the epilogue cleanups.
1484 RunCleanupsScope
DtorEpilogue(*this);
1486 // If this is the complete variant, just invoke the base variant;
1487 // the epilogue will destruct the virtual bases. But we can't do
1488 // this optimization if the body is a function-try-block, because
1489 // we'd introduce *two* handler blocks. In the Microsoft ABI, we
1490 // always delegate because we might not have a definition in this TU.
1492 case Dtor_Comdat
: llvm_unreachable("not expecting a COMDAT");
1493 case Dtor_Deleting
: llvm_unreachable("already handled deleting case");
1496 assert((Body
|| getTarget().getCXXABI().isMicrosoft()) &&
1497 "can't emit a dtor without a body for non-Microsoft ABIs");
1499 // Enter the cleanup scopes for virtual bases.
1500 EnterDtorCleanups(Dtor
, Dtor_Complete
);
1503 QualType ThisTy
= Dtor
->getFunctionObjectParameterType();
1504 EmitCXXDestructorCall(Dtor
, Dtor_Base
, /*ForVirtualBase=*/false,
1505 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy
);
1509 // Fallthrough: act like we're in the base variant.
1515 // Enter the cleanup scopes for fields and non-virtual bases.
1516 EnterDtorCleanups(Dtor
, Dtor_Base
);
1518 // Initialize the vtable pointers before entering the body.
1519 if (!CanSkipVTablePointerInitialization(*this, Dtor
)) {
1520 // Insert the llvm.launder.invariant.group intrinsic before initializing
1521 // the vptrs to cancel any previous assumptions we might have made.
1522 if (CGM
.getCodeGenOpts().StrictVTablePointers
&&
1523 CGM
.getCodeGenOpts().OptimizationLevel
> 0)
1524 CXXThisValue
= Builder
.CreateLaunderInvariantGroup(LoadCXXThis());
1525 InitializeVTablePointers(Dtor
->getParent());
1529 EmitStmt(cast
<CXXTryStmt
>(Body
)->getTryBlock());
1533 assert(Dtor
->isImplicit() && "bodyless dtor not implicit");
1534 // nothing to do besides what's in the epilogue
1536 // -fapple-kext must inline any call to this dtor into
1537 // the caller's body.
1538 if (getLangOpts().AppleKext
)
1539 CurFn
->addFnAttr(llvm::Attribute::AlwaysInline
);
1544 // Jump out through the epilogue cleanups.
1545 DtorEpilogue
.ForceCleanup();
1547 // Exit the try if applicable.
1549 ExitCXXTryStmt(*cast
<CXXTryStmt
>(Body
), true);
1552 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList
&Args
) {
1553 const CXXMethodDecl
*AssignOp
= cast
<CXXMethodDecl
>(CurGD
.getDecl());
1554 const Stmt
*RootS
= AssignOp
->getBody();
1555 assert(isa
<CompoundStmt
>(RootS
) &&
1556 "Body of an implicit assignment operator should be compound stmt.");
1557 const CompoundStmt
*RootCS
= cast
<CompoundStmt
>(RootS
);
1559 LexicalScope
Scope(*this, RootCS
->getSourceRange());
1561 incrementProfileCounter(RootCS
);
1562 maybeCreateMCDCCondBitmap();
1563 AssignmentMemcpyizer
AM(*this, AssignOp
, Args
);
1564 for (auto *I
: RootCS
->body())
1565 AM
.emitAssignment(I
);
1570 llvm::Value
*LoadThisForDtorDelete(CodeGenFunction
&CGF
,
1571 const CXXDestructorDecl
*DD
) {
1572 if (Expr
*ThisArg
= DD
->getOperatorDeleteThisArg())
1573 return CGF
.EmitScalarExpr(ThisArg
);
1574 return CGF
.LoadCXXThis();
1577 /// Call the operator delete associated with the current destructor.
1578 struct CallDtorDelete final
: EHScopeStack::Cleanup
{
1581 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
1582 const CXXDestructorDecl
*Dtor
= cast
<CXXDestructorDecl
>(CGF
.CurCodeDecl
);
1583 const CXXRecordDecl
*ClassDecl
= Dtor
->getParent();
1584 CGF
.EmitDeleteCall(Dtor
->getOperatorDelete(),
1585 LoadThisForDtorDelete(CGF
, Dtor
),
1586 CGF
.getContext().getTagDeclType(ClassDecl
));
1590 void EmitConditionalDtorDeleteCall(CodeGenFunction
&CGF
,
1591 llvm::Value
*ShouldDeleteCondition
,
1592 bool ReturnAfterDelete
) {
1593 llvm::BasicBlock
*callDeleteBB
= CGF
.createBasicBlock("dtor.call_delete");
1594 llvm::BasicBlock
*continueBB
= CGF
.createBasicBlock("dtor.continue");
1595 llvm::Value
*ShouldCallDelete
1596 = CGF
.Builder
.CreateIsNull(ShouldDeleteCondition
);
1597 CGF
.Builder
.CreateCondBr(ShouldCallDelete
, continueBB
, callDeleteBB
);
1599 CGF
.EmitBlock(callDeleteBB
);
1600 const CXXDestructorDecl
*Dtor
= cast
<CXXDestructorDecl
>(CGF
.CurCodeDecl
);
1601 const CXXRecordDecl
*ClassDecl
= Dtor
->getParent();
1602 CGF
.EmitDeleteCall(Dtor
->getOperatorDelete(),
1603 LoadThisForDtorDelete(CGF
, Dtor
),
1604 CGF
.getContext().getTagDeclType(ClassDecl
));
1605 assert(Dtor
->getOperatorDelete()->isDestroyingOperatorDelete() ==
1606 ReturnAfterDelete
&&
1607 "unexpected value for ReturnAfterDelete");
1608 if (ReturnAfterDelete
)
1609 CGF
.EmitBranchThroughCleanup(CGF
.ReturnBlock
);
1611 CGF
.Builder
.CreateBr(continueBB
);
1613 CGF
.EmitBlock(continueBB
);
1616 struct CallDtorDeleteConditional final
: EHScopeStack::Cleanup
{
1617 llvm::Value
*ShouldDeleteCondition
;
1620 CallDtorDeleteConditional(llvm::Value
*ShouldDeleteCondition
)
1621 : ShouldDeleteCondition(ShouldDeleteCondition
) {
1622 assert(ShouldDeleteCondition
!= nullptr);
1625 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
1626 EmitConditionalDtorDeleteCall(CGF
, ShouldDeleteCondition
,
1627 /*ReturnAfterDelete*/false);
1631 class DestroyField final
: public EHScopeStack::Cleanup
{
1632 const FieldDecl
*field
;
1633 CodeGenFunction::Destroyer
*destroyer
;
1634 bool useEHCleanupForArray
;
1637 DestroyField(const FieldDecl
*field
, CodeGenFunction::Destroyer
*destroyer
,
1638 bool useEHCleanupForArray
)
1639 : field(field
), destroyer(destroyer
),
1640 useEHCleanupForArray(useEHCleanupForArray
) {}
1642 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
1643 // Find the address of the field.
1644 Address thisValue
= CGF
.LoadCXXThisAddress();
1645 QualType RecordTy
= CGF
.getContext().getTagDeclType(field
->getParent());
1646 LValue ThisLV
= CGF
.MakeAddrLValue(thisValue
, RecordTy
);
1647 LValue LV
= CGF
.EmitLValueForField(ThisLV
, field
);
1648 assert(LV
.isSimple());
1650 CGF
.emitDestroy(LV
.getAddress(CGF
), field
->getType(), destroyer
,
1651 flags
.isForNormalCleanup() && useEHCleanupForArray
);
1655 class DeclAsInlineDebugLocation
{
1657 llvm::MDNode
*InlinedAt
;
1658 std::optional
<ApplyDebugLocation
> Location
;
1661 DeclAsInlineDebugLocation(CodeGenFunction
&CGF
, const NamedDecl
&Decl
)
1662 : DI(CGF
.getDebugInfo()) {
1665 InlinedAt
= DI
->getInlinedAt();
1666 DI
->setInlinedAt(CGF
.Builder
.getCurrentDebugLocation());
1667 Location
.emplace(CGF
, Decl
.getLocation());
1670 ~DeclAsInlineDebugLocation() {
1674 DI
->setInlinedAt(InlinedAt
);
1678 static void EmitSanitizerDtorCallback(
1679 CodeGenFunction
&CGF
, StringRef Name
, llvm::Value
*Ptr
,
1680 std::optional
<CharUnits::QuantityType
> PoisonSize
= {}) {
1681 CodeGenFunction::SanitizerScope
SanScope(&CGF
);
1682 // Pass in void pointer and size of region as arguments to runtime
1684 SmallVector
<llvm::Value
*, 2> Args
= {Ptr
};
1685 SmallVector
<llvm::Type
*, 2> ArgTypes
= {CGF
.VoidPtrTy
};
1687 if (PoisonSize
.has_value()) {
1688 Args
.emplace_back(llvm::ConstantInt::get(CGF
.SizeTy
, *PoisonSize
));
1689 ArgTypes
.emplace_back(CGF
.SizeTy
);
1692 llvm::FunctionType
*FnType
=
1693 llvm::FunctionType::get(CGF
.VoidTy
, ArgTypes
, false);
1694 llvm::FunctionCallee Fn
= CGF
.CGM
.CreateRuntimeFunction(FnType
, Name
);
1696 CGF
.EmitNounwindRuntimeCall(Fn
, Args
);
1700 EmitSanitizerDtorFieldsCallback(CodeGenFunction
&CGF
, llvm::Value
*Ptr
,
1701 CharUnits::QuantityType PoisonSize
) {
1702 EmitSanitizerDtorCallback(CGF
, "__sanitizer_dtor_callback_fields", Ptr
,
1706 /// Poison base class with a trivial destructor.
