[Clang][CodeGen] Fix type for atomic float incdec operators (#107075)
[llvm-project.git] / clang / lib / CodeGen / CGBuiltin.cpp
blob5639239359ab82772ab0cc01577076f240282d8b
1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Builtin calls as LLVM code.
11 //===----------------------------------------------------------------------===//
13 #include "ABIInfo.h"
14 #include "CGCUDARuntime.h"
15 #include "CGCXXABI.h"
16 #include "CGHLSLRuntime.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenCLRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "PatternInit.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/OSLog.h"
29 #include "clang/AST/OperationKinds.h"
30 #include "clang/Basic/TargetBuiltins.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Basic/TargetOptions.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Frontend/FrontendDiagnostic.h"
35 #include "llvm/ADT/APFloat.h"
36 #include "llvm/ADT/APInt.h"
37 #include "llvm/ADT/FloatingPointMode.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/StringExtras.h"
40 #include "llvm/Analysis/ValueTracking.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/InlineAsm.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/IntrinsicsAArch64.h"
45 #include "llvm/IR/IntrinsicsAMDGPU.h"
46 #include "llvm/IR/IntrinsicsARM.h"
47 #include "llvm/IR/IntrinsicsBPF.h"
48 #include "llvm/IR/IntrinsicsDirectX.h"
49 #include "llvm/IR/IntrinsicsHexagon.h"
50 #include "llvm/IR/IntrinsicsNVPTX.h"
51 #include "llvm/IR/IntrinsicsPowerPC.h"
52 #include "llvm/IR/IntrinsicsR600.h"
53 #include "llvm/IR/IntrinsicsRISCV.h"
54 #include "llvm/IR/IntrinsicsS390.h"
55 #include "llvm/IR/IntrinsicsVE.h"
56 #include "llvm/IR/IntrinsicsWebAssembly.h"
57 #include "llvm/IR/IntrinsicsX86.h"
58 #include "llvm/IR/MDBuilder.h"
59 #include "llvm/IR/MatrixBuilder.h"
60 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
61 #include "llvm/Support/ConvertUTF.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/ScopedPrinter.h"
64 #include "llvm/TargetParser/AArch64TargetParser.h"
65 #include "llvm/TargetParser/X86TargetParser.h"
66 #include <optional>
67 #include <sstream>
69 using namespace clang;
70 using namespace CodeGen;
71 using namespace llvm;
73 static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
74 Align AlignmentInBytes) {
75 ConstantInt *Byte;
76 switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
77 case LangOptions::TrivialAutoVarInitKind::Uninitialized:
78 // Nothing to initialize.
79 return;
80 case LangOptions::TrivialAutoVarInitKind::Zero:
81 Byte = CGF.Builder.getInt8(0x00);
82 break;
83 case LangOptions::TrivialAutoVarInitKind::Pattern: {
84 llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
85 Byte = llvm::dyn_cast<llvm::ConstantInt>(
86 initializationPatternFor(CGF.CGM, Int8));
87 break;
90 if (CGF.CGM.stopAutoInit())
91 return;
92 auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
93 I->addAnnotationMetadata("auto-init");
96 /// getBuiltinLibFunction - Given a builtin id for a function like
97 /// "__builtin_fabsf", return a Function* for "fabsf".
98 llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
99 unsigned BuiltinID) {
100 assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
102 // Get the name, skip over the __builtin_ prefix (if necessary).
103 StringRef Name;
104 GlobalDecl D(FD);
106 // TODO: This list should be expanded or refactored after all GCC-compatible
107 // std libcall builtins are implemented.
108 static SmallDenseMap<unsigned, StringRef, 64> F128Builtins{
109 {Builtin::BI__builtin___fprintf_chk, "__fprintf_chkieee128"},
110 {Builtin::BI__builtin___printf_chk, "__printf_chkieee128"},
111 {Builtin::BI__builtin___snprintf_chk, "__snprintf_chkieee128"},
112 {Builtin::BI__builtin___sprintf_chk, "__sprintf_chkieee128"},
113 {Builtin::BI__builtin___vfprintf_chk, "__vfprintf_chkieee128"},
114 {Builtin::BI__builtin___vprintf_chk, "__vprintf_chkieee128"},
115 {Builtin::BI__builtin___vsnprintf_chk, "__vsnprintf_chkieee128"},
116 {Builtin::BI__builtin___vsprintf_chk, "__vsprintf_chkieee128"},
117 {Builtin::BI__builtin_fprintf, "__fprintfieee128"},
118 {Builtin::BI__builtin_printf, "__printfieee128"},
119 {Builtin::BI__builtin_snprintf, "__snprintfieee128"},
120 {Builtin::BI__builtin_sprintf, "__sprintfieee128"},
121 {Builtin::BI__builtin_vfprintf, "__vfprintfieee128"},
122 {Builtin::BI__builtin_vprintf, "__vprintfieee128"},
123 {Builtin::BI__builtin_vsnprintf, "__vsnprintfieee128"},
124 {Builtin::BI__builtin_vsprintf, "__vsprintfieee128"},
125 {Builtin::BI__builtin_fscanf, "__fscanfieee128"},
126 {Builtin::BI__builtin_scanf, "__scanfieee128"},
127 {Builtin::BI__builtin_sscanf, "__sscanfieee128"},
128 {Builtin::BI__builtin_vfscanf, "__vfscanfieee128"},
129 {Builtin::BI__builtin_vscanf, "__vscanfieee128"},
130 {Builtin::BI__builtin_vsscanf, "__vsscanfieee128"},
131 {Builtin::BI__builtin_nexttowardf128, "__nexttowardieee128"},
134 // The AIX library functions frexpl, ldexpl, and modfl are for 128-bit
135 // IBM 'long double' (i.e. __ibm128). Map to the 'double' versions
136 // if it is 64-bit 'long double' mode.
137 static SmallDenseMap<unsigned, StringRef, 4> AIXLongDouble64Builtins{
138 {Builtin::BI__builtin_frexpl, "frexp"},
139 {Builtin::BI__builtin_ldexpl, "ldexp"},
140 {Builtin::BI__builtin_modfl, "modf"},
143 // If the builtin has been declared explicitly with an assembler label,
144 // use the mangled name. This differs from the plain label on platforms
145 // that prefix labels.
146 if (FD->hasAttr<AsmLabelAttr>())
147 Name = getMangledName(D);
148 else {
149 // TODO: This mutation should also be applied to other targets other than
150 // PPC, after backend supports IEEE 128-bit style libcalls.
151 if (getTriple().isPPC64() &&
152 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad() &&
153 F128Builtins.contains(BuiltinID))
154 Name = F128Builtins[BuiltinID];
155 else if (getTriple().isOSAIX() &&
156 &getTarget().getLongDoubleFormat() ==
157 &llvm::APFloat::IEEEdouble() &&
158 AIXLongDouble64Builtins.contains(BuiltinID))
159 Name = AIXLongDouble64Builtins[BuiltinID];
160 else
161 Name = Context.BuiltinInfo.getName(BuiltinID).substr(10);
164 llvm::FunctionType *Ty =
165 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
167 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
170 /// Emit the conversions required to turn the given value into an
171 /// integer of the given size.
172 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
173 QualType T, llvm::IntegerType *IntType) {
174 V = CGF.EmitToMemory(V, T);
176 if (V->getType()->isPointerTy())
177 return CGF.Builder.CreatePtrToInt(V, IntType);
179 assert(V->getType() == IntType);
180 return V;
183 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
184 QualType T, llvm::Type *ResultType) {
185 V = CGF.EmitFromMemory(V, T);
187 if (ResultType->isPointerTy())
188 return CGF.Builder.CreateIntToPtr(V, ResultType);
190 assert(V->getType() == ResultType);
191 return V;
194 static Address CheckAtomicAlignment(CodeGenFunction &CGF, const CallExpr *E) {
195 ASTContext &Ctx = CGF.getContext();
196 Address Ptr = CGF.EmitPointerWithAlignment(E->getArg(0));
197 unsigned Bytes = Ptr.getElementType()->isPointerTy()
198 ? Ctx.getTypeSizeInChars(Ctx.VoidPtrTy).getQuantity()
199 : Ptr.getElementType()->getScalarSizeInBits() / 8;
200 unsigned Align = Ptr.getAlignment().getQuantity();
201 if (Align % Bytes != 0) {
202 DiagnosticsEngine &Diags = CGF.CGM.getDiags();
203 Diags.Report(E->getBeginLoc(), diag::warn_sync_op_misaligned);
204 // Force address to be at least naturally-aligned.
205 return Ptr.withAlignment(CharUnits::fromQuantity(Bytes));
207 return Ptr;
210 /// Utility to insert an atomic instruction based on Intrinsic::ID
211 /// and the expression node.
212 static Value *MakeBinaryAtomicValue(
213 CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
214 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
216 QualType T = E->getType();
217 assert(E->getArg(0)->getType()->isPointerType());
218 assert(CGF.getContext().hasSameUnqualifiedType(T,
219 E->getArg(0)->getType()->getPointeeType()));
220 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
222 Address DestAddr = CheckAtomicAlignment(CGF, E);
224 llvm::IntegerType *IntType = llvm::IntegerType::get(
225 CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
227 llvm::Value *Val = CGF.EmitScalarExpr(E->getArg(1));
228 llvm::Type *ValueType = Val->getType();
229 Val = EmitToInt(CGF, Val, T, IntType);
231 llvm::Value *Result =
232 CGF.Builder.CreateAtomicRMW(Kind, DestAddr, Val, Ordering);
233 return EmitFromInt(CGF, Result, T, ValueType);
236 static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
237 Value *Val = CGF.EmitScalarExpr(E->getArg(0));
238 Address Addr = CGF.EmitPointerWithAlignment(E->getArg(1));
240 Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
241 LValue LV = CGF.MakeAddrLValue(Addr, E->getArg(0)->getType());
242 LV.setNontemporal(true);
243 CGF.EmitStoreOfScalar(Val, LV, false);
244 return nullptr;
247 static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
248 Address Addr = CGF.EmitPointerWithAlignment(E->getArg(0));
250 LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
251 LV.setNontemporal(true);
252 return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
255 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
256 llvm::AtomicRMWInst::BinOp Kind,
257 const CallExpr *E) {
258 return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
261 /// Utility to insert an atomic instruction based Intrinsic::ID and
262 /// the expression node, where the return value is the result of the
263 /// operation.
264 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
265 llvm::AtomicRMWInst::BinOp Kind,
266 const CallExpr *E,
267 Instruction::BinaryOps Op,
268 bool Invert = false) {
269 QualType T = E->getType();
270 assert(E->getArg(0)->getType()->isPointerType());
271 assert(CGF.getContext().hasSameUnqualifiedType(T,
272 E->getArg(0)->getType()->getPointeeType()));
273 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
275 Address DestAddr = CheckAtomicAlignment(CGF, E);
277 llvm::IntegerType *IntType = llvm::IntegerType::get(
278 CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
280 llvm::Value *Val = CGF.EmitScalarExpr(E->getArg(1));
281 llvm::Type *ValueType = Val->getType();
282 Val = EmitToInt(CGF, Val, T, IntType);
284 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
285 Kind, DestAddr, Val, llvm::AtomicOrdering::SequentiallyConsistent);
286 Result = CGF.Builder.CreateBinOp(Op, Result, Val);
287 if (Invert)
288 Result =
289 CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
290 llvm::ConstantInt::getAllOnesValue(IntType));
291 Result = EmitFromInt(CGF, Result, T, ValueType);
292 return RValue::get(Result);
295 /// Utility to insert an atomic cmpxchg instruction.
297 /// @param CGF The current codegen function.
298 /// @param E Builtin call expression to convert to cmpxchg.
299 /// arg0 - address to operate on
300 /// arg1 - value to compare with
301 /// arg2 - new value
302 /// @param ReturnBool Specifies whether to return success flag of
303 /// cmpxchg result or the old value.
305 /// @returns result of cmpxchg, according to ReturnBool
307 /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
308 /// invoke the function EmitAtomicCmpXchgForMSIntrin.
309 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
310 bool ReturnBool) {
311 QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
312 Address DestAddr = CheckAtomicAlignment(CGF, E);
314 llvm::IntegerType *IntType = llvm::IntegerType::get(
315 CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
317 Value *Cmp = CGF.EmitScalarExpr(E->getArg(1));
318 llvm::Type *ValueType = Cmp->getType();
319 Cmp = EmitToInt(CGF, Cmp, T, IntType);
320 Value *New = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
322 Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
323 DestAddr, Cmp, New, llvm::AtomicOrdering::SequentiallyConsistent,
324 llvm::AtomicOrdering::SequentiallyConsistent);
325 if (ReturnBool)
326 // Extract boolean success flag and zext it to int.
327 return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
328 CGF.ConvertType(E->getType()));
329 else
330 // Extract old value and emit it using the same type as compare value.
331 return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
332 ValueType);
335 /// This function should be invoked to emit atomic cmpxchg for Microsoft's
336 /// _InterlockedCompareExchange* intrinsics which have the following signature:
337 /// T _InterlockedCompareExchange(T volatile *Destination,
338 /// T Exchange,
339 /// T Comparand);
341 /// Whereas the llvm 'cmpxchg' instruction has the following syntax:
342 /// cmpxchg *Destination, Comparand, Exchange.
343 /// So we need to swap Comparand and Exchange when invoking
344 /// CreateAtomicCmpXchg. That is the reason we could not use the above utility
345 /// function MakeAtomicCmpXchgValue since it expects the arguments to be
346 /// already swapped.
348 static
349 Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
350 AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
351 assert(E->getArg(0)->getType()->isPointerType());
352 assert(CGF.getContext().hasSameUnqualifiedType(
353 E->getType(), E->getArg(0)->getType()->getPointeeType()));
354 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
355 E->getArg(1)->getType()));
356 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
357 E->getArg(2)->getType()));
359 Address DestAddr = CheckAtomicAlignment(CGF, E);
361 auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
362 auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
364 // For Release ordering, the failure ordering should be Monotonic.
365 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
366 AtomicOrdering::Monotonic :
367 SuccessOrdering;
369 // The atomic instruction is marked volatile for consistency with MSVC. This
370 // blocks the few atomics optimizations that LLVM has. If we want to optimize
371 // _Interlocked* operations in the future, we will have to remove the volatile
372 // marker.
373 auto *Result = CGF.Builder.CreateAtomicCmpXchg(
374 DestAddr, Comparand, Exchange, SuccessOrdering, FailureOrdering);
375 Result->setVolatile(true);
376 return CGF.Builder.CreateExtractValue(Result, 0);
379 // 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are
380 // prototyped like this:
382 // unsigned char _InterlockedCompareExchange128...(
383 // __int64 volatile * _Destination,
384 // __int64 _ExchangeHigh,
385 // __int64 _ExchangeLow,
386 // __int64 * _ComparandResult);
388 // Note that Destination is assumed to be at least 16-byte aligned, despite
389 // being typed int64.
391 static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF,
392 const CallExpr *E,
393 AtomicOrdering SuccessOrdering) {
394 assert(E->getNumArgs() == 4);
395 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
396 llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1));
397 llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2));
398 Address ComparandAddr = CGF.EmitPointerWithAlignment(E->getArg(3));
400 assert(DestPtr->getType()->isPointerTy());
401 assert(!ExchangeHigh->getType()->isPointerTy());
402 assert(!ExchangeLow->getType()->isPointerTy());
404 // For Release ordering, the failure ordering should be Monotonic.
405 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release
406 ? AtomicOrdering::Monotonic
407 : SuccessOrdering;
409 // Convert to i128 pointers and values. Alignment is also overridden for
410 // destination pointer.
411 llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128);
412 Address DestAddr(DestPtr, Int128Ty,
413 CGF.getContext().toCharUnitsFromBits(128));
414 ComparandAddr = ComparandAddr.withElementType(Int128Ty);
416 // (((i128)hi) << 64) | ((i128)lo)
417 ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty);
418 ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty);
419 ExchangeHigh =
420 CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64));
421 llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow);
423 // Load the comparand for the instruction.
424 llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandAddr);
426 auto *CXI = CGF.Builder.CreateAtomicCmpXchg(DestAddr, Comparand, Exchange,
427 SuccessOrdering, FailureOrdering);
429 // The atomic instruction is marked volatile for consistency with MSVC. This
430 // blocks the few atomics optimizations that LLVM has. If we want to optimize
431 // _Interlocked* operations in the future, we will have to remove the volatile
432 // marker.
433 CXI->setVolatile(true);
435 // Store the result as an outparameter.
436 CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0),
437 ComparandAddr);
439 // Get the success boolean and zero extend it to i8.
440 Value *Success = CGF.Builder.CreateExtractValue(CXI, 1);
441 return CGF.Builder.CreateZExt(Success, CGF.Int8Ty);
444 static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
445 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
446 assert(E->getArg(0)->getType()->isPointerType());
448 auto *IntTy = CGF.ConvertType(E->getType());
449 Address DestAddr = CheckAtomicAlignment(CGF, E);
450 auto *Result = CGF.Builder.CreateAtomicRMW(
451 AtomicRMWInst::Add, DestAddr, ConstantInt::get(IntTy, 1), Ordering);
452 return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
455 static Value *EmitAtomicDecrementValue(
456 CodeGenFunction &CGF, const CallExpr *E,
457 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
458 assert(E->getArg(0)->getType()->isPointerType());
460 auto *IntTy = CGF.ConvertType(E->getType());
461 Address DestAddr = CheckAtomicAlignment(CGF, E);
462 auto *Result = CGF.Builder.CreateAtomicRMW(
463 AtomicRMWInst::Sub, DestAddr, ConstantInt::get(IntTy, 1), Ordering);
464 return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
467 // Build a plain volatile load.
468 static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
469 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
470 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
471 CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
472 llvm::Type *ITy =
473 llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
474 llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize);
475 Load->setVolatile(true);
476 return Load;
479 // Build a plain volatile store.
480 static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
481 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
482 Value *Value = CGF.EmitScalarExpr(E->getArg(1));
483 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
484 CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
485 llvm::StoreInst *Store =
486 CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
487 Store->setVolatile(true);
488 return Store;
491 // Emit a simple mangled intrinsic that has 1 argument and a return type
492 // matching the argument type. Depending on mode, this may be a constrained
493 // floating-point intrinsic.
494 static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
495 const CallExpr *E, unsigned IntrinsicID,
496 unsigned ConstrainedIntrinsicID) {
497 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
499 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
500 if (CGF.Builder.getIsFPConstrained()) {
501 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
502 return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
503 } else {
504 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
505 return CGF.Builder.CreateCall(F, Src0);
509 // Emit an intrinsic that has 2 operands of the same type as its result.
510 // Depending on mode, this may be a constrained floating-point intrinsic.
511 static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
512 const CallExpr *E, unsigned IntrinsicID,
513 unsigned ConstrainedIntrinsicID) {
514 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
515 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
517 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
518 if (CGF.Builder.getIsFPConstrained()) {
519 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
520 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
521 } else {
522 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
523 return CGF.Builder.CreateCall(F, { Src0, Src1 });
527 // Has second type mangled argument.
528 static Value *emitBinaryExpMaybeConstrainedFPBuiltin(
529 CodeGenFunction &CGF, const CallExpr *E, llvm::Intrinsic::ID IntrinsicID,
530 llvm::Intrinsic::ID ConstrainedIntrinsicID) {
531 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
532 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
534 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
535 if (CGF.Builder.getIsFPConstrained()) {
536 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
537 {Src0->getType(), Src1->getType()});
538 return CGF.Builder.CreateConstrainedFPCall(F, {Src0, Src1});
541 Function *F =
542 CGF.CGM.getIntrinsic(IntrinsicID, {Src0->getType(), Src1->getType()});
543 return CGF.Builder.CreateCall(F, {Src0, Src1});
546 // Emit an intrinsic that has 3 operands of the same type as its result.
547 // Depending on mode, this may be a constrained floating-point intrinsic.
548 static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
549 const CallExpr *E, unsigned IntrinsicID,
550 unsigned ConstrainedIntrinsicID) {
551 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
552 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
553 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
555 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
556 if (CGF.Builder.getIsFPConstrained()) {
557 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
558 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
559 } else {
560 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
561 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
565 // Emit an intrinsic where all operands are of the same type as the result.
566 // Depending on mode, this may be a constrained floating-point intrinsic.
567 static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
568 unsigned IntrinsicID,
569 unsigned ConstrainedIntrinsicID,
570 llvm::Type *Ty,
571 ArrayRef<Value *> Args) {
572 Function *F;
573 if (CGF.Builder.getIsFPConstrained())
574 F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
575 else
576 F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
578 if (CGF.Builder.getIsFPConstrained())
579 return CGF.Builder.CreateConstrainedFPCall(F, Args);
580 else
581 return CGF.Builder.CreateCall(F, Args);
584 // Emit a simple intrinsic that has N scalar arguments and a return type
585 // matching the argument type. It is assumed that only the first argument is
586 // overloaded.
587 template <unsigned N>
588 Value *emitBuiltinWithOneOverloadedType(CodeGenFunction &CGF, const CallExpr *E,
589 unsigned IntrinsicID,
590 llvm::StringRef Name = "") {
591 static_assert(N, "expect non-empty argument");
592 SmallVector<Value *, N> Args;
593 for (unsigned I = 0; I < N; ++I)
594 Args.push_back(CGF.EmitScalarExpr(E->getArg(I)));
595 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Args[0]->getType());
596 return CGF.Builder.CreateCall(F, Args, Name);
599 // Emit an intrinsic that has 1 float or double operand, and 1 integer.
600 static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
601 const CallExpr *E,
602 unsigned IntrinsicID) {
603 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
604 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
606 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
607 return CGF.Builder.CreateCall(F, {Src0, Src1});
610 // Emit an intrinsic that has overloaded integer result and fp operand.
611 static Value *
612 emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
613 unsigned IntrinsicID,
614 unsigned ConstrainedIntrinsicID) {
615 llvm::Type *ResultType = CGF.ConvertType(E->getType());
616 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
618 if (CGF.Builder.getIsFPConstrained()) {
619 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
620 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
621 {ResultType, Src0->getType()});
622 return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
623 } else {
624 Function *F =
625 CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
626 return CGF.Builder.CreateCall(F, Src0);
630 static Value *emitFrexpBuiltin(CodeGenFunction &CGF, const CallExpr *E,
631 llvm::Intrinsic::ID IntrinsicID) {
632 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
633 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
635 QualType IntPtrTy = E->getArg(1)->getType()->getPointeeType();
636 llvm::Type *IntTy = CGF.ConvertType(IntPtrTy);
637 llvm::Function *F =
638 CGF.CGM.getIntrinsic(IntrinsicID, {Src0->getType(), IntTy});
639 llvm::Value *Call = CGF.Builder.CreateCall(F, Src0);
641 llvm::Value *Exp = CGF.Builder.CreateExtractValue(Call, 1);
642 LValue LV = CGF.MakeNaturalAlignAddrLValue(Src1, IntPtrTy);
643 CGF.EmitStoreOfScalar(Exp, LV);
645 return CGF.Builder.CreateExtractValue(Call, 0);
648 /// EmitFAbs - Emit a call to @llvm.fabs().
649 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
650 Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
651 llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
652 Call->setDoesNotAccessMemory();
653 return Call;
656 /// Emit the computation of the sign bit for a floating point value. Returns
657 /// the i1 sign bit value.
658 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
659 LLVMContext &C = CGF.CGM.getLLVMContext();
661 llvm::Type *Ty = V->getType();
662 int Width = Ty->getPrimitiveSizeInBits();
663 llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
664 V = CGF.Builder.CreateBitCast(V, IntTy);
665 if (Ty->isPPC_FP128Ty()) {
666 // We want the sign bit of the higher-order double. The bitcast we just
667 // did works as if the double-double was stored to memory and then
668 // read as an i128. The "store" will put the higher-order double in the
669 // lower address in both little- and big-Endian modes, but the "load"
670 // will treat those bits as a different part of the i128: the low bits in
671 // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
672 // we need to shift the high bits down to the low before truncating.
673 Width >>= 1;
674 if (CGF.getTarget().isBigEndian()) {
675 Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
676 V = CGF.Builder.CreateLShr(V, ShiftCst);
678 // We are truncating value in order to extract the higher-order
679 // double, which we will be using to extract the sign from.
680 IntTy = llvm::IntegerType::get(C, Width);
681 V = CGF.Builder.CreateTrunc(V, IntTy);
683 Value *Zero = llvm::Constant::getNullValue(IntTy);
684 return CGF.Builder.CreateICmpSLT(V, Zero);
687 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
688 const CallExpr *E, llvm::Constant *calleeValue) {
689 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
690 CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
691 RValue Call =
692 CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
694 // Check the supported intrinsic.
695 if (unsigned BuiltinID = FD->getBuiltinID()) {
696 auto IsErrnoIntrinsic = [&]() -> unsigned {
697 switch (BuiltinID) {
698 case Builtin::BIexpf:
699 case Builtin::BI__builtin_expf:
700 case Builtin::BI__builtin_expf128:
701 return true;
703 // TODO: support more FP math libcalls
704 return false;
705 }();
707 // Restrict to target with errno, for example, MacOS doesn't set errno.
708 if (IsErrnoIntrinsic && CGF.CGM.getLangOpts().MathErrno &&
709 !CGF.Builder.getIsFPConstrained()) {
710 ASTContext &Context = CGF.getContext();
711 // Emit "int" TBAA metadata on FP math libcalls.
712 clang::QualType IntTy = Context.IntTy;
713 TBAAAccessInfo TBAAInfo = CGF.CGM.getTBAAAccessInfo(IntTy);
714 Instruction *Inst = cast<llvm::Instruction>(Call.getScalarVal());
715 CGF.CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
718 return Call;
721 /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
722 /// depending on IntrinsicID.
724 /// \arg CGF The current codegen function.
725 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
726 /// \arg X The first argument to the llvm.*.with.overflow.*.
727 /// \arg Y The second argument to the llvm.*.with.overflow.*.
728 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
729 /// \returns The result (i.e. sum/product) returned by the intrinsic.
730 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
731 const llvm::Intrinsic::ID IntrinsicID,
732 llvm::Value *X, llvm::Value *Y,
733 llvm::Value *&Carry) {
734 // Make sure we have integers of the same width.
735 assert(X->getType() == Y->getType() &&
736 "Arguments must be the same type. (Did you forget to make sure both "
737 "arguments have the same integer width?)");
739 Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
740 llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
741 Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
742 return CGF.Builder.CreateExtractValue(Tmp, 0);
745 static Value *emitRangedBuiltin(CodeGenFunction &CGF, unsigned IntrinsicID,
746 int low, int high) {
747 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
748 llvm::CallInst *Call = CGF.Builder.CreateCall(F);
749 llvm::ConstantRange CR(APInt(32, low), APInt(32, high));
750 Call->addRangeRetAttr(CR);
751 Call->addRetAttr(llvm::Attribute::AttrKind::NoUndef);
752 return Call;
755 namespace {
756 struct WidthAndSignedness {
757 unsigned Width;
758 bool Signed;
762 static WidthAndSignedness
763 getIntegerWidthAndSignedness(const clang::ASTContext &context,
764 const clang::QualType Type) {
765 assert(Type->isIntegerType() && "Given type is not an integer.");
766 unsigned Width = Type->isBooleanType() ? 1
767 : Type->isBitIntType() ? context.getIntWidth(Type)
768 : context.getTypeInfo(Type).Width;
769 bool Signed = Type->isSignedIntegerType();
770 return {Width, Signed};
773 // Given one or more integer types, this function produces an integer type that
774 // encompasses them: any value in one of the given types could be expressed in
775 // the encompassing type.
776 static struct WidthAndSignedness
777 EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
778 assert(Types.size() > 0 && "Empty list of types.");
780 // If any of the given types is signed, we must return a signed type.
781 bool Signed = false;
782 for (const auto &Type : Types) {
783 Signed |= Type.Signed;
786 // The encompassing type must have a width greater than or equal to the width
787 // of the specified types. Additionally, if the encompassing type is signed,
788 // its width must be strictly greater than the width of any unsigned types
789 // given.
790 unsigned Width = 0;
791 for (const auto &Type : Types) {
792 unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
793 if (Width < MinWidth) {
794 Width = MinWidth;
798 return {Width, Signed};
801 Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
802 Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
803 return Builder.CreateCall(CGM.getIntrinsic(inst, {ArgValue->getType()}),
804 ArgValue);
807 /// Checks if using the result of __builtin_object_size(p, @p From) in place of
808 /// __builtin_object_size(p, @p To) is correct
809 static bool areBOSTypesCompatible(int From, int To) {
810 // Note: Our __builtin_object_size implementation currently treats Type=0 and
811 // Type=2 identically. Encoding this implementation detail here may make
812 // improving __builtin_object_size difficult in the future, so it's omitted.
813 return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
816 static llvm::Value *
817 getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
818 return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
821 llvm::Value *
822 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
823 llvm::IntegerType *ResType,
824 llvm::Value *EmittedE,
825 bool IsDynamic) {
826 uint64_t ObjectSize;
827 if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
828 return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
829 return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
832 const FieldDecl *CodeGenFunction::FindFlexibleArrayMemberFieldAndOffset(
833 ASTContext &Ctx, const RecordDecl *RD, const FieldDecl *FAMDecl,
834 uint64_t &Offset) {
835 const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel =
836 getLangOpts().getStrictFlexArraysLevel();
837 uint32_t FieldNo = 0;
839 if (RD->isImplicit())
840 return nullptr;
842 for (const FieldDecl *FD : RD->fields()) {
843 if ((!FAMDecl || FD == FAMDecl) &&
844 Decl::isFlexibleArrayMemberLike(
845 Ctx, FD, FD->getType(), StrictFlexArraysLevel,
846 /*IgnoreTemplateOrMacroSubstitution=*/true)) {
847 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(RD);
848 Offset += Layout.getFieldOffset(FieldNo);
849 return FD;
852 QualType Ty = FD->getType();
853 if (Ty->isRecordType()) {
854 if (const FieldDecl *Field = FindFlexibleArrayMemberFieldAndOffset(
855 Ctx, Ty->getAsRecordDecl(), FAMDecl, Offset)) {
856 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(RD);
857 Offset += Layout.getFieldOffset(FieldNo);
858 return Field;
862 if (!RD->isUnion())
863 ++FieldNo;
866 return nullptr;
869 static unsigned CountCountedByAttrs(const RecordDecl *RD) {
870 unsigned Num = 0;
872 for (const FieldDecl *FD : RD->fields()) {
873 if (FD->getType()->isCountAttributedType())
874 return ++Num;
876 QualType Ty = FD->getType();
877 if (Ty->isRecordType())
878 Num += CountCountedByAttrs(Ty->getAsRecordDecl());
881 return Num;
884 llvm::Value *
885 CodeGenFunction::emitFlexibleArrayMemberSize(const Expr *E, unsigned Type,
886 llvm::IntegerType *ResType) {
887 // The code generated here calculates the size of a struct with a flexible
888 // array member that uses the counted_by attribute. There are two instances
889 // we handle:
891 // struct s {
892 // unsigned long flags;
893 // int count;
894 // int array[] __attribute__((counted_by(count)));
895 // }
897 // 1) bdos of the flexible array itself:
899 // __builtin_dynamic_object_size(p->array, 1) ==
900 // p->count * sizeof(*p->array)
902 // 2) bdos of a pointer into the flexible array:
904 // __builtin_dynamic_object_size(&p->array[42], 1) ==
905 // (p->count - 42) * sizeof(*p->array)
907 // 2) bdos of the whole struct, including the flexible array:
909 // __builtin_dynamic_object_size(p, 1) ==
910 // max(sizeof(struct s),
911 // offsetof(struct s, array) + p->count * sizeof(*p->array))
913 ASTContext &Ctx = getContext();
914 const Expr *Base = E->IgnoreParenImpCasts();
915 const Expr *Idx = nullptr;
917 if (const auto *UO = dyn_cast<UnaryOperator>(Base);
918 UO && UO->getOpcode() == UO_AddrOf) {
919 Expr *SubExpr = UO->getSubExpr()->IgnoreParenImpCasts();
920 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(SubExpr)) {
921 Base = ASE->getBase()->IgnoreParenImpCasts();
922 Idx = ASE->getIdx()->IgnoreParenImpCasts();
924 if (const auto *IL = dyn_cast<IntegerLiteral>(Idx)) {
925 int64_t Val = IL->getValue().getSExtValue();
926 if (Val < 0)
927 return getDefaultBuiltinObjectSizeResult(Type, ResType);
929 if (Val == 0)
930 // The index is 0, so we don't need to take it into account.
931 Idx = nullptr;
933 } else {
934 // Potential pointer to another element in the struct.
935 Base = SubExpr;
939 // Get the flexible array member Decl.
940 const RecordDecl *OuterRD = nullptr;
941 const FieldDecl *FAMDecl = nullptr;
942 if (const auto *ME = dyn_cast<MemberExpr>(Base)) {
943 // Check if \p Base is referencing the FAM itself.
944 const ValueDecl *VD = ME->getMemberDecl();
945 OuterRD = VD->getDeclContext()->getOuterLexicalRecordContext();
946 FAMDecl = dyn_cast<FieldDecl>(VD);
947 if (!FAMDecl)
948 return nullptr;
949 } else if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) {
950 // Check if we're pointing to the whole struct.
951 QualType Ty = DRE->getDecl()->getType();
952 if (Ty->isPointerType())
953 Ty = Ty->getPointeeType();
954 OuterRD = Ty->getAsRecordDecl();
956 // If we have a situation like this:
958 // struct union_of_fams {
959 // int flags;
960 // union {
961 // signed char normal_field;
962 // struct {
963 // int count1;
964 // int arr1[] __counted_by(count1);
965 // };
966 // struct {
967 // signed char count2;
968 // int arr2[] __counted_by(count2);
969 // };
970 // };
971 // };
973 // We don't know which 'count' to use in this scenario:
975 // size_t get_size(struct union_of_fams *p) {
976 // return __builtin_dynamic_object_size(p, 1);
977 // }
979 // Instead of calculating a wrong number, we give up.
980 if (OuterRD && CountCountedByAttrs(OuterRD) > 1)
981 return nullptr;
984 if (!OuterRD)
985 return nullptr;
987 // We call FindFlexibleArrayMemberAndOffset even if FAMDecl is non-null to
988 // get its offset.
989 uint64_t Offset = 0;
990 FAMDecl =
991 FindFlexibleArrayMemberFieldAndOffset(Ctx, OuterRD, FAMDecl, Offset);
992 Offset = Ctx.toCharUnitsFromBits(Offset).getQuantity();
994 if (!FAMDecl || !FAMDecl->getType()->isCountAttributedType())
995 // No flexible array member found or it doesn't have the "counted_by"
996 // attribute.
997 return nullptr;
999 const FieldDecl *CountedByFD = FindCountedByField(FAMDecl);
1000 if (!CountedByFD)
1001 // Can't find the field referenced by the "counted_by" attribute.
1002 return nullptr;
1004 // Build a load of the counted_by field.
1005 bool IsSigned = CountedByFD->getType()->isSignedIntegerType();
1006 Value *CountedByInst = EmitCountedByFieldExpr(Base, FAMDecl, CountedByFD);
1007 if (!CountedByInst)
1008 return getDefaultBuiltinObjectSizeResult(Type, ResType);
1010 CountedByInst = Builder.CreateIntCast(CountedByInst, ResType, IsSigned);
1012 // Build a load of the index and subtract it from the count.
1013 Value *IdxInst = nullptr;
1014 if (Idx) {
1015 if (Idx->HasSideEffects(getContext()))
1016 // We can't have side-effects.
1017 return getDefaultBuiltinObjectSizeResult(Type, ResType);
1019 bool IdxSigned = Idx->getType()->isSignedIntegerType();
1020 IdxInst = EmitAnyExprToTemp(Idx).getScalarVal();
1021 IdxInst = Builder.CreateIntCast(IdxInst, ResType, IdxSigned);
1023 // We go ahead with the calculation here. If the index turns out to be
1024 // negative, we'll catch it at the end.
1025 CountedByInst =
1026 Builder.CreateSub(CountedByInst, IdxInst, "", !IsSigned, IsSigned);
1029 // Calculate how large the flexible array member is in bytes.
1030 const ArrayType *ArrayTy = Ctx.getAsArrayType(FAMDecl->getType());
1031 CharUnits Size = Ctx.getTypeSizeInChars(ArrayTy->getElementType());
1032 llvm::Constant *ElemSize =
1033 llvm::ConstantInt::get(ResType, Size.getQuantity(), IsSigned);
1034 Value *FAMSize =
1035 Builder.CreateMul(CountedByInst, ElemSize, "", !IsSigned, IsSigned);
1036 FAMSize = Builder.CreateIntCast(FAMSize, ResType, IsSigned);
1037 Value *Res = FAMSize;
1039 if (isa<DeclRefExpr>(Base)) {
1040 // The whole struct is specificed in the __bdos.
1041 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(OuterRD);
1043 // Get the offset of the FAM.
1044 llvm::Constant *FAMOffset = ConstantInt::get(ResType, Offset, IsSigned);
1045 Value *OffsetAndFAMSize =
1046 Builder.CreateAdd(FAMOffset, Res, "", !IsSigned, IsSigned);
1048 // Get the full size of the struct.
1049 llvm::Constant *SizeofStruct =
1050 ConstantInt::get(ResType, Layout.getSize().getQuantity(), IsSigned);
1052 // max(sizeof(struct s),
1053 // offsetof(struct s, array) + p->count * sizeof(*p->array))
1054 Res = IsSigned
1055 ? Builder.CreateBinaryIntrinsic(llvm::Intrinsic::smax,
1056 OffsetAndFAMSize, SizeofStruct)
1057 : Builder.CreateBinaryIntrinsic(llvm::Intrinsic::umax,
1058 OffsetAndFAMSize, SizeofStruct);
1061 // A negative \p IdxInst or \p CountedByInst means that the index lands
1062 // outside of the flexible array member. If that's the case, we want to
1063 // return 0.
1064 Value *Cmp = Builder.CreateIsNotNeg(CountedByInst);
1065 if (IdxInst)
1066 Cmp = Builder.CreateAnd(Builder.CreateIsNotNeg(IdxInst), Cmp);
1068 return Builder.CreateSelect(Cmp, Res, ConstantInt::get(ResType, 0, IsSigned));
1071 /// Returns a Value corresponding to the size of the given expression.
1072 /// This Value may be either of the following:
1073 /// - A llvm::Argument (if E is a param with the pass_object_size attribute on
1074 /// it)
1075 /// - A call to the @llvm.objectsize intrinsic
1077 /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
1078 /// and we wouldn't otherwise try to reference a pass_object_size parameter,
1079 /// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
1080 llvm::Value *
1081 CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
1082 llvm::IntegerType *ResType,
1083 llvm::Value *EmittedE, bool IsDynamic) {
1084 // We need to reference an argument if the pointer is a parameter with the
1085 // pass_object_size attribute.
1086 if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
1087 auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
1088 auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
1089 if (Param != nullptr && PS != nullptr &&
1090 areBOSTypesCompatible(PS->getType(), Type)) {
1091 auto Iter = SizeArguments.find(Param);
1092 assert(Iter != SizeArguments.end());
1094 const ImplicitParamDecl *D = Iter->second;
1095 auto DIter = LocalDeclMap.find(D);
1096 assert(DIter != LocalDeclMap.end());
1098 return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
1099 getContext().getSizeType(), E->getBeginLoc());
1103 if (IsDynamic) {
1104 // Emit special code for a flexible array member with the "counted_by"
1105 // attribute.
1106 if (Value *V = emitFlexibleArrayMemberSize(E, Type, ResType))
1107 return V;
1110 // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
1111 // evaluate E for side-effects. In either case, we shouldn't lower to
1112 // @llvm.objectsize.
1113 if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
1114 return getDefaultBuiltinObjectSizeResult(Type, ResType);
1116 Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
1117 assert(Ptr->getType()->isPointerTy() &&
1118 "Non-pointer passed to __builtin_object_size?");
1120 Function *F =
1121 CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
1123 // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
1124 Value *Min = Builder.getInt1((Type & 2) != 0);
1125 // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
1126 Value *NullIsUnknown = Builder.getTrue();
1127 Value *Dynamic = Builder.getInt1(IsDynamic);
1128 return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
1131 namespace {
1132 /// A struct to generically describe a bit test intrinsic.
1133 struct BitTest {
1134 enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
1135 enum InterlockingKind : uint8_t {
1136 Unlocked,
1137 Sequential,
1138 Acquire,
1139 Release,
1140 NoFence
1143 ActionKind Action;
1144 InterlockingKind Interlocking;
1145 bool Is64Bit;
1147 static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
1150 } // namespace
1152 BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
1153 switch (BuiltinID) {
1154 // Main portable variants.
1155 case Builtin::BI_bittest:
1156 return {TestOnly, Unlocked, false};
1157 case Builtin::BI_bittestandcomplement:
1158 return {Complement, Unlocked, false};
1159 case Builtin::BI_bittestandreset:
1160 return {Reset, Unlocked, false};
1161 case Builtin::BI_bittestandset:
1162 return {Set, Unlocked, false};
1163 case Builtin::BI_interlockedbittestandreset:
1164 return {Reset, Sequential, false};
1165 case Builtin::BI_interlockedbittestandset:
1166 return {Set, Sequential, false};
1168 // X86-specific 64-bit variants.
1169 case Builtin::BI_bittest64:
1170 return {TestOnly, Unlocked, true};
1171 case Builtin::BI_bittestandcomplement64:
1172 return {Complement, Unlocked, true};
1173 case Builtin::BI_bittestandreset64:
1174 return {Reset, Unlocked, true};
1175 case Builtin::BI_bittestandset64:
1176 return {Set, Unlocked, true};
1177 case Builtin::BI_interlockedbittestandreset64:
1178 return {Reset, Sequential, true};
1179 case Builtin::BI_interlockedbittestandset64:
1180 return {Set, Sequential, true};
1182 // ARM/AArch64-specific ordering variants.
1183 case Builtin::BI_interlockedbittestandset_acq:
1184 return {Set, Acquire, false};
1185 case Builtin::BI_interlockedbittestandset_rel:
1186 return {Set, Release, false};
1187 case Builtin::BI_interlockedbittestandset_nf:
1188 return {Set, NoFence, false};
1189 case Builtin::BI_interlockedbittestandreset_acq:
1190 return {Reset, Acquire, false};
1191 case Builtin::BI_interlockedbittestandreset_rel:
1192 return {Reset, Release, false};
1193 case Builtin::BI_interlockedbittestandreset_nf:
1194 return {Reset, NoFence, false};
1196 llvm_unreachable("expected only bittest intrinsics");
1199 static char bitActionToX86BTCode(BitTest::ActionKind A) {
1200 switch (A) {
1201 case BitTest::TestOnly: return '\0';
1202 case BitTest::Complement: return 'c';
1203 case BitTest::Reset: return 'r';
1204 case BitTest::Set: return 's';
1206 llvm_unreachable("invalid action");
1209 static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
1210 BitTest BT,
1211 const CallExpr *E, Value *BitBase,
1212 Value *BitPos) {
1213 char Action = bitActionToX86BTCode(BT.Action);
1214 char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
1216 // Build the assembly.
1217 SmallString<64> Asm;
1218 raw_svector_ostream AsmOS(Asm);
1219 if (BT.Interlocking != BitTest::Unlocked)
1220 AsmOS << "lock ";
1221 AsmOS << "bt";
1222 if (Action)
1223 AsmOS << Action;
1224 AsmOS << SizeSuffix << " $2, ($1)";
1226 // Build the constraints. FIXME: We should support immediates when possible.
1227 std::string Constraints = "={@ccc},r,r,~{cc},~{memory}";
1228 std::string_view MachineClobbers = CGF.getTarget().getClobbers();
1229 if (!MachineClobbers.empty()) {
1230 Constraints += ',';
1231 Constraints += MachineClobbers;
1233 llvm::IntegerType *IntType = llvm::IntegerType::get(
1234 CGF.getLLVMContext(),
1235 CGF.getContext().getTypeSize(E->getArg(1)->getType()));
1236 llvm::FunctionType *FTy =
1237 llvm::FunctionType::get(CGF.Int8Ty, {CGF.UnqualPtrTy, IntType}, false);
1239 llvm::InlineAsm *IA =
1240 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1241 return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
1244 static llvm::AtomicOrdering
1245 getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
1246 switch (I) {
1247 case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic;
1248 case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
1249 case BitTest::Acquire: return llvm::AtomicOrdering::Acquire;
1250 case BitTest::Release: return llvm::AtomicOrdering::Release;
1251 case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic;
1253 llvm_unreachable("invalid interlocking");
1256 /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
1257 /// bits and a bit position and read and optionally modify the bit at that
1258 /// position. The position index can be arbitrarily large, i.e. it can be larger
1259 /// than 31 or 63, so we need an indexed load in the general case.
1260 static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
1261 unsigned BuiltinID,
1262 const CallExpr *E) {
1263 Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
1264 Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
1266 BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
1268 // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
1269 // indexing operation internally. Use them if possible.
1270 if (CGF.getTarget().getTriple().isX86())
1271 return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
1273 // Otherwise, use generic code to load one byte and test the bit. Use all but
1274 // the bottom three bits as the array index, and the bottom three bits to form
1275 // a mask.
1276 // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
1277 Value *ByteIndex = CGF.Builder.CreateAShr(
1278 BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
1279 Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
1280 Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
1281 ByteIndex, "bittest.byteaddr"),
1282 CGF.Int8Ty, CharUnits::One());
1283 Value *PosLow =
1284 CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
1285 llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
1287 // The updating instructions will need a mask.
1288 Value *Mask = nullptr;
1289 if (BT.Action != BitTest::TestOnly) {
1290 Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
1291 "bittest.mask");
1294 // Check the action and ordering of the interlocked intrinsics.
1295 llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
1297 Value *OldByte = nullptr;
1298 if (Ordering != llvm::AtomicOrdering::NotAtomic) {
1299 // Emit a combined atomicrmw load/store operation for the interlocked
1300 // intrinsics.
1301 llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
1302 if (BT.Action == BitTest::Reset) {
1303 Mask = CGF.Builder.CreateNot(Mask);
1304 RMWOp = llvm::AtomicRMWInst::And;
1306 OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr, Mask, Ordering);
1307 } else {
1308 // Emit a plain load for the non-interlocked intrinsics.
1309 OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
1310 Value *NewByte = nullptr;
1311 switch (BT.Action) {
1312 case BitTest::TestOnly:
1313 // Don't store anything.
1314 break;
1315 case BitTest::Complement:
1316 NewByte = CGF.Builder.CreateXor(OldByte, Mask);
1317 break;
1318 case BitTest::Reset:
1319 NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
1320 break;
1321 case BitTest::Set:
1322 NewByte = CGF.Builder.CreateOr(OldByte, Mask);
1323 break;
1325 if (NewByte)
1326 CGF.Builder.CreateStore(NewByte, ByteAddr);
1329 // However we loaded the old byte, either by plain load or atomicrmw, shift
1330 // the bit into the low position and mask it to 0 or 1.
1331 Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
1332 return CGF.Builder.CreateAnd(
1333 ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
1336 static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF,
1337 unsigned BuiltinID,
1338 const CallExpr *E) {
1339 Value *Addr = CGF.EmitScalarExpr(E->getArg(0));
1341 SmallString<64> Asm;
1342 raw_svector_ostream AsmOS(Asm);
1343 llvm::IntegerType *RetType = CGF.Int32Ty;
1345 switch (BuiltinID) {
1346 case clang::PPC::BI__builtin_ppc_ldarx:
1347 AsmOS << "ldarx ";
1348 RetType = CGF.Int64Ty;
1349 break;
1350 case clang::PPC::BI__builtin_ppc_lwarx:
1351 AsmOS << "lwarx ";
1352 RetType = CGF.Int32Ty;
1353 break;
1354 case clang::PPC::BI__builtin_ppc_lharx:
1355 AsmOS << "lharx ";
1356 RetType = CGF.Int16Ty;
1357 break;
1358 case clang::PPC::BI__builtin_ppc_lbarx:
1359 AsmOS << "lbarx ";
1360 RetType = CGF.Int8Ty;
1361 break;
1362 default:
1363 llvm_unreachable("Expected only PowerPC load reserve intrinsics");
1366 AsmOS << "$0, ${1:y}";
1368 std::string Constraints = "=r,*Z,~{memory}";
1369 std::string_view MachineClobbers = CGF.getTarget().getClobbers();
1370 if (!MachineClobbers.empty()) {
1371 Constraints += ',';
1372 Constraints += MachineClobbers;
1375 llvm::Type *PtrType = CGF.UnqualPtrTy;
1376 llvm::FunctionType *FTy = llvm::FunctionType::get(RetType, {PtrType}, false);
1378 llvm::InlineAsm *IA =
1379 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1380 llvm::CallInst *CI = CGF.Builder.CreateCall(IA, {Addr});
1381 CI->addParamAttr(
1382 0, Attribute::get(CGF.getLLVMContext(), Attribute::ElementType, RetType));
1383 return CI;
1386 namespace {
1387 enum class MSVCSetJmpKind {
1388 _setjmpex,
1389 _setjmp3,
1390 _setjmp
1394 /// MSVC handles setjmp a bit differently on different platforms. On every
1395 /// architecture except 32-bit x86, the frame address is passed. On x86, extra
1396 /// parameters can be passed as variadic arguments, but we always pass none.
1397 static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
1398 const CallExpr *E) {
1399 llvm::Value *Arg1 = nullptr;
1400 llvm::Type *Arg1Ty = nullptr;
1401 StringRef Name;
1402 bool IsVarArg = false;
1403 if (SJKind == MSVCSetJmpKind::_setjmp3) {
1404 Name = "_setjmp3";
1405 Arg1Ty = CGF.Int32Ty;
1406 Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
1407 IsVarArg = true;
1408 } else {
1409 Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
1410 Arg1Ty = CGF.Int8PtrTy;
1411 if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
1412 Arg1 = CGF.Builder.CreateCall(
1413 CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
1414 } else
1415 Arg1 = CGF.Builder.CreateCall(
1416 CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
1417 llvm::ConstantInt::get(CGF.Int32Ty, 0));
1420 // Mark the call site and declaration with ReturnsTwice.
1421 llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
1422 llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
1423 CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
1424 llvm::Attribute::ReturnsTwice);
1425 llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
1426 llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
1427 ReturnsTwiceAttr, /*Local=*/true);
1429 llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
1430 CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
1431 llvm::Value *Args[] = {Buf, Arg1};
1432 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
1433 CB->setAttributes(ReturnsTwiceAttr);
1434 return RValue::get(CB);
1437 // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
1438 // we handle them here.
1439 enum class CodeGenFunction::MSVCIntrin {
1440 _BitScanForward,
1441 _BitScanReverse,
1442 _InterlockedAnd,
1443 _InterlockedDecrement,
1444 _InterlockedExchange,
1445 _InterlockedExchangeAdd,
1446 _InterlockedExchangeSub,
1447 _InterlockedIncrement,
1448 _InterlockedOr,
1449 _InterlockedXor,
1450 _InterlockedExchangeAdd_acq,
1451 _InterlockedExchangeAdd_rel,
1452 _InterlockedExchangeAdd_nf,
1453 _InterlockedExchange_acq,
1454 _InterlockedExchange_rel,
1455 _InterlockedExchange_nf,
1456 _InterlockedCompareExchange_acq,
1457 _InterlockedCompareExchange_rel,
1458 _InterlockedCompareExchange_nf,
1459 _InterlockedCompareExchange128,
1460 _InterlockedCompareExchange128_acq,
1461 _InterlockedCompareExchange128_rel,
1462 _InterlockedCompareExchange128_nf,
1463 _InterlockedOr_acq,
1464 _InterlockedOr_rel,
1465 _InterlockedOr_nf,
1466 _InterlockedXor_acq,
1467 _InterlockedXor_rel,
1468 _InterlockedXor_nf,
1469 _InterlockedAnd_acq,
1470 _InterlockedAnd_rel,
1471 _InterlockedAnd_nf,
1472 _InterlockedIncrement_acq,
1473 _InterlockedIncrement_rel,
1474 _InterlockedIncrement_nf,
1475 _InterlockedDecrement_acq,
1476 _InterlockedDecrement_rel,
1477 _InterlockedDecrement_nf,
1478 __fastfail,
1481 static std::optional<CodeGenFunction::MSVCIntrin>
1482 translateArmToMsvcIntrin(unsigned BuiltinID) {
1483 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1484 switch (BuiltinID) {
1485 default:
1486 return std::nullopt;
1487 case clang::ARM::BI_BitScanForward:
1488 case clang::ARM::BI_BitScanForward64:
1489 return MSVCIntrin::_BitScanForward;
1490 case clang::ARM::BI_BitScanReverse:
1491 case clang::ARM::BI_BitScanReverse64:
1492 return MSVCIntrin::_BitScanReverse;
1493 case clang::ARM::BI_InterlockedAnd64:
1494 return MSVCIntrin::_InterlockedAnd;
1495 case clang::ARM::BI_InterlockedExchange64:
1496 return MSVCIntrin::_InterlockedExchange;
1497 case clang::ARM::BI_InterlockedExchangeAdd64:
1498 return MSVCIntrin::_InterlockedExchangeAdd;
1499 case clang::ARM::BI_InterlockedExchangeSub64:
1500 return MSVCIntrin::_InterlockedExchangeSub;
1501 case clang::ARM::BI_InterlockedOr64:
1502 return MSVCIntrin::_InterlockedOr;
1503 case clang::ARM::BI_InterlockedXor64:
1504 return MSVCIntrin::_InterlockedXor;
1505 case clang::ARM::BI_InterlockedDecrement64:
1506 return MSVCIntrin::_InterlockedDecrement;
1507 case clang::ARM::BI_InterlockedIncrement64:
1508 return MSVCIntrin::_InterlockedIncrement;
1509 case clang::ARM::BI_InterlockedExchangeAdd8_acq:
1510 case clang::ARM::BI_InterlockedExchangeAdd16_acq:
1511 case clang::ARM::BI_InterlockedExchangeAdd_acq:
1512 case clang::ARM::BI_InterlockedExchangeAdd64_acq:
1513 return MSVCIntrin::_InterlockedExchangeAdd_acq;
1514 case clang::ARM::BI_InterlockedExchangeAdd8_rel:
1515 case clang::ARM::BI_InterlockedExchangeAdd16_rel:
1516 case clang::ARM::BI_InterlockedExchangeAdd_rel:
1517 case clang::ARM::BI_InterlockedExchangeAdd64_rel:
1518 return MSVCIntrin::_InterlockedExchangeAdd_rel;
1519 case clang::ARM::BI_InterlockedExchangeAdd8_nf:
1520 case clang::ARM::BI_InterlockedExchangeAdd16_nf:
1521 case clang::ARM::BI_InterlockedExchangeAdd_nf:
1522 case clang::ARM::BI_InterlockedExchangeAdd64_nf:
1523 return MSVCIntrin::_InterlockedExchangeAdd_nf;
1524 case clang::ARM::BI_InterlockedExchange8_acq:
1525 case clang::ARM::BI_InterlockedExchange16_acq:
1526 case clang::ARM::BI_InterlockedExchange_acq:
1527 case clang::ARM::BI_InterlockedExchange64_acq:
1528 return MSVCIntrin::_InterlockedExchange_acq;
1529 case clang::ARM::BI_InterlockedExchange8_rel:
1530 case clang::ARM::BI_InterlockedExchange16_rel:
1531 case clang::ARM::BI_InterlockedExchange_rel:
1532 case clang::ARM::BI_InterlockedExchange64_rel:
1533 return MSVCIntrin::_InterlockedExchange_rel;
1534 case clang::ARM::BI_InterlockedExchange8_nf:
1535 case clang::ARM::BI_InterlockedExchange16_nf:
1536 case clang::ARM::BI_InterlockedExchange_nf:
1537 case clang::ARM::BI_InterlockedExchange64_nf:
1538 return MSVCIntrin::_InterlockedExchange_nf;
1539 case clang::ARM::BI_InterlockedCompareExchange8_acq:
1540 case clang::ARM::BI_InterlockedCompareExchange16_acq:
1541 case clang::ARM::BI_InterlockedCompareExchange_acq:
1542 case clang::ARM::BI_InterlockedCompareExchange64_acq:
1543 return MSVCIntrin::_InterlockedCompareExchange_acq;
1544 case clang::ARM::BI_InterlockedCompareExchange8_rel:
1545 case clang::ARM::BI_InterlockedCompareExchange16_rel:
1546 case clang::ARM::BI_InterlockedCompareExchange_rel:
1547 case clang::ARM::BI_InterlockedCompareExchange64_rel:
1548 return MSVCIntrin::_InterlockedCompareExchange_rel;
1549 case clang::ARM::BI_InterlockedCompareExchange8_nf:
1550 case clang::ARM::BI_InterlockedCompareExchange16_nf:
1551 case clang::ARM::BI_InterlockedCompareExchange_nf:
1552 case clang::ARM::BI_InterlockedCompareExchange64_nf:
1553 return MSVCIntrin::_InterlockedCompareExchange_nf;
1554 case clang::ARM::BI_InterlockedOr8_acq:
1555 case clang::ARM::BI_InterlockedOr16_acq:
1556 case clang::ARM::BI_InterlockedOr_acq:
1557 case clang::ARM::BI_InterlockedOr64_acq:
1558 return MSVCIntrin::_InterlockedOr_acq;
1559 case clang::ARM::BI_InterlockedOr8_rel:
1560 case clang::ARM::BI_InterlockedOr16_rel:
1561 case clang::ARM::BI_InterlockedOr_rel:
1562 case clang::ARM::BI_InterlockedOr64_rel:
1563 return MSVCIntrin::_InterlockedOr_rel;
1564 case clang::ARM::BI_InterlockedOr8_nf:
1565 case clang::ARM::BI_InterlockedOr16_nf:
1566 case clang::ARM::BI_InterlockedOr_nf:
1567 case clang::ARM::BI_InterlockedOr64_nf:
1568 return MSVCIntrin::_InterlockedOr_nf;
1569 case clang::ARM::BI_InterlockedXor8_acq:
1570 case clang::ARM::BI_InterlockedXor16_acq:
1571 case clang::ARM::BI_InterlockedXor_acq:
1572 case clang::ARM::BI_InterlockedXor64_acq:
1573 return MSVCIntrin::_InterlockedXor_acq;
1574 case clang::ARM::BI_InterlockedXor8_rel:
1575 case clang::ARM::BI_InterlockedXor16_rel:
1576 case clang::ARM::BI_InterlockedXor_rel:
1577 case clang::ARM::BI_InterlockedXor64_rel:
1578 return MSVCIntrin::_InterlockedXor_rel;
1579 case clang::ARM::BI_InterlockedXor8_nf:
1580 case clang::ARM::BI_InterlockedXor16_nf:
1581 case clang::ARM::BI_InterlockedXor_nf:
1582 case clang::ARM::BI_InterlockedXor64_nf:
1583 return MSVCIntrin::_InterlockedXor_nf;
1584 case clang::ARM::BI_InterlockedAnd8_acq:
1585 case clang::ARM::BI_InterlockedAnd16_acq:
1586 case clang::ARM::BI_InterlockedAnd_acq:
1587 case clang::ARM::BI_InterlockedAnd64_acq:
1588 return MSVCIntrin::_InterlockedAnd_acq;
1589 case clang::ARM::BI_InterlockedAnd8_rel:
1590 case clang::ARM::BI_InterlockedAnd16_rel:
1591 case clang::ARM::BI_InterlockedAnd_rel:
1592 case clang::ARM::BI_InterlockedAnd64_rel:
1593 return MSVCIntrin::_InterlockedAnd_rel;
1594 case clang::ARM::BI_InterlockedAnd8_nf:
1595 case clang::ARM::BI_InterlockedAnd16_nf:
1596 case clang::ARM::BI_InterlockedAnd_nf:
1597 case clang::ARM::BI_InterlockedAnd64_nf:
1598 return MSVCIntrin::_InterlockedAnd_nf;
1599 case clang::ARM::BI_InterlockedIncrement16_acq:
1600 case clang::ARM::BI_InterlockedIncrement_acq:
1601 case clang::ARM::BI_InterlockedIncrement64_acq:
1602 return MSVCIntrin::_InterlockedIncrement_acq;
1603 case clang::ARM::BI_InterlockedIncrement16_rel:
1604 case clang::ARM::BI_InterlockedIncrement_rel:
1605 case clang::ARM::BI_InterlockedIncrement64_rel:
1606 return MSVCIntrin::_InterlockedIncrement_rel;
1607 case clang::ARM::BI_InterlockedIncrement16_nf:
1608 case clang::ARM::BI_InterlockedIncrement_nf:
1609 case clang::ARM::BI_InterlockedIncrement64_nf:
1610 return MSVCIntrin::_InterlockedIncrement_nf;
1611 case clang::ARM::BI_InterlockedDecrement16_acq:
1612 case clang::ARM::BI_InterlockedDecrement_acq:
1613 case clang::ARM::BI_InterlockedDecrement64_acq:
1614 return MSVCIntrin::_InterlockedDecrement_acq;
1615 case clang::ARM::BI_InterlockedDecrement16_rel:
1616 case clang::ARM::BI_InterlockedDecrement_rel:
1617 case clang::ARM::BI_InterlockedDecrement64_rel:
1618 return MSVCIntrin::_InterlockedDecrement_rel;
1619 case clang::ARM::BI_InterlockedDecrement16_nf:
1620 case clang::ARM::BI_InterlockedDecrement_nf:
1621 case clang::ARM::BI_InterlockedDecrement64_nf:
1622 return MSVCIntrin::_InterlockedDecrement_nf;
1624 llvm_unreachable("must return from switch");
1627 static std::optional<CodeGenFunction::MSVCIntrin>
1628 translateAarch64ToMsvcIntrin(unsigned BuiltinID) {
1629 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1630 switch (BuiltinID) {
1631 default:
1632 return std::nullopt;
1633 case clang::AArch64::BI_BitScanForward:
1634 case clang::AArch64::BI_BitScanForward64:
1635 return MSVCIntrin::_BitScanForward;
1636 case clang::AArch64::BI_BitScanReverse:
1637 case clang::AArch64::BI_BitScanReverse64:
1638 return MSVCIntrin::_BitScanReverse;
1639 case clang::AArch64::BI_InterlockedAnd64:
1640 return MSVCIntrin::_InterlockedAnd;
1641 case clang::AArch64::BI_InterlockedExchange64:
1642 return MSVCIntrin::_InterlockedExchange;
1643 case clang::AArch64::BI_InterlockedExchangeAdd64:
1644 return MSVCIntrin::_InterlockedExchangeAdd;
1645 case clang::AArch64::BI_InterlockedExchangeSub64:
1646 return MSVCIntrin::_InterlockedExchangeSub;
1647 case clang::AArch64::BI_InterlockedOr64:
1648 return MSVCIntrin::_InterlockedOr;
1649 case clang::AArch64::BI_InterlockedXor64:
1650 return MSVCIntrin::_InterlockedXor;
1651 case clang::AArch64::BI_InterlockedDecrement64:
1652 return MSVCIntrin::_InterlockedDecrement;
1653 case clang::AArch64::BI_InterlockedIncrement64:
1654 return MSVCIntrin::_InterlockedIncrement;
1655 case clang::AArch64::BI_InterlockedExchangeAdd8_acq:
1656 case clang::AArch64::BI_InterlockedExchangeAdd16_acq:
1657 case clang::AArch64::BI_InterlockedExchangeAdd_acq:
1658 case clang::AArch64::BI_InterlockedExchangeAdd64_acq:
1659 return MSVCIntrin::_InterlockedExchangeAdd_acq;
1660 case clang::AArch64::BI_InterlockedExchangeAdd8_rel:
1661 case clang::AArch64::BI_InterlockedExchangeAdd16_rel:
1662 case clang::AArch64::BI_InterlockedExchangeAdd_rel:
1663 case clang::AArch64::BI_InterlockedExchangeAdd64_rel:
1664 return MSVCIntrin::_InterlockedExchangeAdd_rel;
1665 case clang::AArch64::BI_InterlockedExchangeAdd8_nf:
1666 case clang::AArch64::BI_InterlockedExchangeAdd16_nf:
1667 case clang::AArch64::BI_InterlockedExchangeAdd_nf:
1668 case clang::AArch64::BI_InterlockedExchangeAdd64_nf:
1669 return MSVCIntrin::_InterlockedExchangeAdd_nf;
1670 case clang::AArch64::BI_InterlockedExchange8_acq:
1671 case clang::AArch64::BI_InterlockedExchange16_acq:
1672 case clang::AArch64::BI_InterlockedExchange_acq:
1673 case clang::AArch64::BI_InterlockedExchange64_acq:
1674 return MSVCIntrin::_InterlockedExchange_acq;
1675 case clang::AArch64::BI_InterlockedExchange8_rel:
1676 case clang::AArch64::BI_InterlockedExchange16_rel:
1677 case clang::AArch64::BI_InterlockedExchange_rel:
1678 case clang::AArch64::BI_InterlockedExchange64_rel:
1679 return MSVCIntrin::_InterlockedExchange_rel;
1680 case clang::AArch64::BI_InterlockedExchange8_nf:
1681 case clang::AArch64::BI_InterlockedExchange16_nf:
1682 case clang::AArch64::BI_InterlockedExchange_nf:
1683 case clang::AArch64::BI_InterlockedExchange64_nf:
1684 return MSVCIntrin::_InterlockedExchange_nf;
1685 case clang::AArch64::BI_InterlockedCompareExchange8_acq:
1686 case clang::AArch64::BI_InterlockedCompareExchange16_acq:
1687 case clang::AArch64::BI_InterlockedCompareExchange_acq:
1688 case clang::AArch64::BI_InterlockedCompareExchange64_acq:
1689 return MSVCIntrin::_InterlockedCompareExchange_acq;
1690 case clang::AArch64::BI_InterlockedCompareExchange8_rel:
1691 case clang::AArch64::BI_InterlockedCompareExchange16_rel:
1692 case clang::AArch64::BI_InterlockedCompareExchange_rel:
1693 case clang::AArch64::BI_InterlockedCompareExchange64_rel:
1694 return MSVCIntrin::_InterlockedCompareExchange_rel;
1695 case clang::AArch64::BI_InterlockedCompareExchange8_nf:
1696 case clang::AArch64::BI_InterlockedCompareExchange16_nf:
1697 case clang::AArch64::BI_InterlockedCompareExchange_nf:
1698 case clang::AArch64::BI_InterlockedCompareExchange64_nf:
1699 return MSVCIntrin::_InterlockedCompareExchange_nf;
1700 case clang::AArch64::BI_InterlockedCompareExchange128:
1701 return MSVCIntrin::_InterlockedCompareExchange128;
1702 case clang::AArch64::BI_InterlockedCompareExchange128_acq:
1703 return MSVCIntrin::_InterlockedCompareExchange128_acq;
1704 case clang::AArch64::BI_InterlockedCompareExchange128_nf:
1705 return MSVCIntrin::_InterlockedCompareExchange128_nf;
1706 case clang::AArch64::BI_InterlockedCompareExchange128_rel:
1707 return MSVCIntrin::_InterlockedCompareExchange128_rel;
1708 case clang::AArch64::BI_InterlockedOr8_acq:
1709 case clang::AArch64::BI_InterlockedOr16_acq:
1710 case clang::AArch64::BI_InterlockedOr_acq:
1711 case clang::AArch64::BI_InterlockedOr64_acq:
1712 return MSVCIntrin::_InterlockedOr_acq;
1713 case clang::AArch64::BI_InterlockedOr8_rel:
1714 case clang::AArch64::BI_InterlockedOr16_rel:
1715 case clang::AArch64::BI_InterlockedOr_rel:
1716 case clang::AArch64::BI_InterlockedOr64_rel:
1717 return MSVCIntrin::_InterlockedOr_rel;
1718 case clang::AArch64::BI_InterlockedOr8_nf:
1719 case clang::AArch64::BI_InterlockedOr16_nf:
1720 case clang::AArch64::BI_InterlockedOr_nf:
1721 case clang::AArch64::BI_InterlockedOr64_nf:
1722 return MSVCIntrin::_InterlockedOr_nf;
1723 case clang::AArch64::BI_InterlockedXor8_acq:
1724 case clang::AArch64::BI_InterlockedXor16_acq:
1725 case clang::AArch64::BI_InterlockedXor_acq:
1726 case clang::AArch64::BI_InterlockedXor64_acq:
1727 return MSVCIntrin::_InterlockedXor_acq;
1728 case clang::AArch64::BI_InterlockedXor8_rel:
1729 case clang::AArch64::BI_InterlockedXor16_rel:
1730 case clang::AArch64::BI_InterlockedXor_rel:
1731 case clang::AArch64::BI_InterlockedXor64_rel:
1732 return MSVCIntrin::_InterlockedXor_rel;
1733 case clang::AArch64::BI_InterlockedXor8_nf:
1734 case clang::AArch64::BI_InterlockedXor16_nf:
1735 case clang::AArch64::BI_InterlockedXor_nf:
1736 case clang::AArch64::BI_InterlockedXor64_nf:
1737 return MSVCIntrin::_InterlockedXor_nf;
1738 case clang::AArch64::BI_InterlockedAnd8_acq:
1739 case clang::AArch64::BI_InterlockedAnd16_acq:
1740 case clang::AArch64::BI_InterlockedAnd_acq:
1741 case clang::AArch64::BI_InterlockedAnd64_acq:
1742 return MSVCIntrin::_InterlockedAnd_acq;
1743 case clang::AArch64::BI_InterlockedAnd8_rel:
1744 case clang::AArch64::BI_InterlockedAnd16_rel:
1745 case clang::AArch64::BI_InterlockedAnd_rel:
1746 case clang::AArch64::BI_InterlockedAnd64_rel:
1747 return MSVCIntrin::_InterlockedAnd_rel;
1748 case clang::AArch64::BI_InterlockedAnd8_nf:
1749 case clang::AArch64::BI_InterlockedAnd16_nf:
1750 case clang::AArch64::BI_InterlockedAnd_nf:
1751 case clang::AArch64::BI_InterlockedAnd64_nf:
1752 return MSVCIntrin::_InterlockedAnd_nf;
1753 case clang::AArch64::BI_InterlockedIncrement16_acq:
1754 case clang::AArch64::BI_InterlockedIncrement_acq:
1755 case clang::AArch64::BI_InterlockedIncrement64_acq:
1756 return MSVCIntrin::_InterlockedIncrement_acq;
1757 case clang::AArch64::BI_InterlockedIncrement16_rel:
1758 case clang::AArch64::BI_InterlockedIncrement_rel:
1759 case clang::AArch64::BI_InterlockedIncrement64_rel:
1760 return MSVCIntrin::_InterlockedIncrement_rel;
1761 case clang::AArch64::BI_InterlockedIncrement16_nf:
1762 case clang::AArch64::BI_InterlockedIncrement_nf:
1763 case clang::AArch64::BI_InterlockedIncrement64_nf:
1764 return MSVCIntrin::_InterlockedIncrement_nf;
1765 case clang::AArch64::BI_InterlockedDecrement16_acq:
1766 case clang::AArch64::BI_InterlockedDecrement_acq:
1767 case clang::AArch64::BI_InterlockedDecrement64_acq:
1768 return MSVCIntrin::_InterlockedDecrement_acq;
1769 case clang::AArch64::BI_InterlockedDecrement16_rel:
1770 case clang::AArch64::BI_InterlockedDecrement_rel:
1771 case clang::AArch64::BI_InterlockedDecrement64_rel:
1772 return MSVCIntrin::_InterlockedDecrement_rel;
1773 case clang::AArch64::BI_InterlockedDecrement16_nf:
1774 case clang::AArch64::BI_InterlockedDecrement_nf:
1775 case clang::AArch64::BI_InterlockedDecrement64_nf:
1776 return MSVCIntrin::_InterlockedDecrement_nf;
1778 llvm_unreachable("must return from switch");
1781 static std::optional<CodeGenFunction::MSVCIntrin>
1782 translateX86ToMsvcIntrin(unsigned BuiltinID) {
1783 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1784 switch (BuiltinID) {
1785 default:
1786 return std::nullopt;
1787 case clang::X86::BI_BitScanForward:
1788 case clang::X86::BI_BitScanForward64:
1789 return MSVCIntrin::_BitScanForward;
1790 case clang::X86::BI_BitScanReverse:
1791 case clang::X86::BI_BitScanReverse64:
1792 return MSVCIntrin::_BitScanReverse;
1793 case clang::X86::BI_InterlockedAnd64:
1794 return MSVCIntrin::_InterlockedAnd;
1795 case clang::X86::BI_InterlockedCompareExchange128:
1796 return MSVCIntrin::_InterlockedCompareExchange128;
1797 case clang::X86::BI_InterlockedExchange64:
1798 return MSVCIntrin::_InterlockedExchange;
1799 case clang::X86::BI_InterlockedExchangeAdd64:
1800 return MSVCIntrin::_InterlockedExchangeAdd;
1801 case clang::X86::BI_InterlockedExchangeSub64:
1802 return MSVCIntrin::_InterlockedExchangeSub;
1803 case clang::X86::BI_InterlockedOr64:
1804 return MSVCIntrin::_InterlockedOr;
1805 case clang::X86::BI_InterlockedXor64:
1806 return MSVCIntrin::_InterlockedXor;
1807 case clang::X86::BI_InterlockedDecrement64:
1808 return MSVCIntrin::_InterlockedDecrement;
1809 case clang::X86::BI_InterlockedIncrement64:
1810 return MSVCIntrin::_InterlockedIncrement;
1812 llvm_unreachable("must return from switch");
1815 // Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated.
1816 Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
1817 const CallExpr *E) {
1818 switch (BuiltinID) {
1819 case MSVCIntrin::_BitScanForward:
1820 case MSVCIntrin::_BitScanReverse: {
1821 Address IndexAddress(EmitPointerWithAlignment(E->getArg(0)));
1822 Value *ArgValue = EmitScalarExpr(E->getArg(1));
1824 llvm::Type *ArgType = ArgValue->getType();
1825 llvm::Type *IndexType = IndexAddress.getElementType();
1826 llvm::Type *ResultType = ConvertType(E->getType());
1828 Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1829 Value *ResZero = llvm::Constant::getNullValue(ResultType);
1830 Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
1832 BasicBlock *Begin = Builder.GetInsertBlock();
1833 BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1834 Builder.SetInsertPoint(End);
1835 PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
1837 Builder.SetInsertPoint(Begin);
1838 Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
1839 BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1840 Builder.CreateCondBr(IsZero, End, NotZero);
1841 Result->addIncoming(ResZero, Begin);
1843 Builder.SetInsertPoint(NotZero);
1845 if (BuiltinID == MSVCIntrin::_BitScanForward) {
1846 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1847 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1848 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1849 Builder.CreateStore(ZeroCount, IndexAddress, false);
1850 } else {
1851 unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1852 Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
1854 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1855 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1856 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1857 Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
1858 Builder.CreateStore(Index, IndexAddress, false);
1860 Builder.CreateBr(End);
1861 Result->addIncoming(ResOne, NotZero);
1863 Builder.SetInsertPoint(End);
1864 return Result;
1866 case MSVCIntrin::_InterlockedAnd:
1867 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1868 case MSVCIntrin::_InterlockedExchange:
1869 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1870 case MSVCIntrin::_InterlockedExchangeAdd:
1871 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1872 case MSVCIntrin::_InterlockedExchangeSub:
1873 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1874 case MSVCIntrin::_InterlockedOr:
1875 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1876 case MSVCIntrin::_InterlockedXor:
1877 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1878 case MSVCIntrin::_InterlockedExchangeAdd_acq:
1879 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1880 AtomicOrdering::Acquire);
1881 case MSVCIntrin::_InterlockedExchangeAdd_rel:
1882 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1883 AtomicOrdering::Release);
1884 case MSVCIntrin::_InterlockedExchangeAdd_nf:
1885 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1886 AtomicOrdering::Monotonic);
1887 case MSVCIntrin::_InterlockedExchange_acq:
1888 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1889 AtomicOrdering::Acquire);
1890 case MSVCIntrin::_InterlockedExchange_rel:
1891 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1892 AtomicOrdering::Release);
1893 case MSVCIntrin::_InterlockedExchange_nf:
1894 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1895 AtomicOrdering::Monotonic);
1896 case MSVCIntrin::_InterlockedCompareExchange_acq:
1897 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1898 case MSVCIntrin::_InterlockedCompareExchange_rel:
1899 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1900 case MSVCIntrin::_InterlockedCompareExchange_nf:
1901 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1902 case MSVCIntrin::_InterlockedCompareExchange128:
1903 return EmitAtomicCmpXchg128ForMSIntrin(
1904 *this, E, AtomicOrdering::SequentiallyConsistent);
1905 case MSVCIntrin::_InterlockedCompareExchange128_acq:
1906 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire);
1907 case MSVCIntrin::_InterlockedCompareExchange128_rel:
1908 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release);
1909 case MSVCIntrin::_InterlockedCompareExchange128_nf:
1910 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1911 case MSVCIntrin::_InterlockedOr_acq:
1912 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1913 AtomicOrdering::Acquire);
1914 case MSVCIntrin::_InterlockedOr_rel:
1915 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1916 AtomicOrdering::Release);
1917 case MSVCIntrin::_InterlockedOr_nf:
1918 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1919 AtomicOrdering::Monotonic);
1920 case MSVCIntrin::_InterlockedXor_acq:
1921 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1922 AtomicOrdering::Acquire);
1923 case MSVCIntrin::_InterlockedXor_rel:
1924 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1925 AtomicOrdering::Release);
1926 case MSVCIntrin::_InterlockedXor_nf:
1927 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1928 AtomicOrdering::Monotonic);
1929 case MSVCIntrin::_InterlockedAnd_acq:
1930 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1931 AtomicOrdering::Acquire);
1932 case MSVCIntrin::_InterlockedAnd_rel:
1933 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1934 AtomicOrdering::Release);
1935 case MSVCIntrin::_InterlockedAnd_nf:
1936 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1937 AtomicOrdering::Monotonic);
1938 case MSVCIntrin::_InterlockedIncrement_acq:
1939 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1940 case MSVCIntrin::_InterlockedIncrement_rel:
1941 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1942 case MSVCIntrin::_InterlockedIncrement_nf:
1943 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1944 case MSVCIntrin::_InterlockedDecrement_acq:
1945 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1946 case MSVCIntrin::_InterlockedDecrement_rel:
1947 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1948 case MSVCIntrin::_InterlockedDecrement_nf:
1949 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1951 case MSVCIntrin::_InterlockedDecrement:
1952 return EmitAtomicDecrementValue(*this, E);
1953 case MSVCIntrin::_InterlockedIncrement:
1954 return EmitAtomicIncrementValue(*this, E);
1956 case MSVCIntrin::__fastfail: {
1957 // Request immediate process termination from the kernel. The instruction
1958 // sequences to do this are documented on MSDN:
1959 // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1960 llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1961 StringRef Asm, Constraints;
1962 switch (ISA) {
1963 default:
1964 ErrorUnsupported(E, "__fastfail call for this architecture");
1965 break;
1966 case llvm::Triple::x86:
1967 case llvm::Triple::x86_64:
1968 Asm = "int $$0x29";
1969 Constraints = "{cx}";
1970 break;
1971 case llvm::Triple::thumb:
1972 Asm = "udf #251";
1973 Constraints = "{r0}";
1974 break;
1975 case llvm::Triple::aarch64:
1976 Asm = "brk #0xF003";
1977 Constraints = "{w0}";
1979 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1980 llvm::InlineAsm *IA =
1981 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1982 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1983 getLLVMContext(), llvm::AttributeList::FunctionIndex,
1984 llvm::Attribute::NoReturn);
1985 llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1986 CI->setAttributes(NoReturnAttr);
1987 return CI;
1990 llvm_unreachable("Incorrect MSVC intrinsic!");
1993 namespace {
1994 // ARC cleanup for __builtin_os_log_format
1995 struct CallObjCArcUse final : EHScopeStack::Cleanup {
1996 CallObjCArcUse(llvm::Value *object) : object(object) {}
1997 llvm::Value *object;
1999 void Emit(CodeGenFunction &CGF, Flags flags) override {
2000 CGF.EmitARCIntrinsicUse(object);
2005 Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
2006 BuiltinCheckKind Kind) {
2007 assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
2008 && "Unsupported builtin check kind");
2010 Value *ArgValue = EmitScalarExpr(E);
2011 if (!SanOpts.has(SanitizerKind::Builtin))
2012 return ArgValue;
2014 SanitizerScope SanScope(this);
2015 Value *Cond = Builder.CreateICmpNE(
2016 ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
2017 EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
2018 SanitizerHandler::InvalidBuiltin,
2019 {EmitCheckSourceLocation(E->getExprLoc()),
2020 llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
2021 std::nullopt);
2022 return ArgValue;
2025 static Value *EmitAbs(CodeGenFunction &CGF, Value *ArgValue, bool HasNSW) {
2026 return CGF.Builder.CreateBinaryIntrinsic(
2027 Intrinsic::abs, ArgValue,
2028 ConstantInt::get(CGF.Builder.getInt1Ty(), HasNSW));
2031 static Value *EmitOverflowCheckedAbs(CodeGenFunction &CGF, const CallExpr *E,
2032 bool SanitizeOverflow) {
2033 Value *ArgValue = CGF.EmitScalarExpr(E->getArg(0));
2035 // Try to eliminate overflow check.
2036 if (const auto *VCI = dyn_cast<llvm::ConstantInt>(ArgValue)) {
2037 if (!VCI->isMinSignedValue())
2038 return EmitAbs(CGF, ArgValue, true);
2041 CodeGenFunction::SanitizerScope SanScope(&CGF);
2043 Constant *Zero = Constant::getNullValue(ArgValue->getType());
2044 Value *ResultAndOverflow = CGF.Builder.CreateBinaryIntrinsic(
2045 Intrinsic::ssub_with_overflow, Zero, ArgValue);
2046 Value *Result = CGF.Builder.CreateExtractValue(ResultAndOverflow, 0);
2047 Value *NotOverflow = CGF.Builder.CreateNot(
2048 CGF.Builder.CreateExtractValue(ResultAndOverflow, 1));
2050 // TODO: support -ftrapv-handler.
2051 if (SanitizeOverflow) {
2052 CGF.EmitCheck({{NotOverflow, SanitizerKind::SignedIntegerOverflow}},
2053 SanitizerHandler::NegateOverflow,
2054 {CGF.EmitCheckSourceLocation(E->getArg(0)->getExprLoc()),
2055 CGF.EmitCheckTypeDescriptor(E->getType())},
2056 {ArgValue});
2057 } else
2058 CGF.EmitTrapCheck(NotOverflow, SanitizerHandler::SubOverflow);
2060 Value *CmpResult = CGF.Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
2061 return CGF.Builder.CreateSelect(CmpResult, Result, ArgValue, "abs");
2064 /// Get the argument type for arguments to os_log_helper.
2065 static CanQualType getOSLogArgType(ASTContext &C, int Size) {
2066 QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
2067 return C.getCanonicalType(UnsignedTy);
2070 llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
2071 const analyze_os_log::OSLogBufferLayout &Layout,
2072 CharUnits BufferAlignment) {
2073 ASTContext &Ctx = getContext();
2075 llvm::SmallString<64> Name;
2077 raw_svector_ostream OS(Name);
2078 OS << "__os_log_helper";
2079 OS << "_" << BufferAlignment.getQuantity();
2080 OS << "_" << int(Layout.getSummaryByte());
2081 OS << "_" << int(Layout.getNumArgsByte());
2082 for (const auto &Item : Layout.Items)
2083 OS << "_" << int(Item.getSizeByte()) << "_"
2084 << int(Item.getDescriptorByte());
2087 if (llvm::Function *F = CGM.getModule().getFunction(Name))
2088 return F;
2090 llvm::SmallVector<QualType, 4> ArgTys;
2091 FunctionArgList Args;
2092 Args.push_back(ImplicitParamDecl::Create(
2093 Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
2094 ImplicitParamKind::Other));
2095 ArgTys.emplace_back(Ctx.VoidPtrTy);
2097 for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
2098 char Size = Layout.Items[I].getSizeByte();
2099 if (!Size)
2100 continue;
2102 QualType ArgTy = getOSLogArgType(Ctx, Size);
2103 Args.push_back(ImplicitParamDecl::Create(
2104 Ctx, nullptr, SourceLocation(),
2105 &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
2106 ImplicitParamKind::Other));
2107 ArgTys.emplace_back(ArgTy);
2110 QualType ReturnTy = Ctx.VoidTy;
2112 // The helper function has linkonce_odr linkage to enable the linker to merge
2113 // identical functions. To ensure the merging always happens, 'noinline' is
2114 // attached to the function when compiling with -Oz.
2115 const CGFunctionInfo &FI =
2116 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
2117 llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
2118 llvm::Function *Fn = llvm::Function::Create(
2119 FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
2120 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
2121 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false);
2122 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
2123 Fn->setDoesNotThrow();
2125 // Attach 'noinline' at -Oz.
2126 if (CGM.getCodeGenOpts().OptimizeSize == 2)
2127 Fn->addFnAttr(llvm::Attribute::NoInline);
2129 auto NL = ApplyDebugLocation::CreateEmpty(*this);
2130 StartFunction(GlobalDecl(), ReturnTy, Fn, FI, Args);
2132 // Create a scope with an artificial location for the body of this function.
2133 auto AL = ApplyDebugLocation::CreateArtificial(*this);
2135 CharUnits Offset;
2136 Address BufAddr = makeNaturalAddressForPointer(
2137 Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), Ctx.VoidTy,
2138 BufferAlignment);
2139 Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
2140 Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
2141 Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
2142 Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
2144 unsigned I = 1;
2145 for (const auto &Item : Layout.Items) {
2146 Builder.CreateStore(
2147 Builder.getInt8(Item.getDescriptorByte()),
2148 Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
2149 Builder.CreateStore(
2150 Builder.getInt8(Item.getSizeByte()),
2151 Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
2153 CharUnits Size = Item.size();
2154 if (!Size.getQuantity())
2155 continue;
2157 Address Arg = GetAddrOfLocalVar(Args[I]);
2158 Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
2159 Addr = Addr.withElementType(Arg.getElementType());
2160 Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
2161 Offset += Size;
2162 ++I;
2165 FinishFunction();
2167 return Fn;
2170 RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
2171 assert(E.getNumArgs() >= 2 &&
2172 "__builtin_os_log_format takes at least 2 arguments");
2173 ASTContext &Ctx = getContext();
2174 analyze_os_log::OSLogBufferLayout Layout;
2175 analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
2176 Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
2177 llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
2179 // Ignore argument 1, the format string. It is not currently used.
2180 CallArgList Args;
2181 Args.add(RValue::get(BufAddr.emitRawPointer(*this)), Ctx.VoidPtrTy);
2183 for (const auto &Item : Layout.Items) {
2184 int Size = Item.getSizeByte();
2185 if (!Size)
2186 continue;
2188 llvm::Value *ArgVal;
2190 if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
2191 uint64_t Val = 0;
2192 for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
2193 Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
2194 ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
2195 } else if (const Expr *TheExpr = Item.getExpr()) {
2196 ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
2198 // If a temporary object that requires destruction after the full
2199 // expression is passed, push a lifetime-extended cleanup to extend its
2200 // lifetime to the end of the enclosing block scope.
2201 auto LifetimeExtendObject = [&](const Expr *E) {
2202 E = E->IgnoreParenCasts();
2203 // Extend lifetimes of objects returned by function calls and message
2204 // sends.
2206 // FIXME: We should do this in other cases in which temporaries are
2207 // created including arguments of non-ARC types (e.g., C++
2208 // temporaries).
2209 if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
2210 return true;
2211 return false;
2214 if (TheExpr->getType()->isObjCRetainableType() &&
2215 getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
2216 assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
2217 "Only scalar can be a ObjC retainable type");
2218 if (!isa<Constant>(ArgVal)) {
2219 CleanupKind Cleanup = getARCCleanupKind();
2220 QualType Ty = TheExpr->getType();
2221 RawAddress Alloca = RawAddress::invalid();
2222 RawAddress Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
2223 ArgVal = EmitARCRetain(Ty, ArgVal);
2224 Builder.CreateStore(ArgVal, Addr);
2225 pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
2226 CodeGenFunction::destroyARCStrongPrecise,
2227 Cleanup & EHCleanup);
2229 // Push a clang.arc.use call to ensure ARC optimizer knows that the
2230 // argument has to be alive.
2231 if (CGM.getCodeGenOpts().OptimizationLevel != 0)
2232 pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
2235 } else {
2236 ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
2239 unsigned ArgValSize =
2240 CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
2241 llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
2242 ArgValSize);
2243 ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
2244 CanQualType ArgTy = getOSLogArgType(Ctx, Size);
2245 // If ArgVal has type x86_fp80, zero-extend ArgVal.
2246 ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
2247 Args.add(RValue::get(ArgVal), ArgTy);
2250 const CGFunctionInfo &FI =
2251 CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
2252 llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
2253 Layout, BufAddr.getAlignment());
2254 EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
2255 return RValue::get(BufAddr, *this);
2258 static bool isSpecialUnsignedMultiplySignedResult(
2259 unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info,
2260 WidthAndSignedness ResultInfo) {
2261 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
2262 Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width &&
2263 !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed;
2266 static RValue EmitCheckedUnsignedMultiplySignedResult(
2267 CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info,
2268 const clang::Expr *Op2, WidthAndSignedness Op2Info,
2269 const clang::Expr *ResultArg, QualType ResultQTy,
2270 WidthAndSignedness ResultInfo) {
2271 assert(isSpecialUnsignedMultiplySignedResult(
2272 Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
2273 "Cannot specialize this multiply");
2275 llvm::Value *V1 = CGF.EmitScalarExpr(Op1);
2276 llvm::Value *V2 = CGF.EmitScalarExpr(Op2);
2278 llvm::Value *HasOverflow;
2279 llvm::Value *Result = EmitOverflowIntrinsic(
2280 CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow);
2282 // The intrinsic call will detect overflow when the value is > UINT_MAX,
2283 // however, since the original builtin had a signed result, we need to report
2284 // an overflow when the result is greater than INT_MAX.
2285 auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width);
2286 llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax);
2288 llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue);
2289 HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow);
2291 bool isVolatile =
2292 ResultArg->getType()->getPointeeType().isVolatileQualified();
2293 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
2294 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
2295 isVolatile);
2296 return RValue::get(HasOverflow);
2299 /// Determine if a binop is a checked mixed-sign multiply we can specialize.
2300 static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
2301 WidthAndSignedness Op1Info,
2302 WidthAndSignedness Op2Info,
2303 WidthAndSignedness ResultInfo) {
2304 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
2305 std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
2306 Op1Info.Signed != Op2Info.Signed;
2309 /// Emit a checked mixed-sign multiply. This is a cheaper specialization of
2310 /// the generic checked-binop irgen.
2311 static RValue
2312 EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
2313 WidthAndSignedness Op1Info, const clang::Expr *Op2,
2314 WidthAndSignedness Op2Info,
2315 const clang::Expr *ResultArg, QualType ResultQTy,
2316 WidthAndSignedness ResultInfo) {
2317 assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
2318 Op2Info, ResultInfo) &&
2319 "Not a mixed-sign multipliction we can specialize");
2321 // Emit the signed and unsigned operands.
2322 const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
2323 const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
2324 llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
2325 llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
2326 unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
2327 unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
2329 // One of the operands may be smaller than the other. If so, [s|z]ext it.
2330 if (SignedOpWidth < UnsignedOpWidth)
2331 Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
2332 if (UnsignedOpWidth < SignedOpWidth)
2333 Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
2335 llvm::Type *OpTy = Signed->getType();
2336 llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
2337 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
2338 llvm::Type *ResTy = ResultPtr.getElementType();
2339 unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
2341 // Take the absolute value of the signed operand.
2342 llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
2343 llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
2344 llvm::Value *AbsSigned =
2345 CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
2347 // Perform a checked unsigned multiplication.
2348 llvm::Value *UnsignedOverflow;
2349 llvm::Value *UnsignedResult =
2350 EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
2351 Unsigned, UnsignedOverflow);
2353 llvm::Value *Overflow, *Result;
2354 if (ResultInfo.Signed) {
2355 // Signed overflow occurs if the result is greater than INT_MAX or lesser
2356 // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
2357 auto IntMax =
2358 llvm::APInt::getSignedMaxValue(ResultInfo.Width).zext(OpWidth);
2359 llvm::Value *MaxResult =
2360 CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
2361 CGF.Builder.CreateZExt(IsNegative, OpTy));
2362 llvm::Value *SignedOverflow =
2363 CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
2364 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
2366 // Prepare the signed result (possibly by negating it).
2367 llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
2368 llvm::Value *SignedResult =
2369 CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
2370 Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
2371 } else {
2372 // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
2373 llvm::Value *Underflow = CGF.Builder.CreateAnd(
2374 IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
2375 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
2376 if (ResultInfo.Width < OpWidth) {
2377 auto IntMax =
2378 llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
2379 llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
2380 UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
2381 Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
2384 // Negate the product if it would be negative in infinite precision.
2385 Result = CGF.Builder.CreateSelect(
2386 IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
2388 Result = CGF.Builder.CreateTrunc(Result, ResTy);
2390 assert(Overflow && Result && "Missing overflow or result");
2392 bool isVolatile =
2393 ResultArg->getType()->getPointeeType().isVolatileQualified();
2394 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
2395 isVolatile);
2396 return RValue::get(Overflow);
2399 static bool
2400 TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
2401 llvm::SmallPtrSetImpl<const Decl *> &Seen) {
2402 if (const auto *Arr = Ctx.getAsArrayType(Ty))
2403 Ty = Ctx.getBaseElementType(Arr);
2405 const auto *Record = Ty->getAsCXXRecordDecl();
2406 if (!Record)
2407 return false;
2409 // We've already checked this type, or are in the process of checking it.
2410 if (!Seen.insert(Record).second)
2411 return false;
2413 assert(Record->hasDefinition() &&
2414 "Incomplete types should already be diagnosed");
2416 if (Record->isDynamicClass())
2417 return true;
2419 for (FieldDecl *F : Record->fields()) {
2420 if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
2421 return true;
2423 return false;
2426 /// Determine if the specified type requires laundering by checking if it is a
2427 /// dynamic class type or contains a subobject which is a dynamic class type.
2428 static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
2429 if (!CGM.getCodeGenOpts().StrictVTablePointers)
2430 return false;
2431 llvm::SmallPtrSet<const Decl *, 16> Seen;
2432 return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
2435 RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
2436 llvm::Value *Src = EmitScalarExpr(E->getArg(0));
2437 llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
2439 // The builtin's shift arg may have a different type than the source arg and
2440 // result, but the LLVM intrinsic uses the same type for all values.
2441 llvm::Type *Ty = Src->getType();
2442 ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
2444 // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
2445 unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
2446 Function *F = CGM.getIntrinsic(IID, Ty);
2447 return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
2450 // Map math builtins for long-double to f128 version.
2451 static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) {
2452 switch (BuiltinID) {
2453 #define MUTATE_LDBL(func) \
2454 case Builtin::BI__builtin_##func##l: \
2455 return Builtin::BI__builtin_##func##f128;
2456 MUTATE_LDBL(sqrt)
2457 MUTATE_LDBL(cbrt)
2458 MUTATE_LDBL(fabs)
2459 MUTATE_LDBL(log)
2460 MUTATE_LDBL(log2)
2461 MUTATE_LDBL(log10)
2462 MUTATE_LDBL(log1p)
2463 MUTATE_LDBL(logb)
2464 MUTATE_LDBL(exp)
2465 MUTATE_LDBL(exp2)
2466 MUTATE_LDBL(expm1)
2467 MUTATE_LDBL(fdim)
2468 MUTATE_LDBL(hypot)
2469 MUTATE_LDBL(ilogb)
2470 MUTATE_LDBL(pow)
2471 MUTATE_LDBL(fmin)
2472 MUTATE_LDBL(fmax)
2473 MUTATE_LDBL(ceil)
2474 MUTATE_LDBL(trunc)
2475 MUTATE_LDBL(rint)
2476 MUTATE_LDBL(nearbyint)
2477 MUTATE_LDBL(round)
2478 MUTATE_LDBL(floor)
2479 MUTATE_LDBL(lround)
2480 MUTATE_LDBL(llround)
2481 MUTATE_LDBL(lrint)
2482 MUTATE_LDBL(llrint)
2483 MUTATE_LDBL(fmod)
2484 MUTATE_LDBL(modf)
2485 MUTATE_LDBL(nan)
2486 MUTATE_LDBL(nans)
2487 MUTATE_LDBL(inf)
2488 MUTATE_LDBL(fma)
2489 MUTATE_LDBL(sin)
2490 MUTATE_LDBL(cos)
2491 MUTATE_LDBL(tan)
2492 MUTATE_LDBL(sinh)
2493 MUTATE_LDBL(cosh)
2494 MUTATE_LDBL(tanh)
2495 MUTATE_LDBL(asin)
2496 MUTATE_LDBL(acos)
2497 MUTATE_LDBL(atan)
2498 MUTATE_LDBL(asinh)
2499 MUTATE_LDBL(acosh)
2500 MUTATE_LDBL(atanh)
2501 MUTATE_LDBL(atan2)
2502 MUTATE_LDBL(erf)
2503 MUTATE_LDBL(erfc)
2504 MUTATE_LDBL(ldexp)
2505 MUTATE_LDBL(frexp)
2506 MUTATE_LDBL(huge_val)
2507 MUTATE_LDBL(copysign)
2508 MUTATE_LDBL(nextafter)
2509 MUTATE_LDBL(nexttoward)
2510 MUTATE_LDBL(remainder)
2511 MUTATE_LDBL(remquo)
2512 MUTATE_LDBL(scalbln)
2513 MUTATE_LDBL(scalbn)
2514 MUTATE_LDBL(tgamma)
2515 MUTATE_LDBL(lgamma)
2516 #undef MUTATE_LDBL
2517 default:
2518 return BuiltinID;
2522 static Value *tryUseTestFPKind(CodeGenFunction &CGF, unsigned BuiltinID,
2523 Value *V) {
2524 if (CGF.Builder.getIsFPConstrained() &&
2525 CGF.Builder.getDefaultConstrainedExcept() != fp::ebIgnore) {
2526 if (Value *Result =
2527 CGF.getTargetHooks().testFPKind(V, BuiltinID, CGF.Builder, CGF.CGM))
2528 return Result;
2530 return nullptr;
2533 static RValue EmitHipStdParUnsupportedBuiltin(CodeGenFunction *CGF,
2534 const FunctionDecl *FD) {
2535 auto Name = FD->getNameAsString() + "__hipstdpar_unsupported";
2536 auto FnTy = CGF->CGM.getTypes().GetFunctionType(FD);
2537 auto UBF = CGF->CGM.getModule().getOrInsertFunction(Name, FnTy);
2539 SmallVector<Value *, 16> Args;
2540 for (auto &&FormalTy : FnTy->params())
2541 Args.push_back(llvm::PoisonValue::get(FormalTy));
2543 return RValue::get(CGF->Builder.CreateCall(UBF, Args));
2546 RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
2547 const CallExpr *E,
2548 ReturnValueSlot ReturnValue) {
2549 const FunctionDecl *FD = GD.getDecl()->getAsFunction();
2550 // See if we can constant fold this builtin. If so, don't emit it at all.
2551 // TODO: Extend this handling to all builtin calls that we can constant-fold.
2552 Expr::EvalResult Result;
2553 if (E->isPRValue() && E->EvaluateAsRValue(Result, CGM.getContext()) &&
2554 !Result.hasSideEffects()) {
2555 if (Result.Val.isInt())
2556 return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
2557 Result.Val.getInt()));
2558 if (Result.Val.isFloat())
2559 return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
2560 Result.Val.getFloat()));
2563 // If current long-double semantics is IEEE 128-bit, replace math builtins
2564 // of long-double with f128 equivalent.
2565 // TODO: This mutation should also be applied to other targets other than PPC,
2566 // after backend supports IEEE 128-bit style libcalls.
2567 if (getTarget().getTriple().isPPC64() &&
2568 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
2569 BuiltinID = mutateLongDoubleBuiltin(BuiltinID);
2571 // If the builtin has been declared explicitly with an assembler label,
2572 // disable the specialized emitting below. Ideally we should communicate the
2573 // rename in IR, or at least avoid generating the intrinsic calls that are
2574 // likely to get lowered to the renamed library functions.
2575 const unsigned BuiltinIDIfNoAsmLabel =
2576 FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID;
2578 std::optional<bool> ErrnoOverriden;
2579 // ErrnoOverriden is true if math-errno is overriden via the
2580 // '#pragma float_control(precise, on)'. This pragma disables fast-math,
2581 // which implies math-errno.
2582 if (E->hasStoredFPFeatures()) {
2583 FPOptionsOverride OP = E->getFPFeatures();
2584 if (OP.hasMathErrnoOverride())
2585 ErrnoOverriden = OP.getMathErrnoOverride();
2587 // True if 'attribute__((optnone))' is used. This attribute overrides
2588 // fast-math which implies math-errno.
2589 bool OptNone = CurFuncDecl && CurFuncDecl->hasAttr<OptimizeNoneAttr>();
2591 // True if we are compiling at -O2 and errno has been disabled
2592 // using the '#pragma float_control(precise, off)', and
2593 // attribute opt-none hasn't been seen.
2594 bool ErrnoOverridenToFalseWithOpt =
2595 ErrnoOverriden.has_value() && !ErrnoOverriden.value() && !OptNone &&
2596 CGM.getCodeGenOpts().OptimizationLevel != 0;
2598 // There are LLVM math intrinsics/instructions corresponding to math library
2599 // functions except the LLVM op will never set errno while the math library
2600 // might. Also, math builtins have the same semantics as their math library
2601 // twins. Thus, we can transform math library and builtin calls to their
2602 // LLVM counterparts if the call is marked 'const' (known to never set errno).
2603 // In case FP exceptions are enabled, the experimental versions of the
2604 // intrinsics model those.
2605 bool ConstAlways =
2606 getContext().BuiltinInfo.isConst(BuiltinID);
2608 // There's a special case with the fma builtins where they are always const
2609 // if the target environment is GNU or the target is OS is Windows and we're
2610 // targeting the MSVCRT.dll environment.
2611 // FIXME: This list can be become outdated. Need to find a way to get it some
2612 // other way.
2613 switch (BuiltinID) {
2614 case Builtin::BI__builtin_fma:
2615 case Builtin::BI__builtin_fmaf:
2616 case Builtin::BI__builtin_fmal:
2617 case Builtin::BI__builtin_fmaf16:
2618 case Builtin::BIfma:
2619 case Builtin::BIfmaf:
2620 case Builtin::BIfmal: {
2621 auto &Trip = CGM.getTriple();
2622 if (Trip.isGNUEnvironment() || Trip.isOSMSVCRT())
2623 ConstAlways = true;
2624 break;
2626 default:
2627 break;
2630 bool ConstWithoutErrnoAndExceptions =
2631 getContext().BuiltinInfo.isConstWithoutErrnoAndExceptions(BuiltinID);
2632 bool ConstWithoutExceptions =
2633 getContext().BuiltinInfo.isConstWithoutExceptions(BuiltinID);
2635 // ConstAttr is enabled in fast-math mode. In fast-math mode, math-errno is
2636 // disabled.
2637 // Math intrinsics are generated only when math-errno is disabled. Any pragmas
2638 // or attributes that affect math-errno should prevent or allow math
2639 // intrincs to be generated. Intrinsics are generated:
2640 // 1- In fast math mode, unless math-errno is overriden
2641 // via '#pragma float_control(precise, on)', or via an
2642 // 'attribute__((optnone))'.
