[RISCV] Make EmitRISCVCpuSupports accept multiple features (#104917)
[llvm-project.git] / bolt / lib / RuntimeLibs / InstrumentationRuntimeLibrary.cpp
blob53a0c811b41d58055f622daa6890281cc17abcfe
1 //===- bolt/RuntimeLibs/InstrumentationRuntimeLibrary.cpp -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the InstrumentationRuntimeLibrary class.
11 //===----------------------------------------------------------------------===//
13 #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h"
14 #include "bolt/Core/BinaryFunction.h"
15 #include "bolt/Core/JumpTable.h"
16 #include "bolt/Core/Linker.h"
17 #include "bolt/Utils/CommandLineOpts.h"
18 #include "llvm/MC/MCStreamer.h"
19 #include "llvm/Support/Alignment.h"
20 #include "llvm/Support/CommandLine.h"
22 using namespace llvm;
23 using namespace bolt;
25 namespace opts {
27 cl::opt<std::string> RuntimeInstrumentationLib(
28 "runtime-instrumentation-lib",
29 cl::desc("specify path of the runtime instrumentation library"),
30 cl::init("libbolt_rt_instr.a"), cl::cat(BoltOptCategory));
32 extern cl::opt<bool> InstrumentationFileAppendPID;
33 extern cl::opt<bool> ConservativeInstrumentation;
34 extern cl::opt<std::string> InstrumentationFilename;
35 extern cl::opt<std::string> InstrumentationBinpath;
36 extern cl::opt<uint32_t> InstrumentationSleepTime;
37 extern cl::opt<bool> InstrumentationNoCountersClear;
38 extern cl::opt<bool> InstrumentationWaitForks;
39 extern cl::opt<JumpTableSupportLevel> JumpTables;
41 } // namespace opts
43 void InstrumentationRuntimeLibrary::adjustCommandLineOptions(
44 const BinaryContext &BC) const {
45 if (!BC.HasRelocations) {
46 errs() << "BOLT-ERROR: instrumentation runtime libraries require "
47 "relocations\n";
48 exit(1);
50 if (opts::JumpTables != JTS_MOVE) {
51 opts::JumpTables = JTS_MOVE;
52 outs() << "BOLT-INFO: forcing -jump-tables=move for instrumentation\n";
54 if (!BC.StartFunctionAddress) {
55 errs() << "BOLT-ERROR: instrumentation runtime libraries require a known "
56 "entry point of "
57 "the input binary\n";
58 exit(1);
61 if (BC.IsStaticExecutable && !opts::InstrumentationSleepTime) {
62 errs() << "BOLT-ERROR: instrumentation of static binary currently does not "
63 "support profile output on binary finalization, so it "
64 "requires -instrumentation-sleep-time=N (N>0) usage\n";
65 exit(1);
68 if ((opts::InstrumentationWaitForks || opts::InstrumentationSleepTime) &&
69 opts::InstrumentationFileAppendPID) {
70 errs()
71 << "BOLT-ERROR: instrumentation-file-append-pid is not compatible with "
72 "instrumentation-sleep-time and instrumentation-wait-forks. If you "
73 "want a separate profile for each fork, it can only be dumped in "
74 "the end of process when instrumentation-file-append-pid is used.\n";
75 exit(1);
79 void InstrumentationRuntimeLibrary::emitBinary(BinaryContext &BC,
80 MCStreamer &Streamer) {
81 MCSection *Section = BC.isELF()
82 ? static_cast<MCSection *>(BC.Ctx->getELFSection(
83 ".bolt.instr.counters", ELF::SHT_PROGBITS,
84 BinarySection::getFlags(/*IsReadOnly=*/false,
85 /*IsText=*/false,
86 /*IsAllocatable=*/true)
89 : static_cast<MCSection *>(BC.Ctx->getMachOSection(
90 "__BOLT", "__counters", MachO::S_REGULAR,
91 SectionKind::getData()));