1707 struct SanitizeDtorTrivialBase final
: EHScopeStack::Cleanup
{
1708 const CXXRecordDecl
*BaseClass
;
1710 SanitizeDtorTrivialBase(const CXXRecordDecl
*Base
, bool BaseIsVirtual
)
1711 : BaseClass(Base
), BaseIsVirtual(BaseIsVirtual
) {}
1713 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
1714 const CXXRecordDecl
*DerivedClass
=
1715 cast
<CXXMethodDecl
>(CGF
.CurCodeDecl
)->getParent();
1717 Address Addr
= CGF
.GetAddressOfDirectBaseInCompleteClass(
1718 CGF
.LoadCXXThisAddress(), DerivedClass
, BaseClass
, BaseIsVirtual
);
1720 const ASTRecordLayout
&BaseLayout
=
1721 CGF
.getContext().getASTRecordLayout(BaseClass
);
1722 CharUnits BaseSize
= BaseLayout
.getSize();
1724 if (!BaseSize
.isPositive())
1727 // Use the base class declaration location as inline DebugLocation. All
1728 // fields of the class are destroyed.
1729 DeclAsInlineDebugLocation
InlineHere(CGF
, *BaseClass
);
1730 EmitSanitizerDtorFieldsCallback(CGF
, Addr
.emitRawPointer(CGF
),
1731 BaseSize
.getQuantity());
1733 // Prevent the current stack frame from disappearing from the stack trace.
1734 CGF
.CurFn
->addFnAttr("disable-tail-calls", "true");
1738 class SanitizeDtorFieldRange final
: public EHScopeStack::Cleanup
{
1739 const CXXDestructorDecl
*Dtor
;
1740 unsigned StartIndex
;
1744 SanitizeDtorFieldRange(const CXXDestructorDecl
*Dtor
, unsigned StartIndex
,
1746 : Dtor(Dtor
), StartIndex(StartIndex
), EndIndex(EndIndex
) {}
1748 // Generate function call for handling object poisoning.
1749 // Disables tail call elimination, to prevent the current stack frame
1750 // from disappearing from the stack trace.
1751 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
1752 const ASTContext
&Context
= CGF
.getContext();
1753 const ASTRecordLayout
&Layout
=
1754 Context
.getASTRecordLayout(Dtor
->getParent());
1756 // It's a first trivial field so it should be at the begining of a char,
1757 // still round up start offset just in case.
1758 CharUnits PoisonStart
= Context
.toCharUnitsFromBits(
1759 Layout
.getFieldOffset(StartIndex
) + Context
.getCharWidth() - 1);
1760 llvm::ConstantInt
*OffsetSizePtr
=
1761 llvm::ConstantInt::get(CGF
.SizeTy
, PoisonStart
.getQuantity());
1763 llvm::Value
*OffsetPtr
=
1764 CGF
.Builder
.CreateGEP(CGF
.Int8Ty
, CGF
.LoadCXXThis(), OffsetSizePtr
);
1766 CharUnits PoisonEnd
;
1767 if (EndIndex
>= Layout
.getFieldCount()) {
1768 PoisonEnd
= Layout
.getNonVirtualSize();
1771 Context
.toCharUnitsFromBits(Layout
.getFieldOffset(EndIndex
));
1773 CharUnits PoisonSize
= PoisonEnd
- PoisonStart
;
1774 if (!PoisonSize
.isPositive())
1777 // Use the top field declaration location as inline DebugLocation.
1778 DeclAsInlineDebugLocation
InlineHere(
1779 CGF
, **std::next(Dtor
->getParent()->field_begin(), StartIndex
));
1780 EmitSanitizerDtorFieldsCallback(CGF
, OffsetPtr
, PoisonSize
.getQuantity());
1782 // Prevent the current stack frame from disappearing from the stack trace.
1783 CGF
.CurFn
->addFnAttr("disable-tail-calls", "true");
1787 class SanitizeDtorVTable final
: public EHScopeStack::Cleanup
{
1788 const CXXDestructorDecl
*Dtor
;
1791 SanitizeDtorVTable(const CXXDestructorDecl
*Dtor
) : Dtor(Dtor
) {}
1793 // Generate function call for handling vtable pointer poisoning.
1794 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
1795 assert(Dtor
->getParent()->isDynamicClass());
1797 // Poison vtable and vtable ptr if they exist for this class.
1798 llvm::Value
*VTablePtr
= CGF
.LoadCXXThis();
1800 // Pass in void pointer and size of region as arguments to runtime
1802 EmitSanitizerDtorCallback(CGF
, "__sanitizer_dtor_callback_vptr",
1807 class SanitizeDtorCleanupBuilder
{
1808 ASTContext
&Context
;
1809 EHScopeStack
&EHStack
;
1810 const CXXDestructorDecl
*DD
;
1811 std::optional
<unsigned> StartIndex
;
1814 SanitizeDtorCleanupBuilder(ASTContext
&Context
, EHScopeStack
&EHStack
,
1815 const CXXDestructorDecl
*DD
)
1816 : Context(Context
), EHStack(EHStack
), DD(DD
), StartIndex(std::nullopt
) {}
1817 void PushCleanupForField(const FieldDecl
*Field
) {
1818 if (Field
->isZeroSize(Context
))
1820 unsigned FieldIndex
= Field
->getFieldIndex();
1821 if (FieldHasTrivialDestructorBody(Context
, Field
)) {
1823 StartIndex
= FieldIndex
;
1824 } else if (StartIndex
) {
1825 EHStack
.pushCleanup
<SanitizeDtorFieldRange
>(NormalAndEHCleanup
, DD
,
1826 *StartIndex
, FieldIndex
);
1827 StartIndex
= std::nullopt
;
1832 EHStack
.pushCleanup
<SanitizeDtorFieldRange
>(NormalAndEHCleanup
, DD
,
1836 } // end anonymous namespace
1838 /// Emit all code that comes at the end of class's
1839 /// destructor. This is to call destructors on members and base classes
1840 /// in reverse order of their construction.
1842 /// For a deleting destructor, this also handles the case where a destroying
1843 /// operator delete completely overrides the definition.
1844 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl
*DD
,
1845 CXXDtorType DtorType
) {
1846 assert((!DD
->isTrivial() || DD
->hasAttr
<DLLExportAttr
>()) &&
1847 "Should not emit dtor epilogue for non-exported trivial dtor!");
1849 // The deleting-destructor phase just needs to call the appropriate
1850 // operator delete that Sema picked up.
1851 if (DtorType
== Dtor_Deleting
) {
1852 assert(DD
->getOperatorDelete() &&
1853 "operator delete missing - EnterDtorCleanups");
1854 if (CXXStructorImplicitParamValue
) {
1855 // If there is an implicit param to the deleting dtor, it's a boolean
1856 // telling whether this is a deleting destructor.
1857 if (DD
->getOperatorDelete()->isDestroyingOperatorDelete())
1858 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue
,
1859 /*ReturnAfterDelete*/true);
1861 EHStack
.pushCleanup
<CallDtorDeleteConditional
>(
1862 NormalAndEHCleanup
, CXXStructorImplicitParamValue
);
1864 if (DD
->getOperatorDelete()->isDestroyingOperatorDelete()) {
1865 const CXXRecordDecl
*ClassDecl
= DD
->getParent();
1866 EmitDeleteCall(DD
->getOperatorDelete(),
1867 LoadThisForDtorDelete(*this, DD
),
1868 getContext().getTagDeclType(ClassDecl
));
1869 EmitBranchThroughCleanup(ReturnBlock
);
1871 EHStack
.pushCleanup
<CallDtorDelete
>(NormalAndEHCleanup
);
1877 const CXXRecordDecl
*ClassDecl
= DD
->getParent();
1879 // Unions have no bases and do not call field destructors.
1880 if (ClassDecl
->isUnion())
1883 // The complete-destructor phase just destructs all the virtual bases.
1884 if (DtorType
== Dtor_Complete
) {
1885 // Poison the vtable pointer such that access after the base
1886 // and member destructors are invoked is invalid.
1887 if (CGM
.getCodeGenOpts().SanitizeMemoryUseAfterDtor
&&
1888 SanOpts
.has(SanitizerKind::Memory
) && ClassDecl
->getNumVBases() &&
1889 ClassDecl
->isPolymorphic())
1890 EHStack
.pushCleanup
<SanitizeDtorVTable
>(NormalAndEHCleanup
, DD
);
1892 // We push them in the forward order so that they'll be popped in
1893 // the reverse order.