2643 // 2- If math-errno was enabled on command line but overriden
2644 // to false via '#pragma float_control(precise, off))' and
2645 // 'attribute__((optnone))' hasn't been used.
2646 // 3- If we are compiling with optimization and errno has been disabled
2647 // via '#pragma float_control(precise, off)', and
2648 // 'attribute__((optnone))' hasn't been used.
2650 bool ConstWithoutErrnoOrExceptions =
2651 ConstWithoutErrnoAndExceptions || ConstWithoutExceptions;
2652 bool GenerateIntrinsics =
2653 (ConstAlways && !OptNone) ||
2654 (!getLangOpts().MathErrno &&
2655 !(ErrnoOverriden.has_value() && ErrnoOverriden.value()) && !OptNone);
2656 if (!GenerateIntrinsics) {
2657 GenerateIntrinsics =
2658 ConstWithoutErrnoOrExceptions && !ConstWithoutErrnoAndExceptions;
2659 if (!GenerateIntrinsics)
2660 GenerateIntrinsics =
2661 ConstWithoutErrnoOrExceptions &&
2662 (!getLangOpts().MathErrno &&
2663 !(ErrnoOverriden.has_value() && ErrnoOverriden.value()) && !OptNone);
2664 if (!GenerateIntrinsics)
2665 GenerateIntrinsics =
2666 ConstWithoutErrnoOrExceptions && ErrnoOverridenToFalseWithOpt;
2668 if (GenerateIntrinsics) {
2669 switch (BuiltinIDIfNoAsmLabel) {
2670 case Builtin::BIacos:
2671 case Builtin::BIacosf:
2672 case Builtin::BIacosl:
2673 case Builtin::BI__builtin_acos:
2674 case Builtin::BI__builtin_acosf:
2675 case Builtin::BI__builtin_acosf16:
2676 case Builtin::BI__builtin_acosl:
2677 case Builtin::BI__builtin_acosf128:
2678 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
2679 *this, E, Intrinsic::acos, Intrinsic::experimental_constrained_acos));
2681 case Builtin::BIasin:
2682 case Builtin::BIasinf:
2683 case Builtin::BIasinl:
2684 case Builtin::BI__builtin_asin:
2685 case Builtin::BI__builtin_asinf:
2686 case Builtin::BI__builtin_asinf16:
2687 case Builtin::BI__builtin_asinl:
2688 case Builtin::BI__builtin_asinf128:
2689 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
2690 *this, E, Intrinsic::asin, Intrinsic::experimental_constrained_asin));
2692 case Builtin::BIatan:
2693 case Builtin::BIatanf:
2694 case Builtin::BIatanl:
2695 case Builtin::BI__builtin_atan:
2696 case Builtin::BI__builtin_atanf:
2697 case Builtin::BI__builtin_atanf16:
2698 case Builtin::BI__builtin_atanl:
2699 case Builtin::BI__builtin_atanf128:
2700 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
2701 *this, E, Intrinsic::atan, Intrinsic::experimental_constrained_atan));
2703 case Builtin::BIceil:
2704 case Builtin::BIceilf:
2705 case Builtin::BIceill:
2706 case Builtin::BI__builtin_ceil:
2707 case Builtin::BI__builtin_ceilf:
2708 case Builtin::BI__builtin_ceilf16:
2709 case Builtin::BI__builtin_ceill:
2710 case Builtin::BI__builtin_ceilf128:
2711 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2712 Intrinsic::ceil,
2713 Intrinsic::experimental_constrained_ceil));
2715 case Builtin::BIcopysign:
2716 case Builtin::BIcopysignf:
2717 case Builtin::BIcopysignl:
2718 case Builtin::BI__builtin_copysign:
2719 case Builtin::BI__builtin_copysignf:
2720 case Builtin::BI__builtin_copysignf16:
2721 case Builtin::BI__builtin_copysignl:
2722 case Builtin::BI__builtin_copysignf128:
2723 return RValue::get(
2724 emitBuiltinWithOneOverloadedType<2>(*this, E, Intrinsic::copysign));
2726 case Builtin::BIcos:
2727 case Builtin::BIcosf:
2728 case Builtin::BIcosl:
2729 case Builtin::BI__builtin_cos:
2730 case Builtin::BI__builtin_cosf:
2731 case Builtin::BI__builtin_cosf16:
2732 case Builtin::BI__builtin_cosl:
2733 case Builtin::BI__builtin_cosf128:
2734 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2735 Intrinsic::cos,
2736 Intrinsic::experimental_constrained_cos));
2738 case Builtin::BIcosh:
2739 case Builtin::BIcoshf:
2740 case Builtin::BIcoshl:
2741 case Builtin::BI__builtin_cosh:
2742 case Builtin::BI__builtin_coshf:
2743 case Builtin::BI__builtin_coshf16:
2744 case Builtin::BI__builtin_coshl:
2745 case Builtin::BI__builtin_coshf128:
2746 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
2747 *this, E, Intrinsic::cosh, Intrinsic::experimental_constrained_cosh));
2749 case Builtin::BIexp:
2750 case Builtin::BIexpf:
2751 case Builtin::BIexpl:
2752 case Builtin::BI__builtin_exp:
2753 case Builtin::BI__builtin_expf:
2754 case Builtin::BI__builtin_expf16:
2755 case Builtin::BI__builtin_expl:
2756 case Builtin::BI__builtin_expf128:
2757 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2758 Intrinsic::exp,
2759 Intrinsic::experimental_constrained_exp));
2761 case Builtin::BIexp2:
2762 case Builtin::BIexp2f:
2763 case Builtin::BIexp2l:
2764 case Builtin::BI__builtin_exp2:
2765 case Builtin::BI__builtin_exp2f:
2766 case Builtin::BI__builtin_exp2f16:
2767 case Builtin::BI__builtin_exp2l:
2768 case Builtin::BI__builtin_exp2f128:
2769 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2770 Intrinsic::exp2,
2771 Intrinsic::experimental_constrained_exp2));
2772 case Builtin::BI__builtin_exp10:
2773 case Builtin::BI__builtin_exp10f:
2774 case Builtin::BI__builtin_exp10f16:
2775 case Builtin::BI__builtin_exp10l:
2776 case Builtin::BI__builtin_exp10f128: {
2777 // TODO: strictfp support
2778 if (Builder.getIsFPConstrained())
2779 break;
2780 return RValue::get(
2781 emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::exp10));
2783 case Builtin::BIfabs:
2784 case Builtin::BIfabsf:
2785 case Builtin::BIfabsl:
2786 case Builtin::BI__builtin_fabs:
2787 case Builtin::BI__builtin_fabsf:
2788 case Builtin::BI__builtin_fabsf16:
2789 case Builtin::BI__builtin_fabsl:
2790 case Builtin::BI__builtin_fabsf128:
2791 return RValue::get(
2792 emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::fabs));
2794 case Builtin::BIfloor:
2795 case Builtin::BIfloorf:
2796 case Builtin::BIfloorl:
2797 case Builtin::BI__builtin_floor:
2798 case Builtin::BI__builtin_floorf:
2799 case Builtin::BI__builtin_floorf16:
2800 case Builtin::BI__builtin_floorl:
2801 case Builtin::BI__builtin_floorf128:
2802 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2803 Intrinsic::floor,
2804 Intrinsic::experimental_constrained_floor));
2806 case Builtin::BIfma:
2807 case Builtin::BIfmaf:
2808 case Builtin::BIfmal:
2809 case Builtin::BI__builtin_fma:
2810 case Builtin::BI__builtin_fmaf:
2811 case Builtin::BI__builtin_fmaf16:
2812 case Builtin::BI__builtin_fmal:
2813 case Builtin::BI__builtin_fmaf128:
2814 return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
2815 Intrinsic::fma,
2816 Intrinsic::experimental_constrained_fma));
2818 case Builtin::BIfmax:
2819 case Builtin::BIfmaxf:
2820 case Builtin::BIfmaxl:
2821 case Builtin::BI__builtin_fmax:
2822 case Builtin::BI__builtin_fmaxf:
2823 case Builtin::BI__builtin_fmaxf16:
2824 case Builtin::BI__builtin_fmaxl:
2825 case Builtin::BI__builtin_fmaxf128:
2826 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2827 Intrinsic::maxnum,
2828 Intrinsic::experimental_constrained_maxnum));
2830 case Builtin::BIfmin:
2831 case Builtin::BIfminf:
2832 case Builtin::BIfminl:
2833 case Builtin::BI__builtin_fmin:
2834 case Builtin::BI__builtin_fminf:
2835 case Builtin::BI__builtin_fminf16:
2836 case Builtin::BI__builtin_fminl:
2837 case Builtin::BI__builtin_fminf128:
2838 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2839 Intrinsic::minnum,
2840 Intrinsic::experimental_constrained_minnum));
2842 // fmod() is a special-case. It maps to the frem instruction rather than an
2843 // LLVM intrinsic.
2844 case Builtin::BIfmod:
2845 case Builtin::BIfmodf:
2846 case Builtin::BIfmodl:
2847 case Builtin::BI__builtin_fmod:
2848 case Builtin::BI__builtin_fmodf:
2849 case Builtin::BI__builtin_fmodf16:
2850 case Builtin::BI__builtin_fmodl:
2851 case Builtin::BI__builtin_fmodf128: {
2852 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2853 Value *Arg1 = EmitScalarExpr(E->getArg(0));
2854 Value *Arg2 = EmitScalarExpr(E->getArg(1));
2855 return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
2858 case Builtin::BIlog:
2859 case Builtin::BIlogf:
2860 case Builtin::BIlogl:
2861 case Builtin::BI__builtin_log:
2862 case Builtin::BI__builtin_logf:
2863 case Builtin::BI__builtin_logf16:
2864 case Builtin::BI__builtin_logl:
2865 case Builtin::BI__builtin_logf128:
2866 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2867 Intrinsic::log,
2868 Intrinsic::experimental_constrained_log));
2870 case Builtin::BIlog10:
2871 case Builtin::BIlog10f:
2872 case Builtin::BIlog10l:
2873 case Builtin::BI__builtin_log10:
2874 case Builtin::BI__builtin_log10f:
2875 case Builtin::BI__builtin_log10f16:
2876 case Builtin::BI__builtin_log10l:
2877 case Builtin::BI__builtin_log10f128:
2878 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2879 Intrinsic::log10,
2880 Intrinsic::experimental_constrained_log10));
2882 case Builtin::BIlog2:
2883 case Builtin::BIlog2f:
2884 case Builtin::BIlog2l:
2885 case Builtin::BI__builtin_log2:
2886 case Builtin::BI__builtin_log2f:
2887 case Builtin::BI__builtin_log2f16:
2888 case Builtin::BI__builtin_log2l:
2889 case Builtin::BI__builtin_log2f128:
2890 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2891 Intrinsic::log2,
2892 Intrinsic::experimental_constrained_log2));
2894 case Builtin::BInearbyint:
2895 case Builtin::BInearbyintf:
2896 case Builtin::BInearbyintl:
2897 case Builtin::BI__builtin_nearbyint:
2898 case Builtin::BI__builtin_nearbyintf:
2899 case Builtin::BI__builtin_nearbyintl:
2900 case Builtin::BI__builtin_nearbyintf128:
2901 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2902 Intrinsic::nearbyint,
2903 Intrinsic::experimental_constrained_nearbyint));
2905 case Builtin::BIpow:
2906 case Builtin::BIpowf:
2907 case Builtin::BIpowl:
2908 case Builtin::BI__builtin_pow:
2909 case Builtin::BI__builtin_powf:
2910 case Builtin::BI__builtin_powf16:
2911 case Builtin::BI__builtin_powl:
2912 case Builtin::BI__builtin_powf128:
2913 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2914 Intrinsic::pow,
2915 Intrinsic::experimental_constrained_pow));
2917 case Builtin::BIrint:
2918 case Builtin::BIrintf:
2919 case Builtin::BIrintl:
2920 case Builtin::BI__builtin_rint:
2921 case Builtin::BI__builtin_rintf:
2922 case Builtin::BI__builtin_rintf16:
2923 case Builtin::BI__builtin_rintl:
2924 case Builtin::BI__builtin_rintf128:
2925 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2926 Intrinsic::rint,
2927 Intrinsic::experimental_constrained_rint));
2929 case Builtin::BIround:
2930 case Builtin::BIroundf:
2931 case Builtin::BIroundl:
2932 case Builtin::BI__builtin_round:
2933 case Builtin::BI__builtin_roundf:
2934 case Builtin::BI__builtin_roundf16:
2935 case Builtin::BI__builtin_roundl:
2936 case Builtin::BI__builtin_roundf128:
2937 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2938 Intrinsic::round,
2939 Intrinsic::experimental_constrained_round));
2941 case Builtin::BIroundeven:
2942 case Builtin::BIroundevenf:
2943 case Builtin::BIroundevenl:
2944 case Builtin::BI__builtin_roundeven:
2945 case Builtin::BI__builtin_roundevenf:
2946 case Builtin::BI__builtin_roundevenf16:
2947 case Builtin::BI__builtin_roundevenl:
2948 case Builtin::BI__builtin_roundevenf128:
2949 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2950 Intrinsic::roundeven,
2951 Intrinsic::experimental_constrained_roundeven));
2953 case Builtin::BIsin:
2954 case Builtin::BIsinf:
2955 case Builtin::BIsinl:
2956 case Builtin::BI__builtin_sin:
2957 case Builtin::BI__builtin_sinf:
2958 case Builtin::BI__builtin_sinf16:
2959 case Builtin::BI__builtin_sinl:
2960 case Builtin::BI__builtin_sinf128:
2961 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2962 Intrinsic::sin,
2963 Intrinsic::experimental_constrained_sin));
2965 case Builtin::BIsinh:
2966 case Builtin::BIsinhf:
2967 case Builtin::BIsinhl:
2968 case Builtin::BI__builtin_sinh:
2969 case Builtin::BI__builtin_sinhf:
2970 case Builtin::BI__builtin_sinhf16:
2971 case Builtin::BI__builtin_sinhl:
2972 case Builtin::BI__builtin_sinhf128:
2973 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
2974 *this, E, Intrinsic::sinh, Intrinsic::experimental_constrained_sinh));
2976 case Builtin::BIsqrt:
2977 case Builtin::BIsqrtf:
2978 case Builtin::BIsqrtl:
2979 case Builtin::BI__builtin_sqrt:
2980 case Builtin::BI__builtin_sqrtf:
2981 case Builtin::BI__builtin_sqrtf16:
2982 case Builtin::BI__builtin_sqrtl:
2983 case Builtin::BI__builtin_sqrtf128:
2984 case Builtin::BI__builtin_elementwise_sqrt: {
2985 llvm::Value *Call = emitUnaryMaybeConstrainedFPBuiltin(
2986 *this, E, Intrinsic::sqrt, Intrinsic::experimental_constrained_sqrt);
2987 SetSqrtFPAccuracy(Call);
2988 return RValue::get(Call);
2991 case Builtin::BItan:
2992 case Builtin::BItanf:
2993 case Builtin::BItanl:
2994 case Builtin::BI__builtin_tan:
2995 case Builtin::BI__builtin_tanf:
2996 case Builtin::BI__builtin_tanf16:
2997 case Builtin::BI__builtin_tanl:
2998 case Builtin::BI__builtin_tanf128:
2999 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
3000 *this, E, Intrinsic::tan, Intrinsic::experimental_constrained_tan));
3002 case Builtin::BItanh:
3003 case Builtin::BItanhf:
3004 case Builtin::BItanhl:
3005 case Builtin::BI__builtin_tanh:
3006 case Builtin::BI__builtin_tanhf:
3007 case Builtin::BI__builtin_tanhf16:
3008 case Builtin::BI__builtin_tanhl:
3009 case Builtin::BI__builtin_tanhf128:
3010 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
3011 *this, E, Intrinsic::tanh, Intrinsic::experimental_constrained_tanh));
3013 case Builtin::BItrunc:
3014 case Builtin::BItruncf:
3015 case Builtin::BItruncl:
3016 case Builtin::BI__builtin_trunc:
3017 case Builtin::BI__builtin_truncf:
3018 case Builtin::BI__builtin_truncf16:
3019 case Builtin::BI__builtin_truncl:
3020 case Builtin::BI__builtin_truncf128:
3021 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
3022 Intrinsic::trunc,
3023 Intrinsic::experimental_constrained_trunc));
3025 case Builtin::BIlround:
3026 case Builtin::BIlroundf:
3027 case Builtin::BIlroundl:
3028 case Builtin::BI__builtin_lround:
3029 case Builtin::BI__builtin_lroundf:
3030 case Builtin::BI__builtin_lroundl:
3031 case Builtin::BI__builtin_lroundf128:
3032 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
3033 *this, E, Intrinsic::lround,
3034 Intrinsic::experimental_constrained_lround));
3036 case Builtin::BIllround:
3037 case Builtin::BIllroundf:
3038 case Builtin::BIllroundl:
3039 case Builtin::BI__builtin_llround:
3040 case Builtin::BI__builtin_llroundf:
3041 case Builtin::BI__builtin_llroundl:
3042 case Builtin::BI__builtin_llroundf128:
3043 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
3044 *this, E, Intrinsic::llround,
3045 Intrinsic::experimental_constrained_llround));
3047 case Builtin::BIlrint:
3048 case Builtin::BIlrintf:
3049 case Builtin::BIlrintl:
3050 case Builtin::BI__builtin_lrint:
3051 case Builtin::BI__builtin_lrintf:
3052 case Builtin::BI__builtin_lrintl:
3053 case Builtin::BI__builtin_lrintf128:
3054 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
3055 *this, E, Intrinsic::lrint,
3056 Intrinsic::experimental_constrained_lrint));
3058 case Builtin::BIllrint:
3059 case Builtin::BIllrintf:
3060 case Builtin::BIllrintl:
3061 case Builtin::BI__builtin_llrint:
3062 case Builtin::BI__builtin_llrintf:
3063 case Builtin::BI__builtin_llrintl:
3064 case Builtin::BI__builtin_llrintf128:
3065 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
3066 *this, E, Intrinsic::llrint,
3067 Intrinsic::experimental_constrained_llrint));
3068 case Builtin::BI__builtin_ldexp:
3069 case Builtin::BI__builtin_ldexpf:
3070 case Builtin::BI__builtin_ldexpl:
3071 case Builtin::BI__builtin_ldexpf16:
3072 case Builtin::BI__builtin_ldexpf128: {
3073 return RValue::get(emitBinaryExpMaybeConstrainedFPBuiltin(
3074 *this, E, Intrinsic::ldexp,
3075 Intrinsic::experimental_constrained_ldexp));
3077 default:
3078 break;
3082 // Check NonnullAttribute/NullabilityArg and Alignment.
3083 auto EmitArgCheck = [&](TypeCheckKind Kind, Address A, const Expr *Arg,
3084 unsigned ParmNum) {
3085 Value *Val = A.emitRawPointer(*this);
3086 EmitNonNullArgCheck(RValue::get(Val), Arg->getType(), Arg->getExprLoc(), FD,
3087 ParmNum);
3089 if (SanOpts.has(SanitizerKind::Alignment)) {
3090 SanitizerSet SkippedChecks;
3091 SkippedChecks.set(SanitizerKind::All);
3092 SkippedChecks.clear(SanitizerKind::Alignment);
3093 SourceLocation Loc = Arg->getExprLoc();
3094 // Strip an implicit cast.
3095 if (auto *CE = dyn_cast<ImplicitCastExpr>(Arg))
3096 if (CE->getCastKind() == CK_BitCast)
3097 Arg = CE->getSubExpr();
3098 EmitTypeCheck(Kind, Loc, Val, Arg->getType(), A.getAlignment(),
3099 SkippedChecks);
3103 switch (BuiltinIDIfNoAsmLabel) {
3104 default: break;
3105 case Builtin::BI__builtin___CFStringMakeConstantString:
3106 case Builtin::BI__builtin___NSStringMakeConstantString:
3107 return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
3108 case Builtin::BI__builtin_stdarg_start:
3109 case Builtin::BI__builtin_va_start:
3110 case Builtin::BI__va_start:
3111 case Builtin::BI__builtin_va_end:
3112 EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
3113 ? EmitScalarExpr(E->getArg(0))
3114 : EmitVAListRef(E->getArg(0)).emitRawPointer(*this),
3115 BuiltinID != Builtin::BI__builtin_va_end);
3116 return RValue::get(nullptr);
3117 case Builtin::BI__builtin_va_copy: {
3118 Value *DstPtr = EmitVAListRef(E->getArg(0)).emitRawPointer(*this);
3119 Value *SrcPtr = EmitVAListRef(E->getArg(1)).emitRawPointer(*this);
3120 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy, {DstPtr->getType()}),
3121 {DstPtr, SrcPtr});
3122 return RValue::get(nullptr);
3124 case Builtin::BIabs:
3125 case Builtin::BIlabs:
3126 case Builtin::BIllabs:
3127 case Builtin::BI__builtin_abs:
3128 case Builtin::BI__builtin_labs:
3129 case Builtin::BI__builtin_llabs: {
3130 bool SanitizeOverflow = SanOpts.has(SanitizerKind::SignedIntegerOverflow);
3132 Value *Result;
3133 switch (getLangOpts().getSignedOverflowBehavior()) {
3134 case LangOptions::SOB_Defined:
3135 Result = EmitAbs(*this, EmitScalarExpr(E->getArg(0)), false);
3136 break;
3137 case LangOptions::SOB_Undefined:
3138 if (!SanitizeOverflow) {
3139 Result = EmitAbs(*this, EmitScalarExpr(E->getArg(0)), true);
3140 break;
3142 [[fallthrough]];
3143 case LangOptions::SOB_Trapping:
3144 // TODO: Somehow handle the corner case when the address of abs is taken.
3145 Result = EmitOverflowCheckedAbs(*this, E, SanitizeOverflow);
3146 break;
3148 return RValue::get(Result);
3150 case Builtin::BI__builtin_complex: {
3151 Value *Real = EmitScalarExpr(E->getArg(0));
3152 Value *Imag = EmitScalarExpr(E->getArg(1));
3153 return RValue::getComplex({Real, Imag});
3155 case Builtin::BI__builtin_conj:
3156 case Builtin::BI__builtin_conjf:
3157 case Builtin::BI__builtin_conjl:
3158 case Builtin::BIconj:
3159 case Builtin::BIconjf:
3160 case Builtin::BIconjl: {
3161 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
3162 Value *Real = ComplexVal.first;
3163 Value *Imag = ComplexVal.second;
3164 Imag = Builder.CreateFNeg(Imag, "neg");
3165 return RValue::getComplex(std::make_pair(Real, Imag));
3167 case Builtin::BI__builtin_creal:
3168 case Builtin::BI__builtin_crealf:
3169 case Builtin::BI__builtin_creall:
3170 case Builtin::BIcreal:
3171 case Builtin::BIcrealf:
3172 case Builtin::BIcreall: {
3173 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
3174 return RValue::get(ComplexVal.first);
3177 case Builtin::BI__builtin_preserve_access_index: {
3178 // Only enabled preserved access index region when debuginfo
3179 // is available as debuginfo is needed to preserve user-level
3180 // access pattern.
3181 if (!getDebugInfo()) {
3182 CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
3183 return RValue::get(EmitScalarExpr(E->getArg(0)));
3186 // Nested builtin_preserve_access_index() not supported
3187 if (IsInPreservedAIRegion) {
3188 CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
3189 return RValue::get(EmitScalarExpr(E->getArg(0)));
3192 IsInPreservedAIRegion = true;
3193 Value *Res = EmitScalarExpr(E->getArg(0));
3194 IsInPreservedAIRegion = false;
3195 return RValue::get(Res);
3198 case Builtin::BI__builtin_cimag:
3199 case Builtin::BI__builtin_cimagf:
3200 case Builtin::BI__builtin_cimagl:
3201 case Builtin::BIcimag:
3202 case Builtin::BIcimagf:
3203 case Builtin::BIcimagl: {
3204 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
3205 return RValue::get(ComplexVal.second);
3208 case Builtin::BI__builtin_clrsb:
3209 case Builtin::BI__builtin_clrsbl:
3210 case Builtin::BI__builtin_clrsbll: {
3211 // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
3212 Value *ArgValue = EmitScalarExpr(E->getArg(0));
3214 llvm::Type *ArgType = ArgValue->getType();
3215 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
3217 llvm::Type *ResultType = ConvertType(E->getType());
3218 Value *Zero = llvm::Constant::getNullValue(ArgType);
3219 Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
3220 Value *Inverse = Builder.CreateNot(ArgValue, "not");
3221 Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
3222 Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
3223 Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
3224 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3225 "cast");
3226 return RValue::get(Result);
3228 case Builtin::BI__builtin_ctzs:
3229 case Builtin::BI__builtin_ctz:
3230 case Builtin::BI__builtin_ctzl:
3231 case Builtin::BI__builtin_ctzll:
3232 case Builtin::BI__builtin_ctzg: {
3233 bool HasFallback = BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_ctzg &&
3234 E->getNumArgs() > 1;
3236 Value *ArgValue =
3237 HasFallback ? EmitScalarExpr(E->getArg(0))
3238 : EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
3240 llvm::Type *ArgType = ArgValue->getType();
3241 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
3243 llvm::Type *ResultType = ConvertType(E->getType());
3244 Value *ZeroUndef =
3245 Builder.getInt1(HasFallback || getTarget().isCLZForZeroUndef());
3246 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
3247 if (Result->getType() != ResultType)
3248 Result =
3249 Builder.CreateIntCast(Result, ResultType, /*isSigned*/ false, "cast");
3250 if (!HasFallback)
3251 return RValue::get(Result);
3253 Value *Zero = Constant::getNullValue(ArgType);
3254 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
3255 Value *FallbackValue = EmitScalarExpr(E->getArg(1));
3256 Value *ResultOrFallback =
3257 Builder.CreateSelect(IsZero, FallbackValue, Result, "ctzg");
3258 return RValue::get(ResultOrFallback);
3260 case Builtin::BI__builtin_clzs:
3261 case Builtin::BI__builtin_clz:
3262 case Builtin::BI__builtin_clzl:
3263 case Builtin::BI__builtin_clzll:
3264 case Builtin::BI__builtin_clzg: {
3265 bool HasFallback = BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_clzg &&
3266 E->getNumArgs() > 1;
3268 Value *ArgValue =
3269 HasFallback ? EmitScalarExpr(E->getArg(0))
3270 : EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
3272 llvm::Type *ArgType = ArgValue->getType();
3273 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
3275 llvm::Type *ResultType = ConvertType(E->getType());
3276 Value *ZeroUndef =
3277 Builder.getInt1(HasFallback || getTarget().isCLZForZeroUndef());
3278 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
3279 if (Result->getType() != ResultType)
3280 Result =
3281 Builder.CreateIntCast(Result, ResultType, /*isSigned*/ false, "cast");
3282 if (!HasFallback)
3283 return RValue::get(Result);
3285 Value *Zero = Constant::getNullValue(ArgType);
3286 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
3287 Value *FallbackValue = EmitScalarExpr(E->getArg(1));
3288 Value *ResultOrFallback =
3289 Builder.CreateSelect(IsZero, FallbackValue, Result, "clzg");
3290 return RValue::get(ResultOrFallback);
3292 case Builtin::BI__builtin_ffs:
3293 case Builtin::BI__builtin_ffsl:
3294 case Builtin::BI__builtin_ffsll: {
3295 // ffs(x) -> x ? cttz(x) + 1 : 0
3296 Value *ArgValue = EmitScalarExpr(E->getArg(0));
3298 llvm::Type *ArgType = ArgValue->getType();
3299 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
3301 llvm::Type *ResultType = ConvertType(E->getType());
3302 Value *Tmp =
3303 Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
3304 llvm::ConstantInt::get(ArgType, 1));
3305 Value *Zero = llvm::Constant::getNullValue(ArgType);
3306 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
3307 Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
3308 if (Result->getType() != ResultType)
3309 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3310 "cast");
3311 return RValue::get(Result);
3313 case Builtin::BI__builtin_parity:
3314 case Builtin::BI__builtin_parityl:
3315 case Builtin::BI__builtin_parityll: {
3316 // parity(x) -> ctpop(x) & 1
3317 Value *ArgValue = EmitScalarExpr(E->getArg(0));
3319 llvm::Type *ArgType = ArgValue->getType();
3320 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
3322 llvm::Type *ResultType = ConvertType(E->getType());
3323 Value *Tmp = Builder.CreateCall(F, ArgValue);
3324 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
3325 if (Result->getType() != ResultType)
3326 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3327 "cast");
3328 return RValue::get(Result);
3330 case Builtin::BI__lzcnt16:
3331 case Builtin::BI__lzcnt:
3332 case Builtin::BI__lzcnt64: {
3333 Value *ArgValue = EmitScalarExpr(E->getArg(0));
3335 llvm::Type *ArgType = ArgValue->getType();
3336 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
3338 llvm::Type *ResultType = ConvertType(E->getType());
3339 Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
3340 if (Result->getType() != ResultType)
3341 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3342 "cast");
3343 return RValue::get(Result);
3345 case Builtin::BI__popcnt16:
3346 case Builtin::BI__popcnt:
3347 case Builtin::BI__popcnt64:
3348 case Builtin::BI__builtin_popcount:
3349 case Builtin::BI__builtin_popcountl:
3350 case Builtin::BI__builtin_popcountll:
3351 case Builtin::BI__builtin_popcountg: {
3352 Value *ArgValue = EmitScalarExpr(E->getArg(0));
3354 llvm::Type *ArgType = ArgValue->getType();
3355 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
3357 llvm::Type *ResultType = ConvertType(E->getType());
3358 Value *Result = Builder.CreateCall(F, ArgValue);
3359 if (Result->getType() != ResultType)
3360 Result =
3361 Builder.CreateIntCast(Result, ResultType, /*isSigned*/ false, "cast");
3362 return RValue::get(Result);
3364 case Builtin::BI__builtin_unpredictable: {
3365 // Always return the argument of __builtin_unpredictable. LLVM does not
3366 // handle this builtin. Metadata for this builtin should be added directly
3367 // to instructions such as branches or switches that use it.
3368 return RValue::get(EmitScalarExpr(E->getArg(0)));
3370 case Builtin::BI__builtin_expect: {
3371 Value *ArgValue = EmitScalarExpr(E->getArg(0));
3372 llvm::Type *ArgType = ArgValue->getType();
3374 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
3375 // Don't generate llvm.expect on -O0 as the backend won't use it for
3376 // anything.
3377 // Note, we still IRGen ExpectedValue because it could have side-effects.
3378 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3379 return RValue::get(ArgValue);
3381 Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
3382 Value *Result =
3383 Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
3384 return RValue::get(Result);
3386 case Builtin::BI__builtin_expect_with_probability: {
3387 Value *ArgValue = EmitScalarExpr(E->getArg(0));
3388 llvm::Type *ArgType = ArgValue->getType();
3390 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
3391 llvm::APFloat Probability(0.0);
3392 const Expr *ProbArg = E->getArg(2);
3393 bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext());
3394 assert(EvalSucceed && "probability should be able to evaluate as float");
3395 (void)EvalSucceed;
3396 bool LoseInfo = false;
3397 Probability.convert(llvm::APFloat::IEEEdouble(),
3398 llvm::RoundingMode::Dynamic, &LoseInfo);
3399 llvm::Type *Ty = ConvertType(ProbArg->getType());
3400 Constant *Confidence = ConstantFP::get(Ty, Probability);
3401 // Don't generate llvm.expect.with.probability on -O0 as the backend
3402 // won't use it for anything.
3403 // Note, we still IRGen ExpectedValue because it could have side-effects.
3404 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3405 return RValue::get(ArgValue);
3407 Function *FnExpect =
3408 CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType);
3409 Value *Result = Builder.CreateCall(
3410 FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval");
3411 return RValue::get(Result);
3413 case Builtin::BI__builtin_assume_aligned: {
3414 const Expr *Ptr = E->getArg(0);
3415 Value *PtrValue = EmitScalarExpr(Ptr);
3416 Value *OffsetValue =
3417 (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
3419 Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
3420 ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
3421 if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
3422 AlignmentCI = ConstantInt::get(AlignmentCI->getIntegerType(),
3423 llvm::Value::MaximumAlignment);
3425 emitAlignmentAssumption(PtrValue, Ptr,
3426 /*The expr loc is sufficient.*/ SourceLocation(),
3427 AlignmentCI, OffsetValue);
3428 return RValue::get(PtrValue);
3430 case Builtin::BI__assume:
3431 case Builtin::BI__builtin_assume: {
3432 if (E->getArg(0)->HasSideEffects(getContext()))
3433 return RValue::get(nullptr);
3435 Value *ArgValue = EmitScalarExpr(E->getArg(0));
3436 Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
3437 Builder.CreateCall(FnAssume, ArgValue);
3438 return RValue::get(nullptr);
3440 case Builtin::BI__builtin_assume_separate_storage: {
3441 const Expr *Arg0 = E->getArg(0);
3442 const Expr *Arg1 = E->getArg(1);
3444 Value *Value0 = EmitScalarExpr(Arg0);
3445 Value *Value1 = EmitScalarExpr(Arg1);
3447 Value *Values[] = {Value0, Value1};
3448 OperandBundleDefT<Value *> OBD("separate_storage", Values);
3449 Builder.CreateAssumption(ConstantInt::getTrue(getLLVMContext()), {OBD});
3450 return RValue::get(nullptr);
3452 case Builtin::BI__builtin_allow_runtime_check: {
3453 StringRef Kind =
3454 cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts())->getString();
3455 LLVMContext &Ctx = CGM.getLLVMContext();
3456 llvm::Value *Allow = Builder.CreateCall(
3457 CGM.getIntrinsic(llvm::Intrinsic::allow_runtime_check),
3458 llvm::MetadataAsValue::get(Ctx, llvm::MDString::get(Ctx, Kind)));
3459 return RValue::get(Allow);
3461 case Builtin::BI__arithmetic_fence: {
3462 // Create the builtin call if FastMath is selected, and the target
3463 // supports the builtin, otherwise just return the argument.
3464 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3465 llvm::FastMathFlags FMF = Builder.getFastMathFlags();
3466 bool isArithmeticFenceEnabled =
3467 FMF.allowReassoc() &&
3468 getContext().getTargetInfo().checkArithmeticFenceSupported();
3469 QualType ArgType = E->getArg(0)->getType();
3470 if (ArgType->isComplexType()) {
3471 if (isArithmeticFenceEnabled) {
3472 QualType ElementType = ArgType->castAs<ComplexType>()->getElementType();
3473 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
3474 Value *Real = Builder.CreateArithmeticFence(ComplexVal.first,
3475 ConvertType(ElementType));
3476 Value *Imag = Builder.CreateArithmeticFence(ComplexVal.second,
3477 ConvertType(ElementType));
3478 return RValue::getComplex(std::make_pair(Real, Imag));
3480 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
3481 Value *Real = ComplexVal.first;
3482 Value *Imag = ComplexVal.second;
3483 return RValue::getComplex(std::make_pair(Real, Imag));
3485 Value *ArgValue = EmitScalarExpr(E->getArg(0));
3486 if (isArithmeticFenceEnabled)
3487 return RValue::get(
3488 Builder.CreateArithmeticFence(ArgValue, ConvertType(ArgType)));
3489 return RValue::get(ArgValue);
3491 case Builtin::BI__builtin_bswap16:
3492 case Builtin::BI__builtin_bswap32:
3493 case Builtin::BI__builtin_bswap64:
3494 case Builtin::BI_byteswap_ushort:
3495 case Builtin::BI_byteswap_ulong:
3496 case Builtin::BI_byteswap_uint64: {
3497 return RValue::get(
3498 emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::bswap));
3500 case Builtin::BI__builtin_bitreverse8:
3501 case Builtin::BI__builtin_bitreverse16:
3502 case Builtin::BI__builtin_bitreverse32:
3503 case Builtin::BI__builtin_bitreverse64: {
3504 return RValue::get(
3505 emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::bitreverse));
3507 case Builtin::BI__builtin_rotateleft8:
3508 case Builtin::BI__builtin_rotateleft16:
3509 case Builtin::BI__builtin_rotateleft32:
3510 case Builtin::BI__builtin_rotateleft64:
3511 case Builtin::BI_rotl8: // Microsoft variants of rotate left
3512 case Builtin::BI_rotl16:
3513 case Builtin::BI_rotl:
3514 case Builtin::BI_lrotl:
3515 case Builtin::BI_rotl64:
3516 return emitRotate(E, false);
3518 case Builtin::BI__builtin_rotateright8:
3519 case Builtin::BI__builtin_rotateright16:
3520 case Builtin::BI__builtin_rotateright32:
3521 case Builtin::BI__builtin_rotateright64:
3522 case Builtin::BI_rotr8: // Microsoft variants of rotate right
3523 case Builtin::BI_rotr16:
3524 case Builtin::BI_rotr:
3525 case Builtin::BI_lrotr:
3526 case Builtin::BI_rotr64:
3527 return emitRotate(E, true);
3529 case Builtin::BI__builtin_constant_p: {
3530 llvm::Type *ResultType = ConvertType(E->getType());
3532 const Expr *Arg = E->getArg(0);
3533 QualType ArgType = Arg->getType();
3534 // FIXME: The allowance for Obj-C pointers and block pointers is historical
3535 // and likely a mistake.
3536 if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
3537 !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
3538 // Per the GCC documentation, only numeric constants are recognized after
3539 // inlining.
3540 return RValue::get(ConstantInt::get(ResultType, 0));
3542 if (Arg->HasSideEffects(getContext()))
3543 // The argument is unevaluated, so be conservative if it might have
3544 // side-effects.
3545 return RValue::get(ConstantInt::get(ResultType, 0));
3547 Value *ArgValue = EmitScalarExpr(Arg);
3548 if (ArgType->isObjCObjectPointerType()) {
3549 // Convert Objective-C objects to id because we cannot distinguish between
3550 // LLVM types for Obj-C classes as they are opaque.
3551 ArgType = CGM.getContext().getObjCIdType();
3552 ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
3554 Function *F =
3555 CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
3556 Value *Result = Builder.CreateCall(F, ArgValue);
3557 if (Result->getType() != ResultType)
3558 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
3559 return RValue::get(Result);
3561 case Builtin::BI__builtin_dynamic_object_size:
3562 case Builtin::BI__builtin_object_size: {
3563 unsigned Type =
3564 E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
3565 auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
3567 // We pass this builtin onto the optimizer so that it can figure out the
3568 // object size in more complex cases.
3569 bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
3570 return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
3571 /*EmittedE=*/nullptr, IsDynamic));
3573 case Builtin::BI__builtin_prefetch: {
3574 Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
3575 // FIXME: Technically these constants should of type 'int', yes?
3576 RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
3577 llvm::ConstantInt::get(Int32Ty, 0);
3578 Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
3579 llvm::ConstantInt::get(Int32Ty, 3);
3580 Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
3581 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
3582 Builder.CreateCall(F, {Address, RW, Locality, Data});
3583 return RValue::get(nullptr);
3585 case Builtin::BI__builtin_readcyclecounter: {
3586 Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
3587 return RValue::get(Builder.CreateCall(F));
3589 case Builtin::BI__builtin_readsteadycounter: {
3590 Function *F = CGM.getIntrinsic(Intrinsic::readsteadycounter);
3591 return RValue::get(Builder.CreateCall(F));
3593 case Builtin::BI__builtin___clear_cache: {
3594 Value *Begin = EmitScalarExpr(E->getArg(0));
3595 Value *End = EmitScalarExpr(E->getArg(1));
3596 Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
3597 return RValue::get(Builder.CreateCall(F, {Begin, End}));
3599 case Builtin::BI__builtin_trap:
3600 EmitTrapCall(Intrinsic::trap);
3601 return RValue::get(nullptr);
3602 case Builtin::BI__builtin_verbose_trap: {
3603 llvm::DILocation *TrapLocation = Builder.getCurrentDebugLocation();
3604 if (getDebugInfo()) {
3605 TrapLocation = getDebugInfo()->CreateTrapFailureMessageFor(
3606 TrapLocation, *E->getArg(0)->tryEvaluateString(getContext()),
3607 *E->getArg(1)->tryEvaluateString(getContext()));
3609 ApplyDebugLocation ApplyTrapDI(*this, TrapLocation);
3610 // Currently no attempt is made to prevent traps from being merged.
3611 EmitTrapCall(Intrinsic::trap);
3612 return RValue::get(nullptr);
3614 case Builtin::BI__debugbreak:
3615 EmitTrapCall(Intrinsic::debugtrap);
3616 return RValue::get(nullptr);
3617 case Builtin::BI__builtin_unreachable: {
3618 EmitUnreachable(E->getExprLoc());
3620 // We do need to preserve an insertion point.
3621 EmitBlock(createBasicBlock("unreachable.cont"));
3623 return RValue::get(nullptr);
3626 case Builtin::BI__builtin_powi:
3627 case Builtin::BI__builtin_powif:
3628 case Builtin::BI__builtin_powil: {
3629 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
3630 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
3632 if (Builder.getIsFPConstrained()) {
3633 // FIXME: llvm.powi has 2 mangling types,
3634 // llvm.experimental.constrained.powi has one.
3635 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3636 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_powi,
3637 Src0->getType());
3638 return RValue::get(Builder.CreateConstrainedFPCall(F, { Src0, Src1 }));
3641 Function *F = CGM.getIntrinsic(Intrinsic::powi,
3642 { Src0->getType(), Src1->getType() });
3643 return RValue::get(Builder.CreateCall(F, { Src0, Src1 }));
3645 case Builtin::BI__builtin_frexpl: {
3646 // Linux PPC will not be adding additional PPCDoubleDouble support.
3647 // WIP to switch default to IEEE long double. Will emit libcall for
3648 // frexpl instead of legalizing this type in the BE.
3649 if (&getTarget().getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble())
3650 break;
3651 [[fallthrough]];
3653 case Builtin::BI__builtin_frexp:
3654 case Builtin::BI__builtin_frexpf:
3655 case Builtin::BI__builtin_frexpf128:
3656 case Builtin::BI__builtin_frexpf16:
3657 return RValue::get(emitFrexpBuiltin(*this, E, Intrinsic::frexp));
3658 case Builtin::BI__builtin_isgreater:
3659 case Builtin::BI__builtin_isgreaterequal:
3660 case Builtin::BI__builtin_isless:
3661 case Builtin::BI__builtin_islessequal:
3662 case Builtin::BI__builtin_islessgreater:
3663 case Builtin::BI__builtin_isunordered: {
3664 // Ordered comparisons: we know the arguments to these are matching scalar
3665 // floating point values.
3666 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3667 Value *LHS = EmitScalarExpr(E->getArg(0));
3668 Value *RHS = EmitScalarExpr(E->getArg(1));
3670 switch (BuiltinID) {
3671 default: llvm_unreachable("Unknown ordered comparison");
3672 case Builtin::BI__builtin_isgreater:
3673 LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
3674 break;
3675 case Builtin::BI__builtin_isgreaterequal:
3676 LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
3677 break;
3678 case Builtin::BI__builtin_isless:
3679 LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
3680 break;
3681 case Builtin::BI__builtin_islessequal:
3682 LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
3683 break;
3684 case Builtin::BI__builtin_islessgreater:
3685 LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
3686 break;
3687 case Builtin::BI__builtin_isunordered:
3688 LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
3689 break;
3691 // ZExt bool to int type.
3692 return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
3695 case Builtin::BI__builtin_isnan: {
3696 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3697 Value *V = EmitScalarExpr(E->getArg(0));
3698 if (Value *Result = tryUseTestFPKind(*this, BuiltinID, V))
3699 return RValue::get(Result);
3700 return RValue::get(
3701 Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcNan),
3702 ConvertType(E->getType())));
3705 case Builtin::BI__builtin_issignaling: {
3706 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3707 Value *V = EmitScalarExpr(E->getArg(0));
3708 return RValue::get(
3709 Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcSNan),
3710 ConvertType(E->getType())));
3713 case Builtin::BI__builtin_isinf: {
3714 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3715 Value *V = EmitScalarExpr(E->getArg(0));
3716 if (Value *Result = tryUseTestFPKind(*this, BuiltinID, V))
3717 return RValue::get(Result);
3718 return RValue::get(
3719 Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcInf),
3720 ConvertType(E->getType())));
3723 case Builtin::BIfinite:
3724 case Builtin::BI__finite:
3725 case Builtin::BIfinitef:
3726 case Builtin::BI__finitef:
3727 case Builtin::BIfinitel:
3728 case Builtin::BI__finitel:
3729 case Builtin::BI__builtin_isfinite: {
3730 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3731 Value *V = EmitScalarExpr(E->getArg(0));
3732 if (Value *Result = tryUseTestFPKind(*this, BuiltinID, V))
3733 return RValue::get(Result);
3734 return RValue::get(
3735 Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcFinite),
3736 ConvertType(E->getType())));
3739 case Builtin::BI__builtin_isnormal: {
3740 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3741 Value *V = EmitScalarExpr(E->getArg(0));
3742 return RValue::get(
3743 Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcNormal),
3744 ConvertType(E->getType())));
3747 case Builtin::BI__builtin_issubnormal: {
3748 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3749 Value *V = EmitScalarExpr(E->getArg(0));
3750 return RValue::get(
3751 Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcSubnormal),
3752 ConvertType(E->getType())));
3755 case Builtin::BI__builtin_iszero: {
3756 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3757 Value *V = EmitScalarExpr(E->getArg(0));
3758 return RValue::get(
3759 Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcZero),
3760 ConvertType(E->getType())));
3763 case Builtin::BI__builtin_isfpclass: {
3764 Expr::EvalResult Result;
3765 if (!E->getArg(1)->EvaluateAsInt(Result, CGM.getContext()))
3766 break;
3767 uint64_t Test = Result.Val.getInt().getLimitedValue();
3768 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3769 Value *V = EmitScalarExpr(E->getArg(0));
3770 return RValue::get(Builder.CreateZExt(Builder.createIsFPClass(V, Test),
3771 ConvertType(E->getType())));
3774 case Builtin::BI__builtin_nondeterministic_value: {
3775 llvm::Type *Ty = ConvertType(E->getArg(0)->getType());
3777 Value *Result = PoisonValue::get(Ty);
3778 Result = Builder.CreateFreeze(Result);
3780 return RValue::get(Result);
3783 case Builtin::BI__builtin_elementwise_abs: {
3784 Value *Result;
3785 QualType QT = E->getArg(0)->getType();
3787 if (auto *VecTy = QT->getAs<VectorType>())
3788 QT = VecTy->getElementType();
3789 if (QT->isIntegerType())
3790 Result = Builder.CreateBinaryIntrinsic(
3791 llvm::Intrinsic::abs, EmitScalarExpr(E->getArg(0)),
3792 Builder.getFalse(), nullptr, "elt.abs");
3793 else
3794 Result = emitBuiltinWithOneOverloadedType<1>(
3795 *this, E, llvm::Intrinsic::fabs, "elt.abs");
3797 return RValue::get(Result);
3799 case Builtin::BI__builtin_elementwise_acos:
3800 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3801 *this, E, llvm::Intrinsic::acos, "elt.acos"));
3802 case Builtin::BI__builtin_elementwise_asin:
3803 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3804 *this, E, llvm::Intrinsic::asin, "elt.asin"));
3805 case Builtin::BI__builtin_elementwise_atan:
3806 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3807 *this, E, llvm::Intrinsic::atan, "elt.atan"));
3808 case Builtin::BI__builtin_elementwise_ceil:
3809 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3810 *this, E, llvm::Intrinsic::ceil, "elt.ceil"));
3811 case Builtin::BI__builtin_elementwise_exp:
3812 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3813 *this, E, llvm::Intrinsic::exp, "elt.exp"));
3814 case Builtin::BI__builtin_elementwise_exp2:
3815 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3816 *this, E, llvm::Intrinsic::exp2, "elt.exp2"));
3817 case Builtin::BI__builtin_elementwise_log:
3818 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3819 *this, E, llvm::Intrinsic::log, "elt.log"));
3820 case Builtin::BI__builtin_elementwise_log2:
3821 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3822 *this, E, llvm::Intrinsic::log2, "elt.log2"));
3823 case Builtin::BI__builtin_elementwise_log10:
3824 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3825 *this, E, llvm::Intrinsic::log10, "elt.log10"));
3826 case Builtin::BI__builtin_elementwise_pow: {
3827 return RValue::get(
3828 emitBuiltinWithOneOverloadedType<2>(*this, E, llvm::Intrinsic::pow));
3830 case Builtin::BI__builtin_elementwise_bitreverse:
3831 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3832 *this, E, llvm::Intrinsic::bitreverse, "elt.bitreverse"));
3833 case Builtin::BI__builtin_elementwise_cos:
3834 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3835 *this, E, llvm::Intrinsic::cos, "elt.cos"));
3836 case Builtin::BI__builtin_elementwise_cosh:
3837 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3838 *this, E, llvm::Intrinsic::cosh, "elt.cosh"));
3839 case Builtin::BI__builtin_elementwise_floor:
3840 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3841 *this, E, llvm::Intrinsic::floor, "elt.floor"));
3842 case Builtin::BI__builtin_elementwise_roundeven:
3843 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3844 *this, E, llvm::Intrinsic::roundeven, "elt.roundeven"));
3845 case Builtin::BI__builtin_elementwise_round:
3846 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3847 *this, E, llvm::Intrinsic::round, "elt.round"));
3848 case Builtin::BI__builtin_elementwise_rint:
3849 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3850 *this, E, llvm::Intrinsic::rint, "elt.rint"));
3851 case Builtin::BI__builtin_elementwise_nearbyint:
3852 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3853 *this, E, llvm::Intrinsic::nearbyint, "elt.nearbyint"));
3854 case Builtin::BI__builtin_elementwise_sin:
3855 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3856 *this, E, llvm::Intrinsic::sin, "elt.sin"));
3857 case Builtin::BI__builtin_elementwise_sinh:
3858 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3859 *this, E, llvm::Intrinsic::sinh, "elt.sinh"));
3860 case Builtin::BI__builtin_elementwise_tan:
3861 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3862 *this, E, llvm::Intrinsic::tan, "elt.tan"));
3863 case Builtin::BI__builtin_elementwise_tanh:
3864 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3865 *this, E, llvm::Intrinsic::tanh, "elt.tanh"));
3866 case Builtin::BI__builtin_elementwise_trunc:
3867 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3868 *this, E, llvm::Intrinsic::trunc, "elt.trunc"));
3869 case Builtin::BI__builtin_elementwise_canonicalize:
3870 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3871 *this, E, llvm::Intrinsic::canonicalize, "elt.canonicalize"));
3872 case Builtin::BI__builtin_elementwise_copysign:
3873 return RValue::get(emitBuiltinWithOneOverloadedType<2>(
3874 *this, E, llvm::Intrinsic::copysign));
3875 case Builtin::BI__builtin_elementwise_fma:
3876 return RValue::get(
3877 emitBuiltinWithOneOverloadedType<3>(*this, E, llvm::Intrinsic::fma));
3878 case Builtin::BI__builtin_elementwise_add_sat:
3879 case Builtin::BI__builtin_elementwise_sub_sat: {
3880 Value *Op0 = EmitScalarExpr(E->getArg(0));
3881 Value *Op1 = EmitScalarExpr(E->getArg(1));
3882 Value *Result;
3883 assert(Op0->getType()->isIntOrIntVectorTy() && "integer type expected");
3884 QualType Ty = E->getArg(0)->getType();
3885 if (auto *VecTy = Ty->getAs<VectorType>())
3886 Ty = VecTy->getElementType();
3887 bool IsSigned = Ty->isSignedIntegerType();
3888 unsigned Opc;
3889 if (BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_elementwise_add_sat)
3890 Opc = IsSigned ? llvm::Intrinsic::sadd_sat : llvm::Intrinsic::uadd_sat;
3891 else
3892 Opc = IsSigned ? llvm::Intrinsic::ssub_sat : llvm::Intrinsic::usub_sat;
3893 Result = Builder.CreateBinaryIntrinsic(Opc, Op0, Op1, nullptr, "elt.sat");
3894 return RValue::get(Result);
3897 case Builtin::BI__builtin_elementwise_max: {
3898 Value *Op0 = EmitScalarExpr(E->getArg(0));
3899 Value *Op1 = EmitScalarExpr(E->getArg(1));
3900 Value *Result;
3901 if (Op0->getType()->isIntOrIntVectorTy()) {
3902 QualType Ty = E->getArg(0)->getType();
3903 if (auto *VecTy = Ty->getAs<VectorType>())
3904 Ty = VecTy->getElementType();
3905 Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3906 ? llvm::Intrinsic::smax
3907 : llvm::Intrinsic::umax,
3908 Op0, Op1, nullptr, "elt.max");
3909 } else
3910 Result = Builder.CreateMaxNum(Op0, Op1, "elt.max");
3911 return RValue::get(Result);
3913 case Builtin::BI__builtin_elementwise_min: {
3914 Value *Op0 = EmitScalarExpr(E->getArg(0));
3915 Value *Op1 = EmitScalarExpr(E->getArg(1));
3916 Value *Result;
3917 if (Op0->getType()->isIntOrIntVectorTy()) {
3918 QualType Ty = E->getArg(0)->getType();
3919 if (auto *VecTy = Ty->getAs<VectorType>())
3920 Ty = VecTy->getElementType();
3921 Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3922 ? llvm::Intrinsic::smin
3923 : llvm::Intrinsic::umin,
3924 Op0, Op1, nullptr, "elt.min");
3925 } else
3926 Result = Builder.CreateMinNum(Op0, Op1, "elt.min");
3927 return RValue::get(Result);
3930 case Builtin::BI__builtin_reduce_max: {
3931 auto GetIntrinsicID = [this](QualType QT) {
3932 if (auto *VecTy = QT->getAs<VectorType>())
3933 QT = VecTy->getElementType();
3934 else if (QT->isSizelessVectorType())
3935 QT = QT->getSizelessVectorEltType(CGM.getContext());
3937 if (QT->isSignedIntegerType())
3938 return llvm::Intrinsic::vector_reduce_smax;
3939 if (QT->isUnsignedIntegerType())
3940 return llvm::Intrinsic::vector_reduce_umax;
3941 assert(QT->isFloatingType() && "must have a float here");
3942 return llvm::Intrinsic::vector_reduce_fmax;
3944 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3945 *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3948 case Builtin::BI__builtin_reduce_min: {
3949 auto GetIntrinsicID = [this](QualType QT) {
3950 if (auto *VecTy = QT->getAs<VectorType>())
3951 QT = VecTy->getElementType();
3952 else if (QT->isSizelessVectorType())
3953 QT = QT->getSizelessVectorEltType(CGM.getContext());
3955 if (QT->isSignedIntegerType())
3956 return llvm::Intrinsic::vector_reduce_smin;
3957 if (QT->isUnsignedIntegerType())
3958 return llvm::Intrinsic::vector_reduce_umin;
3959 assert(QT->isFloatingType() && "must have a float here");
3960 return llvm::Intrinsic::vector_reduce_fmin;
3963 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3964 *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3967 case Builtin::BI__builtin_reduce_add:
3968 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3969 *this, E, llvm::Intrinsic::vector_reduce_add, "rdx.add"));
3970 case Builtin::BI__builtin_reduce_mul:
3971 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3972 *this, E, llvm::Intrinsic::vector_reduce_mul, "rdx.mul"));
3973 case Builtin::BI__builtin_reduce_xor:
3974 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3975 *this, E, llvm::Intrinsic::vector_reduce_xor, "rdx.xor"));
3976 case Builtin::BI__builtin_reduce_or:
3977 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3978 *this, E, llvm::Intrinsic::vector_reduce_or, "rdx.or"));
3979 case Builtin::BI__builtin_reduce_and:
3980 return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3981 *this, E, llvm::Intrinsic::vector_reduce_and, "rdx.and"));
3983 case Builtin::BI__builtin_matrix_transpose: {
3984 auto *MatrixTy = E->getArg(0)->getType()->castAs<ConstantMatrixType>();
3985 Value *MatValue = EmitScalarExpr(E->getArg(0));
3986 MatrixBuilder MB(Builder);
3987 Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(),
3988 MatrixTy->getNumColumns());
3989 return RValue::get(Result);
3992 case Builtin::BI__builtin_matrix_column_major_load: {
3993 MatrixBuilder MB(Builder);
3994 // Emit everything that isn't dependent on the first parameter type
3995 Value *Stride = EmitScalarExpr(E->getArg(3));
3996 const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>();
3997 auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>();
3998 assert(PtrTy && "arg0 must be of pointer type");
3999 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
4001 Address Src = EmitPointerWithAlignment(E->getArg(0));
4002 EmitNonNullArgCheck(RValue::get(Src.emitRawPointer(*this)),
4003 E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD,
4005 Value *Result = MB.CreateColumnMajorLoad(
4006 Src.getElementType(), Src.emitRawPointer(*this),
4007 Align(Src.getAlignment().getQuantity()), Stride, IsVolatile,
4008 ResultTy->getNumRows(), ResultTy->getNumColumns(), "matrix");
4009 return RValue::get(Result);
4012 case Builtin::BI__builtin_matrix_column_major_store: {
4013 MatrixBuilder MB(Builder);
4014 Value *Matrix = EmitScalarExpr(E->getArg(0));
4015 Address Dst = EmitPointerWithAlignment(E->getArg(1));
4016 Value *Stride = EmitScalarExpr(E->getArg(2));
4018 const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
4019 auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>();
4020 assert(PtrTy && "arg1 must be of pointer type");
4021 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
4023 EmitNonNullArgCheck(RValue::get(Dst.emitRawPointer(*this)),
4024 E->getArg(1)->getType(), E->getArg(1)->getExprLoc(), FD,
4026 Value *Result = MB.CreateColumnMajorStore(
4027 Matrix, Dst.emitRawPointer(*this),
4028 Align(Dst.getAlignment().getQuantity()), Stride, IsVolatile,
4029 MatrixTy->getNumRows(), MatrixTy->getNumColumns());
4030 return RValue::get(Result);
4033 case Builtin::BI__builtin_isinf_sign: {
4034 // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
4035 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
4036 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
4037 Value *Arg = EmitScalarExpr(E->getArg(0));
4038 Value *AbsArg = EmitFAbs(*this, Arg);
4039 Value *IsInf = Builder.CreateFCmpOEQ(
4040 AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
4041 Value *IsNeg = EmitSignBit(*this, Arg);
4043 llvm::Type *IntTy = ConvertType(E->getType());
4044 Value *Zero = Constant::getNullValue(IntTy);
4045 Value *One = ConstantInt::get(IntTy, 1);
4046 Value *NegativeOne = ConstantInt::get(IntTy, -1);
4047 Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
4048 Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
4049 return RValue::get(Result);
4052 case Builtin::BI__builtin_flt_rounds: {
4053 Function *F = CGM.getIntrinsic(Intrinsic::get_rounding);
4055 llvm::Type *ResultType = ConvertType(E->getType());
4056 Value *Result = Builder.CreateCall(F);
4057 if (Result->getType() != ResultType)
4058 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
4059 "cast");
4060 return RValue::get(Result);
4063 case Builtin::BI__builtin_set_flt_rounds: {
4064 Function *F = CGM.getIntrinsic(Intrinsic::set_rounding);
4066 Value *V = EmitScalarExpr(E->getArg(0));
4067 Builder.CreateCall(F, V);
4068 return RValue::get(nullptr);
4071 case Builtin::BI__builtin_fpclassify: {
4072 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
4073 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
4074 Value *V = EmitScalarExpr(E->getArg(5));
4075 llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
4077 // Create Result
4078 BasicBlock *Begin = Builder.GetInsertBlock();
4079 BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
4080 Builder.SetInsertPoint(End);
4081 PHINode *Result =
4082 Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
4083 "fpclassify_result");
4085 // if (V==0) return FP_ZERO
4086 Builder.SetInsertPoint(Begin);
4087 Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
4088 "iszero");
4089 Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
4090 BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
4091 Builder.CreateCondBr(IsZero, End, NotZero);
4092 Result->addIncoming(ZeroLiteral, Begin);
4094 // if (V != V) return FP_NAN
4095 Builder.SetInsertPoint(NotZero);
4096 Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
4097 Value *NanLiteral = EmitScalarExpr(E->getArg(0));
4098 BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
4099 Builder.CreateCondBr(IsNan, End, NotNan);
4100 Result->addIncoming(NanLiteral, NotZero);
4102 // if (fabs(V) == infinity) return FP_INFINITY
4103 Builder.SetInsertPoint(NotNan);
4104 Value *VAbs = EmitFAbs(*this, V);
4105 Value *IsInf =
4106 Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
4107 "isinf");
4108 Value *InfLiteral = EmitScalarExpr(E->getArg(1));
4109 BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
4110 Builder.CreateCondBr(IsInf, End, NotInf);
4111 Result->addIncoming(InfLiteral, NotNan);
4113 // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
4114 Builder.SetInsertPoint(NotInf);
4115 APFloat Smallest = APFloat::getSmallestNormalized(
4116 getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
4117 Value *IsNormal =
4118 Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
4119 "isnormal");
4120 Value *NormalResult =
4121 Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
4122 EmitScalarExpr(E->getArg(3)));
4123 Builder.CreateBr(End);
4124 Result->addIncoming(NormalResult, NotInf);
4126 // return Result
4127 Builder.SetInsertPoint(End);
4128 return RValue::get(Result);
4131 // An alloca will always return a pointer to the alloca (stack) address
4132 // space. This address space need not be the same as the AST / Language
4133 // default (e.g. in C / C++ auto vars are in the generic address space). At
4134 // the AST level this is handled within CreateTempAlloca et al., but for the
4135 // builtin / dynamic alloca we have to handle it here. We use an explicit cast
4136 // instead of passing an AS to CreateAlloca so as to not inhibit optimisation.
4137 case Builtin::BIalloca:
4138 case Builtin::BI_alloca:
4139 case Builtin::BI__builtin_alloca_uninitialized:
4140 case Builtin::BI__builtin_alloca: {
4141 Value *Size = EmitScalarExpr(E->getArg(0));
4142 const TargetInfo &TI = getContext().getTargetInfo();
4143 // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
4144 const Align SuitableAlignmentInBytes =
4145 CGM.getContext()
4146 .toCharUnitsFromBits(TI.getSuitableAlign())
4147 .getAsAlign();
4148 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
4149 AI->setAlignment(SuitableAlignmentInBytes);
4150 if (BuiltinID != Builtin::BI__builtin_alloca_uninitialized)
4151 initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
4152 LangAS AAS = getASTAllocaAddressSpace();
4153 LangAS EAS = E->getType()->getPointeeType().getAddressSpace();
4154 if (AAS != EAS) {
4155 llvm::Type *Ty = CGM.getTypes().ConvertType(E->getType());
4156 return RValue::get(getTargetHooks().performAddrSpaceCast(*this, AI, AAS,
4157 EAS, Ty));
4159 return RValue::get(AI);
4162 case Builtin::BI__builtin_alloca_with_align_uninitialized:
4163 case Builtin::BI__builtin_alloca_with_align: {
4164 Value *Size = EmitScalarExpr(E->getArg(0));
4165 Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
4166 auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
4167 unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
4168 const Align AlignmentInBytes =
4169 CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
4170 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
4171 AI->setAlignment(AlignmentInBytes);
4172 if (BuiltinID != Builtin::BI__builtin_alloca_with_align_uninitialized)
4173 initializeAlloca(*this, AI, Size, AlignmentInBytes);
4174 LangAS AAS = getASTAllocaAddressSpace();
4175 LangAS EAS = E->getType()->getPointeeType().getAddressSpace();
4176 if (AAS != EAS) {
4177 llvm::Type *Ty = CGM.getTypes().ConvertType(E->getType());
4178 return RValue::get(getTargetHooks().performAddrSpaceCast(*this, AI, AAS,
4179 EAS, Ty));
4181 return RValue::get(AI);
4184 case Builtin::BIbzero:
4185 case Builtin::BI__builtin_bzero: {
4186 Address Dest = EmitPointerWithAlignment(E->getArg(0));
4187 Value *SizeVal = EmitScalarExpr(E->getArg(1));
4188 EmitNonNullArgCheck(Dest, E->getArg(0)->getType(),
4189 E->getArg(0)->getExprLoc(), FD, 0);
4190 Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
4191 return RValue::get(nullptr);
4194 case Builtin::BIbcopy:
4195 case Builtin::BI__builtin_bcopy: {
4196 Address Src = EmitPointerWithAlignment(E->getArg(0));
4197 Address Dest = EmitPointerWithAlignment(E->getArg(1));
4198 Value *SizeVal = EmitScalarExpr(E->getArg(2));
4199 EmitNonNullArgCheck(RValue::get(Src.emitRawPointer(*this)),
4200 E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD,
4202 EmitNonNullArgCheck(RValue::get(Dest.emitRawPointer(*this)),
4203 E->getArg(1)->getType(), E->getArg(1)->getExprLoc(), FD,
4205 Builder.CreateMemMove(Dest, Src, SizeVal, false);
4206 return RValue::get(nullptr);
4209 case Builtin::BImemcpy:
4210 case Builtin::BI__builtin_memcpy:
4211 case Builtin::BImempcpy:
4212 case Builtin::BI__builtin_mempcpy: {
4213 Address Dest = EmitPointerWithAlignment(E->getArg(0));
4214 Address Src = EmitPointerWithAlignment(E->getArg(1));
4215 Value *SizeVal = EmitScalarExpr(E->getArg(2));
4216 EmitArgCheck(TCK_Store, Dest, E->getArg(0), 0);
4217 EmitArgCheck(TCK_Load, Src, E->getArg(1), 1);
4218 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
4219 if (BuiltinID == Builtin::BImempcpy ||
4220 BuiltinID == Builtin::BI__builtin_mempcpy)
4221 return RValue::get(Builder.CreateInBoundsGEP(
4222 Dest.getElementType(), Dest.emitRawPointer(*this), SizeVal));
4223 else
4224 return RValue::get(Dest, *this);
4227 case Builtin::BI__builtin_memcpy_inline: {
4228 Address Dest = EmitPointerWithAlignment(E->getArg(0));
4229 Address Src = EmitPointerWithAlignment(E->getArg(1));
4230 uint64_t Size =
4231 E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
4232 EmitArgCheck(TCK_Store, Dest, E->getArg(0), 0);
4233 EmitArgCheck(TCK_Load, Src, E->getArg(1), 1);
4234 Builder.CreateMemCpyInline(Dest, Src, Size);
4235 return RValue::get(nullptr);
4238 case Builtin::BI__builtin_char_memchr:
4239 BuiltinID = Builtin::BI__builtin_memchr;
4240 break;
4242 case Builtin::BI__builtin___memcpy_chk: {
4243 // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
4244 Expr::EvalResult SizeResult, DstSizeResult;
4245 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
4246 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
4247 break;
4248 llvm::APSInt Size = SizeResult.Val.getInt();
4249 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
4250 if (Size.ugt(DstSize))
4251 break;
4252 Address Dest = EmitPointerWithAlignment(E->getArg(0));
4253 Address Src = EmitPointerWithAlignment(E->getArg(1));
4254 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
4255 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
4256 return RValue::get(Dest, *this);
4259 case Builtin::BI__builtin_objc_memmove_collectable: {
4260 Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
4261 Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
4262 Value *SizeVal = EmitScalarExpr(E->getArg(2));
4263 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
4264 DestAddr, SrcAddr, SizeVal);
4265 return RValue::get(DestAddr, *this);
4268 case Builtin::BI__builtin___memmove_chk: {
4269 // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
4270 Expr::EvalResult SizeResult, DstSizeResult;
4271 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
4272 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
4273 break;
4274 llvm::APSInt Size = SizeResult.Val.getInt();
4275 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
4276 if (Size.ugt(DstSize))
4277 break;
4278 Address Dest = EmitPointerWithAlignment(E->getArg(0));
4279 Address Src = EmitPointerWithAlignment(E->getArg(1));
4280 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
4281 Builder.CreateMemMove(Dest, Src, SizeVal, false);
4282 return RValue::get(Dest, *this);
4285 case Builtin::BImemmove:
4286 case Builtin::BI__builtin_memmove: {
4287 Address Dest = EmitPointerWithAlignment(E->getArg(0));
4288 Address Src = EmitPointerWithAlignment(E->getArg(1));
4289 Value *SizeVal = EmitScalarExpr(E->getArg(2));
4290 EmitArgCheck(TCK_Store, Dest, E->getArg(0), 0);
4291 EmitArgCheck(TCK_Load, Src, E->getArg(1), 1);
4292 Builder.CreateMemMove(Dest, Src, SizeVal, false);
4293 return RValue::get(Dest, *this);
4295 case Builtin::BImemset:
4296 case Builtin::BI__builtin_memset: {
4297 Address Dest = EmitPointerWithAlignment(E->getArg(0));
4298 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
4299 Builder.getInt8Ty());
4300 Value *SizeVal = EmitScalarExpr(E->getArg(2));
4301 EmitNonNullArgCheck(Dest, E->getArg(0)->getType(),
4302 E->getArg(0)->getExprLoc(), FD, 0);
4303 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
4304 return RValue::get(Dest, *this);
4306 case Builtin::BI__builtin_memset_inline: {
4307 Address Dest = EmitPointerWithAlignment(E->getArg(0));
4308 Value *ByteVal =
4309 Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), Builder.getInt8Ty());
4310 uint64_t Size =
4311 E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
4312 EmitNonNullArgCheck(RValue::get(Dest.emitRawPointer(*this)),
4313 E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD,
4315 Builder.CreateMemSetInline(Dest, ByteVal, Size);
4316 return RValue::get(nullptr);
4318 case Builtin::BI__builtin___memset_chk: {
4319 // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
4320 Expr::EvalResult SizeResult, DstSizeResult;
4321 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
4322 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
4323 break;
4324 llvm::APSInt Size = SizeResult.Val.getInt();
4325 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
4326 if (Size.ugt(DstSize))
4327 break;
4328 Address Dest = EmitPointerWithAlignment(E->getArg(0));
4329 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
4330 Builder.getInt8Ty());
4331 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
4332 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
4333 return RValue::get(Dest, *this);
4335 case Builtin::BI__builtin_wmemchr: {
4336 // The MSVC runtime library does not provide a definition of wmemchr, so we
4337 // need an inline implementation.
4338 if (!getTarget().getTriple().isOSMSVCRT())
4339 break;
4341 llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
4342 Value *Str = EmitScalarExpr(E->getArg(0));
4343 Value *Chr = EmitScalarExpr(E->getArg(1));
4344 Value *Size = EmitScalarExpr(E->getArg(2));
4346 BasicBlock *Entry = Builder.GetInsertBlock();
4347 BasicBlock *CmpEq = createBasicBlock("wmemchr.eq");
4348 BasicBlock *Next = createBasicBlock("wmemchr.next");
4349 BasicBlock *Exit = createBasicBlock("wmemchr.exit");
4350 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
4351 Builder.CreateCondBr(SizeEq0, Exit, CmpEq);
4353 EmitBlock(CmpEq);
4354 PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2);
4355 StrPhi->addIncoming(Str, Entry);
4356 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
4357 SizePhi->addIncoming(Size, Entry);
4358 CharUnits WCharAlign =
4359 getContext().getTypeAlignInChars(getContext().WCharTy);
4360 Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign);
4361 Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0);
4362 Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr);
4363 Builder.CreateCondBr(StrEqChr, Exit, Next);
4365 EmitBlock(Next);
4366 Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1);
4367 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
4368 Value *NextSizeEq0 =
4369 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
4370 Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq);
4371 StrPhi->addIncoming(NextStr, Next);
4372 SizePhi->addIncoming(NextSize, Next);
4374 EmitBlock(Exit);
4375 PHINode *Ret = Builder.CreatePHI(Str->getType(), 3);
4376 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry);
4377 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next);
4378 Ret->addIncoming(FoundChr, CmpEq);
4379 return RValue::get(Ret);
4381 case Builtin::BI__builtin_wmemcmp: {
4382 // The MSVC runtime library does not provide a definition of wmemcmp, so we
4383 // need an inline implementation.
4384 if (!getTarget().getTriple().isOSMSVCRT())
4385 break;
4387 llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
4389 Value *Dst = EmitScalarExpr(E->getArg(0));
4390 Value *Src = EmitScalarExpr(E->getArg(1));
4391 Value *Size = EmitScalarExpr(E->getArg(2));
4393 BasicBlock *Entry = Builder.GetInsertBlock();
4394 BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
4395 BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
4396 BasicBlock *Next = createBasicBlock("wmemcmp.next");
4397 BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
4398 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
4399 Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
4401 EmitBlock(CmpGT);
4402 PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
4403 DstPhi->addIncoming(Dst, Entry);
4404 PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
4405 SrcPhi->addIncoming(Src, Entry);
4406 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
4407 SizePhi->addIncoming(Size, Entry);
4408 CharUnits WCharAlign =
4409 getContext().getTypeAlignInChars(getContext().WCharTy);
4410 Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
4411 Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
4412 Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
4413 Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
4415 EmitBlock(CmpLT);
4416 Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
4417 Builder.CreateCondBr(DstLtSrc, Exit, Next);
4419 EmitBlock(Next);
4420 Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
4421 Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
4422 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
4423 Value *NextSizeEq0 =
4424 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
4425 Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
4426 DstPhi->addIncoming(NextDst, Next);
4427 SrcPhi->addIncoming(NextSrc, Next);
4428 SizePhi->addIncoming(NextSize, Next);
4430 EmitBlock(Exit);
4431 PHINode *Ret = Builder.CreatePHI(IntTy, 4);
4432 Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
4433 Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
4434 Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
4435 Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
4436 return RValue::get(Ret);
4438 case Builtin::BI__builtin_dwarf_cfa: {
4439 // The offset in bytes from the first argument to the CFA.
4441 // Why on earth is this in the frontend? Is there any reason at
4442 // all that the backend can't reasonably determine this while
4443 // lowering llvm.eh.dwarf.cfa()?
4445 // TODO: If there's a satisfactory reason, add a target hook for
4446 // this instead of hard-coding 0, which is correct for most targets.
4447 int32_t Offset = 0;
4449 Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
4450 return RValue::get(Builder.CreateCall(F,
4451 llvm::ConstantInt::get(Int32Ty, Offset)));
4453 case Builtin::BI__builtin_return_address: {
4454 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
4455 getContext().UnsignedIntTy);
4456 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
4457 return RValue::get(Builder.CreateCall(F, Depth));
4459 case Builtin::BI_ReturnAddress: {
4460 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
4461 return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
4463 case Builtin::BI__builtin_frame_address: {
4464 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
4465 getContext().UnsignedIntTy);
4466 Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
4467 return RValue::get(Builder.CreateCall(F, Depth));
4469 case Builtin::BI__builtin_extract_return_addr: {
4470 Value *Address = EmitScalarExpr(E->getArg(0));
4471 Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
4472 return RValue::get(Result);
4474 case Builtin::BI__builtin_frob_return_addr: {
4475 Value *Address = EmitScalarExpr(E->getArg(0));
4476 Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
4477 return RValue::get(Result);
4479 case Builtin::BI__builtin_dwarf_sp_column: {
4480 llvm::IntegerType *Ty
4481 = cast<llvm::IntegerType>(ConvertType(E->getType()));
4482 int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
4483 if (Column == -1) {
4484 CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
4485 return RValue::get(llvm::UndefValue::get(Ty));
4487 return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
4489 case Builtin::BI__builtin_init_dwarf_reg_size_table: {
4490 Value *Address = EmitScalarExpr(E->getArg(0));
4491 if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
4492 CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
4493 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
4495 case Builtin::BI__builtin_eh_return: {
4496 Value *Int = EmitScalarExpr(E->getArg(0));
4497 Value *Ptr = EmitScalarExpr(E->getArg(1));
4499 llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
4500 assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
4501 "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
4502 Function *F =
4503 CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
4504 : Intrinsic::eh_return_i64);
4505 Builder.CreateCall(F, {Int, Ptr});
4506 Builder.CreateUnreachable();
4508 // We do need to preserve an insertion point.
4509 EmitBlock(createBasicBlock("builtin_eh_return.cont"));
4511 return RValue::get(nullptr);
4513 case Builtin::BI__builtin_unwind_init: {
4514 Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
4515 Builder.CreateCall(F);
4516 return RValue::get(nullptr);
4518 case Builtin::BI__builtin_extend_pointer: {
4519 // Extends a pointer to the size of an _Unwind_Word, which is
4520 // uint64_t on all platforms. Generally this gets poked into a
4521 // register and eventually used as an address, so if the
4522 // addressing registers are wider than pointers and the platform
4523 // doesn't implicitly ignore high-order bits when doing
4524 // addressing, we need to make sure we zext / sext based on
4525 // the platform's expectations.
4527 // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
4529 // Cast the pointer to intptr_t.
4530 Value *Ptr = EmitScalarExpr(E->getArg(0));
4531 Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
4533 // If that's 64 bits, we're done.
4534 if (IntPtrTy->getBitWidth() == 64)
4535 return RValue::get(Result);
4537 // Otherwise, ask the codegen data what to do.
4538 if (getTargetHooks().extendPointerWithSExt())
4539 return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
4540 else
4541 return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
4543 case Builtin::BI__builtin_setjmp: {
4544 // Buffer is a void**.
4545 Address Buf = EmitPointerWithAlignment(E->getArg(0));
4547 // Store the frame pointer to the setjmp buffer.
4548 Value *FrameAddr = Builder.CreateCall(
4549 CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
4550 ConstantInt::get(Int32Ty, 0));
4551 Builder.CreateStore(FrameAddr, Buf);
4553 // Store the stack pointer to the setjmp buffer.
4554 Value *StackAddr = Builder.CreateStackSave();
4555 assert(Buf.emitRawPointer(*this)->getType() == StackAddr->getType());
4557 Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
4558 Builder.CreateStore(StackAddr, StackSaveSlot);
4560 // Call LLVM's EH setjmp, which is lightweight.
4561 Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
4562 return RValue::get(Builder.CreateCall(F, Buf.emitRawPointer(*this)));
4564 case Builtin::BI__builtin_longjmp: {
4565 Value *Buf = EmitScalarExpr(E->getArg(0));
4567 // Call LLVM's EH longjmp, which is lightweight.
4568 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
4570 // longjmp doesn't return; mark this as unreachable.
4571 Builder.CreateUnreachable();
4573 // We do need to preserve an insertion point.
4574 EmitBlock(createBasicBlock("longjmp.cont"));
4576 return RValue::get(nullptr);
4578 case Builtin::BI__builtin_launder: {
4579 const Expr *Arg = E->getArg(0);
4580 QualType ArgTy = Arg->getType()->getPointeeType();
4581 Value *Ptr = EmitScalarExpr(Arg);
4582 if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
4583 Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
4585 return RValue::get(Ptr);
4587 case Builtin::BI__sync_fetch_and_add:
4588 case Builtin::BI__sync_fetch_and_sub:
4589 case Builtin::BI__sync_fetch_and_or:
4590 case Builtin::BI__sync_fetch_and_and:
4591 case Builtin::BI__sync_fetch_and_xor:
4592 case Builtin::BI__sync_fetch_and_nand:
4593 case Builtin::BI__sync_add_and_fetch:
4594 case Builtin::BI__sync_sub_and_fetch:
4595 case Builtin::BI__sync_and_and_fetch:
4596 case Builtin::BI__sync_or_and_fetch:
4597 case Builtin::BI__sync_xor_and_fetch:
4598 case Builtin::BI__sync_nand_and_fetch:
4599 case Builtin::BI__sync_val_compare_and_swap:
4600 case Builtin::BI__sync_bool_compare_and_swap:
4601 case Builtin::BI__sync_lock_test_and_set:
4602 case Builtin::BI__sync_lock_release:
4603 case Builtin::BI__sync_swap:
4604 llvm_unreachable("Shouldn't make it through sema");
4605 case Builtin::BI__sync_fetch_and_add_1:
4606 case Builtin::BI__sync_fetch_and_add_2:
4607 case Builtin::BI__sync_fetch_and_add_4:
4608 case Builtin::BI__sync_fetch_and_add_8:
4609 case Builtin::BI__sync_fetch_and_add_16:
4610 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
4611 case Builtin::BI__sync_fetch_and_sub_1:
4612 case Builtin::BI__sync_fetch_and_sub_2:
4613 case Builtin::BI__sync_fetch_and_sub_4:
4614 case Builtin::BI__sync_fetch_and_sub_8:
4615 case Builtin::BI__sync_fetch_and_sub_16:
4616 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
4617 case Builtin::BI__sync_fetch_and_or_1:
4618 case Builtin::BI__sync_fetch_and_or_2:
4619 case Builtin::BI__sync_fetch_and_or_4:
4620 case Builtin::BI__sync_fetch_and_or_8:
4621 case Builtin::BI__sync_fetch_and_or_16:
4622 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
4623 case Builtin::BI__sync_fetch_and_and_1:
4624 case Builtin::BI__sync_fetch_and_and_2:
4625 case Builtin::BI__sync_fetch_and_and_4:
4626 case Builtin::BI__sync_fetch_and_and_8:
4627 case Builtin::BI__sync_fetch_and_and_16:
4628 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
4629 case Builtin::BI__sync_fetch_and_xor_1:
4630 case Builtin::BI__sync_fetch_and_xor_2:
4631 case Builtin::BI__sync_fetch_and_xor_4:
4632 case Builtin::BI__sync_fetch_and_xor_8:
4633 case Builtin::BI__sync_fetch_and_xor_16:
4634 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
4635 case Builtin::BI__sync_fetch_and_nand_1:
4636 case Builtin::BI__sync_fetch_and_nand_2:
4637 case Builtin::BI__sync_fetch_and_nand_4:
4638 case Builtin::BI__sync_fetch_and_nand_8:
4639 case Builtin::BI__sync_fetch_and_nand_16:
4640 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
4642 // Clang extensions: not overloaded yet.
4643 case Builtin::BI__sync_fetch_and_min:
4644 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
4645 case Builtin::BI__sync_fetch_and_max:
4646 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
4647 case Builtin::BI__sync_fetch_and_umin:
4648 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
4649 case Builtin::BI__sync_fetch_and_umax:
4650 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
4652 case Builtin::BI__sync_add_and_fetch_1:
4653 case Builtin::BI__sync_add_and_fetch_2:
4654 case Builtin::BI__sync_add_and_fetch_4:
4655 case Builtin::BI__sync_add_and_fetch_8:
4656 case Builtin::BI__sync_add_and_fetch_16:
4657 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
4658 llvm::Instruction::Add);
4659 case Builtin::BI__sync_sub_and_fetch_1:
4660 case Builtin::BI__sync_sub_and_fetch_2:
4661 case Builtin::BI__sync_sub_and_fetch_4:
4662 case Builtin::BI__sync_sub_and_fetch_8:
4663 case Builtin::BI__sync_sub_and_fetch_16:
4664 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
4665 llvm::Instruction::Sub);
4666 case Builtin::BI__sync_and_and_fetch_1:
4667 case Builtin::BI__sync_and_and_fetch_2:
4668 case Builtin::BI__sync_and_and_fetch_4:
4669 case Builtin::BI__sync_and_and_fetch_8:
4670 case Builtin::BI__sync_and_and_fetch_16:
4671 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
4672 llvm::Instruction::And);
4673 case Builtin::BI__sync_or_and_fetch_1:
4674 case Builtin::BI__sync_or_and_fetch_2:
4675 case Builtin::BI__sync_or_and_fetch_4:
4676 case Builtin::BI__sync_or_and_fetch_8:
4677 case Builtin::BI__sync_or_and_fetch_16:
4678 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
4679 llvm::Instruction::Or);
4680 case Builtin::BI__sync_xor_and_fetch_1:
4681 case Builtin::BI__sync_xor_and_fetch_2:
4682 case Builtin::BI__sync_xor_and_fetch_4:
4683 case Builtin::BI__sync_xor_and_fetch_8:
4684 case Builtin::BI__sync_xor_and_fetch_16:
4685 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
4686 llvm::Instruction::Xor);
4687 case Builtin::BI__sync_nand_and_fetch_1:
4688 case Builtin::BI__sync_nand_and_fetch_2:
4689 case Builtin::BI__sync_nand_and_fetch_4:
4690 case Builtin::BI__sync_nand_and_fetch_8:
4691 case Builtin::BI__sync_nand_and_fetch_16:
4692 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
4693 llvm::Instruction::And, true);
4695 case Builtin::BI__sync_val_compare_and_swap_1:
4696 case Builtin::BI__sync_val_compare_and_swap_2:
4697 case Builtin::BI__sync_val_compare_and_swap_4:
4698 case Builtin::BI__sync_val_compare_and_swap_8:
4699 case Builtin::BI__sync_val_compare_and_swap_16:
4700 return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
4702 case Builtin::BI__sync_bool_compare_and_swap_1:
4703 case Builtin::BI__sync_bool_compare_and_swap_2:
4704 case Builtin::BI__sync_bool_compare_and_swap_4:
4705 case Builtin::BI__sync_bool_compare_and_swap_8:
4706 case Builtin::BI__sync_bool_compare_and_swap_16:
4707 return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
4709 case Builtin::BI__sync_swap_1:
4710 case Builtin::BI__sync_swap_2:
4711 case Builtin::BI__sync_swap_4:
4712 case Builtin::BI__sync_swap_8:
4713 case Builtin::BI__sync_swap_16:
4714 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
4716 case Builtin::BI__sync_lock_test_and_set_1:
4717 case Builtin::BI__sync_lock_test_and_set_2:
4718 case Builtin::BI__sync_lock_test_and_set_4:
4719 case Builtin::BI__sync_lock_test_and_set_8:
4720 case Builtin::BI__sync_lock_test_and_set_16:
4721 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
4723 case Builtin::BI__sync_lock_release_1:
4724 case Builtin::BI__sync_lock_release_2:
4725 case Builtin::BI__sync_lock_release_4:
4726 case Builtin::BI__sync_lock_release_8:
4727 case Builtin::BI__sync_lock_release_16: {
4728 Address Ptr = CheckAtomicAlignment(*this, E);
4729 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
4731 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
4732 getContext().getTypeSize(ElTy));
4733 llvm::StoreInst *Store =
4734 Builder.CreateStore(llvm::Constant::getNullValue(ITy), Ptr);
4735 Store->setAtomic(llvm::AtomicOrdering::Release);
4736 return RValue::get(nullptr);
4739 case Builtin::BI__sync_synchronize: {
4740 // We assume this is supposed to correspond to a C++0x-style
4741 // sequentially-consistent fence (i.e. this is only usable for
4742 // synchronization, not device I/O or anything like that). This intrinsic
4743 // is really badly designed in the sense that in theory, there isn't
4744 // any way to safely use it... but in practice, it mostly works
4745 // to use it with non-atomic loads and stores to get acquire/release
4746 // semantics.
4747 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
4748 return RValue::get(nullptr);
4751 case Builtin::BI__builtin_nontemporal_load:
4752 return RValue::get(EmitNontemporalLoad(*this, E));
4753 case Builtin::BI__builtin_nontemporal_store:
4754 return RValue::get(EmitNontemporalStore(*this, E));
4755 case Builtin::BI__c11_atomic_is_lock_free:
4756 case Builtin::BI__atomic_is_lock_free: {
4757 // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
4758 // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
4759 // _Atomic(T) is always properly-aligned.
4760 const char *LibCallName = "__atomic_is_lock_free";
4761 CallArgList Args;
4762 Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
4763 getContext().getSizeType());
4764 if (BuiltinID == Builtin::BI__atomic_is_lock_free)
4765 Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
4766 getContext().VoidPtrTy);
4767 else
4768 Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
4769 getContext().VoidPtrTy);
4770 const CGFunctionInfo &FuncInfo =
4771 CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
4772 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
4773 llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
4774 return EmitCall(FuncInfo, CGCallee::forDirect(Func),
4775 ReturnValueSlot(), Args);
4778 case Builtin::BI__atomic_test_and_set: {
4779 // Look at the argument type to determine whether this is a volatile
4780 // operation. The parameter type is always volatile.
4781 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
4782 bool Volatile =
4783 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
4785 Address Ptr =
4786 EmitPointerWithAlignment(E->getArg(0)).withElementType(Int8Ty);
4788 Value *NewVal = Builder.getInt8(1);
4789 Value *Order = EmitScalarExpr(E->getArg(1));
4790 if (isa<llvm::ConstantInt>(Order)) {
4791 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4792 AtomicRMWInst *Result = nullptr;
4793 switch (ord) {
4794 case 0: // memory_order_relaxed
4795 default: // invalid order
4796 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4797 llvm::AtomicOrdering::Monotonic);
4798 break;
4799 case 1: // memory_order_consume
4800 case 2: // memory_order_acquire
4801 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4802 llvm::AtomicOrdering::Acquire);
4803 break;
4804 case 3: // memory_order_release
4805 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4806 llvm::AtomicOrdering::Release);
4807 break;
4808 case 4: // memory_order_acq_rel
4810 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4811 llvm::AtomicOrdering::AcquireRelease);
4812 break;
4813 case 5: // memory_order_seq_cst
4814 Result = Builder.CreateAtomicRMW(
4815 llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4816 llvm::AtomicOrdering::SequentiallyConsistent);
4817 break;
4819 Result->setVolatile(Volatile);
4820 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4823 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4825 llvm::BasicBlock *BBs[5] = {
4826 createBasicBlock("monotonic", CurFn),
4827 createBasicBlock("acquire", CurFn),
4828 createBasicBlock("release", CurFn),
4829 createBasicBlock("acqrel", CurFn),
4830 createBasicBlock("seqcst", CurFn)
4832 llvm::AtomicOrdering Orders[5] = {
4833 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
4834 llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
4835 llvm::AtomicOrdering::SequentiallyConsistent};
4837 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4838 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4840 Builder.SetInsertPoint(ContBB);
4841 PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
4843 for (unsigned i = 0; i < 5; ++i) {
4844 Builder.SetInsertPoint(BBs[i]);
4845 AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
4846 Ptr, NewVal, Orders[i]);
4847 RMW->setVolatile(Volatile);
4848 Result->addIncoming(RMW, BBs[i]);
4849 Builder.CreateBr(ContBB);
4852 SI->addCase(Builder.getInt32(0), BBs[0]);
4853 SI->addCase(Builder.getInt32(1), BBs[1]);
4854 SI->addCase(Builder.getInt32(2), BBs[1]);
4855 SI->addCase(Builder.getInt32(3), BBs[2]);
4856 SI->addCase(Builder.getInt32(4), BBs[3]);
4857 SI->addCase(Builder.getInt32(5), BBs[4]);
4859 Builder.SetInsertPoint(ContBB);
4860 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4863 case Builtin::BI__atomic_clear: {
4864 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
4865 bool Volatile =
4866 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
4868 Address Ptr = EmitPointerWithAlignment(E->getArg(0));
4869 Ptr = Ptr.withElementType(Int8Ty);
4870 Value *NewVal = Builder.getInt8(0);
4871 Value *Order = EmitScalarExpr(E->getArg(1));
4872 if (isa<llvm::ConstantInt>(Order)) {
4873 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4874 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4875 switch (ord) {
4876 case 0: // memory_order_relaxed
4877 default: // invalid order
4878 Store->setOrdering(llvm::AtomicOrdering::Monotonic);
4879 break;
4880 case 3: // memory_order_release
4881 Store->setOrdering(llvm::AtomicOrdering::Release);
4882 break;
4883 case 5: // memory_order_seq_cst
4884 Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
4885 break;
4887 return RValue::get(nullptr);
4890 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4892 llvm::BasicBlock *BBs[3] = {
4893 createBasicBlock("monotonic", CurFn),
4894 createBasicBlock("release", CurFn),
4895 createBasicBlock("seqcst", CurFn)
4897 llvm::AtomicOrdering Orders[3] = {
4898 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
4899 llvm::AtomicOrdering::SequentiallyConsistent};
4901 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4902 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4904 for (unsigned i = 0; i < 3; ++i) {
4905 Builder.SetInsertPoint(BBs[i]);
4906 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4907 Store->setOrdering(Orders[i]);
4908 Builder.CreateBr(ContBB);
4911 SI->addCase(Builder.getInt32(0), BBs[0]);
4912 SI->addCase(Builder.getInt32(3), BBs[1]);
4913 SI->addCase(Builder.getInt32(5), BBs[2]);
4915 Builder.SetInsertPoint(ContBB);
4916 return RValue::get(nullptr);
4919 case Builtin::BI__atomic_thread_fence:
4920 case Builtin::BI__atomic_signal_fence:
4921 case Builtin::BI__c11_atomic_thread_fence:
4922 case Builtin::BI__c11_atomic_signal_fence: {
4923 llvm::SyncScope::ID SSID;
4924 if (BuiltinID == Builtin::BI__atomic_signal_fence ||
4925 BuiltinID == Builtin::BI__c11_atomic_signal_fence)
4926 SSID = llvm::SyncScope::SingleThread;
4927 else
4928 SSID = llvm::SyncScope::System;
4929 Value *Order = EmitScalarExpr(E->getArg(0));
4930 if (isa<llvm::ConstantInt>(Order)) {
4931 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4932 switch (ord) {
4933 case 0: // memory_order_relaxed
4934 default: // invalid order
4935 break;
4936 case 1: // memory_order_consume
4937 case 2: // memory_order_acquire
4938 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4939 break;
4940 case 3: // memory_order_release
4941 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4942 break;
4943 case 4: // memory_order_acq_rel
4944 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4945 break;
4946 case 5: // memory_order_seq_cst
4947 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4948 break;
4950 return RValue::get(nullptr);
4953 llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
4954 AcquireBB = createBasicBlock("acquire", CurFn);
4955 ReleaseBB = createBasicBlock("release", CurFn);
4956 AcqRelBB = createBasicBlock("acqrel", CurFn);
4957 SeqCstBB = createBasicBlock("seqcst", CurFn);
4958 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4960 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4961 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
4963 Builder.SetInsertPoint(AcquireBB);
4964 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4965 Builder.CreateBr(ContBB);
4966 SI->addCase(Builder.getInt32(1), AcquireBB);
4967 SI->addCase(Builder.getInt32(2), AcquireBB);
4969 Builder.SetInsertPoint(ReleaseBB);
4970 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4971 Builder.CreateBr(ContBB);
4972 SI->addCase(Builder.getInt32(3), ReleaseBB);
4974 Builder.SetInsertPoint(AcqRelBB);
4975 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4976 Builder.CreateBr(ContBB);
4977 SI->addCase(Builder.getInt32(4), AcqRelBB);
4979 Builder.SetInsertPoint(SeqCstBB);
4980 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4981 Builder.CreateBr(ContBB);
4982 SI->addCase(Builder.getInt32(5), SeqCstBB);
4984 Builder.SetInsertPoint(ContBB);
4985 return RValue::get(nullptr);
4988 case Builtin::BI__builtin_signbit:
4989 case Builtin::BI__builtin_signbitf:
4990 case Builtin::BI__builtin_signbitl: {
4991 return RValue::get(
4992 Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
4993 ConvertType(E->getType())));
4995 case Builtin::BI__warn_memset_zero_len:
4996 return RValue::getIgnored();
4997 case Builtin::BI__annotation: {
4998 // Re-encode each wide string to UTF8 and make an MDString.
4999 SmallVector<Metadata *, 1> Strings;
5000 for (const Expr *Arg : E->arguments()) {
5001 const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
5002 assert(Str->getCharByteWidth() == 2);
5003 StringRef WideBytes = Str->getBytes();
5004 std::string StrUtf8;
5005 if (!convertUTF16ToUTF8String(
5006 ArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
5007 CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
5008 continue;
5010 Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
5013 // Build and MDTuple of MDStrings and emit the intrinsic call.
5014 llvm::Function *F =
5015 CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
5016 MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
5017 Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
5018 return RValue::getIgnored();
5020 case Builtin::BI__builtin_annotation: {
5021 llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
5022 llvm::Function *F =
5023 CGM.getIntrinsic(llvm::Intrinsic::annotation,
5024 {AnnVal->getType(), CGM.ConstGlobalsPtrTy});
5026 // Get the annotation string, go through casts. Sema requires this to be a
5027 // non-wide string literal, potentially casted, so the cast<> is safe.
5028 const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
5029 StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
5030 return RValue::get(
5031 EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr));
5033 case Builtin::BI__builtin_addcb:
5034 case Builtin::BI__builtin_addcs:
5035 case Builtin::BI__builtin_addc:
5036 case Builtin::BI__builtin_addcl:
5037 case Builtin::BI__builtin_addcll:
5038 case Builtin::BI__builtin_subcb:
5039 case Builtin::BI__builtin_subcs:
5040 case Builtin::BI__builtin_subc:
5041 case Builtin::BI__builtin_subcl:
5042 case Builtin::BI__builtin_subcll: {
5044 // We translate all of these builtins from expressions of the form:
5045 // int x = ..., y = ..., carryin = ..., carryout, result;
5046 // result = __builtin_addc(x, y, carryin, &carryout);
5048 // to LLVM IR of the form:
5050 // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
5051 // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
5052 // %carry1 = extractvalue {i32, i1} %tmp1, 1
5053 // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
5054 // i32 %carryin)
5055 // %result = extractvalue {i32, i1} %tmp2, 0
5056 // %carry2 = extractvalue {i32, i1} %tmp2, 1
5057 // %tmp3 = or i1 %carry1, %carry2
5058 // %tmp4 = zext i1 %tmp3 to i32
5059 // store i32 %tmp4, i32* %carryout
5061 // Scalarize our inputs.
5062 llvm::Value *X = EmitScalarExpr(E->getArg(0));
5063 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
5064 llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
5065 Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
5067 // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
5068 llvm::Intrinsic::ID IntrinsicId;
5069 switch (BuiltinID) {
5070 default: llvm_unreachable("Unknown multiprecision builtin id.");
5071 case Builtin::BI__builtin_addcb:
5072 case Builtin::BI__builtin_addcs:
5073 case Builtin::BI__builtin_addc:
5074 case Builtin::BI__builtin_addcl:
5075 case Builtin::BI__builtin_addcll:
5076 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
5077 break;
5078 case Builtin::BI__builtin_subcb:
5079 case Builtin::BI__builtin_subcs:
5080 case Builtin::BI__builtin_subc:
5081 case Builtin::BI__builtin_subcl:
5082 case Builtin::BI__builtin_subcll:
5083 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
5084 break;
5087 // Construct our resulting LLVM IR expression.
5088 llvm::Value *Carry1;
5089 llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
5090 X, Y, Carry1);
5091 llvm::Value *Carry2;
5092 llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
5093 Sum1, Carryin, Carry2);
5094 llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
5095 X->getType());
5096 Builder.CreateStore(CarryOut, CarryOutPtr);
5097 return RValue::get(Sum2);
5100 case Builtin::BI__builtin_add_overflow:
5101 case Builtin::BI__builtin_sub_overflow:
5102 case Builtin::BI__builtin_mul_overflow: {
5103 const clang::Expr *LeftArg = E->getArg(0);
5104 const clang::Expr *RightArg = E->getArg(1);
5105 const clang::Expr *ResultArg = E->getArg(2);
5107 clang::QualType ResultQTy =
5108 ResultArg->getType()->castAs<PointerType>()->getPointeeType();
5110 WidthAndSignedness LeftInfo =
5111 getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
5112 WidthAndSignedness RightInfo =
5113 getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
5114 WidthAndSignedness ResultInfo =
5115 getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
5117 // Handle mixed-sign multiplication as a special case, because adding
5118 // runtime or backend support for our generic irgen would be too expensive.
5119 if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
5120 return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
5121 RightInfo, ResultArg, ResultQTy,
5122 ResultInfo);
5124 if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo,
5125 ResultInfo))
5126 return EmitCheckedUnsignedMultiplySignedResult(
5127 *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy,
5128 ResultInfo);
5130 WidthAndSignedness EncompassingInfo =
5131 EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
5133 llvm::Type *EncompassingLLVMTy =
5134 llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
5136 llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
5138 llvm::Intrinsic::ID IntrinsicId;
5139 switch (BuiltinID) {
5140 default:
5141 llvm_unreachable("Unknown overflow builtin id.");
5142 case Builtin::BI__builtin_add_overflow:
5143 IntrinsicId = EncompassingInfo.Signed
5144 ? llvm::Intrinsic::sadd_with_overflow
5145 : llvm::Intrinsic::uadd_with_overflow;
5146 break;
5147 case Builtin::BI__builtin_sub_overflow:
5148 IntrinsicId = EncompassingInfo.Signed
5149 ? llvm::Intrinsic::ssub_with_overflow
5150 : llvm::Intrinsic::usub_with_overflow;
5151 break;
5152 case Builtin::BI__builtin_mul_overflow:
5153 IntrinsicId = EncompassingInfo.Signed
5154 ? llvm::Intrinsic::smul_with_overflow
5155 : llvm::Intrinsic::umul_with_overflow;
5156 break;
5159 llvm::Value *Left = EmitScalarExpr(LeftArg);
5160 llvm::Value *Right = EmitScalarExpr(RightArg);
5161 Address ResultPtr = EmitPointerWithAlignment(ResultArg);
5163 // Extend each operand to the encompassing type.
5164 Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
5165 Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
5167 // Perform the operation on the extended values.
5168 llvm::Value *Overflow, *Result;
5169 Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
5171 if (EncompassingInfo.Width > ResultInfo.Width) {
5172 // The encompassing type is wider than the result type, so we need to
5173 // truncate it.
5174 llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
5176 // To see if the truncation caused an overflow, we will extend
5177 // the result and then compare it to the original result.
5178 llvm::Value *ResultTruncExt = Builder.CreateIntCast(
5179 ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
5180 llvm::Value *TruncationOverflow =
5181 Builder.CreateICmpNE(Result, ResultTruncExt);
5183 Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
5184 Result = ResultTrunc;
5187 // Finally, store the result using the pointer.
5188 bool isVolatile =
5189 ResultArg->getType()->getPointeeType().isVolatileQualified();
5190 Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
5192 return RValue::get(Overflow);
5195 case Builtin::BI__builtin_uadd_overflow:
5196 case Builtin::BI__builtin_uaddl_overflow:
5197 case Builtin::BI__builtin_uaddll_overflow:
5198 case Builtin::BI__builtin_usub_overflow:
5199 case Builtin::BI__builtin_usubl_overflow:
5200 case Builtin::BI__builtin_usubll_overflow:
5201 case Builtin::BI__builtin_umul_overflow:
5202 case Builtin::BI__builtin_umull_overflow:
5203 case Builtin::BI__builtin_umulll_overflow:
5204 case Builtin::BI__builtin_sadd_overflow:
5205 case Builtin::BI__builtin_saddl_overflow:
5206 case Builtin::BI__builtin_saddll_overflow:
5207 case Builtin::BI__builtin_ssub_overflow:
5208 case Builtin::BI__builtin_ssubl_overflow:
5209 case Builtin::BI__builtin_ssubll_overflow:
5210 case Builtin::BI__builtin_smul_overflow:
5211 case Builtin::BI__builtin_smull_overflow:
5212 case Builtin::BI__builtin_smulll_overflow: {
5214 // We translate all of these builtins directly to the relevant llvm IR node.
5216 // Scalarize our inputs.