93 Section->setAlignment(llvm::Align(BC.RegularPageSize));
94 Streamer.switchSection(Section);
96 // EmitOffset is used to determine padding size for data alignment
97 uint64_t EmitOffset = 0;
99 auto emitLabel = [&Streamer](MCSymbol *Symbol, bool IsGlobal = true) {
100 Streamer.emitLabel(Symbol);
101 if (IsGlobal)
102 Streamer.emitSymbolAttribute(Symbol, MCSymbolAttr::MCSA_Global);
105 auto emitLabelByName = [&BC, emitLabel](StringRef Name,
106 bool IsGlobal = true) {
107 MCSymbol *Symbol = BC.Ctx->getOrCreateSymbol(Name);
108 emitLabel(Symbol, IsGlobal);
111 auto emitPadding = [&Streamer, &EmitOffset](unsigned Size) {
112 const uint64_t Padding = alignTo(EmitOffset, Size) - EmitOffset;
113 if (Padding) {
114 Streamer.emitFill(Padding, 0);
115 EmitOffset += Padding;
119 auto emitDataSize = [&EmitOffset](unsigned Size) { EmitOffset += Size; };
121 auto emitDataPadding = [emitPadding, emitDataSize](unsigned Size) {
122 emitPadding(Size);
123 emitDataSize(Size);
126 auto emitFill = [&Streamer, emitDataSize,
127 emitLabel](unsigned Size, MCSymbol *Symbol = nullptr,
128 uint8_t Byte = 0) {
129 emitDataSize(Size);
130 if (Symbol)
131 emitLabel(Symbol, /*IsGlobal*/ false);
132 Streamer.emitFill(Size, Byte);
135 auto emitValue = [&BC, &Streamer, emitDataPadding,
136 emitLabel](MCSymbol *Symbol, const MCExpr *Value) {
137 const unsigned Psize = BC.AsmInfo->getCodePointerSize();
138 emitDataPadding(Psize);
139 emitLabel(Symbol);
140 if (Value)
141 Streamer.emitValue(Value, Psize);
142 else
143 Streamer.emitFill(Psize, 0);
146 auto emitIntValue = [&Streamer, emitDataPadding, emitLabelByName](
147 StringRef Name, uint64_t Value, unsigned Size = 4) {
148 emitDataPadding(Size);
149 emitLabelByName(Name);
150 Streamer.emitIntValue(Value, Size);
153 auto emitString = [&Streamer, emitDataSize, emitLabelByName,
154 emitFill](StringRef Name, StringRef Contents) {
155 emitDataSize(Contents.size());
156 emitLabelByName(Name);
157 Streamer.emitBytes(Contents);
158 emitFill(1);
161 // All of the following symbols will be exported as globals to be used by the
162 // instrumentation runtime library to dump the instrumentation data to disk.
163 // Label marking start of the memory region containing instrumentation
164 // counters, total vector size is Counters.size() 8-byte counters
165 emitLabelByName("__bolt_instr_locations");
166 for (MCSymbol *const &Label : Summary->Counters)
167 emitFill(sizeof(uint64_t), Label);
169 emitPadding(BC.RegularPageSize);
170 emitIntValue("__bolt_instr_sleep_time", opts::InstrumentationSleepTime);
171 emitIntValue("__bolt_instr_no_counters_clear",
172 !!opts::InstrumentationNoCountersClear, 1);
173 emitIntValue("__bolt_instr_conservative", !!opts::ConservativeInstrumentation,
175 emitIntValue("__bolt_instr_wait_forks", !!opts::InstrumentationWaitForks, 1);
176 emitIntValue("__bolt_num_counters", Summary->Counters.size());
177 emitValue(Summary->IndCallCounterFuncPtr, nullptr);
178 emitValue(Summary->IndTailCallCounterFuncPtr, nullptr);
179 emitIntValue("__bolt_instr_num_ind_calls",
180 Summary->IndCallDescriptions.size());
181 emitIntValue("__bolt_instr_num_ind_targets",
182 Summary->IndCallTargetDescriptions.size());