1894 for (const auto &Base
: ClassDecl
->vbases()) {
1895 auto *BaseClassDecl
=
1896 cast
<CXXRecordDecl
>(Base
.getType()->castAs
<RecordType
>()->getDecl());
1898 if (BaseClassDecl
->hasTrivialDestructor()) {
1899 // Under SanitizeMemoryUseAfterDtor, poison the trivial base class
1900 // memory. For non-trival base classes the same is done in the class
1902 if (CGM
.getCodeGenOpts().SanitizeMemoryUseAfterDtor
&&
1903 SanOpts
.has(SanitizerKind::Memory
) && !BaseClassDecl
->isEmpty())
1904 EHStack
.pushCleanup
<SanitizeDtorTrivialBase
>(NormalAndEHCleanup
,
1906 /*BaseIsVirtual*/ true);
1908 EHStack
.pushCleanup
<CallBaseDtor
>(NormalAndEHCleanup
, BaseClassDecl
,
1909 /*BaseIsVirtual*/ true);
1916 assert(DtorType
== Dtor_Base
);
1917 // Poison the vtable pointer if it has no virtual bases, but inherits
1918 // virtual functions.
1919 if (CGM
.getCodeGenOpts().SanitizeMemoryUseAfterDtor
&&
1920 SanOpts
.has(SanitizerKind::Memory
) && !ClassDecl
->getNumVBases() &&
1921 ClassDecl
->isPolymorphic())
1922 EHStack
.pushCleanup
<SanitizeDtorVTable
>(NormalAndEHCleanup
, DD
);
1924 // Destroy non-virtual bases.
1925 for (const auto &Base
: ClassDecl
->bases()) {
1926 // Ignore virtual bases.
1927 if (Base
.isVirtual())
1930 CXXRecordDecl
*BaseClassDecl
= Base
.getType()->getAsCXXRecordDecl();
1932 if (BaseClassDecl
->hasTrivialDestructor()) {
1933 if (CGM
.getCodeGenOpts().SanitizeMemoryUseAfterDtor
&&
1934 SanOpts
.has(SanitizerKind::Memory
) && !BaseClassDecl
->isEmpty())
1935 EHStack
.pushCleanup
<SanitizeDtorTrivialBase
>(NormalAndEHCleanup
,
1937 /*BaseIsVirtual*/ false);
1939 EHStack
.pushCleanup
<CallBaseDtor
>(NormalAndEHCleanup
, BaseClassDecl
,
1940 /*BaseIsVirtual*/ false);
1944 // Poison fields such that access after their destructors are
1945 // invoked, and before the base class destructor runs, is invalid.
1946 bool SanitizeFields
= CGM
.getCodeGenOpts().SanitizeMemoryUseAfterDtor
&&
1947 SanOpts
.has(SanitizerKind::Memory
);
1948 SanitizeDtorCleanupBuilder
SanitizeBuilder(getContext(), EHStack
, DD
);
1950 // Destroy direct fields.
1951 for (const auto *Field
: ClassDecl
->fields()) {
1953 SanitizeBuilder
.PushCleanupForField(Field
);
1955 QualType type
= Field
->getType();
1956 QualType::DestructionKind dtorKind
= type
.isDestructedType();
1960 // Anonymous union members do not have their destructors called.
1961 const RecordType
*RT
= type
->getAsUnionType();
1962 if (RT
&& RT
->getDecl()->isAnonymousStructOrUnion())
1965 CleanupKind cleanupKind
= getCleanupKind(dtorKind
);
1966 EHStack
.pushCleanup
<DestroyField
>(
1967 cleanupKind
, Field
, getDestroyer(dtorKind
), cleanupKind
& EHCleanup
);
1971 SanitizeBuilder
.End();
1974 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1975 /// constructor for each of several members of an array.
1977 /// \param ctor the constructor to call for each element
1978 /// \param arrayType the type of the array to initialize
1979 /// \param arrayBegin an arrayType*
1980 /// \param zeroInitialize true if each element should be
1981 /// zero-initialized before it is constructed
1982 void CodeGenFunction::EmitCXXAggrConstructorCall(
1983 const CXXConstructorDecl
*ctor
, const ArrayType
*arrayType
,
1984 Address arrayBegin
, const CXXConstructExpr
*E
, bool NewPointerIsChecked
,
1985 bool zeroInitialize
) {
1986 QualType elementType
;
1987 llvm::Value
*numElements
=
1988 emitArrayLength(arrayType
, elementType
, arrayBegin
);
1990 EmitCXXAggrConstructorCall(ctor
, numElements
, arrayBegin
, E
,
1991 NewPointerIsChecked
, zeroInitialize
);
1994 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1995 /// constructor for each of several members of an array.
1997 /// \param ctor the constructor to call for each element
1998 /// \param numElements the number of elements in the array;
2000 /// \param arrayBase a T*, where T is the type constructed by ctor
2001 /// \param zeroInitialize true if each element should be
2002 /// zero-initialized before it is constructed
2003 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl
*ctor
,
2004 llvm::Value
*numElements
,
2006 const CXXConstructExpr
*E
,
2007 bool NewPointerIsChecked
,
2008 bool zeroInitialize
) {
2009 // It's legal for numElements to be zero. This can happen both
2010 // dynamically, because x can be zero in 'new A[x]', and statically,
2011 // because of GCC extensions that permit zero-length arrays. There
2012 // are probably legitimate places where we could assume that this
2013 // doesn't happen, but it's not clear that it's worth it.
2014 llvm::BranchInst
*zeroCheckBranch
= nullptr;
2016 // Optimize for a constant count.
2017 llvm::ConstantInt
*constantCount
2018 = dyn_cast
<llvm::ConstantInt
>(numElements
);
2019 if (constantCount
) {
2020 // Just skip out if the constant count is zero.
2021 if (constantCount
->isZero()) return;
2023 // Otherwise, emit the check.
2025 llvm::BasicBlock
*loopBB
= createBasicBlock("new.ctorloop");
2026 llvm::Value
*iszero
= Builder
.CreateIsNull(numElements
, "isempty");
2027 zeroCheckBranch
= Builder
.CreateCondBr(iszero
, loopBB
, loopBB
);
2031 // Find the end of the array.
2032 llvm::Type
*elementType
= arrayBase
.getElementType();
2033 llvm::Value
*arrayBegin
= arrayBase
.emitRawPointer(*this);
2034 llvm::Value
*arrayEnd
= Builder
.CreateInBoundsGEP(
2035 elementType
, arrayBegin
, numElements
, "arrayctor.end");
2037 // Enter the loop, setting up a phi for the current location to initialize.
2038 llvm::BasicBlock
*entryBB
= Builder
.GetInsertBlock();
2039 llvm::BasicBlock
*loopBB
= createBasicBlock("arrayctor.loop");
2041 llvm::PHINode
*cur
= Builder
.CreatePHI(arrayBegin
->getType(), 2,
2043 cur
->addIncoming(arrayBegin
, entryBB
);
2045 // Inside the loop body, emit the constructor call on the array element.
2047 // The alignment of the base, adjusted by the size of a single element,
2048 // provides a conservative estimate of the alignment of every element.
2049 // (This assumes we never start tracking offsetted alignments.)
2051 // Note that these are complete objects and so we don't need to
2052 // use the non-virtual size or alignment.
2053 QualType type
= getContext().getTypeDeclType(ctor
->getParent());
2054 CharUnits eltAlignment
=
2055 arrayBase
.getAlignment()
2056 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type
));
2057 Address curAddr
= Address(cur
, elementType
, eltAlignment
);
2059 // Zero initialize the storage, if requested.
2061 EmitNullInitialization(curAddr
, type
);
2063 // C++ [class.temporary]p4:
2064 // There are two contexts in which temporaries are destroyed at a different
2065 // point than the end of the full-expression. The first context is when a
2066 // default constructor is called to initialize an element of an array.
2067 // If the constructor has one or more default arguments, the destruction of
2068 // every temporary created in a default argument expression is sequenced
2069 // before the construction of the next array element, if any.
2072 RunCleanupsScope
Scope(*this);
2074 // Evaluate the constructor and its arguments in a regular
2075 // partial-destroy cleanup.
2076 if (getLangOpts().Exceptions
&&
2077 !ctor
->getParent()->hasTrivialDestructor()) {
2078 Destroyer
*destroyer
= destroyCXXObject
;
2079 pushRegularPartialArrayCleanup(arrayBegin
, cur
, type
, eltAlignment
,
2082 auto currAVS
= AggValueSlot::forAddr(
2083 curAddr
, type
.getQualifiers(), AggValueSlot::IsDestructed
,
2084 AggValueSlot::DoesNotNeedGCBarriers
, AggValueSlot::IsNotAliased
,
2085 AggValueSlot::DoesNotOverlap
, AggValueSlot::IsNotZeroed
,
2086 NewPointerIsChecked
? AggValueSlot::IsSanitizerChecked
2087 : AggValueSlot::IsNotSanitizerChecked
);
2088 EmitCXXConstructorCall(ctor
, Ctor_Complete
, /*ForVirtualBase=*/false,
2089 /*Delegating=*/false, currAVS
, E
);
2092 // Go to the next element.
2093 llvm::Value
*next
= Builder
.CreateInBoundsGEP(
2094 elementType
, cur
, llvm::ConstantInt::get(SizeTy
, 1), "arrayctor.next");
2095 cur
->addIncoming(next
, Builder
.GetInsertBlock());
2097 // Check whether that's the end of the loop.
2098 llvm::Value
*done
= Builder
.CreateICmpEQ(next
, arrayEnd
, "arrayctor.done");
2099 llvm::BasicBlock
*contBB
= createBasicBlock("arrayctor.cont");
2100 Builder
.CreateCondBr(done
, contBB
, loopBB
);
2102 // Patch the earlier check to skip over the loop.