5217 llvm::Value *X = EmitScalarExpr(E->getArg(0));
5218 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
5219 Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
5221 // Decide which of the overflow intrinsics we are lowering to:
5222 llvm::Intrinsic::ID IntrinsicId;
5223 switch (BuiltinID) {
5224 default: llvm_unreachable("Unknown overflow builtin id.");
5225 case Builtin::BI__builtin_uadd_overflow:
5226 case Builtin::BI__builtin_uaddl_overflow:
5227 case Builtin::BI__builtin_uaddll_overflow:
5228 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
5229 break;
5230 case Builtin::BI__builtin_usub_overflow:
5231 case Builtin::BI__builtin_usubl_overflow:
5232 case Builtin::BI__builtin_usubll_overflow:
5233 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
5234 break;
5235 case Builtin::BI__builtin_umul_overflow:
5236 case Builtin::BI__builtin_umull_overflow:
5237 case Builtin::BI__builtin_umulll_overflow:
5238 IntrinsicId = llvm::Intrinsic::umul_with_overflow;
5239 break;
5240 case Builtin::BI__builtin_sadd_overflow:
5241 case Builtin::BI__builtin_saddl_overflow:
5242 case Builtin::BI__builtin_saddll_overflow:
5243 IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
5244 break;
5245 case Builtin::BI__builtin_ssub_overflow:
5246 case Builtin::BI__builtin_ssubl_overflow:
5247 case Builtin::BI__builtin_ssubll_overflow:
5248 IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
5249 break;
5250 case Builtin::BI__builtin_smul_overflow:
5251 case Builtin::BI__builtin_smull_overflow:
5252 case Builtin::BI__builtin_smulll_overflow:
5253 IntrinsicId = llvm::Intrinsic::smul_with_overflow;
5254 break;
5258 llvm::Value *Carry;
5259 llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
5260 Builder.CreateStore(Sum, SumOutPtr);
5262 return RValue::get(Carry);
5264 case Builtin::BIaddressof:
5265 case Builtin::BI__addressof:
5266 case Builtin::BI__builtin_addressof:
5267 return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
5268 case Builtin::BI__builtin_function_start:
5269 return RValue::get(CGM.GetFunctionStart(
5270 E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext())));
5271 case Builtin::BI__builtin_operator_new:
5272 return EmitBuiltinNewDeleteCall(
5273 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
5274 case Builtin::BI__builtin_operator_delete:
5275 EmitBuiltinNewDeleteCall(
5276 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
5277 return RValue::get(nullptr);
5279 case Builtin::BI__builtin_is_aligned:
5280 return EmitBuiltinIsAligned(E);
5281 case Builtin::BI__builtin_align_up:
5282 return EmitBuiltinAlignTo(E, true);
5283 case Builtin::BI__builtin_align_down:
5284 return EmitBuiltinAlignTo(E, false);
5286 case Builtin::BI__noop:
5287 // __noop always evaluates to an integer literal zero.
5288 return RValue::get(ConstantInt::get(IntTy, 0));
5289 case Builtin::BI__builtin_call_with_static_chain: {
5290 const CallExpr *Call = cast<CallExpr>(E->getArg(0));
5291 const Expr *Chain = E->getArg(1);
5292 return EmitCall(Call->getCallee()->getType(),
5293 EmitCallee(Call->getCallee()), Call, ReturnValue,
5294 EmitScalarExpr(Chain));
5296 case Builtin::BI_InterlockedExchange8:
5297 case Builtin::BI_InterlockedExchange16:
5298 case Builtin::BI_InterlockedExchange:
5299 case Builtin::BI_InterlockedExchangePointer:
5300 return RValue::get(
5301 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
5302 case Builtin::BI_InterlockedCompareExchangePointer:
5303 case Builtin::BI_InterlockedCompareExchangePointer_nf: {
5304 llvm::Type *RTy;
5305 llvm::IntegerType *IntType = IntegerType::get(
5306 getLLVMContext(), getContext().getTypeSize(E->getType()));
5308 Address DestAddr = CheckAtomicAlignment(*this, E);
5310 llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
5311 RTy = Exchange->getType();
5312 Exchange = Builder.CreatePtrToInt(Exchange, IntType);
5314 llvm::Value *Comparand =
5315 Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
5317 auto Ordering =
5318 BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
5319 AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
5321 auto Result = Builder.CreateAtomicCmpXchg(DestAddr, Comparand, Exchange,
5322 Ordering, Ordering);
5323 Result->setVolatile(true);
5325 return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
5327 RTy));
5329 case Builtin::BI_InterlockedCompareExchange8:
5330 case Builtin::BI_InterlockedCompareExchange16:
5331 case Builtin::BI_InterlockedCompareExchange:
5332 case Builtin::BI_InterlockedCompareExchange64:
5333 return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
5334 case Builtin::BI_InterlockedIncrement16:
5335 case Builtin::BI_InterlockedIncrement:
5336 return RValue::get(
5337 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
5338 case Builtin::BI_InterlockedDecrement16:
5339 case Builtin::BI_InterlockedDecrement:
5340 return RValue::get(
5341 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
5342 case Builtin::BI_InterlockedAnd8:
5343 case Builtin::BI_InterlockedAnd16:
5344 case Builtin::BI_InterlockedAnd:
5345 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
5346 case Builtin::BI_InterlockedExchangeAdd8:
5347 case Builtin::BI_InterlockedExchangeAdd16:
5348 case Builtin::BI_InterlockedExchangeAdd:
5349 return RValue::get(
5350 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
5351 case Builtin::BI_InterlockedExchangeSub8:
5352 case Builtin::BI_InterlockedExchangeSub16:
5353 case Builtin::BI_InterlockedExchangeSub:
5354 return RValue::get(
5355 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
5356 case Builtin::BI_InterlockedOr8:
5357 case Builtin::BI_InterlockedOr16:
5358 case Builtin::BI_InterlockedOr:
5359 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
5360 case Builtin::BI_InterlockedXor8:
5361 case Builtin::BI_InterlockedXor16:
5362 case Builtin::BI_InterlockedXor:
5363 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
5365 case Builtin::BI_bittest64:
5366 case Builtin::BI_bittest:
5367 case Builtin::BI_bittestandcomplement64:
5368 case Builtin::BI_bittestandcomplement:
5369 case Builtin::BI_bittestandreset64:
5370 case Builtin::BI_bittestandreset:
5371 case Builtin::BI_bittestandset64:
5372 case Builtin::BI_bittestandset:
5373 case Builtin::BI_interlockedbittestandreset:
5374 case Builtin::BI_interlockedbittestandreset64:
5375 case Builtin::BI_interlockedbittestandset64:
5376 case Builtin::BI_interlockedbittestandset:
5377 case Builtin::BI_interlockedbittestandset_acq:
5378 case Builtin::BI_interlockedbittestandset_rel:
5379 case Builtin::BI_interlockedbittestandset_nf:
5380 case Builtin::BI_interlockedbittestandreset_acq:
5381 case Builtin::BI_interlockedbittestandreset_rel:
5382 case Builtin::BI_interlockedbittestandreset_nf:
5383 return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
5385 // These builtins exist to emit regular volatile loads and stores not
5386 // affected by the -fms-volatile setting.
5387 case Builtin::BI__iso_volatile_load8:
5388 case Builtin::BI__iso_volatile_load16:
5389 case Builtin::BI__iso_volatile_load32:
5390 case Builtin::BI__iso_volatile_load64:
5391 return RValue::get(EmitISOVolatileLoad(*this, E));
5392 case Builtin::BI__iso_volatile_store8:
5393 case Builtin::BI__iso_volatile_store16:
5394 case Builtin::BI__iso_volatile_store32:
5395 case Builtin::BI__iso_volatile_store64:
5396 return RValue::get(EmitISOVolatileStore(*this, E));
5398 case Builtin::BI__builtin_ptrauth_sign_constant:
5399 return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
5401 case Builtin::BI__builtin_ptrauth_auth:
5402 case Builtin::BI__builtin_ptrauth_auth_and_resign:
5403 case Builtin::BI__builtin_ptrauth_blend_discriminator:
5404 case Builtin::BI__builtin_ptrauth_sign_generic_data:
5405 case Builtin::BI__builtin_ptrauth_sign_unauthenticated:
5406 case Builtin::BI__builtin_ptrauth_strip: {
5407 // Emit the arguments.
5408 SmallVector<llvm::Value *, 5> Args;
5409 for (auto argExpr : E->arguments())
5410 Args.push_back(EmitScalarExpr(argExpr));
5412 // Cast the value to intptr_t, saving its original type.
5413 llvm::Type *OrigValueType = Args[0]->getType();
5414 if (OrigValueType->isPointerTy())
5415 Args[0] = Builder.CreatePtrToInt(Args[0], IntPtrTy);
5417 switch (BuiltinID) {
5418 case Builtin::BI__builtin_ptrauth_auth_and_resign:
5419 if (Args[4]->getType()->isPointerTy())
5420 Args[4] = Builder.CreatePtrToInt(Args[4], IntPtrTy);
5421 [[fallthrough]];
5423 case Builtin::BI__builtin_ptrauth_auth:
5424 case Builtin::BI__builtin_ptrauth_sign_unauthenticated:
5425 if (Args[2]->getType()->isPointerTy())
5426 Args[2] = Builder.CreatePtrToInt(Args[2], IntPtrTy);
5427 break;
5429 case Builtin::BI__builtin_ptrauth_sign_generic_data:
5430 if (Args[1]->getType()->isPointerTy())
5431 Args[1] = Builder.CreatePtrToInt(Args[1], IntPtrTy);
5432 break;
5434 case Builtin::BI__builtin_ptrauth_blend_discriminator:
5435 case Builtin::BI__builtin_ptrauth_strip:
5436 break;
5439 // Call the intrinsic.
5440 auto IntrinsicID = [&]() -> unsigned {
5441 switch (BuiltinID) {
5442 case Builtin::BI__builtin_ptrauth_auth:
5443 return llvm::Intrinsic::ptrauth_auth;
5444 case Builtin::BI__builtin_ptrauth_auth_and_resign:
5445 return llvm::Intrinsic::ptrauth_resign;
5446 case Builtin::BI__builtin_ptrauth_blend_discriminator:
5447 return llvm::Intrinsic::ptrauth_blend;
5448 case Builtin::BI__builtin_ptrauth_sign_generic_data:
5449 return llvm::Intrinsic::ptrauth_sign_generic;
5450 case Builtin::BI__builtin_ptrauth_sign_unauthenticated:
5451 return llvm::Intrinsic::ptrauth_sign;
5452 case Builtin::BI__builtin_ptrauth_strip:
5453 return llvm::Intrinsic::ptrauth_strip;
5455 llvm_unreachable("bad ptrauth intrinsic");
5456 }();
5457 auto Intrinsic = CGM.getIntrinsic(IntrinsicID);
5458 llvm::Value *Result = EmitRuntimeCall(Intrinsic, Args);
5460 if (BuiltinID != Builtin::BI__builtin_ptrauth_sign_generic_data &&
5461 BuiltinID != Builtin::BI__builtin_ptrauth_blend_discriminator &&
5462 OrigValueType->isPointerTy()) {
5463 Result = Builder.CreateIntToPtr(Result, OrigValueType);
5465 return RValue::get(Result);
5468 case Builtin::BI__exception_code:
5469 case Builtin::BI_exception_code:
5470 return RValue::get(EmitSEHExceptionCode());
5471 case Builtin::BI__exception_info:
5472 case Builtin::BI_exception_info:
5473 return RValue::get(EmitSEHExceptionInfo());
5474 case Builtin::BI__abnormal_termination:
5475 case Builtin::BI_abnormal_termination:
5476 return RValue::get(EmitSEHAbnormalTermination());
5477 case Builtin::BI_setjmpex:
5478 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
5479 E->getArg(0)->getType()->isPointerType())
5480 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
5481 break;
5482 case Builtin::BI_setjmp:
5483 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
5484 E->getArg(0)->getType()->isPointerType()) {
5485 if (getTarget().getTriple().getArch() == llvm::Triple::x86)
5486 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
5487 else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
5488 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
5489 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
5491 break;
5493 // C++ std:: builtins.
5494 case Builtin::BImove:
5495 case Builtin::BImove_if_noexcept:
5496 case Builtin::BIforward:
5497 case Builtin::BIforward_like:
5498 case Builtin::BIas_const:
5499 return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
5500 case Builtin::BI__GetExceptionInfo: {
5501 if (llvm::GlobalVariable *GV =
5502 CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
5503 return RValue::get(GV);
5504 break;
5507 case Builtin::BI__fastfail:
5508 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
5510 case Builtin::BI__builtin_coro_id:
5511 return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
5512 case Builtin::BI__builtin_coro_promise:
5513 return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
5514 case Builtin::BI__builtin_coro_resume:
5515 EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
5516 return RValue::get(nullptr);
5517 case Builtin::BI__builtin_coro_frame:
5518 return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
5519 case Builtin::BI__builtin_coro_noop:
5520 return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
5521 case Builtin::BI__builtin_coro_free:
5522 return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
5523 case Builtin::BI__builtin_coro_destroy:
5524 EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
5525 return RValue::get(nullptr);
5526 case Builtin::BI__builtin_coro_done:
5527 return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
5528 case Builtin::BI__builtin_coro_alloc:
5529 return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
5530 case Builtin::BI__builtin_coro_begin:
5531 return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
5532 case Builtin::BI__builtin_coro_end:
5533 return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
5534 case Builtin::BI__builtin_coro_suspend:
5535 return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
5536 case Builtin::BI__builtin_coro_size:
5537 return EmitCoroutineIntrinsic(E, Intrinsic::coro_size);
5538 case Builtin::BI__builtin_coro_align:
5539 return EmitCoroutineIntrinsic(E, Intrinsic::coro_align);
5541 // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
5542 case Builtin::BIread_pipe:
5543 case Builtin::BIwrite_pipe: {
5544 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
5545 *Arg1 = EmitScalarExpr(E->getArg(1));
5546 CGOpenCLRuntime OpenCLRT(CGM);
5547 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
5548 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
5550 // Type of the generic packet parameter.
5551 unsigned GenericAS =
5552 getContext().getTargetAddressSpace(LangAS::opencl_generic);
5553 llvm::Type *I8PTy = llvm::PointerType::get(getLLVMContext(), GenericAS);
5555 // Testing which overloaded version we should generate the call for.
5556 if (2U == E->getNumArgs()) {
5557 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
5558 : "__write_pipe_2";
5559 // Creating a generic function type to be able to call with any builtin or
5560 // user defined type.
5561 llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
5562 llvm::FunctionType *FTy = llvm::FunctionType::get(
5563 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5564 Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
5565 return RValue::get(
5566 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5567 {Arg0, BCast, PacketSize, PacketAlign}));
5568 } else {
5569 assert(4 == E->getNumArgs() &&
5570 "Illegal number of parameters to pipe function");
5571 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
5572 : "__write_pipe_4";
5574 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
5575 Int32Ty, Int32Ty};
5576 Value *Arg2 = EmitScalarExpr(E->getArg(2)),
5577 *Arg3 = EmitScalarExpr(E->getArg(3));
5578 llvm::FunctionType *FTy = llvm::FunctionType::get(
5579 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5580 Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
5581 // We know the third argument is an integer type, but we may need to cast
5582 // it to i32.
5583 if (Arg2->getType() != Int32Ty)
5584 Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
5585 return RValue::get(
5586 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5587 {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
5590 // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
5591 // functions
5592 case Builtin::BIreserve_read_pipe:
5593 case Builtin::BIreserve_write_pipe:
5594 case Builtin::BIwork_group_reserve_read_pipe:
5595 case Builtin::BIwork_group_reserve_write_pipe:
5596 case Builtin::BIsub_group_reserve_read_pipe:
5597 case Builtin::BIsub_group_reserve_write_pipe: {
5598 // Composing the mangled name for the function.
5599 const char *Name;
5600 if (BuiltinID == Builtin::BIreserve_read_pipe)
5601 Name = "__reserve_read_pipe";
5602 else if (BuiltinID == Builtin::BIreserve_write_pipe)
5603 Name = "__reserve_write_pipe";
5604 else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
5605 Name = "__work_group_reserve_read_pipe";
5606 else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
5607 Name = "__work_group_reserve_write_pipe";
5608 else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
5609 Name = "__sub_group_reserve_read_pipe";
5610 else
5611 Name = "__sub_group_reserve_write_pipe";
5613 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
5614 *Arg1 = EmitScalarExpr(E->getArg(1));
5615 llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
5616 CGOpenCLRuntime OpenCLRT(CGM);
5617 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
5618 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
5620 // Building the generic function prototype.
5621 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
5622 llvm::FunctionType *FTy = llvm::FunctionType::get(
5623 ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5624 // We know the second argument is an integer type, but we may need to cast
5625 // it to i32.
5626 if (Arg1->getType() != Int32Ty)
5627 Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
5628 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5629 {Arg0, Arg1, PacketSize, PacketAlign}));
5631 // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
5632 // functions
5633 case Builtin::BIcommit_read_pipe:
5634 case Builtin::BIcommit_write_pipe:
5635 case Builtin::BIwork_group_commit_read_pipe:
5636 case Builtin::BIwork_group_commit_write_pipe:
5637 case Builtin::BIsub_group_commit_read_pipe:
5638 case Builtin::BIsub_group_commit_write_pipe: {
5639 const char *Name;
5640 if (BuiltinID == Builtin::BIcommit_read_pipe)
5641 Name = "__commit_read_pipe";
5642 else if (BuiltinID == Builtin::BIcommit_write_pipe)
5643 Name = "__commit_write_pipe";
5644 else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
5645 Name = "__work_group_commit_read_pipe";
5646 else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
5647 Name = "__work_group_commit_write_pipe";
5648 else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
5649 Name = "__sub_group_commit_read_pipe";
5650 else
5651 Name = "__sub_group_commit_write_pipe";
5653 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
5654 *Arg1 = EmitScalarExpr(E->getArg(1));
5655 CGOpenCLRuntime OpenCLRT(CGM);
5656 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
5657 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
5659 // Building the generic function prototype.
5660 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
5661 llvm::FunctionType *FTy =
5662 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
5663 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5665 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5666 {Arg0, Arg1, PacketSize, PacketAlign}));
5668 // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
5669 case Builtin::BIget_pipe_num_packets:
5670 case Builtin::BIget_pipe_max_packets: {
5671 const char *BaseName;
5672 const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
5673 if (BuiltinID == Builtin::BIget_pipe_num_packets)
5674 BaseName = "__get_pipe_num_packets";
5675 else
5676 BaseName = "__get_pipe_max_packets";
5677 std::string Name = std::string(BaseName) +
5678 std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
5680 // Building the generic function prototype.
5681 Value *Arg0 = EmitScalarExpr(E->getArg(0));
5682 CGOpenCLRuntime OpenCLRT(CGM);
5683 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
5684 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
5685 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
5686 llvm::FunctionType *FTy = llvm::FunctionType::get(
5687 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5689 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5690 {Arg0, PacketSize, PacketAlign}));
5693 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
5694 case Builtin::BIto_global:
5695 case Builtin::BIto_local:
5696 case Builtin::BIto_private: {
5697 auto Arg0 = EmitScalarExpr(E->getArg(0));
5698 auto NewArgT = llvm::PointerType::get(
5699 getLLVMContext(),
5700 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
5701 auto NewRetT = llvm::PointerType::get(
5702 getLLVMContext(),
5703 CGM.getContext().getTargetAddressSpace(
5704 E->getType()->getPointeeType().getAddressSpace()));
5705 auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
5706 llvm::Value *NewArg;
5707 if (Arg0->getType()->getPointerAddressSpace() !=
5708 NewArgT->getPointerAddressSpace())
5709 NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
5710 else
5711 NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
5712 auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
5713 auto NewCall =
5714 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
5715 return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
5716 ConvertType(E->getType())));
5719 // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
5720 // Table 6.13.17.1 specifies four overload forms of enqueue_kernel.
5721 // The code below expands the builtin call to a call to one of the following
5722 // functions that an OpenCL runtime library will have to provide:
5723 // __enqueue_kernel_basic
5724 // __enqueue_kernel_varargs
5725 // __enqueue_kernel_basic_events
5726 // __enqueue_kernel_events_varargs
5727 case Builtin::BIenqueue_kernel: {
5728 StringRef Name; // Generated function call name
5729 unsigned NumArgs = E->getNumArgs();
5731 llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
5732 llvm::Type *GenericVoidPtrTy = Builder.getPtrTy(
5733 getContext().getTargetAddressSpace(LangAS::opencl_generic));
5735 llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
5736 llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
5737 LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
5738 llvm::Value *Range = NDRangeL.getAddress().emitRawPointer(*this);
5739 llvm::Type *RangeTy = NDRangeL.getAddress().getType();
5741 if (NumArgs == 4) {
5742 // The most basic form of the call with parameters:
5743 // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
5744 Name = "__enqueue_kernel_basic";
5745 llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
5746 GenericVoidPtrTy};
5747 llvm::FunctionType *FTy = llvm::FunctionType::get(
5748 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5750 auto Info =
5751 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
5752 llvm::Value *Kernel =
5753 Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5754 llvm::Value *Block =
5755 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5757 AttrBuilder B(Builder.getContext());
5758 B.addByValAttr(NDRangeL.getAddress().getElementType());
5759 llvm::AttributeList ByValAttrSet =
5760 llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
5762 auto RTCall =
5763 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
5764 {Queue, Flags, Range, Kernel, Block});
5765 RTCall->setAttributes(ByValAttrSet);
5766 return RValue::get(RTCall);
5768 assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
5770 // Create a temporary array to hold the sizes of local pointer arguments
5771 // for the block. \p First is the position of the first size argument.
5772 auto CreateArrayForSizeVar = [=](unsigned First)
5773 -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
5774 llvm::APInt ArraySize(32, NumArgs - First);
5775 QualType SizeArrayTy = getContext().getConstantArrayType(
5776 getContext().getSizeType(), ArraySize, nullptr,
5777 ArraySizeModifier::Normal,
5778 /*IndexTypeQuals=*/0);
5779 auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
5780 llvm::Value *TmpPtr = Tmp.getPointer();
5781 llvm::Value *TmpSize = EmitLifetimeStart(
5782 CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
5783 llvm::Value *ElemPtr;
5784 // Each of the following arguments specifies the size of the corresponding
5785 // argument passed to the enqueued block.
5786 auto *Zero = llvm::ConstantInt::get(IntTy, 0);
5787 for (unsigned I = First; I < NumArgs; ++I) {
5788 auto *Index = llvm::ConstantInt::get(IntTy, I - First);
5789 auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr,
5790 {Zero, Index});
5791 if (I == First)
5792 ElemPtr = GEP;
5793 auto *V =
5794 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
5795 Builder.CreateAlignedStore(
5796 V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy));
5798 return std::tie(ElemPtr, TmpSize, TmpPtr);
5801 // Could have events and/or varargs.
5802 if (E->getArg(3)->getType()->isBlockPointerType()) {
5803 // No events passed, but has variadic arguments.
5804 Name = "__enqueue_kernel_varargs";
5805 auto Info =
5806 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
5807 llvm::Value *Kernel =
5808 Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5809 auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5810 llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
5811 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
5813 // Create a vector of the arguments, as well as a constant value to
5814 // express to the runtime the number of variadic arguments.
5815 llvm::Value *const Args[] = {Queue, Flags,
5816 Range, Kernel,
5817 Block, ConstantInt::get(IntTy, NumArgs - 4),
5818 ElemPtr};
5819 llvm::Type *const ArgTys[] = {
5820 QueueTy, IntTy, RangeTy, GenericVoidPtrTy,
5821 GenericVoidPtrTy, IntTy, ElemPtr->getType()};
5823 llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false);
5824 auto Call = RValue::get(
5825 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args));
5826 if (TmpSize)
5827 EmitLifetimeEnd(TmpSize, TmpPtr);
5828 return Call;
5830 // Any calls now have event arguments passed.
5831 if (NumArgs >= 7) {
5832 llvm::PointerType *PtrTy = llvm::PointerType::get(
5833 CGM.getLLVMContext(),
5834 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
5836 llvm::Value *NumEvents =
5837 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
5839 // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
5840 // to be a null pointer constant (including `0` literal), we can take it
5841 // into account and emit null pointer directly.
5842 llvm::Value *EventWaitList = nullptr;
5843 if (E->getArg(4)->isNullPointerConstant(
5844 getContext(), Expr::NPC_ValueDependentIsNotNull)) {
5845 EventWaitList = llvm::ConstantPointerNull::get(PtrTy);
5846 } else {
5847 EventWaitList =
5848 E->getArg(4)->getType()->isArrayType()
5849 ? EmitArrayToPointerDecay(E->getArg(4)).emitRawPointer(*this)
5850 : EmitScalarExpr(E->getArg(4));
5851 // Convert to generic address space.
5852 EventWaitList = Builder.CreatePointerCast(EventWaitList, PtrTy);
5854 llvm::Value *EventRet = nullptr;
5855 if (E->getArg(5)->isNullPointerConstant(
5856 getContext(), Expr::NPC_ValueDependentIsNotNull)) {
5857 EventRet = llvm::ConstantPointerNull::get(PtrTy);
5858 } else {
5859 EventRet =
5860 Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), PtrTy);
5863 auto Info =
5864 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
5865 llvm::Value *Kernel =
5866 Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5867 llvm::Value *Block =
5868 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5870 std::vector<llvm::Type *> ArgTys = {
5871 QueueTy, Int32Ty, RangeTy, Int32Ty,
5872 PtrTy, PtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
5874 std::vector<llvm::Value *> Args = {Queue, Flags, Range,
5875 NumEvents, EventWaitList, EventRet,
5876 Kernel, Block};
5878 if (NumArgs == 7) {
5879 // Has events but no variadics.
5880 Name = "__enqueue_kernel_basic_events";
5881 llvm::FunctionType *FTy = llvm::FunctionType::get(
5882 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5883 return RValue::get(
5884 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5885 llvm::ArrayRef<llvm::Value *>(Args)));
5887 // Has event info and variadics
5888 // Pass the number of variadics to the runtime function too.
5889 Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
5890 ArgTys.push_back(Int32Ty);
5891 Name = "__enqueue_kernel_events_varargs";
5893 llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
5894 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
5895 Args.push_back(ElemPtr);
5896 ArgTys.push_back(ElemPtr->getType());
5898 llvm::FunctionType *FTy = llvm::FunctionType::get(
5899 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5900 auto Call =
5901 RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5902 llvm::ArrayRef<llvm::Value *>(Args)));
5903 if (TmpSize)
5904 EmitLifetimeEnd(TmpSize, TmpPtr);
5905 return Call;
5907 llvm_unreachable("Unexpected enqueue_kernel signature");
5909 // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
5910 // parameter.
5911 case Builtin::BIget_kernel_work_group_size: {
5912 llvm::Type *GenericVoidPtrTy = Builder.getPtrTy(
5913 getContext().getTargetAddressSpace(LangAS::opencl_generic));
5914 auto Info =
5915 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
5916 Value *Kernel =
5917 Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5918 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5919 return RValue::get(EmitRuntimeCall(
5920 CGM.CreateRuntimeFunction(
5921 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
5922 false),
5923 "__get_kernel_work_group_size_impl"),
5924 {Kernel, Arg}));
5926 case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
5927 llvm::Type *GenericVoidPtrTy = Builder.getPtrTy(
5928 getContext().getTargetAddressSpace(LangAS::opencl_generic));
5929 auto Info =
5930 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
5931 Value *Kernel =
5932 Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5933 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5934 return RValue::get(EmitRuntimeCall(
5935 CGM.CreateRuntimeFunction(
5936 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
5937 false),
5938 "__get_kernel_preferred_work_group_size_multiple_impl"),
5939 {Kernel, Arg}));
5941 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
5942 case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
5943 llvm::Type *GenericVoidPtrTy = Builder.getPtrTy(
5944 getContext().getTargetAddressSpace(LangAS::opencl_generic));
5945 LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
5946 llvm::Value *NDRange = NDRangeL.getAddress().emitRawPointer(*this);
5947 auto Info =
5948 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
5949 Value *Kernel =
5950 Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5951 Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5952 const char *Name =
5953 BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
5954 ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
5955 : "__get_kernel_sub_group_count_for_ndrange_impl";
5956 return RValue::get(EmitRuntimeCall(
5957 CGM.CreateRuntimeFunction(
5958 llvm::FunctionType::get(
5959 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
5960 false),
5961 Name),
5962 {NDRange, Kernel, Block}));
5964 case Builtin::BI__builtin_store_half:
5965 case Builtin::BI__builtin_store_halff: {
5966 Value *Val = EmitScalarExpr(E->getArg(0));
5967 Address Address = EmitPointerWithAlignment(E->getArg(1));
5968 Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
5969 Builder.CreateStore(HalfVal, Address);
5970 return RValue::get(nullptr);
5972 case Builtin::BI__builtin_load_half: {
5973 Address Address = EmitPointerWithAlignment(E->getArg(0));
5974 Value *HalfVal = Builder.CreateLoad(Address);
5975 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
5977 case Builtin::BI__builtin_load_halff: {
5978 Address Address = EmitPointerWithAlignment(E->getArg(0));
5979 Value *HalfVal = Builder.CreateLoad(Address);
5980 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
5982 case Builtin::BI__builtin_printf:
5983 case Builtin::BIprintf:
5984 if (getTarget().getTriple().isNVPTX() ||
5985 getTarget().getTriple().isAMDGCN() ||
5986 (getTarget().getTriple().isSPIRV() &&
5987 getTarget().getTriple().getVendor() == Triple::VendorType::AMD)) {
5988 if (getLangOpts().OpenMPIsTargetDevice)
5989 return EmitOpenMPDevicePrintfCallExpr(E);
5990 if (getTarget().getTriple().isNVPTX())
5991 return EmitNVPTXDevicePrintfCallExpr(E);
5992 if ((getTarget().getTriple().isAMDGCN() ||
5993 getTarget().getTriple().isSPIRV()) &&
5994 getLangOpts().HIP)
5995 return EmitAMDGPUDevicePrintfCallExpr(E);
5998 break;
5999 case Builtin::BI__builtin_canonicalize:
6000 case Builtin::BI__builtin_canonicalizef:
6001 case Builtin::BI__builtin_canonicalizef16:
6002 case Builtin::BI__builtin_canonicalizel:
6003 return RValue::get(
6004 emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::canonicalize));
6006 case Builtin::BI__builtin_thread_pointer: {
6007 if (!getContext().getTargetInfo().isTLSSupported())
6008 CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
6009 // Fall through - it's already mapped to the intrinsic by ClangBuiltin.
6010 break;
6012 case Builtin::BI__builtin_os_log_format:
6013 return emitBuiltinOSLogFormat(*E);
6015 case Builtin::BI__xray_customevent: {
6016 if (!ShouldXRayInstrumentFunction())
6017 return RValue::getIgnored();
6019 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
6020 XRayInstrKind::Custom))
6021 return RValue::getIgnored();
6023 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
6024 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
6025 return RValue::getIgnored();
6027 Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
6028 auto FTy = F->getFunctionType();
6029 auto Arg0 = E->getArg(0);
6030 auto Arg0Val = EmitScalarExpr(Arg0);
6031 auto Arg0Ty = Arg0->getType();
6032 auto PTy0 = FTy->getParamType(0);
6033 if (PTy0 != Arg0Val->getType()) {
6034 if (Arg0Ty->isArrayType())
6035 Arg0Val = EmitArrayToPointerDecay(Arg0).emitRawPointer(*this);
6036 else
6037 Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
6039 auto Arg1 = EmitScalarExpr(E->getArg(1));
6040 auto PTy1 = FTy->getParamType(1);
6041 if (PTy1 != Arg1->getType())
6042 Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
6043 return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
6046 case Builtin::BI__xray_typedevent: {
6047 // TODO: There should be a way to always emit events even if the current
6048 // function is not instrumented. Losing events in a stream can cripple
6049 // a trace.
6050 if (!ShouldXRayInstrumentFunction())
6051 return RValue::getIgnored();
6053 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
6054 XRayInstrKind::Typed))
6055 return RValue::getIgnored();
6057 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
6058 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
6059 return RValue::getIgnored();
6061 Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
6062 auto FTy = F->getFunctionType();
6063 auto Arg0 = EmitScalarExpr(E->getArg(0));
6064 auto PTy0 = FTy->getParamType(0);
6065 if (PTy0 != Arg0->getType())
6066 Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
6067 auto Arg1 = E->getArg(1);
6068 auto Arg1Val = EmitScalarExpr(Arg1);
6069 auto Arg1Ty = Arg1->getType();
6070 auto PTy1 = FTy->getParamType(1);
6071 if (PTy1 != Arg1Val->getType()) {
6072 if (Arg1Ty->isArrayType())
6073 Arg1Val = EmitArrayToPointerDecay(Arg1).emitRawPointer(*this);
6074 else
6075 Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
6077 auto Arg2 = EmitScalarExpr(E->getArg(2));
6078 auto PTy2 = FTy->getParamType(2);
6079 if (PTy2 != Arg2->getType())
6080 Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
6081 return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
6084 case Builtin::BI__builtin_ms_va_start:
6085 case Builtin::BI__builtin_ms_va_end:
6086 return RValue::get(
6087 EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).emitRawPointer(*this),
6088 BuiltinID == Builtin::BI__builtin_ms_va_start));
6090 case Builtin::BI__builtin_ms_va_copy: {
6091 // Lower this manually. We can't reliably determine whether or not any
6092 // given va_copy() is for a Win64 va_list from the calling convention
6093 // alone, because it's legal to do this from a System V ABI function.
6094 // With opaque pointer types, we won't have enough information in LLVM
6095 // IR to determine this from the argument types, either. Best to do it
6096 // now, while we have enough information.
6097 Address DestAddr = EmitMSVAListRef(E->getArg(0));
6098 Address SrcAddr = EmitMSVAListRef(E->getArg(1));
6100 DestAddr = DestAddr.withElementType(Int8PtrTy);
6101 SrcAddr = SrcAddr.withElementType(Int8PtrTy);
6103 Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
6104 return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
6107 case Builtin::BI__builtin_get_device_side_mangled_name: {
6108 auto Name = CGM.getCUDARuntime().getDeviceSideName(
6109 cast<DeclRefExpr>(E->getArg(0)->IgnoreImpCasts())->getDecl());
6110 auto Str = CGM.GetAddrOfConstantCString(Name, "");
6111 return RValue::get(Str.getPointer());
6115 // If this is an alias for a lib function (e.g. __builtin_sin), emit
6116 // the call using the normal call path, but using the unmangled
6117 // version of the function name.
6118 if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
6119 return emitLibraryCall(*this, FD, E,
6120 CGM.getBuiltinLibFunction(FD, BuiltinID));
6122 // If this is a predefined lib function (e.g. malloc), emit the call
6123 // using exactly the normal call path.
6124 if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
6125 return emitLibraryCall(*this, FD, E, CGM.getRawFunctionPointer(FD));
6127 // Check that a call to a target specific builtin has the correct target
6128 // features.
6129 // This is down here to avoid non-target specific builtins, however, if
6130 // generic builtins start to require generic target features then we
6131 // can move this up to the beginning of the function.
6132 checkTargetFeatures(E, FD);
6134 if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
6135 LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
6137 // See if we have a target specific intrinsic.
6138 StringRef Name = getContext().BuiltinInfo.getName(BuiltinID);
6139 Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
6140 StringRef Prefix =
6141 llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
6142 if (!Prefix.empty()) {
6143 IntrinsicID = Intrinsic::getIntrinsicForClangBuiltin(Prefix.data(), Name);
6144 if (IntrinsicID == Intrinsic::not_intrinsic && Prefix == "spv" &&
6145 getTarget().getTriple().getOS() == llvm::Triple::OSType::AMDHSA)
6146 IntrinsicID = Intrinsic::getIntrinsicForClangBuiltin("amdgcn", Name);
6147 // NOTE we don't need to perform a compatibility flag check here since the
6148 // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
6149 // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
6150 if (IntrinsicID == Intrinsic::not_intrinsic)
6151 IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
6154 if (IntrinsicID != Intrinsic::not_intrinsic) {
6155 SmallVector<Value*, 16> Args;
6157 // Find out if any arguments are required to be integer constant
6158 // expressions.
6159 unsigned ICEArguments = 0;
6160 ASTContext::GetBuiltinTypeError Error;
6161 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
6162 assert(Error == ASTContext::GE_None && "Should not codegen an error");
6164 Function *F = CGM.getIntrinsic(IntrinsicID);
6165 llvm::FunctionType *FTy = F->getFunctionType();
6167 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
6168 Value *ArgValue = EmitScalarOrConstFoldImmArg(ICEArguments, i, E);
6169 // If the intrinsic arg type is different from the builtin arg type
6170 // we need to do a bit cast.
6171 llvm::Type *PTy = FTy->getParamType(i);
6172 if (PTy != ArgValue->getType()) {
6173 // XXX - vector of pointers?
6174 if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
6175 if (PtrTy->getAddressSpace() !=
6176 ArgValue->getType()->getPointerAddressSpace()) {
6177 ArgValue = Builder.CreateAddrSpaceCast(
6178 ArgValue, llvm::PointerType::get(getLLVMContext(),
6179 PtrTy->getAddressSpace()));
6183 // Cast vector type (e.g., v256i32) to x86_amx, this only happen
6184 // in amx intrinsics.
6185 if (PTy->isX86_AMXTy())
6186 ArgValue = Builder.CreateIntrinsic(Intrinsic::x86_cast_vector_to_tile,
6187 {ArgValue->getType()}, {ArgValue});
6188 else
6189 ArgValue = Builder.CreateBitCast(ArgValue, PTy);
6192 Args.push_back(ArgValue);
6195 Value *V = Builder.CreateCall(F, Args);
6196 QualType BuiltinRetType = E->getType();
6198 llvm::Type *RetTy = VoidTy;
6199 if (!BuiltinRetType->isVoidType())
6200 RetTy = ConvertType(BuiltinRetType);
6202 if (RetTy != V->getType()) {
6203 // XXX - vector of pointers?
6204 if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
6205 if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
6206 V = Builder.CreateAddrSpaceCast(
6207 V, llvm::PointerType::get(getLLVMContext(),
6208 PtrTy->getAddressSpace()));
6212 // Cast x86_amx to vector type (e.g., v256i32), this only happen
6213 // in amx intrinsics.
6214 if (V->getType()->isX86_AMXTy())
6215 V = Builder.CreateIntrinsic(Intrinsic::x86_cast_tile_to_vector, {RetTy},
6216 {V});
6217 else
6218 V = Builder.CreateBitCast(V, RetTy);
6221 if (RetTy->isVoidTy())
6222 return RValue::get(nullptr);
6224 return RValue::get(V);
6227 // Some target-specific builtins can have aggregate return values, e.g.
6228 // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
6229 // ReturnValue to be non-null, so that the target-specific emission code can
6230 // always just emit into it.
6231 TypeEvaluationKind EvalKind = getEvaluationKind(E->getType());
6232 if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) {
6233 Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp");
6234 ReturnValue = ReturnValueSlot(DestPtr, false);
6237 // Now see if we can emit a target-specific builtin.
6238 if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) {
6239 switch (EvalKind) {
6240 case TEK_Scalar:
6241 if (V->getType()->isVoidTy())
6242 return RValue::get(nullptr);
6243 return RValue::get(V);
6244 case TEK_Aggregate:
6245 return RValue::getAggregate(ReturnValue.getAddress(),
6246 ReturnValue.isVolatile());
6247 case TEK_Complex:
6248 llvm_unreachable("No current target builtin returns complex");
6250 llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr");
6253 // EmitHLSLBuiltinExpr will check getLangOpts().HLSL
6254 if (Value *V = EmitHLSLBuiltinExpr(BuiltinID, E))
6255 return RValue::get(V);
6257 if (getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice)
6258 return EmitHipStdParUnsupportedBuiltin(this, FD);
6260 ErrorUnsupported(E, "builtin function");
6262 // Unknown builtin, for now just dump it out and return undef.
6263 return GetUndefRValue(E->getType());
6266 static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
6267 unsigned BuiltinID, const CallExpr *E,
6268 ReturnValueSlot ReturnValue,
6269 llvm::Triple::ArchType Arch) {
6270 // When compiling in HipStdPar mode we have to be conservative in rejecting
6271 // target specific features in the FE, and defer the possible error to the
6272 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
6273 // referenced by an accelerator executable function, we emit an error.
6274 // Returning nullptr here leads to the builtin being handled in
6275 // EmitStdParUnsupportedBuiltin.
6276 if (CGF->getLangOpts().HIPStdPar && CGF->getLangOpts().CUDAIsDevice &&
6277 Arch != CGF->getTarget().getTriple().getArch())
6278 return nullptr;
6280 switch (Arch) {
6281 case llvm::Triple::arm:
6282 case llvm::Triple::armeb:
6283 case llvm::Triple::thumb:
6284 case llvm::Triple::thumbeb:
6285 return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
6286 case llvm::Triple::aarch64:
6287 case llvm::Triple::aarch64_32:
6288 case llvm::Triple::aarch64_be:
6289 return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
6290 case llvm::Triple::bpfeb:
6291 case llvm::Triple::bpfel:
6292 return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
6293 case llvm::Triple::x86:
6294 case llvm::Triple::x86_64:
6295 return CGF->EmitX86BuiltinExpr(BuiltinID, E);
6296 case llvm::Triple::ppc:
6297 case llvm::Triple::ppcle:
6298 case llvm::Triple::ppc64:
6299 case llvm::Triple::ppc64le:
6300 return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
6301 case llvm::Triple::r600:
6302 case llvm::Triple::amdgcn:
6303 return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
6304 case llvm::Triple::systemz:
6305 return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
6306 case llvm::Triple::nvptx:
6307 case llvm::Triple::nvptx64:
6308 return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
6309 case llvm::Triple::wasm32:
6310 case llvm::Triple::wasm64:
6311 return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
6312 case llvm::Triple::hexagon:
6313 return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
6314 case llvm::Triple::riscv32:
6315 case llvm::Triple::riscv64:
6316 return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue);
6317 case llvm::Triple::spirv64:
6318 if (CGF->getTarget().getTriple().getOS() != llvm::Triple::OSType::AMDHSA)
6319 return nullptr;
6320 return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
6321 default:
6322 return nullptr;
6326 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
6327 const CallExpr *E,
6328 ReturnValueSlot ReturnValue) {
6329 if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
6330 assert(getContext().getAuxTargetInfo() && "Missing aux target info");
6331 return EmitTargetArchBuiltinExpr(
6332 this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
6333 ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
6336 return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
6337 getTarget().getTriple().getArch());
6340 static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF,
6341 NeonTypeFlags TypeFlags,
6342 bool HasLegalHalfType = true,
6343 bool V1Ty = false,
6344 bool AllowBFloatArgsAndRet = true) {
6345 int IsQuad = TypeFlags.isQuad();
6346 switch (TypeFlags.getEltType()) {
6347 case NeonTypeFlags::Int8:
6348 case NeonTypeFlags::Poly8:
6349 return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
6350 case NeonTypeFlags::Int16:
6351 case NeonTypeFlags::Poly16:
6352 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
6353 case NeonTypeFlags::BFloat16:
6354 if (AllowBFloatArgsAndRet)
6355 return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad));
6356 else
6357 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
6358 case NeonTypeFlags::Float16:
6359 if (HasLegalHalfType)
6360 return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
6361 else
6362 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
6363 case NeonTypeFlags::Int32:
6364 return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
6365 case NeonTypeFlags::Int64:
6366 case NeonTypeFlags::Poly64:
6367 return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
6368 case NeonTypeFlags::Poly128:
6369 // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
6370 // There is a lot of i128 and f128 API missing.
6371 // so we use v16i8 to represent poly128 and get pattern matched.
6372 return llvm::FixedVectorType::get(CGF->Int8Ty, 16);
6373 case NeonTypeFlags::Float32:
6374 return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
6375 case NeonTypeFlags::Float64:
6376 return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
6378 llvm_unreachable("Unknown vector element type!");
6381 static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
6382 NeonTypeFlags IntTypeFlags) {
6383 int IsQuad = IntTypeFlags.isQuad();
6384 switch (IntTypeFlags.getEltType()) {
6385 case NeonTypeFlags::Int16:
6386 return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad));
6387 case NeonTypeFlags::Int32:
6388 return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad));
6389 case NeonTypeFlags::Int64:
6390 return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad));
6391 default:
6392 llvm_unreachable("Type can't be converted to floating-point!");
6396 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C,
6397 const ElementCount &Count) {
6398 Value *SV = llvm::ConstantVector::getSplat(Count, C);
6399 return Builder.CreateShuffleVector(V, V, SV, "lane");
6402 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
6403 ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount();
6404 return EmitNeonSplat(V, C, EC);
6407 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
6408 const char *name,
6409 unsigned shift, bool rightshift) {
6410 unsigned j = 0;
6411 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
6412 ai != ae; ++ai, ++j) {
6413 if (F->isConstrainedFPIntrinsic())
6414 if (ai->getType()->isMetadataTy())
6415 continue;
6416 if (shift > 0 && shift == j)
6417 Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
6418 else
6419 Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
6422 if (F->isConstrainedFPIntrinsic())
6423 return Builder.CreateConstrainedFPCall(F, Ops, name);
6424 else
6425 return Builder.CreateCall(F, Ops, name);
6428 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
6429 bool neg) {
6430 int SV = cast<ConstantInt>(V)->getSExtValue();
6431 return ConstantInt::get(Ty, neg ? -SV : SV);
6434 // Right-shift a vector by a constant.
6435 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
6436 llvm::Type *Ty, bool usgn,
6437 const char *name) {
6438 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
6440 int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
6441 int EltSize = VTy->getScalarSizeInBits();
6443 Vec = Builder.CreateBitCast(Vec, Ty);
6445 // lshr/ashr are undefined when the shift amount is equal to the vector
6446 // element size.
6447 if (ShiftAmt == EltSize) {
6448 if (usgn) {
6449 // Right-shifting an unsigned value by its size yields 0.
6450 return llvm::ConstantAggregateZero::get(VTy);
6451 } else {
6452 // Right-shifting a signed value by its size is equivalent
6453 // to a shift of size-1.
6454 --ShiftAmt;
6455 Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
6459 Shift = EmitNeonShiftVector(Shift, Ty, false);
6460 if (usgn)
6461 return Builder.CreateLShr(Vec, Shift, name);
6462 else
6463 return Builder.CreateAShr(Vec, Shift, name);
6466 enum {
6467 AddRetType = (1 << 0),
6468 Add1ArgType = (1 << 1),
6469 Add2ArgTypes = (1 << 2),
6471 VectorizeRetType = (1 << 3),
6472 VectorizeArgTypes = (1 << 4),
6474 InventFloatType = (1 << 5),
6475 UnsignedAlts = (1 << 6),
6477 Use64BitVectors = (1 << 7),
6478 Use128BitVectors = (1 << 8),
6480 Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
6481 VectorRet = AddRetType | VectorizeRetType,
6482 VectorRetGetArgs01 =
6483 AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
6484 FpCmpzModifiers =
6485 AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
6488 namespace {
6489 struct ARMVectorIntrinsicInfo {
6490 const char *NameHint;
6491 unsigned BuiltinID;
6492 unsigned LLVMIntrinsic;
6493 unsigned AltLLVMIntrinsic;
6494 uint64_t TypeModifier;
6496 bool operator<(unsigned RHSBuiltinID) const {
6497 return BuiltinID < RHSBuiltinID;
6499 bool operator<(const ARMVectorIntrinsicInfo &TE) const {
6500 return BuiltinID < TE.BuiltinID;
6503 } // end anonymous namespace
6505 #define NEONMAP0(NameBase) \
6506 { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
6508 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
6509 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
6510 Intrinsic::LLVMIntrinsic, 0, TypeModifier }
6512 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
6513 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
6514 Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
6515 TypeModifier }
6517 static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = {
6518 NEONMAP1(__a32_vcvt_bf16_f32, arm_neon_vcvtfp2bf, 0),
6519 NEONMAP0(splat_lane_v),
6520 NEONMAP0(splat_laneq_v),
6521 NEONMAP0(splatq_lane_v),
6522 NEONMAP0(splatq_laneq_v),
6523 NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
6524 NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
6525 NEONMAP1(vabs_v, arm_neon_vabs, 0),
6526 NEONMAP1(vabsq_v, arm_neon_vabs, 0),
6527 NEONMAP0(vadd_v),
6528 NEONMAP0(vaddhn_v),
6529 NEONMAP0(vaddq_v),
6530 NEONMAP1(vaesdq_u8, arm_neon_aesd, 0),
6531 NEONMAP1(vaeseq_u8, arm_neon_aese, 0),
6532 NEONMAP1(vaesimcq_u8, arm_neon_aesimc, 0),
6533 NEONMAP1(vaesmcq_u8, arm_neon_aesmc, 0),
6534 NEONMAP1(vbfdot_f32, arm_neon_bfdot, 0),
6535 NEONMAP1(vbfdotq_f32, arm_neon_bfdot, 0),
6536 NEONMAP1(vbfmlalbq_f32, arm_neon_bfmlalb, 0),
6537 NEONMAP1(vbfmlaltq_f32, arm_neon_bfmlalt, 0),
6538 NEONMAP1(vbfmmlaq_f32, arm_neon_bfmmla, 0),
6539 NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
6540 NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
6541 NEONMAP1(vcadd_rot270_f16, arm_neon_vcadd_rot270, Add1ArgType),
6542 NEONMAP1(vcadd_rot270_f32, arm_neon_vcadd_rot270, Add1ArgType),
6543 NEONMAP1(vcadd_rot90_f16, arm_neon_vcadd_rot90, Add1ArgType),
6544 NEONMAP1(vcadd_rot90_f32, arm_neon_vcadd_rot90, Add1ArgType),
6545 NEONMAP1(vcaddq_rot270_f16, arm_neon_vcadd_rot270, Add1ArgType),
6546 NEONMAP1(vcaddq_rot270_f32, arm_neon_vcadd_rot270, Add1ArgType),
6547 NEONMAP1(vcaddq_rot270_f64, arm_neon_vcadd_rot270, Add1ArgType),
6548 NEONMAP1(vcaddq_rot90_f16, arm_neon_vcadd_rot90, Add1ArgType),
6549 NEONMAP1(vcaddq_rot90_f32, arm_neon_vcadd_rot90, Add1ArgType),
6550 NEONMAP1(vcaddq_rot90_f64, arm_neon_vcadd_rot90, Add1ArgType),
6551 NEONMAP1(vcage_v, arm_neon_vacge, 0),
6552 NEONMAP1(vcageq_v, arm_neon_vacge, 0),
6553 NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
6554 NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
6555 NEONMAP1(vcale_v, arm_neon_vacge, 0),
6556 NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
6557 NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
6558 NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
6559 NEONMAP0(vceqz_v),
6560 NEONMAP0(vceqzq_v),
6561 NEONMAP0(vcgez_v),
6562 NEONMAP0(vcgezq_v),
6563 NEONMAP0(vcgtz_v),
6564 NEONMAP0(vcgtzq_v),
6565 NEONMAP0(vclez_v),
6566 NEONMAP0(vclezq_v),
6567 NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
6568 NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
6569 NEONMAP0(vcltz_v),
6570 NEONMAP0(vcltzq_v),
6571 NEONMAP1(vclz_v, ctlz, Add1ArgType),
6572 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
6573 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
6574 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
6575 NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
6576 NEONMAP0(vcvt_f16_s16),
6577 NEONMAP0(vcvt_f16_u16),
6578 NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
6579 NEONMAP0(vcvt_f32_v),
6580 NEONMAP1(vcvt_n_f16_s16, arm_neon_vcvtfxs2fp, 0),
6581 NEONMAP1(vcvt_n_f16_u16, arm_neon_vcvtfxu2fp, 0),
6582 NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
6583 NEONMAP1(vcvt_n_s16_f16, arm_neon_vcvtfp2fxs, 0),
6584 NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
6585 NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
6586 NEONMAP1(vcvt_n_u16_f16, arm_neon_vcvtfp2fxu, 0),
6587 NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
6588 NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
6589 NEONMAP0(vcvt_s16_f16),
6590 NEONMAP0(vcvt_s32_v),
6591 NEONMAP0(vcvt_s64_v),
6592 NEONMAP0(vcvt_u16_f16),
6593 NEONMAP0(vcvt_u32_v),
6594 NEONMAP0(vcvt_u64_v),
6595 NEONMAP1(vcvta_s16_f16, arm_neon_vcvtas, 0),
6596 NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
6597 NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
6598 NEONMAP1(vcvta_u16_f16, arm_neon_vcvtau, 0),
6599 NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
6600 NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
6601 NEONMAP1(vcvtaq_s16_f16, arm_neon_vcvtas, 0),
6602 NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
6603 NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
6604 NEONMAP1(vcvtaq_u16_f16, arm_neon_vcvtau, 0),
6605 NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
6606 NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
6607 NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0),
6608 NEONMAP1(vcvtm_s16_f16, arm_neon_vcvtms, 0),
6609 NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
6610 NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
6611 NEONMAP1(vcvtm_u16_f16, arm_neon_vcvtmu, 0),
6612 NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
6613 NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
6614 NEONMAP1(vcvtmq_s16_f16, arm_neon_vcvtms, 0),
6615 NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
6616 NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
6617 NEONMAP1(vcvtmq_u16_f16, arm_neon_vcvtmu, 0),
6618 NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
6619 NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
6620 NEONMAP1(vcvtn_s16_f16, arm_neon_vcvtns, 0),
6621 NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
6622 NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
6623 NEONMAP1(vcvtn_u16_f16, arm_neon_vcvtnu, 0),
6624 NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
6625 NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
6626 NEONMAP1(vcvtnq_s16_f16, arm_neon_vcvtns, 0),
6627 NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
6628 NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
6629 NEONMAP1(vcvtnq_u16_f16, arm_neon_vcvtnu, 0),
6630 NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
6631 NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
6632 NEONMAP1(vcvtp_s16_f16, arm_neon_vcvtps, 0),
6633 NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
6634 NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
6635 NEONMAP1(vcvtp_u16_f16, arm_neon_vcvtpu, 0),
6636 NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
6637 NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
6638 NEONMAP1(vcvtpq_s16_f16, arm_neon_vcvtps, 0),
6639 NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
6640 NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
6641 NEONMAP1(vcvtpq_u16_f16, arm_neon_vcvtpu, 0),
6642 NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
6643 NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
6644 NEONMAP0(vcvtq_f16_s16),
6645 NEONMAP0(vcvtq_f16_u16),
6646 NEONMAP0(vcvtq_f32_v),
6647 NEONMAP1(vcvtq_n_f16_s16, arm_neon_vcvtfxs2fp, 0),
6648 NEONMAP1(vcvtq_n_f16_u16, arm_neon_vcvtfxu2fp, 0),
6649 NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
6650 NEONMAP1(vcvtq_n_s16_f16, arm_neon_vcvtfp2fxs, 0),
6651 NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
6652 NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
6653 NEONMAP1(vcvtq_n_u16_f16, arm_neon_vcvtfp2fxu, 0),
6654 NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
6655 NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
6656 NEONMAP0(vcvtq_s16_f16),
6657 NEONMAP0(vcvtq_s32_v),
6658 NEONMAP0(vcvtq_s64_v),
6659 NEONMAP0(vcvtq_u16_f16),
6660 NEONMAP0(vcvtq_u32_v),
6661 NEONMAP0(vcvtq_u64_v),
6662 NEONMAP1(vdot_s32, arm_neon_sdot, 0),
6663 NEONMAP1(vdot_u32, arm_neon_udot, 0),
6664 NEONMAP1(vdotq_s32, arm_neon_sdot, 0),
6665 NEONMAP1(vdotq_u32, arm_neon_udot, 0),
6666 NEONMAP0(vext_v),
6667 NEONMAP0(vextq_v),
6668 NEONMAP0(vfma_v),
6669 NEONMAP0(vfmaq_v),
6670 NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
6671 NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
6672 NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
6673 NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
6674 NEONMAP0(vld1_dup_v),
6675 NEONMAP1(vld1_v, arm_neon_vld1, 0),
6676 NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
6677 NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
6678 NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
6679 NEONMAP0(vld1q_dup_v),
6680 NEONMAP1(vld1q_v, arm_neon_vld1, 0),
6681 NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
6682 NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
6683 NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
6684 NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
6685 NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
6686 NEONMAP1(vld2_v, arm_neon_vld2, 0),
6687 NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
6688 NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
6689 NEONMAP1(vld2q_v, arm_neon_vld2, 0),
6690 NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
6691 NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
6692 NEONMAP1(vld3_v, arm_neon_vld3, 0),
6693 NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
6694 NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
6695 NEONMAP1(vld3q_v, arm_neon_vld3, 0),
6696 NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
6697 NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
6698 NEONMAP1(vld4_v, arm_neon_vld4, 0),
6699 NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
6700 NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
6701 NEONMAP1(vld4q_v, arm_neon_vld4, 0),
6702 NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
6703 NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
6704 NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
6705 NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
6706 NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
6707 NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
6708 NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
6709 NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
6710 NEONMAP1(vmmlaq_s32, arm_neon_smmla, 0),
6711 NEONMAP1(vmmlaq_u32, arm_neon_ummla, 0),
6712 NEONMAP0(vmovl_v),
6713 NEONMAP0(vmovn_v),
6714 NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
6715 NEONMAP0(vmull_v),
6716 NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
6717 NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
6718 NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
6719 NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
6720 NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
6721 NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
6722 NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
6723 NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
6724 NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
6725 NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
6726 NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
6727 NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
6728 NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
6729 NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0),
6730 NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0),
6731 NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
6732 NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
6733 NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
6734 NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
6735 NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
6736 NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
6737 NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
6738 NEONMAP1(vqrdmlah_s16, arm_neon_vqrdmlah, Add1ArgType),
6739 NEONMAP1(vqrdmlah_s32, arm_neon_vqrdmlah, Add1ArgType),
6740 NEONMAP1(vqrdmlahq_s16, arm_neon_vqrdmlah, Add1ArgType),
6741 NEONMAP1(vqrdmlahq_s32, arm_neon_vqrdmlah, Add1ArgType),
6742 NEONMAP1(vqrdmlsh_s16, arm_neon_vqrdmlsh, Add1ArgType),
6743 NEONMAP1(vqrdmlsh_s32, arm_neon_vqrdmlsh, Add1ArgType),
6744 NEONMAP1(vqrdmlshq_s16, arm_neon_vqrdmlsh, Add1ArgType),
6745 NEONMAP1(vqrdmlshq_s32, arm_neon_vqrdmlsh, Add1ArgType),
6746 NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
6747 NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
6748 NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
6749 NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
6750 NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
6751 NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
6752 NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
6753 NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
6754 NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
6755 NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
6756 NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
6757 NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
6758 NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
6759 NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
6760 NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
6761 NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
6762 NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
6763 NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
6764 NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
6765 NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
6766 NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
6767 NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
6768 NEONMAP0(vrndi_v),
6769 NEONMAP0(vrndiq_v),
6770 NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
6771 NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
6772 NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
6773 NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
6774 NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
6775 NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
6776 NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
6777 NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
6778 NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
6779 NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
6780 NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
6781 NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
6782 NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
6783 NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
6784 NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
6785 NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
6786 NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
6787 NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
6788 NEONMAP1(vsha1su0q_u32, arm_neon_sha1su0, 0),
6789 NEONMAP1(vsha1su1q_u32, arm_neon_sha1su1, 0),
6790 NEONMAP1(vsha256h2q_u32, arm_neon_sha256h2, 0),
6791 NEONMAP1(vsha256hq_u32, arm_neon_sha256h, 0),
6792 NEONMAP1(vsha256su0q_u32, arm_neon_sha256su0, 0),
6793 NEONMAP1(vsha256su1q_u32, arm_neon_sha256su1, 0),
6794 NEONMAP0(vshl_n_v),
6795 NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
6796 NEONMAP0(vshll_n_v),
6797 NEONMAP0(vshlq_n_v),
6798 NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
6799 NEONMAP0(vshr_n_v),
6800 NEONMAP0(vshrn_n_v),
6801 NEONMAP0(vshrq_n_v),
6802 NEONMAP1(vst1_v, arm_neon_vst1, 0),
6803 NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
6804 NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
6805 NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
6806 NEONMAP1(vst1q_v, arm_neon_vst1, 0),
6807 NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
6808 NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
6809 NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
6810 NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
6811 NEONMAP1(vst2_v, arm_neon_vst2, 0),
6812 NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
6813 NEONMAP1(vst2q_v, arm_neon_vst2, 0),
6814 NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
6815 NEONMAP1(vst3_v, arm_neon_vst3, 0),
6816 NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
6817 NEONMAP1(vst3q_v, arm_neon_vst3, 0),
6818 NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
6819 NEONMAP1(vst4_v, arm_neon_vst4, 0),
6820 NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
6821 NEONMAP1(vst4q_v, arm_neon_vst4, 0),
6822 NEONMAP0(vsubhn_v),
6823 NEONMAP0(vtrn_v),
6824 NEONMAP0(vtrnq_v),
6825 NEONMAP0(vtst_v),
6826 NEONMAP0(vtstq_v),
6827 NEONMAP1(vusdot_s32, arm_neon_usdot, 0),
6828 NEONMAP1(vusdotq_s32, arm_neon_usdot, 0),
6829 NEONMAP1(vusmmlaq_s32, arm_neon_usmmla, 0),
6830 NEONMAP0(vuzp_v),
6831 NEONMAP0(vuzpq_v),
6832 NEONMAP0(vzip_v),
6833 NEONMAP0(vzipq_v)
6836 static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
6837 NEONMAP1(__a64_vcvtq_low_bf16_f32, aarch64_neon_bfcvtn, 0),
6838 NEONMAP0(splat_lane_v),
6839 NEONMAP0(splat_laneq_v),
6840 NEONMAP0(splatq_lane_v),
6841 NEONMAP0(splatq_laneq_v),
6842 NEONMAP1(vabs_v, aarch64_neon_abs, 0),
6843 NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
6844 NEONMAP0(vadd_v),
6845 NEONMAP0(vaddhn_v),
6846 NEONMAP0(vaddq_p128),
6847 NEONMAP0(vaddq_v),
6848 NEONMAP1(vaesdq_u8, aarch64_crypto_aesd, 0),
6849 NEONMAP1(vaeseq_u8, aarch64_crypto_aese, 0),
6850 NEONMAP1(vaesimcq_u8, aarch64_crypto_aesimc, 0),
6851 NEONMAP1(vaesmcq_u8, aarch64_crypto_aesmc, 0),
6852 NEONMAP2(vbcaxq_s16, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6853 NEONMAP2(vbcaxq_s32, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6854 NEONMAP2(vbcaxq_s64, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6855 NEONMAP2(vbcaxq_s8, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6856 NEONMAP2(vbcaxq_u16, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6857 NEONMAP2(vbcaxq_u32, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6858 NEONMAP2(vbcaxq_u64, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6859 NEONMAP2(vbcaxq_u8, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6860 NEONMAP1(vbfdot_f32, aarch64_neon_bfdot, 0),
6861 NEONMAP1(vbfdotq_f32, aarch64_neon_bfdot, 0),
6862 NEONMAP1(vbfmlalbq_f32, aarch64_neon_bfmlalb, 0),
6863 NEONMAP1(vbfmlaltq_f32, aarch64_neon_bfmlalt, 0),
6864 NEONMAP1(vbfmmlaq_f32, aarch64_neon_bfmmla, 0),
6865 NEONMAP1(vcadd_rot270_f16, aarch64_neon_vcadd_rot270, Add1ArgType),
6866 NEONMAP1(vcadd_rot270_f32, aarch64_neon_vcadd_rot270, Add1ArgType),
6867 NEONMAP1(vcadd_rot90_f16, aarch64_neon_vcadd_rot90, Add1ArgType),
6868 NEONMAP1(vcadd_rot90_f32, aarch64_neon_vcadd_rot90, Add1ArgType),
6869 NEONMAP1(vcaddq_rot270_f16, aarch64_neon_vcadd_rot270, Add1ArgType),
6870 NEONMAP1(vcaddq_rot270_f32, aarch64_neon_vcadd_rot270, Add1ArgType),
6871 NEONMAP1(vcaddq_rot270_f64, aarch64_neon_vcadd_rot270, Add1ArgType),
6872 NEONMAP1(vcaddq_rot90_f16, aarch64_neon_vcadd_rot90, Add1ArgType),
6873 NEONMAP1(vcaddq_rot90_f32, aarch64_neon_vcadd_rot90, Add1ArgType),
6874 NEONMAP1(vcaddq_rot90_f64, aarch64_neon_vcadd_rot90, Add1ArgType),
6875 NEONMAP1(vcage_v, aarch64_neon_facge, 0),
6876 NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
6877 NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
6878 NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
6879 NEONMAP1(vcale_v, aarch64_neon_facge, 0),
6880 NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
6881 NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
6882 NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
6883 NEONMAP0(vceqz_v),
6884 NEONMAP0(vceqzq_v),
6885 NEONMAP0(vcgez_v),
6886 NEONMAP0(vcgezq_v),
6887 NEONMAP0(vcgtz_v),
6888 NEONMAP0(vcgtzq_v),
6889 NEONMAP0(vclez_v),
6890 NEONMAP0(vclezq_v),
6891 NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
6892 NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
6893 NEONMAP0(vcltz_v),
6894 NEONMAP0(vcltzq_v),
6895 NEONMAP1(vclz_v, ctlz, Add1ArgType),
6896 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
6897 NEONMAP1(vcmla_f16, aarch64_neon_vcmla_rot0, Add1ArgType),
6898 NEONMAP1(vcmla_f32, aarch64_neon_vcmla_rot0, Add1ArgType),
6899 NEONMAP1(vcmla_rot180_f16, aarch64_neon_vcmla_rot180, Add1ArgType),
6900 NEONMAP1(vcmla_rot180_f32, aarch64_neon_vcmla_rot180, Add1ArgType),
6901 NEONMAP1(vcmla_rot270_f16, aarch64_neon_vcmla_rot270, Add1ArgType),
6902 NEONMAP1(vcmla_rot270_f32, aarch64_neon_vcmla_rot270, Add1ArgType),
6903 NEONMAP1(vcmla_rot90_f16, aarch64_neon_vcmla_rot90, Add1ArgType),
6904 NEONMAP1(vcmla_rot90_f32, aarch64_neon_vcmla_rot90, Add1ArgType),
6905 NEONMAP1(vcmlaq_f16, aarch64_neon_vcmla_rot0, Add1ArgType),
6906 NEONMAP1(vcmlaq_f32, aarch64_neon_vcmla_rot0, Add1ArgType),
6907 NEONMAP1(vcmlaq_f64, aarch64_neon_vcmla_rot0, Add1ArgType),
6908 NEONMAP1(vcmlaq_rot180_f16, aarch64_neon_vcmla_rot180, Add1ArgType),
6909 NEONMAP1(vcmlaq_rot180_f32, aarch64_neon_vcmla_rot180, Add1ArgType),
6910 NEONMAP1(vcmlaq_rot180_f64, aarch64_neon_vcmla_rot180, Add1ArgType),
6911 NEONMAP1(vcmlaq_rot270_f16, aarch64_neon_vcmla_rot270, Add1ArgType),
6912 NEONMAP1(vcmlaq_rot270_f32, aarch64_neon_vcmla_rot270, Add1ArgType),
6913 NEONMAP1(vcmlaq_rot270_f64, aarch64_neon_vcmla_rot270, Add1ArgType),
6914 NEONMAP1(vcmlaq_rot90_f16, aarch64_neon_vcmla_rot90, Add1ArgType),
6915 NEONMAP1(vcmlaq_rot90_f32, aarch64_neon_vcmla_rot90, Add1ArgType),
6916 NEONMAP1(vcmlaq_rot90_f64, aarch64_neon_vcmla_rot90, Add1ArgType),
6917 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
6918 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
6919 NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
6920 NEONMAP0(vcvt_f16_s16),
6921 NEONMAP0(vcvt_f16_u16),
6922 NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
6923 NEONMAP0(vcvt_f32_v),
6924 NEONMAP1(vcvt_n_f16_s16, aarch64_neon_vcvtfxs2fp, 0),
6925 NEONMAP1(vcvt_n_f16_u16, aarch64_neon_vcvtfxu2fp, 0),
6926 NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6927 NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6928 NEONMAP1(vcvt_n_s16_f16, aarch64_neon_vcvtfp2fxs, 0),
6929 NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
6930 NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
6931 NEONMAP1(vcvt_n_u16_f16, aarch64_neon_vcvtfp2fxu, 0),
6932 NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
6933 NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
6934 NEONMAP0(vcvtq_f16_s16),
6935 NEONMAP0(vcvtq_f16_u16),
6936 NEONMAP0(vcvtq_f32_v),
6937 NEONMAP1(vcvtq_high_bf16_f32, aarch64_neon_bfcvtn2, 0),
6938 NEONMAP1(vcvtq_n_f16_s16, aarch64_neon_vcvtfxs2fp, 0),
6939 NEONMAP1(vcvtq_n_f16_u16, aarch64_neon_vcvtfxu2fp, 0),
6940 NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6941 NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6942 NEONMAP1(vcvtq_n_s16_f16, aarch64_neon_vcvtfp2fxs, 0),
6943 NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
6944 NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
6945 NEONMAP1(vcvtq_n_u16_f16, aarch64_neon_vcvtfp2fxu, 0),
6946 NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
6947 NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
6948 NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
6949 NEONMAP1(vdot_s32, aarch64_neon_sdot, 0),
6950 NEONMAP1(vdot_u32, aarch64_neon_udot, 0),
6951 NEONMAP1(vdotq_s32, aarch64_neon_sdot, 0),
6952 NEONMAP1(vdotq_u32, aarch64_neon_udot, 0),
6953 NEONMAP2(veor3q_s16, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6954 NEONMAP2(veor3q_s32, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6955 NEONMAP2(veor3q_s64, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6956 NEONMAP2(veor3q_s8, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6957 NEONMAP2(veor3q_u16, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6958 NEONMAP2(veor3q_u32, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6959 NEONMAP2(veor3q_u64, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6960 NEONMAP2(veor3q_u8, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6961 NEONMAP0(vext_v),
6962 NEONMAP0(vextq_v),
6963 NEONMAP0(vfma_v),
6964 NEONMAP0(vfmaq_v),
6965 NEONMAP1(vfmlal_high_f16, aarch64_neon_fmlal2, 0),
6966 NEONMAP1(vfmlal_low_f16, aarch64_neon_fmlal, 0),
6967 NEONMAP1(vfmlalq_high_f16, aarch64_neon_fmlal2, 0),
6968 NEONMAP1(vfmlalq_low_f16, aarch64_neon_fmlal, 0),
6969 NEONMAP1(vfmlsl_high_f16, aarch64_neon_fmlsl2, 0),
6970 NEONMAP1(vfmlsl_low_f16, aarch64_neon_fmlsl, 0),
6971 NEONMAP1(vfmlslq_high_f16, aarch64_neon_fmlsl2, 0),
6972 NEONMAP1(vfmlslq_low_f16, aarch64_neon_fmlsl, 0),
6973 NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
6974 NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
6975 NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
6976 NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
6977 NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
6978 NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
6979 NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
6980 NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
6981 NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
6982 NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
6983 NEONMAP1(vmmlaq_s32, aarch64_neon_smmla, 0),
6984 NEONMAP1(vmmlaq_u32, aarch64_neon_ummla, 0),
6985 NEONMAP0(vmovl_v),
6986 NEONMAP0(vmovn_v),
6987 NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
6988 NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
6989 NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
6990 NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
6991 NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
6992 NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
6993 NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
6994 NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
6995 NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
6996 NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
6997 NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
6998 NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
6999 NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0),
7000 NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
7001 NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
7002 NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0),
7003 NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
7004 NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
7005 NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
7006 NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
7007 NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
7008 NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
7009 NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
7010 NEONMAP1(vqrdmlah_s16, aarch64_neon_sqrdmlah, Add1ArgType),
7011 NEONMAP1(vqrdmlah_s32, aarch64_neon_sqrdmlah, Add1ArgType),
7012 NEONMAP1(vqrdmlahq_s16, aarch64_neon_sqrdmlah, Add1ArgType),
7013 NEONMAP1(vqrdmlahq_s32, aarch64_neon_sqrdmlah, Add1ArgType),
7014 NEONMAP1(vqrdmlsh_s16, aarch64_neon_sqrdmlsh, Add1ArgType),
7015 NEONMAP1(vqrdmlsh_s32, aarch64_neon_sqrdmlsh, Add1ArgType),
7016 NEONMAP1(vqrdmlshq_s16, aarch64_neon_sqrdmlsh, Add1ArgType),
7017 NEONMAP1(vqrdmlshq_s32, aarch64_neon_sqrdmlsh, Add1ArgType),
7018 NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0),
7019 NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
7020 NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
7021 NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0),
7022 NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
7023 NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
7024 NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
7025 NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
7026 NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
7027 NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
7028 NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
7029 NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
7030 NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
7031 NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
7032 NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
7033 NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
7034 NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
7035 NEONMAP1(vrax1q_u64, aarch64_crypto_rax1, 0),
7036 NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
7037 NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
7038 NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
7039 NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
7040 NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
7041 NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
7042 NEONMAP1(vrnd32x_f32, aarch64_neon_frint32x, Add1ArgType),
7043 NEONMAP1(vrnd32x_f64, aarch64_neon_frint32x, Add1ArgType),
7044 NEONMAP1(vrnd32xq_f32, aarch64_neon_frint32x, Add1ArgType),
7045 NEONMAP1(vrnd32xq_f64, aarch64_neon_frint32x, Add1ArgType),
7046 NEONMAP1(vrnd32z_f32, aarch64_neon_frint32z, Add1ArgType),
7047 NEONMAP1(vrnd32z_f64, aarch64_neon_frint32z, Add1ArgType),
7048 NEONMAP1(vrnd32zq_f32, aarch64_neon_frint32z, Add1ArgType),
7049 NEONMAP1(vrnd32zq_f64, aarch64_neon_frint32z, Add1ArgType),
7050 NEONMAP1(vrnd64x_f32, aarch64_neon_frint64x, Add1ArgType),
7051 NEONMAP1(vrnd64x_f64, aarch64_neon_frint64x, Add1ArgType),
7052 NEONMAP1(vrnd64xq_f32, aarch64_neon_frint64x, Add1ArgType),
7053 NEONMAP1(vrnd64xq_f64, aarch64_neon_frint64x, Add1ArgType),
7054 NEONMAP1(vrnd64z_f32, aarch64_neon_frint64z, Add1ArgType),
7055 NEONMAP1(vrnd64z_f64, aarch64_neon_frint64z, Add1ArgType),
7056 NEONMAP1(vrnd64zq_f32, aarch64_neon_frint64z, Add1ArgType),
7057 NEONMAP1(vrnd64zq_f64, aarch64_neon_frint64z, Add1ArgType),
7058 NEONMAP0(vrndi_v),
7059 NEONMAP0(vrndiq_v),
7060 NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
7061 NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
7062 NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
7063 NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
7064 NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
7065 NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
7066 NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
7067 NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
7068 NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
7069 NEONMAP1(vsha1su0q_u32, aarch64_crypto_sha1su0, 0),
7070 NEONMAP1(vsha1su1q_u32, aarch64_crypto_sha1su1, 0),
7071 NEONMAP1(vsha256h2q_u32, aarch64_crypto_sha256h2, 0),
7072 NEONMAP1(vsha256hq_u32, aarch64_crypto_sha256h, 0),
7073 NEONMAP1(vsha256su0q_u32, aarch64_crypto_sha256su0, 0),
7074 NEONMAP1(vsha256su1q_u32, aarch64_crypto_sha256su1, 0),
7075 NEONMAP1(vsha512h2q_u64, aarch64_crypto_sha512h2, 0),
7076 NEONMAP1(vsha512hq_u64, aarch64_crypto_sha512h, 0),
7077 NEONMAP1(vsha512su0q_u64, aarch64_crypto_sha512su0, 0),
7078 NEONMAP1(vsha512su1q_u64, aarch64_crypto_sha512su1, 0),
7079 NEONMAP0(vshl_n_v),
7080 NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
7081 NEONMAP0(vshll_n_v),
7082 NEONMAP0(vshlq_n_v),
7083 NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
7084 NEONMAP0(vshr_n_v),
7085 NEONMAP0(vshrn_n_v),
7086 NEONMAP0(vshrq_n_v),
7087 NEONMAP1(vsm3partw1q_u32, aarch64_crypto_sm3partw1, 0),
7088 NEONMAP1(vsm3partw2q_u32, aarch64_crypto_sm3partw2, 0),
7089 NEONMAP1(vsm3ss1q_u32, aarch64_crypto_sm3ss1, 0),
7090 NEONMAP1(vsm3tt1aq_u32, aarch64_crypto_sm3tt1a, 0),
7091 NEONMAP1(vsm3tt1bq_u32, aarch64_crypto_sm3tt1b, 0),
7092 NEONMAP1(vsm3tt2aq_u32, aarch64_crypto_sm3tt2a, 0),
7093 NEONMAP1(vsm3tt2bq_u32, aarch64_crypto_sm3tt2b, 0),
7094 NEONMAP1(vsm4ekeyq_u32, aarch64_crypto_sm4ekey, 0),
7095 NEONMAP1(vsm4eq_u32, aarch64_crypto_sm4e, 0),
7096 NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
7097 NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
7098 NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
7099 NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
7100 NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
7101 NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
7102 NEONMAP0(vsubhn_v),
7103 NEONMAP0(vtst_v),
7104 NEONMAP0(vtstq_v),
7105 NEONMAP1(vusdot_s32, aarch64_neon_usdot, 0),
7106 NEONMAP1(vusdotq_s32, aarch64_neon_usdot, 0),
7107 NEONMAP1(vusmmlaq_s32, aarch64_neon_usmmla, 0),
7108 NEONMAP1(vxarq_u64, aarch64_crypto_xar, 0),
7111 static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = {
7112 NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
7113 NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
7114 NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
7115 NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
7116 NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
7117 NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
7118 NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
7119 NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
7120 NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
7121 NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
7122 NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
7123 NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
7124 NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
7125 NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
7126 NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
7127 NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
7128 NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
7129 NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
7130 NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
7131 NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
7132 NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
7133 NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
7134 NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
7135 NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
7136 NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
7137 NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
7138 NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
7139 NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
7140 NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
7141 NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
7142 NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
7143 NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
7144 NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
7145 NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
7146 NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0),
7147 NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
7148 NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
7149 NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
7150 NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
7151 NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
7152 NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
7153 NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
7154 NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
7155 NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
7156 NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
7157 NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
7158 NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
7159 NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
7160 NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
7161 NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
7162 NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
7163 NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
7164 NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
7165 NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
7166 NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
7167 NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
7168 NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
7169 NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
7170 NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
7171 NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
7172 NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
7173 NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
7174 NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
7175 NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
7176 NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
7177 NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
7178 NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
7179 NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
7180 NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
7181 NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
7182 NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
7183 NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
7184 NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
7185 NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
7186 NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
7187 NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
7188 NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
7189 NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
7190 NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
7191 NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
7192 NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
7193 NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
7194 NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
7195 NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
7196 NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
7197 NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
7198 NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
7199 NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
7200 NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
7201 NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
7202 NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
7203 NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
7204 NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
7205 NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
7206 NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
7207 NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
7208 NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
7209 NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
7210 NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
7211 NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
7212 NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
7213 NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
7214 NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
7215 NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
7216 NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
7217 NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
7218 NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
7219 NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
7220 NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
7221 NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
7222 NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
7223 NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
7224 NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
7225 NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
7226 NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
7227 NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
7228 NEONMAP1(vqrdmlahh_s16, aarch64_neon_sqrdmlah, Vectorize1ArgType | Use64BitVectors),
7229 NEONMAP1(vqrdmlahs_s32, aarch64_neon_sqrdmlah, Add1ArgType),
7230 NEONMAP1(vqrdmlshh_s16, aarch64_neon_sqrdmlsh, Vectorize1ArgType | Use64BitVectors),
7231 NEONMAP1(vqrdmlshs_s32, aarch64_neon_sqrdmlsh, Add1ArgType),
7232 NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
7233 NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
7234 NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
7235 NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
7236 NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
7237 NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
7238 NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
7239 NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
7240 NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
7241 NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
7242 NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
7243 NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
7244 NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
7245 NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
7246 NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
7247 NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
7248 NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
7249 NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
7250 NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
7251 NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
7252 NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
7253 NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
7254 NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
7255 NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
7256 NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
7257 NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
7258 NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
7259 NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
7260 NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
7261 NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
7262 NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
7263 NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
7264 NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
7265 NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
7266 NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
7267 NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
7268 NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
7269 NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
7270 NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
7271 NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
7272 NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
7273 NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
7274 NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
7275 NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
7276 NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
7277 NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
7278 NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
7279 NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
7280 NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
7281 NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
7282 NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
7283 NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
7284 NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
7285 NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
7286 NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
7287 NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
7288 NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
7289 NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
7290 NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
7291 NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
7292 NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
7293 NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
7294 NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
7295 NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
7296 NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
7297 NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
7298 NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
7299 NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
7300 NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
7301 NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
7302 NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
7303 NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
7304 NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
7305 NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
7306 NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
7307 NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
7308 NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
7309 NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
7310 NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
7311 NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
7312 NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
7313 // FP16 scalar intrinisics go here.
7314 NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
7315 NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
7316 NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
7317 NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
7318 NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
7319 NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
7320 NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
7321 NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
7322 NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
7323 NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
7324 NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
7325 NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
7326 NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
7327 NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
7328 NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
7329 NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
7330 NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
7331 NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
7332 NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
7333 NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
7334 NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
7335 NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
7336 NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
7337 NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
7338 NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
7339 NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
7340 NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
7341 NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
7342 NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
7343 NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
7344 NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
7345 NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
7346 NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
7347 NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
7350 // Some intrinsics are equivalent for codegen.
7351 static const std::pair<unsigned, unsigned> NEONEquivalentIntrinsicMap[] = {
7352 { NEON::BI__builtin_neon_splat_lane_bf16, NEON::BI__builtin_neon_splat_lane_v, },
7353 { NEON::BI__builtin_neon_splat_laneq_bf16, NEON::BI__builtin_neon_splat_laneq_v, },
7354 { NEON::BI__builtin_neon_splatq_lane_bf16, NEON::BI__builtin_neon_splatq_lane_v, },
7355 { NEON::BI__builtin_neon_splatq_laneq_bf16, NEON::BI__builtin_neon_splatq_laneq_v, },
7356 { NEON::BI__builtin_neon_vabd_f16, NEON::BI__builtin_neon_vabd_v, },
7357 { NEON::BI__builtin_neon_vabdq_f16, NEON::BI__builtin_neon_vabdq_v, },
7358 { NEON::BI__builtin_neon_vabs_f16, NEON::BI__builtin_neon_vabs_v, },
7359 { NEON::BI__builtin_neon_vabsq_f16, NEON::BI__builtin_neon_vabsq_v, },
7360 { NEON::BI__builtin_neon_vcage_f16, NEON::BI__builtin_neon_vcage_v, },
7361 { NEON::BI__builtin_neon_vcageq_f16, NEON::BI__builtin_neon_vcageq_v, },
7362 { NEON::BI__builtin_neon_vcagt_f16, NEON::BI__builtin_neon_vcagt_v, },
7363 { NEON::BI__builtin_neon_vcagtq_f16, NEON::BI__builtin_neon_vcagtq_v, },
7364 { NEON::BI__builtin_neon_vcale_f16, NEON::BI__builtin_neon_vcale_v, },
7365 { NEON::BI__builtin_neon_vcaleq_f16, NEON::BI__builtin_neon_vcaleq_v, },
7366 { NEON::BI__builtin_neon_vcalt_f16, NEON::BI__builtin_neon_vcalt_v, },
7367 { NEON::BI__builtin_neon_vcaltq_f16, NEON::BI__builtin_neon_vcaltq_v, },
7368 { NEON::BI__builtin_neon_vceqz_f16, NEON::BI__builtin_neon_vceqz_v, },
7369 { NEON::BI__builtin_neon_vceqzq_f16, NEON::BI__builtin_neon_vceqzq_v, },
7370 { NEON::BI__builtin_neon_vcgez_f16, NEON::BI__builtin_neon_vcgez_v, },
7371 { NEON::BI__builtin_neon_vcgezq_f16, NEON::BI__builtin_neon_vcgezq_v, },
7372 { NEON::BI__builtin_neon_vcgtz_f16, NEON::BI__builtin_neon_vcgtz_v, },
7373 { NEON::BI__builtin_neon_vcgtzq_f16, NEON::BI__builtin_neon_vcgtzq_v, },
7374 { NEON::BI__builtin_neon_vclez_f16, NEON::BI__builtin_neon_vclez_v, },
7375 { NEON::BI__builtin_neon_vclezq_f16, NEON::BI__builtin_neon_vclezq_v, },
7376 { NEON::BI__builtin_neon_vcltz_f16, NEON::BI__builtin_neon_vcltz_v, },
7377 { NEON::BI__builtin_neon_vcltzq_f16, NEON::BI__builtin_neon_vcltzq_v, },
7378 { NEON::BI__builtin_neon_vfma_f16, NEON::BI__builtin_neon_vfma_v, },
7379 { NEON::BI__builtin_neon_vfma_lane_f16, NEON::BI__builtin_neon_vfma_lane_v, },
7380 { NEON::BI__builtin_neon_vfma_laneq_f16, NEON::BI__builtin_neon_vfma_laneq_v, },
7381 { NEON::BI__builtin_neon_vfmaq_f16, NEON::BI__builtin_neon_vfmaq_v, },
7382 { NEON::BI__builtin_neon_vfmaq_lane_f16, NEON::BI__builtin_neon_vfmaq_lane_v, },
7383 { NEON::BI__builtin_neon_vfmaq_laneq_f16, NEON::BI__builtin_neon_vfmaq_laneq_v, },
7384 { NEON::BI__builtin_neon_vld1_bf16_x2, NEON::BI__builtin_neon_vld1_x2_v },
7385 { NEON::BI__builtin_neon_vld1_bf16_x3, NEON::BI__builtin_neon_vld1_x3_v },
7386 { NEON::BI__builtin_neon_vld1_bf16_x4, NEON::BI__builtin_neon_vld1_x4_v },
7387 { NEON::BI__builtin_neon_vld1_bf16, NEON::BI__builtin_neon_vld1_v },
7388 { NEON::BI__builtin_neon_vld1_dup_bf16, NEON::BI__builtin_neon_vld1_dup_v },
7389 { NEON::BI__builtin_neon_vld1_lane_bf16, NEON::BI__builtin_neon_vld1_lane_v },
7390 { NEON::BI__builtin_neon_vld1q_bf16_x2, NEON::BI__builtin_neon_vld1q_x2_v },
7391 { NEON::BI__builtin_neon_vld1q_bf16_x3, NEON::BI__builtin_neon_vld1q_x3_v },
7392 { NEON::BI__builtin_neon_vld1q_bf16_x4, NEON::BI__builtin_neon_vld1q_x4_v },
7393 { NEON::BI__builtin_neon_vld1q_bf16, NEON::BI__builtin_neon_vld1q_v },
7394 { NEON::BI__builtin_neon_vld1q_dup_bf16, NEON::BI__builtin_neon_vld1q_dup_v },
7395 { NEON::BI__builtin_neon_vld1q_lane_bf16, NEON::BI__builtin_neon_vld1q_lane_v },
7396 { NEON::BI__builtin_neon_vld2_bf16, NEON::BI__builtin_neon_vld2_v },
7397 { NEON::BI__builtin_neon_vld2_dup_bf16, NEON::BI__builtin_neon_vld2_dup_v },
7398 { NEON::BI__builtin_neon_vld2_lane_bf16, NEON::BI__builtin_neon_vld2_lane_v },
7399 { NEON::BI__builtin_neon_vld2q_bf16, NEON::BI__builtin_neon_vld2q_v },
7400 { NEON::BI__builtin_neon_vld2q_dup_bf16, NEON::BI__builtin_neon_vld2q_dup_v },
7401 { NEON::BI__builtin_neon_vld2q_lane_bf16, NEON::BI__builtin_neon_vld2q_lane_v },
7402 { NEON::BI__builtin_neon_vld3_bf16, NEON::BI__builtin_neon_vld3_v },
7403 { NEON::BI__builtin_neon_vld3_dup_bf16, NEON::BI__builtin_neon_vld3_dup_v },
7404 { NEON::BI__builtin_neon_vld3_lane_bf16, NEON::BI__builtin_neon_vld3_lane_v },
7405 { NEON::BI__builtin_neon_vld3q_bf16, NEON::BI__builtin_neon_vld3q_v },
7406 { NEON::BI__builtin_neon_vld3q_dup_bf16, NEON::BI__builtin_neon_vld3q_dup_v },
7407 { NEON::BI__builtin_neon_vld3q_lane_bf16, NEON::BI__builtin_neon_vld3q_lane_v },
7408 { NEON::BI__builtin_neon_vld4_bf16, NEON::BI__builtin_neon_vld4_v },
7409 { NEON::BI__builtin_neon_vld4_dup_bf16, NEON::BI__builtin_neon_vld4_dup_v },
7410 { NEON::BI__builtin_neon_vld4_lane_bf16, NEON::BI__builtin_neon_vld4_lane_v },
7411 { NEON::BI__builtin_neon_vld4q_bf16, NEON::BI__builtin_neon_vld4q_v },
7412 { NEON::BI__builtin_neon_vld4q_dup_bf16, NEON::BI__builtin_neon_vld4q_dup_v },
7413 { NEON::BI__builtin_neon_vld4q_lane_bf16, NEON::BI__builtin_neon_vld4q_lane_v },
7414 { NEON::BI__builtin_neon_vmax_f16, NEON::BI__builtin_neon_vmax_v, },
7415 { NEON::BI__builtin_neon_vmaxnm_f16, NEON::BI__builtin_neon_vmaxnm_v, },
7416 { NEON::BI__builtin_neon_vmaxnmq_f16, NEON::BI__builtin_neon_vmaxnmq_v, },
7417 { NEON::BI__builtin_neon_vmaxq_f16, NEON::BI__builtin_neon_vmaxq_v, },
7418 { NEON::BI__builtin_neon_vmin_f16, NEON::BI__builtin_neon_vmin_v, },
7419 { NEON::BI__builtin_neon_vminnm_f16, NEON::BI__builtin_neon_vminnm_v, },
7420 { NEON::BI__builtin_neon_vminnmq_f16, NEON::BI__builtin_neon_vminnmq_v, },
7421 { NEON::BI__builtin_neon_vminq_f16, NEON::BI__builtin_neon_vminq_v, },
7422 { NEON::BI__builtin_neon_vmulx_f16, NEON::BI__builtin_neon_vmulx_v, },
7423 { NEON::BI__builtin_neon_vmulxq_f16, NEON::BI__builtin_neon_vmulxq_v, },
7424 { NEON::BI__builtin_neon_vpadd_f16, NEON::BI__builtin_neon_vpadd_v, },
7425 { NEON::BI__builtin_neon_vpaddq_f16, NEON::BI__builtin_neon_vpaddq_v, },
7426 { NEON::BI__builtin_neon_vpmax_f16, NEON::BI__builtin_neon_vpmax_v, },
7427 { NEON::BI__builtin_neon_vpmaxnm_f16, NEON::BI__builtin_neon_vpmaxnm_v, },
7428 { NEON::BI__builtin_neon_vpmaxnmq_f16, NEON::BI__builtin_neon_vpmaxnmq_v, },
7429 { NEON::BI__builtin_neon_vpmaxq_f16, NEON::BI__builtin_neon_vpmaxq_v, },
7430 { NEON::BI__builtin_neon_vpmin_f16, NEON::BI__builtin_neon_vpmin_v, },
7431 { NEON::BI__builtin_neon_vpminnm_f16, NEON::BI__builtin_neon_vpminnm_v, },
7432 { NEON::BI__builtin_neon_vpminnmq_f16, NEON::BI__builtin_neon_vpminnmq_v, },
7433 { NEON::BI__builtin_neon_vpminq_f16, NEON::BI__builtin_neon_vpminq_v, },
7434 { NEON::BI__builtin_neon_vrecpe_f16, NEON::BI__builtin_neon_vrecpe_v, },
7435 { NEON::BI__builtin_neon_vrecpeq_f16, NEON::BI__builtin_neon_vrecpeq_v, },
7436 { NEON::BI__builtin_neon_vrecps_f16, NEON::BI__builtin_neon_vrecps_v, },
7437 { NEON::BI__builtin_neon_vrecpsq_f16, NEON::BI__builtin_neon_vrecpsq_v, },
7438 { NEON::BI__builtin_neon_vrnd_f16, NEON::BI__builtin_neon_vrnd_v, },
7439 { NEON::BI__builtin_neon_vrnda_f16, NEON::BI__builtin_neon_vrnda_v, },
7440 { NEON::BI__builtin_neon_vrndaq_f16, NEON::BI__builtin_neon_vrndaq_v, },
7441 { NEON::BI__builtin_neon_vrndi_f16, NEON::BI__builtin_neon_vrndi_v, },
7442 { NEON::BI__builtin_neon_vrndiq_f16, NEON::BI__builtin_neon_vrndiq_v, },
7443 { NEON::BI__builtin_neon_vrndm_f16, NEON::BI__builtin_neon_vrndm_v, },
7444 { NEON::BI__builtin_neon_vrndmq_f16, NEON::BI__builtin_neon_vrndmq_v, },
7445 { NEON::BI__builtin_neon_vrndn_f16, NEON::BI__builtin_neon_vrndn_v, },
7446 { NEON::BI__builtin_neon_vrndnq_f16, NEON::BI__builtin_neon_vrndnq_v, },
7447 { NEON::BI__builtin_neon_vrndp_f16, NEON::BI__builtin_neon_vrndp_v, },
7448 { NEON::BI__builtin_neon_vrndpq_f16, NEON::BI__builtin_neon_vrndpq_v, },
7449 { NEON::BI__builtin_neon_vrndq_f16, NEON::BI__builtin_neon_vrndq_v, },
7450 { NEON::BI__builtin_neon_vrndx_f16, NEON::BI__builtin_neon_vrndx_v, },
7451 { NEON::BI__builtin_neon_vrndxq_f16, NEON::BI__builtin_neon_vrndxq_v, },
7452 { NEON::BI__builtin_neon_vrsqrte_f16, NEON::BI__builtin_neon_vrsqrte_v, },
7453 { NEON::BI__builtin_neon_vrsqrteq_f16, NEON::BI__builtin_neon_vrsqrteq_v, },
7454 { NEON::BI__builtin_neon_vrsqrts_f16, NEON::BI__builtin_neon_vrsqrts_v, },
7455 { NEON::BI__builtin_neon_vrsqrtsq_f16, NEON::BI__builtin_neon_vrsqrtsq_v, },
7456 { NEON::BI__builtin_neon_vsqrt_f16, NEON::BI__builtin_neon_vsqrt_v, },
7457 { NEON::BI__builtin_neon_vsqrtq_f16, NEON::BI__builtin_neon_vsqrtq_v, },
7458 { NEON::BI__builtin_neon_vst1_bf16_x2, NEON::BI__builtin_neon_vst1_x2_v },
7459 { NEON::BI__builtin_neon_vst1_bf16_x3, NEON::BI__builtin_neon_vst1_x3_v },
7460 { NEON::BI__builtin_neon_vst1_bf16_x4, NEON::BI__builtin_neon_vst1_x4_v },
7461 { NEON::BI__builtin_neon_vst1_bf16, NEON::BI__builtin_neon_vst1_v },
7462 { NEON::BI__builtin_neon_vst1_lane_bf16, NEON::BI__builtin_neon_vst1_lane_v },
7463 { NEON::BI__builtin_neon_vst1q_bf16_x2, NEON::BI__builtin_neon_vst1q_x2_v },
7464 { NEON::BI__builtin_neon_vst1q_bf16_x3, NEON::BI__builtin_neon_vst1q_x3_v },
7465 { NEON::BI__builtin_neon_vst1q_bf16_x4, NEON::BI__builtin_neon_vst1q_x4_v },
7466 { NEON::BI__builtin_neon_vst1q_bf16, NEON::BI__builtin_neon_vst1q_v },
7467 { NEON::BI__builtin_neon_vst1q_lane_bf16, NEON::BI__builtin_neon_vst1q_lane_v },
7468 { NEON::BI__builtin_neon_vst2_bf16, NEON::BI__builtin_neon_vst2_v },
7469 { NEON::BI__builtin_neon_vst2_lane_bf16, NEON::BI__builtin_neon_vst2_lane_v },
7470 { NEON::BI__builtin_neon_vst2q_bf16, NEON::BI__builtin_neon_vst2q_v },
7471 { NEON::BI__builtin_neon_vst2q_lane_bf16, NEON::BI__builtin_neon_vst2q_lane_v },
7472 { NEON::BI__builtin_neon_vst3_bf16, NEON::BI__builtin_neon_vst3_v },
7473 { NEON::BI__builtin_neon_vst3_lane_bf16, NEON::BI__builtin_neon_vst3_lane_v },
7474 { NEON::BI__builtin_neon_vst3q_bf16, NEON::BI__builtin_neon_vst3q_v },
7475 { NEON::BI__builtin_neon_vst3q_lane_bf16, NEON::BI__builtin_neon_vst3q_lane_v },
7476 { NEON::BI__builtin_neon_vst4_bf16, NEON::BI__builtin_neon_vst4_v },
7477 { NEON::BI__builtin_neon_vst4_lane_bf16, NEON::BI__builtin_neon_vst4_lane_v },
7478 { NEON::BI__builtin_neon_vst4q_bf16, NEON::BI__builtin_neon_vst4q_v },
7479 { NEON::BI__builtin_neon_vst4q_lane_bf16, NEON::BI__builtin_neon_vst4q_lane_v },
7480 // The mangling rules cause us to have one ID for each type for vldap1(q)_lane
7481 // and vstl1(q)_lane, but codegen is equivalent for all of them. Choose an
7482 // arbitrary one to be handled as tha canonical variation.
7483 { NEON::BI__builtin_neon_vldap1_lane_u64, NEON::BI__builtin_neon_vldap1_lane_s64 },
7484 { NEON::BI__builtin_neon_vldap1_lane_f64, NEON::BI__builtin_neon_vldap1_lane_s64 },
7485 { NEON::BI__builtin_neon_vldap1_lane_p64, NEON::BI__builtin_neon_vldap1_lane_s64 },
7486 { NEON::BI__builtin_neon_vldap1q_lane_u64, NEON::BI__builtin_neon_vldap1q_lane_s64 },
7487 { NEON::BI__builtin_neon_vldap1q_lane_f64, NEON::BI__builtin_neon_vldap1q_lane_s64 },
7488 { NEON::BI__builtin_neon_vldap1q_lane_p64, NEON::BI__builtin_neon_vldap1q_lane_s64 },
7489 { NEON::BI__builtin_neon_vstl1_lane_u64, NEON::BI__builtin_neon_vstl1_lane_s64 },
7490 { NEON::BI__builtin_neon_vstl1_lane_f64, NEON::BI__builtin_neon_vstl1_lane_s64 },
7491 { NEON::BI__builtin_neon_vstl1_lane_p64, NEON::BI__builtin_neon_vstl1_lane_s64 },
7492 { NEON::BI__builtin_neon_vstl1q_lane_u64, NEON::BI__builtin_neon_vstl1q_lane_s64 },
7493 { NEON::BI__builtin_neon_vstl1q_lane_f64, NEON::BI__builtin_neon_vstl1q_lane_s64 },
7494 { NEON::BI__builtin_neon_vstl1q_lane_p64, NEON::BI__builtin_neon_vstl1q_lane_s64 },
7497 #undef NEONMAP0
7498 #undef NEONMAP1
7499 #undef NEONMAP2
7501 #define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
7503 #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0, \
7504 TypeModifier \
7507 #define SVEMAP2(NameBase, TypeModifier) \
7508 { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier }
7509 static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = {
7510 #define GET_SVE_LLVM_INTRINSIC_MAP
7511 #include "clang/Basic/arm_sve_builtin_cg.inc"
7512 #include "clang/Basic/BuiltinsAArch64NeonSVEBridge_cg.def"
7513 #undef GET_SVE_LLVM_INTRINSIC_MAP
7516 #undef SVEMAP1
7517 #undef SVEMAP2
7519 #define SMEMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
7521 #NameBase, SME::BI__builtin_sme_##NameBase, Intrinsic::LLVMIntrinsic, 0, \
7522 TypeModifier \
7525 #define SMEMAP2(NameBase, TypeModifier) \
7526 { #NameBase, SME::BI__builtin_sme_##NameBase, 0, 0, TypeModifier }
7527 static const ARMVectorIntrinsicInfo AArch64SMEIntrinsicMap[] = {
7528 #define GET_SME_LLVM_INTRINSIC_MAP
7529 #include "clang/Basic/arm_sme_builtin_cg.inc"
7530 #undef GET_SME_LLVM_INTRINSIC_MAP
7533 #undef SMEMAP1
7534 #undef SMEMAP2
7536 static bool NEONSIMDIntrinsicsProvenSorted = false;
7538 static bool AArch64SIMDIntrinsicsProvenSorted = false;
7539 static bool AArch64SISDIntrinsicsProvenSorted = false;
7540 static bool AArch64SVEIntrinsicsProvenSorted = false;
7541 static bool AArch64SMEIntrinsicsProvenSorted = false;
7543 static const ARMVectorIntrinsicInfo *
7544 findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,
7545 unsigned BuiltinID, bool &MapProvenSorted) {
7547 #ifndef NDEBUG
7548 if (!MapProvenSorted) {
7549 assert(llvm::is_sorted(IntrinsicMap));
7550 MapProvenSorted = true;
7552 #endif
7554 const ARMVectorIntrinsicInfo *Builtin =
7555 llvm::lower_bound(IntrinsicMap, BuiltinID);
7557 if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
7558 return Builtin;
7560 return nullptr;
7563 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
7564 unsigned Modifier,
7565 llvm::Type *ArgType,
7566 const CallExpr *E) {
7567 int VectorSize = 0;
7568 if (Modifier & Use64BitVectors)
7569 VectorSize = 64;
7570 else if (Modifier & Use128BitVectors)
7571 VectorSize = 128;
7573 // Return type.
7574 SmallVector<llvm::Type *, 3> Tys;
7575 if (Modifier & AddRetType) {
7576 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
7577 if (Modifier & VectorizeRetType)
7578 Ty = llvm::FixedVectorType::get(
7579 Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
7581 Tys.push_back(Ty);
7584 // Arguments.
7585 if (Modifier & VectorizeArgTypes) {
7586 int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
7587 ArgType = llvm::FixedVectorType::get(ArgType, Elts);
7590 if (Modifier & (Add1ArgType | Add2ArgTypes))
7591 Tys.push_back(ArgType);
7593 if (Modifier & Add2ArgTypes)
7594 Tys.push_back(ArgType);
7596 if (Modifier & InventFloatType)
7597 Tys.push_back(FloatTy);
7599 return CGM.getIntrinsic(IntrinsicID, Tys);
7602 static Value *EmitCommonNeonSISDBuiltinExpr(
7603 CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo,
7604 SmallVectorImpl<Value *> &Ops, const CallExpr *E) {
7605 unsigned BuiltinID = SISDInfo.BuiltinID;
7606 unsigned int Int = SISDInfo.LLVMIntrinsic;
7607 unsigned Modifier = SISDInfo.TypeModifier;
7608 const char *s = SISDInfo.NameHint;
7610 switch (BuiltinID) {
7611 case NEON::BI__builtin_neon_vcled_s64:
7612 case NEON::BI__builtin_neon_vcled_u64:
7613 case NEON::BI__builtin_neon_vcles_f32:
7614 case NEON::BI__builtin_neon_vcled_f64:
7615 case NEON::BI__builtin_neon_vcltd_s64:
7616 case NEON::BI__builtin_neon_vcltd_u64:
7617 case NEON::BI__builtin_neon_vclts_f32:
7618 case NEON::BI__builtin_neon_vcltd_f64:
7619 case NEON::BI__builtin_neon_vcales_f32:
7620 case NEON::BI__builtin_neon_vcaled_f64:
7621 case NEON::BI__builtin_neon_vcalts_f32:
7622 case NEON::BI__builtin_neon_vcaltd_f64:
7623 // Only one direction of comparisons actually exist, cmle is actually a cmge
7624 // with swapped operands. The table gives us the right intrinsic but we
7625 // still need to do the swap.