183 emitIntValue("__bolt_instr_num_funcs", Summary->FunctionDescriptions.size());
184 emitString("__bolt_instr_filename", opts::InstrumentationFilename);
185 emitString("__bolt_instr_binpath", opts::InstrumentationBinpath);
186 emitIntValue("__bolt_instr_use_pid", !!opts::InstrumentationFileAppendPID, 1);
188 if (BC.isMachO()) {
189 MCSection *TablesSection = BC.Ctx->getMachOSection(
190 "__BOLT", "__tables", MachO::S_REGULAR, SectionKind::getData());
191 TablesSection->setAlignment(llvm::Align(BC.RegularPageSize));
192 Streamer.switchSection(TablesSection);
193 emitString("__bolt_instr_tables", buildTables(BC));
197 void InstrumentationRuntimeLibrary::link(
198 BinaryContext &BC, StringRef ToolPath, BOLTLinker &Linker,
199 BOLTLinker::SectionsMapper MapSections) {
200 std::string LibPath = getLibPath(ToolPath, opts::RuntimeInstrumentationLib);
201 loadLibrary(LibPath, Linker, MapSections);
203 if (BC.isMachO())
204 return;
206 RuntimeFiniAddress = Linker.lookupSymbol("__bolt_instr_fini").value_or(0);
207 if (!RuntimeFiniAddress) {
208 errs() << "BOLT-ERROR: instrumentation library does not define "
209 "__bolt_instr_fini: "
210 << LibPath << "\n";
211 exit(1);
213 RuntimeStartAddress = Linker.lookupSymbol("__bolt_instr_start").value_or(0);
214 if (!RuntimeStartAddress) {
215 errs() << "BOLT-ERROR: instrumentation library does not define "
216 "__bolt_instr_start: "
217 << LibPath << "\n";
218 exit(1);
220 outs() << "BOLT-INFO: output linked against instrumentation runtime "
221 "library, lib entry point is 0x"
222 << Twine::utohexstr(RuntimeFiniAddress) << "\n";
223 outs() << "BOLT-INFO: clear procedure is 0x"
224 << Twine::utohexstr(
225 Linker.lookupSymbol("__bolt_instr_clear_counters").value_or(0))
226 << "\n";
228 emitTablesAsELFNote(BC);
231 std::string InstrumentationRuntimeLibrary::buildTables(BinaryContext &BC) {
232 std::string TablesStr;
233 raw_string_ostream OS(TablesStr);
235 // This is sync'ed with runtime/instr.cpp:readDescriptions()
236 auto getOutputAddress = [](const BinaryFunction &Func,
237 uint64_t Offset) -> uint64_t {
238 return Offset == 0
239 ? Func.getOutputAddress()
240 : Func.translateInputToOutputAddress(Func.getAddress() + Offset);
243 // Indirect targets need to be sorted for fast lookup during runtime
244 llvm::sort(Summary->IndCallTargetDescriptions,
245 [&](const IndCallTargetDescription &A,
246 const IndCallTargetDescription &B) {
247 return getOutputAddress(*A.Target, A.ToLoc.Offset) <
248 getOutputAddress(*B.Target, B.ToLoc.Offset);
251 // Start of the vector with descriptions (one CounterDescription for each
252 // counter), vector size is Counters.size() CounterDescription-sized elmts
253 const size_t IDSize =
254 Summary->IndCallDescriptions.size() * sizeof(IndCallDescription);
255 OS.write(reinterpret_cast<const char *>(&IDSize), 4);
256 for (const IndCallDescription &Desc : Summary->IndCallDescriptions) {
257 OS.write(reinterpret_cast<const char *>(&Desc.FromLoc.FuncString), 4);
258 OS.write(reinterpret_cast<const char *>(&Desc.FromLoc.Offset), 4);
261 const size_t ITDSize = Summary->IndCallTargetDescriptions.size() *
262 sizeof(IndCallTargetDescription);
263 OS.write(reinterpret_cast<const char *>(&ITDSize), 4);