2103 if (zeroCheckBranch
) zeroCheckBranch
->setSuccessor(0, contBB
);
2108 void CodeGenFunction::destroyCXXObject(CodeGenFunction
&CGF
,
2111 const RecordType
*rtype
= type
->castAs
<RecordType
>();
2112 const CXXRecordDecl
*record
= cast
<CXXRecordDecl
>(rtype
->getDecl());
2113 const CXXDestructorDecl
*dtor
= record
->getDestructor();
2114 assert(!dtor
->isTrivial());
2115 CGF
.EmitCXXDestructorCall(dtor
, Dtor_Complete
, /*for vbase*/ false,
2116 /*Delegating=*/false, addr
, type
);
2119 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl
*D
,
2121 bool ForVirtualBase
,
2123 AggValueSlot ThisAVS
,
2124 const CXXConstructExpr
*E
) {
2126 Address This
= ThisAVS
.getAddress();
2127 LangAS SlotAS
= ThisAVS
.getQualifiers().getAddressSpace();
2128 LangAS ThisAS
= D
->getFunctionObjectParameterType().getAddressSpace();
2129 llvm::Value
*ThisPtr
=
2130 getAsNaturalPointerTo(This
, D
->getThisType()->getPointeeType());
2132 if (SlotAS
!= ThisAS
) {
2133 unsigned TargetThisAS
= getContext().getTargetAddressSpace(ThisAS
);
2134 llvm::Type
*NewType
=
2135 llvm::PointerType::get(getLLVMContext(), TargetThisAS
);
2136 ThisPtr
= getTargetHooks().performAddrSpaceCast(*this, ThisPtr
, ThisAS
,
2140 // Push the this ptr.
2141 Args
.add(RValue::get(ThisPtr
), D
->getThisType());
2143 // If this is a trivial constructor, emit a memcpy now before we lose
2144 // the alignment information on the argument.
2145 // FIXME: It would be better to preserve alignment information into CallArg.
2146 if (isMemcpyEquivalentSpecialMember(D
)) {
2147 assert(E
->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2149 const Expr
*Arg
= E
->getArg(0);
2150 LValue Src
= EmitLValue(Arg
);
2151 QualType DestTy
= getContext().getTypeDeclType(D
->getParent());
2152 LValue Dest
= MakeAddrLValue(This
, DestTy
);
2153 EmitAggregateCopyCtor(Dest
, Src
, ThisAVS
.mayOverlap());
2157 // Add the rest of the user-supplied arguments.
2158 const FunctionProtoType
*FPT
= D
->getType()->castAs
<FunctionProtoType
>();
2159 EvaluationOrder Order
= E
->isListInitialization()
2160 ? EvaluationOrder::ForceLeftToRight
2161 : EvaluationOrder::Default
;
2162 EmitCallArgs(Args
, FPT
, E
->arguments(), E
->getConstructor(),
2163 /*ParamsToSkip*/ 0, Order
);
2165 EmitCXXConstructorCall(D
, Type
, ForVirtualBase
, Delegating
, This
, Args
,
2166 ThisAVS
.mayOverlap(), E
->getExprLoc(),
2167 ThisAVS
.isSanitizerChecked());
2170 static bool canEmitDelegateCallArgs(CodeGenFunction
&CGF
,
2171 const CXXConstructorDecl
*Ctor
,
2172 CXXCtorType Type
, CallArgList
&Args
) {
2173 // We can't forward a variadic call.
2174 if (Ctor
->isVariadic())
2177 if (CGF
.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2178 // If the parameters are callee-cleanup, it's not safe to forward.
2179 for (auto *P
: Ctor
->parameters())
2180 if (P
->needsDestruction(CGF
.getContext()))
2183 // Likewise if they're inalloca.
2184 const CGFunctionInfo
&Info
=
2185 CGF
.CGM
.getTypes().arrangeCXXConstructorCall(Args
, Ctor
, Type
, 0, 0);
2186 if (Info
.usesInAlloca())
2190 // Anything else should be OK.
2194 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl
*D
,
2196 bool ForVirtualBase
,
2200 AggValueSlot::Overlap_t Overlap
,
2202 bool NewPointerIsChecked
) {
2203 const CXXRecordDecl
*ClassDecl
= D
->getParent();
2205 if (!NewPointerIsChecked
)
2206 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall
, Loc
, This
,
2207 getContext().getRecordType(ClassDecl
), CharUnits::Zero());
2209 if (D
->isTrivial() && D
->isDefaultConstructor()) {
2210 assert(Args
.size() == 1 && "trivial default ctor with args");
2214 // If this is a trivial constructor, just emit what's needed. If this is a
2215 // union copy constructor, we must emit a memcpy, because the AST does not
2217 if (isMemcpyEquivalentSpecialMember(D
)) {
2218 assert(Args
.size() == 2 && "unexpected argcount for trivial ctor");
2219 QualType SrcTy
= D
->getParamDecl(0)->getType().getNonReferenceType();
2220 Address Src
= makeNaturalAddressForPointer(
2221 Args
[1].getRValue(*this).getScalarVal(), SrcTy
);
2222 LValue SrcLVal
= MakeAddrLValue(Src
, SrcTy
);
2223 QualType DestTy
= getContext().getTypeDeclType(ClassDecl
);
2224 LValue DestLVal
= MakeAddrLValue(This
, DestTy
);
2225 EmitAggregateCopyCtor(DestLVal
, SrcLVal
, Overlap
);
2229 bool PassPrototypeArgs
= true;
2230 // Check whether we can actually emit the constructor before trying to do so.
2231 if (auto Inherited
= D
->getInheritedConstructor()) {
2232 PassPrototypeArgs
= getTypes().inheritingCtorHasParams(Inherited
, Type
);
2233 if (PassPrototypeArgs
&& !canEmitDelegateCallArgs(*this, D
, Type
, Args
)) {
2234 EmitInlinedInheritingCXXConstructorCall(D
, Type
, ForVirtualBase
,
2240 // Insert any ABI-specific implicit constructor arguments.
2241 CGCXXABI::AddedStructorArgCounts ExtraArgs
=
2242 CGM
.getCXXABI().addImplicitConstructorArgs(*this, D
, Type
, ForVirtualBase
,
2246 llvm::Constant
*CalleePtr
= CGM
.getAddrOfCXXStructor(GlobalDecl(D
, Type
));
2247 const CGFunctionInfo
&Info
= CGM
.getTypes().arrangeCXXConstructorCall(
2248 Args
, D
, Type
, ExtraArgs
.Prefix
, ExtraArgs
.Suffix
, PassPrototypeArgs
);
2249 CGCallee Callee
= CGCallee::forDirect(CalleePtr
, GlobalDecl(D
, Type
));
2250 EmitCall(Info
, Callee
, ReturnValueSlot(), Args
, nullptr, false, Loc
);
2252 // Generate vtable assumptions if we're constructing a complete object
2253 // with a vtable. We don't do this for base subobjects for two reasons:
2254 // first, it's incorrect for classes with virtual bases, and second, we're
2255 // about to overwrite the vptrs anyway.
2256 // We also have to make sure if we can refer to vtable:
2257 // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2258 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2259 // sure that definition of vtable is not hidden,
2260 // then we are always safe to refer to it.
2261 // FIXME: It looks like InstCombine is very inefficient on dealing with
2262 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2263 if (CGM
.getCodeGenOpts().OptimizationLevel
> 0 &&
2264 ClassDecl
->isDynamicClass() && Type
!= Ctor_Base
&&
2265 CGM
.getCXXABI().canSpeculativelyEmitVTable(ClassDecl
) &&
2266 CGM
.getCodeGenOpts().StrictVTablePointers
)
2267 EmitVTableAssumptionLoads(ClassDecl
, This
);
2270 void CodeGenFunction::EmitInheritedCXXConstructorCall(
2271 const CXXConstructorDecl
*D
, bool ForVirtualBase
, Address This
,
2272 bool InheritedFromVBase
, const CXXInheritedCtorInitExpr
*E
) {
2274 CallArg
ThisArg(RValue::get(getAsNaturalPointerTo(
2275 This
, D
->getThisType()->getPointeeType())),
2278 // Forward the parameters.
2279 if (InheritedFromVBase
&&
2280 CGM
.getTarget().getCXXABI().hasConstructorVariants()) {
2281 // Nothing to do; this construction is not responsible for constructing
2282 // the base class containing the inherited constructor.
2283 // FIXME: Can we just pass undef's for the remaining arguments if we don't
2284 // have constructor variants?
2285 Args
.push_back(ThisArg
);
2286 } else if (!CXXInheritedCtorInitExprArgs
.empty()) {
2287 // The inheriting constructor was inlined; just inject its arguments.
2288 assert(CXXInheritedCtorInitExprArgs
.size() >= D
->getNumParams() &&
2289 "wrong number of parameters for inherited constructor call");
2290 Args
= CXXInheritedCtorInitExprArgs
;
2293 // The inheriting constructor was not inlined. Emit delegating arguments.
2294 Args
.push_back(ThisArg
);
2295 const auto *OuterCtor
= cast
<CXXConstructorDecl
>(CurCodeDecl
);
2296 assert(OuterCtor
->getNumParams() == D
->getNumParams());
2297 assert(!OuterCtor
->isVariadic() && "should have been inlined");
2299 for (const auto *Param
: OuterCtor
->parameters()) {
2300 assert(getContext().hasSameUnqualifiedType(
2301 OuterCtor
->getParamDecl(Param
->getFunctionScopeIndex())->getType(),
2303 EmitDelegateCallArg(Args
, Param
, E
->getLocation());
2305 // Forward __attribute__(pass_object_size).