7626 std::swap(Ops[0], Ops[1]);
7627 break;
7630 assert(Int && "Generic code assumes a valid intrinsic");
7632 // Determine the type(s) of this overloaded AArch64 intrinsic.
7633 const Expr *Arg = E->getArg(0);
7634 llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
7635 Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
7637 int j = 0;
7638 ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
7639 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
7640 ai != ae; ++ai, ++j) {
7641 llvm::Type *ArgTy = ai->getType();
7642 if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
7643 ArgTy->getPrimitiveSizeInBits())
7644 continue;
7646 assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
7647 // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
7648 // it before inserting.
7649 Ops[j] = CGF.Builder.CreateTruncOrBitCast(
7650 Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType());
7651 Ops[j] =
7652 CGF.Builder.CreateInsertElement(PoisonValue::get(ArgTy), Ops[j], C0);
7655 Value *Result = CGF.EmitNeonCall(F, Ops, s);
7656 llvm::Type *ResultType = CGF.ConvertType(E->getType());
7657 if (ResultType->getPrimitiveSizeInBits().getFixedValue() <
7658 Result->getType()->getPrimitiveSizeInBits().getFixedValue())
7659 return CGF.Builder.CreateExtractElement(Result, C0);
7661 return CGF.Builder.CreateBitCast(Result, ResultType, s);
7664 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
7665 unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
7666 const char *NameHint, unsigned Modifier, const CallExpr *E,
7667 SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
7668 llvm::Triple::ArchType Arch) {
7669 // Get the last argument, which specifies the vector type.
7670 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
7671 std::optional<llvm::APSInt> NeonTypeConst =
7672 Arg->getIntegerConstantExpr(getContext());
7673 if (!NeonTypeConst)
7674 return nullptr;
7676 // Determine the type of this overloaded NEON intrinsic.
7677 NeonTypeFlags Type(NeonTypeConst->getZExtValue());
7678 bool Usgn = Type.isUnsigned();
7679 bool Quad = Type.isQuad();
7680 const bool HasLegalHalfType = getTarget().hasLegalHalfType();
7681 const bool AllowBFloatArgsAndRet =
7682 getTargetHooks().getABIInfo().allowBFloatArgsAndRet();
7684 llvm::FixedVectorType *VTy =
7685 GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet);
7686 llvm::Type *Ty = VTy;
7687 if (!Ty)
7688 return nullptr;
7690 auto getAlignmentValue32 = [&](Address addr) -> Value* {
7691 return Builder.getInt32(addr.getAlignment().getQuantity());
7694 unsigned Int = LLVMIntrinsic;
7695 if ((Modifier & UnsignedAlts) && !Usgn)
7696 Int = AltLLVMIntrinsic;
7698 switch (BuiltinID) {
7699 default: break;
7700 case NEON::BI__builtin_neon_splat_lane_v:
7701 case NEON::BI__builtin_neon_splat_laneq_v:
7702 case NEON::BI__builtin_neon_splatq_lane_v:
7703 case NEON::BI__builtin_neon_splatq_laneq_v: {
7704 auto NumElements = VTy->getElementCount();
7705 if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v)
7706 NumElements = NumElements * 2;
7707 if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v)
7708 NumElements = NumElements.divideCoefficientBy(2);
7710 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
7711 return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements);
7713 case NEON::BI__builtin_neon_vpadd_v:
7714 case NEON::BI__builtin_neon_vpaddq_v:
7715 // We don't allow fp/int overloading of intrinsics.
7716 if (VTy->getElementType()->isFloatingPointTy() &&
7717 Int == Intrinsic::aarch64_neon_addp)
7718 Int = Intrinsic::aarch64_neon_faddp;
7719 break;
7720 case NEON::BI__builtin_neon_vabs_v:
7721 case NEON::BI__builtin_neon_vabsq_v:
7722 if (VTy->getElementType()->isFloatingPointTy())
7723 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
7724 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
7725 case NEON::BI__builtin_neon_vadd_v:
7726 case NEON::BI__builtin_neon_vaddq_v: {
7727 llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, Quad ? 16 : 8);
7728 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
7729 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
7730 Ops[0] = Builder.CreateXor(Ops[0], Ops[1]);
7731 return Builder.CreateBitCast(Ops[0], Ty);
7733 case NEON::BI__builtin_neon_vaddhn_v: {
7734 llvm::FixedVectorType *SrcTy =
7735 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
7737 // %sum = add <4 x i32> %lhs, %rhs
7738 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7739 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
7740 Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
7742 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
7743 Constant *ShiftAmt =
7744 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
7745 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
7747 // %res = trunc <4 x i32> %high to <4 x i16>
7748 return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
7750 case NEON::BI__builtin_neon_vcale_v:
7751 case NEON::BI__builtin_neon_vcaleq_v:
7752 case NEON::BI__builtin_neon_vcalt_v:
7753 case NEON::BI__builtin_neon_vcaltq_v:
7754 std::swap(Ops[0], Ops[1]);
7755 [[fallthrough]];
7756 case NEON::BI__builtin_neon_vcage_v:
7757 case NEON::BI__builtin_neon_vcageq_v:
7758 case NEON::BI__builtin_neon_vcagt_v:
7759 case NEON::BI__builtin_neon_vcagtq_v: {
7760 llvm::Type *Ty;
7761 switch (VTy->getScalarSizeInBits()) {
7762 default: llvm_unreachable("unexpected type");
7763 case 32:
7764 Ty = FloatTy;
7765 break;
7766 case 64:
7767 Ty = DoubleTy;
7768 break;
7769 case 16:
7770 Ty = HalfTy;
7771 break;
7773 auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements());
7774 llvm::Type *Tys[] = { VTy, VecFlt };
7775 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7776 return EmitNeonCall(F, Ops, NameHint);
7778 case NEON::BI__builtin_neon_vceqz_v:
7779 case NEON::BI__builtin_neon_vceqzq_v:
7780 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
7781 ICmpInst::ICMP_EQ, "vceqz");
7782 case NEON::BI__builtin_neon_vcgez_v:
7783 case NEON::BI__builtin_neon_vcgezq_v:
7784 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
7785 ICmpInst::ICMP_SGE, "vcgez");
7786 case NEON::BI__builtin_neon_vclez_v:
7787 case NEON::BI__builtin_neon_vclezq_v:
7788 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
7789 ICmpInst::ICMP_SLE, "vclez");
7790 case NEON::BI__builtin_neon_vcgtz_v:
7791 case NEON::BI__builtin_neon_vcgtzq_v:
7792 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
7793 ICmpInst::ICMP_SGT, "vcgtz");
7794 case NEON::BI__builtin_neon_vcltz_v:
7795 case NEON::BI__builtin_neon_vcltzq_v:
7796 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
7797 ICmpInst::ICMP_SLT, "vcltz");
7798 case NEON::BI__builtin_neon_vclz_v:
7799 case NEON::BI__builtin_neon_vclzq_v:
7800 // We generate target-independent intrinsic, which needs a second argument
7801 // for whether or not clz of zero is undefined; on ARM it isn't.
7802 Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
7803 break;
7804 case NEON::BI__builtin_neon_vcvt_f32_v:
7805 case NEON::BI__builtin_neon_vcvtq_f32_v:
7806 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7807 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
7808 HasLegalHalfType);
7809 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
7810 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
7811 case NEON::BI__builtin_neon_vcvt_f16_s16:
7812 case NEON::BI__builtin_neon_vcvt_f16_u16:
7813 case NEON::BI__builtin_neon_vcvtq_f16_s16:
7814 case NEON::BI__builtin_neon_vcvtq_f16_u16:
7815 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7816 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
7817 HasLegalHalfType);
7818 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
7819 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
7820 case NEON::BI__builtin_neon_vcvt_n_f16_s16:
7821 case NEON::BI__builtin_neon_vcvt_n_f16_u16:
7822 case NEON::BI__builtin_neon_vcvtq_n_f16_s16:
7823 case NEON::BI__builtin_neon_vcvtq_n_f16_u16: {
7824 llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
7825 Function *F = CGM.getIntrinsic(Int, Tys);
7826 return EmitNeonCall(F, Ops, "vcvt_n");
7828 case NEON::BI__builtin_neon_vcvt_n_f32_v:
7829 case NEON::BI__builtin_neon_vcvt_n_f64_v:
7830 case NEON::BI__builtin_neon_vcvtq_n_f32_v:
7831 case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
7832 llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
7833 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
7834 Function *F = CGM.getIntrinsic(Int, Tys);
7835 return EmitNeonCall(F, Ops, "vcvt_n");
7837 case NEON::BI__builtin_neon_vcvt_n_s16_f16:
7838 case NEON::BI__builtin_neon_vcvt_n_s32_v:
7839 case NEON::BI__builtin_neon_vcvt_n_u16_f16:
7840 case NEON::BI__builtin_neon_vcvt_n_u32_v:
7841 case NEON::BI__builtin_neon_vcvt_n_s64_v:
7842 case NEON::BI__builtin_neon_vcvt_n_u64_v:
7843 case NEON::BI__builtin_neon_vcvtq_n_s16_f16:
7844 case NEON::BI__builtin_neon_vcvtq_n_s32_v:
7845 case NEON::BI__builtin_neon_vcvtq_n_u16_f16:
7846 case NEON::BI__builtin_neon_vcvtq_n_u32_v:
7847 case NEON::BI__builtin_neon_vcvtq_n_s64_v:
7848 case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
7849 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
7850 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7851 return EmitNeonCall(F, Ops, "vcvt_n");
7853 case NEON::BI__builtin_neon_vcvt_s32_v:
7854 case NEON::BI__builtin_neon_vcvt_u32_v:
7855 case NEON::BI__builtin_neon_vcvt_s64_v:
7856 case NEON::BI__builtin_neon_vcvt_u64_v:
7857 case NEON::BI__builtin_neon_vcvt_s16_f16:
7858 case NEON::BI__builtin_neon_vcvt_u16_f16:
7859 case NEON::BI__builtin_neon_vcvtq_s32_v:
7860 case NEON::BI__builtin_neon_vcvtq_u32_v:
7861 case NEON::BI__builtin_neon_vcvtq_s64_v:
7862 case NEON::BI__builtin_neon_vcvtq_u64_v:
7863 case NEON::BI__builtin_neon_vcvtq_s16_f16:
7864 case NEON::BI__builtin_neon_vcvtq_u16_f16: {
7865 Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
7866 return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
7867 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
7869 case NEON::BI__builtin_neon_vcvta_s16_f16:
7870 case NEON::BI__builtin_neon_vcvta_s32_v:
7871 case NEON::BI__builtin_neon_vcvta_s64_v:
7872 case NEON::BI__builtin_neon_vcvta_u16_f16:
7873 case NEON::BI__builtin_neon_vcvta_u32_v:
7874 case NEON::BI__builtin_neon_vcvta_u64_v:
7875 case NEON::BI__builtin_neon_vcvtaq_s16_f16:
7876 case NEON::BI__builtin_neon_vcvtaq_s32_v:
7877 case NEON::BI__builtin_neon_vcvtaq_s64_v:
7878 case NEON::BI__builtin_neon_vcvtaq_u16_f16:
7879 case NEON::BI__builtin_neon_vcvtaq_u32_v:
7880 case NEON::BI__builtin_neon_vcvtaq_u64_v:
7881 case NEON::BI__builtin_neon_vcvtn_s16_f16:
7882 case NEON::BI__builtin_neon_vcvtn_s32_v:
7883 case NEON::BI__builtin_neon_vcvtn_s64_v:
7884 case NEON::BI__builtin_neon_vcvtn_u16_f16:
7885 case NEON::BI__builtin_neon_vcvtn_u32_v:
7886 case NEON::BI__builtin_neon_vcvtn_u64_v:
7887 case NEON::BI__builtin_neon_vcvtnq_s16_f16:
7888 case NEON::BI__builtin_neon_vcvtnq_s32_v:
7889 case NEON::BI__builtin_neon_vcvtnq_s64_v:
7890 case NEON::BI__builtin_neon_vcvtnq_u16_f16:
7891 case NEON::BI__builtin_neon_vcvtnq_u32_v:
7892 case NEON::BI__builtin_neon_vcvtnq_u64_v:
7893 case NEON::BI__builtin_neon_vcvtp_s16_f16:
7894 case NEON::BI__builtin_neon_vcvtp_s32_v:
7895 case NEON::BI__builtin_neon_vcvtp_s64_v:
7896 case NEON::BI__builtin_neon_vcvtp_u16_f16:
7897 case NEON::BI__builtin_neon_vcvtp_u32_v:
7898 case NEON::BI__builtin_neon_vcvtp_u64_v:
7899 case NEON::BI__builtin_neon_vcvtpq_s16_f16:
7900 case NEON::BI__builtin_neon_vcvtpq_s32_v:
7901 case NEON::BI__builtin_neon_vcvtpq_s64_v:
7902 case NEON::BI__builtin_neon_vcvtpq_u16_f16:
7903 case NEON::BI__builtin_neon_vcvtpq_u32_v:
7904 case NEON::BI__builtin_neon_vcvtpq_u64_v:
7905 case NEON::BI__builtin_neon_vcvtm_s16_f16:
7906 case NEON::BI__builtin_neon_vcvtm_s32_v:
7907 case NEON::BI__builtin_neon_vcvtm_s64_v:
7908 case NEON::BI__builtin_neon_vcvtm_u16_f16:
7909 case NEON::BI__builtin_neon_vcvtm_u32_v:
7910 case NEON::BI__builtin_neon_vcvtm_u64_v:
7911 case NEON::BI__builtin_neon_vcvtmq_s16_f16:
7912 case NEON::BI__builtin_neon_vcvtmq_s32_v:
7913 case NEON::BI__builtin_neon_vcvtmq_s64_v:
7914 case NEON::BI__builtin_neon_vcvtmq_u16_f16:
7915 case NEON::BI__builtin_neon_vcvtmq_u32_v:
7916 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
7917 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
7918 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
7920 case NEON::BI__builtin_neon_vcvtx_f32_v: {
7921 llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty};
7922 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
7925 case NEON::BI__builtin_neon_vext_v:
7926 case NEON::BI__builtin_neon_vextq_v: {
7927 int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
7928 SmallVector<int, 16> Indices;
7929 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
7930 Indices.push_back(i+CV);
7932 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7933 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7934 return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
7936 case NEON::BI__builtin_neon_vfma_v:
7937 case NEON::BI__builtin_neon_vfmaq_v: {
7938 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7939 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7940 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7942 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
7943 return emitCallMaybeConstrainedFPBuiltin(
7944 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
7945 {Ops[1], Ops[2], Ops[0]});
7947 case NEON::BI__builtin_neon_vld1_v:
7948 case NEON::BI__builtin_neon_vld1q_v: {
7949 llvm::Type *Tys[] = {Ty, Int8PtrTy};
7950 Ops.push_back(getAlignmentValue32(PtrOp0));
7951 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
7953 case NEON::BI__builtin_neon_vld1_x2_v:
7954 case NEON::BI__builtin_neon_vld1q_x2_v:
7955 case NEON::BI__builtin_neon_vld1_x3_v:
7956 case NEON::BI__builtin_neon_vld1q_x3_v:
7957 case NEON::BI__builtin_neon_vld1_x4_v:
7958 case NEON::BI__builtin_neon_vld1q_x4_v: {
7959 llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
7960 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7961 Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
7962 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7964 case NEON::BI__builtin_neon_vld2_v:
7965 case NEON::BI__builtin_neon_vld2q_v:
7966 case NEON::BI__builtin_neon_vld3_v:
7967 case NEON::BI__builtin_neon_vld3q_v:
7968 case NEON::BI__builtin_neon_vld4_v:
7969 case NEON::BI__builtin_neon_vld4q_v:
7970 case NEON::BI__builtin_neon_vld2_dup_v:
7971 case NEON::BI__builtin_neon_vld2q_dup_v:
7972 case NEON::BI__builtin_neon_vld3_dup_v:
7973 case NEON::BI__builtin_neon_vld3q_dup_v:
7974 case NEON::BI__builtin_neon_vld4_dup_v:
7975 case NEON::BI__builtin_neon_vld4q_dup_v: {
7976 llvm::Type *Tys[] = {Ty, Int8PtrTy};
7977 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7978 Value *Align = getAlignmentValue32(PtrOp1);
7979 Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
7980 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7982 case NEON::BI__builtin_neon_vld1_dup_v:
7983 case NEON::BI__builtin_neon_vld1q_dup_v: {
7984 Value *V = PoisonValue::get(Ty);
7985 PtrOp0 = PtrOp0.withElementType(VTy->getElementType());
7986 LoadInst *Ld = Builder.CreateLoad(PtrOp0);
7987 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
7988 Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
7989 return EmitNeonSplat(Ops[0], CI);
7991 case NEON::BI__builtin_neon_vld2_lane_v:
7992 case NEON::BI__builtin_neon_vld2q_lane_v:
7993 case NEON::BI__builtin_neon_vld3_lane_v:
7994 case NEON::BI__builtin_neon_vld3q_lane_v:
7995 case NEON::BI__builtin_neon_vld4_lane_v:
7996 case NEON::BI__builtin_neon_vld4q_lane_v: {
7997 llvm::Type *Tys[] = {Ty, Int8PtrTy};
7998 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7999 for (unsigned I = 2; I < Ops.size() - 1; ++I)
8000 Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
8001 Ops.push_back(getAlignmentValue32(PtrOp1));
8002 Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), NameHint);
8003 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8005 case NEON::BI__builtin_neon_vmovl_v: {
8006 llvm::FixedVectorType *DTy =
8007 llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
8008 Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
8009 if (Usgn)
8010 return Builder.CreateZExt(Ops[0], Ty, "vmovl");
8011 return Builder.CreateSExt(Ops[0], Ty, "vmovl");
8013 case NEON::BI__builtin_neon_vmovn_v: {
8014 llvm::FixedVectorType *QTy =
8015 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
8016 Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
8017 return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
8019 case NEON::BI__builtin_neon_vmull_v:
8020 // FIXME: the integer vmull operations could be emitted in terms of pure
8021 // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
8022 // hoisting the exts outside loops. Until global ISel comes along that can
8023 // see through such movement this leads to bad CodeGen. So we need an
8024 // intrinsic for now.
8025 Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
8026 Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
8027 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
8028 case NEON::BI__builtin_neon_vpadal_v:
8029 case NEON::BI__builtin_neon_vpadalq_v: {
8030 // The source operand type has twice as many elements of half the size.
8031 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
8032 llvm::Type *EltTy =
8033 llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
8034 auto *NarrowTy =
8035 llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
8036 llvm::Type *Tys[2] = { Ty, NarrowTy };
8037 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
8039 case NEON::BI__builtin_neon_vpaddl_v:
8040 case NEON::BI__builtin_neon_vpaddlq_v: {
8041 // The source operand type has twice as many elements of half the size.
8042 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
8043 llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
8044 auto *NarrowTy =
8045 llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
8046 llvm::Type *Tys[2] = { Ty, NarrowTy };
8047 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
8049 case NEON::BI__builtin_neon_vqdmlal_v:
8050 case NEON::BI__builtin_neon_vqdmlsl_v: {
8051 SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
8052 Ops[1] =
8053 EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
8054 Ops.resize(2);
8055 return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
8057 case NEON::BI__builtin_neon_vqdmulhq_lane_v:
8058 case NEON::BI__builtin_neon_vqdmulh_lane_v:
8059 case NEON::BI__builtin_neon_vqrdmulhq_lane_v:
8060 case NEON::BI__builtin_neon_vqrdmulh_lane_v: {
8061 auto *RTy = cast<llvm::FixedVectorType>(Ty);
8062 if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v ||
8063 BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v)
8064 RTy = llvm::FixedVectorType::get(RTy->getElementType(),
8065 RTy->getNumElements() * 2);
8066 llvm::Type *Tys[2] = {
8067 RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
8068 /*isQuad*/ false))};
8069 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
8071 case NEON::BI__builtin_neon_vqdmulhq_laneq_v:
8072 case NEON::BI__builtin_neon_vqdmulh_laneq_v:
8073 case NEON::BI__builtin_neon_vqrdmulhq_laneq_v:
8074 case NEON::BI__builtin_neon_vqrdmulh_laneq_v: {
8075 llvm::Type *Tys[2] = {
8076 Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
8077 /*isQuad*/ true))};
8078 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
8080 case NEON::BI__builtin_neon_vqshl_n_v:
8081 case NEON::BI__builtin_neon_vqshlq_n_v:
8082 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
8083 1, false);
8084 case NEON::BI__builtin_neon_vqshlu_n_v:
8085 case NEON::BI__builtin_neon_vqshluq_n_v:
8086 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
8087 1, false);
8088 case NEON::BI__builtin_neon_vrecpe_v:
8089 case NEON::BI__builtin_neon_vrecpeq_v:
8090 case NEON::BI__builtin_neon_vrsqrte_v:
8091 case NEON::BI__builtin_neon_vrsqrteq_v:
8092 Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
8093 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
8094 case NEON::BI__builtin_neon_vrndi_v:
8095 case NEON::BI__builtin_neon_vrndiq_v:
8096 Int = Builder.getIsFPConstrained()
8097 ? Intrinsic::experimental_constrained_nearbyint
8098 : Intrinsic::nearbyint;
8099 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
8100 case NEON::BI__builtin_neon_vrshr_n_v:
8101 case NEON::BI__builtin_neon_vrshrq_n_v:
8102 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
8103 1, true);
8104 case NEON::BI__builtin_neon_vsha512hq_u64:
8105 case NEON::BI__builtin_neon_vsha512h2q_u64:
8106 case NEON::BI__builtin_neon_vsha512su0q_u64:
8107 case NEON::BI__builtin_neon_vsha512su1q_u64: {
8108 Function *F = CGM.getIntrinsic(Int);
8109 return EmitNeonCall(F, Ops, "");
8111 case NEON::BI__builtin_neon_vshl_n_v:
8112 case NEON::BI__builtin_neon_vshlq_n_v:
8113 Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
8114 return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
8115 "vshl_n");
8116 case NEON::BI__builtin_neon_vshll_n_v: {
8117 llvm::FixedVectorType *SrcTy =
8118 llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
8119 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
8120 if (Usgn)
8121 Ops[0] = Builder.CreateZExt(Ops[0], VTy);
8122 else
8123 Ops[0] = Builder.CreateSExt(Ops[0], VTy);
8124 Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
8125 return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
8127 case NEON::BI__builtin_neon_vshrn_n_v: {
8128 llvm::FixedVectorType *SrcTy =
8129 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
8130 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
8131 Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
8132 if (Usgn)
8133 Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
8134 else
8135 Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
8136 return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
8138 case NEON::BI__builtin_neon_vshr_n_v:
8139 case NEON::BI__builtin_neon_vshrq_n_v:
8140 return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
8141 case NEON::BI__builtin_neon_vst1_v:
8142 case NEON::BI__builtin_neon_vst1q_v:
8143 case NEON::BI__builtin_neon_vst2_v:
8144 case NEON::BI__builtin_neon_vst2q_v:
8145 case NEON::BI__builtin_neon_vst3_v:
8146 case NEON::BI__builtin_neon_vst3q_v:
8147 case NEON::BI__builtin_neon_vst4_v:
8148 case NEON::BI__builtin_neon_vst4q_v:
8149 case NEON::BI__builtin_neon_vst2_lane_v:
8150 case NEON::BI__builtin_neon_vst2q_lane_v:
8151 case NEON::BI__builtin_neon_vst3_lane_v:
8152 case NEON::BI__builtin_neon_vst3q_lane_v:
8153 case NEON::BI__builtin_neon_vst4_lane_v:
8154 case NEON::BI__builtin_neon_vst4q_lane_v: {
8155 llvm::Type *Tys[] = {Int8PtrTy, Ty};
8156 Ops.push_back(getAlignmentValue32(PtrOp0));
8157 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
8159 case NEON::BI__builtin_neon_vsm3partw1q_u32:
8160 case NEON::BI__builtin_neon_vsm3partw2q_u32:
8161 case NEON::BI__builtin_neon_vsm3ss1q_u32:
8162 case NEON::BI__builtin_neon_vsm4ekeyq_u32:
8163 case NEON::BI__builtin_neon_vsm4eq_u32: {
8164 Function *F = CGM.getIntrinsic(Int);
8165 return EmitNeonCall(F, Ops, "");
8167 case NEON::BI__builtin_neon_vsm3tt1aq_u32:
8168 case NEON::BI__builtin_neon_vsm3tt1bq_u32:
8169 case NEON::BI__builtin_neon_vsm3tt2aq_u32:
8170 case NEON::BI__builtin_neon_vsm3tt2bq_u32: {
8171 Function *F = CGM.getIntrinsic(Int);
8172 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
8173 return EmitNeonCall(F, Ops, "");
8175 case NEON::BI__builtin_neon_vst1_x2_v:
8176 case NEON::BI__builtin_neon_vst1q_x2_v:
8177 case NEON::BI__builtin_neon_vst1_x3_v:
8178 case NEON::BI__builtin_neon_vst1q_x3_v:
8179 case NEON::BI__builtin_neon_vst1_x4_v:
8180 case NEON::BI__builtin_neon_vst1q_x4_v: {
8181 // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
8182 // in AArch64 it comes last. We may want to stick to one or another.
8183 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be ||
8184 Arch == llvm::Triple::aarch64_32) {
8185 llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
8186 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
8187 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
8189 llvm::Type *Tys[2] = {UnqualPtrTy, VTy};
8190 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
8192 case NEON::BI__builtin_neon_vsubhn_v: {
8193 llvm::FixedVectorType *SrcTy =
8194 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
8196 // %sum = add <4 x i32> %lhs, %rhs
8197 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
8198 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
8199 Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
8201 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
8202 Constant *ShiftAmt =
8203 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
8204 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
8206 // %res = trunc <4 x i32> %high to <4 x i16>
8207 return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
8209 case NEON::BI__builtin_neon_vtrn_v:
8210 case NEON::BI__builtin_neon_vtrnq_v: {
8211 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8212 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8213 Value *SV = nullptr;
8215 for (unsigned vi = 0; vi != 2; ++vi) {
8216 SmallVector<int, 16> Indices;
8217 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
8218 Indices.push_back(i+vi);
8219 Indices.push_back(i+e+vi);
8221 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
8222 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
8223 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
8225 return SV;
8227 case NEON::BI__builtin_neon_vtst_v:
8228 case NEON::BI__builtin_neon_vtstq_v: {
8229 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8230 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8231 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
8232 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
8233 ConstantAggregateZero::get(Ty));
8234 return Builder.CreateSExt(Ops[0], Ty, "vtst");
8236 case NEON::BI__builtin_neon_vuzp_v:
8237 case NEON::BI__builtin_neon_vuzpq_v: {
8238 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8239 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8240 Value *SV = nullptr;
8242 for (unsigned vi = 0; vi != 2; ++vi) {
8243 SmallVector<int, 16> Indices;
8244 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
8245 Indices.push_back(2*i+vi);
8247 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
8248 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
8249 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
8251 return SV;
8253 case NEON::BI__builtin_neon_vxarq_u64: {
8254 Function *F = CGM.getIntrinsic(Int);
8255 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
8256 return EmitNeonCall(F, Ops, "");
8258 case NEON::BI__builtin_neon_vzip_v:
8259 case NEON::BI__builtin_neon_vzipq_v: {
8260 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8261 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8262 Value *SV = nullptr;
8264 for (unsigned vi = 0; vi != 2; ++vi) {
8265 SmallVector<int, 16> Indices;
8266 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
8267 Indices.push_back((i + vi*e) >> 1);
8268 Indices.push_back(((i + vi*e) >> 1)+e);
8270 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
8271 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
8272 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
8274 return SV;
8276 case NEON::BI__builtin_neon_vdot_s32:
8277 case NEON::BI__builtin_neon_vdot_u32:
8278 case NEON::BI__builtin_neon_vdotq_s32:
8279 case NEON::BI__builtin_neon_vdotq_u32: {
8280 auto *InputTy =
8281 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
8282 llvm::Type *Tys[2] = { Ty, InputTy };
8283 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
8285 case NEON::BI__builtin_neon_vfmlal_low_f16:
8286 case NEON::BI__builtin_neon_vfmlalq_low_f16: {
8287 auto *InputTy =
8288 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
8289 llvm::Type *Tys[2] = { Ty, InputTy };
8290 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
8292 case NEON::BI__builtin_neon_vfmlsl_low_f16:
8293 case NEON::BI__builtin_neon_vfmlslq_low_f16: {
8294 auto *InputTy =
8295 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
8296 llvm::Type *Tys[2] = { Ty, InputTy };
8297 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
8299 case NEON::BI__builtin_neon_vfmlal_high_f16:
8300 case NEON::BI__builtin_neon_vfmlalq_high_f16: {
8301 auto *InputTy =
8302 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
8303 llvm::Type *Tys[2] = { Ty, InputTy };
8304 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
8306 case NEON::BI__builtin_neon_vfmlsl_high_f16:
8307 case NEON::BI__builtin_neon_vfmlslq_high_f16: {
8308 auto *InputTy =
8309 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
8310 llvm::Type *Tys[2] = { Ty, InputTy };
8311 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
8313 case NEON::BI__builtin_neon_vmmlaq_s32:
8314 case NEON::BI__builtin_neon_vmmlaq_u32: {
8315 auto *InputTy =
8316 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
8317 llvm::Type *Tys[2] = { Ty, InputTy };
8318 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vmmla");
8320 case NEON::BI__builtin_neon_vusmmlaq_s32: {
8321 auto *InputTy =
8322 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
8323 llvm::Type *Tys[2] = { Ty, InputTy };
8324 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla");
8326 case NEON::BI__builtin_neon_vusdot_s32:
8327 case NEON::BI__builtin_neon_vusdotq_s32: {
8328 auto *InputTy =
8329 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
8330 llvm::Type *Tys[2] = { Ty, InputTy };
8331 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot");
8333 case NEON::BI__builtin_neon_vbfdot_f32:
8334 case NEON::BI__builtin_neon_vbfdotq_f32: {
8335 llvm::Type *InputTy =
8336 llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16);
8337 llvm::Type *Tys[2] = { Ty, InputTy };
8338 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot");
8340 case NEON::BI__builtin_neon___a32_vcvt_bf16_f32: {
8341 llvm::Type *Tys[1] = { Ty };
8342 Function *F = CGM.getIntrinsic(Int, Tys);
8343 return EmitNeonCall(F, Ops, "vcvtfp2bf");
8348 assert(Int && "Expected valid intrinsic number");
8350 // Determine the type(s) of this overloaded AArch64 intrinsic.
8351 Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
8353 Value *Result = EmitNeonCall(F, Ops, NameHint);
8354 llvm::Type *ResultType = ConvertType(E->getType());
8355 // AArch64 intrinsic one-element vector type cast to
8356 // scalar type expected by the builtin
8357 return Builder.CreateBitCast(Result, ResultType, NameHint);
8360 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
8361 Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
8362 const CmpInst::Predicate Ip, const Twine &Name) {
8363 llvm::Type *OTy = Op->getType();
8365 // FIXME: this is utterly horrific. We should not be looking at previous
8366 // codegen context to find out what needs doing. Unfortunately TableGen
8367 // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
8368 // (etc).
8369 if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
8370 OTy = BI->getOperand(0)->getType();
8372 Op = Builder.CreateBitCast(Op, OTy);
8373 if (OTy->getScalarType()->isFloatingPointTy()) {
8374 if (Fp == CmpInst::FCMP_OEQ)
8375 Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
8376 else
8377 Op = Builder.CreateFCmpS(Fp, Op, Constant::getNullValue(OTy));
8378 } else {
8379 Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
8381 return Builder.CreateSExt(Op, Ty, Name);
8384 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
8385 Value *ExtOp, Value *IndexOp,
8386 llvm::Type *ResTy, unsigned IntID,
8387 const char *Name) {
8388 SmallVector<Value *, 2> TblOps;
8389 if (ExtOp)
8390 TblOps.push_back(ExtOp);
8392 // Build a vector containing sequential number like (0, 1, 2, ..., 15)
8393 SmallVector<int, 16> Indices;
8394 auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType());
8395 for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
8396 Indices.push_back(2*i);
8397 Indices.push_back(2*i+1);
8400 int PairPos = 0, End = Ops.size() - 1;
8401 while (PairPos < End) {
8402 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
8403 Ops[PairPos+1], Indices,
8404 Name));
8405 PairPos += 2;
8408 // If there's an odd number of 64-bit lookup table, fill the high 64-bit
8409 // of the 128-bit lookup table with zero.
8410 if (PairPos == End) {
8411 Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
8412 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
8413 ZeroTbl, Indices, Name));
8416 Function *TblF;
8417 TblOps.push_back(IndexOp);
8418 TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
8420 return CGF.EmitNeonCall(TblF, TblOps, Name);
8423 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
8424 unsigned Value;
8425 switch (BuiltinID) {
8426 default:
8427 return nullptr;
8428 case clang::ARM::BI__builtin_arm_nop:
8429 Value = 0;
8430 break;
8431 case clang::ARM::BI__builtin_arm_yield:
8432 case clang::ARM::BI__yield:
8433 Value = 1;
8434 break;
8435 case clang::ARM::BI__builtin_arm_wfe:
8436 case clang::ARM::BI__wfe:
8437 Value = 2;
8438 break;
8439 case clang::ARM::BI__builtin_arm_wfi:
8440 case clang::ARM::BI__wfi:
8441 Value = 3;
8442 break;
8443 case clang::ARM::BI__builtin_arm_sev:
8444 case clang::ARM::BI__sev:
8445 Value = 4;
8446 break;
8447 case clang::ARM::BI__builtin_arm_sevl:
8448 case clang::ARM::BI__sevl:
8449 Value = 5;
8450 break;
8453 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
8454 llvm::ConstantInt::get(Int32Ty, Value));
8457 enum SpecialRegisterAccessKind {
8458 NormalRead,
8459 VolatileRead,
8460 Write,
8463 // Generates the IR for __builtin_read_exec_*.
8464 // Lowers the builtin to amdgcn_ballot intrinsic.
8465 static Value *EmitAMDGCNBallotForExec(CodeGenFunction &CGF, const CallExpr *E,
8466 llvm::Type *RegisterType,
8467 llvm::Type *ValueType, bool isExecHi) {
8468 CodeGen::CGBuilderTy &Builder = CGF.Builder;
8469 CodeGen::CodeGenModule &CGM = CGF.CGM;
8471 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_ballot, {RegisterType});
8472 llvm::Value *Call = Builder.CreateCall(F, {Builder.getInt1(true)});
8474 if (isExecHi) {
8475 Value *Rt2 = Builder.CreateLShr(Call, 32);
8476 Rt2 = Builder.CreateTrunc(Rt2, CGF.Int32Ty);
8477 return Rt2;
8480 return Call;
8483 // Generates the IR for the read/write special register builtin,
8484 // ValueType is the type of the value that is to be written or read,
8485 // RegisterType is the type of the register being written to or read from.
8486 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
8487 const CallExpr *E,
8488 llvm::Type *RegisterType,
8489 llvm::Type *ValueType,
8490 SpecialRegisterAccessKind AccessKind,
8491 StringRef SysReg = "") {
8492 // write and register intrinsics only support 32, 64 and 128 bit operations.
8493 assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64) ||
8494 RegisterType->isIntegerTy(128)) &&
8495 "Unsupported size for register.");
8497 CodeGen::CGBuilderTy &Builder = CGF.Builder;
8498 CodeGen::CodeGenModule &CGM = CGF.CGM;
8499 LLVMContext &Context = CGM.getLLVMContext();
8501 if (SysReg.empty()) {
8502 const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
8503 SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
8506 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
8507 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
8508 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
8510 llvm::Type *Types[] = { RegisterType };
8512 bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
8513 assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
8514 && "Can't fit 64-bit value in 32-bit register");
8516 if (AccessKind != Write) {
8517 assert(AccessKind == NormalRead || AccessKind == VolatileRead);
8518 llvm::Function *F = CGM.getIntrinsic(
8519 AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register
8520 : llvm::Intrinsic::read_register,
8521 Types);
8522 llvm::Value *Call = Builder.CreateCall(F, Metadata);
8524 if (MixedTypes)
8525 // Read into 64 bit register and then truncate result to 32 bit.
8526 return Builder.CreateTrunc(Call, ValueType);
8528 if (ValueType->isPointerTy())
8529 // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
8530 return Builder.CreateIntToPtr(Call, ValueType);
8532 return Call;
8535 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
8536 llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
8537 if (MixedTypes) {
8538 // Extend 32 bit write value to 64 bit to pass to write.
8539 ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
8540 return Builder.CreateCall(F, { Metadata, ArgValue });
8543 if (ValueType->isPointerTy()) {
8544 // Have VoidPtrTy ArgValue but want to return an i32/i64.
8545 ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
8546 return Builder.CreateCall(F, { Metadata, ArgValue });
8549 return Builder.CreateCall(F, { Metadata, ArgValue });
8552 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
8553 /// argument that specifies the vector type.
8554 static bool HasExtraNeonArgument(unsigned BuiltinID) {
8555 switch (BuiltinID) {
8556 default: break;
8557 case NEON::BI__builtin_neon_vget_lane_i8:
8558 case NEON::BI__builtin_neon_vget_lane_i16:
8559 case NEON::BI__builtin_neon_vget_lane_bf16:
8560 case NEON::BI__builtin_neon_vget_lane_i32:
8561 case NEON::BI__builtin_neon_vget_lane_i64:
8562 case NEON::BI__builtin_neon_vget_lane_f32:
8563 case NEON::BI__builtin_neon_vgetq_lane_i8:
8564 case NEON::BI__builtin_neon_vgetq_lane_i16:
8565 case NEON::BI__builtin_neon_vgetq_lane_bf16:
8566 case NEON::BI__builtin_neon_vgetq_lane_i32:
8567 case NEON::BI__builtin_neon_vgetq_lane_i64:
8568 case NEON::BI__builtin_neon_vgetq_lane_f32:
8569 case NEON::BI__builtin_neon_vduph_lane_bf16:
8570 case NEON::BI__builtin_neon_vduph_laneq_bf16:
8571 case NEON::BI__builtin_neon_vset_lane_i8:
8572 case NEON::BI__builtin_neon_vset_lane_i16:
8573 case NEON::BI__builtin_neon_vset_lane_bf16:
8574 case NEON::BI__builtin_neon_vset_lane_i32:
8575 case NEON::BI__builtin_neon_vset_lane_i64:
8576 case NEON::BI__builtin_neon_vset_lane_f32:
8577 case NEON::BI__builtin_neon_vsetq_lane_i8:
8578 case NEON::BI__builtin_neon_vsetq_lane_i16:
8579 case NEON::BI__builtin_neon_vsetq_lane_bf16:
8580 case NEON::BI__builtin_neon_vsetq_lane_i32:
8581 case NEON::BI__builtin_neon_vsetq_lane_i64:
8582 case NEON::BI__builtin_neon_vsetq_lane_f32:
8583 case NEON::BI__builtin_neon_vsha1h_u32:
8584 case NEON::BI__builtin_neon_vsha1cq_u32:
8585 case NEON::BI__builtin_neon_vsha1pq_u32:
8586 case NEON::BI__builtin_neon_vsha1mq_u32:
8587 case NEON::BI__builtin_neon_vcvth_bf16_f32:
8588 case clang::ARM::BI_MoveToCoprocessor:
8589 case clang::ARM::BI_MoveToCoprocessor2:
8590 return false;
8592 return true;
8595 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
8596 const CallExpr *E,
8597 ReturnValueSlot ReturnValue,
8598 llvm::Triple::ArchType Arch) {
8599 if (auto Hint = GetValueForARMHint(BuiltinID))
8600 return Hint;
8602 if (BuiltinID == clang::ARM::BI__emit) {
8603 bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
8604 llvm::FunctionType *FTy =
8605 llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
8607 Expr::EvalResult Result;
8608 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
8609 llvm_unreachable("Sema will ensure that the parameter is constant");
8611 llvm::APSInt Value = Result.Val.getInt();
8612 uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
8614 llvm::InlineAsm *Emit =
8615 IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
8616 /*hasSideEffects=*/true)
8617 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
8618 /*hasSideEffects=*/true);
8620 return Builder.CreateCall(Emit);
8623 if (BuiltinID == clang::ARM::BI__builtin_arm_dbg) {
8624 Value *Option = EmitScalarExpr(E->getArg(0));
8625 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
8628 if (BuiltinID == clang::ARM::BI__builtin_arm_prefetch) {
8629 Value *Address = EmitScalarExpr(E->getArg(0));
8630 Value *RW = EmitScalarExpr(E->getArg(1));
8631 Value *IsData = EmitScalarExpr(E->getArg(2));
8633 // Locality is not supported on ARM target
8634 Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
8636 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
8637 return Builder.CreateCall(F, {Address, RW, Locality, IsData});
8640 if (BuiltinID == clang::ARM::BI__builtin_arm_rbit) {
8641 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8642 return Builder.CreateCall(
8643 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
8646 if (BuiltinID == clang::ARM::BI__builtin_arm_clz ||
8647 BuiltinID == clang::ARM::BI__builtin_arm_clz64) {
8648 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8649 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Arg->getType());
8650 Value *Res = Builder.CreateCall(F, {Arg, Builder.getInt1(false)});
8651 if (BuiltinID == clang::ARM::BI__builtin_arm_clz64)
8652 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty());
8653 return Res;
8657 if (BuiltinID == clang::ARM::BI__builtin_arm_cls) {
8658 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8659 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls");
8661 if (BuiltinID == clang::ARM::BI__builtin_arm_cls64) {
8662 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8663 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg,
8664 "cls");
8667 if (BuiltinID == clang::ARM::BI__clear_cache) {
8668 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
8669 const FunctionDecl *FD = E->getDirectCallee();
8670 Value *Ops[2];
8671 for (unsigned i = 0; i < 2; i++)
8672 Ops[i] = EmitScalarExpr(E->getArg(i));
8673 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
8674 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
8675 StringRef Name = FD->getName();
8676 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
8679 if (BuiltinID == clang::ARM::BI__builtin_arm_mcrr ||
8680 BuiltinID == clang::ARM::BI__builtin_arm_mcrr2) {
8681 Function *F;
8683 switch (BuiltinID) {
8684 default: llvm_unreachable("unexpected builtin");
8685 case clang::ARM::BI__builtin_arm_mcrr:
8686 F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
8687 break;
8688 case clang::ARM::BI__builtin_arm_mcrr2:
8689 F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
8690 break;
8693 // MCRR{2} instruction has 5 operands but
8694 // the intrinsic has 4 because Rt and Rt2
8695 // are represented as a single unsigned 64
8696 // bit integer in the intrinsic definition
8697 // but internally it's represented as 2 32
8698 // bit integers.
8700 Value *Coproc = EmitScalarExpr(E->getArg(0));
8701 Value *Opc1 = EmitScalarExpr(E->getArg(1));
8702 Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
8703 Value *CRm = EmitScalarExpr(E->getArg(3));
8705 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
8706 Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
8707 Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
8708 Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
8710 return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
8713 if (BuiltinID == clang::ARM::BI__builtin_arm_mrrc ||
8714 BuiltinID == clang::ARM::BI__builtin_arm_mrrc2) {
8715 Function *F;
8717 switch (BuiltinID) {
8718 default: llvm_unreachable("unexpected builtin");
8719 case clang::ARM::BI__builtin_arm_mrrc:
8720 F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
8721 break;
8722 case clang::ARM::BI__builtin_arm_mrrc2:
8723 F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
8724 break;
8727 Value *Coproc = EmitScalarExpr(E->getArg(0));
8728 Value *Opc1 = EmitScalarExpr(E->getArg(1));
8729 Value *CRm = EmitScalarExpr(E->getArg(2));
8730 Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
8732 // Returns an unsigned 64 bit integer, represented
8733 // as two 32 bit integers.
8735 Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
8736 Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
8737 Rt = Builder.CreateZExt(Rt, Int64Ty);
8738 Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
8740 Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
8741 RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
8742 RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
8744 return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
8747 if (BuiltinID == clang::ARM::BI__builtin_arm_ldrexd ||
8748 ((BuiltinID == clang::ARM::BI__builtin_arm_ldrex ||
8749 BuiltinID == clang::ARM::BI__builtin_arm_ldaex) &&
8750 getContext().getTypeSize(E->getType()) == 64) ||
8751 BuiltinID == clang::ARM::BI__ldrexd) {
8752 Function *F;
8754 switch (BuiltinID) {
8755 default: llvm_unreachable("unexpected builtin");
8756 case clang::ARM::BI__builtin_arm_ldaex:
8757 F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
8758 break;
8759 case clang::ARM::BI__builtin_arm_ldrexd:
8760 case clang::ARM::BI__builtin_arm_ldrex:
8761 case clang::ARM::BI__ldrexd:
8762 F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
8763 break;
8766 Value *LdPtr = EmitScalarExpr(E->getArg(0));
8767 Value *Val = Builder.CreateCall(F, LdPtr, "ldrexd");
8769 Value *Val0 = Builder.CreateExtractValue(Val, 1);
8770 Value *Val1 = Builder.CreateExtractValue(Val, 0);
8771 Val0 = Builder.CreateZExt(Val0, Int64Ty);
8772 Val1 = Builder.CreateZExt(Val1, Int64Ty);
8774 Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
8775 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
8776 Val = Builder.CreateOr(Val, Val1);
8777 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
8780 if (BuiltinID == clang::ARM::BI__builtin_arm_ldrex ||
8781 BuiltinID == clang::ARM::BI__builtin_arm_ldaex) {
8782 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
8784 QualType Ty = E->getType();
8785 llvm::Type *RealResTy = ConvertType(Ty);
8786 llvm::Type *IntTy =
8787 llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
8789 Function *F = CGM.getIntrinsic(
8790 BuiltinID == clang::ARM::BI__builtin_arm_ldaex ? Intrinsic::arm_ldaex
8791 : Intrinsic::arm_ldrex,
8792 UnqualPtrTy);
8793 CallInst *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
8794 Val->addParamAttr(
8795 0, Attribute::get(getLLVMContext(), Attribute::ElementType, IntTy));
8797 if (RealResTy->isPointerTy())
8798 return Builder.CreateIntToPtr(Val, RealResTy);
8799 else {
8800 llvm::Type *IntResTy = llvm::IntegerType::get(
8801 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
8802 return Builder.CreateBitCast(Builder.CreateTruncOrBitCast(Val, IntResTy),
8803 RealResTy);
8807 if (BuiltinID == clang::ARM::BI__builtin_arm_strexd ||
8808 ((BuiltinID == clang::ARM::BI__builtin_arm_stlex ||
8809 BuiltinID == clang::ARM::BI__builtin_arm_strex) &&
8810 getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
8811 Function *F = CGM.getIntrinsic(
8812 BuiltinID == clang::ARM::BI__builtin_arm_stlex ? Intrinsic::arm_stlexd
8813 : Intrinsic::arm_strexd);
8814 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
8816 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
8817 Value *Val = EmitScalarExpr(E->getArg(0));
8818 Builder.CreateStore(Val, Tmp);
8820 Address LdPtr = Tmp.withElementType(STy);
8821 Val = Builder.CreateLoad(LdPtr);
8823 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
8824 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
8825 Value *StPtr = EmitScalarExpr(E->getArg(1));
8826 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
8829 if (BuiltinID == clang::ARM::BI__builtin_arm_strex ||
8830 BuiltinID == clang::ARM::BI__builtin_arm_stlex) {
8831 Value *StoreVal = EmitScalarExpr(E->getArg(0));
8832 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
8834 QualType Ty = E->getArg(0)->getType();
8835 llvm::Type *StoreTy =
8836 llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
8838 if (StoreVal->getType()->isPointerTy())
8839 StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
8840 else {
8841 llvm::Type *IntTy = llvm::IntegerType::get(
8842 getLLVMContext(),
8843 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
8844 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
8845 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
8848 Function *F = CGM.getIntrinsic(
8849 BuiltinID == clang::ARM::BI__builtin_arm_stlex ? Intrinsic::arm_stlex
8850 : Intrinsic::arm_strex,
8851 StoreAddr->getType());
8853 CallInst *CI = Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
8854 CI->addParamAttr(
8855 1, Attribute::get(getLLVMContext(), Attribute::ElementType, StoreTy));
8856 return CI;
8859 if (BuiltinID == clang::ARM::BI__builtin_arm_clrex) {
8860 Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
8861 return Builder.CreateCall(F);
8864 // CRC32
8865 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
8866 switch (BuiltinID) {
8867 case clang::ARM::BI__builtin_arm_crc32b:
8868 CRCIntrinsicID = Intrinsic::arm_crc32b; break;
8869 case clang::ARM::BI__builtin_arm_crc32cb:
8870 CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
8871 case clang::ARM::BI__builtin_arm_crc32h:
8872 CRCIntrinsicID = Intrinsic::arm_crc32h; break;
8873 case clang::ARM::BI__builtin_arm_crc32ch:
8874 CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
8875 case clang::ARM::BI__builtin_arm_crc32w:
8876 case clang::ARM::BI__builtin_arm_crc32d:
8877 CRCIntrinsicID = Intrinsic::arm_crc32w; break;
8878 case clang::ARM::BI__builtin_arm_crc32cw:
8879 case clang::ARM::BI__builtin_arm_crc32cd:
8880 CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
8883 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
8884 Value *Arg0 = EmitScalarExpr(E->getArg(0));
8885 Value *Arg1 = EmitScalarExpr(E->getArg(1));
8887 // crc32{c,}d intrinsics are implemented as two calls to crc32{c,}w
8888 // intrinsics, hence we need different codegen for these cases.
8889 if (BuiltinID == clang::ARM::BI__builtin_arm_crc32d ||
8890 BuiltinID == clang::ARM::BI__builtin_arm_crc32cd) {
8891 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
8892 Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
8893 Value *Arg1b = Builder.CreateLShr(Arg1, C1);
8894 Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
8896 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
8897 Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
8898 return Builder.CreateCall(F, {Res, Arg1b});
8899 } else {
8900 Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
8902 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
8903 return Builder.CreateCall(F, {Arg0, Arg1});
8907 if (BuiltinID == clang::ARM::BI__builtin_arm_rsr ||
8908 BuiltinID == clang::ARM::BI__builtin_arm_rsr64 ||
8909 BuiltinID == clang::ARM::BI__builtin_arm_rsrp ||
8910 BuiltinID == clang::ARM::BI__builtin_arm_wsr ||
8911 BuiltinID == clang::ARM::BI__builtin_arm_wsr64 ||
8912 BuiltinID == clang::ARM::BI__builtin_arm_wsrp) {
8914 SpecialRegisterAccessKind AccessKind = Write;
8915 if (BuiltinID == clang::ARM::BI__builtin_arm_rsr ||
8916 BuiltinID == clang::ARM::BI__builtin_arm_rsr64 ||
8917 BuiltinID == clang::ARM::BI__builtin_arm_rsrp)
8918 AccessKind = VolatileRead;
8920 bool IsPointerBuiltin = BuiltinID == clang::ARM::BI__builtin_arm_rsrp ||
8921 BuiltinID == clang::ARM::BI__builtin_arm_wsrp;
8923 bool Is64Bit = BuiltinID == clang::ARM::BI__builtin_arm_rsr64 ||
8924 BuiltinID == clang::ARM::BI__builtin_arm_wsr64;
8926 llvm::Type *ValueType;
8927 llvm::Type *RegisterType;
8928 if (IsPointerBuiltin) {
8929 ValueType = VoidPtrTy;
8930 RegisterType = Int32Ty;
8931 } else if (Is64Bit) {
8932 ValueType = RegisterType = Int64Ty;
8933 } else {
8934 ValueType = RegisterType = Int32Ty;
8937 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
8938 AccessKind);
8941 if (BuiltinID == ARM::BI__builtin_sponentry) {
8942 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
8943 return Builder.CreateCall(F);
8946 // Handle MSVC intrinsics before argument evaluation to prevent double
8947 // evaluation.
8948 if (std::optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID))
8949 return EmitMSVCBuiltinExpr(*MsvcIntId, E);
8951 // Deal with MVE builtins
8952 if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
8953 return Result;
8954 // Handle CDE builtins
8955 if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
8956 return Result;
8958 // Some intrinsics are equivalent - if they are use the base intrinsic ID.
8959 auto It = llvm::find_if(NEONEquivalentIntrinsicMap, [BuiltinID](auto &P) {
8960 return P.first == BuiltinID;
8962 if (It != end(NEONEquivalentIntrinsicMap))
8963 BuiltinID = It->second;
8965 // Find out if any arguments are required to be integer constant
8966 // expressions.
8967 unsigned ICEArguments = 0;
8968 ASTContext::GetBuiltinTypeError Error;
8969 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
8970 assert(Error == ASTContext::GE_None && "Should not codegen an error");
8972 auto getAlignmentValue32 = [&](Address addr) -> Value* {
8973 return Builder.getInt32(addr.getAlignment().getQuantity());
8976 Address PtrOp0 = Address::invalid();
8977 Address PtrOp1 = Address::invalid();
8978 SmallVector<Value*, 4> Ops;
8979 bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
8980 unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
8981 for (unsigned i = 0, e = NumArgs; i != e; i++) {
8982 if (i == 0) {
8983 switch (BuiltinID) {
8984 case NEON::BI__builtin_neon_vld1_v:
8985 case NEON::BI__builtin_neon_vld1q_v:
8986 case NEON::BI__builtin_neon_vld1q_lane_v:
8987 case NEON::BI__builtin_neon_vld1_lane_v:
8988 case NEON::BI__builtin_neon_vld1_dup_v:
8989 case NEON::BI__builtin_neon_vld1q_dup_v:
8990 case NEON::BI__builtin_neon_vst1_v:
8991 case NEON::BI__builtin_neon_vst1q_v:
8992 case NEON::BI__builtin_neon_vst1q_lane_v:
8993 case NEON::BI__builtin_neon_vst1_lane_v:
8994 case NEON::BI__builtin_neon_vst2_v:
8995 case NEON::BI__builtin_neon_vst2q_v:
8996 case NEON::BI__builtin_neon_vst2_lane_v:
8997 case NEON::BI__builtin_neon_vst2q_lane_v:
8998 case NEON::BI__builtin_neon_vst3_v:
8999 case NEON::BI__builtin_neon_vst3q_v:
9000 case NEON::BI__builtin_neon_vst3_lane_v:
9001 case NEON::BI__builtin_neon_vst3q_lane_v:
9002 case NEON::BI__builtin_neon_vst4_v:
9003 case NEON::BI__builtin_neon_vst4q_v:
9004 case NEON::BI__builtin_neon_vst4_lane_v:
9005 case NEON::BI__builtin_neon_vst4q_lane_v:
9006 // Get the alignment for the argument in addition to the value;
9007 // we'll use it later.
9008 PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
9009 Ops.push_back(PtrOp0.emitRawPointer(*this));
9010 continue;
9013 if (i == 1) {
9014 switch (BuiltinID) {
9015 case NEON::BI__builtin_neon_vld2_v:
9016 case NEON::BI__builtin_neon_vld2q_v:
9017 case NEON::BI__builtin_neon_vld3_v:
9018 case NEON::BI__builtin_neon_vld3q_v:
9019 case NEON::BI__builtin_neon_vld4_v:
9020 case NEON::BI__builtin_neon_vld4q_v:
9021 case NEON::BI__builtin_neon_vld2_lane_v:
9022 case NEON::BI__builtin_neon_vld2q_lane_v:
9023 case NEON::BI__builtin_neon_vld3_lane_v:
9024 case NEON::BI__builtin_neon_vld3q_lane_v:
9025 case NEON::BI__builtin_neon_vld4_lane_v:
9026 case NEON::BI__builtin_neon_vld4q_lane_v:
9027 case NEON::BI__builtin_neon_vld2_dup_v:
9028 case NEON::BI__builtin_neon_vld2q_dup_v:
9029 case NEON::BI__builtin_neon_vld3_dup_v:
9030 case NEON::BI__builtin_neon_vld3q_dup_v:
9031 case NEON::BI__builtin_neon_vld4_dup_v:
9032 case NEON::BI__builtin_neon_vld4q_dup_v:
9033 // Get the alignment for the argument in addition to the value;
9034 // we'll use it later.
9035 PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
9036 Ops.push_back(PtrOp1.emitRawPointer(*this));
9037 continue;
9041 Ops.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, i, E));
9044 switch (BuiltinID) {
9045 default: break;
9047 case NEON::BI__builtin_neon_vget_lane_i8:
9048 case NEON::BI__builtin_neon_vget_lane_i16:
9049 case NEON::BI__builtin_neon_vget_lane_i32:
9050 case NEON::BI__builtin_neon_vget_lane_i64:
9051 case NEON::BI__builtin_neon_vget_lane_bf16:
9052 case NEON::BI__builtin_neon_vget_lane_f32:
9053 case NEON::BI__builtin_neon_vgetq_lane_i8:
9054 case NEON::BI__builtin_neon_vgetq_lane_i16:
9055 case NEON::BI__builtin_neon_vgetq_lane_i32:
9056 case NEON::BI__builtin_neon_vgetq_lane_i64:
9057 case NEON::BI__builtin_neon_vgetq_lane_bf16:
9058 case NEON::BI__builtin_neon_vgetq_lane_f32:
9059 case NEON::BI__builtin_neon_vduph_lane_bf16:
9060 case NEON::BI__builtin_neon_vduph_laneq_bf16:
9061 return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
9063 case NEON::BI__builtin_neon_vrndns_f32: {
9064 Value *Arg = EmitScalarExpr(E->getArg(0));
9065 llvm::Type *Tys[] = {Arg->getType()};
9066 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
9067 return Builder.CreateCall(F, {Arg}, "vrndn"); }
9069 case NEON::BI__builtin_neon_vset_lane_i8:
9070 case NEON::BI__builtin_neon_vset_lane_i16:
9071 case NEON::BI__builtin_neon_vset_lane_i32:
9072 case NEON::BI__builtin_neon_vset_lane_i64:
9073 case NEON::BI__builtin_neon_vset_lane_bf16:
9074 case NEON::BI__builtin_neon_vset_lane_f32:
9075 case NEON::BI__builtin_neon_vsetq_lane_i8:
9076 case NEON::BI__builtin_neon_vsetq_lane_i16:
9077 case NEON::BI__builtin_neon_vsetq_lane_i32:
9078 case NEON::BI__builtin_neon_vsetq_lane_i64:
9079 case NEON::BI__builtin_neon_vsetq_lane_bf16:
9080 case NEON::BI__builtin_neon_vsetq_lane_f32:
9081 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
9083 case NEON::BI__builtin_neon_vsha1h_u32:
9084 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
9085 "vsha1h");
9086 case NEON::BI__builtin_neon_vsha1cq_u32:
9087 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
9088 "vsha1h");
9089 case NEON::BI__builtin_neon_vsha1pq_u32:
9090 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
9091 "vsha1h");
9092 case NEON::BI__builtin_neon_vsha1mq_u32:
9093 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
9094 "vsha1h");
9096 case NEON::BI__builtin_neon_vcvth_bf16_f32: {
9097 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops,
9098 "vcvtbfp2bf");
9101 // The ARM _MoveToCoprocessor builtins put the input register value as
9102 // the first argument, but the LLVM intrinsic expects it as the third one.
9103 case clang::ARM::BI_MoveToCoprocessor:
9104 case clang::ARM::BI_MoveToCoprocessor2: {
9105 Function *F = CGM.getIntrinsic(BuiltinID == clang::ARM::BI_MoveToCoprocessor
9106 ? Intrinsic::arm_mcr
9107 : Intrinsic::arm_mcr2);
9108 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
9109 Ops[3], Ops[4], Ops[5]});
9113 // Get the last argument, which specifies the vector type.
9114 assert(HasExtraArg);
9115 const Expr *Arg = E->getArg(E->getNumArgs()-1);
9116 std::optional<llvm::APSInt> Result =
9117 Arg->getIntegerConstantExpr(getContext());
9118 if (!Result)
9119 return nullptr;
9121 if (BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_f ||
9122 BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_d) {
9123 // Determine the overloaded type of this builtin.
9124 llvm::Type *Ty;
9125 if (BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_f)
9126 Ty = FloatTy;
9127 else
9128 Ty = DoubleTy;
9130 // Determine whether this is an unsigned conversion or not.
9131 bool usgn = Result->getZExtValue() == 1;
9132 unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
9134 // Call the appropriate intrinsic.
9135 Function *F = CGM.getIntrinsic(Int, Ty);
9136 return Builder.CreateCall(F, Ops, "vcvtr");
9139 // Determine the type of this overloaded NEON intrinsic.
9140 NeonTypeFlags Type = Result->getZExtValue();
9141 bool usgn = Type.isUnsigned();
9142 bool rightShift = false;
9144 llvm::FixedVectorType *VTy =
9145 GetNeonType(this, Type, getTarget().hasLegalHalfType(), false,
9146 getTarget().hasBFloat16Type());
9147 llvm::Type *Ty = VTy;
9148 if (!Ty)
9149 return nullptr;
9151 // Many NEON builtins have identical semantics and uses in ARM and
9152 // AArch64. Emit these in a single function.
9153 auto IntrinsicMap = ArrayRef(ARMSIMDIntrinsicMap);
9154 const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
9155 IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
9156 if (Builtin)
9157 return EmitCommonNeonBuiltinExpr(
9158 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
9159 Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
9161 unsigned Int;
9162 switch (BuiltinID) {
9163 default: return nullptr;
9164 case NEON::BI__builtin_neon_vld1q_lane_v:
9165 // Handle 64-bit integer elements as a special case. Use shuffles of
9166 // one-element vectors to avoid poor code for i64 in the backend.
9167 if (VTy->getElementType()->isIntegerTy(64)) {
9168 // Extract the other lane.
9169 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9170 int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
9171 Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
9172 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
9173 // Load the value as a one-element vector.
9174 Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1);
9175 llvm::Type *Tys[] = {Ty, Int8PtrTy};
9176 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
9177 Value *Align = getAlignmentValue32(PtrOp0);
9178 Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
9179 // Combine them.
9180 int Indices[] = {1 - Lane, Lane};
9181 return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane");
9183 [[fallthrough]];
9184 case NEON::BI__builtin_neon_vld1_lane_v: {
9185 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9186 PtrOp0 = PtrOp0.withElementType(VTy->getElementType());
9187 Value *Ld = Builder.CreateLoad(PtrOp0);
9188 return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
9190 case NEON::BI__builtin_neon_vqrshrn_n_v:
9191 Int =
9192 usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
9193 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
9194 1, true);
9195 case NEON::BI__builtin_neon_vqrshrun_n_v:
9196 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
9197 Ops, "vqrshrun_n", 1, true);
9198 case NEON::BI__builtin_neon_vqshrn_n_v:
9199 Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
9200 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
9201 1, true);
9202 case NEON::BI__builtin_neon_vqshrun_n_v:
9203 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
9204 Ops, "vqshrun_n", 1, true);
9205 case NEON::BI__builtin_neon_vrecpe_v:
9206 case NEON::BI__builtin_neon_vrecpeq_v:
9207 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
9208 Ops, "vrecpe");
9209 case NEON::BI__builtin_neon_vrshrn_n_v:
9210 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
9211 Ops, "vrshrn_n", 1, true);
9212 case NEON::BI__builtin_neon_vrsra_n_v:
9213 case NEON::BI__builtin_neon_vrsraq_n_v:
9214 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9215 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9216 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
9217 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
9218 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
9219 return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
9220 case NEON::BI__builtin_neon_vsri_n_v:
9221 case NEON::BI__builtin_neon_vsriq_n_v:
9222 rightShift = true;
9223 [[fallthrough]];
9224 case NEON::BI__builtin_neon_vsli_n_v:
9225 case NEON::BI__builtin_neon_vsliq_n_v:
9226 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
9227 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
9228 Ops, "vsli_n");
9229 case NEON::BI__builtin_neon_vsra_n_v:
9230 case NEON::BI__builtin_neon_vsraq_n_v:
9231 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9232 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
9233 return Builder.CreateAdd(Ops[0], Ops[1]);
9234 case NEON::BI__builtin_neon_vst1q_lane_v:
9235 // Handle 64-bit integer elements as a special case. Use a shuffle to get
9236 // a one-element vector and avoid poor code for i64 in the backend.
9237 if (VTy->getElementType()->isIntegerTy(64)) {
9238 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9239 Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
9240 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
9241 Ops[2] = getAlignmentValue32(PtrOp0);
9242 llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
9243 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
9244 Tys), Ops);
9246 [[fallthrough]];
9247 case NEON::BI__builtin_neon_vst1_lane_v: {
9248 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9249 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
9250 return Builder.CreateStore(Ops[1],
9251 PtrOp0.withElementType(Ops[1]->getType()));
9253 case NEON::BI__builtin_neon_vtbl1_v:
9254 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
9255 Ops, "vtbl1");
9256 case NEON::BI__builtin_neon_vtbl2_v:
9257 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
9258 Ops, "vtbl2");
9259 case NEON::BI__builtin_neon_vtbl3_v:
9260 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
9261 Ops, "vtbl3");
9262 case NEON::BI__builtin_neon_vtbl4_v:
9263 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
9264 Ops, "vtbl4");
9265 case NEON::BI__builtin_neon_vtbx1_v:
9266 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
9267 Ops, "vtbx1");
9268 case NEON::BI__builtin_neon_vtbx2_v:
9269 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
9270 Ops, "vtbx2");
9271 case NEON::BI__builtin_neon_vtbx3_v:
9272 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
9273 Ops, "vtbx3");
9274 case NEON::BI__builtin_neon_vtbx4_v:
9275 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
9276 Ops, "vtbx4");
9280 template<typename Integer>
9281 static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) {
9282 return E->getIntegerConstantExpr(Context)->getExtValue();
9285 static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V,
9286 llvm::Type *T, bool Unsigned) {
9287 // Helper function called by Tablegen-constructed ARM MVE builtin codegen,
9288 // which finds it convenient to specify signed/unsigned as a boolean flag.
9289 return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T);
9292 static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V,
9293 uint32_t Shift, bool Unsigned) {
9294 // MVE helper function for integer shift right. This must handle signed vs
9295 // unsigned, and also deal specially with the case where the shift count is
9296 // equal to the lane size. In LLVM IR, an LShr with that parameter would be
9297 // undefined behavior, but in MVE it's legal, so we must convert it to code
9298 // that is not undefined in IR.
9299 unsigned LaneBits = cast<llvm::VectorType>(V->getType())
9300 ->getElementType()
9301 ->getPrimitiveSizeInBits();
9302 if (Shift == LaneBits) {
9303 // An unsigned shift of the full lane size always generates zero, so we can
9304 // simply emit a zero vector. A signed shift of the full lane size does the
9305 // same thing as shifting by one bit fewer.
9306 if (Unsigned)
9307 return llvm::Constant::getNullValue(V->getType());
9308 else
9309 --Shift;
9311 return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift);
9314 static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) {
9315 // MVE-specific helper function for a vector splat, which infers the element
9316 // count of the output vector by knowing that MVE vectors are all 128 bits
9317 // wide.
9318 unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits();
9319 return Builder.CreateVectorSplat(Elements, V);
9322 static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder,
9323 CodeGenFunction *CGF,
9324 llvm::Value *V,
9325 llvm::Type *DestType) {
9326 // Convert one MVE vector type into another by reinterpreting its in-register
9327 // format.
9329 // Little-endian, this is identical to a bitcast (which reinterprets the
9330 // memory format). But big-endian, they're not necessarily the same, because
9331 // the register and memory formats map to each other differently depending on
9332 // the lane size.
9334 // We generate a bitcast whenever we can (if we're little-endian, or if the
9335 // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic
9336 // that performs the different kind of reinterpretation.
9337 if (CGF->getTarget().isBigEndian() &&
9338 V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) {
9339 return Builder.CreateCall(
9340 CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq,
9341 {DestType, V->getType()}),
9343 } else {
9344 return Builder.CreateBitCast(V, DestType);
9348 static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) {
9349 // Make a shufflevector that extracts every other element of a vector (evens
9350 // or odds, as desired).
9351 SmallVector<int, 16> Indices;
9352 unsigned InputElements =
9353 cast<llvm::FixedVectorType>(V->getType())->getNumElements();
9354 for (unsigned i = 0; i < InputElements; i += 2)
9355 Indices.push_back(i + Odd);
9356 return Builder.CreateShuffleVector(V, Indices);
9359 static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0,
9360 llvm::Value *V1) {
9361 // Make a shufflevector that interleaves two vectors element by element.
9362 assert(V0->getType() == V1->getType() && "Can't zip different vector types");
9363 SmallVector<int, 16> Indices;
9364 unsigned InputElements =
9365 cast<llvm::FixedVectorType>(V0->getType())->getNumElements();
9366 for (unsigned i = 0; i < InputElements; i++) {
9367 Indices.push_back(i);
9368 Indices.push_back(i + InputElements);
9370 return Builder.CreateShuffleVector(V0, V1, Indices);
9373 template<unsigned HighBit, unsigned OtherBits>
9374 static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) {
9375 // MVE-specific helper function to make a vector splat of a constant such as
9376 // UINT_MAX or INT_MIN, in which all bits below the highest one are equal.
9377 llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType();
9378 unsigned LaneBits = T->getPrimitiveSizeInBits();
9379 uint32_t Value = HighBit << (LaneBits - 1);
9380 if (OtherBits)
9381 Value |= (1UL << (LaneBits - 1)) - 1;
9382 llvm::Value *Lane = llvm::ConstantInt::get(T, Value);
9383 return ARMMVEVectorSplat(Builder, Lane);
9386 static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder,
9387 llvm::Value *V,
9388 unsigned ReverseWidth) {
9389 // MVE-specific helper function which reverses the elements of a
9390 // vector within every (ReverseWidth)-bit collection of lanes.
9391 SmallVector<int, 16> Indices;
9392 unsigned LaneSize = V->getType()->getScalarSizeInBits();
9393 unsigned Elements = 128 / LaneSize;
9394 unsigned Mask = ReverseWidth / LaneSize - 1;
9395 for (unsigned i = 0; i < Elements; i++)
9396 Indices.push_back(i ^ Mask);
9397 return Builder.CreateShuffleVector(V, Indices);
9400 Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID,
9401 const CallExpr *E,
9402 ReturnValueSlot ReturnValue,
9403 llvm::Triple::ArchType Arch) {
9404 enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType;
9405 Intrinsic::ID IRIntr;
9406 unsigned NumVectors;
9408 // Code autogenerated by Tablegen will handle all the simple builtins.
9409 switch (BuiltinID) {
9410 #include "clang/Basic/arm_mve_builtin_cg.inc"
9412 // If we didn't match an MVE builtin id at all, go back to the
9413 // main EmitARMBuiltinExpr.
9414 default:
9415 return nullptr;
9418 // Anything that breaks from that switch is an MVE builtin that
9419 // needs handwritten code to generate.
9421 switch (CustomCodeGenType) {
9423 case CustomCodeGen::VLD24: {
9424 llvm::SmallVector<Value *, 4> Ops;
9425 llvm::SmallVector<llvm::Type *, 4> Tys;
9427 auto MvecCType = E->getType();
9428 auto MvecLType = ConvertType(MvecCType);
9429 assert(MvecLType->isStructTy() &&
9430 "Return type for vld[24]q should be a struct");
9431 assert(MvecLType->getStructNumElements() == 1 &&
9432 "Return-type struct for vld[24]q should have one element");
9433 auto MvecLTypeInner = MvecLType->getStructElementType(0);
9434 assert(MvecLTypeInner->isArrayTy() &&
9435 "Return-type struct for vld[24]q should contain an array");
9436 assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
9437 "Array member of return-type struct vld[24]q has wrong length");
9438 auto VecLType = MvecLTypeInner->getArrayElementType();
9440 Tys.push_back(VecLType);
9442 auto Addr = E->getArg(0);
9443 Ops.push_back(EmitScalarExpr(Addr));
9444 Tys.push_back(ConvertType(Addr->getType()));
9446 Function *F = CGM.getIntrinsic(IRIntr, ArrayRef(Tys));
9447 Value *LoadResult = Builder.CreateCall(F, Ops);
9448 Value *MvecOut = PoisonValue::get(MvecLType);
9449 for (unsigned i = 0; i < NumVectors; ++i) {
9450 Value *Vec = Builder.CreateExtractValue(LoadResult, i);
9451 MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i});
9454 if (ReturnValue.isNull())
9455 return MvecOut;
9456 else
9457 return Builder.CreateStore(MvecOut, ReturnValue.getAddress());
9460 case CustomCodeGen::VST24: {
9461 llvm::SmallVector<Value *, 4> Ops;
9462 llvm::SmallVector<llvm::Type *, 4> Tys;
9464 auto Addr = E->getArg(0);
9465 Ops.push_back(EmitScalarExpr(Addr));
9466 Tys.push_back(ConvertType(Addr->getType()));
9468 auto MvecCType = E->getArg(1)->getType();
9469 auto MvecLType = ConvertType(MvecCType);
9470 assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct");
9471 assert(MvecLType->getStructNumElements() == 1 &&
9472 "Data-type struct for vst2q should have one element");
9473 auto MvecLTypeInner = MvecLType->getStructElementType(0);
9474 assert(MvecLTypeInner->isArrayTy() &&
9475 "Data-type struct for vst2q should contain an array");
9476 assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
9477 "Array member of return-type struct vld[24]q has wrong length");
9478 auto VecLType = MvecLTypeInner->getArrayElementType();
9480 Tys.push_back(VecLType);
9482 AggValueSlot MvecSlot = CreateAggTemp(MvecCType);
9483 EmitAggExpr(E->getArg(1), MvecSlot);
9484 auto Mvec = Builder.CreateLoad(MvecSlot.getAddress());
9485 for (unsigned i = 0; i < NumVectors; i++)
9486 Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i}));
9488 Function *F = CGM.getIntrinsic(IRIntr, ArrayRef(Tys));
9489 Value *ToReturn = nullptr;
9490 for (unsigned i = 0; i < NumVectors; i++) {
9491 Ops.push_back(llvm::ConstantInt::get(Int32Ty, i));
9492 ToReturn = Builder.CreateCall(F, Ops);
9493 Ops.pop_back();
9495 return ToReturn;
9498 llvm_unreachable("unknown custom codegen type.");
9501 Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID,
9502 const CallExpr *E,
9503 ReturnValueSlot ReturnValue,
9504 llvm::Triple::ArchType Arch) {
9505 switch (BuiltinID) {
9506 default:
9507 return nullptr;
9508 #include "clang/Basic/arm_cde_builtin_cg.inc"
9512 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
9513 const CallExpr *E,
9514 SmallVectorImpl<Value *> &Ops,
9515 llvm::Triple::ArchType Arch) {
9516 unsigned int Int = 0;
9517 const char *s = nullptr;
9519 switch (BuiltinID) {
9520 default:
9521 return nullptr;
9522 case NEON::BI__builtin_neon_vtbl1_v:
9523 case NEON::BI__builtin_neon_vqtbl1_v:
9524 case NEON::BI__builtin_neon_vqtbl1q_v:
9525 case NEON::BI__builtin_neon_vtbl2_v:
9526 case NEON::BI__builtin_neon_vqtbl2_v:
9527 case NEON::BI__builtin_neon_vqtbl2q_v:
9528 case NEON::BI__builtin_neon_vtbl3_v:
9529 case NEON::BI__builtin_neon_vqtbl3_v:
9530 case NEON::BI__builtin_neon_vqtbl3q_v:
9531 case NEON::BI__builtin_neon_vtbl4_v:
9532 case NEON::BI__builtin_neon_vqtbl4_v:
9533 case NEON::BI__builtin_neon_vqtbl4q_v:
9534 break;
9535 case NEON::BI__builtin_neon_vtbx1_v:
9536 case NEON::BI__builtin_neon_vqtbx1_v:
9537 case NEON::BI__builtin_neon_vqtbx1q_v:
9538 case NEON::BI__builtin_neon_vtbx2_v:
9539 case NEON::BI__builtin_neon_vqtbx2_v:
9540 case NEON::BI__builtin_neon_vqtbx2q_v:
9541 case NEON::BI__builtin_neon_vtbx3_v:
9542 case NEON::BI__builtin_neon_vqtbx3_v:
9543 case NEON::BI__builtin_neon_vqtbx3q_v:
9544 case NEON::BI__builtin_neon_vtbx4_v:
9545 case NEON::BI__builtin_neon_vqtbx4_v:
9546 case NEON::BI__builtin_neon_vqtbx4q_v:
9547 break;
9550 assert(E->getNumArgs() >= 3);
9552 // Get the last argument, which specifies the vector type.
9553 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
9554 std::optional<llvm::APSInt> Result =
9555 Arg->getIntegerConstantExpr(CGF.getContext());
9556 if (!Result)
9557 return nullptr;
9559 // Determine the type of this overloaded NEON intrinsic.
9560 NeonTypeFlags Type = Result->getZExtValue();
9561 llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type);
9562 if (!Ty)
9563 return nullptr;
9565 CodeGen::CGBuilderTy &Builder = CGF.Builder;
9567 // AArch64 scalar builtins are not overloaded, they do not have an extra
9568 // argument that specifies the vector type, need to handle each case.
9569 switch (BuiltinID) {
9570 case NEON::BI__builtin_neon_vtbl1_v: {
9571 return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 1), nullptr, Ops[1],
9572 Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
9574 case NEON::BI__builtin_neon_vtbl2_v: {
9575 return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 2), nullptr, Ops[2],
9576 Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
9578 case NEON::BI__builtin_neon_vtbl3_v: {
9579 return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 3), nullptr, Ops[3],
9580 Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
9582 case NEON::BI__builtin_neon_vtbl4_v: {
9583 return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 4), nullptr, Ops[4],
9584 Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
9586 case NEON::BI__builtin_neon_vtbx1_v: {
9587 Value *TblRes =
9588 packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 1), nullptr, Ops[2], Ty,
9589 Intrinsic::aarch64_neon_tbl1, "vtbl1");
9591 llvm::Constant *EightV = ConstantInt::get(Ty, 8);
9592 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
9593 CmpRes = Builder.CreateSExt(CmpRes, Ty);
9595 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
9596 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
9597 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
9599 case NEON::BI__builtin_neon_vtbx2_v: {
9600 return packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 2), Ops[0], Ops[3],
9601 Ty, Intrinsic::aarch64_neon_tbx1, "vtbx1");
9603 case NEON::BI__builtin_neon_vtbx3_v: {
9604 Value *TblRes =
9605 packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 3), nullptr, Ops[4], Ty,
9606 Intrinsic::aarch64_neon_tbl2, "vtbl2");
9608 llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
9609 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
9610 TwentyFourV);
9611 CmpRes = Builder.CreateSExt(CmpRes, Ty);
9613 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
9614 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
9615 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
9617 case NEON::BI__builtin_neon_vtbx4_v: {
9618 return packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 4), Ops[0], Ops[5],
9619 Ty, Intrinsic::aarch64_neon_tbx2, "vtbx2");
9621 case NEON::BI__builtin_neon_vqtbl1_v:
9622 case NEON::BI__builtin_neon_vqtbl1q_v:
9623 Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
9624 case NEON::BI__builtin_neon_vqtbl2_v:
9625 case NEON::BI__builtin_neon_vqtbl2q_v: {
9626 Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
9627 case NEON::BI__builtin_neon_vqtbl3_v:
9628 case NEON::BI__builtin_neon_vqtbl3q_v:
9629 Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
9630 case NEON::BI__builtin_neon_vqtbl4_v:
9631 case NEON::BI__builtin_neon_vqtbl4q_v:
9632 Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
9633 case NEON::BI__builtin_neon_vqtbx1_v:
9634 case NEON::BI__builtin_neon_vqtbx1q_v:
9635 Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
9636 case NEON::BI__builtin_neon_vqtbx2_v:
9637 case NEON::BI__builtin_neon_vqtbx2q_v:
9638 Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
9639 case NEON::BI__builtin_neon_vqtbx3_v:
9640 case NEON::BI__builtin_neon_vqtbx3q_v:
9641 Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
9642 case NEON::BI__builtin_neon_vqtbx4_v:
9643 case NEON::BI__builtin_neon_vqtbx4q_v:
9644 Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
9648 if (!Int)
9649 return nullptr;
9651 Function *F = CGF.CGM.getIntrinsic(Int, Ty);
9652 return CGF.EmitNeonCall(F, Ops, s);
9655 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
9656 auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4);
9657 Op = Builder.CreateBitCast(Op, Int16Ty);
9658 Value *V = PoisonValue::get(VTy);
9659 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
9660 Op = Builder.CreateInsertElement(V, Op, CI);
9661 return Op;
9664 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
9665 /// access builtin. Only required if it can't be inferred from the base pointer
9666 /// operand.
9667 llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags) {
9668 switch (TypeFlags.getMemEltType()) {
9669 case SVETypeFlags::MemEltTyDefault:
9670 return getEltType(TypeFlags);
9671 case SVETypeFlags::MemEltTyInt8:
9672 return Builder.getInt8Ty();
9673 case SVETypeFlags::MemEltTyInt16:
9674 return Builder.getInt16Ty();
9675 case SVETypeFlags::MemEltTyInt32:
9676 return Builder.getInt32Ty();
9677 case SVETypeFlags::MemEltTyInt64:
9678 return Builder.getInt64Ty();
9680 llvm_unreachable("Unknown MemEltType");
9683 llvm::Type *CodeGenFunction::getEltType(const SVETypeFlags &TypeFlags) {
9684 switch (TypeFlags.getEltType()) {
9685 default:
9686 llvm_unreachable("Invalid SVETypeFlag!");
9688 case SVETypeFlags::EltTyInt8:
9689 return Builder.getInt8Ty();
9690 case SVETypeFlags::EltTyInt16:
9691 return Builder.getInt16Ty();
9692 case SVETypeFlags::EltTyInt32:
9693 return Builder.getInt32Ty();
9694 case SVETypeFlags::EltTyInt64:
9695 return Builder.getInt64Ty();
9696 case SVETypeFlags::EltTyInt128:
9697 return Builder.getInt128Ty();
9699 case SVETypeFlags::EltTyFloat16:
9700 return Builder.getHalfTy();
9701 case SVETypeFlags::EltTyFloat32:
9702 return Builder.getFloatTy();
9703 case SVETypeFlags::EltTyFloat64:
9704 return Builder.getDoubleTy();
9706 case SVETypeFlags::EltTyBFloat16:
9707 return Builder.getBFloatTy();
9709 case SVETypeFlags::EltTyBool8:
9710 case SVETypeFlags::EltTyBool16:
9711 case SVETypeFlags::EltTyBool32:
9712 case SVETypeFlags::EltTyBool64:
9713 return Builder.getInt1Ty();
9717 // Return the llvm predicate vector type corresponding to the specified element
9718 // TypeFlags.
9719 llvm::ScalableVectorType *
9720 CodeGenFunction::getSVEPredType(const SVETypeFlags &TypeFlags) {
9721 switch (TypeFlags.getEltType()) {
9722 default: llvm_unreachable("Unhandled SVETypeFlag!");
9724 case SVETypeFlags::EltTyInt8:
9725 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
9726 case SVETypeFlags::EltTyInt16:
9727 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
9728 case SVETypeFlags::EltTyInt32:
9729 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
9730 case SVETypeFlags::EltTyInt64:
9731 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
9733 case SVETypeFlags::EltTyBFloat16:
9734 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
9735 case SVETypeFlags::EltTyFloat16:
9736 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
9737 case SVETypeFlags::EltTyFloat32:
9738 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
9739 case SVETypeFlags::EltTyFloat64:
9740 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
9742 case SVETypeFlags::EltTyBool8:
9743 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
9744 case SVETypeFlags::EltTyBool16:
9745 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
9746 case SVETypeFlags::EltTyBool32:
9747 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
9748 case SVETypeFlags::EltTyBool64:
9749 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
9753 // Return the llvm vector type corresponding to the specified element TypeFlags.
9754 llvm::ScalableVectorType *
9755 CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) {
9756 switch (TypeFlags.getEltType()) {
9757 default:
9758 llvm_unreachable("Invalid SVETypeFlag!");
9760 case SVETypeFlags::EltTyInt8:
9761 return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16);
9762 case SVETypeFlags::EltTyInt16:
9763 return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8);
9764 case SVETypeFlags::EltTyInt32:
9765 return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4);
9766 case SVETypeFlags::EltTyInt64:
9767 return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2);
9769 case SVETypeFlags::EltTyFloat16:
9770 return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8);
9771 case SVETypeFlags::EltTyBFloat16:
9772 return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8);
9773 case SVETypeFlags::EltTyFloat32:
9774 return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4);
9775 case SVETypeFlags::EltTyFloat64:
9776 return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2);
9778 case SVETypeFlags::EltTyBool8:
9779 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
9780 case SVETypeFlags::EltTyBool16:
9781 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
9782 case SVETypeFlags::EltTyBool32:
9783 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
9784 case SVETypeFlags::EltTyBool64:
9785 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
9789 llvm::Value *
9790 CodeGenFunction::EmitSVEAllTruePred(const SVETypeFlags &TypeFlags) {
9791 Function *Ptrue =
9792 CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags));
9793 return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)});
9796 constexpr unsigned SVEBitsPerBlock = 128;
9798 static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) {
9799 unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits();
9800 return llvm::ScalableVectorType::get(EltTy, NumElts);
9803 // Reinterpret the input predicate so that it can be used to correctly isolate
9804 // the elements of the specified datatype.
9805 Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred,
9806 llvm::ScalableVectorType *VTy) {
9808 if (isa<TargetExtType>(Pred->getType()) &&
9809 cast<TargetExtType>(Pred->getType())->getName() == "aarch64.svcount")
9810 return Pred;
9812 auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy);
9813 if (Pred->getType() == RTy)
9814 return Pred;
9816 unsigned IntID;
9817 llvm::Type *IntrinsicTy;
9818 switch (VTy->getMinNumElements()) {
9819 default:
9820 llvm_unreachable("unsupported element count!");
9821 case 1:
9822 case 2:
9823 case 4:
9824 case 8:
9825 IntID = Intrinsic::aarch64_sve_convert_from_svbool;
9826 IntrinsicTy = RTy;
9827 break;
9828 case 16:
9829 IntID = Intrinsic::aarch64_sve_convert_to_svbool;
9830 IntrinsicTy = Pred->getType();
9831 break;
9834 Function *F = CGM.getIntrinsic(IntID, IntrinsicTy);
9835 Value *C = Builder.CreateCall(F, Pred);
9836 assert(C->getType() == RTy && "Unexpected return type!");
9837 return C;
9840 Value *CodeGenFunction::EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
9841 SmallVectorImpl<Value *> &Ops,
9842 unsigned IntID) {
9843 auto *ResultTy = getSVEType(TypeFlags);
9844 auto *OverloadedTy =
9845 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy);
9847 Function *F = nullptr;
9848 if (Ops[1]->getType()->isVectorTy())
9849 // This is the "vector base, scalar offset" case. In order to uniquely
9850 // map this built-in to an LLVM IR intrinsic, we need both the return type
9851 // and the type of the vector base.
9852 F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()});
9853 else
9854 // This is the "scalar base, vector offset case". The type of the offset
9855 // is encoded in the name of the intrinsic. We only need to specify the
9856 // return type in order to uniquely map this built-in to an LLVM IR
9857 // intrinsic.
9858 F = CGM.getIntrinsic(IntID, OverloadedTy);
9860 // At the ACLE level there's only one predicate type, svbool_t, which is
9861 // mapped to <n x 16 x i1>. However, this might be incompatible with the
9862 // actual type being loaded. For example, when loading doubles (i64) the
9863 // predicate should be <n x 2 x i1> instead. At the IR level the type of
9864 // the predicate and the data being loaded must match. Cast to the type
9865 // expected by the intrinsic. The intrinsic itself should be defined in
9866 // a way than enforces relations between parameter types.
9867 Ops[0] = EmitSVEPredicateCast(
9868 Ops[0], cast<llvm::ScalableVectorType>(F->getArg(0)->getType()));
9870 // Pass 0 when the offset is missing. This can only be applied when using
9871 // the "vector base" addressing mode for which ACLE allows no offset. The
9872 // corresponding LLVM IR always requires an offset.
9873 if (Ops.size() == 2) {
9874 assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
9875 Ops.push_back(ConstantInt::get(Int64Ty, 0));
9878 // For "vector base, scalar index" scale the index so that it becomes a
9879 // scalar offset.
9880 if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) {
9881 unsigned BytesPerElt =
9882 OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
9883 Ops[2] = Builder.CreateShl(Ops[2], Log2_32(BytesPerElt));
9886 Value *Call = Builder.CreateCall(F, Ops);
9888 // The following sext/zext is only needed when ResultTy != OverloadedTy. In
9889 // other cases it's folded into a nop.
9890 return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy)
9891 : Builder.CreateSExt(Call, ResultTy);
9894 Value *CodeGenFunction::EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
9895 SmallVectorImpl<Value *> &Ops,
9896 unsigned IntID) {
9897 auto *SrcDataTy = getSVEType(TypeFlags);
9898 auto *OverloadedTy =
9899 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy);
9901 // In ACLE the source data is passed in the last argument, whereas in LLVM IR
9902 // it's the first argument. Move it accordingly.
9903 Ops.insert(Ops.begin(), Ops.pop_back_val());
9905 Function *F = nullptr;
9906 if (Ops[2]->getType()->isVectorTy())
9907 // This is the "vector base, scalar offset" case. In order to uniquely
9908 // map this built-in to an LLVM IR intrinsic, we need both the return type
9909 // and the type of the vector base.
9910 F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()});
9911 else
9912 // This is the "scalar base, vector offset case". The type of the offset
9913 // is encoded in the name of the intrinsic. We only need to specify the
9914 // return type in order to uniquely map this built-in to an LLVM IR
9915 // intrinsic.
9916 F = CGM.getIntrinsic(IntID, OverloadedTy);
9918 // Pass 0 when the offset is missing. This can only be applied when using
9919 // the "vector base" addressing mode for which ACLE allows no offset. The
9920 // corresponding LLVM IR always requires an offset.
9921 if (Ops.size() == 3) {
9922 assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
9923 Ops.push_back(ConstantInt::get(Int64Ty, 0));
9926 // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's
9927 // folded into a nop.
9928 Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy);
9930 // At the ACLE level there's only one predicate type, svbool_t, which is
9931 // mapped to <n x 16 x i1>. However, this might be incompatible with the
9932 // actual type being stored. For example, when storing doubles (i64) the
9933 // predicated should be <n x 2 x i1> instead. At the IR level the type of
9934 // the predicate and the data being stored must match. Cast to the type
9935 // expected by the intrinsic. The intrinsic itself should be defined in
9936 // a way that enforces relations between parameter types.
9937 Ops[1] = EmitSVEPredicateCast(
9938 Ops[1], cast<llvm::ScalableVectorType>(F->getArg(1)->getType()));
9940 // For "vector base, scalar index" scale the index so that it becomes a
9941 // scalar offset.
9942 if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) {
9943 unsigned BytesPerElt =
9944 OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
9945 Ops[3] = Builder.CreateShl(Ops[3], Log2_32(BytesPerElt));
9948 return Builder.CreateCall(F, Ops);
9951 Value *CodeGenFunction::EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
9952 SmallVectorImpl<Value *> &Ops,
9953 unsigned IntID) {
9954 // The gather prefetches are overloaded on the vector input - this can either
9955 // be the vector of base addresses or vector of offsets.
9956 auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType());
9957 if (!OverloadedTy)
9958 OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType());
9960 // Cast the predicate from svbool_t to the right number of elements.
9961 Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
9963 // vector + imm addressing modes
9964 if (Ops[1]->getType()->isVectorTy()) {
9965 if (Ops.size() == 3) {
9966 // Pass 0 for 'vector+imm' when the index is omitted.
9967 Ops.push_back(ConstantInt::get(Int64Ty, 0));
9969 // The sv_prfop is the last operand in the builtin and IR intrinsic.
9970 std::swap(Ops[2], Ops[3]);
9971 } else {
9972 // Index needs to be passed as scaled offset.
9973 llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
9974 unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8;
9975 if (BytesPerElt > 1)
9976 Ops[2] = Builder.CreateShl(Ops[2], Log2_32(BytesPerElt));
9980 Function *F = CGM.getIntrinsic(IntID, OverloadedTy);
9981 return Builder.CreateCall(F, Ops);
9984 Value *CodeGenFunction::EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
9985 SmallVectorImpl<Value*> &Ops,
9986 unsigned IntID) {
9987 llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
9989 unsigned N;
9990 switch (IntID) {
9991 case Intrinsic::aarch64_sve_ld2_sret:
9992 case Intrinsic::aarch64_sve_ld1_pn_x2:
9993 case Intrinsic::aarch64_sve_ldnt1_pn_x2:
9994 case Intrinsic::aarch64_sve_ld2q_sret:
9995 N = 2;
9996 break;
9997 case Intrinsic::aarch64_sve_ld3_sret:
9998 case Intrinsic::aarch64_sve_ld3q_sret:
9999 N = 3;
10000 break;
10001 case Intrinsic::aarch64_sve_ld4_sret:
10002 case Intrinsic::aarch64_sve_ld1_pn_x4:
10003 case Intrinsic::aarch64_sve_ldnt1_pn_x4:
10004 case Intrinsic::aarch64_sve_ld4q_sret:
10005 N = 4;
10006 break;
10007 default:
10008 llvm_unreachable("unknown intrinsic!");
10010 auto RetTy = llvm::VectorType::get(VTy->getElementType(),
10011 VTy->getElementCount() * N);
10013 Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
10014 Value *BasePtr = Ops[1];
10016 // Does the load have an offset?
10017 if (Ops.size() > 2)
10018 BasePtr = Builder.CreateGEP(VTy, BasePtr, Ops[2]);
10020 Function *F = CGM.getIntrinsic(IntID, {VTy});
10021 Value *Call = Builder.CreateCall(F, {Predicate, BasePtr});
10022 unsigned MinElts = VTy->getMinNumElements();
10023 Value *Ret = llvm::PoisonValue::get(RetTy);
10024 for (unsigned I = 0; I < N; I++) {
10025 Value *Idx = ConstantInt::get(CGM.Int64Ty, I * MinElts);
10026 Value *SRet = Builder.CreateExtractValue(Call, I);
10027 Ret = Builder.CreateInsertVector(RetTy, Ret, SRet, Idx);
10029 return Ret;
10032 Value *CodeGenFunction::EmitSVEStructStore(const SVETypeFlags &TypeFlags,
10033 SmallVectorImpl<Value*> &Ops,
10034 unsigned IntID) {
10035 llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
10037 unsigned N;
10038 switch (IntID) {
10039 case Intrinsic::aarch64_sve_st2:
10040 case Intrinsic::aarch64_sve_st1_pn_x2:
10041 case Intrinsic::aarch64_sve_stnt1_pn_x2:
10042 case Intrinsic::aarch64_sve_st2q:
10043 N = 2;
10044 break;
10045 case Intrinsic::aarch64_sve_st3:
10046 case Intrinsic::aarch64_sve_st3q:
10047 N = 3;
10048 break;
10049 case Intrinsic::aarch64_sve_st4:
10050 case Intrinsic::aarch64_sve_st1_pn_x4:
10051 case Intrinsic::aarch64_sve_stnt1_pn_x4:
10052 case Intrinsic::aarch64_sve_st4q:
10053 N = 4;
10054 break;
10055 default:
10056 llvm_unreachable("unknown intrinsic!");
10059 Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
10060 Value *BasePtr = Ops[1];
10062 // Does the store have an offset?
10063 if (Ops.size() > (2 + N))
10064 BasePtr = Builder.CreateGEP(VTy, BasePtr, Ops[2]);
10066 // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we
10067 // need to break up the tuple vector.
10068 SmallVector<llvm::Value*, 5> Operands;
10069 for (unsigned I = Ops.size() - N; I < Ops.size(); ++I)
10070 Operands.push_back(Ops[I]);
10071 Operands.append({Predicate, BasePtr});
10072 Function *F = CGM.getIntrinsic(IntID, { VTy });
10074 return Builder.CreateCall(F, Operands);
10077 // SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and
10078 // svpmullt_pair intrinsics, with the exception that their results are bitcast
10079 // to a wider type.
10080 Value *CodeGenFunction::EmitSVEPMull(const SVETypeFlags &TypeFlags,
10081 SmallVectorImpl<Value *> &Ops,
10082 unsigned BuiltinID) {
10083 // Splat scalar operand to vector (intrinsics with _n infix)
10084 if (TypeFlags.hasSplatOperand()) {
10085 unsigned OpNo = TypeFlags.getSplatOperand();
10086 Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
10089 // The pair-wise function has a narrower overloaded type.
10090 Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType());
10091 Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]});
10093 // Now bitcast to the wider result type.
10094 llvm::ScalableVectorType *Ty = getSVEType(TypeFlags);
10095 return EmitSVEReinterpret(Call, Ty);
10098 Value *CodeGenFunction::EmitSVEMovl(const SVETypeFlags &TypeFlags,
10099 ArrayRef<Value *> Ops, unsigned BuiltinID) {
10100 llvm::Type *OverloadedTy = getSVEType(TypeFlags);
10101 Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy);
10102 return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)});
10105 Value *CodeGenFunction::EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
10106 SmallVectorImpl<Value *> &Ops,
10107 unsigned BuiltinID) {
10108 auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
10109 auto *VectorTy = getSVEVectorForElementType(MemEltTy);
10110 auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
10112 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
10113 Value *BasePtr = Ops[1];
10115 // Implement the index operand if not omitted.
10116 if (Ops.size() > 3)
10117 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
10119 Value *PrfOp = Ops.back();
10121 Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType());
10122 return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp});
10125 Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E,
10126 llvm::Type *ReturnTy,
10127 SmallVectorImpl<Value *> &Ops,
10128 unsigned IntrinsicID,
10129 bool IsZExtReturn) {
10130 QualType LangPTy = E->getArg(1)->getType();
10131 llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
10132 LangPTy->castAs<PointerType>()->getPointeeType());
10134 // The vector type that is returned may be different from the
10135 // eventual type loaded from memory.
10136 auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy);
10137 llvm::ScalableVectorType *MemoryTy = nullptr;
10138 llvm::ScalableVectorType *PredTy = nullptr;
10139 bool IsQuadLoad = false;
10140 switch (IntrinsicID) {
10141 case Intrinsic::aarch64_sve_ld1uwq:
10142 case Intrinsic::aarch64_sve_ld1udq:
10143 MemoryTy = llvm::ScalableVectorType::get(MemEltTy, 1);
10144 PredTy = llvm::ScalableVectorType::get(
10145 llvm::Type::getInt1Ty(getLLVMContext()), 1);
10146 IsQuadLoad = true;
10147 break;
10148 default:
10149 MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
10150 PredTy = MemoryTy;
10151 break;
10154 Value *Predicate = EmitSVEPredicateCast(Ops[0], PredTy);
10155 Value *BasePtr = Ops[1];
10157 // Does the load have an offset?
10158 if (Ops.size() > 2)
10159 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
10161 Function *F = CGM.getIntrinsic(IntrinsicID, IsQuadLoad ? VectorTy : MemoryTy);
10162 auto *Load =
10163 cast<llvm::Instruction>(Builder.CreateCall(F, {Predicate, BasePtr}));
10164 auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType());
10165 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
10167 if (IsQuadLoad)
10168 return Load;
10170 return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy)
10171 : Builder.CreateSExt(Load, VectorTy);
10174 Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E,
10175 SmallVectorImpl<Value *> &Ops,
10176 unsigned IntrinsicID) {
10177 QualType LangPTy = E->getArg(1)->getType();
10178 llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
10179 LangPTy->castAs<PointerType>()->getPointeeType());
10181 // The vector type that is stored may be different from the
10182 // eventual type stored to memory.
10183 auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType());
10184 auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
10186 auto PredTy = MemoryTy;
10187 auto AddrMemoryTy = MemoryTy;
10188 bool IsQuadStore = false;
10190 switch (IntrinsicID) {
10191 case Intrinsic::aarch64_sve_st1wq:
10192 case Intrinsic::aarch64_sve_st1dq:
10193 AddrMemoryTy = llvm::ScalableVectorType::get(MemEltTy, 1);
10194 PredTy =
10195 llvm::ScalableVectorType::get(IntegerType::get(getLLVMContext(), 1), 1);
10196 IsQuadStore = true;
10197 break;
10198 default:
10199 break;
10201 Value *Predicate = EmitSVEPredicateCast(Ops[0], PredTy);
10202 Value *BasePtr = Ops[1];
10204 // Does the store have an offset?
10205 if (Ops.size() == 4)
10206 BasePtr = Builder.CreateGEP(AddrMemoryTy, BasePtr, Ops[2]);
10208 // Last value is always the data
10209 Value *Val =
10210 IsQuadStore ? Ops.back() : Builder.CreateTrunc(Ops.back(), MemoryTy);
10212 Function *F =
10213 CGM.getIntrinsic(IntrinsicID, IsQuadStore ? VectorTy : MemoryTy);
10214 auto *Store =
10215 cast<llvm::Instruction>(Builder.CreateCall(F, {Val, Predicate, BasePtr}));
10216 auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType());
10217 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
10218 return Store;
10221 Value *CodeGenFunction::EmitSMELd1St1(const SVETypeFlags &TypeFlags,
10222 SmallVectorImpl<Value *> &Ops,
10223 unsigned IntID) {
10224 Ops[2] = EmitSVEPredicateCast(
10225 Ops[2], getSVEVectorForElementType(SVEBuiltinMemEltTy(TypeFlags)));
10227 SmallVector<Value *> NewOps;
10228 NewOps.push_back(Ops[2]);
10230 llvm::Value *BasePtr = Ops[3];
10232 // If the intrinsic contains the vnum parameter, multiply it with the vector
10233 // size in bytes.
10234 if (Ops.size() == 5) {
10235 Function *StreamingVectorLength =
10236 CGM.getIntrinsic(Intrinsic::aarch64_sme_cntsb);
10237 llvm::Value *StreamingVectorLengthCall =
10238 Builder.CreateCall(StreamingVectorLength);
10239 llvm::Value *Mulvl =
10240 Builder.CreateMul(StreamingVectorLengthCall, Ops[4], "mulvl");
10241 // The type of the ptr parameter is void *, so use Int8Ty here.
10242 BasePtr = Builder.CreateGEP(Int8Ty, Ops[3], Mulvl);
10244 NewOps.push_back(BasePtr);
10245 NewOps.push_back(Ops[0]);
10246 NewOps.push_back(Ops[1]);
10247 Function *F = CGM.getIntrinsic(IntID);
10248 return Builder.CreateCall(F, NewOps);
10251 Value *CodeGenFunction::EmitSMEReadWrite(const SVETypeFlags &TypeFlags,
10252 SmallVectorImpl<Value *> &Ops,
10253 unsigned IntID) {
10254 auto *VecTy = getSVEType(TypeFlags);
10255 Function *F = CGM.getIntrinsic(IntID, VecTy);
10256 if (TypeFlags.isReadZA())
10257 Ops[1] = EmitSVEPredicateCast(Ops[1], VecTy);
10258 else if (TypeFlags.isWriteZA())
10259 Ops[2] = EmitSVEPredicateCast(Ops[2], VecTy);
10260 return Builder.CreateCall(F, Ops);
10263 Value *CodeGenFunction::EmitSMEZero(const SVETypeFlags &TypeFlags,
10264 SmallVectorImpl<Value *> &Ops,
10265 unsigned IntID) {
10266 // svzero_za() intrinsic zeros the entire za tile and has no paramters.