264 for (const IndCallTargetDescription &Desc :
265 Summary->IndCallTargetDescriptions) {
266 OS.write(reinterpret_cast<const char *>(&Desc.ToLoc.FuncString), 4);
267 OS.write(reinterpret_cast<const char *>(&Desc.ToLoc.Offset), 4);
268 uint64_t TargetFuncAddress =
269 getOutputAddress(*Desc.Target, Desc.ToLoc.Offset);
270 OS.write(reinterpret_cast<const char *>(&TargetFuncAddress), 8);
273 uint32_t FuncDescSize = Summary->getFDSize();
274 OS.write(reinterpret_cast<const char *>(&FuncDescSize), 4);
275 for (const FunctionDescription &Desc : Summary->FunctionDescriptions) {
276 const size_t LeafNum = Desc.LeafNodes.size();
277 OS.write(reinterpret_cast<const char *>(&LeafNum), 4);
278 for (const InstrumentedNode &LeafNode : Desc.LeafNodes) {
279 OS.write(reinterpret_cast<const char *>(&LeafNode.Node), 4);
280 OS.write(reinterpret_cast<const char *>(&LeafNode.Counter), 4);
282 const size_t EdgesNum = Desc.Edges.size();
283 OS.write(reinterpret_cast<const char *>(&EdgesNum), 4);
284 for (const EdgeDescription &Edge : Desc.Edges) {
285 OS.write(reinterpret_cast<const char *>(&Edge.FromLoc.FuncString), 4);
286 OS.write(reinterpret_cast<const char *>(&Edge.FromLoc.Offset), 4);
287 OS.write(reinterpret_cast<const char *>(&Edge.FromNode), 4);
288 OS.write(reinterpret_cast<const char *>(&Edge.ToLoc.FuncString), 4);
289 OS.write(reinterpret_cast<const char *>(&Edge.ToLoc.Offset), 4);
290 OS.write(reinterpret_cast<const char *>(&Edge.ToNode), 4);
291 OS.write(reinterpret_cast<const char *>(&Edge.Counter), 4);
293 const size_t CallsNum = Desc.Calls.size();
294 OS.write(reinterpret_cast<const char *>(&CallsNum), 4);
295 for (const CallDescription &Call : Desc.Calls) {
296 OS.write(reinterpret_cast<const char *>(&Call.FromLoc.FuncString), 4);
297 OS.write(reinterpret_cast<const char *>(&Call.FromLoc.Offset), 4);
298 OS.write(reinterpret_cast<const char *>(&Call.FromNode), 4);
299 OS.write(reinterpret_cast<const char *>(&Call.ToLoc.FuncString), 4);
300 OS.write(reinterpret_cast<const char *>(&Call.ToLoc.Offset), 4);
301 OS.write(reinterpret_cast<const char *>(&Call.Counter), 4);
302 uint64_t TargetFuncAddress =
303 getOutputAddress(*Call.Target, Call.ToLoc.Offset);
304 OS.write(reinterpret_cast<const char *>(&TargetFuncAddress), 8);
306 const size_t EntryNum = Desc.EntryNodes.size();
307 OS.write(reinterpret_cast<const char *>(&EntryNum), 4);
308 for (const EntryNode &EntryNode : Desc.EntryNodes) {
309 OS.write(reinterpret_cast<const char *>(&EntryNode.Node), 8);
310 uint64_t TargetFuncAddress =
311 getOutputAddress(*Desc.Function, EntryNode.Address);
312 OS.write(reinterpret_cast<const char *>(&TargetFuncAddress), 8);
315 // Our string table lives immediately after descriptions vector
316 OS << Summary->StringTable;
317 OS.flush();
319 return TablesStr;
322 void InstrumentationRuntimeLibrary::emitTablesAsELFNote(BinaryContext &BC) {
323 std::string TablesStr = buildTables(BC);
324 const std::string BoltInfo = BinarySection::encodeELFNote(
325 "BOLT", TablesStr, BinarySection::NT_BOLT_INSTRUMENTATION_TABLES);
326 BC.registerOrUpdateNoteSection(".bolt.instr.tables", copyByteArray(BoltInfo),
327 BoltInfo.size(),
328 /*Alignment=*/1,
329 /*IsReadOnly=*/true, ELF::SHT_NOTE);