2306 if (Param
->hasAttr
<PassObjectSizeAttr
>()) {
2307 auto *POSParam
= SizeArguments
[Param
];
2308 assert(POSParam
&& "missing pass_object_size value for forwarding");
2309 EmitDelegateCallArg(Args
, POSParam
, E
->getLocation());
2314 EmitCXXConstructorCall(D
, Ctor_Base
, ForVirtualBase
, /*Delegating*/false,
2315 This
, Args
, AggValueSlot::MayOverlap
,
2316 E
->getLocation(), /*NewPointerIsChecked*/true);
2319 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
2320 const CXXConstructorDecl
*Ctor
, CXXCtorType CtorType
, bool ForVirtualBase
,
2321 bool Delegating
, CallArgList
&Args
) {
2322 GlobalDecl
GD(Ctor
, CtorType
);
2323 InlinedInheritingConstructorScope
Scope(*this, GD
);
2324 ApplyInlineDebugLocation
DebugScope(*this, GD
);
2325 RunCleanupsScope
RunCleanups(*this);
2327 // Save the arguments to be passed to the inherited constructor.
2328 CXXInheritedCtorInitExprArgs
= Args
;
2330 FunctionArgList Params
;
2331 QualType RetType
= BuildFunctionArgList(CurGD
, Params
);
2334 // Insert any ABI-specific implicit constructor arguments.
2335 CGM
.getCXXABI().addImplicitConstructorArgs(*this, Ctor
, CtorType
,
2336 ForVirtualBase
, Delegating
, Args
);
2338 // Emit a simplified prolog. We only need to emit the implicit params.
2339 assert(Args
.size() >= Params
.size() && "too few arguments for call");
2340 for (unsigned I
= 0, N
= Args
.size(); I
!= N
; ++I
) {
2341 if (I
< Params
.size() && isa
<ImplicitParamDecl
>(Params
[I
])) {
2342 const RValue
&RV
= Args
[I
].getRValue(*this);
2343 assert(!RV
.isComplex() && "complex indirect params not supported");
2344 ParamValue Val
= RV
.isScalar()
2345 ? ParamValue::forDirect(RV
.getScalarVal())
2346 : ParamValue::forIndirect(RV
.getAggregateAddress());
2347 EmitParmDecl(*Params
[I
], Val
, I
+ 1);
2351 // Create a return value slot if the ABI implementation wants one.
2352 // FIXME: This is dumb, we should ask the ABI not to try to set the return
2354 if (!RetType
->isVoidType())
2355 ReturnValue
= CreateIRTemp(RetType
, "retval.inhctor");
2357 CGM
.getCXXABI().EmitInstanceFunctionProlog(*this);
2358 CXXThisValue
= CXXABIThisValue
;
2360 // Directly emit the constructor initializers.
2361 EmitCtorPrologue(Ctor
, CtorType
, Params
);
2364 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr
&Vptr
, Address This
) {
2365 llvm::Value
*VTableGlobal
=
2366 CGM
.getCXXABI().getVTableAddressPoint(Vptr
.Base
, Vptr
.VTableClass
);
2370 // We can just use the base offset in the complete class.
2371 CharUnits NonVirtualOffset
= Vptr
.Base
.getBaseOffset();
2373 if (!NonVirtualOffset
.isZero())
2375 ApplyNonVirtualAndVirtualOffset(*this, This
, NonVirtualOffset
, nullptr,
2376 Vptr
.VTableClass
, Vptr
.NearestVBase
);
2378 llvm::Value
*VPtrValue
=
2379 GetVTablePtr(This
, VTableGlobal
->getType(), Vptr
.VTableClass
);
2381 Builder
.CreateICmpEQ(VPtrValue
, VTableGlobal
, "cmp.vtables");
2382 Builder
.CreateAssumption(Cmp
);
2385 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl
*ClassDecl
,
2387 if (CGM
.getCXXABI().doStructorsInitializeVPtrs(ClassDecl
))
2388 for (const VPtr
&Vptr
: getVTablePointers(ClassDecl
))
2389 EmitVTableAssumptionLoad(Vptr
, This
);
2393 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl
*D
,
2394 Address This
, Address Src
,
2395 const CXXConstructExpr
*E
) {
2396 const FunctionProtoType
*FPT
= D
->getType()->castAs
<FunctionProtoType
>();
2400 // Push the this ptr.
2401 Args
.add(RValue::get(getAsNaturalPointerTo(This
, D
->getThisType())),
2404 // Push the src ptr.
2405 QualType QT
= *(FPT
->param_type_begin());
2406 llvm::Type
*t
= CGM
.getTypes().ConvertType(QT
);
2407 llvm::Value
*Val
= getAsNaturalPointerTo(Src
, D
->getThisType());
2408 llvm::Value
*SrcVal
= Builder
.CreateBitCast(Val
, t
);
2409 Args
.add(RValue::get(SrcVal
), QT
);
2411 // Skip over first argument (Src).
2412 EmitCallArgs(Args
, FPT
, drop_begin(E
->arguments(), 1), E
->getConstructor(),
2413 /*ParamsToSkip*/ 1);
2415 EmitCXXConstructorCall(D
, Ctor_Complete
, /*ForVirtualBase*/false,
2416 /*Delegating*/false, This
, Args
,
2417 AggValueSlot::MayOverlap
, E
->getExprLoc(),
2418 /*NewPointerIsChecked*/false);
2422 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl
*Ctor
,
2423 CXXCtorType CtorType
,
2424 const FunctionArgList
&Args
,
2425 SourceLocation Loc
) {
2426 CallArgList DelegateArgs
;
2428 FunctionArgList::const_iterator I
= Args
.begin(), E
= Args
.end();
2429 assert(I
!= E
&& "no parameters to constructor");
2432 Address This
= LoadCXXThisAddress();
2433 DelegateArgs
.add(RValue::get(getAsNaturalPointerTo(
2434 This
, (*I
)->getType()->getPointeeType())),
2438 // FIXME: The location of the VTT parameter in the parameter list is
2439 // specific to the Itanium ABI and shouldn't be hardcoded here.
2440 if (CGM
.getCXXABI().NeedsVTTParameter(CurGD
)) {
2441 assert(I
!= E
&& "cannot skip vtt parameter, already done with args");
2442 assert((*I
)->getType()->isPointerType() &&
2443 "skipping parameter not of vtt type");
2447 // Explicit arguments.
2448 for (; I
!= E
; ++I
) {
2449 const VarDecl
*param
= *I
;
2450 // FIXME: per-argument source location
2451 EmitDelegateCallArg(DelegateArgs
, param
, Loc
);
2454 EmitCXXConstructorCall(Ctor
, CtorType
, /*ForVirtualBase=*/false,
2455 /*Delegating=*/true, This
, DelegateArgs
,
2456 AggValueSlot::MayOverlap
, Loc
,
2457 /*NewPointerIsChecked=*/true);
2461 struct CallDelegatingCtorDtor final
: EHScopeStack::Cleanup
{
2462 const CXXDestructorDecl
*Dtor
;
2466 CallDelegatingCtorDtor(const CXXDestructorDecl
*D
, Address Addr
,
2468 : Dtor(D
), Addr(Addr
), Type(Type
) {}
2470 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2471 // We are calling the destructor from within the constructor.
2472 // Therefore, "this" should have the expected type.
2473 QualType ThisTy
= Dtor
->getFunctionObjectParameterType();
2474 CGF
.EmitCXXDestructorCall(Dtor
, Type
, /*ForVirtualBase=*/false,
2475 /*Delegating=*/true, Addr
, ThisTy
);
2478 } // end anonymous namespace
2481 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl
*Ctor
,
2482 const FunctionArgList
&Args
) {
2483 assert(Ctor
->isDelegatingConstructor());
2485 Address ThisPtr
= LoadCXXThisAddress();
2487 AggValueSlot AggSlot
=
2488 AggValueSlot::forAddr(ThisPtr
, Qualifiers(),
2489 AggValueSlot::IsDestructed
,
2490 AggValueSlot::DoesNotNeedGCBarriers
,
2491 AggValueSlot::IsNotAliased
,
2492 AggValueSlot::MayOverlap
,
2493 AggValueSlot::IsNotZeroed
,
2494 // Checks are made by the code that calls constructor.