10267 if (Ops.size() == 0)
10268 Ops.push_back(llvm::ConstantInt::get(Int32Ty, 255));
10269 Function *F = CGM.getIntrinsic(IntID, {});
10270 return Builder.CreateCall(F, Ops);
10273 Value *CodeGenFunction::EmitSMELdrStr(const SVETypeFlags &TypeFlags,
10274 SmallVectorImpl<Value *> &Ops,
10275 unsigned IntID) {
10276 if (Ops.size() == 2)
10277 Ops.push_back(Builder.getInt32(0));
10278 else
10279 Ops[2] = Builder.CreateIntCast(Ops[2], Int32Ty, true);
10280 Function *F = CGM.getIntrinsic(IntID, {});
10281 return Builder.CreateCall(F, Ops);
10284 // Limit the usage of scalable llvm IR generated by the ACLE by using the
10285 // sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat.
10286 Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) {
10287 return Builder.CreateVectorSplat(
10288 cast<llvm::VectorType>(Ty)->getElementCount(), Scalar);
10291 Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) {
10292 return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType()));
10295 Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) {
10296 // FIXME: For big endian this needs an additional REV, or needs a separate
10297 // intrinsic that is code-generated as a no-op, because the LLVM bitcast
10298 // instruction is defined as 'bitwise' equivalent from memory point of
10299 // view (when storing/reloading), whereas the svreinterpret builtin
10300 // implements bitwise equivalent cast from register point of view.
10301 // LLVM CodeGen for a bitcast must add an explicit REV for big-endian.
10302 return Builder.CreateBitCast(Val, Ty);
10305 static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty,
10306 SmallVectorImpl<Value *> &Ops) {
10307 auto *SplatZero = Constant::getNullValue(Ty);
10308 Ops.insert(Ops.begin(), SplatZero);
10311 static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty,
10312 SmallVectorImpl<Value *> &Ops) {
10313 auto *SplatUndef = UndefValue::get(Ty);
10314 Ops.insert(Ops.begin(), SplatUndef);
10317 SmallVector<llvm::Type *, 2>
10318 CodeGenFunction::getSVEOverloadTypes(const SVETypeFlags &TypeFlags,
10319 llvm::Type *ResultType,
10320 ArrayRef<Value *> Ops) {
10321 if (TypeFlags.isOverloadNone())
10322 return {};
10324 llvm::Type *DefaultType = getSVEType(TypeFlags);
10326 if (TypeFlags.isOverloadWhileOrMultiVecCvt())
10327 return {DefaultType, Ops[1]->getType()};
10329 if (TypeFlags.isOverloadWhileRW())
10330 return {getSVEPredType(TypeFlags), Ops[0]->getType()};
10332 if (TypeFlags.isOverloadCvt())
10333 return {Ops[0]->getType(), Ops.back()->getType()};
10335 if (TypeFlags.isReductionQV() && !ResultType->isScalableTy() &&
10336 ResultType->isVectorTy())
10337 return {ResultType, Ops[1]->getType()};
10339 assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads");
10340 return {DefaultType};
10343 Value *CodeGenFunction::EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags,
10344 llvm::Type *Ty,
10345 ArrayRef<Value *> Ops) {
10346 assert((TypeFlags.isTupleSet() || TypeFlags.isTupleGet()) &&
10347 "Expects TypleFlags.isTupleSet() or TypeFlags.isTupleGet()");
10349 unsigned I = cast<ConstantInt>(Ops[1])->getSExtValue();
10350 auto *SingleVecTy = dyn_cast<llvm::ScalableVectorType>(
10351 TypeFlags.isTupleSet() ? Ops[2]->getType() : Ty);
10353 if (!SingleVecTy)
10354 return nullptr;
10356 Value *Idx = ConstantInt::get(CGM.Int64Ty,
10357 I * SingleVecTy->getMinNumElements());
10359 if (TypeFlags.isTupleSet())
10360 return Builder.CreateInsertVector(Ty, Ops[0], Ops[2], Idx);
10361 return Builder.CreateExtractVector(Ty, Ops[0], Idx);
10364 Value *CodeGenFunction::EmitSVETupleCreate(const SVETypeFlags &TypeFlags,
10365 llvm::Type *Ty,
10366 ArrayRef<Value *> Ops) {
10367 assert(TypeFlags.isTupleCreate() && "Expects TypleFlag isTupleCreate");
10369 auto *SrcTy = dyn_cast<llvm::ScalableVectorType>(Ops[0]->getType());
10371 if (!SrcTy)
10372 return nullptr;
10374 unsigned MinElts = SrcTy->getMinNumElements();
10375 Value *Call = llvm::PoisonValue::get(Ty);
10376 for (unsigned I = 0; I < Ops.size(); I++) {
10377 Value *Idx = ConstantInt::get(CGM.Int64Ty, I * MinElts);
10378 Call = Builder.CreateInsertVector(Ty, Call, Ops[I], Idx);
10381 return Call;
10384 Value *CodeGenFunction::FormSVEBuiltinResult(Value *Call) {
10385 // Multi-vector results should be broken up into a single (wide) result
10386 // vector.
10387 auto *StructTy = dyn_cast<StructType>(Call->getType());
10388 if (!StructTy)
10389 return Call;
10391 auto *VTy = dyn_cast<ScalableVectorType>(StructTy->getTypeAtIndex(0U));
10392 if (!VTy)
10393 return Call;
10394 unsigned N = StructTy->getNumElements();
10396 // We may need to emit a cast to a svbool_t
10397 bool IsPredTy = VTy->getElementType()->isIntegerTy(1);
10398 unsigned MinElts = IsPredTy ? 16 : VTy->getMinNumElements();
10400 ScalableVectorType *WideVTy =
10401 ScalableVectorType::get(VTy->getElementType(), MinElts * N);
10402 Value *Ret = llvm::PoisonValue::get(WideVTy);
10403 for (unsigned I = 0; I < N; ++I) {
10404 Value *SRet = Builder.CreateExtractValue(Call, I);
10405 assert(SRet->getType() == VTy && "Unexpected type for result value");
10406 Value *Idx = ConstantInt::get(CGM.Int64Ty, I * MinElts);
10408 if (IsPredTy)
10409 SRet = EmitSVEPredicateCast(
10410 SRet, ScalableVectorType::get(Builder.getInt1Ty(), 16));
10412 Ret = Builder.CreateInsertVector(WideVTy, Ret, SRet, Idx);
10414 Call = Ret;
10416 return Call;
10419 void CodeGenFunction::GetAArch64SVEProcessedOperands(
10420 unsigned BuiltinID, const CallExpr *E, SmallVectorImpl<Value *> &Ops,
10421 SVETypeFlags TypeFlags) {
10422 // Find out if any arguments are required to be integer constant expressions.
10423 unsigned ICEArguments = 0;
10424 ASTContext::GetBuiltinTypeError Error;
10425 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
10426 assert(Error == ASTContext::GE_None && "Should not codegen an error");
10428 // Tuple set/get only requires one insert/extract vector, which is
10429 // created by EmitSVETupleSetOrGet.
10430 bool IsTupleGetOrSet = TypeFlags.isTupleSet() || TypeFlags.isTupleGet();
10432 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
10433 bool IsICE = ICEArguments & (1 << i);
10434 Value *Arg = EmitScalarExpr(E->getArg(i));
10436 if (IsICE) {
10437 // If this is required to be a constant, constant fold it so that we know
10438 // that the generated intrinsic gets a ConstantInt.
10439 std::optional<llvm::APSInt> Result =
10440 E->getArg(i)->getIntegerConstantExpr(getContext());
10441 assert(Result && "Expected argument to be a constant");
10443 // Immediates for SVE llvm intrinsics are always 32bit. We can safely
10444 // truncate because the immediate has been range checked and no valid
10445 // immediate requires more than a handful of bits.
10446 *Result = Result->extOrTrunc(32);
10447 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result));
10448 continue;
10451 if (IsTupleGetOrSet || !isa<ScalableVectorType>(Arg->getType())) {
10452 Ops.push_back(Arg);
10453 continue;
10456 auto *VTy = cast<ScalableVectorType>(Arg->getType());
10457 unsigned MinElts = VTy->getMinNumElements();
10458 bool IsPred = VTy->getElementType()->isIntegerTy(1);
10459 unsigned N = (MinElts * VTy->getScalarSizeInBits()) / (IsPred ? 16 : 128);
10461 if (N == 1) {
10462 Ops.push_back(Arg);
10463 continue;
10466 for (unsigned I = 0; I < N; ++I) {
10467 Value *Idx = ConstantInt::get(CGM.Int64Ty, (I * MinElts) / N);
10468 auto *NewVTy =
10469 ScalableVectorType::get(VTy->getElementType(), MinElts / N);
10470 Ops.push_back(Builder.CreateExtractVector(NewVTy, Arg, Idx));
10475 Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,
10476 const CallExpr *E) {
10477 llvm::Type *Ty = ConvertType(E->getType());
10478 if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 &&
10479 BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64_x4) {
10480 Value *Val = EmitScalarExpr(E->getArg(0));
10481 return EmitSVEReinterpret(Val, Ty);
10484 auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID,
10485 AArch64SVEIntrinsicsProvenSorted);
10487 llvm::SmallVector<Value *, 4> Ops;
10488 SVETypeFlags TypeFlags(Builtin->TypeModifier);
10489 GetAArch64SVEProcessedOperands(BuiltinID, E, Ops, TypeFlags);
10491 if (TypeFlags.isLoad())
10492 return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic,
10493 TypeFlags.isZExtReturn());
10494 else if (TypeFlags.isStore())
10495 return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic);
10496 else if (TypeFlags.isGatherLoad())
10497 return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10498 else if (TypeFlags.isScatterStore())
10499 return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10500 else if (TypeFlags.isPrefetch())
10501 return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10502 else if (TypeFlags.isGatherPrefetch())
10503 return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10504 else if (TypeFlags.isStructLoad())
10505 return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10506 else if (TypeFlags.isStructStore())
10507 return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10508 else if (TypeFlags.isTupleSet() || TypeFlags.isTupleGet())
10509 return EmitSVETupleSetOrGet(TypeFlags, Ty, Ops);
10510 else if (TypeFlags.isTupleCreate())
10511 return EmitSVETupleCreate(TypeFlags, Ty, Ops);
10512 else if (TypeFlags.isUndef())
10513 return UndefValue::get(Ty);
10514 else if (Builtin->LLVMIntrinsic != 0) {
10515 if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp)
10516 InsertExplicitZeroOperand(Builder, Ty, Ops);
10518 if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp)
10519 InsertExplicitUndefOperand(Builder, Ty, Ops);
10521 // Some ACLE builtins leave out the argument to specify the predicate
10522 // pattern, which is expected to be expanded to an SV_ALL pattern.
10523 if (TypeFlags.isAppendSVALL())
10524 Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31));
10525 if (TypeFlags.isInsertOp1SVALL())
10526 Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31));
10528 // Predicates must match the main datatype.
10529 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
10530 if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
10531 if (PredTy->getElementType()->isIntegerTy(1))
10532 Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
10534 // Splat scalar operand to vector (intrinsics with _n infix)
10535 if (TypeFlags.hasSplatOperand()) {
10536 unsigned OpNo = TypeFlags.getSplatOperand();
10537 Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
10540 if (TypeFlags.isReverseCompare())
10541 std::swap(Ops[1], Ops[2]);
10542 else if (TypeFlags.isReverseUSDOT())
10543 std::swap(Ops[1], Ops[2]);
10544 else if (TypeFlags.isReverseMergeAnyBinOp() &&
10545 TypeFlags.getMergeType() == SVETypeFlags::MergeAny)
10546 std::swap(Ops[1], Ops[2]);
10547 else if (TypeFlags.isReverseMergeAnyAccOp() &&
10548 TypeFlags.getMergeType() == SVETypeFlags::MergeAny)
10549 std::swap(Ops[1], Ops[3]);
10551 // Predicated intrinsics with _z suffix need a select w/ zeroinitializer.
10552 if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) {
10553 llvm::Type *OpndTy = Ops[1]->getType();
10554 auto *SplatZero = Constant::getNullValue(OpndTy);
10555 Ops[1] = Builder.CreateSelect(Ops[0], Ops[1], SplatZero);
10558 Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic,
10559 getSVEOverloadTypes(TypeFlags, Ty, Ops));
10560 Value *Call = Builder.CreateCall(F, Ops);
10562 // Predicate results must be converted to svbool_t.
10563 if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType()))
10564 if (PredTy->getScalarType()->isIntegerTy(1))
10565 Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
10567 return FormSVEBuiltinResult(Call);
10570 switch (BuiltinID) {
10571 default:
10572 return nullptr;
10574 case SVE::BI__builtin_sve_svreinterpret_b: {
10575 auto SVCountTy =
10576 llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount");
10577 Function *CastFromSVCountF =
10578 CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_to_svbool, SVCountTy);
10579 return Builder.CreateCall(CastFromSVCountF, Ops[0]);
10581 case SVE::BI__builtin_sve_svreinterpret_c: {
10582 auto SVCountTy =
10583 llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount");
10584 Function *CastToSVCountF =
10585 CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool, SVCountTy);
10586 return Builder.CreateCall(CastToSVCountF, Ops[0]);
10589 case SVE::BI__builtin_sve_svpsel_lane_b8:
10590 case SVE::BI__builtin_sve_svpsel_lane_b16:
10591 case SVE::BI__builtin_sve_svpsel_lane_b32:
10592 case SVE::BI__builtin_sve_svpsel_lane_b64:
10593 case SVE::BI__builtin_sve_svpsel_lane_c8:
10594 case SVE::BI__builtin_sve_svpsel_lane_c16:
10595 case SVE::BI__builtin_sve_svpsel_lane_c32:
10596 case SVE::BI__builtin_sve_svpsel_lane_c64: {
10597 bool IsSVCount = isa<TargetExtType>(Ops[0]->getType());
10598 assert(((!IsSVCount || cast<TargetExtType>(Ops[0]->getType())->getName() ==
10599 "aarch64.svcount")) &&
10600 "Unexpected TargetExtType");
10601 auto SVCountTy =
10602 llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount");
10603 Function *CastFromSVCountF =
10604 CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_to_svbool, SVCountTy);
10605 Function *CastToSVCountF =
10606 CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool, SVCountTy);
10608 auto OverloadedTy = getSVEType(SVETypeFlags(Builtin->TypeModifier));
10609 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_psel, OverloadedTy);
10610 llvm::Value *Ops0 =
10611 IsSVCount ? Builder.CreateCall(CastFromSVCountF, Ops[0]) : Ops[0];
10612 llvm::Value *Ops1 = EmitSVEPredicateCast(Ops[1], OverloadedTy);
10613 llvm::Value *PSel = Builder.CreateCall(F, {Ops0, Ops1, Ops[2]});
10614 return IsSVCount ? Builder.CreateCall(CastToSVCountF, PSel) : PSel;
10616 case SVE::BI__builtin_sve_svmov_b_z: {
10617 // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op)
10618 SVETypeFlags TypeFlags(Builtin->TypeModifier);
10619 llvm::Type* OverloadedTy = getSVEType(TypeFlags);
10620 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy);
10621 return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]});
10624 case SVE::BI__builtin_sve_svnot_b_z: {
10625 // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg)
10626 SVETypeFlags TypeFlags(Builtin->TypeModifier);
10627 llvm::Type* OverloadedTy = getSVEType(TypeFlags);
10628 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy);
10629 return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]});
10632 case SVE::BI__builtin_sve_svmovlb_u16:
10633 case SVE::BI__builtin_sve_svmovlb_u32:
10634 case SVE::BI__builtin_sve_svmovlb_u64:
10635 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb);
10637 case SVE::BI__builtin_sve_svmovlb_s16:
10638 case SVE::BI__builtin_sve_svmovlb_s32:
10639 case SVE::BI__builtin_sve_svmovlb_s64:
10640 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb);
10642 case SVE::BI__builtin_sve_svmovlt_u16:
10643 case SVE::BI__builtin_sve_svmovlt_u32:
10644 case SVE::BI__builtin_sve_svmovlt_u64:
10645 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt);
10647 case SVE::BI__builtin_sve_svmovlt_s16:
10648 case SVE::BI__builtin_sve_svmovlt_s32:
10649 case SVE::BI__builtin_sve_svmovlt_s64:
10650 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt);
10652 case SVE::BI__builtin_sve_svpmullt_u16:
10653 case SVE::BI__builtin_sve_svpmullt_u64:
10654 case SVE::BI__builtin_sve_svpmullt_n_u16:
10655 case SVE::BI__builtin_sve_svpmullt_n_u64:
10656 return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair);
10658 case SVE::BI__builtin_sve_svpmullb_u16:
10659 case SVE::BI__builtin_sve_svpmullb_u64:
10660 case SVE::BI__builtin_sve_svpmullb_n_u16:
10661 case SVE::BI__builtin_sve_svpmullb_n_u64:
10662 return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair);
10664 case SVE::BI__builtin_sve_svdup_n_b8:
10665 case SVE::BI__builtin_sve_svdup_n_b16:
10666 case SVE::BI__builtin_sve_svdup_n_b32:
10667 case SVE::BI__builtin_sve_svdup_n_b64: {
10668 Value *CmpNE =
10669 Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType()));
10670 llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags);
10671 Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy);
10672 return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty));
10675 case SVE::BI__builtin_sve_svdupq_n_b8:
10676 case SVE::BI__builtin_sve_svdupq_n_b16:
10677 case SVE::BI__builtin_sve_svdupq_n_b32:
10678 case SVE::BI__builtin_sve_svdupq_n_b64:
10679 case SVE::BI__builtin_sve_svdupq_n_u8:
10680 case SVE::BI__builtin_sve_svdupq_n_s8:
10681 case SVE::BI__builtin_sve_svdupq_n_u64:
10682 case SVE::BI__builtin_sve_svdupq_n_f64:
10683 case SVE::BI__builtin_sve_svdupq_n_s64:
10684 case SVE::BI__builtin_sve_svdupq_n_u16:
10685 case SVE::BI__builtin_sve_svdupq_n_f16:
10686 case SVE::BI__builtin_sve_svdupq_n_bf16:
10687 case SVE::BI__builtin_sve_svdupq_n_s16:
10688 case SVE::BI__builtin_sve_svdupq_n_u32:
10689 case SVE::BI__builtin_sve_svdupq_n_f32:
10690 case SVE::BI__builtin_sve_svdupq_n_s32: {
10691 // These builtins are implemented by storing each element to an array and using
10692 // ld1rq to materialize a vector.
10693 unsigned NumOpnds = Ops.size();
10695 bool IsBoolTy =
10696 cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1);
10698 // For svdupq_n_b* the element type of is an integer of type 128/numelts,
10699 // so that the compare can use the width that is natural for the expected
10700 // number of predicate lanes.
10701 llvm::Type *EltTy = Ops[0]->getType();
10702 if (IsBoolTy)
10703 EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds);
10705 SmallVector<llvm::Value *, 16> VecOps;
10706 for (unsigned I = 0; I < NumOpnds; ++I)
10707 VecOps.push_back(Builder.CreateZExt(Ops[I], EltTy));
10708 Value *Vec = BuildVector(VecOps);
10710 llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy);
10711 Value *InsertSubVec = Builder.CreateInsertVector(
10712 OverloadedTy, PoisonValue::get(OverloadedTy), Vec, Builder.getInt64(0));
10714 Function *F =
10715 CGM.getIntrinsic(Intrinsic::aarch64_sve_dupq_lane, OverloadedTy);
10716 Value *DupQLane =
10717 Builder.CreateCall(F, {InsertSubVec, Builder.getInt64(0)});
10719 if (!IsBoolTy)
10720 return DupQLane;
10722 SVETypeFlags TypeFlags(Builtin->TypeModifier);
10723 Value *Pred = EmitSVEAllTruePred(TypeFlags);
10725 // For svdupq_n_b* we need to add an additional 'cmpne' with '0'.
10726 F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne
10727 : Intrinsic::aarch64_sve_cmpne_wide,
10728 OverloadedTy);
10729 Value *Call = Builder.CreateCall(
10730 F, {Pred, DupQLane, EmitSVEDupX(Builder.getInt64(0))});
10731 return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
10734 case SVE::BI__builtin_sve_svpfalse_b:
10735 return ConstantInt::getFalse(Ty);
10737 case SVE::BI__builtin_sve_svpfalse_c: {
10738 auto SVBoolTy = ScalableVectorType::get(Builder.getInt1Ty(), 16);
10739 Function *CastToSVCountF =
10740 CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool, Ty);
10741 return Builder.CreateCall(CastToSVCountF, ConstantInt::getFalse(SVBoolTy));
10744 case SVE::BI__builtin_sve_svlen_bf16:
10745 case SVE::BI__builtin_sve_svlen_f16:
10746 case SVE::BI__builtin_sve_svlen_f32:
10747 case SVE::BI__builtin_sve_svlen_f64:
10748 case SVE::BI__builtin_sve_svlen_s8:
10749 case SVE::BI__builtin_sve_svlen_s16:
10750 case SVE::BI__builtin_sve_svlen_s32:
10751 case SVE::BI__builtin_sve_svlen_s64:
10752 case SVE::BI__builtin_sve_svlen_u8:
10753 case SVE::BI__builtin_sve_svlen_u16:
10754 case SVE::BI__builtin_sve_svlen_u32:
10755 case SVE::BI__builtin_sve_svlen_u64: {
10756 SVETypeFlags TF(Builtin->TypeModifier);
10757 auto VTy = cast<llvm::VectorType>(getSVEType(TF));
10758 auto *NumEls =
10759 llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue());
10761 Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty);
10762 return Builder.CreateMul(NumEls, Builder.CreateCall(F));
10765 case SVE::BI__builtin_sve_svtbl2_u8:
10766 case SVE::BI__builtin_sve_svtbl2_s8:
10767 case SVE::BI__builtin_sve_svtbl2_u16:
10768 case SVE::BI__builtin_sve_svtbl2_s16:
10769 case SVE::BI__builtin_sve_svtbl2_u32:
10770 case SVE::BI__builtin_sve_svtbl2_s32:
10771 case SVE::BI__builtin_sve_svtbl2_u64:
10772 case SVE::BI__builtin_sve_svtbl2_s64:
10773 case SVE::BI__builtin_sve_svtbl2_f16:
10774 case SVE::BI__builtin_sve_svtbl2_bf16:
10775 case SVE::BI__builtin_sve_svtbl2_f32:
10776 case SVE::BI__builtin_sve_svtbl2_f64: {
10777 SVETypeFlags TF(Builtin->TypeModifier);
10778 auto VTy = cast<llvm::ScalableVectorType>(getSVEType(TF));
10779 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy);
10780 return Builder.CreateCall(F, Ops);
10783 case SVE::BI__builtin_sve_svset_neonq_s8:
10784 case SVE::BI__builtin_sve_svset_neonq_s16:
10785 case SVE::BI__builtin_sve_svset_neonq_s32:
10786 case SVE::BI__builtin_sve_svset_neonq_s64:
10787 case SVE::BI__builtin_sve_svset_neonq_u8:
10788 case SVE::BI__builtin_sve_svset_neonq_u16:
10789 case SVE::BI__builtin_sve_svset_neonq_u32:
10790 case SVE::BI__builtin_sve_svset_neonq_u64:
10791 case SVE::BI__builtin_sve_svset_neonq_f16:
10792 case SVE::BI__builtin_sve_svset_neonq_f32:
10793 case SVE::BI__builtin_sve_svset_neonq_f64:
10794 case SVE::BI__builtin_sve_svset_neonq_bf16: {
10795 return Builder.CreateInsertVector(Ty, Ops[0], Ops[1], Builder.getInt64(0));
10798 case SVE::BI__builtin_sve_svget_neonq_s8:
10799 case SVE::BI__builtin_sve_svget_neonq_s16:
10800 case SVE::BI__builtin_sve_svget_neonq_s32:
10801 case SVE::BI__builtin_sve_svget_neonq_s64:
10802 case SVE::BI__builtin_sve_svget_neonq_u8:
10803 case SVE::BI__builtin_sve_svget_neonq_u16:
10804 case SVE::BI__builtin_sve_svget_neonq_u32:
10805 case SVE::BI__builtin_sve_svget_neonq_u64:
10806 case SVE::BI__builtin_sve_svget_neonq_f16:
10807 case SVE::BI__builtin_sve_svget_neonq_f32:
10808 case SVE::BI__builtin_sve_svget_neonq_f64:
10809 case SVE::BI__builtin_sve_svget_neonq_bf16: {
10810 return Builder.CreateExtractVector(Ty, Ops[0], Builder.getInt64(0));
10813 case SVE::BI__builtin_sve_svdup_neonq_s8:
10814 case SVE::BI__builtin_sve_svdup_neonq_s16:
10815 case SVE::BI__builtin_sve_svdup_neonq_s32:
10816 case SVE::BI__builtin_sve_svdup_neonq_s64:
10817 case SVE::BI__builtin_sve_svdup_neonq_u8:
10818 case SVE::BI__builtin_sve_svdup_neonq_u16:
10819 case SVE::BI__builtin_sve_svdup_neonq_u32:
10820 case SVE::BI__builtin_sve_svdup_neonq_u64:
10821 case SVE::BI__builtin_sve_svdup_neonq_f16:
10822 case SVE::BI__builtin_sve_svdup_neonq_f32:
10823 case SVE::BI__builtin_sve_svdup_neonq_f64:
10824 case SVE::BI__builtin_sve_svdup_neonq_bf16: {
10825 Value *Insert = Builder.CreateInsertVector(Ty, PoisonValue::get(Ty), Ops[0],
10826 Builder.getInt64(0));
10827 return Builder.CreateIntrinsic(Intrinsic::aarch64_sve_dupq_lane, {Ty},
10828 {Insert, Builder.getInt64(0)});
10832 /// Should not happen
10833 return nullptr;
10836 static void swapCommutativeSMEOperands(unsigned BuiltinID,
10837 SmallVectorImpl<Value *> &Ops) {
10838 unsigned MultiVec;
10839 switch (BuiltinID) {
10840 default:
10841 return;
10842 case SME::BI__builtin_sme_svsumla_za32_s8_vg4x1:
10843 MultiVec = 1;
10844 break;
10845 case SME::BI__builtin_sme_svsumla_za32_s8_vg4x2:
10846 case SME::BI__builtin_sme_svsudot_za32_s8_vg1x2:
10847 MultiVec = 2;
10848 break;
10849 case SME::BI__builtin_sme_svsudot_za32_s8_vg1x4:
10850 case SME::BI__builtin_sme_svsumla_za32_s8_vg4x4:
10851 MultiVec = 4;
10852 break;
10855 if (MultiVec > 0)
10856 for (unsigned I = 0; I < MultiVec; ++I)
10857 std::swap(Ops[I + 1], Ops[I + 1 + MultiVec]);
10860 Value *CodeGenFunction::EmitAArch64SMEBuiltinExpr(unsigned BuiltinID,
10861 const CallExpr *E) {
10862 auto *Builtin = findARMVectorIntrinsicInMap(AArch64SMEIntrinsicMap, BuiltinID,
10863 AArch64SMEIntrinsicsProvenSorted);
10865 llvm::SmallVector<Value *, 4> Ops;
10866 SVETypeFlags TypeFlags(Builtin->TypeModifier);
10867 GetAArch64SVEProcessedOperands(BuiltinID, E, Ops, TypeFlags);
10869 if (TypeFlags.isLoad() || TypeFlags.isStore())
10870 return EmitSMELd1St1(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10871 else if (TypeFlags.isReadZA() || TypeFlags.isWriteZA())
10872 return EmitSMEReadWrite(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10873 else if (BuiltinID == SME::BI__builtin_sme_svzero_mask_za ||
10874 BuiltinID == SME::BI__builtin_sme_svzero_za)
10875 return EmitSMEZero(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10876 else if (BuiltinID == SME::BI__builtin_sme_svldr_vnum_za ||
10877 BuiltinID == SME::BI__builtin_sme_svstr_vnum_za ||
10878 BuiltinID == SME::BI__builtin_sme_svldr_za ||
10879 BuiltinID == SME::BI__builtin_sme_svstr_za)
10880 return EmitSMELdrStr(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10882 // Handle builtins which require their multi-vector operands to be swapped
10883 swapCommutativeSMEOperands(BuiltinID, Ops);
10885 // Should not happen!
10886 if (Builtin->LLVMIntrinsic == 0)
10887 return nullptr;
10889 // Predicates must match the main datatype.
10890 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
10891 if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
10892 if (PredTy->getElementType()->isIntegerTy(1))
10893 Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
10895 Function *F =
10896 TypeFlags.isOverloadNone()
10897 ? CGM.getIntrinsic(Builtin->LLVMIntrinsic)
10898 : CGM.getIntrinsic(Builtin->LLVMIntrinsic, {getSVEType(TypeFlags)});
10899 Value *Call = Builder.CreateCall(F, Ops);
10901 return FormSVEBuiltinResult(Call);
10904 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
10905 const CallExpr *E,
10906 llvm::Triple::ArchType Arch) {
10907 if (BuiltinID >= clang::AArch64::FirstSVEBuiltin &&
10908 BuiltinID <= clang::AArch64::LastSVEBuiltin)
10909 return EmitAArch64SVEBuiltinExpr(BuiltinID, E);
10911 if (BuiltinID >= clang::AArch64::FirstSMEBuiltin &&
10912 BuiltinID <= clang::AArch64::LastSMEBuiltin)
10913 return EmitAArch64SMEBuiltinExpr(BuiltinID, E);
10915 if (BuiltinID == Builtin::BI__builtin_cpu_supports)
10916 return EmitAArch64CpuSupports(E);
10918 unsigned HintID = static_cast<unsigned>(-1);
10919 switch (BuiltinID) {
10920 default: break;
10921 case clang::AArch64::BI__builtin_arm_nop:
10922 HintID = 0;
10923 break;
10924 case clang::AArch64::BI__builtin_arm_yield:
10925 case clang::AArch64::BI__yield:
10926 HintID = 1;
10927 break;
10928 case clang::AArch64::BI__builtin_arm_wfe:
10929 case clang::AArch64::BI__wfe:
10930 HintID = 2;
10931 break;
10932 case clang::AArch64::BI__builtin_arm_wfi:
10933 case clang::AArch64::BI__wfi:
10934 HintID = 3;
10935 break;
10936 case clang::AArch64::BI__builtin_arm_sev:
10937 case clang::AArch64::BI__sev:
10938 HintID = 4;
10939 break;
10940 case clang::AArch64::BI__builtin_arm_sevl:
10941 case clang::AArch64::BI__sevl:
10942 HintID = 5;
10943 break;
10946 if (HintID != static_cast<unsigned>(-1)) {
10947 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
10948 return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
10951 if (BuiltinID == clang::AArch64::BI__builtin_arm_trap) {
10952 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_break);
10953 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10954 return Builder.CreateCall(F, Builder.CreateZExt(Arg, CGM.Int32Ty));
10957 if (BuiltinID == clang::AArch64::BI__builtin_arm_get_sme_state) {
10958 // Create call to __arm_sme_state and store the results to the two pointers.
10959 CallInst *CI = EmitRuntimeCall(CGM.CreateRuntimeFunction(
10960 llvm::FunctionType::get(StructType::get(CGM.Int64Ty, CGM.Int64Ty), {},
10961 false),
10962 "__arm_sme_state"));
10963 auto Attrs = AttributeList().addFnAttribute(getLLVMContext(),
10964 "aarch64_pstate_sm_compatible");
10965 CI->setAttributes(Attrs);
10966 CI->setCallingConv(
10967 llvm::CallingConv::
10968 AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2);
10969 Builder.CreateStore(Builder.CreateExtractValue(CI, 0),
10970 EmitPointerWithAlignment(E->getArg(0)));
10971 return Builder.CreateStore(Builder.CreateExtractValue(CI, 1),
10972 EmitPointerWithAlignment(E->getArg(1)));
10975 if (BuiltinID == clang::AArch64::BI__builtin_arm_rbit) {
10976 assert((getContext().getTypeSize(E->getType()) == 32) &&
10977 "rbit of unusual size!");
10978 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10979 return Builder.CreateCall(
10980 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
10982 if (BuiltinID == clang::AArch64::BI__builtin_arm_rbit64) {
10983 assert((getContext().getTypeSize(E->getType()) == 64) &&
10984 "rbit of unusual size!");
10985 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10986 return Builder.CreateCall(
10987 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
10990 if (BuiltinID == clang::AArch64::BI__builtin_arm_clz ||
10991 BuiltinID == clang::AArch64::BI__builtin_arm_clz64) {
10992 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10993 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Arg->getType());
10994 Value *Res = Builder.CreateCall(F, {Arg, Builder.getInt1(false)});
10995 if (BuiltinID == clang::AArch64::BI__builtin_arm_clz64)
10996 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty());
10997 return Res;
11000 if (BuiltinID == clang::AArch64::BI__builtin_arm_cls) {
11001 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
11002 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg,
11003 "cls");
11005 if (BuiltinID == clang::AArch64::BI__builtin_arm_cls64) {
11006 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
11007 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg,
11008 "cls");
11011 if (BuiltinID == clang::AArch64::BI__builtin_arm_rint32zf ||
11012 BuiltinID == clang::AArch64::BI__builtin_arm_rint32z) {
11013 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
11014 llvm::Type *Ty = Arg->getType();
11015 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32z, Ty),
11016 Arg, "frint32z");
11019 if (BuiltinID == clang::AArch64::BI__builtin_arm_rint64zf ||
11020 BuiltinID == clang::AArch64::BI__builtin_arm_rint64z) {
11021 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
11022 llvm::Type *Ty = Arg->getType();
11023 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64z, Ty),
11024 Arg, "frint64z");
11027 if (BuiltinID == clang::AArch64::BI__builtin_arm_rint32xf ||
11028 BuiltinID == clang::AArch64::BI__builtin_arm_rint32x) {
11029 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
11030 llvm::Type *Ty = Arg->getType();
11031 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32x, Ty),
11032 Arg, "frint32x");
11035 if (BuiltinID == clang::AArch64::BI__builtin_arm_rint64xf ||
11036 BuiltinID == clang::AArch64::BI__builtin_arm_rint64x) {
11037 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
11038 llvm::Type *Ty = Arg->getType();
11039 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64x, Ty),
11040 Arg, "frint64x");
11043 if (BuiltinID == clang::AArch64::BI__builtin_arm_jcvt) {
11044 assert((getContext().getTypeSize(E->getType()) == 32) &&
11045 "__jcvt of unusual size!");
11046 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
11047 return Builder.CreateCall(
11048 CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
11051 if (BuiltinID == clang::AArch64::BI__builtin_arm_ld64b ||
11052 BuiltinID == clang::AArch64::BI__builtin_arm_st64b ||
11053 BuiltinID == clang::AArch64::BI__builtin_arm_st64bv ||
11054 BuiltinID == clang::AArch64::BI__builtin_arm_st64bv0) {
11055 llvm::Value *MemAddr = EmitScalarExpr(E->getArg(0));
11056 llvm::Value *ValPtr = EmitScalarExpr(E->getArg(1));
11058 if (BuiltinID == clang::AArch64::BI__builtin_arm_ld64b) {
11059 // Load from the address via an LLVM intrinsic, receiving a
11060 // tuple of 8 i64 words, and store each one to ValPtr.
11061 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_ld64b);
11062 llvm::Value *Val = Builder.CreateCall(F, MemAddr);
11063 llvm::Value *ToRet;
11064 for (size_t i = 0; i < 8; i++) {
11065 llvm::Value *ValOffsetPtr =
11066 Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
11067 Address Addr =
11068 Address(ValOffsetPtr, Int64Ty, CharUnits::fromQuantity(8));
11069 ToRet = Builder.CreateStore(Builder.CreateExtractValue(Val, i), Addr);
11071 return ToRet;
11072 } else {
11073 // Load 8 i64 words from ValPtr, and store them to the address
11074 // via an LLVM intrinsic.
11075 SmallVector<llvm::Value *, 9> Args;
11076 Args.push_back(MemAddr);
11077 for (size_t i = 0; i < 8; i++) {
11078 llvm::Value *ValOffsetPtr =
11079 Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
11080 Address Addr =
11081 Address(ValOffsetPtr, Int64Ty, CharUnits::fromQuantity(8));
11082 Args.push_back(Builder.CreateLoad(Addr));
11085 auto Intr = (BuiltinID == clang::AArch64::BI__builtin_arm_st64b
11086 ? Intrinsic::aarch64_st64b
11087 : BuiltinID == clang::AArch64::BI__builtin_arm_st64bv
11088 ? Intrinsic::aarch64_st64bv
11089 : Intrinsic::aarch64_st64bv0);
11090 Function *F = CGM.getIntrinsic(Intr);
11091 return Builder.CreateCall(F, Args);
11095 if (BuiltinID == clang::AArch64::BI__builtin_arm_rndr ||
11096 BuiltinID == clang::AArch64::BI__builtin_arm_rndrrs) {
11098 auto Intr = (BuiltinID == clang::AArch64::BI__builtin_arm_rndr
11099 ? Intrinsic::aarch64_rndr
11100 : Intrinsic::aarch64_rndrrs);
11101 Function *F = CGM.getIntrinsic(Intr);
11102 llvm::Value *Val = Builder.CreateCall(F);
11103 Value *RandomValue = Builder.CreateExtractValue(Val, 0);
11104 Value *Status = Builder.CreateExtractValue(Val, 1);
11106 Address MemAddress = EmitPointerWithAlignment(E->getArg(0));
11107 Builder.CreateStore(RandomValue, MemAddress);
11108 Status = Builder.CreateZExt(Status, Int32Ty);
11109 return Status;
11112 if (BuiltinID == clang::AArch64::BI__clear_cache) {
11113 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
11114 const FunctionDecl *FD = E->getDirectCallee();
11115 Value *Ops[2];
11116 for (unsigned i = 0; i < 2; i++)
11117 Ops[i] = EmitScalarExpr(E->getArg(i));
11118 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
11119 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
11120 StringRef Name = FD->getName();
11121 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
11124 if ((BuiltinID == clang::AArch64::BI__builtin_arm_ldrex ||
11125 BuiltinID == clang::AArch64::BI__builtin_arm_ldaex) &&
11126 getContext().getTypeSize(E->getType()) == 128) {
11127 Function *F =
11128 CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_ldaex
11129 ? Intrinsic::aarch64_ldaxp
11130 : Intrinsic::aarch64_ldxp);
11132 Value *LdPtr = EmitScalarExpr(E->getArg(0));
11133 Value *Val = Builder.CreateCall(F, LdPtr, "ldxp");
11135 Value *Val0 = Builder.CreateExtractValue(Val, 1);
11136 Value *Val1 = Builder.CreateExtractValue(Val, 0);
11137 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
11138 Val0 = Builder.CreateZExt(Val0, Int128Ty);
11139 Val1 = Builder.CreateZExt(Val1, Int128Ty);
11141 Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
11142 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
11143 Val = Builder.CreateOr(Val, Val1);
11144 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
11145 } else if (BuiltinID == clang::AArch64::BI__builtin_arm_ldrex ||
11146 BuiltinID == clang::AArch64::BI__builtin_arm_ldaex) {
11147 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
11149 QualType Ty = E->getType();
11150 llvm::Type *RealResTy = ConvertType(Ty);
11151 llvm::Type *IntTy =
11152 llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
11154 Function *F =
11155 CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_ldaex
11156 ? Intrinsic::aarch64_ldaxr
11157 : Intrinsic::aarch64_ldxr,
11158 UnqualPtrTy);
11159 CallInst *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
11160 Val->addParamAttr(
11161 0, Attribute::get(getLLVMContext(), Attribute::ElementType, IntTy));
11163 if (RealResTy->isPointerTy())
11164 return Builder.CreateIntToPtr(Val, RealResTy);
11166 llvm::Type *IntResTy = llvm::IntegerType::get(
11167 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
11168 return Builder.CreateBitCast(Builder.CreateTruncOrBitCast(Val, IntResTy),
11169 RealResTy);
11172 if ((BuiltinID == clang::AArch64::BI__builtin_arm_strex ||
11173 BuiltinID == clang::AArch64::BI__builtin_arm_stlex) &&
11174 getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
11175 Function *F =
11176 CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_stlex
11177 ? Intrinsic::aarch64_stlxp
11178 : Intrinsic::aarch64_stxp);
11179 llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
11181 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
11182 EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
11184 Tmp = Tmp.withElementType(STy);
11185 llvm::Value *Val = Builder.CreateLoad(Tmp);
11187 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
11188 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
11189 Value *StPtr = EmitScalarExpr(E->getArg(1));
11190 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
11193 if (BuiltinID == clang::AArch64::BI__builtin_arm_strex ||
11194 BuiltinID == clang::AArch64::BI__builtin_arm_stlex) {
11195 Value *StoreVal = EmitScalarExpr(E->getArg(0));
11196 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
11198 QualType Ty = E->getArg(0)->getType();
11199 llvm::Type *StoreTy =
11200 llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
11202 if (StoreVal->getType()->isPointerTy())
11203 StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
11204 else {
11205 llvm::Type *IntTy = llvm::IntegerType::get(
11206 getLLVMContext(),
11207 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
11208 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
11209 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
11212 Function *F =
11213 CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_stlex
11214 ? Intrinsic::aarch64_stlxr
11215 : Intrinsic::aarch64_stxr,
11216 StoreAddr->getType());
11217 CallInst *CI = Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
11218 CI->addParamAttr(
11219 1, Attribute::get(getLLVMContext(), Attribute::ElementType, StoreTy));
11220 return CI;
11223 if (BuiltinID == clang::AArch64::BI__getReg) {
11224 Expr::EvalResult Result;
11225 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
11226 llvm_unreachable("Sema will ensure that the parameter is constant");
11228 llvm::APSInt Value = Result.Val.getInt();
11229 LLVMContext &Context = CGM.getLLVMContext();
11230 std::string Reg = Value == 31 ? "sp" : "x" + toString(Value, 10);
11232 llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
11233 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
11234 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
11236 llvm::Function *F =
11237 CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
11238 return Builder.CreateCall(F, Metadata);
11241 if (BuiltinID == clang::AArch64::BI__break) {
11242 Expr::EvalResult Result;
11243 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
11244 llvm_unreachable("Sema will ensure that the parameter is constant");
11246 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::aarch64_break);
11247 return Builder.CreateCall(F, {EmitScalarExpr(E->getArg(0))});
11250 if (BuiltinID == clang::AArch64::BI__builtin_arm_clrex) {
11251 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
11252 return Builder.CreateCall(F);
11255 if (BuiltinID == clang::AArch64::BI_ReadWriteBarrier)
11256 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
11257 llvm::SyncScope::SingleThread);
11259 // CRC32
11260 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
11261 switch (BuiltinID) {
11262 case clang::AArch64::BI__builtin_arm_crc32b:
11263 CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
11264 case clang::AArch64::BI__builtin_arm_crc32cb:
11265 CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
11266 case clang::AArch64::BI__builtin_arm_crc32h:
11267 CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
11268 case clang::AArch64::BI__builtin_arm_crc32ch:
11269 CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
11270 case clang::AArch64::BI__builtin_arm_crc32w:
11271 CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
11272 case clang::AArch64::BI__builtin_arm_crc32cw:
11273 CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
11274 case clang::AArch64::BI__builtin_arm_crc32d:
11275 CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
11276 case clang::AArch64::BI__builtin_arm_crc32cd:
11277 CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
11280 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
11281 Value *Arg0 = EmitScalarExpr(E->getArg(0));
11282 Value *Arg1 = EmitScalarExpr(E->getArg(1));
11283 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
11285 llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
11286 Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
11288 return Builder.CreateCall(F, {Arg0, Arg1});
11291 // Memory Operations (MOPS)
11292 if (BuiltinID == AArch64::BI__builtin_arm_mops_memset_tag) {
11293 Value *Dst = EmitScalarExpr(E->getArg(0));
11294 Value *Val = EmitScalarExpr(E->getArg(1));
11295 Value *Size = EmitScalarExpr(E->getArg(2));
11296 Dst = Builder.CreatePointerCast(Dst, Int8PtrTy);
11297 Val = Builder.CreateTrunc(Val, Int8Ty);
11298 Size = Builder.CreateIntCast(Size, Int64Ty, false);
11299 return Builder.CreateCall(
11300 CGM.getIntrinsic(Intrinsic::aarch64_mops_memset_tag), {Dst, Val, Size});
11303 // Memory Tagging Extensions (MTE) Intrinsics
11304 Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
11305 switch (BuiltinID) {
11306 case clang::AArch64::BI__builtin_arm_irg:
11307 MTEIntrinsicID = Intrinsic::aarch64_irg; break;
11308 case clang::AArch64::BI__builtin_arm_addg:
11309 MTEIntrinsicID = Intrinsic::aarch64_addg; break;
11310 case clang::AArch64::BI__builtin_arm_gmi:
11311 MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
11312 case clang::AArch64::BI__builtin_arm_ldg:
11313 MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
11314 case clang::AArch64::BI__builtin_arm_stg:
11315 MTEIntrinsicID = Intrinsic::aarch64_stg; break;
11316 case clang::AArch64::BI__builtin_arm_subp:
11317 MTEIntrinsicID = Intrinsic::aarch64_subp; break;
11320 if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
11321 llvm::Type *T = ConvertType(E->getType());
11323 if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
11324 Value *Pointer = EmitScalarExpr(E->getArg(0));
11325 Value *Mask = EmitScalarExpr(E->getArg(1));
11327 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
11328 Mask = Builder.CreateZExt(Mask, Int64Ty);
11329 Value *RV = Builder.CreateCall(
11330 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
11331 return Builder.CreatePointerCast(RV, T);
11333 if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
11334 Value *Pointer = EmitScalarExpr(E->getArg(0));
11335 Value *TagOffset = EmitScalarExpr(E->getArg(1));
11337 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
11338 TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
11339 Value *RV = Builder.CreateCall(
11340 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
11341 return Builder.CreatePointerCast(RV, T);
11343 if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
11344 Value *Pointer = EmitScalarExpr(E->getArg(0));
11345 Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
11347 ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
11348 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
11349 return Builder.CreateCall(
11350 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
11352 // Although it is possible to supply a different return
11353 // address (first arg) to this intrinsic, for now we set
11354 // return address same as input address.
11355 if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
11356 Value *TagAddress = EmitScalarExpr(E->getArg(0));
11357 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
11358 Value *RV = Builder.CreateCall(
11359 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
11360 return Builder.CreatePointerCast(RV, T);
11362 // Although it is possible to supply a different tag (to set)
11363 // to this intrinsic (as first arg), for now we supply
11364 // the tag that is in input address arg (common use case).
11365 if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
11366 Value *TagAddress = EmitScalarExpr(E->getArg(0));
11367 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
11368 return Builder.CreateCall(
11369 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
11371 if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
11372 Value *PointerA = EmitScalarExpr(E->getArg(0));
11373 Value *PointerB = EmitScalarExpr(E->getArg(1));
11374 PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
11375 PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
11376 return Builder.CreateCall(
11377 CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
11381 if (BuiltinID == clang::AArch64::BI__builtin_arm_rsr ||
11382 BuiltinID == clang::AArch64::BI__builtin_arm_rsr64 ||
11383 BuiltinID == clang::AArch64::BI__builtin_arm_rsr128 ||
11384 BuiltinID == clang::AArch64::BI__builtin_arm_rsrp ||
11385 BuiltinID == clang::AArch64::BI__builtin_arm_wsr ||
11386 BuiltinID == clang::AArch64::BI__builtin_arm_wsr64 ||
11387 BuiltinID == clang::AArch64::BI__builtin_arm_wsr128 ||
11388 BuiltinID == clang::AArch64::BI__builtin_arm_wsrp) {
11390 SpecialRegisterAccessKind AccessKind = Write;
11391 if (BuiltinID == clang::AArch64::BI__builtin_arm_rsr ||
11392 BuiltinID == clang::AArch64::BI__builtin_arm_rsr64 ||
11393 BuiltinID == clang::AArch64::BI__builtin_arm_rsr128 ||
11394 BuiltinID == clang::AArch64::BI__builtin_arm_rsrp)
11395 AccessKind = VolatileRead;
11397 bool IsPointerBuiltin = BuiltinID == clang::AArch64::BI__builtin_arm_rsrp ||
11398 BuiltinID == clang::AArch64::BI__builtin_arm_wsrp;
11400 bool Is32Bit = BuiltinID == clang::AArch64::BI__builtin_arm_rsr ||
11401 BuiltinID == clang::AArch64::BI__builtin_arm_wsr;
11403 bool Is128Bit = BuiltinID == clang::AArch64::BI__builtin_arm_rsr128 ||
11404 BuiltinID == clang::AArch64::BI__builtin_arm_wsr128;
11406 llvm::Type *ValueType;
11407 llvm::Type *RegisterType = Int64Ty;
11408 if (Is32Bit) {
11409 ValueType = Int32Ty;
11410 } else if (Is128Bit) {
11411 llvm::Type *Int128Ty =
11412 llvm::IntegerType::getInt128Ty(CGM.getLLVMContext());
11413 ValueType = Int128Ty;
11414 RegisterType = Int128Ty;
11415 } else if (IsPointerBuiltin) {
11416 ValueType = VoidPtrTy;
11417 } else {
11418 ValueType = Int64Ty;
11421 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
11422 AccessKind);
11425 if (BuiltinID == clang::AArch64::BI_ReadStatusReg ||
11426 BuiltinID == clang::AArch64::BI_WriteStatusReg) {
11427 LLVMContext &Context = CGM.getLLVMContext();
11429 unsigned SysReg =
11430 E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
11432 std::string SysRegStr;
11433 llvm::raw_string_ostream(SysRegStr) <<
11434 ((1 << 1) | ((SysReg >> 14) & 1)) << ":" <<
11435 ((SysReg >> 11) & 7) << ":" <<
11436 ((SysReg >> 7) & 15) << ":" <<
11437 ((SysReg >> 3) & 15) << ":" <<
11438 ( SysReg & 7);
11440 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
11441 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
11442 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
11444 llvm::Type *RegisterType = Int64Ty;
11445 llvm::Type *Types[] = { RegisterType };
11447 if (BuiltinID == clang::AArch64::BI_ReadStatusReg) {
11448 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
11450 return Builder.CreateCall(F, Metadata);
11453 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
11454 llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
11456 return Builder.CreateCall(F, { Metadata, ArgValue });
11459 if (BuiltinID == clang::AArch64::BI_AddressOfReturnAddress) {
11460 llvm::Function *F =
11461 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
11462 return Builder.CreateCall(F);
11465 if (BuiltinID == clang::AArch64::BI__builtin_sponentry) {
11466 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
11467 return Builder.CreateCall(F);
11470 if (BuiltinID == clang::AArch64::BI__mulh ||
11471 BuiltinID == clang::AArch64::BI__umulh) {
11472 llvm::Type *ResType = ConvertType(E->getType());
11473 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
11475 bool IsSigned = BuiltinID == clang::AArch64::BI__mulh;
11476 Value *LHS =
11477 Builder.CreateIntCast(EmitScalarExpr(E->getArg(0)), Int128Ty, IsSigned);
11478 Value *RHS =
11479 Builder.CreateIntCast(EmitScalarExpr(E->getArg(1)), Int128Ty, IsSigned);
11481 Value *MulResult, *HigherBits;
11482 if (IsSigned) {
11483 MulResult = Builder.CreateNSWMul(LHS, RHS);
11484 HigherBits = Builder.CreateAShr(MulResult, 64);
11485 } else {
11486 MulResult = Builder.CreateNUWMul(LHS, RHS);
11487 HigherBits = Builder.CreateLShr(MulResult, 64);
11489 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
11491 return HigherBits;
11494 if (BuiltinID == AArch64::BI__writex18byte ||
11495 BuiltinID == AArch64::BI__writex18word ||
11496 BuiltinID == AArch64::BI__writex18dword ||
11497 BuiltinID == AArch64::BI__writex18qword) {
11498 // Read x18 as i8*
11499 LLVMContext &Context = CGM.getLLVMContext();
11500 llvm::Metadata *Ops[] = {llvm::MDString::get(Context, "x18")};
11501 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
11502 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
11503 llvm::Function *F =
11504 CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
11505 llvm::Value *X18 = Builder.CreateCall(F, Metadata);
11506 X18 = Builder.CreateIntToPtr(X18, Int8PtrTy);
11508 // Store val at x18 + offset
11509 Value *Offset = Builder.CreateZExt(EmitScalarExpr(E->getArg(0)), Int64Ty);
11510 Value *Ptr = Builder.CreateGEP(Int8Ty, X18, Offset);
11511 Value *Val = EmitScalarExpr(E->getArg(1));
11512 StoreInst *Store = Builder.CreateAlignedStore(Val, Ptr, CharUnits::One());
11513 return Store;
11516 if (BuiltinID == AArch64::BI__readx18byte ||
11517 BuiltinID == AArch64::BI__readx18word ||
11518 BuiltinID == AArch64::BI__readx18dword ||
11519 BuiltinID == AArch64::BI__readx18qword) {
11520 llvm::Type *IntTy = ConvertType(E->getType());
11522 // Read x18 as i8*
11523 LLVMContext &Context = CGM.getLLVMContext();
11524 llvm::Metadata *Ops[] = {llvm::MDString::get(Context, "x18")};
11525 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
11526 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
11527 llvm::Function *F =
11528 CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
11529 llvm::Value *X18 = Builder.CreateCall(F, Metadata);
11530 X18 = Builder.CreateIntToPtr(X18, Int8PtrTy);
11532 // Load x18 + offset
11533 Value *Offset = Builder.CreateZExt(EmitScalarExpr(E->getArg(0)), Int64Ty);
11534 Value *Ptr = Builder.CreateGEP(Int8Ty, X18, Offset);
11535 LoadInst *Load = Builder.CreateAlignedLoad(IntTy, Ptr, CharUnits::One());
11536 return Load;
11539 if (BuiltinID == AArch64::BI_CopyDoubleFromInt64 ||
11540 BuiltinID == AArch64::BI_CopyFloatFromInt32 ||
11541 BuiltinID == AArch64::BI_CopyInt32FromFloat ||
11542 BuiltinID == AArch64::BI_CopyInt64FromDouble) {
11543 Value *Arg = EmitScalarExpr(E->getArg(0));
11544 llvm::Type *RetTy = ConvertType(E->getType());
11545 return Builder.CreateBitCast(Arg, RetTy);
11548 if (BuiltinID == AArch64::BI_CountLeadingOnes ||
11549 BuiltinID == AArch64::BI_CountLeadingOnes64 ||
11550 BuiltinID == AArch64::BI_CountLeadingZeros ||
11551 BuiltinID == AArch64::BI_CountLeadingZeros64) {
11552 Value *Arg = EmitScalarExpr(E->getArg(0));
11553 llvm::Type *ArgType = Arg->getType();
11555 if (BuiltinID == AArch64::BI_CountLeadingOnes ||
11556 BuiltinID == AArch64::BI_CountLeadingOnes64)
11557 Arg = Builder.CreateXor(Arg, Constant::getAllOnesValue(ArgType));
11559 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
11560 Value *Result = Builder.CreateCall(F, {Arg, Builder.getInt1(false)});
11562 if (BuiltinID == AArch64::BI_CountLeadingOnes64 ||
11563 BuiltinID == AArch64::BI_CountLeadingZeros64)
11564 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11565 return Result;
11568 if (BuiltinID == AArch64::BI_CountLeadingSigns ||
11569 BuiltinID == AArch64::BI_CountLeadingSigns64) {
11570 Value *Arg = EmitScalarExpr(E->getArg(0));
11572 Function *F = (BuiltinID == AArch64::BI_CountLeadingSigns)
11573 ? CGM.getIntrinsic(Intrinsic::aarch64_cls)
11574 : CGM.getIntrinsic(Intrinsic::aarch64_cls64);
11576 Value *Result = Builder.CreateCall(F, Arg, "cls");
11577 if (BuiltinID == AArch64::BI_CountLeadingSigns64)
11578 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11579 return Result;
11582 if (BuiltinID == AArch64::BI_CountOneBits ||
11583 BuiltinID == AArch64::BI_CountOneBits64) {
11584 Value *ArgValue = EmitScalarExpr(E->getArg(0));
11585 llvm::Type *ArgType = ArgValue->getType();
11586 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
11588 Value *Result = Builder.CreateCall(F, ArgValue);
11589 if (BuiltinID == AArch64::BI_CountOneBits64)
11590 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11591 return Result;
11594 if (BuiltinID == AArch64::BI__prefetch) {
11595 Value *Address = EmitScalarExpr(E->getArg(0));
11596 Value *RW = llvm::ConstantInt::get(Int32Ty, 0);
11597 Value *Locality = ConstantInt::get(Int32Ty, 3);
11598 Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
11599 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
11600 return Builder.CreateCall(F, {Address, RW, Locality, Data});
11603 if (BuiltinID == AArch64::BI__hlt) {
11604 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hlt);
11605 Builder.CreateCall(F, {EmitScalarExpr(E->getArg(0))});
11607 // Return 0 for convenience, even though MSVC returns some other undefined
11608 // value.
11609 return ConstantInt::get(Builder.getInt32Ty(), 0);
11612 // Handle MSVC intrinsics before argument evaluation to prevent double
11613 // evaluation.
11614 if (std::optional<MSVCIntrin> MsvcIntId =
11615 translateAarch64ToMsvcIntrin(BuiltinID))
11616 return EmitMSVCBuiltinExpr(*MsvcIntId, E);
11618 // Some intrinsics are equivalent - if they are use the base intrinsic ID.
11619 auto It = llvm::find_if(NEONEquivalentIntrinsicMap, [BuiltinID](auto &P) {
11620 return P.first == BuiltinID;
11622 if (It != end(NEONEquivalentIntrinsicMap))
11623 BuiltinID = It->second;
11625 // Find out if any arguments are required to be integer constant
11626 // expressions.
11627 unsigned ICEArguments = 0;
11628 ASTContext::GetBuiltinTypeError Error;
11629 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
11630 assert(Error == ASTContext::GE_None && "Should not codegen an error");
11632 llvm::SmallVector<Value*, 4> Ops;
11633 Address PtrOp0 = Address::invalid();
11634 for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
11635 if (i == 0) {
11636 switch (BuiltinID) {
11637 case NEON::BI__builtin_neon_vld1_v:
11638 case NEON::BI__builtin_neon_vld1q_v:
11639 case NEON::BI__builtin_neon_vld1_dup_v:
11640 case NEON::BI__builtin_neon_vld1q_dup_v:
11641 case NEON::BI__builtin_neon_vld1_lane_v:
11642 case NEON::BI__builtin_neon_vld1q_lane_v:
11643 case NEON::BI__builtin_neon_vst1_v:
11644 case NEON::BI__builtin_neon_vst1q_v:
11645 case NEON::BI__builtin_neon_vst1_lane_v:
11646 case NEON::BI__builtin_neon_vst1q_lane_v:
11647 case NEON::BI__builtin_neon_vldap1_lane_s64:
11648 case NEON::BI__builtin_neon_vldap1q_lane_s64:
11649 case NEON::BI__builtin_neon_vstl1_lane_s64:
11650 case NEON::BI__builtin_neon_vstl1q_lane_s64:
11651 // Get the alignment for the argument in addition to the value;
11652 // we'll use it later.
11653 PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
11654 Ops.push_back(PtrOp0.emitRawPointer(*this));
11655 continue;
11658 Ops.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, i, E));
11661 auto SISDMap = ArrayRef(AArch64SISDIntrinsicMap);
11662 const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
11663 SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
11665 if (Builtin) {
11666 Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
11667 Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
11668 assert(Result && "SISD intrinsic should have been handled");
11669 return Result;
11672 const Expr *Arg = E->getArg(E->getNumArgs()-1);
11673 NeonTypeFlags Type(0);
11674 if (std::optional<llvm::APSInt> Result =
11675 Arg->getIntegerConstantExpr(getContext()))
11676 // Determine the type of this overloaded NEON intrinsic.
11677 Type = NeonTypeFlags(Result->getZExtValue());
11679 bool usgn = Type.isUnsigned();
11680 bool quad = Type.isQuad();
11682 // Handle non-overloaded intrinsics first.
11683 switch (BuiltinID) {
11684 default: break;
11685 case NEON::BI__builtin_neon_vabsh_f16:
11686 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11687 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
11688 case NEON::BI__builtin_neon_vaddq_p128: {
11689 llvm::Type *Ty = GetNeonType(this, NeonTypeFlags::Poly128);
11690 Ops.push_back(EmitScalarExpr(E->getArg(1)));
11691 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11692 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11693 Ops[0] = Builder.CreateXor(Ops[0], Ops[1]);
11694 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
11695 return Builder.CreateBitCast(Ops[0], Int128Ty);
11697 case NEON::BI__builtin_neon_vldrq_p128: {
11698 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
11699 Value *Ptr = EmitScalarExpr(E->getArg(0));
11700 return Builder.CreateAlignedLoad(Int128Ty, Ptr,
11701 CharUnits::fromQuantity(16));
11703 case NEON::BI__builtin_neon_vstrq_p128: {
11704 Value *Ptr = Ops[0];
11705 return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
11707 case NEON::BI__builtin_neon_vcvts_f32_u32:
11708 case NEON::BI__builtin_neon_vcvtd_f64_u64:
11709 usgn = true;
11710 [[fallthrough]];
11711 case NEON::BI__builtin_neon_vcvts_f32_s32:
11712 case NEON::BI__builtin_neon_vcvtd_f64_s64: {
11713 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11714 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
11715 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
11716 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
11717 Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
11718 if (usgn)
11719 return Builder.CreateUIToFP(Ops[0], FTy);
11720 return Builder.CreateSIToFP(Ops[0], FTy);
11722 case NEON::BI__builtin_neon_vcvth_f16_u16:
11723 case NEON::BI__builtin_neon_vcvth_f16_u32:
11724 case NEON::BI__builtin_neon_vcvth_f16_u64:
11725 usgn = true;
11726 [[fallthrough]];
11727 case NEON::BI__builtin_neon_vcvth_f16_s16:
11728 case NEON::BI__builtin_neon_vcvth_f16_s32:
11729 case NEON::BI__builtin_neon_vcvth_f16_s64: {
11730 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11731 llvm::Type *FTy = HalfTy;
11732 llvm::Type *InTy;
11733 if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
11734 InTy = Int64Ty;
11735 else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
11736 InTy = Int32Ty;
11737 else
11738 InTy = Int16Ty;
11739 Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
11740 if (usgn)
11741 return Builder.CreateUIToFP(Ops[0], FTy);
11742 return Builder.CreateSIToFP(Ops[0], FTy);
11744 case NEON::BI__builtin_neon_vcvtah_u16_f16:
11745 case NEON::BI__builtin_neon_vcvtmh_u16_f16:
11746 case NEON::BI__builtin_neon_vcvtnh_u16_f16:
11747 case NEON::BI__builtin_neon_vcvtph_u16_f16:
11748 case NEON::BI__builtin_neon_vcvth_u16_f16:
11749 case NEON::BI__builtin_neon_vcvtah_s16_f16:
11750 case NEON::BI__builtin_neon_vcvtmh_s16_f16:
11751 case NEON::BI__builtin_neon_vcvtnh_s16_f16:
11752 case NEON::BI__builtin_neon_vcvtph_s16_f16:
11753 case NEON::BI__builtin_neon_vcvth_s16_f16: {
11754 unsigned Int;
11755 llvm::Type* InTy = Int32Ty;
11756 llvm::Type* FTy = HalfTy;
11757 llvm::Type *Tys[2] = {InTy, FTy};
11758 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11759 switch (BuiltinID) {
11760 default: llvm_unreachable("missing builtin ID in switch!");
11761 case NEON::BI__builtin_neon_vcvtah_u16_f16:
11762 Int = Intrinsic::aarch64_neon_fcvtau; break;
11763 case NEON::BI__builtin_neon_vcvtmh_u16_f16:
11764 Int = Intrinsic::aarch64_neon_fcvtmu; break;
11765 case NEON::BI__builtin_neon_vcvtnh_u16_f16:
11766 Int = Intrinsic::aarch64_neon_fcvtnu; break;
11767 case NEON::BI__builtin_neon_vcvtph_u16_f16:
11768 Int = Intrinsic::aarch64_neon_fcvtpu; break;
11769 case NEON::BI__builtin_neon_vcvth_u16_f16:
11770 Int = Intrinsic::aarch64_neon_fcvtzu; break;
11771 case NEON::BI__builtin_neon_vcvtah_s16_f16:
11772 Int = Intrinsic::aarch64_neon_fcvtas; break;
11773 case NEON::BI__builtin_neon_vcvtmh_s16_f16:
11774 Int = Intrinsic::aarch64_neon_fcvtms; break;
11775 case NEON::BI__builtin_neon_vcvtnh_s16_f16:
11776 Int = Intrinsic::aarch64_neon_fcvtns; break;
11777 case NEON::BI__builtin_neon_vcvtph_s16_f16:
11778 Int = Intrinsic::aarch64_neon_fcvtps; break;
11779 case NEON::BI__builtin_neon_vcvth_s16_f16:
11780 Int = Intrinsic::aarch64_neon_fcvtzs; break;
11782 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
11783 return Builder.CreateTrunc(Ops[0], Int16Ty);
11785 case NEON::BI__builtin_neon_vcaleh_f16:
11786 case NEON::BI__builtin_neon_vcalth_f16:
11787 case NEON::BI__builtin_neon_vcageh_f16:
11788 case NEON::BI__builtin_neon_vcagth_f16: {
11789 unsigned Int;
11790 llvm::Type* InTy = Int32Ty;
11791 llvm::Type* FTy = HalfTy;
11792 llvm::Type *Tys[2] = {InTy, FTy};
11793 Ops.push_back(EmitScalarExpr(E->getArg(1)));
11794 switch (BuiltinID) {
11795 default: llvm_unreachable("missing builtin ID in switch!");
11796 case NEON::BI__builtin_neon_vcageh_f16:
11797 Int = Intrinsic::aarch64_neon_facge; break;
11798 case NEON::BI__builtin_neon_vcagth_f16:
11799 Int = Intrinsic::aarch64_neon_facgt; break;
11800 case NEON::BI__builtin_neon_vcaleh_f16:
11801 Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
11802 case NEON::BI__builtin_neon_vcalth_f16:
11803 Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
11805 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
11806 return Builder.CreateTrunc(Ops[0], Int16Ty);
11808 case NEON::BI__builtin_neon_vcvth_n_s16_f16:
11809 case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
11810 unsigned Int;
11811 llvm::Type* InTy = Int32Ty;
11812 llvm::Type* FTy = HalfTy;
11813 llvm::Type *Tys[2] = {InTy, FTy};
11814 Ops.push_back(EmitScalarExpr(E->getArg(1)));
11815 switch (BuiltinID) {
11816 default: llvm_unreachable("missing builtin ID in switch!");
11817 case NEON::BI__builtin_neon_vcvth_n_s16_f16:
11818 Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
11819 case NEON::BI__builtin_neon_vcvth_n_u16_f16:
11820 Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
11822 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
11823 return Builder.CreateTrunc(Ops[0], Int16Ty);
11825 case NEON::BI__builtin_neon_vcvth_n_f16_s16:
11826 case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
11827 unsigned Int;
11828 llvm::Type* FTy = HalfTy;
11829 llvm::Type* InTy = Int32Ty;
11830 llvm::Type *Tys[2] = {FTy, InTy};
11831 Ops.push_back(EmitScalarExpr(E->getArg(1)));
11832 switch (BuiltinID) {
11833 default: llvm_unreachable("missing builtin ID in switch!");
11834 case NEON::BI__builtin_neon_vcvth_n_f16_s16:
11835 Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
11836 Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
11837 break;
11838 case NEON::BI__builtin_neon_vcvth_n_f16_u16:
11839 Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
11840 Ops[0] = Builder.CreateZExt(Ops[0], InTy);
11841 break;
11843 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
11845 case NEON::BI__builtin_neon_vpaddd_s64: {
11846 auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2);
11847 Value *Vec = EmitScalarExpr(E->getArg(0));
11848 // The vector is v2f64, so make sure it's bitcast to that.
11849 Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
11850 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
11851 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
11852 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
11853 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
11854 // Pairwise addition of a v2f64 into a scalar f64.
11855 return Builder.CreateAdd(Op0, Op1, "vpaddd");
11857 case NEON::BI__builtin_neon_vpaddd_f64: {
11858 auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2);
11859 Value *Vec = EmitScalarExpr(E->getArg(0));
11860 // The vector is v2f64, so make sure it's bitcast to that.
11861 Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
11862 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
11863 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
11864 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
11865 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
11866 // Pairwise addition of a v2f64 into a scalar f64.
11867 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
11869 case NEON::BI__builtin_neon_vpadds_f32: {
11870 auto *Ty = llvm::FixedVectorType::get(FloatTy, 2);
11871 Value *Vec = EmitScalarExpr(E->getArg(0));
11872 // The vector is v2f32, so make sure it's bitcast to that.
11873 Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
11874 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
11875 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
11876 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
11877 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
11878 // Pairwise addition of a v2f32 into a scalar f32.
11879 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
11881 case NEON::BI__builtin_neon_vceqzd_s64:
11882 case NEON::BI__builtin_neon_vceqzd_f64:
11883 case NEON::BI__builtin_neon_vceqzs_f32:
11884 case NEON::BI__builtin_neon_vceqzh_f16:
11885 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11886 return EmitAArch64CompareBuiltinExpr(
11887 Ops[0], ConvertType(E->getCallReturnType(getContext())),
11888 ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
11889 case NEON::BI__builtin_neon_vcgezd_s64:
11890 case NEON::BI__builtin_neon_vcgezd_f64:
11891 case NEON::BI__builtin_neon_vcgezs_f32:
11892 case NEON::BI__builtin_neon_vcgezh_f16:
11893 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11894 return EmitAArch64CompareBuiltinExpr(
11895 Ops[0], ConvertType(E->getCallReturnType(getContext())),
11896 ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
11897 case NEON::BI__builtin_neon_vclezd_s64:
11898 case NEON::BI__builtin_neon_vclezd_f64:
11899 case NEON::BI__builtin_neon_vclezs_f32:
11900 case NEON::BI__builtin_neon_vclezh_f16:
11901 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11902 return EmitAArch64CompareBuiltinExpr(
11903 Ops[0], ConvertType(E->getCallReturnType(getContext())),
11904 ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
11905 case NEON::BI__builtin_neon_vcgtzd_s64:
11906 case NEON::BI__builtin_neon_vcgtzd_f64:
11907 case NEON::BI__builtin_neon_vcgtzs_f32:
11908 case NEON::BI__builtin_neon_vcgtzh_f16:
11909 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11910 return EmitAArch64CompareBuiltinExpr(
11911 Ops[0], ConvertType(E->getCallReturnType(getContext())),
11912 ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
11913 case NEON::BI__builtin_neon_vcltzd_s64:
11914 case NEON::BI__builtin_neon_vcltzd_f64:
11915 case NEON::BI__builtin_neon_vcltzs_f32:
11916 case NEON::BI__builtin_neon_vcltzh_f16:
11917 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11918 return EmitAArch64CompareBuiltinExpr(
11919 Ops[0], ConvertType(E->getCallReturnType(getContext())),
11920 ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
11922 case NEON::BI__builtin_neon_vceqzd_u64: {
11923 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11924 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
11925 Ops[0] =
11926 Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
11927 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
11929 case NEON::BI__builtin_neon_vceqd_f64:
11930 case NEON::BI__builtin_neon_vcled_f64:
11931 case NEON::BI__builtin_neon_vcltd_f64:
11932 case NEON::BI__builtin_neon_vcged_f64:
11933 case NEON::BI__builtin_neon_vcgtd_f64: {
11934 llvm::CmpInst::Predicate P;
11935 switch (BuiltinID) {
11936 default: llvm_unreachable("missing builtin ID in switch!");
11937 case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
11938 case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
11939 case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
11940 case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
11941 case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
11943 Ops.push_back(EmitScalarExpr(E->getArg(1)));
11944 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
11945 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
11946 if (P == llvm::FCmpInst::FCMP_OEQ)
11947 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
11948 else
11949 Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
11950 return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
11952 case NEON::BI__builtin_neon_vceqs_f32:
11953 case NEON::BI__builtin_neon_vcles_f32:
11954 case NEON::BI__builtin_neon_vclts_f32:
11955 case NEON::BI__builtin_neon_vcges_f32:
11956 case NEON::BI__builtin_neon_vcgts_f32: {
11957 llvm::CmpInst::Predicate P;
11958 switch (BuiltinID) {
11959 default: llvm_unreachable("missing builtin ID in switch!");
11960 case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
11961 case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
11962 case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
11963 case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
11964 case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
11966 Ops.push_back(EmitScalarExpr(E->getArg(1)));
11967 Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
11968 Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
11969 if (P == llvm::FCmpInst::FCMP_OEQ)
11970 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
11971 else
11972 Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
11973 return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
11975 case NEON::BI__builtin_neon_vceqh_f16:
11976 case NEON::BI__builtin_neon_vcleh_f16:
11977 case NEON::BI__builtin_neon_vclth_f16:
11978 case NEON::BI__builtin_neon_vcgeh_f16:
11979 case NEON::BI__builtin_neon_vcgth_f16: {
11980 llvm::CmpInst::Predicate P;
11981 switch (BuiltinID) {
11982 default: llvm_unreachable("missing builtin ID in switch!");
11983 case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
11984 case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
11985 case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
11986 case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
11987 case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
11989 Ops.push_back(EmitScalarExpr(E->getArg(1)));
11990 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
11991 Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
11992 if (P == llvm::FCmpInst::FCMP_OEQ)
11993 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
11994 else
11995 Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
11996 return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
11998 case NEON::BI__builtin_neon_vceqd_s64:
11999 case NEON::BI__builtin_neon_vceqd_u64:
12000 case NEON::BI__builtin_neon_vcgtd_s64:
12001 case NEON::BI__builtin_neon_vcgtd_u64:
12002 case NEON::BI__builtin_neon_vcltd_s64:
12003 case NEON::BI__builtin_neon_vcltd_u64:
12004 case NEON::BI__builtin_neon_vcged_u64:
12005 case NEON::BI__builtin_neon_vcged_s64:
12006 case NEON::BI__builtin_neon_vcled_u64:
12007 case NEON::BI__builtin_neon_vcled_s64: {
12008 llvm::CmpInst::Predicate P;
12009 switch (BuiltinID) {
12010 default: llvm_unreachable("missing builtin ID in switch!");
12011 case NEON::BI__builtin_neon_vceqd_s64:
12012 case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
12013 case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
12014 case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
12015 case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
12016 case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
12017 case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
12018 case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
12019 case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
12020 case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
12022 Ops.push_back(EmitScalarExpr(E->getArg(1)));
12023 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
12024 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
12025 Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
12026 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
12028 case NEON::BI__builtin_neon_vtstd_s64:
12029 case NEON::BI__builtin_neon_vtstd_u64: {
12030 Ops.push_back(EmitScalarExpr(E->getArg(1)));
12031 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
12032 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
12033 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
12034 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
12035 llvm::Constant::getNullValue(Int64Ty));
12036 return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
12038 case NEON::BI__builtin_neon_vset_lane_i8:
12039 case NEON::BI__builtin_neon_vset_lane_i16:
12040 case NEON::BI__builtin_neon_vset_lane_i32:
12041 case NEON::BI__builtin_neon_vset_lane_i64:
12042 case NEON::BI__builtin_neon_vset_lane_bf16:
12043 case NEON::BI__builtin_neon_vset_lane_f32:
12044 case NEON::BI__builtin_neon_vsetq_lane_i8:
12045 case NEON::BI__builtin_neon_vsetq_lane_i16:
12046 case NEON::BI__builtin_neon_vsetq_lane_i32:
12047 case NEON::BI__builtin_neon_vsetq_lane_i64:
12048 case NEON::BI__builtin_neon_vsetq_lane_bf16:
12049 case NEON::BI__builtin_neon_vsetq_lane_f32:
12050 Ops.push_back(EmitScalarExpr(E->getArg(2)));
12051 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
12052 case NEON::BI__builtin_neon_vset_lane_f64:
12053 // The vector type needs a cast for the v1f64 variant.
12054 Ops[1] =
12055 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1));
12056 Ops.push_back(EmitScalarExpr(E->getArg(2)));
12057 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
12058 case NEON::BI__builtin_neon_vsetq_lane_f64:
12059 // The vector type needs a cast for the v2f64 variant.
12060 Ops[1] =
12061 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2));
12062 Ops.push_back(EmitScalarExpr(E->getArg(2)));
12063 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
12065 case NEON::BI__builtin_neon_vget_lane_i8:
12066 case NEON::BI__builtin_neon_vdupb_lane_i8:
12067 Ops[0] =
12068 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8));
12069 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12070 "vget_lane");
12071 case NEON::BI__builtin_neon_vgetq_lane_i8:
12072 case NEON::BI__builtin_neon_vdupb_laneq_i8:
12073 Ops[0] =
12074 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16));
12075 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12076 "vgetq_lane");
12077 case NEON::BI__builtin_neon_vget_lane_i16:
12078 case NEON::BI__builtin_neon_vduph_lane_i16:
12079 Ops[0] =
12080 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4));
12081 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12082 "vget_lane");
12083 case NEON::BI__builtin_neon_vgetq_lane_i16:
12084 case NEON::BI__builtin_neon_vduph_laneq_i16:
12085 Ops[0] =
12086 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8));
12087 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12088 "vgetq_lane");
12089 case NEON::BI__builtin_neon_vget_lane_i32:
12090 case NEON::BI__builtin_neon_vdups_lane_i32:
12091 Ops[0] =
12092 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2));
12093 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12094 "vget_lane");
12095 case NEON::BI__builtin_neon_vdups_lane_f32:
12096 Ops[0] =
12097 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
12098 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12099 "vdups_lane");
12100 case NEON::BI__builtin_neon_vgetq_lane_i32:
12101 case NEON::BI__builtin_neon_vdups_laneq_i32:
12102 Ops[0] =
12103 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
12104 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12105 "vgetq_lane");
12106 case NEON::BI__builtin_neon_vget_lane_i64:
12107 case NEON::BI__builtin_neon_vdupd_lane_i64:
12108 Ops[0] =
12109 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1));
12110 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12111 "vget_lane");
12112 case NEON::BI__builtin_neon_vdupd_lane_f64:
12113 Ops[0] =
12114 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
12115 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12116 "vdupd_lane");
12117 case NEON::BI__builtin_neon_vgetq_lane_i64:
12118 case NEON::BI__builtin_neon_vdupd_laneq_i64:
12119 Ops[0] =
12120 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
12121 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12122 "vgetq_lane");
12123 case NEON::BI__builtin_neon_vget_lane_f32:
12124 Ops[0] =
12125 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
12126 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12127 "vget_lane");
12128 case NEON::BI__builtin_neon_vget_lane_f64:
12129 Ops[0] =
12130 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
12131 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12132 "vget_lane");
12133 case NEON::BI__builtin_neon_vgetq_lane_f32:
12134 case NEON::BI__builtin_neon_vdups_laneq_f32:
12135 Ops[0] =
12136 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4));
12137 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12138 "vgetq_lane");
12139 case NEON::BI__builtin_neon_vgetq_lane_f64:
12140 case NEON::BI__builtin_neon_vdupd_laneq_f64:
12141 Ops[0] =
12142 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2));
12143 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12144 "vgetq_lane");
12145 case NEON::BI__builtin_neon_vaddh_f16:
12146 Ops.push_back(EmitScalarExpr(E->getArg(1)));
12147 return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
12148 case NEON::BI__builtin_neon_vsubh_f16:
12149 Ops.push_back(EmitScalarExpr(E->getArg(1)));
12150 return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
12151 case NEON::BI__builtin_neon_vmulh_f16:
12152 Ops.push_back(EmitScalarExpr(E->getArg(1)));
12153 return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
12154 case NEON::BI__builtin_neon_vdivh_f16:
12155 Ops.push_back(EmitScalarExpr(E->getArg(1)));
12156 return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
12157 case NEON::BI__builtin_neon_vfmah_f16:
12158 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
12159 return emitCallMaybeConstrainedFPBuiltin(
12160 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
12161 {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
12162 case NEON::BI__builtin_neon_vfmsh_f16: {
12163 Value* Neg = Builder.CreateFNeg(EmitScalarExpr(E->getArg(1)), "vsubh");
12165 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
12166 return emitCallMaybeConstrainedFPBuiltin(
12167 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
12168 {Neg, EmitScalarExpr(E->getArg(2)), Ops[0]});
12170 case NEON::BI__builtin_neon_vaddd_s64:
12171 case NEON::BI__builtin_neon_vaddd_u64:
12172 return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
12173 case NEON::BI__builtin_neon_vsubd_s64:
12174 case NEON::BI__builtin_neon_vsubd_u64:
12175 return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
12176 case NEON::BI__builtin_neon_vqdmlalh_s16:
12177 case NEON::BI__builtin_neon_vqdmlslh_s16: {
12178 SmallVector<Value *, 2> ProductOps;
12179 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
12180 ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
12181 auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
12182 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
12183 ProductOps, "vqdmlXl");
12184 Constant *CI = ConstantInt::get(SizeTy, 0);
12185 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
12187 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
12188 ? Intrinsic::aarch64_neon_sqadd
12189 : Intrinsic::aarch64_neon_sqsub;
12190 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
12192 case NEON::BI__builtin_neon_vqshlud_n_s64: {
12193 Ops.push_back(EmitScalarExpr(E->getArg(1)));
12194 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
12195 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
12196 Ops, "vqshlu_n");
12198 case NEON::BI__builtin_neon_vqshld_n_u64:
12199 case NEON::BI__builtin_neon_vqshld_n_s64: {
12200 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
12201 ? Intrinsic::aarch64_neon_uqshl
12202 : Intrinsic::aarch64_neon_sqshl;
12203 Ops.push_back(EmitScalarExpr(E->getArg(1)));
12204 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
12205 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
12207 case NEON::BI__builtin_neon_vrshrd_n_u64:
12208 case NEON::BI__builtin_neon_vrshrd_n_s64: {
12209 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
12210 ? Intrinsic::aarch64_neon_urshl
12211 : Intrinsic::aarch64_neon_srshl;
12212 Ops.push_back(EmitScalarExpr(E->getArg(1)));
12213 int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
12214 Ops[1] = ConstantInt::get(Int64Ty, -SV);
12215 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
12217 case NEON::BI__builtin_neon_vrsrad_n_u64:
12218 case NEON::BI__builtin_neon_vrsrad_n_s64: {
12219 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
12220 ? Intrinsic::aarch64_neon_urshl
12221 : Intrinsic::aarch64_neon_srshl;
12222 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
12223 Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
12224 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
12225 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
12226 return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
12228 case NEON::BI__builtin_neon_vshld_n_s64:
12229 case NEON::BI__builtin_neon_vshld_n_u64: {
12230 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
12231 return Builder.CreateShl(
12232 Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
12234 case NEON::BI__builtin_neon_vshrd_n_s64: {
12235 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
12236 return Builder.CreateAShr(
12237 Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
12238 Amt->getZExtValue())),
12239 "shrd_n");
12241 case NEON::BI__builtin_neon_vshrd_n_u64: {
12242 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
12243 uint64_t ShiftAmt = Amt->getZExtValue();
12244 // Right-shifting an unsigned value by its size yields 0.
12245 if (ShiftAmt == 64)
12246 return ConstantInt::get(Int64Ty, 0);
12247 return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
12248 "shrd_n");
12250 case NEON::BI__builtin_neon_vsrad_n_s64: {
12251 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
12252 Ops[1] = Builder.CreateAShr(
12253 Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
12254 Amt->getZExtValue())),
12255 "shrd_n");
12256 return Builder.CreateAdd(Ops[0], Ops[1]);
12258 case NEON::BI__builtin_neon_vsrad_n_u64: {
12259 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
12260 uint64_t ShiftAmt = Amt->getZExtValue();
12261 // Right-shifting an unsigned value by its size yields 0.
12262 // As Op + 0 = Op, return Ops[0] directly.
12263 if (ShiftAmt == 64)
12264 return Ops[0];
12265 Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
12266 "shrd_n");
12267 return Builder.CreateAdd(Ops[0], Ops[1]);
12269 case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
12270 case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
12271 case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
12272 case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
12273 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
12274 "lane");
12275 SmallVector<Value *, 2> ProductOps;
12276 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
12277 ProductOps.push_back(vectorWrapScalar16(Ops[2]));
12278 auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
12279 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
12280 ProductOps, "vqdmlXl");
12281 Constant *CI = ConstantInt::get(SizeTy, 0);
12282 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
12283 Ops.pop_back();
12285 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
12286 BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
12287 ? Intrinsic::aarch64_neon_sqadd
12288 : Intrinsic::aarch64_neon_sqsub;
12289 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
12291 case NEON::BI__builtin_neon_vqdmlals_s32:
12292 case NEON::BI__builtin_neon_vqdmlsls_s32: {
12293 SmallVector<Value *, 2> ProductOps;
12294 ProductOps.push_back(Ops[1]);
12295 ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
12296 Ops[1] =
12297 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
12298 ProductOps, "vqdmlXl");
12300 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
12301 ? Intrinsic::aarch64_neon_sqadd
12302 : Intrinsic::aarch64_neon_sqsub;
12303 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
12305 case NEON::BI__builtin_neon_vqdmlals_lane_s32:
12306 case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
12307 case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
12308 case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
12309 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
12310 "lane");
12311 SmallVector<Value *, 2> ProductOps;
12312 ProductOps.push_back(Ops[1]);
12313 ProductOps.push_back(Ops[2]);
12314 Ops[1] =
12315 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
12316 ProductOps, "vqdmlXl");
12317 Ops.pop_back();
12319 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
12320 BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
12321 ? Intrinsic::aarch64_neon_sqadd
12322 : Intrinsic::aarch64_neon_sqsub;
12323 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
12325 case NEON::BI__builtin_neon_vget_lane_bf16:
12326 case NEON::BI__builtin_neon_vduph_lane_bf16:
12327 case NEON::BI__builtin_neon_vduph_lane_f16: {
12328 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12329 "vget_lane");
12331 case NEON::BI__builtin_neon_vgetq_lane_bf16:
12332 case NEON::BI__builtin_neon_vduph_laneq_bf16:
12333 case NEON::BI__builtin_neon_vduph_laneq_f16: {
12334 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12335 "vgetq_lane");
12338 case clang::AArch64::BI_InterlockedAdd:
12339 case clang::AArch64::BI_InterlockedAdd64: {
12340 Address DestAddr = CheckAtomicAlignment(*this, E);
12341 Value *Val = EmitScalarExpr(E->getArg(1));
12342 AtomicRMWInst *RMWI =
12343 Builder.CreateAtomicRMW(AtomicRMWInst::Add, DestAddr, Val,
12344 llvm::AtomicOrdering::SequentiallyConsistent);
12345 return Builder.CreateAdd(RMWI, Val);
12349 llvm::FixedVectorType *VTy = GetNeonType(this, Type);
12350 llvm::Type *Ty = VTy;
12351 if (!Ty)
12352 return nullptr;
12354 // Not all intrinsics handled by the common case work for AArch64 yet, so only
12355 // defer to common code if it's been added to our special map.
12356 Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
12357 AArch64SIMDIntrinsicsProvenSorted);
12359 if (Builtin)
12360 return EmitCommonNeonBuiltinExpr(
12361 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
12362 Builtin->NameHint, Builtin->TypeModifier, E, Ops,
12363 /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
12365 if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
12366 return V;
12368 unsigned Int;
12369 switch (BuiltinID) {
12370 default: return nullptr;
12371 case NEON::BI__builtin_neon_vbsl_v:
12372 case NEON::BI__builtin_neon_vbslq_v: {
12373 llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
12374 Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
12375 Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
12376 Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
12378 Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
12379 Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
12380 Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
12381 return Builder.CreateBitCast(Ops[0], Ty);
12383 case NEON::BI__builtin_neon_vfma_lane_v:
12384 case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
12385 // The ARM builtins (and instructions) have the addend as the first
12386 // operand, but the 'fma' intrinsics have it last. Swap it around here.
12387 Value *Addend = Ops[0];
12388 Value *Multiplicand = Ops[1];
12389 Value *LaneSource = Ops[2];
12390 Ops[0] = Multiplicand;
12391 Ops[1] = LaneSource;
12392 Ops[2] = Addend;
12394 // Now adjust things to handle the lane access.
12395 auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v
12396 ? llvm::FixedVectorType::get(VTy->getElementType(),
12397 VTy->getNumElements() / 2)
12398 : VTy;
12399 llvm::Constant *cst = cast<Constant>(Ops[3]);
12400 Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst);
12401 Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
12402 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
12404 Ops.pop_back();
12405 Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma
12406 : Intrinsic::fma;
12407 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
12409 case NEON::BI__builtin_neon_vfma_laneq_v: {
12410 auto *VTy = cast<llvm::FixedVectorType>(Ty);
12411 // v1f64 fma should be mapped to Neon scalar f64 fma
12412 if (VTy && VTy->getElementType() == DoubleTy) {
12413 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
12414 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
12415 llvm::FixedVectorType *VTy =
12416 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
12417 Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
12418 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
12419 Value *Result;
12420 Result = emitCallMaybeConstrainedFPBuiltin(
12421 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma,
12422 DoubleTy, {Ops[1], Ops[2], Ops[0]});
12423 return Builder.CreateBitCast(Result, Ty);
12425 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12426 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12428 auto *STy = llvm::FixedVectorType::get(VTy->getElementType(),
12429 VTy->getNumElements() * 2);
12430 Ops[2] = Builder.CreateBitCast(Ops[2], STy);
12431 Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(),
12432 cast<ConstantInt>(Ops[3]));
12433 Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
12435 return emitCallMaybeConstrainedFPBuiltin(
12436 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
12437 {Ops[2], Ops[1], Ops[0]});
12439 case NEON::BI__builtin_neon_vfmaq_laneq_v: {
12440 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12441 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12443 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
12444 Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
12445 return emitCallMaybeConstrainedFPBuiltin(
12446 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
12447 {Ops[2], Ops[1], Ops[0]});
12449 case NEON::BI__builtin_neon_vfmah_lane_f16:
12450 case NEON::BI__builtin_neon_vfmas_lane_f32:
12451 case NEON::BI__builtin_neon_vfmah_laneq_f16:
12452 case NEON::BI__builtin_neon_vfmas_laneq_f32:
12453 case NEON::BI__builtin_neon_vfmad_lane_f64:
12454 case NEON::BI__builtin_neon_vfmad_laneq_f64: {
12455 Ops.push_back(EmitScalarExpr(E->getArg(3)));
12456 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
12457 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
12458 return emitCallMaybeConstrainedFPBuiltin(
12459 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
12460 {Ops[1], Ops[2], Ops[0]});
12462 case NEON::BI__builtin_neon_vmull_v:
12463 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12464 Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
12465 if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
12466 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
12467 case NEON::BI__builtin_neon_vmax_v:
12468 case NEON::BI__builtin_neon_vmaxq_v:
12469 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12470 Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
12471 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
12472 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
12473 case NEON::BI__builtin_neon_vmaxh_f16: {
12474 Ops.push_back(EmitScalarExpr(E->getArg(1)));
12475 Int = Intrinsic::aarch64_neon_fmax;
12476 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
12478 case NEON::BI__builtin_neon_vmin_v:
12479 case NEON::BI__builtin_neon_vminq_v:
12480 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12481 Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
12482 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
12483 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
12484 case NEON::BI__builtin_neon_vminh_f16: {
12485 Ops.push_back(EmitScalarExpr(E->getArg(1)));
12486 Int = Intrinsic::aarch64_neon_fmin;
12487 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
12489 case NEON::BI__builtin_neon_vabd_v:
12490 case NEON::BI__builtin_neon_vabdq_v:
12491 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12492 Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
12493 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
12494 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
12495 case NEON::BI__builtin_neon_vpadal_v:
12496 case NEON::BI__builtin_neon_vpadalq_v: {
12497 unsigned ArgElts = VTy->getNumElements();
12498 llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
12499 unsigned BitWidth = EltTy->getBitWidth();
12500 auto *ArgTy = llvm::FixedVectorType::get(
12501 llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts);
12502 llvm::Type* Tys[2] = { VTy, ArgTy };
12503 Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
12504 SmallVector<llvm::Value*, 1> TmpOps;
12505 TmpOps.push_back(Ops[1]);
12506 Function *F = CGM.getIntrinsic(Int, Tys);
12507 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
12508 llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
12509 return Builder.CreateAdd(tmp, addend);
12511 case NEON::BI__builtin_neon_vpmin_v:
12512 case NEON::BI__builtin_neon_vpminq_v:
12513 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12514 Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
12515 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
12516 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
12517 case NEON::BI__builtin_neon_vpmax_v:
12518 case NEON::BI__builtin_neon_vpmaxq_v:
12519 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12520 Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
12521 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
12522 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
12523 case NEON::BI__builtin_neon_vminnm_v:
12524 case NEON::BI__builtin_neon_vminnmq_v:
12525 Int = Intrinsic::aarch64_neon_fminnm;
12526 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
12527 case NEON::BI__builtin_neon_vminnmh_f16:
12528 Ops.push_back(EmitScalarExpr(E->getArg(1)));
12529 Int = Intrinsic::aarch64_neon_fminnm;
12530 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
12531 case NEON::BI__builtin_neon_vmaxnm_v:
12532 case NEON::BI__builtin_neon_vmaxnmq_v:
12533 Int = Intrinsic::aarch64_neon_fmaxnm;
12534 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
12535 case NEON::BI__builtin_neon_vmaxnmh_f16:
12536 Ops.push_back(EmitScalarExpr(E->getArg(1)));
12537 Int = Intrinsic::aarch64_neon_fmaxnm;
12538 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
12539 case NEON::BI__builtin_neon_vrecpss_f32: {
12540 Ops.push_back(EmitScalarExpr(E->getArg(1)));
12541 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
12542 Ops, "vrecps");
12544 case NEON::BI__builtin_neon_vrecpsd_f64:
12545 Ops.push_back(EmitScalarExpr(E->getArg(1)));
12546 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
12547 Ops, "vrecps");
12548 case NEON::BI__builtin_neon_vrecpsh_f16:
12549 Ops.push_back(EmitScalarExpr(E->getArg(1)));
12550 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
12551 Ops, "vrecps");
12552 case NEON::BI__builtin_neon_vqshrun_n_v:
12553 Int = Intrinsic::aarch64_neon_sqshrun;
12554 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
12555 case NEON::BI__builtin_neon_vqrshrun_n_v:
12556 Int = Intrinsic::aarch64_neon_sqrshrun;
12557 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
12558 case NEON::BI__builtin_neon_vqshrn_n_v:
12559 Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
12560 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
12561 case NEON::BI__builtin_neon_vrshrn_n_v:
12562 Int = Intrinsic::aarch64_neon_rshrn;
12563 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
12564 case NEON::BI__builtin_neon_vqrshrn_n_v:
12565 Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
12566 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
12567 case NEON::BI__builtin_neon_vrndah_f16: {
12568 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12569 Int = Builder.getIsFPConstrained()
12570 ? Intrinsic::experimental_constrained_round
12571 : Intrinsic::round;
12572 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
12574 case NEON::BI__builtin_neon_vrnda_v:
12575 case NEON::BI__builtin_neon_vrndaq_v: {
12576 Int = Builder.getIsFPConstrained()
12577 ? Intrinsic::experimental_constrained_round
12578 : Intrinsic::round;
12579 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
12581 case NEON::BI__builtin_neon_vrndih_f16: {
12582 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12583 Int = Builder.getIsFPConstrained()
12584 ? Intrinsic::experimental_constrained_nearbyint
12585 : Intrinsic::nearbyint;
12586 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
12588 case NEON::BI__builtin_neon_vrndmh_f16: {
12589 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12590 Int = Builder.getIsFPConstrained()
12591 ? Intrinsic::experimental_constrained_floor
12592 : Intrinsic::floor;
12593 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
12595 case NEON::BI__builtin_neon_vrndm_v:
12596 case NEON::BI__builtin_neon_vrndmq_v: {
12597 Int = Builder.getIsFPConstrained()
12598 ? Intrinsic::experimental_constrained_floor
12599 : Intrinsic::floor;
12600 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
12602 case NEON::BI__builtin_neon_vrndnh_f16: {
12603 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12604 Int = Builder.getIsFPConstrained()
12605 ? Intrinsic::experimental_constrained_roundeven
12606 : Intrinsic::roundeven;
12607 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
12609 case NEON::BI__builtin_neon_vrndn_v:
12610 case NEON::BI__builtin_neon_vrndnq_v: {
12611 Int = Builder.getIsFPConstrained()
12612 ? Intrinsic::experimental_constrained_roundeven
12613 : Intrinsic::roundeven;
12614 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
12616 case NEON::BI__builtin_neon_vrndns_f32: {
12617 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12618 Int = Builder.getIsFPConstrained()
12619 ? Intrinsic::experimental_constrained_roundeven
12620 : Intrinsic::roundeven;
12621 return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
12623 case NEON::BI__builtin_neon_vrndph_f16: {
12624 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12625 Int = Builder.getIsFPConstrained()
12626 ? Intrinsic::experimental_constrained_ceil
12627 : Intrinsic::ceil;
12628 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
12630 case NEON::BI__builtin_neon_vrndp_v:
12631 case NEON::BI__builtin_neon_vrndpq_v: {
12632 Int = Builder.getIsFPConstrained()
12633 ? Intrinsic::experimental_constrained_ceil
12634 : Intrinsic::ceil;
12635 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
12637 case NEON::BI__builtin_neon_vrndxh_f16: {
12638 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12639 Int = Builder.getIsFPConstrained()
12640 ? Intrinsic::experimental_constrained_rint
12641 : Intrinsic::rint;
12642 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
12644 case NEON::BI__builtin_neon_vrndx_v:
12645 case NEON::BI__builtin_neon_vrndxq_v: {
12646 Int = Builder.getIsFPConstrained()
12647 ? Intrinsic::experimental_constrained_rint
12648 : Intrinsic::rint;
12649 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
12651 case NEON::BI__builtin_neon_vrndh_f16: {
12652 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12653 Int = Builder.getIsFPConstrained()
12654 ? Intrinsic::experimental_constrained_trunc
12655 : Intrinsic::trunc;
12656 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
12658 case NEON::BI__builtin_neon_vrnd32x_f32:
12659 case NEON::BI__builtin_neon_vrnd32xq_f32:
12660 case NEON::BI__builtin_neon_vrnd32x_f64:
12661 case NEON::BI__builtin_neon_vrnd32xq_f64: {
12662 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12663 Int = Intrinsic::aarch64_neon_frint32x;
12664 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32x");
12666 case NEON::BI__builtin_neon_vrnd32z_f32:
12667 case NEON::BI__builtin_neon_vrnd32zq_f32:
12668 case NEON::BI__builtin_neon_vrnd32z_f64:
12669 case NEON::BI__builtin_neon_vrnd32zq_f64: {
12670 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12671 Int = Intrinsic::aarch64_neon_frint32z;
12672 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32z");
12674 case NEON::BI__builtin_neon_vrnd64x_f32:
12675 case NEON::BI__builtin_neon_vrnd64xq_f32:
12676 case NEON::BI__builtin_neon_vrnd64x_f64:
12677 case NEON::BI__builtin_neon_vrnd64xq_f64: {
12678 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12679 Int = Intrinsic::aarch64_neon_frint64x;
12680 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64x");
12682 case NEON::BI__builtin_neon_vrnd64z_f32:
12683 case NEON::BI__builtin_neon_vrnd64zq_f32:
12684 case NEON::BI__builtin_neon_vrnd64z_f64:
12685 case NEON::BI__builtin_neon_vrnd64zq_f64: {
12686 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12687 Int = Intrinsic::aarch64_neon_frint64z;
12688 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64z");
12690 case NEON::BI__builtin_neon_vrnd_v:
12691 case NEON::BI__builtin_neon_vrndq_v: {
12692 Int = Builder.getIsFPConstrained()
12693 ? Intrinsic::experimental_constrained_trunc
12694 : Intrinsic::trunc;
12695 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
12697 case NEON::BI__builtin_neon_vcvt_f64_v:
12698 case NEON::BI__builtin_neon_vcvtq_f64_v:
12699 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12700 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
12701 return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
12702 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
12703 case NEON::BI__builtin_neon_vcvt_f64_f32: {
12704 assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
12705 "unexpected vcvt_f64_f32 builtin");
12706 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
12707 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
12709 return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
12711 case NEON::BI__builtin_neon_vcvt_f32_f64: {
12712 assert(Type.getEltType() == NeonTypeFlags::Float32 &&
12713 "unexpected vcvt_f32_f64 builtin");
12714 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
12715 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
12717 return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
12719 case NEON::BI__builtin_neon_vcvt_s32_v:
12720 case NEON::BI__builtin_neon_vcvt_u32_v:
12721 case NEON::BI__builtin_neon_vcvt_s64_v:
12722 case NEON::BI__builtin_neon_vcvt_u64_v:
12723 case NEON::BI__builtin_neon_vcvt_s16_f16:
12724 case NEON::BI__builtin_neon_vcvt_u16_f16:
12725 case NEON::BI__builtin_neon_vcvtq_s32_v:
12726 case NEON::BI__builtin_neon_vcvtq_u32_v:
12727 case NEON::BI__builtin_neon_vcvtq_s64_v:
12728 case NEON::BI__builtin_neon_vcvtq_u64_v:
12729 case NEON::BI__builtin_neon_vcvtq_s16_f16:
12730 case NEON::BI__builtin_neon_vcvtq_u16_f16: {
12731 Int =
12732 usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs;
12733 llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)};
12734 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz");
12736 case NEON::BI__builtin_neon_vcvta_s16_f16:
12737 case NEON::BI__builtin_neon_vcvta_u16_f16:
12738 case NEON::BI__builtin_neon_vcvta_s32_v:
12739 case NEON::BI__builtin_neon_vcvtaq_s16_f16:
12740 case NEON::BI__builtin_neon_vcvtaq_s32_v:
12741 case NEON::BI__builtin_neon_vcvta_u32_v:
12742 case NEON::BI__builtin_neon_vcvtaq_u16_f16:
12743 case NEON::BI__builtin_neon_vcvtaq_u32_v:
12744 case NEON::BI__builtin_neon_vcvta_s64_v:
12745 case NEON::BI__builtin_neon_vcvtaq_s64_v:
12746 case NEON::BI__builtin_neon_vcvta_u64_v:
12747 case NEON::BI__builtin_neon_vcvtaq_u64_v: {
12748 Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
12749 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
12750 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
12752 case NEON::BI__builtin_neon_vcvtm_s16_f16:
12753 case NEON::BI__builtin_neon_vcvtm_s32_v:
12754 case NEON::BI__builtin_neon_vcvtmq_s16_f16:
12755 case NEON::BI__builtin_neon_vcvtmq_s32_v:
12756 case NEON::BI__builtin_neon_vcvtm_u16_f16:
12757 case NEON::BI__builtin_neon_vcvtm_u32_v:
12758 case NEON::BI__builtin_neon_vcvtmq_u16_f16:
12759 case NEON::BI__builtin_neon_vcvtmq_u32_v:
12760 case NEON::BI__builtin_neon_vcvtm_s64_v:
12761 case NEON::BI__builtin_neon_vcvtmq_s64_v:
12762 case NEON::BI__builtin_neon_vcvtm_u64_v:
12763 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
12764 Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
12765 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
12766 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
12768 case NEON::BI__builtin_neon_vcvtn_s16_f16:
12769 case NEON::BI__builtin_neon_vcvtn_s32_v:
12770 case NEON::BI__builtin_neon_vcvtnq_s16_f16:
12771 case NEON::BI__builtin_neon_vcvtnq_s32_v:
12772 case NEON::BI__builtin_neon_vcvtn_u16_f16:
12773 case NEON::BI__builtin_neon_vcvtn_u32_v:
12774 case NEON::BI__builtin_neon_vcvtnq_u16_f16:
12775 case NEON::BI__builtin_neon_vcvtnq_u32_v:
12776 case NEON::BI__builtin_neon_vcvtn_s64_v:
12777 case NEON::BI__builtin_neon_vcvtnq_s64_v:
12778 case NEON::BI__builtin_neon_vcvtn_u64_v:
12779 case NEON::BI__builtin_neon_vcvtnq_u64_v: {
12780 Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
12781 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
12782 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
12784 case NEON::BI__builtin_neon_vcvtp_s16_f16:
12785 case NEON::BI__builtin_neon_vcvtp_s32_v:
12786 case NEON::BI__builtin_neon_vcvtpq_s16_f16:
12787 case NEON::BI__builtin_neon_vcvtpq_s32_v:
12788 case NEON::BI__builtin_neon_vcvtp_u16_f16:
12789 case NEON::BI__builtin_neon_vcvtp_u32_v:
12790 case NEON::BI__builtin_neon_vcvtpq_u16_f16:
12791 case NEON::BI__builtin_neon_vcvtpq_u32_v:
12792 case NEON::BI__builtin_neon_vcvtp_s64_v:
12793 case NEON::BI__builtin_neon_vcvtpq_s64_v:
12794 case NEON::BI__builtin_neon_vcvtp_u64_v:
12795 case NEON::BI__builtin_neon_vcvtpq_u64_v: {
12796 Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
12797 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
12798 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
12800 case NEON::BI__builtin_neon_vmulx_v:
12801 case NEON::BI__builtin_neon_vmulxq_v: {
12802 Int = Intrinsic::aarch64_neon_fmulx;
12803 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
12805 case NEON::BI__builtin_neon_vmulxh_lane_f16:
12806 case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
12807 // vmulx_lane should be mapped to Neon scalar mulx after
12808 // extracting the scalar element
12809 Ops.push_back(EmitScalarExpr(E->getArg(2)));
12810 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
12811 Ops.pop_back();
12812 Int = Intrinsic::aarch64_neon_fmulx;
12813 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
12815 case NEON::BI__builtin_neon_vmul_lane_v:
12816 case NEON::BI__builtin_neon_vmul_laneq_v: {
12817 // v1f64 vmul_lane should be mapped to Neon scalar mul lane
12818 bool Quad = false;
12819 if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
12820 Quad = true;
12821 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
12822 llvm::FixedVectorType *VTy =
12823 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
12824 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
12825 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
12826 Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
12827 return Builder.CreateBitCast(Result, Ty);
12829 case NEON::BI__builtin_neon_vnegd_s64:
12830 return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
12831 case NEON::BI__builtin_neon_vnegh_f16:
12832 return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
12833 case NEON::BI__builtin_neon_vpmaxnm_v:
12834 case NEON::BI__builtin_neon_vpmaxnmq_v: {
12835 Int = Intrinsic::aarch64_neon_fmaxnmp;
12836 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
12838 case NEON::BI__builtin_neon_vpminnm_v:
12839 case NEON::BI__builtin_neon_vpminnmq_v: {
12840 Int = Intrinsic::aarch64_neon_fminnmp;
12841 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
12843 case NEON::BI__builtin_neon_vsqrth_f16: {
12844 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12845 Int = Builder.getIsFPConstrained()
12846 ? Intrinsic::experimental_constrained_sqrt
12847 : Intrinsic::sqrt;
12848 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
12850 case NEON::BI__builtin_neon_vsqrt_v:
12851 case NEON::BI__builtin_neon_vsqrtq_v: {
12852 Int = Builder.getIsFPConstrained()
12853 ? Intrinsic::experimental_constrained_sqrt
12854 : Intrinsic::sqrt;
12855 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12856 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
12858 case NEON::BI__builtin_neon_vrbit_v:
12859 case NEON::BI__builtin_neon_vrbitq_v: {
12860 Int = Intrinsic::bitreverse;
12861 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
12863 case NEON::BI__builtin_neon_vaddv_u8:
12864 // FIXME: These are handled by the AArch64 scalar code.
12865 usgn = true;
12866 [[fallthrough]];
12867 case NEON::BI__builtin_neon_vaddv_s8: {
12868 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
12869 Ty = Int32Ty;
12870 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
12871 llvm::Type *Tys[2] = { Ty, VTy };
12872 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12873 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
12874 return Builder.CreateTrunc(Ops[0], Int8Ty);
12876 case NEON::BI__builtin_neon_vaddv_u16:
12877 usgn = true;
12878 [[fallthrough]];
12879 case NEON::BI__builtin_neon_vaddv_s16: {
12880 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
12881 Ty = Int32Ty;
12882 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
12883 llvm::Type *Tys[2] = { Ty, VTy };
12884 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12885 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
12886 return Builder.CreateTrunc(Ops[0], Int16Ty);
12888 case NEON::BI__builtin_neon_vaddvq_u8:
12889 usgn = true;
12890 [[fallthrough]];
12891 case NEON::BI__builtin_neon_vaddvq_s8: {
12892 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
12893 Ty = Int32Ty;
12894 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
12895 llvm::Type *Tys[2] = { Ty, VTy };
12896 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12897 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
12898 return Builder.CreateTrunc(Ops[0], Int8Ty);
12900 case NEON::BI__builtin_neon_vaddvq_u16:
12901 usgn = true;
12902 [[fallthrough]];
12903 case NEON::BI__builtin_neon_vaddvq_s16: {
12904 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
12905 Ty = Int32Ty;
12906 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
12907 llvm::Type *Tys[2] = { Ty, VTy };
12908 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12909 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
12910 return Builder.CreateTrunc(Ops[0], Int16Ty);
12912 case NEON::BI__builtin_neon_vmaxv_u8: {
12913 Int = Intrinsic::aarch64_neon_umaxv;
12914 Ty = Int32Ty;
12915 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
12916 llvm::Type *Tys[2] = { Ty, VTy };
12917 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12918 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12919 return Builder.CreateTrunc(Ops[0], Int8Ty);
12921 case NEON::BI__builtin_neon_vmaxv_u16: {
12922 Int = Intrinsic::aarch64_neon_umaxv;
12923 Ty = Int32Ty;
12924 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
12925 llvm::Type *Tys[2] = { Ty, VTy };
12926 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12927 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12928 return Builder.CreateTrunc(Ops[0], Int16Ty);
12930 case NEON::BI__builtin_neon_vmaxvq_u8: {
12931 Int = Intrinsic::aarch64_neon_umaxv;
12932 Ty = Int32Ty;
12933 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
12934 llvm::Type *Tys[2] = { Ty, VTy };
12935 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12936 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12937 return Builder.CreateTrunc(Ops[0], Int8Ty);
12939 case NEON::BI__builtin_neon_vmaxvq_u16: {
12940 Int = Intrinsic::aarch64_neon_umaxv;
12941 Ty = Int32Ty;
12942 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
12943 llvm::Type *Tys[2] = { Ty, VTy };
12944 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12945 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12946 return Builder.CreateTrunc(Ops[0], Int16Ty);
12948 case NEON::BI__builtin_neon_vmaxv_s8: {
12949 Int = Intrinsic::aarch64_neon_smaxv;
12950 Ty = Int32Ty;
12951 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
12952 llvm::Type *Tys[2] = { Ty, VTy };
12953 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12954 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12955 return Builder.CreateTrunc(Ops[0], Int8Ty);
12957 case NEON::BI__builtin_neon_vmaxv_s16: {
12958 Int = Intrinsic::aarch64_neon_smaxv;
12959 Ty = Int32Ty;
12960 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
12961 llvm::Type *Tys[2] = { Ty, VTy };
12962 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12963 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12964 return Builder.CreateTrunc(Ops[0], Int16Ty);
12966 case NEON::BI__builtin_neon_vmaxvq_s8: {
12967 Int = Intrinsic::aarch64_neon_smaxv;
12968 Ty = Int32Ty;
12969 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
12970 llvm::Type *Tys[2] = { Ty, VTy };
12971 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12972 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12973 return Builder.CreateTrunc(Ops[0], Int8Ty);
12975 case NEON::BI__builtin_neon_vmaxvq_s16: {
12976 Int = Intrinsic::aarch64_neon_smaxv;
12977 Ty = Int32Ty;
12978 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
12979 llvm::Type *Tys[2] = { Ty, VTy };
12980 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12981 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12982 return Builder.CreateTrunc(Ops[0], Int16Ty);
12984 case NEON::BI__builtin_neon_vmaxv_f16: {
12985 Int = Intrinsic::aarch64_neon_fmaxv;
12986 Ty = HalfTy;
12987 VTy = llvm::FixedVectorType::get(HalfTy, 4);
12988 llvm::Type *Tys[2] = { Ty, VTy };
12989 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12990 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12991 return Builder.CreateTrunc(Ops[0], HalfTy);
12993 case NEON::BI__builtin_neon_vmaxvq_f16: {
12994 Int = Intrinsic::aarch64_neon_fmaxv;
12995 Ty = HalfTy;
12996 VTy = llvm::FixedVectorType::get(HalfTy, 8);
12997 llvm::Type *Tys[2] = { Ty, VTy };
12998 Ops.push_back(EmitScalarExpr(E->getArg(0)));
12999 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
13000 return Builder.CreateTrunc(Ops[0], HalfTy);
13002 case NEON::BI__builtin_neon_vminv_u8: {
13003 Int = Intrinsic::aarch64_neon_uminv;
13004 Ty = Int32Ty;
13005 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
13006 llvm::Type *Tys[2] = { Ty, VTy };
13007 Ops.push_back(EmitScalarExpr(E->getArg(0)));
13008 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13009 return Builder.CreateTrunc(Ops[0], Int8Ty);
13011 case NEON::BI__builtin_neon_vminv_u16: {
13012 Int = Intrinsic::aarch64_neon_uminv;
13013 Ty = Int32Ty;
13014 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
13015 llvm::Type *Tys[2] = { Ty, VTy };
13016 Ops.push_back(EmitScalarExpr(E->getArg(0)));
13017 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13018 return Builder.CreateTrunc(Ops[0], Int16Ty);
13020 case NEON::BI__builtin_neon_vminvq_u8: {
13021 Int = Intrinsic::aarch64_neon_uminv;
13022 Ty = Int32Ty;
13023 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
13024 llvm::Type *Tys[2] = { Ty, VTy };
13025 Ops.push_back(EmitScalarExpr(E->getArg(0)));
13026 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13027 return Builder.CreateTrunc(Ops[0], Int8Ty);
13029 case NEON::BI__builtin_neon_vminvq_u16: {
13030 Int = Intrinsic::aarch64_neon_uminv;
13031 Ty = Int32Ty;
13032 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
13033 llvm::Type *Tys[2] = { Ty, VTy };
13034 Ops.push_back(EmitScalarExpr(E->getArg(0)));
13035 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13036 return Builder.CreateTrunc(Ops[0], Int16Ty);
13038 case NEON::BI__builtin_neon_vminv_s8: {
13039 Int = Intrinsic::aarch64_neon_sminv;
13040 Ty = Int32Ty;
13041 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
13042 llvm::Type *Tys[2] = { Ty, VTy };
13043 Ops.push_back(EmitScalarExpr(E->getArg(0)));
13044 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13045 return Builder.CreateTrunc(Ops[0], Int8Ty);
13047 case NEON::BI__builtin_neon_vminv_s16: {
13048 Int = Intrinsic::aarch64_neon_sminv;
13049 Ty = Int32Ty;
13050 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
13051 llvm::Type *Tys[2] = { Ty, VTy };
13052 Ops.push_back(EmitScalarExpr(E->getArg(0)));
13053 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13054 return Builder.CreateTrunc(Ops[0], Int16Ty);
13056 case NEON::BI__builtin_neon_vminvq_s8: {
13057 Int = Intrinsic::aarch64_neon_sminv;
13058 Ty = Int32Ty;
13059 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
13060 llvm::Type *Tys[2] = { Ty, VTy };
13061 Ops.push_back(EmitScalarExpr(E->getArg(0)));
13062 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13063 return Builder.CreateTrunc(Ops[0], Int8Ty);
13065 case NEON::BI__builtin_neon_vminvq_s16: {
13066 Int = Intrinsic::aarch64_neon_sminv;
13067 Ty = Int32Ty;
13068 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
13069 llvm::Type *Tys[2] = { Ty, VTy };
13070 Ops.push_back(EmitScalarExpr(E->getArg(0)));
13071 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13072 return Builder.CreateTrunc(Ops[0], Int16Ty);
13074 case NEON::BI__builtin_neon_vminv_f16: {
13075 Int = Intrinsic::aarch64_neon_fminv;
13076 Ty = HalfTy;
13077 VTy = llvm::FixedVectorType::get(HalfTy, 4);
13078 llvm::Type *Tys[2] = { Ty, VTy };
13079 Ops.push_back(EmitScalarExpr(E->getArg(0)));
13080 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13081 return Builder.CreateTrunc(Ops[0], HalfTy);
13083 case NEON::BI__builtin_neon_vminvq_f16: {
13084 Int = Intrinsic::aarch64_neon_fminv;
13085 Ty = HalfTy;
13086 VTy = llvm::FixedVectorType::get(HalfTy, 8);
13087 llvm::Type *Tys[2] = { Ty, VTy };
13088 Ops.push_back(EmitScalarExpr(E->getArg(0)));
13089 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13090 return Builder.CreateTrunc(Ops[0], HalfTy);
13092 case NEON::BI__builtin_neon_vmaxnmv_f16: {
13093 Int = Intrinsic::aarch64_neon_fmaxnmv;
13094 Ty = HalfTy;
13095 VTy = llvm::FixedVectorType::get(HalfTy, 4);
13096 llvm::Type *Tys[2] = { Ty, VTy };
13097 Ops.push_back(EmitScalarExpr(E->getArg(0)));
13098 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
13099 return Builder.CreateTrunc(Ops[0], HalfTy);
13101 case NEON::BI__builtin_neon_vmaxnmvq_f16: {
13102 Int = Intrinsic::aarch64_neon_fmaxnmv;
13103 Ty = HalfTy;
13104 VTy = llvm::FixedVectorType::get(HalfTy, 8);
13105 llvm::Type *Tys[2] = { Ty, VTy };
13106 Ops.push_back(EmitScalarExpr(E->getArg(0)));
13107 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
13108 return Builder.CreateTrunc(Ops[0], HalfTy);
13110 case NEON::BI__builtin_neon_vminnmv_f16: {
13111 Int = Intrinsic::aarch64_neon_fminnmv;
13112 Ty = HalfTy;
13113 VTy = llvm::FixedVectorType::get(HalfTy, 4);
13114 llvm::Type *Tys[2] = { Ty, VTy };
13115 Ops.push_back(EmitScalarExpr(E->getArg(0)));
13116 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
13117 return Builder.CreateTrunc(Ops[0], HalfTy);
13119 case NEON::BI__builtin_neon_vminnmvq_f16: {
13120 Int = Intrinsic::aarch64_neon_fminnmv;
13121 Ty = HalfTy;
13122 VTy = llvm::FixedVectorType::get(HalfTy, 8);
13123 llvm::Type *Tys[2] = { Ty, VTy };
13124 Ops.push_back(EmitScalarExpr(E->getArg(0)));
13125 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
13126 return Builder.CreateTrunc(Ops[0], HalfTy);
13128 case NEON::BI__builtin_neon_vmul_n_f64: {
13129 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
13130 Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
13131 return Builder.CreateFMul(Ops[0], RHS);
13133 case NEON::BI__builtin_neon_vaddlv_u8: {
13134 Int = Intrinsic::aarch64_neon_uaddlv;
13135 Ty = Int32Ty;
13136 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
13137 llvm::Type *Tys[2] = { Ty, VTy };
13138 Ops.push_back(EmitScalarExpr(E->getArg(0)));
13139 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13140 return Builder.CreateTrunc(Ops[0], Int16Ty);
13142 case NEON::BI__builtin_neon_vaddlv_u16: {
13143 Int = Intrinsic::aarch64_neon_uaddlv;
13144 Ty = Int32Ty;
13145 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
13146 llvm::Type *Tys[2] = { Ty, VTy };
13147 Ops.push_back(EmitScalarExpr(E->getArg(0)));
13148 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13150 case NEON::BI__builtin_neon_vaddlvq_u8: {
13151 Int = Intrinsic::aarch64_neon_uaddlv;
13152 Ty = Int32Ty;
13153 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
13154 llvm::Type *Tys[2] = { Ty, VTy };
13155 Ops.push_back(EmitScalarExpr(E->getArg(0)));
13156 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13157 return Builder.CreateTrunc(Ops[0], Int16Ty);
13159 case NEON::BI__builtin_neon_vaddlvq_u16: {
13160 Int = Intrinsic::aarch64_neon_uaddlv;
13161 Ty = Int32Ty;
13162 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
13163 llvm::Type *Tys[2] = { Ty, VTy };
13164 Ops.push_back(EmitScalarExpr(E->getArg(0)));
13165 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13167 case NEON::BI__builtin_neon_vaddlv_s8: {
13168 Int = Intrinsic::aarch64_neon_saddlv;
13169 Ty = Int32Ty;
13170 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
13171 llvm::Type *Tys[2] = { Ty, VTy };
13172 Ops.push_back(EmitScalarExpr(E->getArg(0)));
13173 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13174 return Builder.CreateTrunc(Ops[0], Int16Ty);
13176 case NEON::BI__builtin_neon_vaddlv_s16: {
13177 Int = Intrinsic::aarch64_neon_saddlv;
13178 Ty = Int32Ty;
13179 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
13180 llvm::Type *Tys[2] = { Ty, VTy };
13181 Ops.push_back(EmitScalarExpr(E->getArg(0)));
13182 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13184 case NEON::BI__builtin_neon_vaddlvq_s8: {
13185 Int = Intrinsic::aarch64_neon_saddlv;
13186 Ty = Int32Ty;
13187 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
13188 llvm::Type *Tys[2] = { Ty, VTy };
13189 Ops.push_back(EmitScalarExpr(E->getArg(0)));
13190 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13191 return Builder.CreateTrunc(Ops[0], Int16Ty);
13193 case NEON::BI__builtin_neon_vaddlvq_s16: {
13194 Int = Intrinsic::aarch64_neon_saddlv;
13195 Ty = Int32Ty;
13196 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
13197 llvm::Type *Tys[2] = { Ty, VTy };
13198 Ops.push_back(EmitScalarExpr(E->getArg(0)));
13199 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13201 case NEON::BI__builtin_neon_vsri_n_v:
13202 case NEON::BI__builtin_neon_vsriq_n_v: {
13203 Int = Intrinsic::aarch64_neon_vsri;
13204 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
13205 return EmitNeonCall(Intrin, Ops, "vsri_n");
13207 case NEON::BI__builtin_neon_vsli_n_v:
13208 case NEON::BI__builtin_neon_vsliq_n_v: {
13209 Int = Intrinsic::aarch64_neon_vsli;
13210 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
13211 return EmitNeonCall(Intrin, Ops, "vsli_n");
13213 case NEON::BI__builtin_neon_vsra_n_v:
13214 case NEON::BI__builtin_neon_vsraq_n_v:
13215 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
13216 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
13217 return Builder.CreateAdd(Ops[0], Ops[1]);
13218 case NEON::BI__builtin_neon_vrsra_n_v:
13219 case NEON::BI__builtin_neon_vrsraq_n_v: {
13220 Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
13221 SmallVector<llvm::Value*,2> TmpOps;
13222 TmpOps.push_back(Ops[1]);
13223 TmpOps.push_back(Ops[2]);
13224 Function* F = CGM.getIntrinsic(Int, Ty);
13225 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
13226 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
13227 return Builder.CreateAdd(Ops[0], tmp);
13229 case NEON::BI__builtin_neon_vld1_v:
13230 case NEON::BI__builtin_neon_vld1q_v: {
13231 return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment());
13233 case NEON::BI__builtin_neon_vst1_v:
13234 case NEON::BI__builtin_neon_vst1q_v:
13235 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
13236 return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
13237 case NEON::BI__builtin_neon_vld1_lane_v:
13238 case NEON::BI__builtin_neon_vld1q_lane_v: {
13239 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13240 Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
13241 PtrOp0.getAlignment());
13242 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
13244 case NEON::BI__builtin_neon_vldap1_lane_s64:
13245 case NEON::BI__builtin_neon_vldap1q_lane_s64: {
13246 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13247 llvm::LoadInst *LI = Builder.CreateAlignedLoad(
13248 VTy->getElementType(), Ops[0], PtrOp0.getAlignment());
13249 LI->setAtomic(llvm::AtomicOrdering::Acquire);
13250 Ops[0] = LI;
13251 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vldap1_lane");
13253 case NEON::BI__builtin_neon_vld1_dup_v:
13254 case NEON::BI__builtin_neon_vld1q_dup_v: {
13255 Value *V = PoisonValue::get(Ty);
13256 Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
13257 PtrOp0.getAlignment());
13258 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
13259 Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
13260 return EmitNeonSplat(Ops[0], CI);
13262 case NEON::BI__builtin_neon_vst1_lane_v:
13263 case NEON::BI__builtin_neon_vst1q_lane_v:
13264 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13265 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
13266 return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
13267 case NEON::BI__builtin_neon_vstl1_lane_s64:
13268 case NEON::BI__builtin_neon_vstl1q_lane_s64: {
13269 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13270 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
13271 llvm::StoreInst *SI =
13272 Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
13273 SI->setAtomic(llvm::AtomicOrdering::Release);
13274 return SI;
13276 case NEON::BI__builtin_neon_vld2_v:
13277 case NEON::BI__builtin_neon_vld2q_v: {
13278 llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
13279 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
13280 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
13281 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13283 case NEON::BI__builtin_neon_vld3_v:
13284 case NEON::BI__builtin_neon_vld3q_v: {
13285 llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
13286 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
13287 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
13288 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13290 case NEON::BI__builtin_neon_vld4_v:
13291 case NEON::BI__builtin_neon_vld4q_v: {
13292 llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
13293 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
13294 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
13295 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13297 case NEON::BI__builtin_neon_vld2_dup_v:
13298 case NEON::BI__builtin_neon_vld2q_dup_v: {
13299 llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
13300 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
13301 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
13302 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13304 case NEON::BI__builtin_neon_vld3_dup_v:
13305 case NEON::BI__builtin_neon_vld3q_dup_v: {
13306 llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
13307 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
13308 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
13309 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13311 case NEON::BI__builtin_neon_vld4_dup_v:
13312 case NEON::BI__builtin_neon_vld4q_dup_v: {
13313 llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
13314 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
13315 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
13316 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13318 case NEON::BI__builtin_neon_vld2_lane_v:
13319 case NEON::BI__builtin_neon_vld2q_lane_v: {
13320 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
13321 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
13322 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
13323 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13324 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13325 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
13326 Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), "vld2_lane");
13327 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13329 case NEON::BI__builtin_neon_vld3_lane_v:
13330 case NEON::BI__builtin_neon_vld3q_lane_v: {
13331 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
13332 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
13333 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
13334 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13335 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13336 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
13337 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
13338 Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), "vld3_lane");
13339 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13341 case NEON::BI__builtin_neon_vld4_lane_v:
13342 case NEON::BI__builtin_neon_vld4q_lane_v: {
13343 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
13344 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
13345 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
13346 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13347 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13348 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
13349 Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
13350 Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
13351 Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), "vld4_lane");
13352 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13354 case NEON::BI__builtin_neon_vst2_v:
13355 case NEON::BI__builtin_neon_vst2q_v: {
13356 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13357 llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
13358 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
13359 Ops, "");
13361 case NEON::BI__builtin_neon_vst2_lane_v:
13362 case NEON::BI__builtin_neon_vst2q_lane_v: {
13363 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13364 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
13365 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
13366 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
13367 Ops, "");
13369 case NEON::BI__builtin_neon_vst3_v:
13370 case NEON::BI__builtin_neon_vst3q_v: {
13371 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13372 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
13373 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
13374 Ops, "");
13376 case NEON::BI__builtin_neon_vst3_lane_v:
13377 case NEON::BI__builtin_neon_vst3q_lane_v: {
13378 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13379 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
13380 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
13381 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
13382 Ops, "");
13384 case NEON::BI__builtin_neon_vst4_v:
13385 case NEON::BI__builtin_neon_vst4q_v: {
13386 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13387 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
13388 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
13389 Ops, "");
13391 case NEON::BI__builtin_neon_vst4_lane_v:
13392 case NEON::BI__builtin_neon_vst4q_lane_v: {
13393 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13394 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
13395 llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
13396 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
13397 Ops, "");
13399 case NEON::BI__builtin_neon_vtrn_v:
13400 case NEON::BI__builtin_neon_vtrnq_v: {
13401 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13402 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13403 Value *SV = nullptr;
13405 for (unsigned vi = 0; vi != 2; ++vi) {
13406 SmallVector<int, 16> Indices;
13407 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
13408 Indices.push_back(i+vi);
13409 Indices.push_back(i+e+vi);
13411 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
13412 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
13413 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
13415 return SV;
13417 case NEON::BI__builtin_neon_vuzp_v:
13418 case NEON::BI__builtin_neon_vuzpq_v: {
13419 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13420 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13421 Value *SV = nullptr;
13423 for (unsigned vi = 0; vi != 2; ++vi) {
13424 SmallVector<int, 16> Indices;
13425 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
13426 Indices.push_back(2*i+vi);
13428 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
13429 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
13430 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
13432 return SV;
13434 case NEON::BI__builtin_neon_vzip_v:
13435 case NEON::BI__builtin_neon_vzipq_v: {
13436 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13437 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13438 Value *SV = nullptr;
13440 for (unsigned vi = 0; vi != 2; ++vi) {
13441 SmallVector<int, 16> Indices;
13442 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
13443 Indices.push_back((i + vi*e) >> 1);
13444 Indices.push_back(((i + vi*e) >> 1)+e);
13446 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
13447 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
13448 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
13450 return SV;
13452 case NEON::BI__builtin_neon_vqtbl1q_v: {
13453 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
13454 Ops, "vtbl1");
13456 case NEON::BI__builtin_neon_vqtbl2q_v: {
13457 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
13458 Ops, "vtbl2");
13460 case NEON::BI__builtin_neon_vqtbl3q_v: {
13461 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
13462 Ops, "vtbl3");
13464 case NEON::BI__builtin_neon_vqtbl4q_v: {
13465 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
13466 Ops, "vtbl4");
13468 case NEON::BI__builtin_neon_vqtbx1q_v: {
13469 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
13470 Ops, "vtbx1");
13472 case NEON::BI__builtin_neon_vqtbx2q_v: {
13473 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
13474 Ops, "vtbx2");
13476 case NEON::BI__builtin_neon_vqtbx3q_v: {
13477 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
13478 Ops, "vtbx3");
13480 case NEON::BI__builtin_neon_vqtbx4q_v: {
13481 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
13482 Ops, "vtbx4");
13484 case NEON::BI__builtin_neon_vsqadd_v:
13485 case NEON::BI__builtin_neon_vsqaddq_v: {
13486 Int = Intrinsic::aarch64_neon_usqadd;
13487 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
13489 case NEON::BI__builtin_neon_vuqadd_v:
13490 case NEON::BI__builtin_neon_vuqaddq_v: {
13491 Int = Intrinsic::aarch64_neon_suqadd;
13492 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
13497 Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
13498 const CallExpr *E) {
13499 assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
13500 BuiltinID == BPF::BI__builtin_btf_type_id ||
13501 BuiltinID == BPF::BI__builtin_preserve_type_info ||
13502 BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
13503 "unexpected BPF builtin");
13505 // A sequence number, injected into IR builtin functions, to
13506 // prevent CSE given the only difference of the function
13507 // may just be the debuginfo metadata.
13508 static uint32_t BuiltinSeqNum;
13510 switch (BuiltinID) {
13511 default:
13512 llvm_unreachable("Unexpected BPF builtin");
13513 case BPF::BI__builtin_preserve_field_info: {
13514 const Expr *Arg = E->getArg(0);
13515 bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
13517 if (!getDebugInfo()) {
13518 CGM.Error(E->getExprLoc(),
13519 "using __builtin_preserve_field_info() without -g");
13520 return IsBitField ? EmitLValue(Arg).getRawBitFieldPointer(*this)
13521 : EmitLValue(Arg).emitRawPointer(*this);
13524 // Enable underlying preserve_*_access_index() generation.
13525 bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
13526 IsInPreservedAIRegion = true;
13527 Value *FieldAddr = IsBitField ? EmitLValue(Arg).getRawBitFieldPointer(*this)
13528 : EmitLValue(Arg).emitRawPointer(*this);
13529 IsInPreservedAIRegion = OldIsInPreservedAIRegion;
13531 ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
13532 Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
13534 // Built the IR for the preserve_field_info intrinsic.
13535 llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
13536 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
13537 {FieldAddr->getType()});
13538 return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
13540 case BPF::BI__builtin_btf_type_id:
13541 case BPF::BI__builtin_preserve_type_info: {
13542 if (!getDebugInfo()) {
13543 CGM.Error(E->getExprLoc(), "using builtin function without -g");
13544 return nullptr;
13547 const Expr *Arg0 = E->getArg(0);
13548 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
13549 Arg0->getType(), Arg0->getExprLoc());
13551 ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
13552 Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
13553 Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
13555 llvm::Function *FnDecl;
13556 if (BuiltinID == BPF::BI__builtin_btf_type_id)
13557 FnDecl = llvm::Intrinsic::getDeclaration(
13558 &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {});
13559 else
13560 FnDecl = llvm::Intrinsic::getDeclaration(
13561 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {});
13562 CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue});
13563 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
13564 return Fn;
13566 case BPF::BI__builtin_preserve_enum_value: {
13567 if (!getDebugInfo()) {
13568 CGM.Error(E->getExprLoc(), "using builtin function without -g");
13569 return nullptr;
13572 const Expr *Arg0 = E->getArg(0);
13573 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
13574 Arg0->getType(), Arg0->getExprLoc());
13576 // Find enumerator
13577 const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens());
13578 const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr());
13579 const auto *DR = cast<DeclRefExpr>(CE->getSubExpr());
13580 const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl());
13582 auto InitVal = Enumerator->getInitVal();
13583 std::string InitValStr;
13584 if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX))
13585 InitValStr = std::to_string(InitVal.getSExtValue());
13586 else
13587 InitValStr = std::to_string(InitVal.getZExtValue());
13588 std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr;
13589 Value *EnumStrVal = Builder.CreateGlobalStringPtr(EnumStr);
13591 ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
13592 Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
13593 Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
13595 llvm::Function *IntrinsicFn = llvm::Intrinsic::getDeclaration(
13596 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {});
13597 CallInst *Fn =
13598 Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue});
13599 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
13600 return Fn;
13605 llvm::Value *CodeGenFunction::
13606 BuildVector(ArrayRef<llvm::Value*> Ops) {
13607 assert((Ops.size() & (Ops.size() - 1)) == 0 &&
13608 "Not a power-of-two sized vector!");
13609 bool AllConstants = true;
13610 for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
13611 AllConstants &= isa<Constant>(Ops[i]);
13613 // If this is a constant vector, create a ConstantVector.
13614 if (AllConstants) {
13615 SmallVector<llvm::Constant*, 16> CstOps;
13616 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
13617 CstOps.push_back(cast<Constant>(Ops[i]));
13618 return llvm::ConstantVector::get(CstOps);
13621 // Otherwise, insertelement the values to build the vector.
13622 Value *Result = llvm::PoisonValue::get(
13623 llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size()));
13625 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
13626 Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt64(i));
13628 return Result;
13631 // Convert the mask from an integer type to a vector of i1.
13632 static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
13633 unsigned NumElts) {
13635 auto *MaskTy = llvm::FixedVectorType::get(
13636 CGF.Builder.getInt1Ty(),
13637 cast<IntegerType>(Mask->getType())->getBitWidth());
13638 Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
13640 // If we have less than 8 elements, then the starting mask was an i8 and
13641 // we need to extract down to the right number of elements.
13642 if (NumElts < 8) {
13643 int Indices[4];
13644 for (unsigned i = 0; i != NumElts; ++i)
13645 Indices[i] = i;
13646 MaskVec = CGF.Builder.CreateShuffleVector(
13647 MaskVec, MaskVec, ArrayRef(Indices, NumElts), "extract");
13649 return MaskVec;
13652 static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
13653 Align Alignment) {
13654 Value *Ptr = Ops[0];
13656 Value *MaskVec = getMaskVecValue(
13657 CGF, Ops[2],
13658 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
13660 return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec);
13663 static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
13664 Align Alignment) {
13665 llvm::Type *Ty = Ops[1]->getType();
13666 Value *Ptr = Ops[0];
13668 Value *MaskVec = getMaskVecValue(
13669 CGF, Ops[2], cast<llvm::FixedVectorType>(Ty)->getNumElements());
13671 return CGF.Builder.CreateMaskedLoad(Ty, Ptr, Alignment, MaskVec, Ops[1]);
13674 static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
13675 ArrayRef<Value *> Ops) {
13676 auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
13677 Value *Ptr = Ops[0];
13679 Value *MaskVec = getMaskVecValue(
13680 CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements());
13682 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
13683 ResultTy);
13684 return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
13687 static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
13688 ArrayRef<Value *> Ops,
13689 bool IsCompress) {
13690 auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
13692 Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
13694 Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
13695 : Intrinsic::x86_avx512_mask_expand;
13696 llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
13697 return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
13700 static Value *EmitX86CompressStore(CodeGenFunction &CGF,
13701 ArrayRef<Value *> Ops) {
13702 auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
13703 Value *Ptr = Ops[0];
13705 Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
13707 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
13708 ResultTy);
13709 return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
13712 static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
13713 ArrayRef<Value *> Ops,
13714 bool InvertLHS = false) {
13715 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13716 Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
13717 Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
13719 if (InvertLHS)
13720 LHS = CGF.Builder.CreateNot(LHS);
13722 return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
13723 Ops[0]->getType());
13726 static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
13727 Value *Amt, bool IsRight) {
13728 llvm::Type *Ty = Op0->getType();
13730 // Amount may be scalar immediate, in which case create a splat vector.
13731 // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
13732 // we only care about the lowest log2 bits anyway.
13733 if (Amt->getType() != Ty) {
13734 unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements();
13735 Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
13736 Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
13739 unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
13740 Function *F = CGF.CGM.getIntrinsic(IID, Ty);
13741 return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
13744 static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
13745 bool IsSigned) {
13746 Value *Op0 = Ops[0];
13747 Value *Op1 = Ops[1];
13748 llvm::Type *Ty = Op0->getType();
13749 uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13751 CmpInst::Predicate Pred;
13752 switch (Imm) {
13753 case 0x0:
13754 Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
13755 break;
13756 case 0x1:
13757 Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
13758 break;
13759 case 0x2:
13760 Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
13761 break;
13762 case 0x3:
13763 Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
13764 break;
13765 case 0x4:
13766 Pred = ICmpInst::ICMP_EQ;
13767 break;
13768 case 0x5:
13769 Pred = ICmpInst::ICMP_NE;
13770 break;
13771 case 0x6:
13772 return llvm::Constant::getNullValue(Ty); // FALSE
13773 case 0x7:
13774 return llvm::Constant::getAllOnesValue(Ty); // TRUE
13775 default:
13776 llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
13779 Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
13780 Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
13781 return Res;
13784 static Value *EmitX86Select(CodeGenFunction &CGF,
13785 Value *Mask, Value *Op0, Value *Op1) {
13787 // If the mask is all ones just return first argument.
13788 if (const auto *C = dyn_cast<Constant>(Mask))
13789 if (C->isAllOnesValue())
13790 return Op0;
13792 Mask = getMaskVecValue(
13793 CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements());
13795 return CGF.Builder.CreateSelect(Mask, Op0, Op1);
13798 static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
13799 Value *Mask, Value *Op0, Value *Op1) {
13800 // If the mask is all ones just return first argument.
13801 if (const auto *C = dyn_cast<Constant>(Mask))
13802 if (C->isAllOnesValue())
13803 return Op0;
13805 auto *MaskTy = llvm::FixedVectorType::get(
13806 CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth());
13807 Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
13808 Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
13809 return CGF.Builder.CreateSelect(Mask, Op0, Op1);
13812 static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
13813 unsigned NumElts, Value *MaskIn) {
13814 if (MaskIn) {
13815 const auto *C = dyn_cast<Constant>(MaskIn);
13816 if (!C || !C->isAllOnesValue())
13817 Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
13820 if (NumElts < 8) {
13821 int Indices[8];
13822 for (unsigned i = 0; i != NumElts; ++i)
13823 Indices[i] = i;
13824 for (unsigned i = NumElts; i != 8; ++i)
13825 Indices[i] = i % NumElts + NumElts;
13826 Cmp = CGF.Builder.CreateShuffleVector(
13827 Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
13830 return CGF.Builder.CreateBitCast(Cmp,
13831 IntegerType::get(CGF.getLLVMContext(),
13832 std::max(NumElts, 8U)));
13835 static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
13836 bool Signed, ArrayRef<Value *> Ops) {
13837 assert((Ops.size() == 2 || Ops.size() == 4) &&
13838 "Unexpected number of arguments");
13839 unsigned NumElts =
13840 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13841 Value *Cmp;
13843 if (CC == 3) {
13844 Cmp = Constant::getNullValue(
13845 llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
13846 } else if (CC == 7) {
13847 Cmp = Constant::getAllOnesValue(
13848 llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
13849 } else {
13850 ICmpInst::Predicate Pred;
13851 switch (CC) {
13852 default: llvm_unreachable("Unknown condition code");
13853 case 0: Pred = ICmpInst::ICMP_EQ; break;
13854 case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
13855 case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
13856 case 4: Pred = ICmpInst::ICMP_NE; break;
13857 case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
13858 case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
13860 Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
13863 Value *MaskIn = nullptr;
13864 if (Ops.size() == 4)
13865 MaskIn = Ops[3];
13867 return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
13870 static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
13871 Value *Zero = Constant::getNullValue(In->getType());
13872 return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
13875 static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, const CallExpr *E,
13876 ArrayRef<Value *> Ops, bool IsSigned) {
13877 unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
13878 llvm::Type *Ty = Ops[1]->getType();
13880 Value *Res;
13881 if (Rnd != 4) {
13882 Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
13883 : Intrinsic::x86_avx512_uitofp_round;
13884 Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
13885 Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
13886 } else {
13887 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
13888 Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
13889 : CGF.Builder.CreateUIToFP(Ops[0], Ty);
13892 return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
13895 // Lowers X86 FMA intrinsics to IR.
13896 static Value *EmitX86FMAExpr(CodeGenFunction &CGF, const CallExpr *E,
13897 ArrayRef<Value *> Ops, unsigned BuiltinID,
13898 bool IsAddSub) {
13900 bool Subtract = false;
13901 Intrinsic::ID IID = Intrinsic::not_intrinsic;
13902 switch (BuiltinID) {
13903 default: break;
13904 case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
13905 Subtract = true;
13906 [[fallthrough]];
13907 case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
13908 case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
13909 case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
13910 IID = llvm::Intrinsic::x86_avx512fp16_vfmadd_ph_512;
13911 break;
13912 case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
13913 Subtract = true;
13914 [[fallthrough]];
13915 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
13916 case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
13917 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
13918 IID = llvm::Intrinsic::x86_avx512fp16_vfmaddsub_ph_512;
13919 break;
13920 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
13921 Subtract = true;
13922 [[fallthrough]];
13923 case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
13924 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
13925 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
13926 IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
13927 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
13928 Subtract = true;
13929 [[fallthrough]];
13930 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
13931 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
13932 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
13933 IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
13934 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
13935 Subtract = true;
13936 [[fallthrough]];
13937 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
13938 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
13939 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
13940 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
13941 break;
13942 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
13943 Subtract = true;
13944 [[fallthrough]];
13945 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
13946 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
13947 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
13948 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
13949 break;
13952 Value *A = Ops[0];
13953 Value *B = Ops[1];
13954 Value *C = Ops[2];
13956 if (Subtract)
13957 C = CGF.Builder.CreateFNeg(C);
13959 Value *Res;
13961 // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
13962 if (IID != Intrinsic::not_intrinsic &&
13963 (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 ||
13964 IsAddSub)) {
13965 Function *Intr = CGF.CGM.getIntrinsic(IID);
13966 Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
13967 } else {
13968 llvm::Type *Ty = A->getType();
13969 Function *FMA;
13970 if (CGF.Builder.getIsFPConstrained()) {
13971 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
13972 FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty);
13973 Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C});
13974 } else {
13975 FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
13976 Res = CGF.Builder.CreateCall(FMA, {A, B, C});
13980 // Handle any required masking.
13981 Value *MaskFalseVal = nullptr;
13982 switch (BuiltinID) {
13983 case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
13984 case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
13985 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
13986 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
13987 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
13988 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
13989 MaskFalseVal = Ops[0];
13990 break;
13991 case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
13992 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
13993 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
13994 case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
13995 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
13996 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
13997 MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
13998 break;
13999 case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
14000 case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
14001 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
14002 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
14003 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
14004 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
14005 case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
14006 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
14007 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
14008 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
14009 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
14010 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
14011 MaskFalseVal = Ops[2];
14012 break;
14015 if (MaskFalseVal)
14016 return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
14018 return Res;
14021 static Value *EmitScalarFMAExpr(CodeGenFunction &CGF, const CallExpr *E,
14022 MutableArrayRef<Value *> Ops, Value *Upper,
14023 bool ZeroMask = false, unsigned PTIdx = 0,
14024 bool NegAcc = false) {
14025 unsigned Rnd = 4;
14026 if (Ops.size() > 4)
14027 Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
14029 if (NegAcc)
14030 Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
14032 Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
14033 Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
14034 Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
14035 Value *Res;
14036 if (Rnd != 4) {
14037 Intrinsic::ID IID;
14039 switch (Ops[0]->getType()->getPrimitiveSizeInBits()) {
14040 case 16:
14041 IID = Intrinsic::x86_avx512fp16_vfmadd_f16;
14042 break;
14043 case 32:
14044 IID = Intrinsic::x86_avx512_vfmadd_f32;
14045 break;
14046 case 64:
14047 IID = Intrinsic::x86_avx512_vfmadd_f64;
14048 break;
14049 default:
14050 llvm_unreachable("Unexpected size");
14052 Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
14053 {Ops[0], Ops[1], Ops[2], Ops[4]});
14054 } else if (CGF.Builder.getIsFPConstrained()) {
14055 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
14056 Function *FMA = CGF.CGM.getIntrinsic(
14057 Intrinsic::experimental_constrained_fma, Ops[0]->getType());
14058 Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3));
14059 } else {
14060 Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
14061 Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
14063 // If we have more than 3 arguments, we need to do masking.
14064 if (Ops.size() > 3) {
14065 Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
14066 : Ops[PTIdx];
14068 // If we negated the accumulator and the its the PassThru value we need to
14069 // bypass the negate. Conveniently Upper should be the same thing in this
14070 // case.
14071 if (NegAcc && PTIdx == 2)
14072 PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
14074 Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
14076 return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
14079 static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
14080 ArrayRef<Value *> Ops) {
14081 llvm::Type *Ty = Ops[0]->getType();
14082 // Arguments have a vXi32 type so cast to vXi64.
14083 Ty = llvm::FixedVectorType::get(CGF.Int64Ty,
14084 Ty->getPrimitiveSizeInBits() / 64);
14085 Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
14086 Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
14088 if (IsSigned) {
14089 // Shift left then arithmetic shift right.
14090 Constant *ShiftAmt = ConstantInt::get(Ty, 32);
14091 LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
14092 LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
14093 RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
14094 RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
14095 } else {
14096 // Clear the upper bits.
14097 Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
14098 LHS = CGF.Builder.CreateAnd(LHS, Mask);
14099 RHS = CGF.Builder.CreateAnd(RHS, Mask);
14102 return CGF.Builder.CreateMul(LHS, RHS);
14105 // Emit a masked pternlog intrinsic. This only exists because the header has to
14106 // use a macro and we aren't able to pass the input argument to a pternlog
14107 // builtin and a select builtin without evaluating it twice.
14108 static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
14109 ArrayRef<Value *> Ops) {
14110 llvm::Type *Ty = Ops[0]->getType();
14112 unsigned VecWidth = Ty->getPrimitiveSizeInBits();
14113 unsigned EltWidth = Ty->getScalarSizeInBits();
14114 Intrinsic::ID IID;
14115 if (VecWidth == 128 && EltWidth == 32)
14116 IID = Intrinsic::x86_avx512_pternlog_d_128;
14117 else if (VecWidth == 256 && EltWidth == 32)
14118 IID = Intrinsic::x86_avx512_pternlog_d_256;
14119 else if (VecWidth == 512 && EltWidth == 32)
14120 IID = Intrinsic::x86_avx512_pternlog_d_512;
14121 else if (VecWidth == 128 && EltWidth == 64)
14122 IID = Intrinsic::x86_avx512_pternlog_q_128;
14123 else if (VecWidth == 256 && EltWidth == 64)
14124 IID = Intrinsic::x86_avx512_pternlog_q_256;
14125 else if (VecWidth == 512 && EltWidth == 64)
14126 IID = Intrinsic::x86_avx512_pternlog_q_512;
14127 else
14128 llvm_unreachable("Unexpected intrinsic");
14130 Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
14131 Ops.drop_back());
14132 Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
14133 return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
14136 static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
14137 llvm::Type *DstTy) {
14138 unsigned NumberOfElements =
14139 cast<llvm::FixedVectorType>(DstTy)->getNumElements();
14140 Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
14141 return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
14144 Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
14145 const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
14146 StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
14147 return EmitX86CpuIs(CPUStr);
14150 // Convert F16 halfs to floats.
14151 static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF,
14152 ArrayRef<Value *> Ops,
14153 llvm::Type *DstTy) {
14154 assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) &&
14155 "Unknown cvtph2ps intrinsic");
14157 // If the SAE intrinsic doesn't use default rounding then we can't upgrade.
14158 if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) {
14159 Function *F =
14160 CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512);
14161 return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]});
14164 unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
14165 Value *Src = Ops[0];
14167 // Extract the subvector.
14168 if (NumDstElts !=
14169 cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) {
14170 assert(NumDstElts == 4 && "Unexpected vector size");
14171 Src = CGF.Builder.CreateShuffleVector(Src, ArrayRef<int>{0, 1, 2, 3});
14174 // Bitcast from vXi16 to vXf16.
14175 auto *HalfTy = llvm::FixedVectorType::get(
14176 llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts);
14177 Src = CGF.Builder.CreateBitCast(Src, HalfTy);
14179 // Perform the fp-extension.
14180 Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps");
14182 if (Ops.size() >= 3)
14183 Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]);
14184 return Res;
14187 Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
14189 llvm::Type *Int32Ty = Builder.getInt32Ty();
14191 // Matching the struct layout from the compiler-rt/libgcc structure that is
14192 // filled in:
14193 // unsigned int __cpu_vendor;
14194 // unsigned int __cpu_type;
14195 // unsigned int __cpu_subtype;
14196 // unsigned int __cpu_features[1];
14197 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
14198 llvm::ArrayType::get(Int32Ty, 1));
14200 // Grab the global __cpu_model.
14201 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
14202 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
14204 // Calculate the index needed to access the correct field based on the
14205 // range. Also adjust the expected value.
14206 unsigned Index;
14207 unsigned Value;
14208 std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
14209 #define X86_VENDOR(ENUM, STRING) \
14210 .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
14211 #define X86_CPU_TYPE_ALIAS(ENUM, ALIAS) \
14212 .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
14213 #define X86_CPU_TYPE(ENUM, STR) \
14214 .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
14215 #define X86_CPU_SUBTYPE_ALIAS(ENUM, ALIAS) \
14216 .Case(ALIAS, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
14217 #define X86_CPU_SUBTYPE(ENUM, STR) \
14218 .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
14219 #include "llvm/TargetParser/X86TargetParser.def"
14220 .Default({0, 0});
14221 assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
14223 // Grab the appropriate field from __cpu_model.
14224 llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
14225 ConstantInt::get(Int32Ty, Index)};
14226 llvm::Value *CpuValue = Builder.CreateInBoundsGEP(STy, CpuModel, Idxs);
14227 CpuValue = Builder.CreateAlignedLoad(Int32Ty, CpuValue,
14228 CharUnits::fromQuantity(4));
14230 // Check the value of the field against the requested value.
14231 return Builder.CreateICmpEQ(CpuValue,
14232 llvm::ConstantInt::get(Int32Ty, Value));
14235 Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
14236 const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
14237 StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
14238 if (!getContext().getTargetInfo().validateCpuSupports(FeatureStr))
14239 return Builder.getFalse();
14240 return EmitX86CpuSupports(FeatureStr);
14243 Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
14244 return EmitX86CpuSupports(llvm::X86::getCpuSupportsMask(FeatureStrs));
14247 llvm::Value *
14248 CodeGenFunction::EmitX86CpuSupports(std::array<uint32_t, 4> FeatureMask) {
14249 Value *Result = Builder.getTrue();
14250 if (FeatureMask[0] != 0) {
14251 // Matching the struct layout from the compiler-rt/libgcc structure that is
14252 // filled in:
14253 // unsigned int __cpu_vendor;
14254 // unsigned int __cpu_type;
14255 // unsigned int __cpu_subtype;
14256 // unsigned int __cpu_features[1];
14257 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
14258 llvm::ArrayType::get(Int32Ty, 1));
14260 // Grab the global __cpu_model.
14261 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
14262 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
14264 // Grab the first (0th) element from the field __cpu_features off of the
14265 // global in the struct STy.
14266 Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
14267 Builder.getInt32(0)};
14268 Value *CpuFeatures = Builder.CreateInBoundsGEP(STy, CpuModel, Idxs);
14269 Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures,
14270 CharUnits::fromQuantity(4));
14272 // Check the value of the bit corresponding to the feature requested.
14273 Value *Mask = Builder.getInt32(FeatureMask[0]);
14274 Value *Bitset = Builder.CreateAnd(Features, Mask);
14275 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
14276 Result = Builder.CreateAnd(Result, Cmp);
14279 llvm::Type *ATy = llvm::ArrayType::get(Int32Ty, 3);
14280 llvm::Constant *CpuFeatures2 =
14281 CGM.CreateRuntimeVariable(ATy, "__cpu_features2");
14282 cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
14283 for (int i = 1; i != 4; ++i) {
14284 const uint32_t M = FeatureMask[i];
14285 if (!M)
14286 continue;
14287 Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(i - 1)};
14288 Value *Features = Builder.CreateAlignedLoad(
14289 Int32Ty, Builder.CreateInBoundsGEP(ATy, CpuFeatures2, Idxs),
14290 CharUnits::fromQuantity(4));
14291 // Check the value of the bit corresponding to the feature requested.
14292 Value *Mask = Builder.getInt32(M);
14293 Value *Bitset = Builder.CreateAnd(Features, Mask);
14294 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
14295 Result = Builder.CreateAnd(Result, Cmp);
14298 return Result;
14301 Value *CodeGenFunction::EmitAArch64CpuInit() {
14302 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
14303 llvm::FunctionCallee Func =
14304 CGM.CreateRuntimeFunction(FTy, "__init_cpu_features_resolver");
14305 cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
14306 cast<llvm::GlobalValue>(Func.getCallee())
14307 ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
14308 return Builder.CreateCall(Func);
14311 Value *CodeGenFunction::EmitX86CpuInit() {
14312 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
14313 /*Variadic*/ false);
14314 llvm::FunctionCallee Func =
14315 CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
14316 cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
14317 cast<llvm::GlobalValue>(Func.getCallee())
14318 ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
14319 return Builder.CreateCall(Func);
14322 Value *CodeGenFunction::EmitAArch64CpuSupports(const CallExpr *E) {
14323 const Expr *ArgExpr = E->getArg(0)->IgnoreParenCasts();
14324 StringRef ArgStr = cast<StringLiteral>(ArgExpr)->getString();
14325 llvm::SmallVector<StringRef, 8> Features;
14326 ArgStr.split(Features, "+");
14327 for (auto &Feature : Features) {
14328 Feature = Feature.trim();
14329 if (!llvm::AArch64::parseFMVExtension(Feature))
14330 return Builder.getFalse();
14331 if (Feature != "default")
14332 Features.push_back(Feature);
14334 return EmitAArch64CpuSupports(Features);
14337 llvm::Value *
14338 CodeGenFunction::EmitAArch64CpuSupports(ArrayRef<StringRef> FeaturesStrs) {
14339 uint64_t FeaturesMask = llvm::AArch64::getCpuSupportsMask(FeaturesStrs);
14340 Value *Result = Builder.getTrue();
14341 if (FeaturesMask != 0) {
14342 // Get features from structure in runtime library
14343 // struct {
14344 // unsigned long long features;
14345 // } __aarch64_cpu_features;
14346 llvm::Type *STy = llvm::StructType::get(Int64Ty);
14347 llvm::Constant *AArch64CPUFeatures =
14348 CGM.CreateRuntimeVariable(STy, "__aarch64_cpu_features");
14349 cast<llvm::GlobalValue>(AArch64CPUFeatures)->setDSOLocal(true);
14350 llvm::Value *CpuFeatures = Builder.CreateGEP(
14351 STy, AArch64CPUFeatures,
14352 {ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 0)});
14353 Value *Features = Builder.CreateAlignedLoad(Int64Ty, CpuFeatures,
14354 CharUnits::fromQuantity(8));
14355 Value *Mask = Builder.getInt64(FeaturesMask);
14356 Value *Bitset = Builder.CreateAnd(Features, Mask);
14357 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
14358 Result = Builder.CreateAnd(Result, Cmp);
14360 return Result;
14363 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
14364 const CallExpr *E) {
14365 if (BuiltinID == Builtin::BI__builtin_cpu_is)
14366 return EmitX86CpuIs(E);
14367 if (BuiltinID == Builtin::BI__builtin_cpu_supports)
14368 return EmitX86CpuSupports(E);
14369 if (BuiltinID == Builtin::BI__builtin_cpu_init)
14370 return EmitX86CpuInit();
14372 // Handle MSVC intrinsics before argument evaluation to prevent double
14373 // evaluation.
14374 if (std::optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID))
14375 return EmitMSVCBuiltinExpr(*MsvcIntId, E);
14377 SmallVector<Value*, 4> Ops;
14378 bool IsMaskFCmp = false;
14379 bool IsConjFMA = false;
14381 // Find out if any arguments are required to be integer constant expressions.
14382 unsigned ICEArguments = 0;
14383 ASTContext::GetBuiltinTypeError Error;
14384 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
14385 assert(Error == ASTContext::GE_None && "Should not codegen an error");
14387 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
14388 Ops.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, i, E));
14391 // These exist so that the builtin that takes an immediate can be bounds
14392 // checked by clang to avoid passing bad immediates to the backend. Since
14393 // AVX has a larger immediate than SSE we would need separate builtins to
14394 // do the different bounds checking. Rather than create a clang specific
14395 // SSE only builtin, this implements eight separate builtins to match gcc
14396 // implementation.
14397 auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
14398 Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
14399 llvm::Function *F = CGM.getIntrinsic(ID);
14400 return Builder.CreateCall(F, Ops);
14403 // For the vector forms of FP comparisons, translate the builtins directly to
14404 // IR.
14405 // TODO: The builtins could be removed if the SSE header files used vector
14406 // extension comparisons directly (vector ordered/unordered may need
14407 // additional support via __builtin_isnan()).
14408 auto getVectorFCmpIR = [this, &Ops, E](CmpInst::Predicate Pred,
14409 bool IsSignaling) {
14410 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14411 Value *Cmp;
14412 if (IsSignaling)
14413 Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
14414 else
14415 Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
14416 llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
14417 llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
14418 Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
14419 return Builder.CreateBitCast(Sext, FPVecTy);
14422 switch (BuiltinID) {
14423 default: return nullptr;
14424 case X86::BI_mm_prefetch: {
14425 Value *Address = Ops[0];
14426 ConstantInt *C = cast<ConstantInt>(Ops[1]);
14427 Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
14428 Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
14429 Value *Data = ConstantInt::get(Int32Ty, 1);
14430 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
14431 return Builder.CreateCall(F, {Address, RW, Locality, Data});
14433 case X86::BI_mm_clflush: {
14434 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
14435 Ops[0]);
14437 case X86::BI_mm_lfence: {
14438 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
14440 case X86::BI_mm_mfence: {
14441 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
14443 case X86::BI_mm_sfence: {
14444 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
14446 case X86::BI_mm_pause: {
14447 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
14449 case X86::BI__rdtsc: {
14450 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
14452 case X86::BI__builtin_ia32_rdtscp: {
14453 Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
14454 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
14455 Ops[0]);
14456 return Builder.CreateExtractValue(Call, 0);
14458 case X86::BI__builtin_ia32_lzcnt_u16:
14459 case X86::BI__builtin_ia32_lzcnt_u32:
14460 case X86::BI__builtin_ia32_lzcnt_u64: {
14461 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
14462 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
14464 case X86::BI__builtin_ia32_tzcnt_u16:
14465 case X86::BI__builtin_ia32_tzcnt_u32:
14466 case X86::BI__builtin_ia32_tzcnt_u64: {
14467 Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
14468 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
14470 case X86::BI__builtin_ia32_undef128:
14471 case X86::BI__builtin_ia32_undef256:
14472 case X86::BI__builtin_ia32_undef512:
14473 // The x86 definition of "undef" is not the same as the LLVM definition
14474 // (PR32176). We leave optimizing away an unnecessary zero constant to the
14475 // IR optimizer and backend.
14476 // TODO: If we had a "freeze" IR instruction to generate a fixed undef
14477 // value, we should use that here instead of a zero.
14478 return llvm::Constant::getNullValue(ConvertType(E->getType()));
14479 case X86::BI__builtin_ia32_vec_init_v8qi:
14480 case X86::BI__builtin_ia32_vec_init_v4hi:
14481 case X86::BI__builtin_ia32_vec_init_v2si:
14482 return Builder.CreateBitCast(BuildVector(Ops),
14483 llvm::Type::getX86_MMXTy(getLLVMContext()));
14484 case X86::BI__builtin_ia32_vec_ext_v2si:
14485 case X86::BI__builtin_ia32_vec_ext_v16qi:
14486 case X86::BI__builtin_ia32_vec_ext_v8hi:
14487 case X86::BI__builtin_ia32_vec_ext_v4si:
14488 case X86::BI__builtin_ia32_vec_ext_v4sf:
14489 case X86::BI__builtin_ia32_vec_ext_v2di:
14490 case X86::BI__builtin_ia32_vec_ext_v32qi:
14491 case X86::BI__builtin_ia32_vec_ext_v16hi:
14492 case X86::BI__builtin_ia32_vec_ext_v8si:
14493 case X86::BI__builtin_ia32_vec_ext_v4di: {
14494 unsigned NumElts =
14495 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14496 uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
14497 Index &= NumElts - 1;
14498 // These builtins exist so we can ensure the index is an ICE and in range.
14499 // Otherwise we could just do this in the header file.
14500 return Builder.CreateExtractElement(Ops[0], Index);
14502 case X86::BI__builtin_ia32_vec_set_v16qi:
14503 case X86::BI__builtin_ia32_vec_set_v8hi:
14504 case X86::BI__builtin_ia32_vec_set_v4si:
14505 case X86::BI__builtin_ia32_vec_set_v2di:
14506 case X86::BI__builtin_ia32_vec_set_v32qi:
14507 case X86::BI__builtin_ia32_vec_set_v16hi:
14508 case X86::BI__builtin_ia32_vec_set_v8si:
14509 case X86::BI__builtin_ia32_vec_set_v4di: {
14510 unsigned NumElts =
14511 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14512 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
14513 Index &= NumElts - 1;
14514 // These builtins exist so we can ensure the index is an ICE and in range.
14515 // Otherwise we could just do this in the header file.
14516 return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
14518 case X86::BI_mm_setcsr:
14519 case X86::BI__builtin_ia32_ldmxcsr: {
14520 RawAddress Tmp = CreateMemTemp(E->getArg(0)->getType());
14521 Builder.CreateStore(Ops[0], Tmp);
14522 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
14523 Tmp.getPointer());
14525 case X86::BI_mm_getcsr:
14526 case X86::BI__builtin_ia32_stmxcsr: {
14527 RawAddress Tmp = CreateMemTemp(E->getType());
14528 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
14529 Tmp.getPointer());
14530 return Builder.CreateLoad(Tmp, "stmxcsr");
14532 case X86::BI__builtin_ia32_xsave:
14533 case X86::BI__builtin_ia32_xsave64:
14534 case X86::BI__builtin_ia32_xrstor:
14535 case X86::BI__builtin_ia32_xrstor64:
14536 case X86::BI__builtin_ia32_xsaveopt:
14537 case X86::BI__builtin_ia32_xsaveopt64:
14538 case X86::BI__builtin_ia32_xrstors:
14539 case X86::BI__builtin_ia32_xrstors64:
14540 case X86::BI__builtin_ia32_xsavec:
14541 case X86::BI__builtin_ia32_xsavec64:
14542 case X86::BI__builtin_ia32_xsaves:
14543 case X86::BI__builtin_ia32_xsaves64:
14544 case X86::BI__builtin_ia32_xsetbv:
14545 case X86::BI_xsetbv: {
14546 Intrinsic::ID ID;
14547 #define INTRINSIC_X86_XSAVE_ID(NAME) \
14548 case X86::BI__builtin_ia32_##NAME: \
14549 ID = Intrinsic::x86_##NAME; \
14550 break
14551 switch (BuiltinID) {
14552 default: llvm_unreachable("Unsupported intrinsic!");
14553 INTRINSIC_X86_XSAVE_ID(xsave);
14554 INTRINSIC_X86_XSAVE_ID(xsave64);
14555 INTRINSIC_X86_XSAVE_ID(xrstor);
14556 INTRINSIC_X86_XSAVE_ID(xrstor64);
14557 INTRINSIC_X86_XSAVE_ID(xsaveopt);
14558 INTRINSIC_X86_XSAVE_ID(xsaveopt64);
14559 INTRINSIC_X86_XSAVE_ID(xrstors);
14560 INTRINSIC_X86_XSAVE_ID(xrstors64);
14561 INTRINSIC_X86_XSAVE_ID(xsavec);
14562 INTRINSIC_X86_XSAVE_ID(xsavec64);
14563 INTRINSIC_X86_XSAVE_ID(xsaves);
14564 INTRINSIC_X86_XSAVE_ID(xsaves64);
14565 INTRINSIC_X86_XSAVE_ID(xsetbv);
14566 case X86::BI_xsetbv:
14567 ID = Intrinsic::x86_xsetbv;
14568 break;
14570 #undef INTRINSIC_X86_XSAVE_ID
14571 Value *Mhi = Builder.CreateTrunc(
14572 Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
14573 Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
14574 Ops[1] = Mhi;
14575 Ops.push_back(Mlo);
14576 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14578 case X86::BI__builtin_ia32_xgetbv:
14579 case X86::BI_xgetbv:
14580 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
14581 case X86::BI__builtin_ia32_storedqudi128_mask:
14582 case X86::BI__builtin_ia32_storedqusi128_mask:
14583 case X86::BI__builtin_ia32_storedquhi128_mask:
14584 case X86::BI__builtin_ia32_storedquqi128_mask:
14585 case X86::BI__builtin_ia32_storeupd128_mask:
14586 case X86::BI__builtin_ia32_storeups128_mask:
14587 case X86::BI__builtin_ia32_storedqudi256_mask:
14588 case X86::BI__builtin_ia32_storedqusi256_mask:
14589 case X86::BI__builtin_ia32_storedquhi256_mask:
14590 case X86::BI__builtin_ia32_storedquqi256_mask:
14591 case X86::BI__builtin_ia32_storeupd256_mask:
14592 case X86::BI__builtin_ia32_storeups256_mask:
14593 case X86::BI__builtin_ia32_storedqudi512_mask:
14594 case X86::BI__builtin_ia32_storedqusi512_mask:
14595 case X86::BI__builtin_ia32_storedquhi512_mask:
14596 case X86::BI__builtin_ia32_storedquqi512_mask:
14597 case X86::BI__builtin_ia32_storeupd512_mask:
14598 case X86::BI__builtin_ia32_storeups512_mask:
14599 return EmitX86MaskedStore(*this, Ops, Align(1));
14601 case X86::BI__builtin_ia32_storesh128_mask:
14602 case X86::BI__builtin_ia32_storess128_mask:
14603 case X86::BI__builtin_ia32_storesd128_mask:
14604 return EmitX86MaskedStore(*this, Ops, Align(1));
14606 case X86::BI__builtin_ia32_vpopcntb_128:
14607 case X86::BI__builtin_ia32_vpopcntd_128:
14608 case X86::BI__builtin_ia32_vpopcntq_128:
14609 case X86::BI__builtin_ia32_vpopcntw_128:
14610 case X86::BI__builtin_ia32_vpopcntb_256:
14611 case X86::BI__builtin_ia32_vpopcntd_256:
14612 case X86::BI__builtin_ia32_vpopcntq_256:
14613 case X86::BI__builtin_ia32_vpopcntw_256:
14614 case X86::BI__builtin_ia32_vpopcntb_512:
14615 case X86::BI__builtin_ia32_vpopcntd_512:
14616 case X86::BI__builtin_ia32_vpopcntq_512:
14617 case X86::BI__builtin_ia32_vpopcntw_512: {
14618 llvm::Type *ResultType = ConvertType(E->getType());
14619 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
14620 return Builder.CreateCall(F, Ops);
14622 case X86::BI__builtin_ia32_cvtmask2b128:
14623 case X86::BI__builtin_ia32_cvtmask2b256:
14624 case X86::BI__builtin_ia32_cvtmask2b512:
14625 case X86::BI__builtin_ia32_cvtmask2w128:
14626 case X86::BI__builtin_ia32_cvtmask2w256:
14627 case X86::BI__builtin_ia32_cvtmask2w512:
14628 case X86::BI__builtin_ia32_cvtmask2d128:
14629 case X86::BI__builtin_ia32_cvtmask2d256:
14630 case X86::BI__builtin_ia32_cvtmask2d512:
14631 case X86::BI__builtin_ia32_cvtmask2q128:
14632 case X86::BI__builtin_ia32_cvtmask2q256:
14633 case X86::BI__builtin_ia32_cvtmask2q512:
14634 return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
14636 case X86::BI__builtin_ia32_cvtb2mask128:
14637 case X86::BI__builtin_ia32_cvtb2mask256:
14638 case X86::BI__builtin_ia32_cvtb2mask512:
14639 case X86::BI__builtin_ia32_cvtw2mask128:
14640 case X86::BI__builtin_ia32_cvtw2mask256:
14641 case X86::BI__builtin_ia32_cvtw2mask512:
14642 case X86::BI__builtin_ia32_cvtd2mask128:
14643 case X86::BI__builtin_ia32_cvtd2mask256:
14644 case X86::BI__builtin_ia32_cvtd2mask512:
14645 case X86::BI__builtin_ia32_cvtq2mask128:
14646 case X86::BI__builtin_ia32_cvtq2mask256:
14647 case X86::BI__builtin_ia32_cvtq2mask512:
14648 return EmitX86ConvertToMask(*this, Ops[0]);
14650 case X86::BI__builtin_ia32_cvtdq2ps512_mask:
14651 case X86::BI__builtin_ia32_cvtqq2ps512_mask:
14652 case X86::BI__builtin_ia32_cvtqq2pd512_mask:
14653 case X86::BI__builtin_ia32_vcvtw2ph512_mask:
14654 case X86::BI__builtin_ia32_vcvtdq2ph512_mask:
14655 case X86::BI__builtin_ia32_vcvtqq2ph512_mask:
14656 return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ true);
14657 case X86::BI__builtin_ia32_cvtudq2ps512_mask:
14658 case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
14659 case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
14660 case X86::BI__builtin_ia32_vcvtuw2ph512_mask:
14661 case X86::BI__builtin_ia32_vcvtudq2ph512_mask:
14662 case X86::BI__builtin_ia32_vcvtuqq2ph512_mask:
14663 return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ false);
14665 case X86::BI__builtin_ia32_vfmaddss3:
14666 case X86::BI__builtin_ia32_vfmaddsd3:
14667 case X86::BI__builtin_ia32_vfmaddsh3_mask:
14668 case X86::BI__builtin_ia32_vfmaddss3_mask:
14669 case X86::BI__builtin_ia32_vfmaddsd3_mask:
14670 return EmitScalarFMAExpr(*this, E, Ops, Ops[0]);
14671 case X86::BI__builtin_ia32_vfmaddss:
14672 case X86::BI__builtin_ia32_vfmaddsd:
14673 return EmitScalarFMAExpr(*this, E, Ops,
14674 Constant::getNullValue(Ops[0]->getType()));
14675 case X86::BI__builtin_ia32_vfmaddsh3_maskz:
14676 case X86::BI__builtin_ia32_vfmaddss3_maskz:
14677 case X86::BI__builtin_ia32_vfmaddsd3_maskz:
14678 return EmitScalarFMAExpr(*this, E, Ops, Ops[0], /*ZeroMask*/ true);
14679 case X86::BI__builtin_ia32_vfmaddsh3_mask3:
14680 case X86::BI__builtin_ia32_vfmaddss3_mask3:
14681 case X86::BI__builtin_ia32_vfmaddsd3_mask3:
14682 return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2);
14683 case X86::BI__builtin_ia32_vfmsubsh3_mask3:
14684 case X86::BI__builtin_ia32_vfmsubss3_mask3:
14685 case X86::BI__builtin_ia32_vfmsubsd3_mask3:
14686 return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2,
14687 /*NegAcc*/ true);
14688 case X86::BI__builtin_ia32_vfmaddph:
14689 case X86::BI__builtin_ia32_vfmaddps:
14690 case X86::BI__builtin_ia32_vfmaddpd:
14691 case X86::BI__builtin_ia32_vfmaddph256:
14692 case X86::BI__builtin_ia32_vfmaddps256:
14693 case X86::BI__builtin_ia32_vfmaddpd256:
14694 case X86::BI__builtin_ia32_vfmaddph512_mask:
14695 case X86::BI__builtin_ia32_vfmaddph512_maskz:
14696 case X86::BI__builtin_ia32_vfmaddph512_mask3:
14697 case X86::BI__builtin_ia32_vfmaddps512_mask:
14698 case X86::BI__builtin_ia32_vfmaddps512_maskz:
14699 case X86::BI__builtin_ia32_vfmaddps512_mask3:
14700 case X86::BI__builtin_ia32_vfmsubps512_mask3:
14701 case X86::BI__builtin_ia32_vfmaddpd512_mask:
14702 case X86::BI__builtin_ia32_vfmaddpd512_maskz:
14703 case X86::BI__builtin_ia32_vfmaddpd512_mask3:
14704 case X86::BI__builtin_ia32_vfmsubpd512_mask3:
14705 case X86::BI__builtin_ia32_vfmsubph512_mask3:
14706 return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ false);
14707 case X86::BI__builtin_ia32_vfmaddsubph512_mask:
14708 case X86::BI__builtin_ia32_vfmaddsubph512_maskz:
14709 case X86::BI__builtin_ia32_vfmaddsubph512_mask3:
14710 case X86::BI__builtin_ia32_vfmsubaddph512_mask3:
14711 case X86::BI__builtin_ia32_vfmaddsubps512_mask:
14712 case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
14713 case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
14714 case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
14715 case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
14716 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
14717 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
14718 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
14719 return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ true);
14721 case X86::BI__builtin_ia32_movdqa32store128_mask:
14722 case X86::BI__builtin_ia32_movdqa64store128_mask:
14723 case X86::BI__builtin_ia32_storeaps128_mask:
14724 case X86::BI__builtin_ia32_storeapd128_mask:
14725 case X86::BI__builtin_ia32_movdqa32store256_mask:
14726 case X86::BI__builtin_ia32_movdqa64store256_mask:
14727 case X86::BI__builtin_ia32_storeaps256_mask:
14728 case X86::BI__builtin_ia32_storeapd256_mask:
14729 case X86::BI__builtin_ia32_movdqa32store512_mask:
14730 case X86::BI__builtin_ia32_movdqa64store512_mask:
14731 case X86::BI__builtin_ia32_storeaps512_mask:
14732 case X86::BI__builtin_ia32_storeapd512_mask:
14733 return EmitX86MaskedStore(
14734 *this, Ops,
14735 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
14737 case X86::BI__builtin_ia32_loadups128_mask:
14738 case X86::BI__builtin_ia32_loadups256_mask:
14739 case X86::BI__builtin_ia32_loadups512_mask:
14740 case X86::BI__builtin_ia32_loadupd128_mask:
14741 case X86::BI__builtin_ia32_loadupd256_mask:
14742 case X86::BI__builtin_ia32_loadupd512_mask:
14743 case X86::BI__builtin_ia32_loaddquqi128_mask:
14744 case X86::BI__builtin_ia32_loaddquqi256_mask:
14745 case X86::BI__builtin_ia32_loaddquqi512_mask:
14746 case X86::BI__builtin_ia32_loaddquhi128_mask:
14747 case X86::BI__builtin_ia32_loaddquhi256_mask:
14748 case X86::BI__builtin_ia32_loaddquhi512_mask:
14749 case X86::BI__builtin_ia32_loaddqusi128_mask:
14750 case X86::BI__builtin_ia32_loaddqusi256_mask:
14751 case X86::BI__builtin_ia32_loaddqusi512_mask:
14752 case X86::BI__builtin_ia32_loaddqudi128_mask:
14753 case X86::BI__builtin_ia32_loaddqudi256_mask:
14754 case X86::BI__builtin_ia32_loaddqudi512_mask:
14755 return EmitX86MaskedLoad(*this, Ops, Align(1));
14757 case X86::BI__builtin_ia32_loadsh128_mask:
14758 case X86::BI__builtin_ia32_loadss128_mask:
14759 case X86::BI__builtin_ia32_loadsd128_mask:
14760 return EmitX86MaskedLoad(*this, Ops, Align(1));
14762 case X86::BI__builtin_ia32_loadaps128_mask:
14763 case X86::BI__builtin_ia32_loadaps256_mask:
14764 case X86::BI__builtin_ia32_loadaps512_mask:
14765 case X86::BI__builtin_ia32_loadapd128_mask:
14766 case X86::BI__builtin_ia32_loadapd256_mask:
14767 case X86::BI__builtin_ia32_loadapd512_mask:
14768 case X86::BI__builtin_ia32_movdqa32load128_mask:
14769 case X86::BI__builtin_ia32_movdqa32load256_mask:
14770 case X86::BI__builtin_ia32_movdqa32load512_mask:
14771 case X86::BI__builtin_ia32_movdqa64load128_mask:
14772 case X86::BI__builtin_ia32_movdqa64load256_mask:
14773 case X86::BI__builtin_ia32_movdqa64load512_mask:
14774 return EmitX86MaskedLoad(
14775 *this, Ops,
14776 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
14778 case X86::BI__builtin_ia32_expandloaddf128_mask:
14779 case X86::BI__builtin_ia32_expandloaddf256_mask:
14780 case X86::BI__builtin_ia32_expandloaddf512_mask:
14781 case X86::BI__builtin_ia32_expandloadsf128_mask:
14782 case X86::BI__builtin_ia32_expandloadsf256_mask:
14783 case X86::BI__builtin_ia32_expandloadsf512_mask:
14784 case X86::BI__builtin_ia32_expandloaddi128_mask:
14785 case X86::BI__builtin_ia32_expandloaddi256_mask:
14786 case X86::BI__builtin_ia32_expandloaddi512_mask:
14787 case X86::BI__builtin_ia32_expandloadsi128_mask:
14788 case X86::BI__builtin_ia32_expandloadsi256_mask:
14789 case X86::BI__builtin_ia32_expandloadsi512_mask:
14790 case X86::BI__builtin_ia32_expandloadhi128_mask:
14791 case X86::BI__builtin_ia32_expandloadhi256_mask:
14792 case X86::BI__builtin_ia32_expandloadhi512_mask:
14793 case X86::BI__builtin_ia32_expandloadqi128_mask:
14794 case X86::BI__builtin_ia32_expandloadqi256_mask:
14795 case X86::BI__builtin_ia32_expandloadqi512_mask:
14796 return EmitX86ExpandLoad(*this, Ops);
14798 case X86::BI__builtin_ia32_compressstoredf128_mask:
14799 case X86::BI__builtin_ia32_compressstoredf256_mask:
14800 case X86::BI__builtin_ia32_compressstoredf512_mask:
14801 case X86::BI__builtin_ia32_compressstoresf128_mask:
14802 case X86::BI__builtin_ia32_compressstoresf256_mask:
14803 case X86::BI__builtin_ia32_compressstoresf512_mask:
14804 case X86::BI__builtin_ia32_compressstoredi128_mask:
14805 case X86::BI__builtin_ia32_compressstoredi256_mask:
14806 case X86::BI__builtin_ia32_compressstoredi512_mask:
14807 case X86::BI__builtin_ia32_compressstoresi128_mask:
14808 case X86::BI__builtin_ia32_compressstoresi256_mask:
14809 case X86::BI__builtin_ia32_compressstoresi512_mask:
14810 case X86::BI__builtin_ia32_compressstorehi128_mask:
14811 case X86::BI__builtin_ia32_compressstorehi256_mask:
14812 case X86::BI__builtin_ia32_compressstorehi512_mask:
14813 case X86::BI__builtin_ia32_compressstoreqi128_mask:
14814 case X86::BI__builtin_ia32_compressstoreqi256_mask:
14815 case X86::BI__builtin_ia32_compressstoreqi512_mask:
14816 return EmitX86CompressStore(*this, Ops);
14818 case X86::BI__builtin_ia32_expanddf128_mask:
14819 case X86::BI__builtin_ia32_expanddf256_mask:
14820 case X86::BI__builtin_ia32_expanddf512_mask:
14821 case X86::BI__builtin_ia32_expandsf128_mask:
14822 case X86::BI__builtin_ia32_expandsf256_mask:
14823 case X86::BI__builtin_ia32_expandsf512_mask:
14824 case X86::BI__builtin_ia32_expanddi128_mask:
14825 case X86::BI__builtin_ia32_expanddi256_mask:
14826 case X86::BI__builtin_ia32_expanddi512_mask:
14827 case X86::BI__builtin_ia32_expandsi128_mask:
14828 case X86::BI__builtin_ia32_expandsi256_mask:
14829 case X86::BI__builtin_ia32_expandsi512_mask:
14830 case X86::BI__builtin_ia32_expandhi128_mask:
14831 case X86::BI__builtin_ia32_expandhi256_mask:
14832 case X86::BI__builtin_ia32_expandhi512_mask:
14833 case X86::BI__builtin_ia32_expandqi128_mask:
14834 case X86::BI__builtin_ia32_expandqi256_mask:
14835 case X86::BI__builtin_ia32_expandqi512_mask:
14836 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
14838 case X86::BI__builtin_ia32_compressdf128_mask:
14839 case X86::BI__builtin_ia32_compressdf256_mask:
14840 case X86::BI__builtin_ia32_compressdf512_mask:
14841 case X86::BI__builtin_ia32_compresssf128_mask:
14842 case X86::BI__builtin_ia32_compresssf256_mask:
14843 case X86::BI__builtin_ia32_compresssf512_mask:
14844 case X86::BI__builtin_ia32_compressdi128_mask:
14845 case X86::BI__builtin_ia32_compressdi256_mask:
14846 case X86::BI__builtin_ia32_compressdi512_mask:
14847 case X86::BI__builtin_ia32_compresssi128_mask:
14848 case X86::BI__builtin_ia32_compresssi256_mask:
14849 case X86::BI__builtin_ia32_compresssi512_mask:
14850 case X86::BI__builtin_ia32_compresshi128_mask:
14851 case X86::BI__builtin_ia32_compresshi256_mask:
14852 case X86::BI__builtin_ia32_compresshi512_mask:
14853 case X86::BI__builtin_ia32_compressqi128_mask:
14854 case X86::BI__builtin_ia32_compressqi256_mask:
14855 case X86::BI__builtin_ia32_compressqi512_mask:
14856 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
14858 case X86::BI__builtin_ia32_gather3div2df:
14859 case X86::BI__builtin_ia32_gather3div2di:
14860 case X86::BI__builtin_ia32_gather3div4df:
14861 case X86::BI__builtin_ia32_gather3div4di:
14862 case X86::BI__builtin_ia32_gather3div4sf:
14863 case X86::BI__builtin_ia32_gather3div4si:
14864 case X86::BI__builtin_ia32_gather3div8sf:
14865 case X86::BI__builtin_ia32_gather3div8si:
14866 case X86::BI__builtin_ia32_gather3siv2df:
14867 case X86::BI__builtin_ia32_gather3siv2di:
14868 case X86::BI__builtin_ia32_gather3siv4df:
14869 case X86::BI__builtin_ia32_gather3siv4di:
14870 case X86::BI__builtin_ia32_gather3siv4sf:
14871 case X86::BI__builtin_ia32_gather3siv4si:
14872 case X86::BI__builtin_ia32_gather3siv8sf:
14873 case X86::BI__builtin_ia32_gather3siv8si:
14874 case X86::BI__builtin_ia32_gathersiv8df:
14875 case X86::BI__builtin_ia32_gathersiv16sf:
14876 case X86::BI__builtin_ia32_gatherdiv8df:
14877 case X86::BI__builtin_ia32_gatherdiv16sf:
14878 case X86::BI__builtin_ia32_gathersiv8di:
14879 case X86::BI__builtin_ia32_gathersiv16si:
14880 case X86::BI__builtin_ia32_gatherdiv8di:
14881 case X86::BI__builtin_ia32_gatherdiv16si: {
14882 Intrinsic::ID IID;
14883 switch (BuiltinID) {
14884 default: llvm_unreachable("Unexpected builtin");
14885 case X86::BI__builtin_ia32_gather3div2df:
14886 IID = Intrinsic::x86_avx512_mask_gather3div2_df;
14887 break;
14888 case X86::BI__builtin_ia32_gather3div2di:
14889 IID = Intrinsic::x86_avx512_mask_gather3div2_di;
14890 break;
14891 case X86::BI__builtin_ia32_gather3div4df:
14892 IID = Intrinsic::x86_avx512_mask_gather3div4_df;
14893 break;
14894 case X86::BI__builtin_ia32_gather3div4di:
14895 IID = Intrinsic::x86_avx512_mask_gather3div4_di;
14896 break;
14897 case X86::BI__builtin_ia32_gather3div4sf:
14898 IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
14899 break;
14900 case X86::BI__builtin_ia32_gather3div4si:
14901 IID = Intrinsic::x86_avx512_mask_gather3div4_si;
14902 break;
14903 case X86::BI__builtin_ia32_gather3div8sf:
14904 IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
14905 break;
14906 case X86::BI__builtin_ia32_gather3div8si:
14907 IID = Intrinsic::x86_avx512_mask_gather3div8_si;
14908 break;
14909 case X86::BI__builtin_ia32_gather3siv2df:
14910 IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
14911 break;
14912 case X86::BI__builtin_ia32_gather3siv2di:
14913 IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
14914 break;
14915 case X86::BI__builtin_ia32_gather3siv4df:
14916 IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
14917 break;
14918 case X86::BI__builtin_ia32_gather3siv4di:
14919 IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
14920 break;
14921 case X86::BI__builtin_ia32_gather3siv4sf:
14922 IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
14923 break;
14924 case X86::BI__builtin_ia32_gather3siv4si:
14925 IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
14926 break;
14927 case X86::BI__builtin_ia32_gather3siv8sf:
14928 IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
14929 break;
14930 case X86::BI__builtin_ia32_gather3siv8si:
14931 IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
14932 break;
14933 case X86::BI__builtin_ia32_gathersiv8df:
14934 IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
14935 break;
14936 case X86::BI__builtin_ia32_gathersiv16sf:
14937 IID = Intrinsic::x86_avx512_mask_gather_dps_512;
14938 break;
14939 case X86::BI__builtin_ia32_gatherdiv8df:
14940 IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
14941 break;
14942 case X86::BI__builtin_ia32_gatherdiv16sf:
14943 IID = Intrinsic::x86_avx512_mask_gather_qps_512;
14944 break;
14945 case X86::BI__builtin_ia32_gathersiv8di:
14946 IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
14947 break;
14948 case X86::BI__builtin_ia32_gathersiv16si:
14949 IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
14950 break;
14951 case X86::BI__builtin_ia32_gatherdiv8di:
14952 IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
14953 break;
14954 case X86::BI__builtin_ia32_gatherdiv16si:
14955 IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
14956 break;
14959 unsigned MinElts = std::min(
14960 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(),
14961 cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements());
14962 Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
14963 Function *Intr = CGM.getIntrinsic(IID);
14964 return Builder.CreateCall(Intr, Ops);
14967 case X86::BI__builtin_ia32_scattersiv8df:
14968 case X86::BI__builtin_ia32_scattersiv16sf:
14969 case X86::BI__builtin_ia32_scatterdiv8df:
14970 case X86::BI__builtin_ia32_scatterdiv16sf:
14971 case X86::BI__builtin_ia32_scattersiv8di:
14972 case X86::BI__builtin_ia32_scattersiv16si:
14973 case X86::BI__builtin_ia32_scatterdiv8di:
14974 case X86::BI__builtin_ia32_scatterdiv16si:
14975 case X86::BI__builtin_ia32_scatterdiv2df:
14976 case X86::BI__builtin_ia32_scatterdiv2di:
14977 case X86::BI__builtin_ia32_scatterdiv4df:
14978 case X86::BI__builtin_ia32_scatterdiv4di:
14979 case X86::BI__builtin_ia32_scatterdiv4sf:
14980 case X86::BI__builtin_ia32_scatterdiv4si:
14981 case X86::BI__builtin_ia32_scatterdiv8sf:
14982 case X86::BI__builtin_ia32_scatterdiv8si:
14983 case X86::BI__builtin_ia32_scattersiv2df:
14984 case X86::BI__builtin_ia32_scattersiv2di:
14985 case X86::BI__builtin_ia32_scattersiv4df:
14986 case X86::BI__builtin_ia32_scattersiv4di:
14987 case X86::BI__builtin_ia32_scattersiv4sf:
14988 case X86::BI__builtin_ia32_scattersiv4si:
14989 case X86::BI__builtin_ia32_scattersiv8sf:
14990 case X86::BI__builtin_ia32_scattersiv8si: {
14991 Intrinsic::ID IID;
14992 switch (BuiltinID) {
14993 default: llvm_unreachable("Unexpected builtin");
14994 case X86::BI__builtin_ia32_scattersiv8df:
14995 IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
14996 break;
14997 case X86::BI__builtin_ia32_scattersiv16sf:
14998 IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
14999 break;
15000 case X86::BI__builtin_ia32_scatterdiv8df:
15001 IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
15002 break;
15003 case X86::BI__builtin_ia32_scatterdiv16sf:
15004 IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
15005 break;
15006 case X86::BI__builtin_ia32_scattersiv8di:
15007 IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
15008 break;
15009 case X86::BI__builtin_ia32_scattersiv16si:
15010 IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
15011 break;
15012 case X86::BI__builtin_ia32_scatterdiv8di:
15013 IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
15014 break;
15015 case X86::BI__builtin_ia32_scatterdiv16si:
15016 IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
15017 break;
15018 case X86::BI__builtin_ia32_scatterdiv2df:
15019 IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
15020 break;
15021 case X86::BI__builtin_ia32_scatterdiv2di:
15022 IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
15023 break;
15024 case X86::BI__builtin_ia32_scatterdiv4df:
15025 IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
15026 break;
15027 case X86::BI__builtin_ia32_scatterdiv4di:
15028 IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
15029 break;
15030 case X86::BI__builtin_ia32_scatterdiv4sf:
15031 IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
15032 break;
15033 case X86::BI__builtin_ia32_scatterdiv4si:
15034 IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
15035 break;
15036 case X86::BI__builtin_ia32_scatterdiv8sf:
15037 IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
15038 break;
15039 case X86::BI__builtin_ia32_scatterdiv8si:
15040 IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
15041 break;
15042 case X86::BI__builtin_ia32_scattersiv2df:
15043 IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
15044 break;
15045 case X86::BI__builtin_ia32_scattersiv2di:
15046 IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
15047 break;
15048 case X86::BI__builtin_ia32_scattersiv4df:
15049 IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
15050 break;
15051 case X86::BI__builtin_ia32_scattersiv4di:
15052 IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
15053 break;
15054 case X86::BI__builtin_ia32_scattersiv4sf:
15055 IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
15056 break;
15057 case X86::BI__builtin_ia32_scattersiv4si:
15058 IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
15059 break;
15060 case X86::BI__builtin_ia32_scattersiv8sf:
15061 IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
15062 break;
15063 case X86::BI__builtin_ia32_scattersiv8si:
15064 IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
15065 break;
15068 unsigned MinElts = std::min(
15069 cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(),
15070 cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements());
15071 Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
15072 Function *Intr = CGM.getIntrinsic(IID);
15073 return Builder.CreateCall(Intr, Ops);
15076 case X86::BI__builtin_ia32_vextractf128_pd256:
15077 case X86::BI__builtin_ia32_vextractf128_ps256:
15078 case X86::BI__builtin_ia32_vextractf128_si256:
15079 case X86::BI__builtin_ia32_extract128i256:
15080 case X86::BI__builtin_ia32_extractf64x4_mask:
15081 case X86::BI__builtin_ia32_extractf32x4_mask:
15082 case X86::BI__builtin_ia32_extracti64x4_mask:
15083 case X86::BI__builtin_ia32_extracti32x4_mask:
15084 case X86::BI__builtin_ia32_extractf32x8_mask:
15085 case X86::BI__builtin_ia32_extracti32x8_mask:
15086 case X86::BI__builtin_ia32_extractf32x4_256_mask:
15087 case X86::BI__builtin_ia32_extracti32x4_256_mask:
15088 case X86::BI__builtin_ia32_extractf64x2_256_mask:
15089 case X86::BI__builtin_ia32_extracti64x2_256_mask:
15090 case X86::BI__builtin_ia32_extractf64x2_512_mask:
15091 case X86::BI__builtin_ia32_extracti64x2_512_mask: {
15092 auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType()));
15093 unsigned NumElts = DstTy->getNumElements();
15094 unsigned SrcNumElts =
15095 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15096 unsigned SubVectors = SrcNumElts / NumElts;
15097 unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
15098 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
15099 Index &= SubVectors - 1; // Remove any extra bits.
15100 Index *= NumElts;
15102 int Indices[16];
15103 for (unsigned i = 0; i != NumElts; ++i)
15104 Indices[i] = i + Index;
15106 Value *Res = Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
15107 "extract");
15109 if (Ops.size() == 4)
15110 Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
15112 return Res;
15114 case X86::BI__builtin_ia32_vinsertf128_pd256:
15115 case X86::BI__builtin_ia32_vinsertf128_ps256:
15116 case X86::BI__builtin_ia32_vinsertf128_si256:
15117 case X86::BI__builtin_ia32_insert128i256:
15118 case X86::BI__builtin_ia32_insertf64x4:
15119 case X86::BI__builtin_ia32_insertf32x4:
15120 case X86::BI__builtin_ia32_inserti64x4:
15121 case X86::BI__builtin_ia32_inserti32x4:
15122 case X86::BI__builtin_ia32_insertf32x8:
15123 case X86::BI__builtin_ia32_inserti32x8:
15124 case X86::BI__builtin_ia32_insertf32x4_256:
15125 case X86::BI__builtin_ia32_inserti32x4_256:
15126 case X86::BI__builtin_ia32_insertf64x2_256:
15127 case X86::BI__builtin_ia32_inserti64x2_256:
15128 case X86::BI__builtin_ia32_insertf64x2_512:
15129 case X86::BI__builtin_ia32_inserti64x2_512: {
15130 unsigned DstNumElts =
15131 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15132 unsigned SrcNumElts =
15133 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements();
15134 unsigned SubVectors = DstNumElts / SrcNumElts;
15135 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
15136 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
15137 Index &= SubVectors - 1; // Remove any extra bits.
15138 Index *= SrcNumElts;
15140 int Indices[16];
15141 for (unsigned i = 0; i != DstNumElts; ++i)
15142 Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
15144 Value *Op1 = Builder.CreateShuffleVector(
15145 Ops[1], ArrayRef(Indices, DstNumElts), "widen");
15147 for (unsigned i = 0; i != DstNumElts; ++i) {
15148 if (i >= Index && i < (Index + SrcNumElts))
15149 Indices[i] = (i - Index) + DstNumElts;
15150 else
15151 Indices[i] = i;
15154 return Builder.CreateShuffleVector(Ops[0], Op1,
15155 ArrayRef(Indices, DstNumElts), "insert");
15157 case X86::BI__builtin_ia32_pmovqd512_mask:
15158 case X86::BI__builtin_ia32_pmovwb512_mask: {
15159 Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
15160 return EmitX86Select(*this, Ops[2], Res, Ops[1]);
15162 case X86::BI__builtin_ia32_pmovdb512_mask:
15163 case X86::BI__builtin_ia32_pmovdw512_mask:
15164 case X86::BI__builtin_ia32_pmovqw512_mask: {
15165 if (const auto *C = dyn_cast<Constant>(Ops[2]))
15166 if (C->isAllOnesValue())
15167 return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
15169 Intrinsic::ID IID;
15170 switch (BuiltinID) {
15171 default: llvm_unreachable("Unsupported intrinsic!");
15172 case X86::BI__builtin_ia32_pmovdb512_mask:
15173 IID = Intrinsic::x86_avx512_mask_pmov_db_512;
15174 break;
15175 case X86::BI__builtin_ia32_pmovdw512_mask:
15176 IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
15177 break;
15178 case X86::BI__builtin_ia32_pmovqw512_mask:
15179 IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
15180 break;
15183 Function *Intr = CGM.getIntrinsic(IID);
15184 return Builder.CreateCall(Intr, Ops);
15186 case X86::BI__builtin_ia32_pblendw128:
15187 case X86::BI__builtin_ia32_blendpd:
15188 case X86::BI__builtin_ia32_blendps:
15189 case X86::BI__builtin_ia32_blendpd256:
15190 case X86::BI__builtin_ia32_blendps256:
15191 case X86::BI__builtin_ia32_pblendw256:
15192 case X86::BI__builtin_ia32_pblendd128:
15193 case X86::BI__builtin_ia32_pblendd256: {
15194 unsigned NumElts =
15195 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15196 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
15198 int Indices[16];
15199 // If there are more than 8 elements, the immediate is used twice so make
15200 // sure we handle that.
15201 for (unsigned i = 0; i != NumElts; ++i)
15202 Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
15204 return Builder.CreateShuffleVector(Ops[0], Ops[1],
15205 ArrayRef(Indices, NumElts), "blend");
15207 case X86::BI__builtin_ia32_pshuflw:
15208 case X86::BI__builtin_ia32_pshuflw256:
15209 case X86::BI__builtin_ia32_pshuflw512: {
15210 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
15211 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
15212 unsigned NumElts = Ty->getNumElements();
15214 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
15215 Imm = (Imm & 0xff) * 0x01010101;
15217 int Indices[32];
15218 for (unsigned l = 0; l != NumElts; l += 8) {
15219 for (unsigned i = 0; i != 4; ++i) {
15220 Indices[l + i] = l + (Imm & 3);
15221 Imm >>= 2;
15223 for (unsigned i = 4; i != 8; ++i)
15224 Indices[l + i] = l + i;
15227 return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
15228 "pshuflw");
15230 case X86::BI__builtin_ia32_pshufhw:
15231 case X86::BI__builtin_ia32_pshufhw256:
15232 case X86::BI__builtin_ia32_pshufhw512: {
15233 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
15234 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
15235 unsigned NumElts = Ty->getNumElements();
15237 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
15238 Imm = (Imm & 0xff) * 0x01010101;
15240 int Indices[32];
15241 for (unsigned l = 0; l != NumElts; l += 8) {
15242 for (unsigned i = 0; i != 4; ++i)
15243 Indices[l + i] = l + i;
15244 for (unsigned i = 4; i != 8; ++i) {
15245 Indices[l + i] = l + 4 + (Imm & 3);
15246 Imm >>= 2;
15250 return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
15251 "pshufhw");
15253 case X86::BI__builtin_ia32_pshufd:
15254 case X86::BI__builtin_ia32_pshufd256:
15255 case X86::BI__builtin_ia32_pshufd512:
15256 case X86::BI__builtin_ia32_vpermilpd:
15257 case X86::BI__builtin_ia32_vpermilps:
15258 case X86::BI__builtin_ia32_vpermilpd256:
15259 case X86::BI__builtin_ia32_vpermilps256:
15260 case X86::BI__builtin_ia32_vpermilpd512:
15261 case X86::BI__builtin_ia32_vpermilps512: {
15262 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
15263 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
15264 unsigned NumElts = Ty->getNumElements();
15265 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
15266 unsigned NumLaneElts = NumElts / NumLanes;
15268 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
15269 Imm = (Imm & 0xff) * 0x01010101;
15271 int Indices[16];
15272 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
15273 for (unsigned i = 0; i != NumLaneElts; ++i) {
15274 Indices[i + l] = (Imm % NumLaneElts) + l;
15275 Imm /= NumLaneElts;
15279 return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
15280 "permil");
15282 case X86::BI__builtin_ia32_shufpd:
15283 case X86::BI__builtin_ia32_shufpd256:
15284 case X86::BI__builtin_ia32_shufpd512:
15285 case X86::BI__builtin_ia32_shufps:
15286 case X86::BI__builtin_ia32_shufps256:
15287 case X86::BI__builtin_ia32_shufps512: {
15288 uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
15289 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
15290 unsigned NumElts = Ty->getNumElements();
15291 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
15292 unsigned NumLaneElts = NumElts / NumLanes;
15294 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
15295 Imm = (Imm & 0xff) * 0x01010101;
15297 int Indices[16];
15298 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
15299 for (unsigned i = 0; i != NumLaneElts; ++i) {
15300 unsigned Index = Imm % NumLaneElts;
15301 Imm /= NumLaneElts;
15302 if (i >= (NumLaneElts / 2))
15303 Index += NumElts;
15304 Indices[l + i] = l + Index;
15308 return Builder.CreateShuffleVector(Ops[0], Ops[1],
15309 ArrayRef(Indices, NumElts), "shufp");
15311 case X86::BI__builtin_ia32_permdi256:
15312 case X86::BI__builtin_ia32_permdf256:
15313 case X86::BI__builtin_ia32_permdi512:
15314 case X86::BI__builtin_ia32_permdf512: {
15315 unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
15316 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
15317 unsigned NumElts = Ty->getNumElements();
15319 // These intrinsics operate on 256-bit lanes of four 64-bit elements.
15320 int Indices[8];
15321 for (unsigned l = 0; l != NumElts; l += 4)
15322 for (unsigned i = 0; i != 4; ++i)
15323 Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
15325 return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
15326 "perm");
15328 case X86::BI__builtin_ia32_palignr128:
15329 case X86::BI__builtin_ia32_palignr256:
15330 case X86::BI__builtin_ia32_palignr512: {
15331 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
15333 unsigned NumElts =
15334 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15335 assert(NumElts % 16 == 0);
15337 // If palignr is shifting the pair of vectors more than the size of two
15338 // lanes, emit zero.
15339 if (ShiftVal >= 32)
15340 return llvm::Constant::getNullValue(ConvertType(E->getType()));
15342 // If palignr is shifting the pair of input vectors more than one lane,
15343 // but less than two lanes, convert to shifting in zeroes.
15344 if (ShiftVal > 16) {
15345 ShiftVal -= 16;
15346 Ops[1] = Ops[0];
15347 Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
15350 int Indices[64];
15351 // 256-bit palignr operates on 128-bit lanes so we need to handle that
15352 for (unsigned l = 0; l != NumElts; l += 16) {
15353 for (unsigned i = 0; i != 16; ++i) {
15354 unsigned Idx = ShiftVal + i;
15355 if (Idx >= 16)
15356 Idx += NumElts - 16; // End of lane, switch operand.
15357 Indices[l + i] = Idx + l;
15361 return Builder.CreateShuffleVector(Ops[1], Ops[0],
15362 ArrayRef(Indices, NumElts), "palignr");
15364 case X86::BI__builtin_ia32_alignd128:
15365 case X86::BI__builtin_ia32_alignd256:
15366 case X86::BI__builtin_ia32_alignd512:
15367 case X86::BI__builtin_ia32_alignq128:
15368 case X86::BI__builtin_ia32_alignq256:
15369 case X86::BI__builtin_ia32_alignq512: {
15370 unsigned NumElts =
15371 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15372 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
15374 // Mask the shift amount to width of a vector.
15375 ShiftVal &= NumElts - 1;
15377 int Indices[16];
15378 for (unsigned i = 0; i != NumElts; ++i)
15379 Indices[i] = i + ShiftVal;
15381 return Builder.CreateShuffleVector(Ops[1], Ops[0],
15382 ArrayRef(Indices, NumElts), "valign");
15384 case X86::BI__builtin_ia32_shuf_f32x4_256:
15385 case X86::BI__builtin_ia32_shuf_f64x2_256:
15386 case X86::BI__builtin_ia32_shuf_i32x4_256:
15387 case X86::BI__builtin_ia32_shuf_i64x2_256:
15388 case X86::BI__builtin_ia32_shuf_f32x4:
15389 case X86::BI__builtin_ia32_shuf_f64x2:
15390 case X86::BI__builtin_ia32_shuf_i32x4:
15391 case X86::BI__builtin_ia32_shuf_i64x2: {
15392 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
15393 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
15394 unsigned NumElts = Ty->getNumElements();
15395 unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
15396 unsigned NumLaneElts = NumElts / NumLanes;
15398 int Indices[16];
15399 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
15400 unsigned Index = (Imm % NumLanes) * NumLaneElts;
15401 Imm /= NumLanes; // Discard the bits we just used.
15402 if (l >= (NumElts / 2))
15403 Index += NumElts; // Switch to other source.
15404 for (unsigned i = 0; i != NumLaneElts; ++i) {
15405 Indices[l + i] = Index + i;
15409 return Builder.CreateShuffleVector(Ops[0], Ops[1],
15410 ArrayRef(Indices, NumElts), "shuf");
15413 case X86::BI__builtin_ia32_vperm2f128_pd256:
15414 case X86::BI__builtin_ia32_vperm2f128_ps256:
15415 case X86::BI__builtin_ia32_vperm2f128_si256:
15416 case X86::BI__builtin_ia32_permti256: {
15417 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
15418 unsigned NumElts =
15419 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15421 // This takes a very simple approach since there are two lanes and a
15422 // shuffle can have 2 inputs. So we reserve the first input for the first
15423 // lane and the second input for the second lane. This may result in
15424 // duplicate sources, but this can be dealt with in the backend.
15426 Value *OutOps[2];
15427 int Indices[8];
15428 for (unsigned l = 0; l != 2; ++l) {
15429 // Determine the source for this lane.
15430 if (Imm & (1 << ((l * 4) + 3)))
15431 OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
15432 else if (Imm & (1 << ((l * 4) + 1)))
15433 OutOps[l] = Ops[1];
15434 else
15435 OutOps[l] = Ops[0];
15437 for (unsigned i = 0; i != NumElts/2; ++i) {
15438 // Start with ith element of the source for this lane.
15439 unsigned Idx = (l * NumElts) + i;
15440 // If bit 0 of the immediate half is set, switch to the high half of
15441 // the source.
15442 if (Imm & (1 << (l * 4)))
15443 Idx += NumElts/2;
15444 Indices[(l * (NumElts/2)) + i] = Idx;
15448 return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
15449 ArrayRef(Indices, NumElts), "vperm");
15452 case X86::BI__builtin_ia32_pslldqi128_byteshift:
15453 case X86::BI__builtin_ia32_pslldqi256_byteshift:
15454 case X86::BI__builtin_ia32_pslldqi512_byteshift: {
15455 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
15456 auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
15457 // Builtin type is vXi64 so multiply by 8 to get bytes.