2495 AggValueSlot::IsSanitizerChecked
);
2497 EmitAggExpr(Ctor
->init_begin()[0]->getInit(), AggSlot
);
2499 const CXXRecordDecl
*ClassDecl
= Ctor
->getParent();
2500 if (CGM
.getLangOpts().Exceptions
&& !ClassDecl
->hasTrivialDestructor()) {
2502 CurGD
.getCtorType() == Ctor_Complete
? Dtor_Complete
: Dtor_Base
;
2504 EHStack
.pushCleanup
<CallDelegatingCtorDtor
>(EHCleanup
,
2505 ClassDecl
->getDestructor(),
2510 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl
*DD
,
2512 bool ForVirtualBase
,
2513 bool Delegating
, Address This
,
2515 CGM
.getCXXABI().EmitDestructorCall(*this, DD
, Type
, ForVirtualBase
,
2516 Delegating
, This
, ThisTy
);
2520 struct CallLocalDtor final
: EHScopeStack::Cleanup
{
2521 const CXXDestructorDecl
*Dtor
;
2525 CallLocalDtor(const CXXDestructorDecl
*D
, Address Addr
, QualType Ty
)
2526 : Dtor(D
), Addr(Addr
), Ty(Ty
) {}
2528 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2529 CGF
.EmitCXXDestructorCall(Dtor
, Dtor_Complete
,
2530 /*ForVirtualBase=*/false,
2531 /*Delegating=*/false, Addr
, Ty
);
2534 } // end anonymous namespace
2536 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl
*D
,
2537 QualType T
, Address Addr
) {
2538 EHStack
.pushCleanup
<CallLocalDtor
>(NormalAndEHCleanup
, D
, Addr
, T
);
2541 void CodeGenFunction::PushDestructorCleanup(QualType T
, Address Addr
) {
2542 CXXRecordDecl
*ClassDecl
= T
->getAsCXXRecordDecl();
2543 if (!ClassDecl
) return;
2544 if (ClassDecl
->hasTrivialDestructor()) return;
2546 const CXXDestructorDecl
*D
= ClassDecl
->getDestructor();
2547 assert(D
&& D
->isUsed() && "destructor not marked as used!");
2548 PushDestructorCleanup(D
, T
, Addr
);
2551 void CodeGenFunction::InitializeVTablePointer(const VPtr
&Vptr
) {
2552 // Compute the address point.
2553 llvm::Value
*VTableAddressPoint
=
2554 CGM
.getCXXABI().getVTableAddressPointInStructor(
2555 *this, Vptr
.VTableClass
, Vptr
.Base
, Vptr
.NearestVBase
);
2557 if (!VTableAddressPoint
)
2560 // Compute where to store the address point.
2561 llvm::Value
*VirtualOffset
= nullptr;
2562 CharUnits NonVirtualOffset
= CharUnits::Zero();
2564 if (CGM
.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr
)) {
2565 // We need to use the virtual base offset offset because the virtual base
2566 // might have a different offset in the most derived class.
2568 VirtualOffset
= CGM
.getCXXABI().GetVirtualBaseClassOffset(
2569 *this, LoadCXXThisAddress(), Vptr
.VTableClass
, Vptr
.NearestVBase
);
2570 NonVirtualOffset
= Vptr
.OffsetFromNearestVBase
;
2572 // We can just use the base offset in the complete class.
2573 NonVirtualOffset
= Vptr
.Base
.getBaseOffset();
2576 // Apply the offsets.
2577 Address VTableField
= LoadCXXThisAddress();
2578 if (!NonVirtualOffset
.isZero() || VirtualOffset
)
2579 VTableField
= ApplyNonVirtualAndVirtualOffset(
2580 *this, VTableField
, NonVirtualOffset
, VirtualOffset
, Vptr
.VTableClass
,
2583 // Finally, store the address point. Use the same LLVM types as the field to
2584 // support optimization.
2585 unsigned GlobalsAS
= CGM
.getDataLayout().getDefaultGlobalsAddressSpace();
2586 llvm::Type
*PtrTy
= llvm::PointerType::get(CGM
.getLLVMContext(), GlobalsAS
);
2587 // vtable field is derived from `this` pointer, therefore they should be in
2588 // the same addr space. Note that this might not be LLVM address space 0.
2589 VTableField
= VTableField
.withElementType(PtrTy
);
2591 llvm::StoreInst
*Store
= Builder
.CreateStore(VTableAddressPoint
, VTableField
);
2592 TBAAAccessInfo TBAAInfo
= CGM
.getTBAAVTablePtrAccessInfo(PtrTy
);
2593 CGM
.DecorateInstructionWithTBAA(Store
, TBAAInfo
);
2594 if (CGM
.getCodeGenOpts().OptimizationLevel
> 0 &&
2595 CGM
.getCodeGenOpts().StrictVTablePointers
)
2596 CGM
.DecorateInstructionWithInvariantGroup(Store
, Vptr
.VTableClass
);
2599 CodeGenFunction::VPtrsVector
2600 CodeGenFunction::getVTablePointers(const CXXRecordDecl
*VTableClass
) {
2601 CodeGenFunction::VPtrsVector VPtrsResult
;
2602 VisitedVirtualBasesSetTy VBases
;
2603 getVTablePointers(BaseSubobject(VTableClass
, CharUnits::Zero()),
2604 /*NearestVBase=*/nullptr,
2605 /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2606 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass
, VBases
,
2611 void CodeGenFunction::getVTablePointers(BaseSubobject Base
,
2612 const CXXRecordDecl
*NearestVBase
,
2613 CharUnits OffsetFromNearestVBase
,
2614 bool BaseIsNonVirtualPrimaryBase
,
2615 const CXXRecordDecl
*VTableClass
,
2616 VisitedVirtualBasesSetTy
&VBases
,
2617 VPtrsVector
&Vptrs
) {
2618 // If this base is a non-virtual primary base the address point has already
2620 if (!BaseIsNonVirtualPrimaryBase
) {
2621 // Initialize the vtable pointer for this base.
2622 VPtr Vptr
= {Base
, NearestVBase
, OffsetFromNearestVBase
, VTableClass
};
2623 Vptrs
.push_back(Vptr
);
2626 const CXXRecordDecl
*RD
= Base
.getBase();
2629 for (const auto &I
: RD
->bases()) {
2631 cast
<CXXRecordDecl
>(I
.getType()->castAs
<RecordType
>()->getDecl());
2633 // Ignore classes without a vtable.
2634 if (!BaseDecl
->isDynamicClass())
2637 CharUnits BaseOffset
;
2638 CharUnits BaseOffsetFromNearestVBase
;
2639 bool BaseDeclIsNonVirtualPrimaryBase
;
2641 if (I
.isVirtual()) {
2642 // Check if we've visited this virtual base before.
2643 if (!VBases
.insert(BaseDecl
).second
)
2646 const ASTRecordLayout
&Layout
=
2647 getContext().getASTRecordLayout(VTableClass
);
2649 BaseOffset
= Layout
.getVBaseClassOffset(BaseDecl
);
2650 BaseOffsetFromNearestVBase
= CharUnits::Zero();
2651 BaseDeclIsNonVirtualPrimaryBase
= false;
2653 const ASTRecordLayout
&Layout
= getContext().getASTRecordLayout(RD
);
2655 BaseOffset
= Base
.getBaseOffset() + Layout
.getBaseClassOffset(BaseDecl
);
2656 BaseOffsetFromNearestVBase
=
2657 OffsetFromNearestVBase
+ Layout
.getBaseClassOffset(BaseDecl
);
2658 BaseDeclIsNonVirtualPrimaryBase
= Layout
.getPrimaryBase() == BaseDecl
;
2662 BaseSubobject(BaseDecl
, BaseOffset
),
2663 I
.isVirtual() ? BaseDecl
: NearestVBase
, BaseOffsetFromNearestVBase
,
2664 BaseDeclIsNonVirtualPrimaryBase
, VTableClass
, VBases
, Vptrs
);
2668 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl
*RD
) {
2669 // Ignore classes without a vtable.
2670 if (!RD
->isDynamicClass())
2673 // Initialize the vtable pointers for this class and all of its bases.
2674 if (CGM
.getCXXABI().doStructorsInitializeVPtrs(RD
))
2675 for (const VPtr
&Vptr
: getVTablePointers(RD
))
2676 InitializeVTablePointer(Vptr
);
2678 if (RD
->getNumVBases())
2679 CGM
.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD
);
2682 llvm::Value
*CodeGenFunction::GetVTablePtr(Address This
,
2683 llvm::Type
*VTableTy
,
2684 const CXXRecordDecl
*RD
) {
2685 Address VTablePtrSrc
= This
.withElementType(VTableTy
);
2686 llvm::Instruction
*VTable
= Builder
.CreateLoad(VTablePtrSrc
, "vtable");
2687 TBAAAccessInfo TBAAInfo
= CGM
.getTBAAVTablePtrAccessInfo(VTableTy
);
2688 CGM
.DecorateInstructionWithTBAA(VTable
, TBAAInfo
);
2690 if (CGM
.getCodeGenOpts().OptimizationLevel
> 0 &&
2691 CGM
.getCodeGenOpts().StrictVTablePointers
)
2692 CGM
.DecorateInstructionWithInvariantGroup(VTable
, RD
);
2697 // If a class has a single non-virtual base and does not introduce or override
2698 // virtual member functions or fields, it will have the same layout as its base.
2699 // This function returns the least derived such class.
2701 // Casting an instance of a base class to such a derived class is technically
2702 // undefined behavior, but it is a relatively common hack for introducing member
2703 // functions on class instances with specific properties (e.g. llvm::Operator)
2704 // that works under most compilers and should not have security implications, so
2705 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2706 static const CXXRecordDecl
*
2707 LeastDerivedClassWithSameLayout(const CXXRecordDecl
*RD
) {
2708 if (!RD
->field_empty())
2711 if (RD
->getNumVBases() != 0)
2714 if (RD
->getNumBases() != 1)
2717 for (const CXXMethodDecl
*MD
: RD
->methods()) {
2718 if (MD
->isVirtual()) {
2719 // Virtual member functions are only ok if they are implicit destructors
2720 // because the implicit destructor will have the same semantics as the
2721 // base class's destructor if no fields are added.