15458 unsigned NumElts = ResultType->getNumElements() * 8;
15460 // If pslldq is shifting the vector more than 15 bytes, emit zero.
15461 if (ShiftVal >= 16)
15462 return llvm::Constant::getNullValue(ResultType);
15464 int Indices[64];
15465 // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
15466 for (unsigned l = 0; l != NumElts; l += 16) {
15467 for (unsigned i = 0; i != 16; ++i) {
15468 unsigned Idx = NumElts + i - ShiftVal;
15469 if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
15470 Indices[l + i] = Idx + l;
15474 auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
15475 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
15476 Value *Zero = llvm::Constant::getNullValue(VecTy);
15477 Value *SV = Builder.CreateShuffleVector(
15478 Zero, Cast, ArrayRef(Indices, NumElts), "pslldq");
15479 return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
15481 case X86::BI__builtin_ia32_psrldqi128_byteshift:
15482 case X86::BI__builtin_ia32_psrldqi256_byteshift:
15483 case X86::BI__builtin_ia32_psrldqi512_byteshift: {
15484 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
15485 auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
15486 // Builtin type is vXi64 so multiply by 8 to get bytes.
15487 unsigned NumElts = ResultType->getNumElements() * 8;
15489 // If psrldq is shifting the vector more than 15 bytes, emit zero.
15490 if (ShiftVal >= 16)
15491 return llvm::Constant::getNullValue(ResultType);
15493 int Indices[64];
15494 // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
15495 for (unsigned l = 0; l != NumElts; l += 16) {
15496 for (unsigned i = 0; i != 16; ++i) {
15497 unsigned Idx = i + ShiftVal;
15498 if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
15499 Indices[l + i] = Idx + l;
15503 auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
15504 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
15505 Value *Zero = llvm::Constant::getNullValue(VecTy);
15506 Value *SV = Builder.CreateShuffleVector(
15507 Cast, Zero, ArrayRef(Indices, NumElts), "psrldq");
15508 return Builder.CreateBitCast(SV, ResultType, "cast");
15510 case X86::BI__builtin_ia32_kshiftliqi:
15511 case X86::BI__builtin_ia32_kshiftlihi:
15512 case X86::BI__builtin_ia32_kshiftlisi:
15513 case X86::BI__builtin_ia32_kshiftlidi: {
15514 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
15515 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15517 if (ShiftVal >= NumElts)
15518 return llvm::Constant::getNullValue(Ops[0]->getType());
15520 Value *In = getMaskVecValue(*this, Ops[0], NumElts);
15522 int Indices[64];
15523 for (unsigned i = 0; i != NumElts; ++i)
15524 Indices[i] = NumElts + i - ShiftVal;
15526 Value *Zero = llvm::Constant::getNullValue(In->getType());
15527 Value *SV = Builder.CreateShuffleVector(
15528 Zero, In, ArrayRef(Indices, NumElts), "kshiftl");
15529 return Builder.CreateBitCast(SV, Ops[0]->getType());
15531 case X86::BI__builtin_ia32_kshiftriqi:
15532 case X86::BI__builtin_ia32_kshiftrihi:
15533 case X86::BI__builtin_ia32_kshiftrisi:
15534 case X86::BI__builtin_ia32_kshiftridi: {
15535 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
15536 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15538 if (ShiftVal >= NumElts)
15539 return llvm::Constant::getNullValue(Ops[0]->getType());
15541 Value *In = getMaskVecValue(*this, Ops[0], NumElts);
15543 int Indices[64];
15544 for (unsigned i = 0; i != NumElts; ++i)
15545 Indices[i] = i + ShiftVal;
15547 Value *Zero = llvm::Constant::getNullValue(In->getType());
15548 Value *SV = Builder.CreateShuffleVector(
15549 In, Zero, ArrayRef(Indices, NumElts), "kshiftr");
15550 return Builder.CreateBitCast(SV, Ops[0]->getType());
15552 case X86::BI__builtin_ia32_movnti:
15553 case X86::BI__builtin_ia32_movnti64:
15554 case X86::BI__builtin_ia32_movntsd:
15555 case X86::BI__builtin_ia32_movntss: {
15556 llvm::MDNode *Node = llvm::MDNode::get(
15557 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
15559 Value *Ptr = Ops[0];
15560 Value *Src = Ops[1];
15562 // Extract the 0'th element of the source vector.
15563 if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
15564 BuiltinID == X86::BI__builtin_ia32_movntss)
15565 Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
15567 // Unaligned nontemporal store of the scalar value.
15568 StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, Ptr);
15569 SI->setMetadata(llvm::LLVMContext::MD_nontemporal, Node);
15570 SI->setAlignment(llvm::Align(1));
15571 return SI;
15573 // Rotate is a special case of funnel shift - 1st 2 args are the same.
15574 case X86::BI__builtin_ia32_vprotb:
15575 case X86::BI__builtin_ia32_vprotw:
15576 case X86::BI__builtin_ia32_vprotd:
15577 case X86::BI__builtin_ia32_vprotq:
15578 case X86::BI__builtin_ia32_vprotbi:
15579 case X86::BI__builtin_ia32_vprotwi:
15580 case X86::BI__builtin_ia32_vprotdi:
15581 case X86::BI__builtin_ia32_vprotqi:
15582 case X86::BI__builtin_ia32_prold128:
15583 case X86::BI__builtin_ia32_prold256:
15584 case X86::BI__builtin_ia32_prold512:
15585 case X86::BI__builtin_ia32_prolq128:
15586 case X86::BI__builtin_ia32_prolq256:
15587 case X86::BI__builtin_ia32_prolq512:
15588 case X86::BI__builtin_ia32_prolvd128:
15589 case X86::BI__builtin_ia32_prolvd256:
15590 case X86::BI__builtin_ia32_prolvd512:
15591 case X86::BI__builtin_ia32_prolvq128:
15592 case X86::BI__builtin_ia32_prolvq256:
15593 case X86::BI__builtin_ia32_prolvq512:
15594 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
15595 case X86::BI__builtin_ia32_prord128:
15596 case X86::BI__builtin_ia32_prord256:
15597 case X86::BI__builtin_ia32_prord512:
15598 case X86::BI__builtin_ia32_prorq128:
15599 case X86::BI__builtin_ia32_prorq256:
15600 case X86::BI__builtin_ia32_prorq512:
15601 case X86::BI__builtin_ia32_prorvd128:
15602 case X86::BI__builtin_ia32_prorvd256:
15603 case X86::BI__builtin_ia32_prorvd512:
15604 case X86::BI__builtin_ia32_prorvq128:
15605 case X86::BI__builtin_ia32_prorvq256:
15606 case X86::BI__builtin_ia32_prorvq512:
15607 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
15608 case X86::BI__builtin_ia32_selectb_128:
15609 case X86::BI__builtin_ia32_selectb_256:
15610 case X86::BI__builtin_ia32_selectb_512:
15611 case X86::BI__builtin_ia32_selectw_128:
15612 case X86::BI__builtin_ia32_selectw_256:
15613 case X86::BI__builtin_ia32_selectw_512:
15614 case X86::BI__builtin_ia32_selectd_128:
15615 case X86::BI__builtin_ia32_selectd_256:
15616 case X86::BI__builtin_ia32_selectd_512:
15617 case X86::BI__builtin_ia32_selectq_128:
15618 case X86::BI__builtin_ia32_selectq_256:
15619 case X86::BI__builtin_ia32_selectq_512:
15620 case X86::BI__builtin_ia32_selectph_128:
15621 case X86::BI__builtin_ia32_selectph_256:
15622 case X86::BI__builtin_ia32_selectph_512:
15623 case X86::BI__builtin_ia32_selectpbf_128:
15624 case X86::BI__builtin_ia32_selectpbf_256:
15625 case X86::BI__builtin_ia32_selectpbf_512:
15626 case X86::BI__builtin_ia32_selectps_128:
15627 case X86::BI__builtin_ia32_selectps_256:
15628 case X86::BI__builtin_ia32_selectps_512:
15629 case X86::BI__builtin_ia32_selectpd_128:
15630 case X86::BI__builtin_ia32_selectpd_256:
15631 case X86::BI__builtin_ia32_selectpd_512:
15632 return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
15633 case X86::BI__builtin_ia32_selectsh_128:
15634 case X86::BI__builtin_ia32_selectsbf_128:
15635 case X86::BI__builtin_ia32_selectss_128:
15636 case X86::BI__builtin_ia32_selectsd_128: {
15637 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
15638 Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
15639 A = EmitX86ScalarSelect(*this, Ops[0], A, B);
15640 return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
15642 case X86::BI__builtin_ia32_cmpb128_mask:
15643 case X86::BI__builtin_ia32_cmpb256_mask:
15644 case X86::BI__builtin_ia32_cmpb512_mask:
15645 case X86::BI__builtin_ia32_cmpw128_mask:
15646 case X86::BI__builtin_ia32_cmpw256_mask:
15647 case X86::BI__builtin_ia32_cmpw512_mask:
15648 case X86::BI__builtin_ia32_cmpd128_mask:
15649 case X86::BI__builtin_ia32_cmpd256_mask:
15650 case X86::BI__builtin_ia32_cmpd512_mask:
15651 case X86::BI__builtin_ia32_cmpq128_mask:
15652 case X86::BI__builtin_ia32_cmpq256_mask:
15653 case X86::BI__builtin_ia32_cmpq512_mask: {
15654 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
15655 return EmitX86MaskedCompare(*this, CC, true, Ops);
15657 case X86::BI__builtin_ia32_ucmpb128_mask:
15658 case X86::BI__builtin_ia32_ucmpb256_mask:
15659 case X86::BI__builtin_ia32_ucmpb512_mask:
15660 case X86::BI__builtin_ia32_ucmpw128_mask:
15661 case X86::BI__builtin_ia32_ucmpw256_mask:
15662 case X86::BI__builtin_ia32_ucmpw512_mask:
15663 case X86::BI__builtin_ia32_ucmpd128_mask:
15664 case X86::BI__builtin_ia32_ucmpd256_mask:
15665 case X86::BI__builtin_ia32_ucmpd512_mask:
15666 case X86::BI__builtin_ia32_ucmpq128_mask:
15667 case X86::BI__builtin_ia32_ucmpq256_mask:
15668 case X86::BI__builtin_ia32_ucmpq512_mask: {
15669 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
15670 return EmitX86MaskedCompare(*this, CC, false, Ops);
15672 case X86::BI__builtin_ia32_vpcomb:
15673 case X86::BI__builtin_ia32_vpcomw:
15674 case X86::BI__builtin_ia32_vpcomd:
15675 case X86::BI__builtin_ia32_vpcomq:
15676 return EmitX86vpcom(*this, Ops, true);
15677 case X86::BI__builtin_ia32_vpcomub:
15678 case X86::BI__builtin_ia32_vpcomuw:
15679 case X86::BI__builtin_ia32_vpcomud:
15680 case X86::BI__builtin_ia32_vpcomuq:
15681 return EmitX86vpcom(*this, Ops, false);
15683 case X86::BI__builtin_ia32_kortestcqi:
15684 case X86::BI__builtin_ia32_kortestchi:
15685 case X86::BI__builtin_ia32_kortestcsi:
15686 case X86::BI__builtin_ia32_kortestcdi: {
15687 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
15688 Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
15689 Value *Cmp = Builder.CreateICmpEQ(Or, C);
15690 return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
15692 case X86::BI__builtin_ia32_kortestzqi:
15693 case X86::BI__builtin_ia32_kortestzhi:
15694 case X86::BI__builtin_ia32_kortestzsi:
15695 case X86::BI__builtin_ia32_kortestzdi: {
15696 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
15697 Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
15698 Value *Cmp = Builder.CreateICmpEQ(Or, C);
15699 return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
15702 case X86::BI__builtin_ia32_ktestcqi:
15703 case X86::BI__builtin_ia32_ktestzqi:
15704 case X86::BI__builtin_ia32_ktestchi:
15705 case X86::BI__builtin_ia32_ktestzhi:
15706 case X86::BI__builtin_ia32_ktestcsi:
15707 case X86::BI__builtin_ia32_ktestzsi:
15708 case X86::BI__builtin_ia32_ktestcdi:
15709 case X86::BI__builtin_ia32_ktestzdi: {
15710 Intrinsic::ID IID;
15711 switch (BuiltinID) {
15712 default: llvm_unreachable("Unsupported intrinsic!");
15713 case X86::BI__builtin_ia32_ktestcqi:
15714 IID = Intrinsic::x86_avx512_ktestc_b;
15715 break;
15716 case X86::BI__builtin_ia32_ktestzqi:
15717 IID = Intrinsic::x86_avx512_ktestz_b;
15718 break;
15719 case X86::BI__builtin_ia32_ktestchi:
15720 IID = Intrinsic::x86_avx512_ktestc_w;
15721 break;
15722 case X86::BI__builtin_ia32_ktestzhi:
15723 IID = Intrinsic::x86_avx512_ktestz_w;
15724 break;
15725 case X86::BI__builtin_ia32_ktestcsi:
15726 IID = Intrinsic::x86_avx512_ktestc_d;
15727 break;
15728 case X86::BI__builtin_ia32_ktestzsi:
15729 IID = Intrinsic::x86_avx512_ktestz_d;
15730 break;
15731 case X86::BI__builtin_ia32_ktestcdi:
15732 IID = Intrinsic::x86_avx512_ktestc_q;
15733 break;
15734 case X86::BI__builtin_ia32_ktestzdi:
15735 IID = Intrinsic::x86_avx512_ktestz_q;
15736 break;
15739 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15740 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
15741 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
15742 Function *Intr = CGM.getIntrinsic(IID);
15743 return Builder.CreateCall(Intr, {LHS, RHS});
15746 case X86::BI__builtin_ia32_kaddqi:
15747 case X86::BI__builtin_ia32_kaddhi:
15748 case X86::BI__builtin_ia32_kaddsi:
15749 case X86::BI__builtin_ia32_kadddi: {
15750 Intrinsic::ID IID;
15751 switch (BuiltinID) {
15752 default: llvm_unreachable("Unsupported intrinsic!");
15753 case X86::BI__builtin_ia32_kaddqi:
15754 IID = Intrinsic::x86_avx512_kadd_b;
15755 break;
15756 case X86::BI__builtin_ia32_kaddhi:
15757 IID = Intrinsic::x86_avx512_kadd_w;
15758 break;
15759 case X86::BI__builtin_ia32_kaddsi:
15760 IID = Intrinsic::x86_avx512_kadd_d;
15761 break;
15762 case X86::BI__builtin_ia32_kadddi:
15763 IID = Intrinsic::x86_avx512_kadd_q;
15764 break;
15767 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15768 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
15769 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
15770 Function *Intr = CGM.getIntrinsic(IID);
15771 Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
15772 return Builder.CreateBitCast(Res, Ops[0]->getType());
15774 case X86::BI__builtin_ia32_kandqi:
15775 case X86::BI__builtin_ia32_kandhi:
15776 case X86::BI__builtin_ia32_kandsi:
15777 case X86::BI__builtin_ia32_kanddi:
15778 return EmitX86MaskLogic(*this, Instruction::And, Ops);
15779 case X86::BI__builtin_ia32_kandnqi:
15780 case X86::BI__builtin_ia32_kandnhi:
15781 case X86::BI__builtin_ia32_kandnsi:
15782 case X86::BI__builtin_ia32_kandndi:
15783 return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
15784 case X86::BI__builtin_ia32_korqi:
15785 case X86::BI__builtin_ia32_korhi:
15786 case X86::BI__builtin_ia32_korsi:
15787 case X86::BI__builtin_ia32_kordi:
15788 return EmitX86MaskLogic(*this, Instruction::Or, Ops);
15789 case X86::BI__builtin_ia32_kxnorqi:
15790 case X86::BI__builtin_ia32_kxnorhi:
15791 case X86::BI__builtin_ia32_kxnorsi:
15792 case X86::BI__builtin_ia32_kxnordi:
15793 return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
15794 case X86::BI__builtin_ia32_kxorqi:
15795 case X86::BI__builtin_ia32_kxorhi:
15796 case X86::BI__builtin_ia32_kxorsi:
15797 case X86::BI__builtin_ia32_kxordi:
15798 return EmitX86MaskLogic(*this, Instruction::Xor, Ops);
15799 case X86::BI__builtin_ia32_knotqi:
15800 case X86::BI__builtin_ia32_knothi:
15801 case X86::BI__builtin_ia32_knotsi:
15802 case X86::BI__builtin_ia32_knotdi: {
15803 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15804 Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
15805 return Builder.CreateBitCast(Builder.CreateNot(Res),
15806 Ops[0]->getType());
15808 case X86::BI__builtin_ia32_kmovb:
15809 case X86::BI__builtin_ia32_kmovw:
15810 case X86::BI__builtin_ia32_kmovd:
15811 case X86::BI__builtin_ia32_kmovq: {
15812 // Bitcast to vXi1 type and then back to integer. This gets the mask
15813 // register type into the IR, but might be optimized out depending on
15814 // what's around it.
15815 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15816 Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
15817 return Builder.CreateBitCast(Res, Ops[0]->getType());
15820 case X86::BI__builtin_ia32_kunpckdi:
15821 case X86::BI__builtin_ia32_kunpcksi:
15822 case X86::BI__builtin_ia32_kunpckhi: {
15823 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15824 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
15825 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
15826 int Indices[64];
15827 for (unsigned i = 0; i != NumElts; ++i)
15828 Indices[i] = i;
15830 // First extract half of each vector. This gives better codegen than
15831 // doing it in a single shuffle.
15832 LHS = Builder.CreateShuffleVector(LHS, LHS, ArrayRef(Indices, NumElts / 2));
15833 RHS = Builder.CreateShuffleVector(RHS, RHS, ArrayRef(Indices, NumElts / 2));
15834 // Concat the vectors.
15835 // NOTE: Operands are swapped to match the intrinsic definition.
15836 Value *Res =
15837 Builder.CreateShuffleVector(RHS, LHS, ArrayRef(Indices, NumElts));
15838 return Builder.CreateBitCast(Res, Ops[0]->getType());
15841 case X86::BI__builtin_ia32_vplzcntd_128:
15842 case X86::BI__builtin_ia32_vplzcntd_256:
15843 case X86::BI__builtin_ia32_vplzcntd_512:
15844 case X86::BI__builtin_ia32_vplzcntq_128:
15845 case X86::BI__builtin_ia32_vplzcntq_256:
15846 case X86::BI__builtin_ia32_vplzcntq_512: {
15847 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
15848 return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
15850 case X86::BI__builtin_ia32_sqrtss:
15851 case X86::BI__builtin_ia32_sqrtsd: {
15852 Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
15853 Function *F;
15854 if (Builder.getIsFPConstrained()) {
15855 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
15856 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
15857 A->getType());
15858 A = Builder.CreateConstrainedFPCall(F, {A});
15859 } else {
15860 F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
15861 A = Builder.CreateCall(F, {A});
15863 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
15865 case X86::BI__builtin_ia32_sqrtsh_round_mask:
15866 case X86::BI__builtin_ia32_sqrtsd_round_mask:
15867 case X86::BI__builtin_ia32_sqrtss_round_mask: {
15868 unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
15869 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
15870 // otherwise keep the intrinsic.
15871 if (CC != 4) {
15872 Intrinsic::ID IID;
15874 switch (BuiltinID) {
15875 default:
15876 llvm_unreachable("Unsupported intrinsic!");
15877 case X86::BI__builtin_ia32_sqrtsh_round_mask:
15878 IID = Intrinsic::x86_avx512fp16_mask_sqrt_sh;
15879 break;
15880 case X86::BI__builtin_ia32_sqrtsd_round_mask:
15881 IID = Intrinsic::x86_avx512_mask_sqrt_sd;
15882 break;
15883 case X86::BI__builtin_ia32_sqrtss_round_mask:
15884 IID = Intrinsic::x86_avx512_mask_sqrt_ss;
15885 break;
15887 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15889 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
15890 Function *F;
15891 if (Builder.getIsFPConstrained()) {
15892 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
15893 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
15894 A->getType());
15895 A = Builder.CreateConstrainedFPCall(F, A);
15896 } else {
15897 F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
15898 A = Builder.CreateCall(F, A);
15900 Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
15901 A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
15902 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
15904 case X86::BI__builtin_ia32_sqrtpd256:
15905 case X86::BI__builtin_ia32_sqrtpd:
15906 case X86::BI__builtin_ia32_sqrtps256:
15907 case X86::BI__builtin_ia32_sqrtps:
15908 case X86::BI__builtin_ia32_sqrtph256:
15909 case X86::BI__builtin_ia32_sqrtph:
15910 case X86::BI__builtin_ia32_sqrtph512:
15911 case X86::BI__builtin_ia32_sqrtps512:
15912 case X86::BI__builtin_ia32_sqrtpd512: {
15913 if (Ops.size() == 2) {
15914 unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
15915 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
15916 // otherwise keep the intrinsic.
15917 if (CC != 4) {
15918 Intrinsic::ID IID;
15920 switch (BuiltinID) {
15921 default:
15922 llvm_unreachable("Unsupported intrinsic!");
15923 case X86::BI__builtin_ia32_sqrtph512:
15924 IID = Intrinsic::x86_avx512fp16_sqrt_ph_512;
15925 break;
15926 case X86::BI__builtin_ia32_sqrtps512:
15927 IID = Intrinsic::x86_avx512_sqrt_ps_512;
15928 break;
15929 case X86::BI__builtin_ia32_sqrtpd512:
15930 IID = Intrinsic::x86_avx512_sqrt_pd_512;
15931 break;
15933 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15936 if (Builder.getIsFPConstrained()) {
15937 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
15938 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
15939 Ops[0]->getType());
15940 return Builder.CreateConstrainedFPCall(F, Ops[0]);
15941 } else {
15942 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
15943 return Builder.CreateCall(F, Ops[0]);
15947 case X86::BI__builtin_ia32_pmuludq128:
15948 case X86::BI__builtin_ia32_pmuludq256:
15949 case X86::BI__builtin_ia32_pmuludq512:
15950 return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
15952 case X86::BI__builtin_ia32_pmuldq128:
15953 case X86::BI__builtin_ia32_pmuldq256:
15954 case X86::BI__builtin_ia32_pmuldq512:
15955 return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
15957 case X86::BI__builtin_ia32_pternlogd512_mask:
15958 case X86::BI__builtin_ia32_pternlogq512_mask:
15959 case X86::BI__builtin_ia32_pternlogd128_mask:
15960 case X86::BI__builtin_ia32_pternlogd256_mask:
15961 case X86::BI__builtin_ia32_pternlogq128_mask:
15962 case X86::BI__builtin_ia32_pternlogq256_mask:
15963 return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
15965 case X86::BI__builtin_ia32_pternlogd512_maskz:
15966 case X86::BI__builtin_ia32_pternlogq512_maskz:
15967 case X86::BI__builtin_ia32_pternlogd128_maskz:
15968 case X86::BI__builtin_ia32_pternlogd256_maskz:
15969 case X86::BI__builtin_ia32_pternlogq128_maskz:
15970 case X86::BI__builtin_ia32_pternlogq256_maskz:
15971 return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
15973 case X86::BI__builtin_ia32_vpshldd128:
15974 case X86::BI__builtin_ia32_vpshldd256:
15975 case X86::BI__builtin_ia32_vpshldd512:
15976 case X86::BI__builtin_ia32_vpshldq128:
15977 case X86::BI__builtin_ia32_vpshldq256:
15978 case X86::BI__builtin_ia32_vpshldq512:
15979 case X86::BI__builtin_ia32_vpshldw128:
15980 case X86::BI__builtin_ia32_vpshldw256:
15981 case X86::BI__builtin_ia32_vpshldw512:
15982 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
15984 case X86::BI__builtin_ia32_vpshrdd128:
15985 case X86::BI__builtin_ia32_vpshrdd256:
15986 case X86::BI__builtin_ia32_vpshrdd512:
15987 case X86::BI__builtin_ia32_vpshrdq128:
15988 case X86::BI__builtin_ia32_vpshrdq256:
15989 case X86::BI__builtin_ia32_vpshrdq512:
15990 case X86::BI__builtin_ia32_vpshrdw128:
15991 case X86::BI__builtin_ia32_vpshrdw256:
15992 case X86::BI__builtin_ia32_vpshrdw512:
15993 // Ops 0 and 1 are swapped.
15994 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
15996 case X86::BI__builtin_ia32_vpshldvd128:
15997 case X86::BI__builtin_ia32_vpshldvd256:
15998 case X86::BI__builtin_ia32_vpshldvd512:
15999 case X86::BI__builtin_ia32_vpshldvq128:
16000 case X86::BI__builtin_ia32_vpshldvq256:
16001 case X86::BI__builtin_ia32_vpshldvq512:
16002 case X86::BI__builtin_ia32_vpshldvw128:
16003 case X86::BI__builtin_ia32_vpshldvw256:
16004 case X86::BI__builtin_ia32_vpshldvw512:
16005 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
16007 case X86::BI__builtin_ia32_vpshrdvd128:
16008 case X86::BI__builtin_ia32_vpshrdvd256:
16009 case X86::BI__builtin_ia32_vpshrdvd512:
16010 case X86::BI__builtin_ia32_vpshrdvq128:
16011 case X86::BI__builtin_ia32_vpshrdvq256:
16012 case X86::BI__builtin_ia32_vpshrdvq512:
16013 case X86::BI__builtin_ia32_vpshrdvw128:
16014 case X86::BI__builtin_ia32_vpshrdvw256:
16015 case X86::BI__builtin_ia32_vpshrdvw512:
16016 // Ops 0 and 1 are swapped.
16017 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
16019 // Reductions
16020 case X86::BI__builtin_ia32_reduce_fadd_pd512:
16021 case X86::BI__builtin_ia32_reduce_fadd_ps512:
16022 case X86::BI__builtin_ia32_reduce_fadd_ph512:
16023 case X86::BI__builtin_ia32_reduce_fadd_ph256:
16024 case X86::BI__builtin_ia32_reduce_fadd_ph128: {
16025 Function *F =
16026 CGM.getIntrinsic(Intrinsic::vector_reduce_fadd, Ops[1]->getType());
16027 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
16028 Builder.getFastMathFlags().setAllowReassoc();
16029 return Builder.CreateCall(F, {Ops[0], Ops[1]});
16031 case X86::BI__builtin_ia32_reduce_fmul_pd512:
16032 case X86::BI__builtin_ia32_reduce_fmul_ps512:
16033 case X86::BI__builtin_ia32_reduce_fmul_ph512:
16034 case X86::BI__builtin_ia32_reduce_fmul_ph256:
16035 case X86::BI__builtin_ia32_reduce_fmul_ph128: {
16036 Function *F =
16037 CGM.getIntrinsic(Intrinsic::vector_reduce_fmul, Ops[1]->getType());
16038 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
16039 Builder.getFastMathFlags().setAllowReassoc();
16040 return Builder.CreateCall(F, {Ops[0], Ops[1]});
16042 case X86::BI__builtin_ia32_reduce_fmax_pd512:
16043 case X86::BI__builtin_ia32_reduce_fmax_ps512:
16044 case X86::BI__builtin_ia32_reduce_fmax_ph512:
16045 case X86::BI__builtin_ia32_reduce_fmax_ph256:
16046 case X86::BI__builtin_ia32_reduce_fmax_ph128: {
16047 Function *F =
16048 CGM.getIntrinsic(Intrinsic::vector_reduce_fmax, Ops[0]->getType());
16049 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
16050 Builder.getFastMathFlags().setNoNaNs();
16051 return Builder.CreateCall(F, {Ops[0]});
16053 case X86::BI__builtin_ia32_reduce_fmin_pd512:
16054 case X86::BI__builtin_ia32_reduce_fmin_ps512:
16055 case X86::BI__builtin_ia32_reduce_fmin_ph512:
16056 case X86::BI__builtin_ia32_reduce_fmin_ph256:
16057 case X86::BI__builtin_ia32_reduce_fmin_ph128: {
16058 Function *F =
16059 CGM.getIntrinsic(Intrinsic::vector_reduce_fmin, Ops[0]->getType());
16060 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
16061 Builder.getFastMathFlags().setNoNaNs();
16062 return Builder.CreateCall(F, {Ops[0]});
16065 case X86::BI__builtin_ia32_rdrand16_step:
16066 case X86::BI__builtin_ia32_rdrand32_step:
16067 case X86::BI__builtin_ia32_rdrand64_step:
16068 case X86::BI__builtin_ia32_rdseed16_step:
16069 case X86::BI__builtin_ia32_rdseed32_step:
16070 case X86::BI__builtin_ia32_rdseed64_step: {
16071 Intrinsic::ID ID;
16072 switch (BuiltinID) {
16073 default: llvm_unreachable("Unsupported intrinsic!");
16074 case X86::BI__builtin_ia32_rdrand16_step:
16075 ID = Intrinsic::x86_rdrand_16;
16076 break;
16077 case X86::BI__builtin_ia32_rdrand32_step:
16078 ID = Intrinsic::x86_rdrand_32;
16079 break;
16080 case X86::BI__builtin_ia32_rdrand64_step:
16081 ID = Intrinsic::x86_rdrand_64;
16082 break;
16083 case X86::BI__builtin_ia32_rdseed16_step:
16084 ID = Intrinsic::x86_rdseed_16;
16085 break;
16086 case X86::BI__builtin_ia32_rdseed32_step:
16087 ID = Intrinsic::x86_rdseed_32;
16088 break;
16089 case X86::BI__builtin_ia32_rdseed64_step:
16090 ID = Intrinsic::x86_rdseed_64;
16091 break;
16094 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
16095 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
16096 Ops[0]);
16097 return Builder.CreateExtractValue(Call, 1);
16099 case X86::BI__builtin_ia32_addcarryx_u32:
16100 case X86::BI__builtin_ia32_addcarryx_u64:
16101 case X86::BI__builtin_ia32_subborrow_u32:
16102 case X86::BI__builtin_ia32_subborrow_u64: {
16103 Intrinsic::ID IID;
16104 switch (BuiltinID) {
16105 default: llvm_unreachable("Unsupported intrinsic!");
16106 case X86::BI__builtin_ia32_addcarryx_u32:
16107 IID = Intrinsic::x86_addcarry_32;
16108 break;
16109 case X86::BI__builtin_ia32_addcarryx_u64:
16110 IID = Intrinsic::x86_addcarry_64;
16111 break;
16112 case X86::BI__builtin_ia32_subborrow_u32:
16113 IID = Intrinsic::x86_subborrow_32;
16114 break;
16115 case X86::BI__builtin_ia32_subborrow_u64:
16116 IID = Intrinsic::x86_subborrow_64;
16117 break;
16120 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
16121 { Ops[0], Ops[1], Ops[2] });
16122 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
16123 Ops[3]);
16124 return Builder.CreateExtractValue(Call, 0);
16127 case X86::BI__builtin_ia32_fpclassps128_mask:
16128 case X86::BI__builtin_ia32_fpclassps256_mask:
16129 case X86::BI__builtin_ia32_fpclassps512_mask:
16130 case X86::BI__builtin_ia32_fpclassph128_mask:
16131 case X86::BI__builtin_ia32_fpclassph256_mask:
16132 case X86::BI__builtin_ia32_fpclassph512_mask:
16133 case X86::BI__builtin_ia32_fpclasspd128_mask:
16134 case X86::BI__builtin_ia32_fpclasspd256_mask:
16135 case X86::BI__builtin_ia32_fpclasspd512_mask: {
16136 unsigned NumElts =
16137 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
16138 Value *MaskIn = Ops[2];
16139 Ops.erase(&Ops[2]);
16141 Intrinsic::ID ID;
16142 switch (BuiltinID) {
16143 default: llvm_unreachable("Unsupported intrinsic!");
16144 case X86::BI__builtin_ia32_fpclassph128_mask:
16145 ID = Intrinsic::x86_avx512fp16_fpclass_ph_128;
16146 break;
16147 case X86::BI__builtin_ia32_fpclassph256_mask:
16148 ID = Intrinsic::x86_avx512fp16_fpclass_ph_256;
16149 break;
16150 case X86::BI__builtin_ia32_fpclassph512_mask:
16151 ID = Intrinsic::x86_avx512fp16_fpclass_ph_512;
16152 break;
16153 case X86::BI__builtin_ia32_fpclassps128_mask:
16154 ID = Intrinsic::x86_avx512_fpclass_ps_128;
16155 break;
16156 case X86::BI__builtin_ia32_fpclassps256_mask:
16157 ID = Intrinsic::x86_avx512_fpclass_ps_256;
16158 break;
16159 case X86::BI__builtin_ia32_fpclassps512_mask:
16160 ID = Intrinsic::x86_avx512_fpclass_ps_512;
16161 break;
16162 case X86::BI__builtin_ia32_fpclasspd128_mask:
16163 ID = Intrinsic::x86_avx512_fpclass_pd_128;
16164 break;
16165 case X86::BI__builtin_ia32_fpclasspd256_mask:
16166 ID = Intrinsic::x86_avx512_fpclass_pd_256;
16167 break;
16168 case X86::BI__builtin_ia32_fpclasspd512_mask:
16169 ID = Intrinsic::x86_avx512_fpclass_pd_512;
16170 break;
16173 Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
16174 return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
16177 case X86::BI__builtin_ia32_vp2intersect_q_512:
16178 case X86::BI__builtin_ia32_vp2intersect_q_256:
16179 case X86::BI__builtin_ia32_vp2intersect_q_128:
16180 case X86::BI__builtin_ia32_vp2intersect_d_512:
16181 case X86::BI__builtin_ia32_vp2intersect_d_256:
16182 case X86::BI__builtin_ia32_vp2intersect_d_128: {
16183 unsigned NumElts =
16184 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
16185 Intrinsic::ID ID;
16187 switch (BuiltinID) {
16188 default: llvm_unreachable("Unsupported intrinsic!");
16189 case X86::BI__builtin_ia32_vp2intersect_q_512:
16190 ID = Intrinsic::x86_avx512_vp2intersect_q_512;
16191 break;
16192 case X86::BI__builtin_ia32_vp2intersect_q_256:
16193 ID = Intrinsic::x86_avx512_vp2intersect_q_256;
16194 break;
16195 case X86::BI__builtin_ia32_vp2intersect_q_128:
16196 ID = Intrinsic::x86_avx512_vp2intersect_q_128;
16197 break;
16198 case X86::BI__builtin_ia32_vp2intersect_d_512:
16199 ID = Intrinsic::x86_avx512_vp2intersect_d_512;
16200 break;
16201 case X86::BI__builtin_ia32_vp2intersect_d_256:
16202 ID = Intrinsic::x86_avx512_vp2intersect_d_256;
16203 break;
16204 case X86::BI__builtin_ia32_vp2intersect_d_128:
16205 ID = Intrinsic::x86_avx512_vp2intersect_d_128;
16206 break;
16209 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
16210 Value *Result = Builder.CreateExtractValue(Call, 0);
16211 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
16212 Builder.CreateDefaultAlignedStore(Result, Ops[2]);
16214 Result = Builder.CreateExtractValue(Call, 1);
16215 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
16216 return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
16219 case X86::BI__builtin_ia32_vpmultishiftqb128:
16220 case X86::BI__builtin_ia32_vpmultishiftqb256:
16221 case X86::BI__builtin_ia32_vpmultishiftqb512: {
16222 Intrinsic::ID ID;
16223 switch (BuiltinID) {
16224 default: llvm_unreachable("Unsupported intrinsic!");
16225 case X86::BI__builtin_ia32_vpmultishiftqb128:
16226 ID = Intrinsic::x86_avx512_pmultishift_qb_128;
16227 break;
16228 case X86::BI__builtin_ia32_vpmultishiftqb256:
16229 ID = Intrinsic::x86_avx512_pmultishift_qb_256;
16230 break;
16231 case X86::BI__builtin_ia32_vpmultishiftqb512:
16232 ID = Intrinsic::x86_avx512_pmultishift_qb_512;
16233 break;
16236 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
16239 case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
16240 case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
16241 case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
16242 unsigned NumElts =
16243 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
16244 Value *MaskIn = Ops[2];
16245 Ops.erase(&Ops[2]);
16247 Intrinsic::ID ID;
16248 switch (BuiltinID) {
16249 default: llvm_unreachable("Unsupported intrinsic!");
16250 case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
16251 ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
16252 break;
16253 case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
16254 ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
16255 break;
16256 case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
16257 ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
16258 break;
16261 Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
16262 return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
16265 // packed comparison intrinsics
16266 case X86::BI__builtin_ia32_cmpeqps:
16267 case X86::BI__builtin_ia32_cmpeqpd:
16268 return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false);
16269 case X86::BI__builtin_ia32_cmpltps:
16270 case X86::BI__builtin_ia32_cmpltpd:
16271 return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true);
16272 case X86::BI__builtin_ia32_cmpleps:
16273 case X86::BI__builtin_ia32_cmplepd:
16274 return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true);
16275 case X86::BI__builtin_ia32_cmpunordps:
16276 case X86::BI__builtin_ia32_cmpunordpd:
16277 return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false);
16278 case X86::BI__builtin_ia32_cmpneqps:
16279 case X86::BI__builtin_ia32_cmpneqpd:
16280 return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false);
16281 case X86::BI__builtin_ia32_cmpnltps:
16282 case X86::BI__builtin_ia32_cmpnltpd:
16283 return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true);
16284 case X86::BI__builtin_ia32_cmpnleps:
16285 case X86::BI__builtin_ia32_cmpnlepd:
16286 return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true);
16287 case X86::BI__builtin_ia32_cmpordps:
16288 case X86::BI__builtin_ia32_cmpordpd:
16289 return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false);
16290 case X86::BI__builtin_ia32_cmpph128_mask:
16291 case X86::BI__builtin_ia32_cmpph256_mask:
16292 case X86::BI__builtin_ia32_cmpph512_mask:
16293 case X86::BI__builtin_ia32_cmpps128_mask:
16294 case X86::BI__builtin_ia32_cmpps256_mask:
16295 case X86::BI__builtin_ia32_cmpps512_mask:
16296 case X86::BI__builtin_ia32_cmppd128_mask:
16297 case X86::BI__builtin_ia32_cmppd256_mask:
16298 case X86::BI__builtin_ia32_cmppd512_mask:
16299 IsMaskFCmp = true;
16300 [[fallthrough]];
16301 case X86::BI__builtin_ia32_cmpps:
16302 case X86::BI__builtin_ia32_cmpps256:
16303 case X86::BI__builtin_ia32_cmppd:
16304 case X86::BI__builtin_ia32_cmppd256: {
16305 // Lowering vector comparisons to fcmp instructions, while
16306 // ignoring signalling behaviour requested
16307 // ignoring rounding mode requested
16308 // This is only possible if fp-model is not strict and FENV_ACCESS is off.
16310 // The third argument is the comparison condition, and integer in the
16311 // range [0, 31]
16312 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
16314 // Lowering to IR fcmp instruction.
16315 // Ignoring requested signaling behaviour,
16316 // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
16317 FCmpInst::Predicate Pred;
16318 bool IsSignaling;
16319 // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling
16320 // behavior is inverted. We'll handle that after the switch.
16321 switch (CC & 0xf) {
16322 case 0x00: Pred = FCmpInst::FCMP_OEQ; IsSignaling = false; break;
16323 case 0x01: Pred = FCmpInst::FCMP_OLT; IsSignaling = true; break;
16324 case 0x02: Pred = FCmpInst::FCMP_OLE; IsSignaling = true; break;
16325 case 0x03: Pred = FCmpInst::FCMP_UNO; IsSignaling = false; break;
16326 case 0x04: Pred = FCmpInst::FCMP_UNE; IsSignaling = false; break;
16327 case 0x05: Pred = FCmpInst::FCMP_UGE; IsSignaling = true; break;
16328 case 0x06: Pred = FCmpInst::FCMP_UGT; IsSignaling = true; break;
16329 case 0x07: Pred = FCmpInst::FCMP_ORD; IsSignaling = false; break;
16330 case 0x08: Pred = FCmpInst::FCMP_UEQ; IsSignaling = false; break;
16331 case 0x09: Pred = FCmpInst::FCMP_ULT; IsSignaling = true; break;
16332 case 0x0a: Pred = FCmpInst::FCMP_ULE; IsSignaling = true; break;
16333 case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break;
16334 case 0x0c: Pred = FCmpInst::FCMP_ONE; IsSignaling = false; break;
16335 case 0x0d: Pred = FCmpInst::FCMP_OGE; IsSignaling = true; break;
16336 case 0x0e: Pred = FCmpInst::FCMP_OGT; IsSignaling = true; break;
16337 case 0x0f: Pred = FCmpInst::FCMP_TRUE; IsSignaling = false; break;
16338 default: llvm_unreachable("Unhandled CC");
16341 // Invert the signalling behavior for 16-31.
16342 if (CC & 0x10)
16343 IsSignaling = !IsSignaling;
16345 // If the predicate is true or false and we're using constrained intrinsics,
16346 // we don't have a compare intrinsic we can use. Just use the legacy X86
16347 // specific intrinsic.
16348 // If the intrinsic is mask enabled and we're using constrained intrinsics,
16349 // use the legacy X86 specific intrinsic.
16350 if (Builder.getIsFPConstrained() &&
16351 (Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE ||
16352 IsMaskFCmp)) {
16354 Intrinsic::ID IID;
16355 switch (BuiltinID) {
16356 default: llvm_unreachable("Unexpected builtin");
16357 case X86::BI__builtin_ia32_cmpps:
16358 IID = Intrinsic::x86_sse_cmp_ps;
16359 break;
16360 case X86::BI__builtin_ia32_cmpps256:
16361 IID = Intrinsic::x86_avx_cmp_ps_256;
16362 break;
16363 case X86::BI__builtin_ia32_cmppd:
16364 IID = Intrinsic::x86_sse2_cmp_pd;
16365 break;
16366 case X86::BI__builtin_ia32_cmppd256:
16367 IID = Intrinsic::x86_avx_cmp_pd_256;
16368 break;
16369 case X86::BI__builtin_ia32_cmpph128_mask:
16370 IID = Intrinsic::x86_avx512fp16_mask_cmp_ph_128;
16371 break;
16372 case X86::BI__builtin_ia32_cmpph256_mask:
16373 IID = Intrinsic::x86_avx512fp16_mask_cmp_ph_256;
16374 break;
16375 case X86::BI__builtin_ia32_cmpph512_mask:
16376 IID = Intrinsic::x86_avx512fp16_mask_cmp_ph_512;
16377 break;
16378 case X86::BI__builtin_ia32_cmpps512_mask:
16379 IID = Intrinsic::x86_avx512_mask_cmp_ps_512;
16380 break;
16381 case X86::BI__builtin_ia32_cmppd512_mask:
16382 IID = Intrinsic::x86_avx512_mask_cmp_pd_512;
16383 break;
16384 case X86::BI__builtin_ia32_cmpps128_mask:
16385 IID = Intrinsic::x86_avx512_mask_cmp_ps_128;
16386 break;
16387 case X86::BI__builtin_ia32_cmpps256_mask:
16388 IID = Intrinsic::x86_avx512_mask_cmp_ps_256;
16389 break;
16390 case X86::BI__builtin_ia32_cmppd128_mask:
16391 IID = Intrinsic::x86_avx512_mask_cmp_pd_128;
16392 break;
16393 case X86::BI__builtin_ia32_cmppd256_mask:
16394 IID = Intrinsic::x86_avx512_mask_cmp_pd_256;
16395 break;
16398 Function *Intr = CGM.getIntrinsic(IID);
16399 if (IsMaskFCmp) {
16400 unsigned NumElts =
16401 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
16402 Ops[3] = getMaskVecValue(*this, Ops[3], NumElts);
16403 Value *Cmp = Builder.CreateCall(Intr, Ops);
16404 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr);
16407 return Builder.CreateCall(Intr, Ops);
16410 // Builtins without the _mask suffix return a vector of integers
16411 // of the same width as the input vectors
16412 if (IsMaskFCmp) {
16413 // We ignore SAE if strict FP is disabled. We only keep precise
16414 // exception behavior under strict FP.
16415 // NOTE: If strict FP does ever go through here a CGFPOptionsRAII
16416 // object will be required.
16417 unsigned NumElts =
16418 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
16419 Value *Cmp;
16420 if (IsSignaling)
16421 Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
16422 else
16423 Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
16424 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
16427 return getVectorFCmpIR(Pred, IsSignaling);
16430 // SSE scalar comparison intrinsics
16431 case X86::BI__builtin_ia32_cmpeqss:
16432 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
16433 case X86::BI__builtin_ia32_cmpltss:
16434 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
16435 case X86::BI__builtin_ia32_cmpless:
16436 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
16437 case X86::BI__builtin_ia32_cmpunordss:
16438 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
16439 case X86::BI__builtin_ia32_cmpneqss:
16440 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
16441 case X86::BI__builtin_ia32_cmpnltss:
16442 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
16443 case X86::BI__builtin_ia32_cmpnless:
16444 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
16445 case X86::BI__builtin_ia32_cmpordss:
16446 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
16447 case X86::BI__builtin_ia32_cmpeqsd:
16448 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
16449 case X86::BI__builtin_ia32_cmpltsd:
16450 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
16451 case X86::BI__builtin_ia32_cmplesd:
16452 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
16453 case X86::BI__builtin_ia32_cmpunordsd:
16454 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
16455 case X86::BI__builtin_ia32_cmpneqsd:
16456 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
16457 case X86::BI__builtin_ia32_cmpnltsd:
16458 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
16459 case X86::BI__builtin_ia32_cmpnlesd:
16460 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
16461 case X86::BI__builtin_ia32_cmpordsd:
16462 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
16464 // f16c half2float intrinsics
16465 case X86::BI__builtin_ia32_vcvtph2ps:
16466 case X86::BI__builtin_ia32_vcvtph2ps256:
16467 case X86::BI__builtin_ia32_vcvtph2ps_mask:
16468 case X86::BI__builtin_ia32_vcvtph2ps256_mask:
16469 case X86::BI__builtin_ia32_vcvtph2ps512_mask: {
16470 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
16471 return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType()));
16474 // AVX512 bf16 intrinsics
16475 case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
16476 Ops[2] = getMaskVecValue(
16477 *this, Ops[2],
16478 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements());
16479 Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
16480 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
16482 case X86::BI__builtin_ia32_cvtsbf162ss_32:
16483 return Builder.CreateFPExt(Ops[0], Builder.getFloatTy());
16485 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
16486 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
16487 Intrinsic::ID IID;
16488 switch (BuiltinID) {
16489 default: llvm_unreachable("Unsupported intrinsic!");
16490 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
16491 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
16492 break;
16493 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
16494 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
16495 break;
16497 Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
16498 return EmitX86Select(*this, Ops[2], Res, Ops[1]);
16501 case X86::BI__cpuid:
16502 case X86::BI__cpuidex: {
16503 Value *FuncId = EmitScalarExpr(E->getArg(1));
16504 Value *SubFuncId = BuiltinID == X86::BI__cpuidex
16505 ? EmitScalarExpr(E->getArg(2))
16506 : llvm::ConstantInt::get(Int32Ty, 0);
16508 llvm::StructType *CpuidRetTy =
16509 llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, Int32Ty);
16510 llvm::FunctionType *FTy =
16511 llvm::FunctionType::get(CpuidRetTy, {Int32Ty, Int32Ty}, false);
16513 StringRef Asm, Constraints;
16514 if (getTarget().getTriple().getArch() == llvm::Triple::x86) {
16515 Asm = "cpuid";
16516 Constraints = "={ax},={bx},={cx},={dx},{ax},{cx}";
16517 } else {
16518 // x86-64 uses %rbx as the base register, so preserve it.
16519 Asm = "xchgq %rbx, ${1:q}\n"
16520 "cpuid\n"
16521 "xchgq %rbx, ${1:q}";
16522 Constraints = "={ax},=r,={cx},={dx},0,2";
16525 llvm::InlineAsm *IA = llvm::InlineAsm::get(FTy, Asm, Constraints,
16526 /*hasSideEffects=*/false);
16527 Value *IACall = Builder.CreateCall(IA, {FuncId, SubFuncId});
16528 Value *BasePtr = EmitScalarExpr(E->getArg(0));
16529 Value *Store = nullptr;
16530 for (unsigned i = 0; i < 4; i++) {
16531 Value *Extracted = Builder.CreateExtractValue(IACall, i);
16532 Value *StorePtr = Builder.CreateConstInBoundsGEP1_32(Int32Ty, BasePtr, i);
16533 Store = Builder.CreateAlignedStore(Extracted, StorePtr, getIntAlign());
16536 // Return the last store instruction to signal that we have emitted the
16537 // the intrinsic.
16538 return Store;
16541 case X86::BI__emul:
16542 case X86::BI__emulu: {
16543 llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
16544 bool isSigned = (BuiltinID == X86::BI__emul);
16545 Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
16546 Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
16547 return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
16549 case X86::BI__mulh:
16550 case X86::BI__umulh:
16551 case X86::BI_mul128:
16552 case X86::BI_umul128: {
16553 llvm::Type *ResType = ConvertType(E->getType());
16554 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
16556 bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
16557 Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
16558 Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
16560 Value *MulResult, *HigherBits;
16561 if (IsSigned) {
16562 MulResult = Builder.CreateNSWMul(LHS, RHS);
16563 HigherBits = Builder.CreateAShr(MulResult, 64);
16564 } else {
16565 MulResult = Builder.CreateNUWMul(LHS, RHS);
16566 HigherBits = Builder.CreateLShr(MulResult, 64);
16568 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
16570 if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
16571 return HigherBits;
16573 Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
16574 Builder.CreateStore(HigherBits, HighBitsAddress);
16575 return Builder.CreateIntCast(MulResult, ResType, IsSigned);
16578 case X86::BI__faststorefence: {
16579 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
16580 llvm::SyncScope::System);
16582 case X86::BI__shiftleft128:
16583 case X86::BI__shiftright128: {
16584 llvm::Function *F = CGM.getIntrinsic(
16585 BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
16586 Int64Ty);
16587 // Flip low/high ops and zero-extend amount to matching type.
16588 // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt)
16589 // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt)
16590 std::swap(Ops[0], Ops[1]);
16591 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
16592 return Builder.CreateCall(F, Ops);
16594 case X86::BI_ReadWriteBarrier:
16595 case X86::BI_ReadBarrier:
16596 case X86::BI_WriteBarrier: {
16597 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
16598 llvm::SyncScope::SingleThread);
16601 case X86::BI_AddressOfReturnAddress: {
16602 Function *F =
16603 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
16604 return Builder.CreateCall(F);
16606 case X86::BI__stosb: {
16607 // We treat __stosb as a volatile memset - it may not generate "rep stosb"
16608 // instruction, but it will create a memset that won't be optimized away.
16609 return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true);
16611 case X86::BI__ud2:
16612 // llvm.trap makes a ud2a instruction on x86.
16613 return EmitTrapCall(Intrinsic::trap);
16614 case X86::BI__int2c: {
16615 // This syscall signals a driver assertion failure in x86 NT kernels.
16616 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
16617 llvm::InlineAsm *IA =
16618 llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
16619 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
16620 getLLVMContext(), llvm::AttributeList::FunctionIndex,
16621 llvm::Attribute::NoReturn);
16622 llvm::CallInst *CI = Builder.CreateCall(IA);
16623 CI->setAttributes(NoReturnAttr);
16624 return CI;
16626 case X86::BI__readfsbyte:
16627 case X86::BI__readfsword:
16628 case X86::BI__readfsdword:
16629 case X86::BI__readfsqword: {
16630 llvm::Type *IntTy = ConvertType(E->getType());
16631 Value *Ptr = Builder.CreateIntToPtr(
16632 Ops[0], llvm::PointerType::get(getLLVMContext(), 257));
16633 LoadInst *Load = Builder.CreateAlignedLoad(
16634 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
16635 Load->setVolatile(true);
16636 return Load;
16638 case X86::BI__readgsbyte:
16639 case X86::BI__readgsword:
16640 case X86::BI__readgsdword:
16641 case X86::BI__readgsqword: {
16642 llvm::Type *IntTy = ConvertType(E->getType());
16643 Value *Ptr = Builder.CreateIntToPtr(
16644 Ops[0], llvm::PointerType::get(getLLVMContext(), 256));
16645 LoadInst *Load = Builder.CreateAlignedLoad(
16646 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
16647 Load->setVolatile(true);
16648 return Load;
16650 case X86::BI__builtin_ia32_encodekey128_u32: {
16651 Intrinsic::ID IID = Intrinsic::x86_encodekey128;
16653 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]});
16655 for (int i = 0; i < 3; ++i) {
16656 Value *Extract = Builder.CreateExtractValue(Call, i + 1);
16657 Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[2], i * 16);
16658 Builder.CreateAlignedStore(Extract, Ptr, Align(1));
16661 return Builder.CreateExtractValue(Call, 0);
16663 case X86::BI__builtin_ia32_encodekey256_u32: {
16664 Intrinsic::ID IID = Intrinsic::x86_encodekey256;
16666 Value *Call =
16667 Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]});
16669 for (int i = 0; i < 4; ++i) {
16670 Value *Extract = Builder.CreateExtractValue(Call, i + 1);
16671 Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[3], i * 16);
16672 Builder.CreateAlignedStore(Extract, Ptr, Align(1));
16675 return Builder.CreateExtractValue(Call, 0);
16677 case X86::BI__builtin_ia32_aesenc128kl_u8:
16678 case X86::BI__builtin_ia32_aesdec128kl_u8:
16679 case X86::BI__builtin_ia32_aesenc256kl_u8:
16680 case X86::BI__builtin_ia32_aesdec256kl_u8: {
16681 Intrinsic::ID IID;
16682 StringRef BlockName;
16683 switch (BuiltinID) {
16684 default:
16685 llvm_unreachable("Unexpected builtin");
16686 case X86::BI__builtin_ia32_aesenc128kl_u8:
16687 IID = Intrinsic::x86_aesenc128kl;
16688 BlockName = "aesenc128kl";
16689 break;
16690 case X86::BI__builtin_ia32_aesdec128kl_u8:
16691 IID = Intrinsic::x86_aesdec128kl;
16692 BlockName = "aesdec128kl";
16693 break;
16694 case X86::BI__builtin_ia32_aesenc256kl_u8:
16695 IID = Intrinsic::x86_aesenc256kl;
16696 BlockName = "aesenc256kl";
16697 break;
16698 case X86::BI__builtin_ia32_aesdec256kl_u8:
16699 IID = Intrinsic::x86_aesdec256kl;
16700 BlockName = "aesdec256kl";
16701 break;
16704 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]});
16706 BasicBlock *NoError =
16707 createBasicBlock(BlockName + "_no_error", this->CurFn);
16708 BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
16709 BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
16711 Value *Ret = Builder.CreateExtractValue(Call, 0);
16712 Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
16713 Value *Out = Builder.CreateExtractValue(Call, 1);
16714 Builder.CreateCondBr(Succ, NoError, Error);
16716 Builder.SetInsertPoint(NoError);
16717 Builder.CreateDefaultAlignedStore(Out, Ops[0]);
16718 Builder.CreateBr(End);
16720 Builder.SetInsertPoint(Error);
16721 Constant *Zero = llvm::Constant::getNullValue(Out->getType());
16722 Builder.CreateDefaultAlignedStore(Zero, Ops[0]);
16723 Builder.CreateBr(End);
16725 Builder.SetInsertPoint(End);
16726 return Builder.CreateExtractValue(Call, 0);
16728 case X86::BI__builtin_ia32_aesencwide128kl_u8:
16729 case X86::BI__builtin_ia32_aesdecwide128kl_u8:
16730 case X86::BI__builtin_ia32_aesencwide256kl_u8:
16731 case X86::BI__builtin_ia32_aesdecwide256kl_u8: {
16732 Intrinsic::ID IID;
16733 StringRef BlockName;
16734 switch (BuiltinID) {
16735 case X86::BI__builtin_ia32_aesencwide128kl_u8:
16736 IID = Intrinsic::x86_aesencwide128kl;
16737 BlockName = "aesencwide128kl";
16738 break;
16739 case X86::BI__builtin_ia32_aesdecwide128kl_u8:
16740 IID = Intrinsic::x86_aesdecwide128kl;
16741 BlockName = "aesdecwide128kl";
16742 break;
16743 case X86::BI__builtin_ia32_aesencwide256kl_u8:
16744 IID = Intrinsic::x86_aesencwide256kl;
16745 BlockName = "aesencwide256kl";
16746 break;
16747 case X86::BI__builtin_ia32_aesdecwide256kl_u8:
16748 IID = Intrinsic::x86_aesdecwide256kl;
16749 BlockName = "aesdecwide256kl";
16750 break;
16753 llvm::Type *Ty = FixedVectorType::get(Builder.getInt64Ty(), 2);
16754 Value *InOps[9];
16755 InOps[0] = Ops[2];
16756 for (int i = 0; i != 8; ++i) {
16757 Value *Ptr = Builder.CreateConstGEP1_32(Ty, Ops[1], i);
16758 InOps[i + 1] = Builder.CreateAlignedLoad(Ty, Ptr, Align(16));
16761 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps);
16763 BasicBlock *NoError =
16764 createBasicBlock(BlockName + "_no_error", this->CurFn);
16765 BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
16766 BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
16768 Value *Ret = Builder.CreateExtractValue(Call, 0);
16769 Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
16770 Builder.CreateCondBr(Succ, NoError, Error);
16772 Builder.SetInsertPoint(NoError);
16773 for (int i = 0; i != 8; ++i) {
16774 Value *Extract = Builder.CreateExtractValue(Call, i + 1);
16775 Value *Ptr = Builder.CreateConstGEP1_32(Extract->getType(), Ops[0], i);
16776 Builder.CreateAlignedStore(Extract, Ptr, Align(16));
16778 Builder.CreateBr(End);
16780 Builder.SetInsertPoint(Error);
16781 for (int i = 0; i != 8; ++i) {
16782 Value *Out = Builder.CreateExtractValue(Call, i + 1);
16783 Constant *Zero = llvm::Constant::getNullValue(Out->getType());
16784 Value *Ptr = Builder.CreateConstGEP1_32(Out->getType(), Ops[0], i);
16785 Builder.CreateAlignedStore(Zero, Ptr, Align(16));
16787 Builder.CreateBr(End);
16789 Builder.SetInsertPoint(End);
16790 return Builder.CreateExtractValue(Call, 0);
16792 case X86::BI__builtin_ia32_vfcmaddcph512_mask:
16793 IsConjFMA = true;
16794 [[fallthrough]];
16795 case X86::BI__builtin_ia32_vfmaddcph512_mask: {
16796 Intrinsic::ID IID = IsConjFMA
16797 ? Intrinsic::x86_avx512fp16_mask_vfcmadd_cph_512
16798 : Intrinsic::x86_avx512fp16_mask_vfmadd_cph_512;
16799 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
16800 return EmitX86Select(*this, Ops[3], Call, Ops[0]);
16802 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask:
16803 IsConjFMA = true;
16804 [[fallthrough]];
16805 case X86::BI__builtin_ia32_vfmaddcsh_round_mask: {
16806 Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
16807 : Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
16808 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
16809 Value *And = Builder.CreateAnd(Ops[3], llvm::ConstantInt::get(Int8Ty, 1));
16810 return EmitX86Select(*this, And, Call, Ops[0]);
16812 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3:
16813 IsConjFMA = true;
16814 [[fallthrough]];
16815 case X86::BI__builtin_ia32_vfmaddcsh_round_mask3: {
16816 Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
16817 : Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
16818 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
16819 static constexpr int Mask[] = {0, 5, 6, 7};
16820 return Builder.CreateShuffleVector(Call, Ops[2], Mask);
16822 case X86::BI__builtin_ia32_prefetchi:
16823 return Builder.CreateCall(
16824 CGM.getIntrinsic(Intrinsic::prefetch, Ops[0]->getType()),
16825 {Ops[0], llvm::ConstantInt::get(Int32Ty, 0), Ops[1],
16826 llvm::ConstantInt::get(Int32Ty, 0)});
16830 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
16831 const CallExpr *E) {
16832 // Do not emit the builtin arguments in the arguments of a function call,
16833 // because the evaluation order of function arguments is not specified in C++.
16834 // This is important when testing to ensure the arguments are emitted in the
16835 // same order every time. Eg:
16836 // Instead of:
16837 // return Builder.CreateFDiv(EmitScalarExpr(E->getArg(0)),
16838 // EmitScalarExpr(E->getArg(1)), "swdiv");
16839 // Use:
16840 // Value *Op0 = EmitScalarExpr(E->getArg(0));
16841 // Value *Op1 = EmitScalarExpr(E->getArg(1));
16842 // return Builder.CreateFDiv(Op0, Op1, "swdiv")
16844 Intrinsic::ID ID = Intrinsic::not_intrinsic;
16846 #include "llvm/TargetParser/PPCTargetParser.def"
16847 auto GenAIXPPCBuiltinCpuExpr = [&](unsigned SupportMethod, unsigned FieldIdx,
16848 unsigned Mask, CmpInst::Predicate CompOp,
16849 unsigned OpValue) -> Value * {
16850 if (SupportMethod == BUILTIN_PPC_FALSE)
16851 return llvm::ConstantInt::getFalse(ConvertType(E->getType()));
16853 if (SupportMethod == BUILTIN_PPC_TRUE)
16854 return llvm::ConstantInt::getTrue(ConvertType(E->getType()));
16856 assert(SupportMethod <= SYS_CALL && "Invalid value for SupportMethod.");
16858 llvm::Value *FieldValue = nullptr;
16859 if (SupportMethod == USE_SYS_CONF) {
16860 llvm::Type *STy = llvm::StructType::get(PPC_SYSTEMCONFIG_TYPE);
16861 llvm::Constant *SysConf =
16862 CGM.CreateRuntimeVariable(STy, "_system_configuration");
16864 // Grab the appropriate field from _system_configuration.
16865 llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
16866 ConstantInt::get(Int32Ty, FieldIdx)};
16868 FieldValue = Builder.CreateInBoundsGEP(STy, SysConf, Idxs);
16869 FieldValue = Builder.CreateAlignedLoad(Int32Ty, FieldValue,
16870 CharUnits::fromQuantity(4));
16871 } else if (SupportMethod == SYS_CALL) {
16872 llvm::FunctionType *FTy =
16873 llvm::FunctionType::get(Int64Ty, Int32Ty, false);
16874 llvm::FunctionCallee Func =
16875 CGM.CreateRuntimeFunction(FTy, "getsystemcfg");
16877 FieldValue =
16878 Builder.CreateCall(Func, {ConstantInt::get(Int32Ty, FieldIdx)});
16880 assert(FieldValue &&
16881 "SupportMethod value is not defined in PPCTargetParser.def.");
16883 if (Mask)
16884 FieldValue = Builder.CreateAnd(FieldValue, Mask);
16886 llvm::Type *ValueType = FieldValue->getType();
16887 bool IsValueType64Bit = ValueType->isIntegerTy(64);
16888 assert(
16889 (IsValueType64Bit || ValueType->isIntegerTy(32)) &&
16890 "Only 32/64-bit integers are supported in GenAIXPPCBuiltinCpuExpr().");
16892 return Builder.CreateICmp(
16893 CompOp, FieldValue,
16894 ConstantInt::get(IsValueType64Bit ? Int64Ty : Int32Ty, OpValue));
16897 switch (BuiltinID) {
16898 default: return nullptr;
16900 case Builtin::BI__builtin_cpu_is: {
16901 const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
16902 StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
16903 llvm::Triple Triple = getTarget().getTriple();
16905 unsigned LinuxSupportMethod, LinuxIDValue, AIXSupportMethod, AIXIDValue;
16906 typedef std::tuple<unsigned, unsigned, unsigned, unsigned> CPUInfo;
16908 std::tie(LinuxSupportMethod, LinuxIDValue, AIXSupportMethod, AIXIDValue) =
16909 static_cast<CPUInfo>(StringSwitch<CPUInfo>(CPUStr)
16910 #define PPC_CPU(NAME, Linux_SUPPORT_METHOD, LinuxID, AIX_SUPPORT_METHOD, \
16911 AIXID) \
16912 .Case(NAME, {Linux_SUPPORT_METHOD, LinuxID, AIX_SUPPORT_METHOD, AIXID})
16913 #include "llvm/TargetParser/PPCTargetParser.def"
16914 .Default({BUILTIN_PPC_UNSUPPORTED, 0,
16915 BUILTIN_PPC_UNSUPPORTED, 0}));
16917 if (Triple.isOSAIX()) {
16918 assert((AIXSupportMethod != BUILTIN_PPC_UNSUPPORTED) &&
16919 "Invalid CPU name. Missed by SemaChecking?");
16920 return GenAIXPPCBuiltinCpuExpr(AIXSupportMethod, AIX_SYSCON_IMPL_IDX, 0,
16921 ICmpInst::ICMP_EQ, AIXIDValue);
16924 assert(Triple.isOSLinux() &&
16925 "__builtin_cpu_is() is only supported for AIX and Linux.");
16927 assert((LinuxSupportMethod != BUILTIN_PPC_UNSUPPORTED) &&
16928 "Invalid CPU name. Missed by SemaChecking?");
16930 if (LinuxSupportMethod == BUILTIN_PPC_FALSE)
16931 return llvm::ConstantInt::getFalse(ConvertType(E->getType()));
16933 Value *Op0 = llvm::ConstantInt::get(Int32Ty, PPC_FAWORD_CPUID);
16934 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_fixed_addr_ld);
16935 Value *TheCall = Builder.CreateCall(F, {Op0}, "cpu_is");
16936 return Builder.CreateICmpEQ(TheCall,
16937 llvm::ConstantInt::get(Int32Ty, LinuxIDValue));
16939 case Builtin::BI__builtin_cpu_supports: {
16940 llvm::Triple Triple = getTarget().getTriple();
16941 const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
16942 StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
16943 if (Triple.isOSAIX()) {
16944 unsigned SupportMethod, FieldIdx, Mask, Value;
16945 CmpInst::Predicate CompOp;
16946 typedef std::tuple<unsigned, unsigned, unsigned, CmpInst::Predicate,
16947 unsigned>
16948 CPUSupportType;
16949 std::tie(SupportMethod, FieldIdx, Mask, CompOp, Value) =
16950 static_cast<CPUSupportType>(StringSwitch<CPUSupportType>(CPUStr)
16951 #define PPC_AIX_FEATURE(NAME, DESC, SUPPORT_METHOD, INDEX, MASK, COMP_OP, \
16952 VALUE) \
16953 .Case(NAME, {SUPPORT_METHOD, INDEX, MASK, COMP_OP, VALUE})
16954 #include "llvm/TargetParser/PPCTargetParser.def"
16955 .Default({BUILTIN_PPC_FALSE, 0, 0,
16956 CmpInst::Predicate(), 0}));
16957 return GenAIXPPCBuiltinCpuExpr(SupportMethod, FieldIdx, Mask, CompOp,
16958 Value);
16961 assert(Triple.isOSLinux() &&
16962 "__builtin_cpu_supports() is only supported for AIX and Linux.");
16963 unsigned FeatureWord;
16964 unsigned BitMask;
16965 std::tie(FeatureWord, BitMask) =
16966 StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
16967 #define PPC_LNX_FEATURE(Name, Description, EnumName, Bitmask, FA_WORD) \
16968 .Case(Name, {FA_WORD, Bitmask})
16969 #include "llvm/TargetParser/PPCTargetParser.def"
16970 .Default({0, 0});
16971 if (!BitMask)
16972 return Builder.getFalse();
16973 Value *Op0 = llvm::ConstantInt::get(Int32Ty, FeatureWord);
16974 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_fixed_addr_ld);
16975 Value *TheCall = Builder.CreateCall(F, {Op0}, "cpu_supports");
16976 Value *Mask =
16977 Builder.CreateAnd(TheCall, llvm::ConstantInt::get(Int32Ty, BitMask));
16978 return Builder.CreateICmpNE(Mask, llvm::Constant::getNullValue(Int32Ty));
16979 #undef PPC_FAWORD_HWCAP
16980 #undef PPC_FAWORD_HWCAP2
16981 #undef PPC_FAWORD_CPUID
16984 // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
16985 // call __builtin_readcyclecounter.
16986 case PPC::BI__builtin_ppc_get_timebase:
16987 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
16989 // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
16990 case PPC::BI__builtin_altivec_lvx:
16991 case PPC::BI__builtin_altivec_lvxl:
16992 case PPC::BI__builtin_altivec_lvebx:
16993 case PPC::BI__builtin_altivec_lvehx:
16994 case PPC::BI__builtin_altivec_lvewx:
16995 case PPC::BI__builtin_altivec_lvsl:
16996 case PPC::BI__builtin_altivec_lvsr:
16997 case PPC::BI__builtin_vsx_lxvd2x:
16998 case PPC::BI__builtin_vsx_lxvw4x:
16999 case PPC::BI__builtin_vsx_lxvd2x_be:
17000 case PPC::BI__builtin_vsx_lxvw4x_be:
17001 case PPC::BI__builtin_vsx_lxvl:
17002 case PPC::BI__builtin_vsx_lxvll:
17004 SmallVector<Value *, 2> Ops;
17005 Ops.push_back(EmitScalarExpr(E->getArg(0)));
17006 Ops.push_back(EmitScalarExpr(E->getArg(1)));
17007 if (!(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
17008 BuiltinID == PPC::BI__builtin_vsx_lxvll)) {
17009 Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
17010 Ops.pop_back();
17013 switch (BuiltinID) {
17014 default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
17015 case PPC::BI__builtin_altivec_lvx:
17016 ID = Intrinsic::ppc_altivec_lvx;
17017 break;
17018 case PPC::BI__builtin_altivec_lvxl:
17019 ID = Intrinsic::ppc_altivec_lvxl;
17020 break;
17021 case PPC::BI__builtin_altivec_lvebx:
17022 ID = Intrinsic::ppc_altivec_lvebx;
17023 break;
17024 case PPC::BI__builtin_altivec_lvehx:
17025 ID = Intrinsic::ppc_altivec_lvehx;
17026 break;
17027 case PPC::BI__builtin_altivec_lvewx:
17028 ID = Intrinsic::ppc_altivec_lvewx;
17029 break;
17030 case PPC::BI__builtin_altivec_lvsl:
17031 ID = Intrinsic::ppc_altivec_lvsl;
17032 break;
17033 case PPC::BI__builtin_altivec_lvsr:
17034 ID = Intrinsic::ppc_altivec_lvsr;
17035 break;
17036 case PPC::BI__builtin_vsx_lxvd2x:
17037 ID = Intrinsic::ppc_vsx_lxvd2x;
17038 break;
17039 case PPC::BI__builtin_vsx_lxvw4x:
17040 ID = Intrinsic::ppc_vsx_lxvw4x;
17041 break;
17042 case PPC::BI__builtin_vsx_lxvd2x_be:
17043 ID = Intrinsic::ppc_vsx_lxvd2x_be;
17044 break;
17045 case PPC::BI__builtin_vsx_lxvw4x_be:
17046 ID = Intrinsic::ppc_vsx_lxvw4x_be;
17047 break;
17048 case PPC::BI__builtin_vsx_lxvl:
17049 ID = Intrinsic::ppc_vsx_lxvl;
17050 break;
17051 case PPC::BI__builtin_vsx_lxvll:
17052 ID = Intrinsic::ppc_vsx_lxvll;
17053 break;
17055 llvm::Function *F = CGM.getIntrinsic(ID);
17056 return Builder.CreateCall(F, Ops, "");
17059 // vec_st, vec_xst_be
17060 case PPC::BI__builtin_altivec_stvx:
17061 case PPC::BI__builtin_altivec_stvxl:
17062 case PPC::BI__builtin_altivec_stvebx:
17063 case PPC::BI__builtin_altivec_stvehx:
17064 case PPC::BI__builtin_altivec_stvewx:
17065 case PPC::BI__builtin_vsx_stxvd2x:
17066 case PPC::BI__builtin_vsx_stxvw4x:
17067 case PPC::BI__builtin_vsx_stxvd2x_be:
17068 case PPC::BI__builtin_vsx_stxvw4x_be:
17069 case PPC::BI__builtin_vsx_stxvl:
17070 case PPC::BI__builtin_vsx_stxvll:
17072 SmallVector<Value *, 3> Ops;
17073 Ops.push_back(EmitScalarExpr(E->getArg(0)));
17074 Ops.push_back(EmitScalarExpr(E->getArg(1)));
17075 Ops.push_back(EmitScalarExpr(E->getArg(2)));
17076 if (!(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
17077 BuiltinID == PPC::BI__builtin_vsx_stxvll)) {
17078 Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
17079 Ops.pop_back();
17082 switch (BuiltinID) {
17083 default: llvm_unreachable("Unsupported st intrinsic!");
17084 case PPC::BI__builtin_altivec_stvx:
17085 ID = Intrinsic::ppc_altivec_stvx;
17086 break;
17087 case PPC::BI__builtin_altivec_stvxl:
17088 ID = Intrinsic::ppc_altivec_stvxl;
17089 break;
17090 case PPC::BI__builtin_altivec_stvebx:
17091 ID = Intrinsic::ppc_altivec_stvebx;
17092 break;
17093 case PPC::BI__builtin_altivec_stvehx:
17094 ID = Intrinsic::ppc_altivec_stvehx;
17095 break;
17096 case PPC::BI__builtin_altivec_stvewx:
17097 ID = Intrinsic::ppc_altivec_stvewx;
17098 break;
17099 case PPC::BI__builtin_vsx_stxvd2x:
17100 ID = Intrinsic::ppc_vsx_stxvd2x;
17101 break;
17102 case PPC::BI__builtin_vsx_stxvw4x:
17103 ID = Intrinsic::ppc_vsx_stxvw4x;
17104 break;
17105 case PPC::BI__builtin_vsx_stxvd2x_be:
17106 ID = Intrinsic::ppc_vsx_stxvd2x_be;
17107 break;
17108 case PPC::BI__builtin_vsx_stxvw4x_be:
17109 ID = Intrinsic::ppc_vsx_stxvw4x_be;
17110 break;
17111 case PPC::BI__builtin_vsx_stxvl:
17112 ID = Intrinsic::ppc_vsx_stxvl;
17113 break;
17114 case PPC::BI__builtin_vsx_stxvll:
17115 ID = Intrinsic::ppc_vsx_stxvll;
17116 break;
17118 llvm::Function *F = CGM.getIntrinsic(ID);
17119 return Builder.CreateCall(F, Ops, "");
17121 case PPC::BI__builtin_vsx_ldrmb: {
17122 // Essentially boils down to performing an unaligned VMX load sequence so
17123 // as to avoid crossing a page boundary and then shuffling the elements
17124 // into the right side of the vector register.
17125 Value *Op0 = EmitScalarExpr(E->getArg(0));
17126 Value *Op1 = EmitScalarExpr(E->getArg(1));
17127 int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue();
17128 llvm::Type *ResTy = ConvertType(E->getType());
17129 bool IsLE = getTarget().isLittleEndian();
17131 // If the user wants the entire vector, just load the entire vector.
17132 if (NumBytes == 16) {
17133 Value *LD =
17134 Builder.CreateLoad(Address(Op0, ResTy, CharUnits::fromQuantity(1)));
17135 if (!IsLE)
17136 return LD;
17138 // Reverse the bytes on LE.
17139 SmallVector<int, 16> RevMask;
17140 for (int Idx = 0; Idx < 16; Idx++)
17141 RevMask.push_back(15 - Idx);
17142 return Builder.CreateShuffleVector(LD, LD, RevMask);
17145 llvm::Function *Lvx = CGM.getIntrinsic(Intrinsic::ppc_altivec_lvx);
17146 llvm::Function *Lvs = CGM.getIntrinsic(IsLE ? Intrinsic::ppc_altivec_lvsr
17147 : Intrinsic::ppc_altivec_lvsl);
17148 llvm::Function *Vperm = CGM.getIntrinsic(Intrinsic::ppc_altivec_vperm);
17149 Value *HiMem = Builder.CreateGEP(
17150 Int8Ty, Op0, ConstantInt::get(Op1->getType(), NumBytes - 1));
17151 Value *LoLd = Builder.CreateCall(Lvx, Op0, "ld.lo");
17152 Value *HiLd = Builder.CreateCall(Lvx, HiMem, "ld.hi");
17153 Value *Mask1 = Builder.CreateCall(Lvs, Op0, "mask1");
17155 Op0 = IsLE ? HiLd : LoLd;
17156 Op1 = IsLE ? LoLd : HiLd;
17157 Value *AllElts = Builder.CreateCall(Vperm, {Op0, Op1, Mask1}, "shuffle1");
17158 Constant *Zero = llvm::Constant::getNullValue(IsLE ? ResTy : AllElts->getType());
17160 if (IsLE) {
17161 SmallVector<int, 16> Consts;
17162 for (int Idx = 0; Idx < 16; Idx++) {
17163 int Val = (NumBytes - Idx - 1 >= 0) ? (NumBytes - Idx - 1)
17164 : 16 - (NumBytes - Idx);
17165 Consts.push_back(Val);
17167 return Builder.CreateShuffleVector(Builder.CreateBitCast(AllElts, ResTy),
17168 Zero, Consts);
17170 SmallVector<Constant *, 16> Consts;
17171 for (int Idx = 0; Idx < 16; Idx++)
17172 Consts.push_back(Builder.getInt8(NumBytes + Idx));
17173 Value *Mask2 = ConstantVector::get(Consts);
17174 return Builder.CreateBitCast(
17175 Builder.CreateCall(Vperm, {Zero, AllElts, Mask2}, "shuffle2"), ResTy);
17177 case PPC::BI__builtin_vsx_strmb: {
17178 Value *Op0 = EmitScalarExpr(E->getArg(0));
17179 Value *Op1 = EmitScalarExpr(E->getArg(1));
17180 Value *Op2 = EmitScalarExpr(E->getArg(2));
17181 int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue();
17182 bool IsLE = getTarget().isLittleEndian();
17183 auto StoreSubVec = [&](unsigned Width, unsigned Offset, unsigned EltNo) {
17184 // Storing the whole vector, simply store it on BE and reverse bytes and
17185 // store on LE.
17186 if (Width == 16) {
17187 Value *StVec = Op2;
17188 if (IsLE) {
17189 SmallVector<int, 16> RevMask;
17190 for (int Idx = 0; Idx < 16; Idx++)
17191 RevMask.push_back(15 - Idx);
17192 StVec = Builder.CreateShuffleVector(Op2, Op2, RevMask);
17194 return Builder.CreateStore(
17195 StVec, Address(Op0, Op2->getType(), CharUnits::fromQuantity(1)));
17197 auto *ConvTy = Int64Ty;
17198 unsigned NumElts = 0;
17199 switch (Width) {
17200 default:
17201 llvm_unreachable("width for stores must be a power of 2");
17202 case 8:
17203 ConvTy = Int64Ty;
17204 NumElts = 2;
17205 break;
17206 case 4:
17207 ConvTy = Int32Ty;
17208 NumElts = 4;
17209 break;
17210 case 2:
17211 ConvTy = Int16Ty;
17212 NumElts = 8;
17213 break;
17214 case 1:
17215 ConvTy = Int8Ty;
17216 NumElts = 16;
17217 break;
17219 Value *Vec = Builder.CreateBitCast(
17220 Op2, llvm::FixedVectorType::get(ConvTy, NumElts));
17221 Value *Ptr =
17222 Builder.CreateGEP(Int8Ty, Op0, ConstantInt::get(Int64Ty, Offset));
17223 Value *Elt = Builder.CreateExtractElement(Vec, EltNo);
17224 if (IsLE && Width > 1) {
17225 Function *F = CGM.getIntrinsic(Intrinsic::bswap, ConvTy);
17226 Elt = Builder.CreateCall(F, Elt);
17228 return Builder.CreateStore(
17229 Elt, Address(Ptr, ConvTy, CharUnits::fromQuantity(1)));
17231 unsigned Stored = 0;
17232 unsigned RemainingBytes = NumBytes;
17233 Value *Result;
17234 if (NumBytes == 16)
17235 return StoreSubVec(16, 0, 0);
17236 if (NumBytes >= 8) {
17237 Result = StoreSubVec(8, NumBytes - 8, IsLE ? 0 : 1);
17238 RemainingBytes -= 8;
17239 Stored += 8;
17241 if (RemainingBytes >= 4) {
17242 Result = StoreSubVec(4, NumBytes - Stored - 4,
17243 IsLE ? (Stored >> 2) : 3 - (Stored >> 2));
17244 RemainingBytes -= 4;
17245 Stored += 4;
17247 if (RemainingBytes >= 2) {
17248 Result = StoreSubVec(2, NumBytes - Stored - 2,
17249 IsLE ? (Stored >> 1) : 7 - (Stored >> 1));
17250 RemainingBytes -= 2;
17251 Stored += 2;
17253 if (RemainingBytes)
17254 Result =
17255 StoreSubVec(1, NumBytes - Stored - 1, IsLE ? Stored : 15 - Stored);
17256 return Result;
17258 // Square root
17259 case PPC::BI__builtin_vsx_xvsqrtsp:
17260 case PPC::BI__builtin_vsx_xvsqrtdp: {
17261 llvm::Type *ResultType = ConvertType(E->getType());
17262 Value *X = EmitScalarExpr(E->getArg(0));
17263 if (Builder.getIsFPConstrained()) {
17264 llvm::Function *F = CGM.getIntrinsic(
17265 Intrinsic::experimental_constrained_sqrt, ResultType);
17266 return Builder.CreateConstrainedFPCall(F, X);
17267 } else {
17268 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
17269 return Builder.CreateCall(F, X);
17272 // Count leading zeros
17273 case PPC::BI__builtin_altivec_vclzb:
17274 case PPC::BI__builtin_altivec_vclzh:
17275 case PPC::BI__builtin_altivec_vclzw:
17276 case PPC::BI__builtin_altivec_vclzd: {
17277 llvm::Type *ResultType = ConvertType(E->getType());
17278 Value *X = EmitScalarExpr(E->getArg(0));
17279 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
17280 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
17281 return Builder.CreateCall(F, {X, Undef});
17283 case PPC::BI__builtin_altivec_vctzb:
17284 case PPC::BI__builtin_altivec_vctzh:
17285 case PPC::BI__builtin_altivec_vctzw:
17286 case PPC::BI__builtin_altivec_vctzd: {
17287 llvm::Type *ResultType = ConvertType(E->getType());
17288 Value *X = EmitScalarExpr(E->getArg(0));
17289 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
17290 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
17291 return Builder.CreateCall(F, {X, Undef});
17293 case PPC::BI__builtin_altivec_vinsd:
17294 case PPC::BI__builtin_altivec_vinsw:
17295 case PPC::BI__builtin_altivec_vinsd_elt:
17296 case PPC::BI__builtin_altivec_vinsw_elt: {
17297 llvm::Type *ResultType = ConvertType(E->getType());
17298 Value *Op0 = EmitScalarExpr(E->getArg(0));
17299 Value *Op1 = EmitScalarExpr(E->getArg(1));
17300 Value *Op2 = EmitScalarExpr(E->getArg(2));
17302 bool IsUnaligned = (BuiltinID == PPC::BI__builtin_altivec_vinsw ||
17303 BuiltinID == PPC::BI__builtin_altivec_vinsd);
17305 bool Is32bit = (BuiltinID == PPC::BI__builtin_altivec_vinsw ||
17306 BuiltinID == PPC::BI__builtin_altivec_vinsw_elt);
17308 // The third argument must be a compile time constant.
17309 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
17310 assert(ArgCI &&
17311 "Third Arg to vinsw/vinsd intrinsic must be a constant integer!");
17313 // Valid value for the third argument is dependent on the input type and
17314 // builtin called.
17315 int ValidMaxValue = 0;
17316 if (IsUnaligned)
17317 ValidMaxValue = (Is32bit) ? 12 : 8;
17318 else
17319 ValidMaxValue = (Is32bit) ? 3 : 1;
17321 // Get value of third argument.
17322 int64_t ConstArg = ArgCI->getSExtValue();
17324 // Compose range checking error message.
17325 std::string RangeErrMsg = IsUnaligned ? "byte" : "element";
17326 RangeErrMsg += " number " + llvm::to_string(ConstArg);
17327 RangeErrMsg += " is outside of the valid range [0, ";
17328 RangeErrMsg += llvm::to_string(ValidMaxValue) + "]";
17330 // Issue error if third argument is not within the valid range.
17331 if (ConstArg < 0 || ConstArg > ValidMaxValue)
17332 CGM.Error(E->getExprLoc(), RangeErrMsg);
17334 // Input to vec_replace_elt is an element index, convert to byte index.
17335 if (!IsUnaligned) {
17336 ConstArg *= Is32bit ? 4 : 8;
17337 // Fix the constant according to endianess.
17338 if (getTarget().isLittleEndian())
17339 ConstArg = (Is32bit ? 12 : 8) - ConstArg;
17342 ID = Is32bit ? Intrinsic::ppc_altivec_vinsw : Intrinsic::ppc_altivec_vinsd;
17343 Op2 = ConstantInt::getSigned(Int32Ty, ConstArg);
17344 // Casting input to vector int as per intrinsic definition.
17345 Op0 =
17346 Is32bit
17347 ? Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4))
17348 : Builder.CreateBitCast(Op0,
17349 llvm::FixedVectorType::get(Int64Ty, 2));
17350 return Builder.CreateBitCast(
17351 Builder.CreateCall(CGM.getIntrinsic(ID), {Op0, Op1, Op2}), ResultType);
17353 case PPC::BI__builtin_altivec_vpopcntb:
17354 case PPC::BI__builtin_altivec_vpopcnth:
17355 case PPC::BI__builtin_altivec_vpopcntw:
17356 case PPC::BI__builtin_altivec_vpopcntd: {
17357 llvm::Type *ResultType = ConvertType(E->getType());
17358 Value *X = EmitScalarExpr(E->getArg(0));
17359 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
17360 return Builder.CreateCall(F, X);
17362 case PPC::BI__builtin_altivec_vadduqm:
17363 case PPC::BI__builtin_altivec_vsubuqm: {
17364 Value *Op0 = EmitScalarExpr(E->getArg(0));
17365 Value *Op1 = EmitScalarExpr(E->getArg(1));
17366 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
17367 Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int128Ty, 1));
17368 Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int128Ty, 1));
17369 if (BuiltinID == PPC::BI__builtin_altivec_vadduqm)
17370 return Builder.CreateAdd(Op0, Op1, "vadduqm");
17371 else
17372 return Builder.CreateSub(Op0, Op1, "vsubuqm");
17374 case PPC::BI__builtin_altivec_vaddcuq_c:
17375 case PPC::BI__builtin_altivec_vsubcuq_c: {
17376 SmallVector<Value *, 2> Ops;
17377 Value *Op0 = EmitScalarExpr(E->getArg(0));
17378 Value *Op1 = EmitScalarExpr(E->getArg(1));
17379 llvm::Type *V1I128Ty = llvm::FixedVectorType::get(
17380 llvm::IntegerType::get(getLLVMContext(), 128), 1);
17381 Ops.push_back(Builder.CreateBitCast(Op0, V1I128Ty));
17382 Ops.push_back(Builder.CreateBitCast(Op1, V1I128Ty));
17383 ID = (BuiltinID == PPC::BI__builtin_altivec_vaddcuq_c)
17384 ? Intrinsic::ppc_altivec_vaddcuq
17385 : Intrinsic::ppc_altivec_vsubcuq;
17386 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops, "");
17388 case PPC::BI__builtin_altivec_vaddeuqm_c:
17389 case PPC::BI__builtin_altivec_vaddecuq_c:
17390 case PPC::BI__builtin_altivec_vsubeuqm_c:
17391 case PPC::BI__builtin_altivec_vsubecuq_c: {
17392 SmallVector<Value *, 3> Ops;
17393 Value *Op0 = EmitScalarExpr(E->getArg(0));
17394 Value *Op1 = EmitScalarExpr(E->getArg(1));
17395 Value *Op2 = EmitScalarExpr(E->getArg(2));
17396 llvm::Type *V1I128Ty = llvm::FixedVectorType::get(
17397 llvm::IntegerType::get(getLLVMContext(), 128), 1);
17398 Ops.push_back(Builder.CreateBitCast(Op0, V1I128Ty));
17399 Ops.push_back(Builder.CreateBitCast(Op1, V1I128Ty));
17400 Ops.push_back(Builder.CreateBitCast(Op2, V1I128Ty));
17401 switch (BuiltinID) {
17402 default:
17403 llvm_unreachable("Unsupported intrinsic!");
17404 case PPC::BI__builtin_altivec_vaddeuqm_c:
17405 ID = Intrinsic::ppc_altivec_vaddeuqm;
17406 break;
17407 case PPC::BI__builtin_altivec_vaddecuq_c:
17408 ID = Intrinsic::ppc_altivec_vaddecuq;
17409 break;
17410 case PPC::BI__builtin_altivec_vsubeuqm_c:
17411 ID = Intrinsic::ppc_altivec_vsubeuqm;
17412 break;
17413 case PPC::BI__builtin_altivec_vsubecuq_c:
17414 ID = Intrinsic::ppc_altivec_vsubecuq;
17415 break;
17417 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops, "");
17419 case PPC::BI__builtin_ppc_rldimi:
17420 case PPC::BI__builtin_ppc_rlwimi: {
17421 Value *Op0 = EmitScalarExpr(E->getArg(0));
17422 Value *Op1 = EmitScalarExpr(E->getArg(1));
17423 Value *Op2 = EmitScalarExpr(E->getArg(2));
17424 Value *Op3 = EmitScalarExpr(E->getArg(3));
17425 // rldimi is 64-bit instruction, expand the intrinsic before isel to
17426 // leverage peephole and avoid legalization efforts.
17427 if (BuiltinID == PPC::BI__builtin_ppc_rldimi &&
17428 !getTarget().getTriple().isPPC64()) {
17429 Function *F = CGM.getIntrinsic(Intrinsic::fshl, Op0->getType());
17430 Op2 = Builder.CreateZExt(Op2, Int64Ty);
17431 Value *Shift = Builder.CreateCall(F, {Op0, Op0, Op2});
17432 return Builder.CreateOr(Builder.CreateAnd(Shift, Op3),
17433 Builder.CreateAnd(Op1, Builder.CreateNot(Op3)));
17435 return Builder.CreateCall(
17436 CGM.getIntrinsic(BuiltinID == PPC::BI__builtin_ppc_rldimi
17437 ? Intrinsic::ppc_rldimi
17438 : Intrinsic::ppc_rlwimi),
17439 {Op0, Op1, Op2, Op3});
17441 case PPC::BI__builtin_ppc_rlwnm: {
17442 Value *Op0 = EmitScalarExpr(E->getArg(0));
17443 Value *Op1 = EmitScalarExpr(E->getArg(1));
17444 Value *Op2 = EmitScalarExpr(E->getArg(2));
17445 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_rlwnm),
17446 {Op0, Op1, Op2});
17448 case PPC::BI__builtin_ppc_poppar4:
17449 case PPC::BI__builtin_ppc_poppar8: {
17450 Value *Op0 = EmitScalarExpr(E->getArg(0));
17451 llvm::Type *ArgType = Op0->getType();
17452 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
17453 Value *Tmp = Builder.CreateCall(F, Op0);
17455 llvm::Type *ResultType = ConvertType(E->getType());
17456 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
17457 if (Result->getType() != ResultType)
17458 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
17459 "cast");
17460 return Result;
17462 case PPC::BI__builtin_ppc_cmpb: {
17463 Value *Op0 = EmitScalarExpr(E->getArg(0));
17464 Value *Op1 = EmitScalarExpr(E->getArg(1));
17465 if (getTarget().getTriple().isPPC64()) {
17466 Function *F =
17467 CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int64Ty, Int64Ty, Int64Ty});
17468 return Builder.CreateCall(F, {Op0, Op1}, "cmpb");
17470 // For 32 bit, emit the code as below:
17471 // %conv = trunc i64 %a to i32
17472 // %conv1 = trunc i64 %b to i32
17473 // %shr = lshr i64 %a, 32
17474 // %conv2 = trunc i64 %shr to i32
17475 // %shr3 = lshr i64 %b, 32
17476 // %conv4 = trunc i64 %shr3 to i32
17477 // %0 = tail call i32 @llvm.ppc.cmpb32(i32 %conv, i32 %conv1)
17478 // %conv5 = zext i32 %0 to i64
17479 // %1 = tail call i32 @llvm.ppc.cmpb32(i32 %conv2, i32 %conv4)
17480 // %conv614 = zext i32 %1 to i64
17481 // %shl = shl nuw i64 %conv614, 32
17482 // %or = or i64 %shl, %conv5
17483 // ret i64 %or
17484 Function *F =
17485 CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int32Ty, Int32Ty, Int32Ty});
17486 Value *ArgOneLo = Builder.CreateTrunc(Op0, Int32Ty);
17487 Value *ArgTwoLo = Builder.CreateTrunc(Op1, Int32Ty);
17488 Constant *ShiftAmt = ConstantInt::get(Int64Ty, 32);
17489 Value *ArgOneHi =
17490 Builder.CreateTrunc(Builder.CreateLShr(Op0, ShiftAmt), Int32Ty);
17491 Value *ArgTwoHi =
17492 Builder.CreateTrunc(Builder.CreateLShr(Op1, ShiftAmt), Int32Ty);
17493 Value *ResLo = Builder.CreateZExt(
17494 Builder.CreateCall(F, {ArgOneLo, ArgTwoLo}, "cmpb"), Int64Ty);
17495 Value *ResHiShift = Builder.CreateZExt(
17496 Builder.CreateCall(F, {ArgOneHi, ArgTwoHi}, "cmpb"), Int64Ty);
17497 Value *ResHi = Builder.CreateShl(ResHiShift, ShiftAmt);
17498 return Builder.CreateOr(ResLo, ResHi);
17500 // Copy sign
17501 case PPC::BI__builtin_vsx_xvcpsgnsp:
17502 case PPC::BI__builtin_vsx_xvcpsgndp: {
17503 llvm::Type *ResultType = ConvertType(E->getType());
17504 Value *X = EmitScalarExpr(E->getArg(0));
17505 Value *Y = EmitScalarExpr(E->getArg(1));
17506 ID = Intrinsic::copysign;
17507 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
17508 return Builder.CreateCall(F, {X, Y});
17510 // Rounding/truncation
17511 case PPC::BI__builtin_vsx_xvrspip:
17512 case PPC::BI__builtin_vsx_xvrdpip:
17513 case PPC::BI__builtin_vsx_xvrdpim:
17514 case PPC::BI__builtin_vsx_xvrspim:
17515 case PPC::BI__builtin_vsx_xvrdpi:
17516 case PPC::BI__builtin_vsx_xvrspi:
17517 case PPC::BI__builtin_vsx_xvrdpic:
17518 case PPC::BI__builtin_vsx_xvrspic:
17519 case PPC::BI__builtin_vsx_xvrdpiz:
17520 case PPC::BI__builtin_vsx_xvrspiz: {
17521 llvm::Type *ResultType = ConvertType(E->getType());
17522 Value *X = EmitScalarExpr(E->getArg(0));
17523 if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
17524 BuiltinID == PPC::BI__builtin_vsx_xvrspim)
17525 ID = Builder.getIsFPConstrained()
17526 ? Intrinsic::experimental_constrained_floor
17527 : Intrinsic::floor;
17528 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
17529 BuiltinID == PPC::BI__builtin_vsx_xvrspi)
17530 ID = Builder.getIsFPConstrained()
17531 ? Intrinsic::experimental_constrained_round
17532 : Intrinsic::round;
17533 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
17534 BuiltinID == PPC::BI__builtin_vsx_xvrspic)
17535 ID = Builder.getIsFPConstrained()
17536 ? Intrinsic::experimental_constrained_rint
17537 : Intrinsic::rint;
17538 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
17539 BuiltinID == PPC::BI__builtin_vsx_xvrspip)
17540 ID = Builder.getIsFPConstrained()
17541 ? Intrinsic::experimental_constrained_ceil
17542 : Intrinsic::ceil;
17543 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
17544 BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
17545 ID = Builder.getIsFPConstrained()
17546 ? Intrinsic::experimental_constrained_trunc
17547 : Intrinsic::trunc;
17548 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
17549 return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X)
17550 : Builder.CreateCall(F, X);
17553 // Absolute value
17554 case PPC::BI__builtin_vsx_xvabsdp:
17555 case PPC::BI__builtin_vsx_xvabssp: {
17556 llvm::Type *ResultType = ConvertType(E->getType());
17557 Value *X = EmitScalarExpr(E->getArg(0));
17558 llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
17559 return Builder.CreateCall(F, X);
17562 // Fastmath by default
17563 case PPC::BI__builtin_ppc_recipdivf:
17564 case PPC::BI__builtin_ppc_recipdivd:
17565 case PPC::BI__builtin_ppc_rsqrtf:
17566 case PPC::BI__builtin_ppc_rsqrtd: {
17567 FastMathFlags FMF = Builder.getFastMathFlags();
17568 Builder.getFastMathFlags().setFast();
17569 llvm::Type *ResultType = ConvertType(E->getType());
17570 Value *X = EmitScalarExpr(E->getArg(0));
17572 if (BuiltinID == PPC::BI__builtin_ppc_recipdivf ||
17573 BuiltinID == PPC::BI__builtin_ppc_recipdivd) {
17574 Value *Y = EmitScalarExpr(E->getArg(1));
17575 Value *FDiv = Builder.CreateFDiv(X, Y, "recipdiv");
17576 Builder.getFastMathFlags() &= (FMF);
17577 return FDiv;
17579 auto *One = ConstantFP::get(ResultType, 1.0);
17580 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
17581 Value *FDiv = Builder.CreateFDiv(One, Builder.CreateCall(F, X), "rsqrt");
17582 Builder.getFastMathFlags() &= (FMF);
17583 return FDiv;
17585 case PPC::BI__builtin_ppc_alignx: {
17586 Value *Op0 = EmitScalarExpr(E->getArg(0));
17587 Value *Op1 = EmitScalarExpr(E->getArg(1));
17588 ConstantInt *AlignmentCI = cast<ConstantInt>(Op0);
17589 if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
17590 AlignmentCI = ConstantInt::get(AlignmentCI->getIntegerType(),
17591 llvm::Value::MaximumAlignment);
17593 emitAlignmentAssumption(Op1, E->getArg(1),
17594 /*The expr loc is sufficient.*/ SourceLocation(),
17595 AlignmentCI, nullptr);
17596 return Op1;
17598 case PPC::BI__builtin_ppc_rdlam: {
17599 Value *Op0 = EmitScalarExpr(E->getArg(0));
17600 Value *Op1 = EmitScalarExpr(E->getArg(1));
17601 Value *Op2 = EmitScalarExpr(E->getArg(2));
17602 llvm::Type *Ty = Op0->getType();
17603 Value *ShiftAmt = Builder.CreateIntCast(Op1, Ty, false);
17604 Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
17605 Value *Rotate = Builder.CreateCall(F, {Op0, Op0, ShiftAmt});
17606 return Builder.CreateAnd(Rotate, Op2);
17608 case PPC::BI__builtin_ppc_load2r: {
17609 Function *F = CGM.getIntrinsic(Intrinsic::ppc_load2r);
17610 Value *Op0 = EmitScalarExpr(E->getArg(0));
17611 Value *LoadIntrinsic = Builder.CreateCall(F, {Op0});
17612 return Builder.CreateTrunc(LoadIntrinsic, Int16Ty);
17614 // FMA variations
17615 case PPC::BI__builtin_ppc_fnmsub:
17616 case PPC::BI__builtin_ppc_fnmsubs:
17617 case PPC::BI__builtin_vsx_xvmaddadp:
17618 case PPC::BI__builtin_vsx_xvmaddasp:
17619 case PPC::BI__builtin_vsx_xvnmaddadp:
17620 case PPC::BI__builtin_vsx_xvnmaddasp:
17621 case PPC::BI__builtin_vsx_xvmsubadp:
17622 case PPC::BI__builtin_vsx_xvmsubasp:
17623 case PPC::BI__builtin_vsx_xvnmsubadp:
17624 case PPC::BI__builtin_vsx_xvnmsubasp: {
17625 llvm::Type *ResultType = ConvertType(E->getType());
17626 Value *X = EmitScalarExpr(E->getArg(0));
17627 Value *Y = EmitScalarExpr(E->getArg(1));
17628 Value *Z = EmitScalarExpr(E->getArg(2));
17629 llvm::Function *F;
17630 if (Builder.getIsFPConstrained())
17631 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
17632 else
17633 F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
17634 switch (BuiltinID) {
17635 case PPC::BI__builtin_vsx_xvmaddadp:
17636 case PPC::BI__builtin_vsx_xvmaddasp:
17637 if (Builder.getIsFPConstrained())
17638 return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
17639 else
17640 return Builder.CreateCall(F, {X, Y, Z});
17641 case PPC::BI__builtin_vsx_xvnmaddadp:
17642 case PPC::BI__builtin_vsx_xvnmaddasp:
17643 if (Builder.getIsFPConstrained())
17644 return Builder.CreateFNeg(
17645 Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
17646 else
17647 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
17648 case PPC::BI__builtin_vsx_xvmsubadp:
17649 case PPC::BI__builtin_vsx_xvmsubasp:
17650 if (Builder.getIsFPConstrained())
17651 return Builder.CreateConstrainedFPCall(
17652 F, {X, Y, Builder.CreateFNeg(Z, "neg")});
17653 else
17654 return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
17655 case PPC::BI__builtin_ppc_fnmsub:
17656 case PPC::BI__builtin_ppc_fnmsubs:
17657 case PPC::BI__builtin_vsx_xvnmsubadp:
17658 case PPC::BI__builtin_vsx_xvnmsubasp:
17659 if (Builder.getIsFPConstrained())
17660 return Builder.CreateFNeg(
17661 Builder.CreateConstrainedFPCall(
17662 F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
17663 "neg");
17664 else
17665 return Builder.CreateCall(
17666 CGM.getIntrinsic(Intrinsic::ppc_fnmsub, ResultType), {X, Y, Z});
17668 llvm_unreachable("Unknown FMA operation");
17669 return nullptr; // Suppress no-return warning
17672 case PPC::BI__builtin_vsx_insertword: {
17673 Value *Op0 = EmitScalarExpr(E->getArg(0));
17674 Value *Op1 = EmitScalarExpr(E->getArg(1));
17675 Value *Op2 = EmitScalarExpr(E->getArg(2));
17676 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
17678 // Third argument is a compile time constant int. It must be clamped to
17679 // to the range [0, 12].
17680 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
17681 assert(ArgCI &&
17682 "Third arg to xxinsertw intrinsic must be constant integer");
17683 const int64_t MaxIndex = 12;
17684 int64_t Index = std::clamp(ArgCI->getSExtValue(), (int64_t)0, MaxIndex);
17686 // The builtin semantics don't exactly match the xxinsertw instructions
17687 // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
17688 // word from the first argument, and inserts it in the second argument. The
17689 // instruction extracts the word from its second input register and inserts
17690 // it into its first input register, so swap the first and second arguments.
17691 std::swap(Op0, Op1);
17693 // Need to cast the second argument from a vector of unsigned int to a
17694 // vector of long long.
17695 Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2));
17697 if (getTarget().isLittleEndian()) {
17698 // Reverse the double words in the vector we will extract from.
17699 Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
17700 Op0 = Builder.CreateShuffleVector(Op0, Op0, ArrayRef<int>{1, 0});
17702 // Reverse the index.
17703 Index = MaxIndex - Index;
17706 // Intrinsic expects the first arg to be a vector of int.
17707 Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4));
17708 Op2 = ConstantInt::getSigned(Int32Ty, Index);
17709 return Builder.CreateCall(F, {Op0, Op1, Op2});
17712 case PPC::BI__builtin_vsx_extractuword: {
17713 Value *Op0 = EmitScalarExpr(E->getArg(0));
17714 Value *Op1 = EmitScalarExpr(E->getArg(1));
17715 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
17717 // Intrinsic expects the first argument to be a vector of doublewords.