2722 if (isa
<CXXDestructorDecl
>(MD
) && MD
->isImplicit())
2728 return LeastDerivedClassWithSameLayout(
2729 RD
->bases_begin()->getType()->getAsCXXRecordDecl());
2732 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl
*RD
,
2733 llvm::Value
*VTable
,
2734 SourceLocation Loc
) {
2735 if (SanOpts
.has(SanitizerKind::CFIVCall
))
2736 EmitVTablePtrCheckForCall(RD
, VTable
, CodeGenFunction::CFITCK_VCall
, Loc
);
2737 else if (CGM
.getCodeGenOpts().WholeProgramVTables
&&
2738 // Don't insert type test assumes if we are forcing public
2740 !CGM
.AlwaysHasLTOVisibilityPublic(RD
)) {
2741 QualType Ty
= QualType(RD
->getTypeForDecl(), 0);
2742 llvm::Metadata
*MD
= CGM
.CreateMetadataIdentifierForType(Ty
);
2743 llvm::Value
*TypeId
=
2744 llvm::MetadataAsValue::get(CGM
.getLLVMContext(), MD
);
2746 // If we already know that the call has hidden LTO visibility, emit
2747 // @llvm.type.test(). Otherwise emit @llvm.public.type.test(), which WPD
2748 // will convert to @llvm.type.test() if we assert at link time that we have
2749 // whole program visibility.
2750 llvm::Intrinsic::ID IID
= CGM
.HasHiddenLTOVisibility(RD
)
2751 ? llvm::Intrinsic::type_test
2752 : llvm::Intrinsic::public_type_test
;
2753 llvm::Value
*TypeTest
=
2754 Builder
.CreateCall(CGM
.getIntrinsic(IID
), {VTable
, TypeId
});
2755 Builder
.CreateCall(CGM
.getIntrinsic(llvm::Intrinsic::assume
), TypeTest
);
2759 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl
*RD
,
2760 llvm::Value
*VTable
,
2761 CFITypeCheckKind TCK
,
2762 SourceLocation Loc
) {
2763 if (!SanOpts
.has(SanitizerKind::CFICastStrict
))
2764 RD
= LeastDerivedClassWithSameLayout(RD
);
2766 EmitVTablePtrCheck(RD
, VTable
, TCK
, Loc
);
2769 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T
, Address Derived
,
2771 CFITypeCheckKind TCK
,
2772 SourceLocation Loc
) {
2773 if (!getLangOpts().CPlusPlus
)
2776 auto *ClassTy
= T
->getAs
<RecordType
>();
2780 const CXXRecordDecl
*ClassDecl
= cast
<CXXRecordDecl
>(ClassTy
->getDecl());
2782 if (!ClassDecl
->isCompleteDefinition() || !ClassDecl
->isDynamicClass())
2785 if (!SanOpts
.has(SanitizerKind::CFICastStrict
))
2786 ClassDecl
= LeastDerivedClassWithSameLayout(ClassDecl
);
2788 llvm::BasicBlock
*ContBlock
= nullptr;
2791 llvm::Value
*DerivedNotNull
=
2792 Builder
.CreateIsNotNull(Derived
.emitRawPointer(*this), "cast.nonnull");
2794 llvm::BasicBlock
*CheckBlock
= createBasicBlock("cast.check");
2795 ContBlock
= createBasicBlock("cast.cont");
2797 Builder
.CreateCondBr(DerivedNotNull
, CheckBlock
, ContBlock
);
2799 EmitBlock(CheckBlock
);
2802 llvm::Value
*VTable
;
2803 std::tie(VTable
, ClassDecl
) =
2804 CGM
.getCXXABI().LoadVTablePtr(*this, Derived
, ClassDecl
);
2806 EmitVTablePtrCheck(ClassDecl
, VTable
, TCK
, Loc
);
2809 Builder
.CreateBr(ContBlock
);
2810 EmitBlock(ContBlock
);
2814 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl
*RD
,
2815 llvm::Value
*VTable
,
2816 CFITypeCheckKind TCK
,
2817 SourceLocation Loc
) {
2818 if (!CGM
.getCodeGenOpts().SanitizeCfiCrossDso
&&
2819 !CGM
.HasHiddenLTOVisibility(RD
))
2823 llvm::SanitizerStatKind SSK
;
2826 M
= SanitizerKind::CFIVCall
;
2827 SSK
= llvm::SanStat_CFI_VCall
;
2830 M
= SanitizerKind::CFINVCall
;
2831 SSK
= llvm::SanStat_CFI_NVCall
;
2833 case CFITCK_DerivedCast
:
2834 M
= SanitizerKind::CFIDerivedCast
;
2835 SSK
= llvm::SanStat_CFI_DerivedCast
;
2837 case CFITCK_UnrelatedCast
:
2838 M
= SanitizerKind::CFIUnrelatedCast
;
2839 SSK
= llvm::SanStat_CFI_UnrelatedCast
;
2842 case CFITCK_NVMFCall
:
2843 case CFITCK_VMFCall
:
2844 llvm_unreachable("unexpected sanitizer kind");
2847 std::string TypeName
= RD
->getQualifiedNameAsString();
2848 if (getContext().getNoSanitizeList().containsType(M
, TypeName
))
2851 SanitizerScope
SanScope(this);
2852 EmitSanitizerStatReport(SSK
);
2854 llvm::Metadata
*MD
=
2855 CGM
.CreateMetadataIdentifierForType(QualType(RD
->getTypeForDecl(), 0));
2856 llvm::Value
*TypeId
= llvm::MetadataAsValue::get(getLLVMContext(), MD
);
2858 llvm::Value
*TypeTest
= Builder
.CreateCall(
2859 CGM
.getIntrinsic(llvm::Intrinsic::type_test
), {VTable
, TypeId
});
2861 llvm::Constant
*StaticData
[] = {
2862 llvm::ConstantInt::get(Int8Ty
, TCK
),
2863 EmitCheckSourceLocation(Loc
),
2864 EmitCheckTypeDescriptor(QualType(RD
->getTypeForDecl(), 0)),
2867 auto CrossDsoTypeId
= CGM
.CreateCrossDsoCfiTypeId(MD
);
2868 if (CGM
.getCodeGenOpts().SanitizeCfiCrossDso
&& CrossDsoTypeId
) {
2869 EmitCfiSlowPathCheck(M
, TypeTest
, CrossDsoTypeId
, VTable
, StaticData
);
2873 if (CGM
.getCodeGenOpts().SanitizeTrap
.has(M
)) {
2874 EmitTrapCheck(TypeTest
, SanitizerHandler::CFICheckFail
);
2878 llvm::Value
*AllVtables
= llvm::MetadataAsValue::get(
2879 CGM
.getLLVMContext(),
2880 llvm::MDString::get(CGM
.getLLVMContext(), "all-vtables"));
2881 llvm::Value
*ValidVtable
= Builder
.CreateCall(
2882 CGM
.getIntrinsic(llvm::Intrinsic::type_test
), {VTable
, AllVtables
});
2883 EmitCheck(std::make_pair(TypeTest
, M
), SanitizerHandler::CFICheckFail
,
2884 StaticData
, {VTable
, ValidVtable
});
2887 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl
*RD
) {
2888 if (!CGM
.getCodeGenOpts().WholeProgramVTables
||
2889 !CGM
.HasHiddenLTOVisibility(RD
))
2892 if (CGM
.getCodeGenOpts().VirtualFunctionElimination
)
2895 if (!SanOpts
.has(SanitizerKind::CFIVCall
) ||
2896 !CGM
.getCodeGenOpts().SanitizeTrap
.has(SanitizerKind::CFIVCall
))
2899 std::string TypeName
= RD
->getQualifiedNameAsString();
2900 return !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall
,
2904 llvm::Value
*CodeGenFunction::EmitVTableTypeCheckedLoad(
2905 const CXXRecordDecl
*RD
, llvm::Value
*VTable
, llvm::Type
*VTableTy
,
2906 uint64_t VTableByteOffset
) {
2907 SanitizerScope
SanScope(this);
2909 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall
);
2911 llvm::Metadata
*MD
=
2912 CGM
.CreateMetadataIdentifierForType(QualType(RD
->getTypeForDecl(), 0));
2913 llvm::Value
*TypeId
= llvm::MetadataAsValue::get(CGM
.getLLVMContext(), MD
);
2915 llvm::Value
*CheckedLoad
= Builder
.CreateCall(
2916 CGM
.getIntrinsic(llvm::Intrinsic::type_checked_load
),
2917 {VTable
, llvm::ConstantInt::get(Int32Ty
, VTableByteOffset
), TypeId
});
2918 llvm::Value
*CheckResult
= Builder
.CreateExtractValue(CheckedLoad
, 1);
2920 std::string TypeName
= RD
->getQualifiedNameAsString();
2921 if (SanOpts
.has(SanitizerKind::CFIVCall
) &&
2922 !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall
,
2924 EmitCheck(std::make_pair(CheckResult
, SanitizerKind::CFIVCall
),
2925 SanitizerHandler::CFICheckFail
, {}, {});
2928 return Builder
.CreateBitCast(Builder
.CreateExtractValue(CheckedLoad
, 0),
2932 void CodeGenFunction::EmitForwardingCallToLambda(
2933 const CXXMethodDecl
*callOperator
, CallArgList
&callArgs
,
2934 const CGFunctionInfo
*calleeFnInfo
, llvm::Constant
*calleePtr
) {
2935 // Get the address of the call operator.
2937 calleeFnInfo
= &CGM
.getTypes().arrangeCXXMethodDeclaration(callOperator
);
2941 CGM
.GetAddrOfFunction(GlobalDecl(callOperator
),
2942 CGM
.getTypes().GetFunctionType(*calleeFnInfo
));
2944 // Prepare the return slot.
2945 const FunctionProtoType
*FPT
=
2946 callOperator
->getType()->castAs
<FunctionProtoType
>();
2947 QualType resultType
= FPT
->getReturnType();
2948 ReturnValueSlot returnSlot
;
2949 if (!resultType
->isVoidType() &&
2950 calleeFnInfo
->getReturnInfo().getKind() == ABIArgInfo::Indirect
&&
2951 !hasScalarEvaluationKind(calleeFnInfo
->getReturnType()))
2953 ReturnValueSlot(ReturnValue
, resultType
.isVolatileQualified(),
2954 /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
2956 // We don't need to separately arrange the call arguments because
2957 // the call can't be variadic anyway --- it's impossible to forward
2958 // variadic arguments.
2960 // Now emit our call.
2961 auto callee
= CGCallee::forDirect(calleePtr
, GlobalDecl(callOperator
));
2962 RValue RV
= EmitCall(*calleeFnInfo
, callee
, returnSlot
, callArgs
);
2964 // If necessary, copy the returned value into the slot.
2965 if (!resultType
->isVoidType() && returnSlot
.isNull()) {
2966 if (getLangOpts().ObjCAutoRefCount
&& resultType
->isObjCRetainableType()) {
2967 RV
= RValue::get(EmitARCRetainAutoreleasedReturnValue(RV
.getScalarVal()));
2969 EmitReturnOfRValue(RV
, resultType
);
2971 EmitBranchThroughCleanup(ReturnBlock
);
2974 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2975 const BlockDecl
*BD
= BlockInfo
->getBlockDecl();
2976 const VarDecl
*variable
= BD
->capture_begin()->getVariable();
2977 const CXXRecordDecl
*Lambda
= variable
->getType()->getAsCXXRecordDecl();
2978 const CXXMethodDecl
*CallOp
= Lambda
->getLambdaCallOperator();
2980 if (CallOp
->isVariadic()) {
2981 // FIXME: Making this work correctly is nasty because it requires either
2982 // cloning the body of the call operator or making the call operator
2984 CGM
.ErrorUnsupported(CurCodeDecl
, "lambda conversion to variadic function");
2988 // Start building arguments for forwarding call
2989 CallArgList CallArgs
;
2991 QualType ThisType
= getContext().getPointerType(getContext().getRecordType(Lambda
));
2992 Address ThisPtr
= GetAddrOfBlockDecl(variable
);
2993 CallArgs
.add(RValue::get(getAsNaturalPointerTo(ThisPtr
, ThisType
)), ThisType
);
2995 // Add the rest of the parameters.
2996 for (auto *param
: BD
->parameters())
2997 EmitDelegateCallArg(CallArgs
, param
, param
->getBeginLoc());
2999 assert(!Lambda
->isGenericLambda() &&
3000 "generic lambda interconversion to block not implemented");
3001 EmitForwardingCallToLambda(CallOp
, CallArgs
);
3004 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl
*MD
) {
3005 if (MD
->isVariadic()) {
3006 // FIXME: Making this work correctly is nasty because it requires either
3007 // cloning the body of the call operator or making the call operator
3009 CGM
.ErrorUnsupported(MD
, "lambda conversion to variadic function");
3013 const CXXRecordDecl
*Lambda
= MD
->getParent();
3015 // Start building arguments for forwarding call
3016 CallArgList CallArgs
;
3018 QualType LambdaType
= getContext().getRecordType(Lambda
);
3019 QualType ThisType
= getContext().getPointerType(LambdaType
);
3020 Address ThisPtr
= CreateMemTemp(LambdaType
, "unused.capture");
3021 CallArgs
.add(RValue::get(ThisPtr
.emitRawPointer(*this)), ThisType
);
3023 EmitLambdaDelegatingInvokeBody(MD
, CallArgs
);
3026 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl
*MD
,
3027 CallArgList
&CallArgs
) {
3028 // Add the rest of the forwarded parameters.
3029 for (auto *Param
: MD
->parameters())
3030 EmitDelegateCallArg(CallArgs
, Param
, Param
->getBeginLoc());
3032 const CXXRecordDecl
*Lambda
= MD
->getParent();
3033 const CXXMethodDecl
*CallOp
= Lambda
->getLambdaCallOperator();
3034 // For a generic lambda, find the corresponding call operator specialization
3035 // to which the call to the static-invoker shall be forwarded.
3036 if (Lambda
->isGenericLambda()) {
3037 assert(MD
->isFunctionTemplateSpecialization());
3038 const TemplateArgumentList
*TAL
= MD
->getTemplateSpecializationArgs();
3039 FunctionTemplateDecl
*CallOpTemplate
= CallOp
->getDescribedFunctionTemplate();
3040 void *InsertPos
= nullptr;
3041 FunctionDecl
*CorrespondingCallOpSpecialization
=
3042 CallOpTemplate
->findSpecialization(TAL
->asArray(), InsertPos
);
3043 assert(CorrespondingCallOpSpecialization
);
3044 CallOp
= cast
<CXXMethodDecl
>(CorrespondingCallOpSpecialization
);
3047 // Special lambda forwarding when there are inalloca parameters.
3048 if (hasInAllocaArg(MD
)) {
3049 const CGFunctionInfo
*ImplFnInfo
= nullptr;
3050 llvm::Function
*ImplFn
= nullptr;
3051 EmitLambdaInAllocaImplFn(CallOp
, &ImplFnInfo
, &ImplFn
);
3053 EmitForwardingCallToLambda(CallOp
, CallArgs
, ImplFnInfo
, ImplFn
);
3057 EmitForwardingCallToLambda(CallOp
, CallArgs
);
3060 void CodeGenFunction::EmitLambdaInAllocaCallOpBody(const CXXMethodDecl
*MD
) {
3061 if (MD
->isVariadic()) {
3062 // FIXME: Making this work correctly is nasty because it requires either
3063 // cloning the body of the call operator or making the call operator forward.
3064 CGM
.ErrorUnsupported(MD
, "lambda conversion to variadic function");
3068 // Forward %this argument.
3069 CallArgList CallArgs
;
3070 QualType LambdaType
= getContext().getRecordType(MD
->getParent());
3071 QualType ThisType
= getContext().getPointerType(LambdaType
);
3072 llvm::Value
*ThisArg
= CurFn
->getArg(0);
3073 CallArgs
.add(RValue::get(ThisArg
), ThisType
);
3075 EmitLambdaDelegatingInvokeBody(MD
, CallArgs
);
3078 void CodeGenFunction::EmitLambdaInAllocaImplFn(
3079 const CXXMethodDecl
*CallOp
, const CGFunctionInfo
**ImplFnInfo
,
3080 llvm::Function
**ImplFn
) {
3081 const CGFunctionInfo
&FnInfo
=
3082 CGM
.getTypes().arrangeCXXMethodDeclaration(CallOp
);
3083 llvm::Function
*CallOpFn
=
3084 cast
<llvm::Function
>(CGM
.GetAddrOfFunction(GlobalDecl(CallOp
)));
3086 // Emit function containing the original call op body. __invoke will delegate
3087 // to this function.
3088 SmallVector
<CanQualType
, 4> ArgTypes
;
3089 for (auto I
= FnInfo
.arg_begin(); I
!= FnInfo
.arg_end(); ++I
)
3090 ArgTypes
.push_back(I
->type
);
3091 *ImplFnInfo
= &CGM
.getTypes().arrangeLLVMFunctionInfo(
3092 FnInfo
.getReturnType(), FnInfoOpts::IsDelegateCall
, ArgTypes
,
3093 FnInfo
.getExtInfo(), {}, FnInfo
.getRequiredArgs());
3095 // Create mangled name as if this was a method named __impl. If for some
3096 // reason the name doesn't look as expected then just tack __impl to the
3098 // TODO: Use the name mangler to produce the right name instead of using
3099 // string replacement.
3100 StringRef CallOpName
= CallOpFn
->getName();
3101 std::string ImplName
;
3102 if (size_t Pos
= CallOpName
.find_first_of("<lambda"))
3103 ImplName
= ("?__impl@" + CallOpName
.drop_front(Pos
)).str();
3105 ImplName
= ("__impl" + CallOpName
).str();
3107 llvm::Function
*Fn
= CallOpFn
->getParent()->getFunction(ImplName
);
3109 Fn
= llvm::Function::Create(CGM
.getTypes().GetFunctionType(**ImplFnInfo
),
3110 llvm::GlobalValue::InternalLinkage
, ImplName
,
3112 CGM
.SetInternalFunctionAttributes(CallOp
, Fn
, **ImplFnInfo
);
3114 const GlobalDecl
&GD
= GlobalDecl(CallOp
);
3115 const auto *D
= cast
<FunctionDecl
>(GD
.getDecl());
3116 CodeGenFunction(CGM
).GenerateCode(GD
, Fn
, **ImplFnInfo
);
3117 CGM
.SetLLVMFunctionAttributesForDefinition(D
, Fn
);