17718 Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
17720 // The second argument is a compile time constant int that needs to
17721 // be clamped to the range [0, 12].
17722 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op1);
17723 assert(ArgCI &&
17724 "Second Arg to xxextractuw intrinsic must be a constant integer!");
17725 const int64_t MaxIndex = 12;
17726 int64_t Index = std::clamp(ArgCI->getSExtValue(), (int64_t)0, MaxIndex);
17728 if (getTarget().isLittleEndian()) {
17729 // Reverse the index.
17730 Index = MaxIndex - Index;
17731 Op1 = ConstantInt::getSigned(Int32Ty, Index);
17733 // Emit the call, then reverse the double words of the results vector.
17734 Value *Call = Builder.CreateCall(F, {Op0, Op1});
17736 Value *ShuffleCall =
17737 Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0});
17738 return ShuffleCall;
17739 } else {
17740 Op1 = ConstantInt::getSigned(Int32Ty, Index);
17741 return Builder.CreateCall(F, {Op0, Op1});
17745 case PPC::BI__builtin_vsx_xxpermdi: {
17746 Value *Op0 = EmitScalarExpr(E->getArg(0));
17747 Value *Op1 = EmitScalarExpr(E->getArg(1));
17748 Value *Op2 = EmitScalarExpr(E->getArg(2));
17749 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
17750 assert(ArgCI && "Third arg must be constant integer!");
17752 unsigned Index = ArgCI->getZExtValue();
17753 Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
17754 Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2));
17756 // Account for endianness by treating this as just a shuffle. So we use the
17757 // same indices for both LE and BE in order to produce expected results in
17758 // both cases.
17759 int ElemIdx0 = (Index & 2) >> 1;
17760 int ElemIdx1 = 2 + (Index & 1);
17762 int ShuffleElts[2] = {ElemIdx0, ElemIdx1};
17763 Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts);
17764 QualType BIRetType = E->getType();
17765 auto RetTy = ConvertType(BIRetType);
17766 return Builder.CreateBitCast(ShuffleCall, RetTy);
17769 case PPC::BI__builtin_vsx_xxsldwi: {
17770 Value *Op0 = EmitScalarExpr(E->getArg(0));
17771 Value *Op1 = EmitScalarExpr(E->getArg(1));
17772 Value *Op2 = EmitScalarExpr(E->getArg(2));
17773 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
17774 assert(ArgCI && "Third argument must be a compile time constant");
17775 unsigned Index = ArgCI->getZExtValue() & 0x3;
17776 Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4));
17777 Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int32Ty, 4));
17779 // Create a shuffle mask
17780 int ElemIdx0;
17781 int ElemIdx1;
17782 int ElemIdx2;
17783 int ElemIdx3;
17784 if (getTarget().isLittleEndian()) {
17785 // Little endian element N comes from element 8+N-Index of the
17786 // concatenated wide vector (of course, using modulo arithmetic on
17787 // the total number of elements).
17788 ElemIdx0 = (8 - Index) % 8;
17789 ElemIdx1 = (9 - Index) % 8;
17790 ElemIdx2 = (10 - Index) % 8;
17791 ElemIdx3 = (11 - Index) % 8;
17792 } else {
17793 // Big endian ElemIdx<N> = Index + N
17794 ElemIdx0 = Index;
17795 ElemIdx1 = Index + 1;
17796 ElemIdx2 = Index + 2;
17797 ElemIdx3 = Index + 3;
17800 int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3};
17801 Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts);
17802 QualType BIRetType = E->getType();
17803 auto RetTy = ConvertType(BIRetType);
17804 return Builder.CreateBitCast(ShuffleCall, RetTy);
17807 case PPC::BI__builtin_pack_vector_int128: {
17808 Value *Op0 = EmitScalarExpr(E->getArg(0));
17809 Value *Op1 = EmitScalarExpr(E->getArg(1));
17810 bool isLittleEndian = getTarget().isLittleEndian();
17811 Value *PoisonValue =
17812 llvm::PoisonValue::get(llvm::FixedVectorType::get(Op0->getType(), 2));
17813 Value *Res = Builder.CreateInsertElement(
17814 PoisonValue, Op0, (uint64_t)(isLittleEndian ? 1 : 0));
17815 Res = Builder.CreateInsertElement(Res, Op1,
17816 (uint64_t)(isLittleEndian ? 0 : 1));
17817 return Builder.CreateBitCast(Res, ConvertType(E->getType()));
17820 case PPC::BI__builtin_unpack_vector_int128: {
17821 Value *Op0 = EmitScalarExpr(E->getArg(0));
17822 Value *Op1 = EmitScalarExpr(E->getArg(1));
17823 ConstantInt *Index = cast<ConstantInt>(Op1);
17824 Value *Unpacked = Builder.CreateBitCast(
17825 Op0, llvm::FixedVectorType::get(ConvertType(E->getType()), 2));
17827 if (getTarget().isLittleEndian())
17828 Index =
17829 ConstantInt::get(Index->getIntegerType(), 1 - Index->getZExtValue());
17831 return Builder.CreateExtractElement(Unpacked, Index);
17834 case PPC::BI__builtin_ppc_sthcx: {
17835 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_sthcx);
17836 Value *Op0 = EmitScalarExpr(E->getArg(0));
17837 Value *Op1 = Builder.CreateSExt(EmitScalarExpr(E->getArg(1)), Int32Ty);
17838 return Builder.CreateCall(F, {Op0, Op1});
17841 // The PPC MMA builtins take a pointer to a __vector_quad as an argument.
17842 // Some of the MMA instructions accumulate their result into an existing
17843 // accumulator whereas the others generate a new accumulator. So we need to
17844 // use custom code generation to expand a builtin call with a pointer to a
17845 // load (if the corresponding instruction accumulates its result) followed by
17846 // the call to the intrinsic and a store of the result.
17847 #define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate, Feature) \
17848 case PPC::BI__builtin_##Name:
17849 #include "clang/Basic/BuiltinsPPC.def"
17851 SmallVector<Value *, 4> Ops;
17852 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
17853 if (E->getArg(i)->getType()->isArrayType())
17854 Ops.push_back(
17855 EmitArrayToPointerDecay(E->getArg(i)).emitRawPointer(*this));
17856 else
17857 Ops.push_back(EmitScalarExpr(E->getArg(i)));
17858 // The first argument of these two builtins is a pointer used to store their
17859 // result. However, the llvm intrinsics return their result in multiple
17860 // return values. So, here we emit code extracting these values from the
17861 // intrinsic results and storing them using that pointer.
17862 if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc ||
17863 BuiltinID == PPC::BI__builtin_vsx_disassemble_pair ||
17864 BuiltinID == PPC::BI__builtin_mma_disassemble_pair) {
17865 unsigned NumVecs = 2;
17866 auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair;
17867 if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) {
17868 NumVecs = 4;
17869 Intrinsic = Intrinsic::ppc_mma_disassemble_acc;
17871 llvm::Function *F = CGM.getIntrinsic(Intrinsic);
17872 Address Addr = EmitPointerWithAlignment(E->getArg(1));
17873 Value *Vec = Builder.CreateLoad(Addr);
17874 Value *Call = Builder.CreateCall(F, {Vec});
17875 llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16);
17876 Value *Ptr = Ops[0];
17877 for (unsigned i=0; i<NumVecs; i++) {
17878 Value *Vec = Builder.CreateExtractValue(Call, i);
17879 llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i);
17880 Value *GEP = Builder.CreateInBoundsGEP(VTy, Ptr, Index);
17881 Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16));
17883 return Call;
17885 if (BuiltinID == PPC::BI__builtin_vsx_build_pair ||
17886 BuiltinID == PPC::BI__builtin_mma_build_acc) {
17887 // Reverse the order of the operands for LE, so the
17888 // same builtin call can be used on both LE and BE
17889 // without the need for the programmer to swap operands.
17890 // The operands are reversed starting from the second argument,
17891 // the first operand is the pointer to the pair/accumulator
17892 // that is being built.
17893 if (getTarget().isLittleEndian())
17894 std::reverse(Ops.begin() + 1, Ops.end());
17896 bool Accumulate;
17897 switch (BuiltinID) {
17898 #define CUSTOM_BUILTIN(Name, Intr, Types, Acc, Feature) \
17899 case PPC::BI__builtin_##Name: \
17900 ID = Intrinsic::ppc_##Intr; \
17901 Accumulate = Acc; \
17902 break;
17903 #include "clang/Basic/BuiltinsPPC.def"
17905 if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
17906 BuiltinID == PPC::BI__builtin_vsx_stxvp ||
17907 BuiltinID == PPC::BI__builtin_mma_lxvp ||
17908 BuiltinID == PPC::BI__builtin_mma_stxvp) {
17909 if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
17910 BuiltinID == PPC::BI__builtin_mma_lxvp) {
17911 Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
17912 } else {
17913 Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
17915 Ops.pop_back();
17916 llvm::Function *F = CGM.getIntrinsic(ID);
17917 return Builder.CreateCall(F, Ops, "");
17919 SmallVector<Value*, 4> CallOps;
17920 if (Accumulate) {
17921 Address Addr = EmitPointerWithAlignment(E->getArg(0));
17922 Value *Acc = Builder.CreateLoad(Addr);
17923 CallOps.push_back(Acc);
17925 for (unsigned i=1; i<Ops.size(); i++)
17926 CallOps.push_back(Ops[i]);
17927 llvm::Function *F = CGM.getIntrinsic(ID);
17928 Value *Call = Builder.CreateCall(F, CallOps);
17929 return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign(64));
17932 case PPC::BI__builtin_ppc_compare_and_swap:
17933 case PPC::BI__builtin_ppc_compare_and_swaplp: {
17934 Address Addr = EmitPointerWithAlignment(E->getArg(0));
17935 Address OldValAddr = EmitPointerWithAlignment(E->getArg(1));
17936 Value *OldVal = Builder.CreateLoad(OldValAddr);
17937 QualType AtomicTy = E->getArg(0)->getType()->getPointeeType();
17938 LValue LV = MakeAddrLValue(Addr, AtomicTy);
17939 Value *Op2 = EmitScalarExpr(E->getArg(2));
17940 auto Pair = EmitAtomicCompareExchange(
17941 LV, RValue::get(OldVal), RValue::get(Op2), E->getExprLoc(),
17942 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Monotonic, true);
17943 // Unlike c11's atomic_compare_exchange, according to
17944 // https://www.ibm.com/docs/en/xl-c-and-cpp-aix/16.1?topic=functions-compare-swap-compare-swaplp
17945 // > In either case, the contents of the memory location specified by addr
17946 // > are copied into the memory location specified by old_val_addr.
17947 // But it hasn't specified storing to OldValAddr is atomic or not and
17948 // which order to use. Now following XL's codegen, treat it as a normal
17949 // store.
17950 Value *LoadedVal = Pair.first.getScalarVal();
17951 Builder.CreateStore(LoadedVal, OldValAddr);
17952 return Builder.CreateZExt(Pair.second, Builder.getInt32Ty());
17954 case PPC::BI__builtin_ppc_fetch_and_add:
17955 case PPC::BI__builtin_ppc_fetch_and_addlp: {
17956 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
17957 llvm::AtomicOrdering::Monotonic);
17959 case PPC::BI__builtin_ppc_fetch_and_and:
17960 case PPC::BI__builtin_ppc_fetch_and_andlp: {
17961 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
17962 llvm::AtomicOrdering::Monotonic);
17965 case PPC::BI__builtin_ppc_fetch_and_or:
17966 case PPC::BI__builtin_ppc_fetch_and_orlp: {
17967 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
17968 llvm::AtomicOrdering::Monotonic);
17970 case PPC::BI__builtin_ppc_fetch_and_swap:
17971 case PPC::BI__builtin_ppc_fetch_and_swaplp: {
17972 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
17973 llvm::AtomicOrdering::Monotonic);
17975 case PPC::BI__builtin_ppc_ldarx:
17976 case PPC::BI__builtin_ppc_lwarx:
17977 case PPC::BI__builtin_ppc_lharx:
17978 case PPC::BI__builtin_ppc_lbarx:
17979 return emitPPCLoadReserveIntrinsic(*this, BuiltinID, E);
17980 case PPC::BI__builtin_ppc_mfspr: {
17981 Value *Op0 = EmitScalarExpr(E->getArg(0));
17982 llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
17983 ? Int32Ty
17984 : Int64Ty;
17985 Function *F = CGM.getIntrinsic(Intrinsic::ppc_mfspr, RetType);
17986 return Builder.CreateCall(F, {Op0});
17988 case PPC::BI__builtin_ppc_mtspr: {
17989 Value *Op0 = EmitScalarExpr(E->getArg(0));
17990 Value *Op1 = EmitScalarExpr(E->getArg(1));
17991 llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
17992 ? Int32Ty
17993 : Int64Ty;
17994 Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtspr, RetType);
17995 return Builder.CreateCall(F, {Op0, Op1});
17997 case PPC::BI__builtin_ppc_popcntb: {
17998 Value *ArgValue = EmitScalarExpr(E->getArg(0));
17999 llvm::Type *ArgType = ArgValue->getType();
18000 Function *F = CGM.getIntrinsic(Intrinsic::ppc_popcntb, {ArgType, ArgType});
18001 return Builder.CreateCall(F, {ArgValue}, "popcntb");
18003 case PPC::BI__builtin_ppc_mtfsf: {
18004 // The builtin takes a uint32 that needs to be cast to an
18005 // f64 to be passed to the intrinsic.
18006 Value *Op0 = EmitScalarExpr(E->getArg(0));
18007 Value *Op1 = EmitScalarExpr(E->getArg(1));
18008 Value *Cast = Builder.CreateUIToFP(Op1, DoubleTy);
18009 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtfsf);
18010 return Builder.CreateCall(F, {Op0, Cast}, "");
18013 case PPC::BI__builtin_ppc_swdiv_nochk:
18014 case PPC::BI__builtin_ppc_swdivs_nochk: {
18015 Value *Op0 = EmitScalarExpr(E->getArg(0));
18016 Value *Op1 = EmitScalarExpr(E->getArg(1));
18017 FastMathFlags FMF = Builder.getFastMathFlags();
18018 Builder.getFastMathFlags().setFast();
18019 Value *FDiv = Builder.CreateFDiv(Op0, Op1, "swdiv_nochk");
18020 Builder.getFastMathFlags() &= (FMF);
18021 return FDiv;
18023 case PPC::BI__builtin_ppc_fric:
18024 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18025 *this, E, Intrinsic::rint,
18026 Intrinsic::experimental_constrained_rint))
18027 .getScalarVal();
18028 case PPC::BI__builtin_ppc_frim:
18029 case PPC::BI__builtin_ppc_frims:
18030 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18031 *this, E, Intrinsic::floor,
18032 Intrinsic::experimental_constrained_floor))
18033 .getScalarVal();
18034 case PPC::BI__builtin_ppc_frin:
18035 case PPC::BI__builtin_ppc_frins:
18036 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18037 *this, E, Intrinsic::round,
18038 Intrinsic::experimental_constrained_round))
18039 .getScalarVal();
18040 case PPC::BI__builtin_ppc_frip:
18041 case PPC::BI__builtin_ppc_frips:
18042 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18043 *this, E, Intrinsic::ceil,
18044 Intrinsic::experimental_constrained_ceil))
18045 .getScalarVal();
18046 case PPC::BI__builtin_ppc_friz:
18047 case PPC::BI__builtin_ppc_frizs:
18048 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18049 *this, E, Intrinsic::trunc,
18050 Intrinsic::experimental_constrained_trunc))
18051 .getScalarVal();
18052 case PPC::BI__builtin_ppc_fsqrt:
18053 case PPC::BI__builtin_ppc_fsqrts:
18054 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18055 *this, E, Intrinsic::sqrt,
18056 Intrinsic::experimental_constrained_sqrt))
18057 .getScalarVal();
18058 case PPC::BI__builtin_ppc_test_data_class: {
18059 Value *Op0 = EmitScalarExpr(E->getArg(0));
18060 Value *Op1 = EmitScalarExpr(E->getArg(1));
18061 return Builder.CreateCall(
18062 CGM.getIntrinsic(Intrinsic::ppc_test_data_class, Op0->getType()),
18063 {Op0, Op1}, "test_data_class");
18065 case PPC::BI__builtin_ppc_maxfe: {
18066 Value *Op0 = EmitScalarExpr(E->getArg(0));
18067 Value *Op1 = EmitScalarExpr(E->getArg(1));
18068 Value *Op2 = EmitScalarExpr(E->getArg(2));
18069 Value *Op3 = EmitScalarExpr(E->getArg(3));
18070 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfe),
18071 {Op0, Op1, Op2, Op3});
18073 case PPC::BI__builtin_ppc_maxfl: {
18074 Value *Op0 = EmitScalarExpr(E->getArg(0));
18075 Value *Op1 = EmitScalarExpr(E->getArg(1));
18076 Value *Op2 = EmitScalarExpr(E->getArg(2));
18077 Value *Op3 = EmitScalarExpr(E->getArg(3));
18078 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfl),
18079 {Op0, Op1, Op2, Op3});
18081 case PPC::BI__builtin_ppc_maxfs: {
18082 Value *Op0 = EmitScalarExpr(E->getArg(0));
18083 Value *Op1 = EmitScalarExpr(E->getArg(1));
18084 Value *Op2 = EmitScalarExpr(E->getArg(2));
18085 Value *Op3 = EmitScalarExpr(E->getArg(3));
18086 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfs),
18087 {Op0, Op1, Op2, Op3});
18089 case PPC::BI__builtin_ppc_minfe: {
18090 Value *Op0 = EmitScalarExpr(E->getArg(0));
18091 Value *Op1 = EmitScalarExpr(E->getArg(1));
18092 Value *Op2 = EmitScalarExpr(E->getArg(2));
18093 Value *Op3 = EmitScalarExpr(E->getArg(3));
18094 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfe),
18095 {Op0, Op1, Op2, Op3});
18097 case PPC::BI__builtin_ppc_minfl: {
18098 Value *Op0 = EmitScalarExpr(E->getArg(0));
18099 Value *Op1 = EmitScalarExpr(E->getArg(1));
18100 Value *Op2 = EmitScalarExpr(E->getArg(2));
18101 Value *Op3 = EmitScalarExpr(E->getArg(3));
18102 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfl),
18103 {Op0, Op1, Op2, Op3});
18105 case PPC::BI__builtin_ppc_minfs: {
18106 Value *Op0 = EmitScalarExpr(E->getArg(0));
18107 Value *Op1 = EmitScalarExpr(E->getArg(1));
18108 Value *Op2 = EmitScalarExpr(E->getArg(2));
18109 Value *Op3 = EmitScalarExpr(E->getArg(3));
18110 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfs),
18111 {Op0, Op1, Op2, Op3});
18113 case PPC::BI__builtin_ppc_swdiv:
18114 case PPC::BI__builtin_ppc_swdivs: {
18115 Value *Op0 = EmitScalarExpr(E->getArg(0));
18116 Value *Op1 = EmitScalarExpr(E->getArg(1));
18117 return Builder.CreateFDiv(Op0, Op1, "swdiv");
18119 case PPC::BI__builtin_ppc_set_fpscr_rn:
18120 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_setrnd),
18121 {EmitScalarExpr(E->getArg(0))});
18122 case PPC::BI__builtin_ppc_mffs:
18123 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_readflm));
18127 namespace {
18128 // If \p E is not null pointer, insert address space cast to match return
18129 // type of \p E if necessary.
18130 Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF,
18131 const CallExpr *E = nullptr) {
18132 auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr);
18133 auto *Call = CGF.Builder.CreateCall(F);
18134 Call->addRetAttr(
18135 Attribute::getWithDereferenceableBytes(Call->getContext(), 64));
18136 Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(4)));
18137 if (!E)
18138 return Call;
18139 QualType BuiltinRetType = E->getType();
18140 auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType));
18141 if (RetTy == Call->getType())
18142 return Call;
18143 return CGF.Builder.CreateAddrSpaceCast(Call, RetTy);
18146 Value *EmitAMDGPUImplicitArgPtr(CodeGenFunction &CGF) {
18147 auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_implicitarg_ptr);
18148 auto *Call = CGF.Builder.CreateCall(F);
18149 Call->addRetAttr(
18150 Attribute::getWithDereferenceableBytes(Call->getContext(), 256));
18151 Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(8)));
18152 return Call;
18155 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
18156 /// Emit code based on Code Object ABI version.
18157 /// COV_4 : Emit code to use dispatch ptr
18158 /// COV_5+ : Emit code to use implicitarg ptr
18159 /// COV_NONE : Emit code to load a global variable "__oclc_ABI_version"
18160 /// and use its value for COV_4 or COV_5+ approach. It is used for
18161 /// compiling device libraries in an ABI-agnostic way.
18163 /// Note: "__oclc_ABI_version" is supposed to be emitted and intialized by
18164 /// clang during compilation of user code.
18165 Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) {
18166 llvm::LoadInst *LD;
18168 auto Cov = CGF.getTarget().getTargetOpts().CodeObjectVersion;
18170 if (Cov == CodeObjectVersionKind::COV_None) {
18171 StringRef Name = "__oclc_ABI_version";
18172 auto *ABIVersionC = CGF.CGM.getModule().getNamedGlobal(Name);
18173 if (!ABIVersionC)
18174 ABIVersionC = new llvm::GlobalVariable(
18175 CGF.CGM.getModule(), CGF.Int32Ty, false,
18176 llvm::GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
18177 llvm::GlobalVariable::NotThreadLocal,
18178 CGF.CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant));
18180 // This load will be eliminated by the IPSCCP because it is constant
18181 // weak_odr without externally_initialized. Either changing it to weak or
18182 // adding externally_initialized will keep the load.
18183 Value *ABIVersion = CGF.Builder.CreateAlignedLoad(CGF.Int32Ty, ABIVersionC,
18184 CGF.CGM.getIntAlign());
18186 Value *IsCOV5 = CGF.Builder.CreateICmpSGE(
18187 ABIVersion,
18188 llvm::ConstantInt::get(CGF.Int32Ty, CodeObjectVersionKind::COV_5));
18190 // Indexing the implicit kernarg segment.
18191 Value *ImplicitGEP = CGF.Builder.CreateConstGEP1_32(
18192 CGF.Int8Ty, EmitAMDGPUImplicitArgPtr(CGF), 12 + Index * 2);
18194 // Indexing the HSA kernel_dispatch_packet struct.
18195 Value *DispatchGEP = CGF.Builder.CreateConstGEP1_32(
18196 CGF.Int8Ty, EmitAMDGPUDispatchPtr(CGF), 4 + Index * 2);
18198 auto Result = CGF.Builder.CreateSelect(IsCOV5, ImplicitGEP, DispatchGEP);
18199 LD = CGF.Builder.CreateLoad(
18200 Address(Result, CGF.Int16Ty, CharUnits::fromQuantity(2)));
18201 } else {
18202 Value *GEP = nullptr;
18203 if (Cov >= CodeObjectVersionKind::COV_5) {
18204 // Indexing the implicit kernarg segment.
18205 GEP = CGF.Builder.CreateConstGEP1_32(
18206 CGF.Int8Ty, EmitAMDGPUImplicitArgPtr(CGF), 12 + Index * 2);
18207 } else {
18208 // Indexing the HSA kernel_dispatch_packet struct.
18209 GEP = CGF.Builder.CreateConstGEP1_32(
18210 CGF.Int8Ty, EmitAMDGPUDispatchPtr(CGF), 4 + Index * 2);
18212 LD = CGF.Builder.CreateLoad(
18213 Address(GEP, CGF.Int16Ty, CharUnits::fromQuantity(2)));
18216 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
18217 llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1),
18218 APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1));
18219 LD->setMetadata(llvm::LLVMContext::MD_range, RNode);
18220 LD->setMetadata(llvm::LLVMContext::MD_noundef,
18221 llvm::MDNode::get(CGF.getLLVMContext(), std::nullopt));
18222 LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
18223 llvm::MDNode::get(CGF.getLLVMContext(), std::nullopt));
18224 return LD;
18227 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
18228 Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) {
18229 const unsigned XOffset = 12;
18230 auto *DP = EmitAMDGPUDispatchPtr(CGF);
18231 // Indexing the HSA kernel_dispatch_packet struct.
18232 auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4);
18233 auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset);
18234 auto *LD = CGF.Builder.CreateLoad(
18235 Address(GEP, CGF.Int32Ty, CharUnits::fromQuantity(4)));
18236 LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
18237 llvm::MDNode::get(CGF.getLLVMContext(), std::nullopt));
18238 return LD;
18240 } // namespace
18242 // For processing memory ordering and memory scope arguments of various
18243 // amdgcn builtins.
18244 // \p Order takes a C++11 comptabile memory-ordering specifier and converts
18245 // it into LLVM's memory ordering specifier using atomic C ABI, and writes
18246 // to \p AO. \p Scope takes a const char * and converts it into AMDGCN
18247 // specific SyncScopeID and writes it to \p SSID.
18248 void CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope,
18249 llvm::AtomicOrdering &AO,
18250 llvm::SyncScope::ID &SSID) {
18251 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
18253 // Map C11/C++11 memory ordering to LLVM memory ordering
18254 assert(llvm::isValidAtomicOrderingCABI(ord));
18255 switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
18256 case llvm::AtomicOrderingCABI::acquire:
18257 case llvm::AtomicOrderingCABI::consume:
18258 AO = llvm::AtomicOrdering::Acquire;
18259 break;
18260 case llvm::AtomicOrderingCABI::release:
18261 AO = llvm::AtomicOrdering::Release;
18262 break;
18263 case llvm::AtomicOrderingCABI::acq_rel:
18264 AO = llvm::AtomicOrdering::AcquireRelease;
18265 break;
18266 case llvm::AtomicOrderingCABI::seq_cst:
18267 AO = llvm::AtomicOrdering::SequentiallyConsistent;
18268 break;
18269 case llvm::AtomicOrderingCABI::relaxed:
18270 AO = llvm::AtomicOrdering::Monotonic;
18271 break;
18274 // Some of the atomic builtins take the scope as a string name.
18275 StringRef scp;
18276 if (llvm::getConstantStringInfo(Scope, scp)) {
18277 SSID = getLLVMContext().getOrInsertSyncScopeID(scp);
18278 return;
18281 // Older builtins had an enum argument for the memory scope.
18282 int scope = cast<llvm::ConstantInt>(Scope)->getZExtValue();
18283 switch (scope) {
18284 case 0: // __MEMORY_SCOPE_SYSTEM
18285 SSID = llvm::SyncScope::System;
18286 break;
18287 case 1: // __MEMORY_SCOPE_DEVICE
18288 SSID = getLLVMContext().getOrInsertSyncScopeID("agent");
18289 break;
18290 case 2: // __MEMORY_SCOPE_WRKGRP
18291 SSID = getLLVMContext().getOrInsertSyncScopeID("workgroup");
18292 break;
18293 case 3: // __MEMORY_SCOPE_WVFRNT
18294 SSID = getLLVMContext().getOrInsertSyncScopeID("wavefront");
18295 break;
18296 case 4: // __MEMORY_SCOPE_SINGLE
18297 SSID = llvm::SyncScope::SingleThread;
18298 break;
18299 default:
18300 SSID = llvm::SyncScope::System;
18301 break;
18305 llvm::Value *CodeGenFunction::EmitScalarOrConstFoldImmArg(unsigned ICEArguments,
18306 unsigned Idx,
18307 const CallExpr *E) {
18308 llvm::Value *Arg = nullptr;
18309 if ((ICEArguments & (1 << Idx)) == 0) {
18310 Arg = EmitScalarExpr(E->getArg(Idx));
18311 } else {
18312 // If this is required to be a constant, constant fold it so that we
18313 // know that the generated intrinsic gets a ConstantInt.
18314 std::optional<llvm::APSInt> Result =
18315 E->getArg(Idx)->getIntegerConstantExpr(getContext());
18316 assert(Result && "Expected argument to be a constant");
18317 Arg = llvm::ConstantInt::get(getLLVMContext(), *Result);
18319 return Arg;
18322 Intrinsic::ID getDotProductIntrinsic(QualType QT, int elementCount) {
18323 if (QT->hasFloatingRepresentation()) {
18324 switch (elementCount) {
18325 case 2:
18326 return Intrinsic::dx_dot2;
18327 case 3:
18328 return Intrinsic::dx_dot3;
18329 case 4:
18330 return Intrinsic::dx_dot4;
18333 if (QT->hasSignedIntegerRepresentation())
18334 return Intrinsic::dx_sdot;
18336 assert(QT->hasUnsignedIntegerRepresentation());
18337 return Intrinsic::dx_udot;
18340 Value *CodeGenFunction::EmitHLSLBuiltinExpr(unsigned BuiltinID,
18341 const CallExpr *E) {
18342 if (!getLangOpts().HLSL)
18343 return nullptr;
18345 switch (BuiltinID) {
18346 case Builtin::BI__builtin_hlsl_elementwise_all: {
18347 Value *Op0 = EmitScalarExpr(E->getArg(0));
18348 return Builder.CreateIntrinsic(
18349 /*ReturnType=*/llvm::Type::getInt1Ty(getLLVMContext()),
18350 CGM.getHLSLRuntime().getAllIntrinsic(), ArrayRef<Value *>{Op0}, nullptr,
18351 "hlsl.all");
18353 case Builtin::BI__builtin_hlsl_elementwise_any: {
18354 Value *Op0 = EmitScalarExpr(E->getArg(0));
18355 return Builder.CreateIntrinsic(
18356 /*ReturnType=*/llvm::Type::getInt1Ty(getLLVMContext()),
18357 CGM.getHLSLRuntime().getAnyIntrinsic(), ArrayRef<Value *>{Op0}, nullptr,
18358 "hlsl.any");
18360 case Builtin::BI__builtin_hlsl_elementwise_clamp: {
18361 Value *OpX = EmitScalarExpr(E->getArg(0));
18362 Value *OpMin = EmitScalarExpr(E->getArg(1));
18363 Value *OpMax = EmitScalarExpr(E->getArg(2));
18365 QualType Ty = E->getArg(0)->getType();
18366 bool IsUnsigned = false;
18367 if (auto *VecTy = Ty->getAs<VectorType>())
18368 Ty = VecTy->getElementType();
18369 IsUnsigned = Ty->isUnsignedIntegerType();
18370 return Builder.CreateIntrinsic(
18371 /*ReturnType=*/OpX->getType(),
18372 IsUnsigned ? Intrinsic::dx_uclamp : Intrinsic::dx_clamp,
18373 ArrayRef<Value *>{OpX, OpMin, OpMax}, nullptr, "dx.clamp");
18375 case Builtin::BI__builtin_hlsl_dot: {
18376 Value *Op0 = EmitScalarExpr(E->getArg(0));
18377 Value *Op1 = EmitScalarExpr(E->getArg(1));
18378 llvm::Type *T0 = Op0->getType();
18379 llvm::Type *T1 = Op1->getType();
18380 if (!T0->isVectorTy() && !T1->isVectorTy()) {
18381 if (T0->isFloatingPointTy())
18382 return Builder.CreateFMul(Op0, Op1, "dx.dot");
18384 if (T0->isIntegerTy())
18385 return Builder.CreateMul(Op0, Op1, "dx.dot");
18387 // Bools should have been promoted
18388 llvm_unreachable(
18389 "Scalar dot product is only supported on ints and floats.");
18391 // A VectorSplat should have happened
18392 assert(T0->isVectorTy() && T1->isVectorTy() &&
18393 "Dot product of vector and scalar is not supported.");
18395 // A vector sext or sitofp should have happened
18396 assert(T0->getScalarType() == T1->getScalarType() &&
18397 "Dot product of vectors need the same element types.");
18399 auto *VecTy0 = E->getArg(0)->getType()->getAs<VectorType>();
18400 [[maybe_unused]] auto *VecTy1 =
18401 E->getArg(1)->getType()->getAs<VectorType>();
18402 // A HLSLVectorTruncation should have happend
18403 assert(VecTy0->getNumElements() == VecTy1->getNumElements() &&
18404 "Dot product requires vectors to be of the same size.");
18406 return Builder.CreateIntrinsic(
18407 /*ReturnType=*/T0->getScalarType(),
18408 getDotProductIntrinsic(E->getArg(0)->getType(),
18409 VecTy0->getNumElements()),
18410 ArrayRef<Value *>{Op0, Op1}, nullptr, "dx.dot");
18411 } break;
18412 case Builtin::BI__builtin_hlsl_lerp: {
18413 Value *X = EmitScalarExpr(E->getArg(0));
18414 Value *Y = EmitScalarExpr(E->getArg(1));
18415 Value *S = EmitScalarExpr(E->getArg(2));
18416 if (!E->getArg(0)->getType()->hasFloatingRepresentation())
18417 llvm_unreachable("lerp operand must have a float representation");
18418 return Builder.CreateIntrinsic(
18419 /*ReturnType=*/X->getType(), CGM.getHLSLRuntime().getLerpIntrinsic(),
18420 ArrayRef<Value *>{X, Y, S}, nullptr, "hlsl.lerp");
18422 case Builtin::BI__builtin_hlsl_elementwise_frac: {
18423 Value *Op0 = EmitScalarExpr(E->getArg(0));
18424 if (!E->getArg(0)->getType()->hasFloatingRepresentation())
18425 llvm_unreachable("frac operand must have a float representation");
18426 return Builder.CreateIntrinsic(
18427 /*ReturnType=*/Op0->getType(), Intrinsic::dx_frac,
18428 ArrayRef<Value *>{Op0}, nullptr, "dx.frac");
18430 case Builtin::BI__builtin_hlsl_elementwise_isinf: {
18431 Value *Op0 = EmitScalarExpr(E->getArg(0));
18432 llvm::Type *Xty = Op0->getType();
18433 llvm::Type *retType = llvm::Type::getInt1Ty(this->getLLVMContext());
18434 if (Xty->isVectorTy()) {
18435 auto *XVecTy = E->getArg(0)->getType()->getAs<VectorType>();
18436 retType = llvm::VectorType::get(
18437 retType, ElementCount::getFixed(XVecTy->getNumElements()));
18439 if (!E->getArg(0)->getType()->hasFloatingRepresentation())
18440 llvm_unreachable("isinf operand must have a float representation");
18441 return Builder.CreateIntrinsic(retType, Intrinsic::dx_isinf,
18442 ArrayRef<Value *>{Op0}, nullptr, "dx.isinf");
18444 case Builtin::BI__builtin_hlsl_mad: {
18445 Value *M = EmitScalarExpr(E->getArg(0));
18446 Value *A = EmitScalarExpr(E->getArg(1));
18447 Value *B = EmitScalarExpr(E->getArg(2));
18448 if (E->getArg(0)->getType()->hasFloatingRepresentation())
18449 return Builder.CreateIntrinsic(
18450 /*ReturnType*/ M->getType(), Intrinsic::fmuladd,
18451 ArrayRef<Value *>{M, A, B}, nullptr, "hlsl.fmad");
18453 if (E->getArg(0)->getType()->hasSignedIntegerRepresentation()) {
18454 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil)
18455 return Builder.CreateIntrinsic(
18456 /*ReturnType*/ M->getType(), Intrinsic::dx_imad,
18457 ArrayRef<Value *>{M, A, B}, nullptr, "dx.imad");
18459 Value *Mul = Builder.CreateNSWMul(M, A);
18460 return Builder.CreateNSWAdd(Mul, B);
18462 assert(E->getArg(0)->getType()->hasUnsignedIntegerRepresentation());
18463 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil)
18464 return Builder.CreateIntrinsic(
18465 /*ReturnType=*/M->getType(), Intrinsic::dx_umad,
18466 ArrayRef<Value *>{M, A, B}, nullptr, "dx.umad");
18468 Value *Mul = Builder.CreateNUWMul(M, A);
18469 return Builder.CreateNUWAdd(Mul, B);
18471 case Builtin::BI__builtin_hlsl_elementwise_rcp: {
18472 Value *Op0 = EmitScalarExpr(E->getArg(0));
18473 if (!E->getArg(0)->getType()->hasFloatingRepresentation())
18474 llvm_unreachable("rcp operand must have a float representation");
18475 llvm::Type *Ty = Op0->getType();
18476 llvm::Type *EltTy = Ty->getScalarType();
18477 Constant *One = Ty->isVectorTy()
18478 ? ConstantVector::getSplat(
18479 ElementCount::getFixed(
18480 cast<FixedVectorType>(Ty)->getNumElements()),
18481 ConstantFP::get(EltTy, 1.0))
18482 : ConstantFP::get(EltTy, 1.0);
18483 return Builder.CreateFDiv(One, Op0, "hlsl.rcp");
18485 case Builtin::BI__builtin_hlsl_elementwise_rsqrt: {
18486 Value *Op0 = EmitScalarExpr(E->getArg(0));
18487 if (!E->getArg(0)->getType()->hasFloatingRepresentation())
18488 llvm_unreachable("rsqrt operand must have a float representation");
18489 return Builder.CreateIntrinsic(
18490 /*ReturnType=*/Op0->getType(), CGM.getHLSLRuntime().getRsqrtIntrinsic(),
18491 ArrayRef<Value *>{Op0}, nullptr, "hlsl.rsqrt");
18493 case Builtin::BI__builtin_hlsl_wave_get_lane_index: {
18494 return EmitRuntimeCall(CGM.CreateRuntimeFunction(
18495 llvm::FunctionType::get(IntTy, {}, false), "__hlsl_wave_get_lane_index",
18496 {}, false, true));
18499 return nullptr;
18502 void CodeGenFunction::AddAMDGPUFenceAddressSpaceMMRA(llvm::Instruction *Inst,
18503 const CallExpr *E) {
18504 constexpr const char *Tag = "amdgpu-as";
18506 LLVMContext &Ctx = Inst->getContext();
18507 SmallVector<MMRAMetadata::TagT, 3> MMRAs;
18508 for (unsigned K = 2; K < E->getNumArgs(); ++K) {
18509 llvm::Value *V = EmitScalarExpr(E->getArg(K));
18510 StringRef AS;
18511 if (llvm::getConstantStringInfo(V, AS)) {
18512 MMRAs.push_back({Tag, AS});
18513 // TODO: Delete the resulting unused constant?
18514 continue;
18516 CGM.Error(E->getExprLoc(),
18517 "expected an address space name as a string literal");
18520 llvm::sort(MMRAs);
18521 MMRAs.erase(llvm::unique(MMRAs), MMRAs.end());
18522 Inst->setMetadata(LLVMContext::MD_mmra, MMRAMetadata::getMD(Ctx, MMRAs));
18525 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
18526 const CallExpr *E) {
18527 llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent;
18528 llvm::SyncScope::ID SSID;
18529 switch (BuiltinID) {
18530 case AMDGPU::BI__builtin_amdgcn_div_scale:
18531 case AMDGPU::BI__builtin_amdgcn_div_scalef: {
18532 // Translate from the intrinsics's struct return to the builtin's out
18533 // argument.
18535 Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
18537 llvm::Value *X = EmitScalarExpr(E->getArg(0));
18538 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
18539 llvm::Value *Z = EmitScalarExpr(E->getArg(2));
18541 llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
18542 X->getType());
18544 llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
18546 llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
18547 llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
18549 llvm::Type *RealFlagType = FlagOutPtr.getElementType();
18551 llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
18552 Builder.CreateStore(FlagExt, FlagOutPtr);
18553 return Result;
18555 case AMDGPU::BI__builtin_amdgcn_div_fmas:
18556 case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
18557 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
18558 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
18559 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
18560 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
18562 llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
18563 Src0->getType());
18564 llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
18565 return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
18568 case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
18569 return emitBuiltinWithOneOverloadedType<2>(*this, E,
18570 Intrinsic::amdgcn_ds_swizzle);
18571 case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
18572 return emitBuiltinWithOneOverloadedType<2>(*this, E,
18573 Intrinsic::amdgcn_mov_dpp8);
18574 case AMDGPU::BI__builtin_amdgcn_mov_dpp:
18575 case AMDGPU::BI__builtin_amdgcn_update_dpp: {
18576 llvm::SmallVector<llvm::Value *, 6> Args;
18577 // Find out if any arguments are required to be integer constant
18578 // expressions.
18579 unsigned ICEArguments = 0;
18580 ASTContext::GetBuiltinTypeError Error;
18581 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
18582 assert(Error == ASTContext::GE_None && "Should not codegen an error");
18583 for (unsigned I = 0; I != E->getNumArgs(); ++I) {
18584 Args.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, I, E));
18586 assert(Args.size() == 5 || Args.size() == 6);
18587 if (Args.size() == 5)
18588 Args.insert(Args.begin(), llvm::PoisonValue::get(Args[0]->getType()));
18589 Function *F =
18590 CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
18591 return Builder.CreateCall(F, Args);
18593 case AMDGPU::BI__builtin_amdgcn_permlane16:
18594 case AMDGPU::BI__builtin_amdgcn_permlanex16:
18595 return emitBuiltinWithOneOverloadedType<6>(
18596 *this, E,
18597 BuiltinID == AMDGPU::BI__builtin_amdgcn_permlane16
18598 ? Intrinsic::amdgcn_permlane16
18599 : Intrinsic::amdgcn_permlanex16);
18600 case AMDGPU::BI__builtin_amdgcn_permlane64:
18601 return emitBuiltinWithOneOverloadedType<1>(*this, E,
18602 Intrinsic::amdgcn_permlane64);
18603 case AMDGPU::BI__builtin_amdgcn_readlane:
18604 return emitBuiltinWithOneOverloadedType<2>(*this, E,
18605 Intrinsic::amdgcn_readlane);
18606 case AMDGPU::BI__builtin_amdgcn_readfirstlane:
18607 return emitBuiltinWithOneOverloadedType<1>(*this, E,
18608 Intrinsic::amdgcn_readfirstlane);
18609 case AMDGPU::BI__builtin_amdgcn_div_fixup:
18610 case AMDGPU::BI__builtin_amdgcn_div_fixupf:
18611 case AMDGPU::BI__builtin_amdgcn_div_fixuph:
18612 return emitBuiltinWithOneOverloadedType<3>(*this, E,
18613 Intrinsic::amdgcn_div_fixup);
18614 case AMDGPU::BI__builtin_amdgcn_trig_preop:
18615 case AMDGPU::BI__builtin_amdgcn_trig_preopf:
18616 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
18617 case AMDGPU::BI__builtin_amdgcn_rcp:
18618 case AMDGPU::BI__builtin_amdgcn_rcpf:
18619 case AMDGPU::BI__builtin_amdgcn_rcph:
18620 return emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::amdgcn_rcp);
18621 case AMDGPU::BI__builtin_amdgcn_sqrt:
18622 case AMDGPU::BI__builtin_amdgcn_sqrtf:
18623 case AMDGPU::BI__builtin_amdgcn_sqrth:
18624 return emitBuiltinWithOneOverloadedType<1>(*this, E,
18625 Intrinsic::amdgcn_sqrt);
18626 case AMDGPU::BI__builtin_amdgcn_rsq:
18627 case AMDGPU::BI__builtin_amdgcn_rsqf:
18628 case AMDGPU::BI__builtin_amdgcn_rsqh:
18629 return emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::amdgcn_rsq);
18630 case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
18631 case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
18632 return emitBuiltinWithOneOverloadedType<1>(*this, E,
18633 Intrinsic::amdgcn_rsq_clamp);
18634 case AMDGPU::BI__builtin_amdgcn_sinf:
18635 case AMDGPU::BI__builtin_amdgcn_sinh:
18636 return emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::amdgcn_sin);
18637 case AMDGPU::BI__builtin_amdgcn_cosf:
18638 case AMDGPU::BI__builtin_amdgcn_cosh:
18639 return emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::amdgcn_cos);
18640 case AMDGPU::BI__builtin_amdgcn_dispatch_ptr:
18641 return EmitAMDGPUDispatchPtr(*this, E);
18642 case AMDGPU::BI__builtin_amdgcn_logf:
18643 return emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::amdgcn_log);
18644 case AMDGPU::BI__builtin_amdgcn_exp2f:
18645 return emitBuiltinWithOneOverloadedType<1>(*this, E,
18646 Intrinsic::amdgcn_exp2);
18647 case AMDGPU::BI__builtin_amdgcn_log_clampf:
18648 return emitBuiltinWithOneOverloadedType<1>(*this, E,
18649 Intrinsic::amdgcn_log_clamp);
18650 case AMDGPU::BI__builtin_amdgcn_ldexp:
18651 case AMDGPU::BI__builtin_amdgcn_ldexpf: {
18652 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
18653 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
18654 llvm::Function *F =
18655 CGM.getIntrinsic(Intrinsic::ldexp, {Src0->getType(), Src1->getType()});
18656 return Builder.CreateCall(F, {Src0, Src1});
18658 case AMDGPU::BI__builtin_amdgcn_ldexph: {
18659 // The raw instruction has a different behavior for out of bounds exponent
18660 // values (implicit truncation instead of saturate to short_min/short_max).
18661 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
18662 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
18663 llvm::Function *F =
18664 CGM.getIntrinsic(Intrinsic::ldexp, {Src0->getType(), Int16Ty});
18665 return Builder.CreateCall(F, {Src0, Builder.CreateTrunc(Src1, Int16Ty)});
18667 case AMDGPU::BI__builtin_amdgcn_frexp_mant:
18668 case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
18669 case AMDGPU::BI__builtin_amdgcn_frexp_manth:
18670 return emitBuiltinWithOneOverloadedType<1>(*this, E,
18671 Intrinsic::amdgcn_frexp_mant);
18672 case AMDGPU::BI__builtin_amdgcn_frexp_exp:
18673 case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
18674 Value *Src0 = EmitScalarExpr(E->getArg(0));
18675 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
18676 { Builder.getInt32Ty(), Src0->getType() });
18677 return Builder.CreateCall(F, Src0);
18679 case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
18680 Value *Src0 = EmitScalarExpr(E->getArg(0));
18681 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
18682 { Builder.getInt16Ty(), Src0->getType() });
18683 return Builder.CreateCall(F, Src0);
18685 case AMDGPU::BI__builtin_amdgcn_fract:
18686 case AMDGPU::BI__builtin_amdgcn_fractf:
18687 case AMDGPU::BI__builtin_amdgcn_fracth:
18688 return emitBuiltinWithOneOverloadedType<1>(*this, E,
18689 Intrinsic::amdgcn_fract);
18690 case AMDGPU::BI__builtin_amdgcn_lerp:
18691 return emitBuiltinWithOneOverloadedType<3>(*this, E,
18692 Intrinsic::amdgcn_lerp);
18693 case AMDGPU::BI__builtin_amdgcn_ubfe:
18694 return emitBuiltinWithOneOverloadedType<3>(*this, E,
18695 Intrinsic::amdgcn_ubfe);
18696 case AMDGPU::BI__builtin_amdgcn_sbfe:
18697 return emitBuiltinWithOneOverloadedType<3>(*this, E,
18698 Intrinsic::amdgcn_sbfe);
18699 case AMDGPU::BI__builtin_amdgcn_ballot_w32:
18700 case AMDGPU::BI__builtin_amdgcn_ballot_w64: {
18701 llvm::Type *ResultType = ConvertType(E->getType());
18702 llvm::Value *Src = EmitScalarExpr(E->getArg(0));
18703 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_ballot, { ResultType });
18704 return Builder.CreateCall(F, { Src });
18706 case AMDGPU::BI__builtin_amdgcn_uicmp:
18707 case AMDGPU::BI__builtin_amdgcn_uicmpl:
18708 case AMDGPU::BI__builtin_amdgcn_sicmp:
18709 case AMDGPU::BI__builtin_amdgcn_sicmpl: {
18710 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
18711 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
18712 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
18714 // FIXME-GFX10: How should 32 bit mask be handled?
18715 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
18716 { Builder.getInt64Ty(), Src0->getType() });
18717 return Builder.CreateCall(F, { Src0, Src1, Src2 });
18719 case AMDGPU::BI__builtin_amdgcn_fcmp:
18720 case AMDGPU::BI__builtin_amdgcn_fcmpf: {
18721 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
18722 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
18723 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
18725 // FIXME-GFX10: How should 32 bit mask be handled?
18726 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
18727 { Builder.getInt64Ty(), Src0->getType() });
18728 return Builder.CreateCall(F, { Src0, Src1, Src2 });
18730 case AMDGPU::BI__builtin_amdgcn_class:
18731 case AMDGPU::BI__builtin_amdgcn_classf:
18732 case AMDGPU::BI__builtin_amdgcn_classh:
18733 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
18734 case AMDGPU::BI__builtin_amdgcn_fmed3f:
18735 case AMDGPU::BI__builtin_amdgcn_fmed3h:
18736 return emitBuiltinWithOneOverloadedType<3>(*this, E,
18737 Intrinsic::amdgcn_fmed3);
18738 case AMDGPU::BI__builtin_amdgcn_ds_append:
18739 case AMDGPU::BI__builtin_amdgcn_ds_consume: {
18740 Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
18741 Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
18742 Value *Src0 = EmitScalarExpr(E->getArg(0));
18743 Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
18744 return Builder.CreateCall(F, { Src0, Builder.getFalse() });
18746 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
18747 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
18748 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
18749 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
18750 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
18751 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
18752 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
18753 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64:
18754 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32:
18755 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16: {
18756 Intrinsic::ID IID;
18757 llvm::Type *ArgTy = llvm::Type::getDoubleTy(getLLVMContext());
18758 switch (BuiltinID) {
18759 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
18760 ArgTy = llvm::Type::getFloatTy(getLLVMContext());
18761 IID = Intrinsic::amdgcn_global_atomic_fadd;
18762 break;
18763 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
18764 ArgTy = llvm::FixedVectorType::get(
18765 llvm::Type::getHalfTy(getLLVMContext()), 2);
18766 IID = Intrinsic::amdgcn_global_atomic_fadd;
18767 break;
18768 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
18769 IID = Intrinsic::amdgcn_global_atomic_fadd;
18770 break;
18771 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
18772 IID = Intrinsic::amdgcn_global_atomic_fmin;
18773 break;
18774 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
18775 IID = Intrinsic::amdgcn_global_atomic_fmax;
18776 break;
18777 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
18778 IID = Intrinsic::amdgcn_flat_atomic_fadd;
18779 break;
18780 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
18781 IID = Intrinsic::amdgcn_flat_atomic_fmin;
18782 break;
18783 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64:
18784 IID = Intrinsic::amdgcn_flat_atomic_fmax;
18785 break;
18786 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32:
18787 ArgTy = llvm::Type::getFloatTy(getLLVMContext());
18788 IID = Intrinsic::amdgcn_flat_atomic_fadd;
18789 break;
18790 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16:
18791 ArgTy = llvm::FixedVectorType::get(
18792 llvm::Type::getHalfTy(getLLVMContext()), 2);
18793 IID = Intrinsic::amdgcn_flat_atomic_fadd;
18794 break;
18796 llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
18797 llvm::Value *Val = EmitScalarExpr(E->getArg(1));
18798 llvm::Function *F =
18799 CGM.getIntrinsic(IID, {ArgTy, Addr->getType(), Val->getType()});
18800 return Builder.CreateCall(F, {Addr, Val});
18802 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16:
18803 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16: {
18804 Intrinsic::ID IID;
18805 switch (BuiltinID) {
18806 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16:
18807 IID = Intrinsic::amdgcn_global_atomic_fadd_v2bf16;
18808 break;
18809 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16:
18810 IID = Intrinsic::amdgcn_flat_atomic_fadd_v2bf16;
18811 break;
18813 llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
18814 llvm::Value *Val = EmitScalarExpr(E->getArg(1));
18815 llvm::Function *F = CGM.getIntrinsic(IID, {Addr->getType()});
18816 return Builder.CreateCall(F, {Addr, Val});
18818 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b64_i32:
18819 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b64_v2i32:
18820 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4i16:
18821 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4f16:
18822 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4bf16:
18823 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8i16:
18824 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8f16:
18825 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8bf16: {
18827 Intrinsic::ID IID;
18828 switch (BuiltinID) {
18829 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b64_i32:
18830 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b64_v2i32:
18831 IID = Intrinsic::amdgcn_global_load_tr_b64;
18832 break;
18833 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4i16:
18834 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4f16:
18835 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4bf16:
18836 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8i16:
18837 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8f16:
18838 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8bf16:
18839 IID = Intrinsic::amdgcn_global_load_tr_b128;
18840 break;
18842 llvm::Type *LoadTy = ConvertType(E->getType());
18843 llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
18844 llvm::Function *F = CGM.getIntrinsic(IID, {LoadTy});
18845 return Builder.CreateCall(F, {Addr});
18847 case AMDGPU::BI__builtin_amdgcn_get_fpenv: {
18848 Function *F = CGM.getIntrinsic(Intrinsic::get_fpenv,
18849 {llvm::Type::getInt64Ty(getLLVMContext())});
18850 return Builder.CreateCall(F);
18852 case AMDGPU::BI__builtin_amdgcn_set_fpenv: {
18853 Function *F = CGM.getIntrinsic(Intrinsic::set_fpenv,
18854 {llvm::Type::getInt64Ty(getLLVMContext())});
18855 llvm::Value *Env = EmitScalarExpr(E->getArg(0));
18856 return Builder.CreateCall(F, {Env});
18858 case AMDGPU::BI__builtin_amdgcn_read_exec:
18859 return EmitAMDGCNBallotForExec(*this, E, Int64Ty, Int64Ty, false);
18860 case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
18861 return EmitAMDGCNBallotForExec(*this, E, Int32Ty, Int32Ty, false);
18862 case AMDGPU::BI__builtin_amdgcn_read_exec_hi:
18863 return EmitAMDGCNBallotForExec(*this, E, Int64Ty, Int64Ty, true);
18864 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray:
18865 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_h:
18866 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_l:
18867 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_lh: {
18868 llvm::Value *NodePtr = EmitScalarExpr(E->getArg(0));
18869 llvm::Value *RayExtent = EmitScalarExpr(E->getArg(1));
18870 llvm::Value *RayOrigin = EmitScalarExpr(E->getArg(2));
18871 llvm::Value *RayDir = EmitScalarExpr(E->getArg(3));
18872 llvm::Value *RayInverseDir = EmitScalarExpr(E->getArg(4));
18873 llvm::Value *TextureDescr = EmitScalarExpr(E->getArg(5));
18875 // The builtins take these arguments as vec4 where the last element is
18876 // ignored. The intrinsic takes them as vec3.
18877 RayOrigin = Builder.CreateShuffleVector(RayOrigin, RayOrigin,
18878 ArrayRef<int>{0, 1, 2});
18879 RayDir =
18880 Builder.CreateShuffleVector(RayDir, RayDir, ArrayRef<int>{0, 1, 2});
18881 RayInverseDir = Builder.CreateShuffleVector(RayInverseDir, RayInverseDir,
18882 ArrayRef<int>{0, 1, 2});
18884 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_image_bvh_intersect_ray,
18885 {NodePtr->getType(), RayDir->getType()});
18886 return Builder.CreateCall(F, {NodePtr, RayExtent, RayOrigin, RayDir,
18887 RayInverseDir, TextureDescr});
18890 case AMDGPU::BI__builtin_amdgcn_ds_bvh_stack_rtn: {
18891 SmallVector<Value *, 4> Args;
18892 for (int i = 0, e = E->getNumArgs(); i != e; ++i)
18893 Args.push_back(EmitScalarExpr(E->getArg(i)));
18895 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_ds_bvh_stack_rtn);
18896 Value *Call = Builder.CreateCall(F, Args);
18897 Value *Rtn = Builder.CreateExtractValue(Call, 0);
18898 Value *A = Builder.CreateExtractValue(Call, 1);
18899 llvm::Type *RetTy = ConvertType(E->getType());
18900 Value *I0 = Builder.CreateInsertElement(PoisonValue::get(RetTy), Rtn,
18901 (uint64_t)0);
18902 return Builder.CreateInsertElement(I0, A, 1);
18905 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32:
18906 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w32:
18907 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64:
18908 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w64:
18909 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32:
18910 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w32:
18911 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64:
18912 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w64:
18913 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32:
18914 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64:
18915 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32:
18916 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64:
18917 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32:
18918 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64:
18919 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32:
18920 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64:
18921 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32_gfx12:
18922 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64_gfx12:
18923 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32_gfx12:
18924 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64_gfx12:
18925 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32_gfx12:
18926 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64_gfx12:
18927 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32_gfx12:
18928 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64_gfx12:
18929 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32_gfx12:
18930 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64_gfx12:
18931 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12:
18932 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64_gfx12:
18933 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w32_gfx12:
18934 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w64_gfx12:
18935 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w32_gfx12:
18936 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w64_gfx12:
18937 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w32_gfx12:
18938 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w64_gfx12:
18939 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w32_gfx12:
18940 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w64_gfx12:
18941 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w32_gfx12:
18942 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w64_gfx12:
18943 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w32:
18944 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w64:
18945 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w32:
18946 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w64:
18947 case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w32:
18948 case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w64:
18949 case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w32:
18950 case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w64:
18951 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w32:
18952 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w64:
18953 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w32:
18954 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w64:
18955 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w32:
18956 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w64:
18957 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w32:
18958 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w64:
18959 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w32:
18960 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w64:
18961 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w32:
18962 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w64:
18963 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w32:
18964 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w64: {
18966 // These operations perform a matrix multiplication and accumulation of
18967 // the form:
18968 // D = A * B + C
18969 // We need to specify one type for matrices AB and one for matrices CD.
18970 // Sparse matrix operations can have different types for A and B as well as
18971 // an additional type for sparsity index.
18972 // Destination type should be put before types used for source operands.
18973 SmallVector<unsigned, 2> ArgsForMatchingMatrixTypes;
18974 // On GFX12, the intrinsics with 16-bit accumulator use a packed layout.
18975 // There is no need for the variable opsel argument, so always set it to
18976 // "false".
18977 bool AppendFalseForOpselArg = false;
18978 unsigned BuiltinWMMAOp;
18980 switch (BuiltinID) {
18981 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32:
18982 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64:
18983 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32_gfx12:
18984 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64_gfx12:
18985 ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
18986 BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_f16;
18987 break;
18988 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32:
18989 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64:
18990 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32_gfx12:
18991 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64_gfx12:
18992 ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
18993 BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_bf16;
18994 break;
18995 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32_gfx12:
18996 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64_gfx12:
18997 AppendFalseForOpselArg = true;
18998 [[fallthrough]];
18999 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32:
19000 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64:
19001 ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
19002 BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f16_16x16x16_f16;
19003 break;
19004 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32_gfx12:
19005 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64_gfx12:
19006 AppendFalseForOpselArg = true;
19007 [[fallthrough]];
19008 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32:
19009 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64:
19010 ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
19011 BuiltinWMMAOp = Intrinsic::amdgcn_wmma_bf16_16x16x16_bf16;
19012 break;
19013 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w32:
19014 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w64:
19015 ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
19016 BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f16_16x16x16_f16_tied;
19017 break;
19018 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w32:
19019 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w64:
19020 ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
19021 BuiltinWMMAOp = Intrinsic::amdgcn_wmma_bf16_16x16x16_bf16_tied;
19022 break;
19023 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32:
19024 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64:
19025 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12:
19026 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64_gfx12:
19027 ArgsForMatchingMatrixTypes = {4, 1}; // CD, AB
19028 BuiltinWMMAOp = Intrinsic::amdgcn_wmma_i32_16x16x16_iu8;
19029 break;
19030 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32:
19031 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64:
19032 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32_gfx12:
19033 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64_gfx12:
19034 ArgsForMatchingMatrixTypes = {4, 1}; // CD, AB
19035 BuiltinWMMAOp = Intrinsic::amdgcn_wmma_i32_16x16x16_iu4;
19036 break;
19037 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w32_gfx12:
19038 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w64_gfx12:
19039 ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
19040 BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_fp8_fp8;
19041 break;
19042 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w32_gfx12:
19043 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w64_gfx12:
19044 ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
19045 BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_fp8_bf8;
19046 break;
19047 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w32_gfx12:
19048 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w64_gfx12:
19049 ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
19050 BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_bf8_fp8;
19051 break;
19052 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w32_gfx12:
19053 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w64_gfx12:
19054 ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
19055 BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_bf8_bf8;
19056 break;
19057 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w32_gfx12:
19058 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w64_gfx12:
19059 ArgsForMatchingMatrixTypes = {4, 1}; // CD, AB
19060 BuiltinWMMAOp = Intrinsic::amdgcn_wmma_i32_16x16x32_iu4;
19061 break;
19062 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w32:
19063 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w64:
19064 ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19065 BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_f16;
19066 break;
19067 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w32:
19068 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w64:
19069 ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19070 BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_bf16;
19071 break;
19072 case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w32:
19073 case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w64:
19074 ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19075 BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f16_16x16x32_f16;
19076 break;
19077 case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w32:
19078 case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w64:
19079 ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19080 BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_bf16_16x16x32_bf16;
19081 break;
19082 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w32:
19083 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w64:
19084 ArgsForMatchingMatrixTypes = {4, 1, 3, 5}; // CD, A, B, Index
19085 BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_i32_16x16x32_iu8;
19086 break;
19087 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w32:
19088 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w64:
19089 ArgsForMatchingMatrixTypes = {4, 1, 3, 5}; // CD, A, B, Index
19090 BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_i32_16x16x32_iu4;
19091 break;
19092 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w32:
19093 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w64:
19094 ArgsForMatchingMatrixTypes = {4, 1, 3, 5}; // CD, A, B, Index
19095 BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_i32_16x16x64_iu4;
19096 break;
19097 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w32:
19098 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w64:
19099 ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19100 BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_fp8;
19101 break;
19102 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w32:
19103 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w64:
19104 ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19105 BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_bf8;
19106 break;
19107 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w32:
19108 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w64:
19109 ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19110 BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_fp8;
19111 break;
19112 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w32:
19113 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w64:
19114 ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19115 BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_bf8;
19116 break;
19119 SmallVector<Value *, 6> Args;
19120 for (int i = 0, e = E->getNumArgs(); i != e; ++i)
19121 Args.push_back(EmitScalarExpr(E->getArg(i)));
19122 if (AppendFalseForOpselArg)
19123 Args.push_back(Builder.getFalse());
19125 SmallVector<llvm::Type *, 6> ArgTypes;
19126 for (auto ArgIdx : ArgsForMatchingMatrixTypes)
19127 ArgTypes.push_back(Args[ArgIdx]->getType());
19129 Function *F = CGM.getIntrinsic(BuiltinWMMAOp, ArgTypes);
19130 return Builder.CreateCall(F, Args);
19133 // amdgcn workitem
19134 case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
19135 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
19136 case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
19137 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
19138 case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
19139 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
19141 // amdgcn workgroup size
19142 case AMDGPU::BI__builtin_amdgcn_workgroup_size_x:
19143 return EmitAMDGPUWorkGroupSize(*this, 0);
19144 case AMDGPU::BI__builtin_amdgcn_workgroup_size_y:
19145 return EmitAMDGPUWorkGroupSize(*this, 1);
19146 case AMDGPU::BI__builtin_amdgcn_workgroup_size_z:
19147 return EmitAMDGPUWorkGroupSize(*this, 2);
19149 // amdgcn grid size
19150 case AMDGPU::BI__builtin_amdgcn_grid_size_x:
19151 return EmitAMDGPUGridSize(*this, 0);
19152 case AMDGPU::BI__builtin_amdgcn_grid_size_y:
19153 return EmitAMDGPUGridSize(*this, 1);
19154 case AMDGPU::BI__builtin_amdgcn_grid_size_z:
19155 return EmitAMDGPUGridSize(*this, 2);
19157 // r600 intrinsics
19158 case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
19159 case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
19160 return emitBuiltinWithOneOverloadedType<1>(*this, E,
19161 Intrinsic::r600_recipsqrt_ieee);
19162 case AMDGPU::BI__builtin_r600_read_tidig_x:
19163 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
19164 case AMDGPU::BI__builtin_r600_read_tidig_y:
19165 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
19166 case AMDGPU::BI__builtin_r600_read_tidig_z:
19167 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
19168 case AMDGPU::BI__builtin_amdgcn_alignbit: {
19169 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
19170 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
19171 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
19172 Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType());
19173 return Builder.CreateCall(F, { Src0, Src1, Src2 });
19175 case AMDGPU::BI__builtin_amdgcn_fence: {
19176 ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)),
19177 EmitScalarExpr(E->getArg(1)), AO, SSID);
19178 FenceInst *Fence = Builder.CreateFence(AO, SSID);
19179 if (E->getNumArgs() > 2)
19180 AddAMDGPUFenceAddressSpaceMMRA(Fence, E);
19181 return Fence;
19183 case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
19184 case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
19185 case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
19186 case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
19187 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
19188 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32:
19189 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2f16:
19190 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2bf16:
19191 case AMDGPU::BI__builtin_amdgcn_ds_faddf:
19192 case AMDGPU::BI__builtin_amdgcn_ds_fminf:
19193 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: {
19194 llvm::AtomicRMWInst::BinOp BinOp;
19195 switch (BuiltinID) {
19196 case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
19197 case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
19198 BinOp = llvm::AtomicRMWInst::UIncWrap;
19199 break;
19200 case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
19201 case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
19202 BinOp = llvm::AtomicRMWInst::UDecWrap;
19203 break;
19204 case AMDGPU::BI__builtin_amdgcn_ds_faddf:
19205 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
19206 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32:
19207 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2f16:
19208 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2bf16:
19209 BinOp = llvm::AtomicRMWInst::FAdd;
19210 break;
19211 case AMDGPU::BI__builtin_amdgcn_ds_fminf:
19212 BinOp = llvm::AtomicRMWInst::FMin;
19213 break;
19214 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf:
19215 BinOp = llvm::AtomicRMWInst::FMax;
19216 break;
19219 Address Ptr = CheckAtomicAlignment(*this, E);
19220 Value *Val = EmitScalarExpr(E->getArg(1));
19221 llvm::Type *OrigTy = Val->getType();
19222 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
19224 bool Volatile;
19226 if (BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_faddf ||
19227 BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_fminf ||
19228 BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_fmaxf) {
19229 // __builtin_amdgcn_ds_faddf/fminf/fmaxf has an explicit volatile argument
19230 Volatile =
19231 cast<ConstantInt>(EmitScalarExpr(E->getArg(4)))->getZExtValue();
19232 } else {
19233 // Infer volatile from the passed type.
19234 Volatile =
19235 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
19238 if (E->getNumArgs() >= 4) {
19239 // Some of the builtins have explicit ordering and scope arguments.
19240 ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)),
19241 EmitScalarExpr(E->getArg(3)), AO, SSID);
19242 } else {
19243 // The ds_atomic_fadd_* builtins do not have syncscope/order arguments.
19244 SSID = llvm::SyncScope::System;
19245 AO = AtomicOrdering::SequentiallyConsistent;
19247 // The v2bf16 builtin uses i16 instead of a natural bfloat type.
19248 if (BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2bf16) {
19249 llvm::Type *V2BF16Ty = FixedVectorType::get(
19250 llvm::Type::getBFloatTy(Builder.getContext()), 2);
19251 Val = Builder.CreateBitCast(Val, V2BF16Ty);
19255 llvm::AtomicRMWInst *RMW =
19256 Builder.CreateAtomicRMW(BinOp, Ptr, Val, AO, SSID);
19257 if (Volatile)
19258 RMW->setVolatile(true);
19259 return Builder.CreateBitCast(RMW, OrigTy);
19261 case AMDGPU::BI__builtin_amdgcn_s_sendmsg_rtn:
19262 case AMDGPU::BI__builtin_amdgcn_s_sendmsg_rtnl: {
19263 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
19264 llvm::Type *ResultType = ConvertType(E->getType());
19265 // s_sendmsg_rtn is mangled using return type only.
19266 Function *F =
19267 CGM.getIntrinsic(Intrinsic::amdgcn_s_sendmsg_rtn, {ResultType});
19268 return Builder.CreateCall(F, {Arg});
19270 case AMDGPU::BI__builtin_amdgcn_make_buffer_rsrc:
19271 return emitBuiltinWithOneOverloadedType<4>(
19272 *this, E, Intrinsic::amdgcn_make_buffer_rsrc);
19273 case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b8:
19274 case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b16:
19275 case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b32:
19276 case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b64:
19277 case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b96:
19278 case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b128:
19279 return emitBuiltinWithOneOverloadedType<5>(
19280 *this, E, Intrinsic::amdgcn_raw_ptr_buffer_store);
19281 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b8:
19282 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b16:
19283 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b32:
19284 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b64:
19285 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b96:
19286 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b128: {
19287 llvm::Type *RetTy = nullptr;
19288 switch (BuiltinID) {
19289 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b8:
19290 RetTy = Int8Ty;
19291 break;
19292 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b16:
19293 RetTy = Int16Ty;
19294 break;
19295 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b32:
19296 RetTy = Int32Ty;
19297 break;
19298 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b64:
19299 RetTy = llvm::FixedVectorType::get(Int32Ty, /*NumElements=*/2);
19300 break;
19301 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b96:
19302 RetTy = llvm::FixedVectorType::get(Int32Ty, /*NumElements=*/3);
19303 break;
19304 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b128:
19305 RetTy = llvm::FixedVectorType::get(Int32Ty, /*NumElements=*/4);
19306 break;
19308 Function *F =
19309 CGM.getIntrinsic(Intrinsic::amdgcn_raw_ptr_buffer_load, RetTy);
19310 return Builder.CreateCall(
19311 F, {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)),
19312 EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3))});
19314 default:
19315 return nullptr;
19319 /// Handle a SystemZ function in which the final argument is a pointer
19320 /// to an int that receives the post-instruction CC value. At the LLVM level
19321 /// this is represented as a function that returns a {result, cc} pair.
19322 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
19323 unsigned IntrinsicID,
19324 const CallExpr *E) {
19325 unsigned NumArgs = E->getNumArgs() - 1;
19326 SmallVector<Value *, 8> Args(NumArgs);
19327 for (unsigned I = 0; I < NumArgs; ++I)
19328 Args[I] = CGF.EmitScalarExpr(E->getArg(I));
19329 Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
19330 Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
19331 Value *Call = CGF.Builder.CreateCall(F, Args);
19332 Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
19333 CGF.Builder.CreateStore(CC, CCPtr);
19334 return CGF.Builder.CreateExtractValue(Call, 0);
19337 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
19338 const CallExpr *E) {
19339 switch (BuiltinID) {
19340 case SystemZ::BI__builtin_tbegin: {
19341 Value *TDB = EmitScalarExpr(E->getArg(0));
19342 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
19343 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
19344 return Builder.CreateCall(F, {TDB, Control});
19346 case SystemZ::BI__builtin_tbegin_nofloat: {
19347 Value *TDB = EmitScalarExpr(E->getArg(0));
19348 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
19349 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
19350 return Builder.CreateCall(F, {TDB, Control});
19352 case SystemZ::BI__builtin_tbeginc: {
19353 Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
19354 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
19355 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
19356 return Builder.CreateCall(F, {TDB, Control});
19358 case SystemZ::BI__builtin_tabort: {
19359 Value *Data = EmitScalarExpr(E->getArg(0));
19360 Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
19361 return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
19363 case SystemZ::BI__builtin_non_tx_store: {
19364 Value *Address = EmitScalarExpr(E->getArg(0));
19365 Value *Data = EmitScalarExpr(E->getArg(1));
19366 Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
19367 return Builder.CreateCall(F, {Data, Address});
19370 // Vector builtins. Note that most vector builtins are mapped automatically
19371 // to target-specific LLVM intrinsics. The ones handled specially here can
19372 // be represented via standard LLVM IR, which is preferable to enable common
19373 // LLVM optimizations.
19375 case SystemZ::BI__builtin_s390_vpopctb:
19376 case SystemZ::BI__builtin_s390_vpopcth:
19377 case SystemZ::BI__builtin_s390_vpopctf:
19378 case SystemZ::BI__builtin_s390_vpopctg: {
19379 llvm::Type *ResultType = ConvertType(E->getType());
19380 Value *X = EmitScalarExpr(E->getArg(0));
19381 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
19382 return Builder.CreateCall(F, X);
19385 case SystemZ::BI__builtin_s390_vclzb:
19386 case SystemZ::BI__builtin_s390_vclzh:
19387 case SystemZ::BI__builtin_s390_vclzf:
19388 case SystemZ::BI__builtin_s390_vclzg: {
19389 llvm::Type *ResultType = ConvertType(E->getType());
19390 Value *X = EmitScalarExpr(E->getArg(0));
19391 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
19392 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
19393 return Builder.CreateCall(F, {X, Undef});
19396 case SystemZ::BI__builtin_s390_vctzb:
19397 case SystemZ::BI__builtin_s390_vctzh:
19398 case SystemZ::BI__builtin_s390_vctzf:
19399 case SystemZ::BI__builtin_s390_vctzg: {
19400 llvm::Type *ResultType = ConvertType(E->getType());
19401 Value *X = EmitScalarExpr(E->getArg(0));
19402 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
19403 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
19404 return Builder.CreateCall(F, {X, Undef});
19407 case SystemZ::BI__builtin_s390_verllb:
19408 case SystemZ::BI__builtin_s390_verllh:
19409 case SystemZ::BI__builtin_s390_verllf:
19410 case SystemZ::BI__builtin_s390_verllg: {
19411 llvm::Type *ResultType = ConvertType(E->getType());
19412 llvm::Value *Src = EmitScalarExpr(E->getArg(0));
19413 llvm::Value *Amt = EmitScalarExpr(E->getArg(1));
19414 // Splat scalar rotate amount to vector type.
19415 unsigned NumElts = cast<llvm::FixedVectorType>(ResultType)->getNumElements();
19416 Amt = Builder.CreateIntCast(Amt, ResultType->getScalarType(), false);
19417 Amt = Builder.CreateVectorSplat(NumElts, Amt);
19418 Function *F = CGM.getIntrinsic(Intrinsic::fshl, ResultType);
19419 return Builder.CreateCall(F, { Src, Src, Amt });
19422 case SystemZ::BI__builtin_s390_verllvb:
19423 case SystemZ::BI__builtin_s390_verllvh:
19424 case SystemZ::BI__builtin_s390_verllvf:
19425 case SystemZ::BI__builtin_s390_verllvg: {
19426 llvm::Type *ResultType = ConvertType(E->getType());
19427 llvm::Value *Src = EmitScalarExpr(E->getArg(0));
19428 llvm::Value *Amt = EmitScalarExpr(E->getArg(1));
19429 Function *F = CGM.getIntrinsic(Intrinsic::fshl, ResultType);
19430 return Builder.CreateCall(F, { Src, Src, Amt });
19433 case SystemZ::BI__builtin_s390_vfsqsb:
19434 case SystemZ::BI__builtin_s390_vfsqdb: {
19435 llvm::Type *ResultType = ConvertType(E->getType());
19436 Value *X = EmitScalarExpr(E->getArg(0));
19437 if (Builder.getIsFPConstrained()) {
19438 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType);
19439 return Builder.CreateConstrainedFPCall(F, { X });
19440 } else {
19441 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
19442 return Builder.CreateCall(F, X);
19445 case SystemZ::BI__builtin_s390_vfmasb:
19446 case SystemZ::BI__builtin_s390_vfmadb: {
19447 llvm::Type *ResultType = ConvertType(E->getType());
19448 Value *X = EmitScalarExpr(E->getArg(0));
19449 Value *Y = EmitScalarExpr(E->getArg(1));
19450 Value *Z = EmitScalarExpr(E->getArg(2));
19451 if (Builder.getIsFPConstrained()) {
19452 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
19453 return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
19454 } else {
19455 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
19456 return Builder.CreateCall(F, {X, Y, Z});
19459 case SystemZ::BI__builtin_s390_vfmssb:
19460 case SystemZ::BI__builtin_s390_vfmsdb: {
19461 llvm::Type *ResultType = ConvertType(E->getType());
19462 Value *X = EmitScalarExpr(E->getArg(0));
19463 Value *Y = EmitScalarExpr(E->getArg(1));
19464 Value *Z = EmitScalarExpr(E->getArg(2));
19465 if (Builder.getIsFPConstrained()) {
19466 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
19467 return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
19468 } else {
19469 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
19470 return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
19473 case SystemZ::BI__builtin_s390_vfnmasb:
19474 case SystemZ::BI__builtin_s390_vfnmadb: {
19475 llvm::Type *ResultType = ConvertType(E->getType());
19476 Value *X = EmitScalarExpr(E->getArg(0));
19477 Value *Y = EmitScalarExpr(E->getArg(1));
19478 Value *Z = EmitScalarExpr(E->getArg(2));
19479 if (Builder.getIsFPConstrained()) {
19480 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
19481 return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
19482 } else {
19483 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
19484 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
19487 case SystemZ::BI__builtin_s390_vfnmssb:
19488 case SystemZ::BI__builtin_s390_vfnmsdb: {
19489 llvm::Type *ResultType = ConvertType(E->getType());
19490 Value *X = EmitScalarExpr(E->getArg(0));
19491 Value *Y = EmitScalarExpr(E->getArg(1));
19492 Value *Z = EmitScalarExpr(E->getArg(2));
19493 if (Builder.getIsFPConstrained()) {
19494 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
19495 Value *NegZ = Builder.CreateFNeg(Z, "sub");
19496 return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ}));
19497 } else {
19498 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
19499 Value *NegZ = Builder.CreateFNeg(Z, "neg");
19500 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ}));
19503 case SystemZ::BI__builtin_s390_vflpsb:
19504 case SystemZ::BI__builtin_s390_vflpdb: {
19505 llvm::Type *ResultType = ConvertType(E->getType());
19506 Value *X = EmitScalarExpr(E->getArg(0));
19507 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
19508 return Builder.CreateCall(F, X);
19510 case SystemZ::BI__builtin_s390_vflnsb:
19511 case SystemZ::BI__builtin_s390_vflndb: {
19512 llvm::Type *ResultType = ConvertType(E->getType());
19513 Value *X = EmitScalarExpr(E->getArg(0));
19514 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
19515 return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg");
19517 case SystemZ::BI__builtin_s390_vfisb:
19518 case SystemZ::BI__builtin_s390_vfidb: {
19519 llvm::Type *ResultType = ConvertType(E->getType());
19520 Value *X = EmitScalarExpr(E->getArg(0));
19521 // Constant-fold the M4 and M5 mask arguments.
19522 llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext());
19523 llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext());
19524 // Check whether this instance can be represented via a LLVM standard
19525 // intrinsic. We only support some combinations of M4 and M5.
19526 Intrinsic::ID ID = Intrinsic::not_intrinsic;
19527 Intrinsic::ID CI;
19528 switch (M4.getZExtValue()) {
19529 default: break;
19530 case 0: // IEEE-inexact exception allowed
19531 switch (M5.getZExtValue()) {
19532 default: break;
19533 case 0: ID = Intrinsic::rint;
19534 CI = Intrinsic::experimental_constrained_rint; break;
19536 break;
19537 case 4: // IEEE-inexact exception suppressed
19538 switch (M5.getZExtValue()) {
19539 default: break;
19540 case 0: ID = Intrinsic::nearbyint;
19541 CI = Intrinsic::experimental_constrained_nearbyint; break;
19542 case 1: ID = Intrinsic::round;
19543 CI = Intrinsic::experimental_constrained_round; break;
19544 case 5: ID = Intrinsic::trunc;
19545 CI = Intrinsic::experimental_constrained_trunc; break;
19546 case 6: ID = Intrinsic::ceil;
19547 CI = Intrinsic::experimental_constrained_ceil; break;
19548 case 7: ID = Intrinsic::floor;
19549 CI = Intrinsic::experimental_constrained_floor; break;
19551 break;
19553 if (ID != Intrinsic::not_intrinsic) {
19554 if (Builder.getIsFPConstrained()) {
19555 Function *F = CGM.getIntrinsic(CI, ResultType);
19556 return Builder.CreateConstrainedFPCall(F, X);
19557 } else {
19558 Function *F = CGM.getIntrinsic(ID, ResultType);
19559 return Builder.CreateCall(F, X);
19562 switch (BuiltinID) { // FIXME: constrained version?
19563 case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
19564 case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
19565 default: llvm_unreachable("Unknown BuiltinID");
19567 Function *F = CGM.getIntrinsic(ID);
19568 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
19569 Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
19570 return Builder.CreateCall(F, {X, M4Value, M5Value});
19572 case SystemZ::BI__builtin_s390_vfmaxsb:
19573 case SystemZ::BI__builtin_s390_vfmaxdb: {
19574 llvm::Type *ResultType = ConvertType(E->getType());
19575 Value *X = EmitScalarExpr(E->getArg(0));
19576 Value *Y = EmitScalarExpr(E->getArg(1));
19577 // Constant-fold the M4 mask argument.
19578 llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
19579 // Check whether this instance can be represented via a LLVM standard
19580 // intrinsic. We only support some values of M4.
19581 Intrinsic::ID ID = Intrinsic::not_intrinsic;
19582 Intrinsic::ID CI;
19583 switch (M4.getZExtValue()) {
19584 default: break;
19585 case 4: ID = Intrinsic::maxnum;
19586 CI = Intrinsic::experimental_constrained_maxnum; break;
19588 if (ID != Intrinsic::not_intrinsic) {
19589 if (Builder.getIsFPConstrained()) {
19590 Function *F = CGM.getIntrinsic(CI, ResultType);
19591 return Builder.CreateConstrainedFPCall(F, {X, Y});
19592 } else {
19593 Function *F = CGM.getIntrinsic(ID, ResultType);
19594 return Builder.CreateCall(F, {X, Y});
19597 switch (BuiltinID) {
19598 case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
19599 case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
19600 default: llvm_unreachable("Unknown BuiltinID");
19602 Function *F = CGM.getIntrinsic(ID);
19603 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
19604 return Builder.CreateCall(F, {X, Y, M4Value});
19606 case SystemZ::BI__builtin_s390_vfminsb:
19607 case SystemZ::BI__builtin_s390_vfmindb: {
19608 llvm::Type *ResultType = ConvertType(E->getType());
19609 Value *X = EmitScalarExpr(E->getArg(0));
19610 Value *Y = EmitScalarExpr(E->getArg(1));
19611 // Constant-fold the M4 mask argument.
19612 llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
19613 // Check whether this instance can be represented via a LLVM standard
19614 // intrinsic. We only support some values of M4.
19615 Intrinsic::ID ID = Intrinsic::not_intrinsic;
19616 Intrinsic::ID CI;
19617 switch (M4.getZExtValue()) {
19618 default: break;
19619 case 4: ID = Intrinsic::minnum;
19620 CI = Intrinsic::experimental_constrained_minnum; break;
19622 if (ID != Intrinsic::not_intrinsic) {
19623 if (Builder.getIsFPConstrained()) {
19624 Function *F = CGM.getIntrinsic(CI, ResultType);
19625 return Builder.CreateConstrainedFPCall(F, {X, Y});
19626 } else {
19627 Function *F = CGM.getIntrinsic(ID, ResultType);
19628 return Builder.CreateCall(F, {X, Y});
19631 switch (BuiltinID) {
19632 case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
19633 case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
19634 default: llvm_unreachable("Unknown BuiltinID");
19636 Function *F = CGM.getIntrinsic(ID);
19637 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
19638 return Builder.CreateCall(F, {X, Y, M4Value});
19641 case SystemZ::BI__builtin_s390_vlbrh:
19642 case SystemZ::BI__builtin_s390_vlbrf:
19643 case SystemZ::BI__builtin_s390_vlbrg: {
19644 llvm::Type *ResultType = ConvertType(E->getType());
19645 Value *X = EmitScalarExpr(E->getArg(0));
19646 Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
19647 return Builder.CreateCall(F, X);
19650 // Vector intrinsics that output the post-instruction CC value.
19652 #define INTRINSIC_WITH_CC(NAME) \
19653 case SystemZ::BI__builtin_##NAME: \
19654 return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
19656 INTRINSIC_WITH_CC(s390_vpkshs);
19657 INTRINSIC_WITH_CC(s390_vpksfs);
19658 INTRINSIC_WITH_CC(s390_vpksgs);
19660 INTRINSIC_WITH_CC(s390_vpklshs);
19661 INTRINSIC_WITH_CC(s390_vpklsfs);
19662 INTRINSIC_WITH_CC(s390_vpklsgs);
19664 INTRINSIC_WITH_CC(s390_vceqbs);
19665 INTRINSIC_WITH_CC(s390_vceqhs);
19666 INTRINSIC_WITH_CC(s390_vceqfs);
19667 INTRINSIC_WITH_CC(s390_vceqgs);
19669 INTRINSIC_WITH_CC(s390_vchbs);
19670 INTRINSIC_WITH_CC(s390_vchhs);
19671 INTRINSIC_WITH_CC(s390_vchfs);
19672 INTRINSIC_WITH_CC(s390_vchgs);
19674 INTRINSIC_WITH_CC(s390_vchlbs);
19675 INTRINSIC_WITH_CC(s390_vchlhs);
19676 INTRINSIC_WITH_CC(s390_vchlfs);
19677 INTRINSIC_WITH_CC(s390_vchlgs);
19679 INTRINSIC_WITH_CC(s390_vfaebs);
19680 INTRINSIC_WITH_CC(s390_vfaehs);
19681 INTRINSIC_WITH_CC(s390_vfaefs);
19683 INTRINSIC_WITH_CC(s390_vfaezbs);
19684 INTRINSIC_WITH_CC(s390_vfaezhs);
19685 INTRINSIC_WITH_CC(s390_vfaezfs);
19687 INTRINSIC_WITH_CC(s390_vfeebs);
19688 INTRINSIC_WITH_CC(s390_vfeehs);
19689 INTRINSIC_WITH_CC(s390_vfeefs);
19691 INTRINSIC_WITH_CC(s390_vfeezbs);
19692 INTRINSIC_WITH_CC(s390_vfeezhs);
19693 INTRINSIC_WITH_CC(s390_vfeezfs);
19695 INTRINSIC_WITH_CC(s390_vfenebs);
19696 INTRINSIC_WITH_CC(s390_vfenehs);
19697 INTRINSIC_WITH_CC(s390_vfenefs);
19699 INTRINSIC_WITH_CC(s390_vfenezbs);
19700 INTRINSIC_WITH_CC(s390_vfenezhs);
19701 INTRINSIC_WITH_CC(s390_vfenezfs);
19703 INTRINSIC_WITH_CC(s390_vistrbs);
19704 INTRINSIC_WITH_CC(s390_vistrhs);
19705 INTRINSIC_WITH_CC(s390_vistrfs);
19707 INTRINSIC_WITH_CC(s390_vstrcbs);
19708 INTRINSIC_WITH_CC(s390_vstrchs);
19709 INTRINSIC_WITH_CC(s390_vstrcfs);
19711 INTRINSIC_WITH_CC(s390_vstrczbs);
19712 INTRINSIC_WITH_CC(s390_vstrczhs);
19713 INTRINSIC_WITH_CC(s390_vstrczfs);
19715 INTRINSIC_WITH_CC(s390_vfcesbs);
19716 INTRINSIC_WITH_CC(s390_vfcedbs);
19717 INTRINSIC_WITH_CC(s390_vfchsbs);
19718 INTRINSIC_WITH_CC(s390_vfchdbs);
19719 INTRINSIC_WITH_CC(s390_vfchesbs);
19720 INTRINSIC_WITH_CC(s390_vfchedbs);
19722 INTRINSIC_WITH_CC(s390_vftcisb);
19723 INTRINSIC_WITH_CC(s390_vftcidb);
19725 INTRINSIC_WITH_CC(s390_vstrsb);
19726 INTRINSIC_WITH_CC(s390_vstrsh);
19727 INTRINSIC_WITH_CC(s390_vstrsf);
19729 INTRINSIC_WITH_CC(s390_vstrszb);
19730 INTRINSIC_WITH_CC(s390_vstrszh);
19731 INTRINSIC_WITH_CC(s390_vstrszf);
19733 #undef INTRINSIC_WITH_CC
19735 default:
19736 return nullptr;
19740 namespace {
19741 // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
19742 struct NVPTXMmaLdstInfo {
19743 unsigned NumResults; // Number of elements to load/store
19744 // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
19745 unsigned IID_col;
19746 unsigned IID_row;
19749 #define MMA_INTR(geom_op_type, layout) \
19750 Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
19751 #define MMA_LDST(n, geom_op_type) \
19752 { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
19754 static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
19755 switch (BuiltinID) {
19756 // FP MMA loads
19757 case NVPTX::BI__hmma_m16n16k16_ld_a:
19758 return MMA_LDST(8, m16n16k16_load_a_f16);
19759 case NVPTX::BI__hmma_m16n16k16_ld_b:
19760 return MMA_LDST(8, m16n16k16_load_b_f16);
19761 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
19762 return MMA_LDST(4, m16n16k16_load_c_f16);
19763 case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
19764 return MMA_LDST(8, m16n16k16_load_c_f32);
19765 case NVPTX::BI__hmma_m32n8k16_ld_a:
19766 return MMA_LDST(8, m32n8k16_load_a_f16);
19767 case NVPTX::BI__hmma_m32n8k16_ld_b:
19768 return MMA_LDST(8, m32n8k16_load_b_f16);
19769 case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
19770 return MMA_LDST(4, m32n8k16_load_c_f16);
19771 case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
19772 return MMA_LDST(8, m32n8k16_load_c_f32);
19773 case NVPTX::BI__hmma_m8n32k16_ld_a:
19774 return MMA_LDST(8, m8n32k16_load_a_f16);
19775 case NVPTX::BI__hmma_m8n32k16_ld_b:
19776 return MMA_LDST(8, m8n32k16_load_b_f16);
19777 case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
19778 return MMA_LDST(4, m8n32k16_load_c_f16);
19779 case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
19780 return MMA_LDST(8, m8n32k16_load_c_f32);
19782 // Integer MMA loads
19783 case NVPTX::BI__imma_m16n16k16_ld_a_s8:
19784 return MMA_LDST(2, m16n16k16_load_a_s8);
19785 case NVPTX::BI__imma_m16n16k16_ld_a_u8:
19786 return MMA_LDST(2, m16n16k16_load_a_u8);
19787 case NVPTX::BI__imma_m16n16k16_ld_b_s8:
19788 return MMA_LDST(2, m16n16k16_load_b_s8);
19789 case NVPTX::BI__imma_m16n16k16_ld_b_u8:
19790 return MMA_LDST(2, m16n16k16_load_b_u8);
19791 case NVPTX::BI__imma_m16n16k16_ld_c:
19792 return MMA_LDST(8, m16n16k16_load_c_s32);
19793 case NVPTX::BI__imma_m32n8k16_ld_a_s8:
19794 return MMA_LDST(4, m32n8k16_load_a_s8);
19795 case NVPTX::BI__imma_m32n8k16_ld_a_u8:
19796 return MMA_LDST(4, m32n8k16_load_a_u8);
19797 case NVPTX::BI__imma_m32n8k16_ld_b_s8:
19798 return MMA_LDST(1, m32n8k16_load_b_s8);
19799 case NVPTX::BI__imma_m32n8k16_ld_b_u8:
19800 return MMA_LDST(1, m32n8k16_load_b_u8);
19801 case NVPTX::BI__imma_m32n8k16_ld_c:
19802 return MMA_LDST(8, m32n8k16_load_c_s32);
19803 case NVPTX::BI__imma_m8n32k16_ld_a_s8:
19804 return MMA_LDST(1, m8n32k16_load_a_s8);
19805 case NVPTX::BI__imma_m8n32k16_ld_a_u8:
19806 return MMA_LDST(1, m8n32k16_load_a_u8);
19807 case NVPTX::BI__imma_m8n32k16_ld_b_s8:
19808 return MMA_LDST(4, m8n32k16_load_b_s8);
19809 case NVPTX::BI__imma_m8n32k16_ld_b_u8:
19810 return MMA_LDST(4, m8n32k16_load_b_u8);
19811 case NVPTX::BI__imma_m8n32k16_ld_c:
19812 return MMA_LDST(8, m8n32k16_load_c_s32);
19814 // Sub-integer MMA loads.
19815 // Only row/col layout is supported by A/B fragments.
19816 case NVPTX::BI__imma_m8n8k32_ld_a_s4:
19817 return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
19818 case NVPTX::BI__imma_m8n8k32_ld_a_u4:
19819 return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
19820 case NVPTX::BI__imma_m8n8k32_ld_b_s4:
19821 return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
19822 case NVPTX::BI__imma_m8n8k32_ld_b_u4:
19823 return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
19824 case NVPTX::BI__imma_m8n8k32_ld_c:
19825 return MMA_LDST(2, m8n8k32_load_c_s32);
19826 case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
19827 return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
19828 case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
19829 return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
19830 case NVPTX::BI__bmma_m8n8k128_ld_c:
19831 return MMA_LDST(2, m8n8k128_load_c_s32);
19833 // Double MMA loads
19834 case NVPTX::BI__dmma_m8n8k4_ld_a:
19835 return MMA_LDST(1, m8n8k4_load_a_f64);
19836 case NVPTX::BI__dmma_m8n8k4_ld_b:
19837 return MMA_LDST(1, m8n8k4_load_b_f64);
19838 case NVPTX::BI__dmma_m8n8k4_ld_c:
19839 return MMA_LDST(2, m8n8k4_load_c_f64);
19841 // Alternate float MMA loads
19842 case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
19843 return MMA_LDST(4, m16n16k16_load_a_bf16);
19844 case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
19845 return MMA_LDST(4, m16n16k16_load_b_bf16);
19846 case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
19847 return MMA_LDST(2, m8n32k16_load_a_bf16);
19848 case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
19849 return MMA_LDST(8, m8n32k16_load_b_bf16);
19850 case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
19851 return MMA_LDST(8, m32n8k16_load_a_bf16);
19852 case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
19853 return MMA_LDST(2, m32n8k16_load_b_bf16);
19854 case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
19855 return MMA_LDST(4, m16n16k8_load_a_tf32);
19856 case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
19857 return MMA_LDST(4, m16n16k8_load_b_tf32);
19858 case NVPTX::BI__mma_tf32_m16n16k8_ld_c:
19859 return MMA_LDST(8, m16n16k8_load_c_f32);
19861 // NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike
19862 // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
19863 // use fragment C for both loads and stores.
19864 // FP MMA stores.
19865 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
19866 return MMA_LDST(4, m16n16k16_store_d_f16);
19867 case NVPTX::BI__hmma_m16n16k16_st_c_f32:
19868 return MMA_LDST(8, m16n16k16_store_d_f32);
19869 case NVPTX::BI__hmma_m32n8k16_st_c_f16:
19870 return MMA_LDST(4, m32n8k16_store_d_f16);
19871 case NVPTX::BI__hmma_m32n8k16_st_c_f32:
19872 return MMA_LDST(8, m32n8k16_store_d_f32);
19873 case NVPTX::BI__hmma_m8n32k16_st_c_f16:
19874 return MMA_LDST(4, m8n32k16_store_d_f16);
19875 case NVPTX::BI__hmma_m8n32k16_st_c_f32:
19876 return MMA_LDST(8, m8n32k16_store_d_f32);
19878 // Integer and sub-integer MMA stores.
19879 // Another naming quirk. Unlike other MMA builtins that use PTX types in the
19880 // name, integer loads/stores use LLVM's i32.
19881 case NVPTX::BI__imma_m16n16k16_st_c_i32:
19882 return MMA_LDST(8, m16n16k16_store_d_s32);
19883 case NVPTX::BI__imma_m32n8k16_st_c_i32:
19884 return MMA_LDST(8, m32n8k16_store_d_s32);
19885 case NVPTX::BI__imma_m8n32k16_st_c_i32:
19886 return MMA_LDST(8, m8n32k16_store_d_s32);
19887 case NVPTX::BI__imma_m8n8k32_st_c_i32:
19888 return MMA_LDST(2, m8n8k32_store_d_s32);
19889 case NVPTX::BI__bmma_m8n8k128_st_c_i32:
19890 return MMA_LDST(2, m8n8k128_store_d_s32);
19892 // Double MMA store
19893 case NVPTX::BI__dmma_m8n8k4_st_c_f64:
19894 return MMA_LDST(2, m8n8k4_store_d_f64);
19896 // Alternate float MMA store
19897 case NVPTX::BI__mma_m16n16k8_st_c_f32:
19898 return MMA_LDST(8, m16n16k8_store_d_f32);
19900 default:
19901 llvm_unreachable("Unknown MMA builtin");
19904 #undef MMA_LDST
19905 #undef MMA_INTR
19908 struct NVPTXMmaInfo {
19909 unsigned NumEltsA;
19910 unsigned NumEltsB;
19911 unsigned NumEltsC;
19912 unsigned NumEltsD;
19914 // Variants are ordered by layout-A/layout-B/satf, where 'row' has priority
19915 // over 'col' for layout. The index of non-satf variants is expected to match
19916 // the undocumented layout constants used by CUDA's mma.hpp.
19917 std::array<unsigned, 8> Variants;
19919 unsigned getMMAIntrinsic(int Layout, bool Satf) {
19920 unsigned Index = Layout + 4 * Satf;
19921 if (Index >= Variants.size())
19922 return 0;
19923 return Variants[Index];
19927 // Returns an intrinsic that matches Layout and Satf for valid combinations of
19928 // Layout and Satf, 0 otherwise.
19929 static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
19930 // clang-format off
19931 #define MMA_VARIANTS(geom, type) \
19932 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \
19933 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
19934 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \
19935 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type
19936 #define MMA_SATF_VARIANTS(geom, type) \
19937 MMA_VARIANTS(geom, type), \
19938 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
19939 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
19940 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
19941 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite
19942 // Sub-integer MMA only supports row.col layout.
19943 #define MMA_VARIANTS_I4(geom, type) \
19944 0, \
19945 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
19946 0, \
19947 0, \
19948 0, \
19949 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
19950 0, \
19952 // b1 MMA does not support .satfinite.
19953 #define MMA_VARIANTS_B1_XOR(geom, type) \
19954 0, \
19955 Intrinsic::nvvm_wmma_##geom##_mma_xor_popc_row_col_##type, \
19956 0, \
19957 0, \
19958 0, \
19959 0, \
19960 0, \
19962 #define MMA_VARIANTS_B1_AND(geom, type) \
19963 0, \
19964 Intrinsic::nvvm_wmma_##geom##_mma_and_popc_row_col_##type, \
19965 0, \
19966 0, \
19967 0, \
19968 0, \
19969 0, \
19971 // clang-format on
19972 switch (BuiltinID) {
19973 // FP MMA
19974 // Note that 'type' argument of MMA_SATF_VARIANTS uses D_C notation, while
19975 // NumEltsN of return value are ordered as A,B,C,D.
19976 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
19977 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f16)}}};
19978 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
19979 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f16)}}};
19980 case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
19981 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f32)}}};
19982 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
19983 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f32)}}};
19984 case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
19985 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f16)}}};
19986 case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
19987 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f16)}}};
19988 case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
19989 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f32)}}};
19990 case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
19991 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f32)}}};
19992 case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
19993 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f16)}}};
19994 case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
19995 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f16)}}};
19996 case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
19997 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f32)}}};
19998 case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
19999 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f32)}}};
20001 // Integer MMA
20002 case NVPTX::BI__imma_m16n16k16_mma_s8:
20003 return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, s8)}}};
20004 case NVPTX::BI__imma_m16n16k16_mma_u8:
20005 return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, u8)}}};
20006 case NVPTX::BI__imma_m32n8k16_mma_s8:
20007 return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, s8)}}};
20008 case NVPTX::BI__imma_m32n8k16_mma_u8:
20009 return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, u8)}}};
20010 case NVPTX::BI__imma_m8n32k16_mma_s8:
20011 return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, s8)}}};
20012 case NVPTX::BI__imma_m8n32k16_mma_u8:
20013 return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, u8)}}};
20015 // Sub-integer MMA
20016 case NVPTX::BI__imma_m8n8k32_mma_s4:
20017 return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, s4)}}};
20018 case NVPTX::BI__imma_m8n8k32_mma_u4:
20019 return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, u4)}}};
20020 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
20021 return {1, 1, 2, 2, {{MMA_VARIANTS_B1_XOR(m8n8k128, b1)}}};
20022 case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
20023 return {1, 1, 2, 2, {{MMA_VARIANTS_B1_AND(m8n8k128, b1)}}};
20025 // Double MMA
20026 case NVPTX::BI__dmma_m8n8k4_mma_f64:
20027 return {1, 1, 2, 2, {{MMA_VARIANTS(m8n8k4, f64)}}};
20029 // Alternate FP MMA
20030 case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
20031 return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k16, bf16)}}};
20032 case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
20033 return {2, 8, 8, 8, {{MMA_VARIANTS(m8n32k16, bf16)}}};
20034 case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
20035 return {8, 2, 8, 8, {{MMA_VARIANTS(m32n8k16, bf16)}}};
20036 case NVPTX::BI__mma_tf32_m16n16k8_mma_f32:
20037 return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k8, tf32)}}};
20038 default:
20039 llvm_unreachable("Unexpected builtin ID.");
20041 #undef MMA_VARIANTS
20042 #undef MMA_SATF_VARIANTS
20043 #undef MMA_VARIANTS_I4
20044 #undef MMA_VARIANTS_B1_AND
20045 #undef MMA_VARIANTS_B1_XOR
20048 static Value *MakeLdgLdu(unsigned IntrinsicID, CodeGenFunction &CGF,
20049 const CallExpr *E) {
20050 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
20051 QualType ArgType = E->getArg(0)->getType();
20052 clang::CharUnits Align = CGF.CGM.getNaturalPointeeTypeAlignment(ArgType);
20053 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ArgType->getPointeeType());
20054 return CGF.Builder.CreateCall(
20055 CGF.CGM.getIntrinsic(IntrinsicID, {ElemTy, Ptr->getType()}),
20056 {Ptr, ConstantInt::get(CGF.Builder.getInt32Ty(), Align.getQuantity())});
20059 static Value *MakeScopedAtomic(unsigned IntrinsicID, CodeGenFunction &CGF,
20060 const CallExpr *E) {
20061 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
20062 llvm::Type *ElemTy =
20063 CGF.ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
20064 return CGF.Builder.CreateCall(
20065 CGF.CGM.getIntrinsic(IntrinsicID, {ElemTy, Ptr->getType()}),
20066 {Ptr, CGF.EmitScalarExpr(E->getArg(1))});
20069 static Value *MakeCpAsync(unsigned IntrinsicID, unsigned IntrinsicIDS,
20070 CodeGenFunction &CGF, const CallExpr *E,
20071 int SrcSize) {
20072 return E->getNumArgs() == 3
20073 ? CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IntrinsicIDS),
20074 {CGF.EmitScalarExpr(E->getArg(0)),
20075 CGF.EmitScalarExpr(E->getArg(1)),
20076 CGF.EmitScalarExpr(E->getArg(2))})
20077 : CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IntrinsicID),
20078 {CGF.EmitScalarExpr(E->getArg(0)),
20079 CGF.EmitScalarExpr(E->getArg(1))});
20082 static Value *MakeHalfType(unsigned IntrinsicID, unsigned BuiltinID,
20083 const CallExpr *E, CodeGenFunction &CGF) {
20084 auto &C = CGF.CGM.getContext();
20085 if (!(C.getLangOpts().NativeHalfType ||
20086 !C.getTargetInfo().useFP16ConversionIntrinsics())) {
20087 CGF.CGM.Error(E->getExprLoc(), C.BuiltinInfo.getName(BuiltinID).str() +
20088 " requires native half type support.");
20089 return nullptr;
20092 if (IntrinsicID == Intrinsic::nvvm_ldg_global_f ||
20093 IntrinsicID == Intrinsic::nvvm_ldu_global_f)
20094 return MakeLdgLdu(IntrinsicID, CGF, E);
20096 SmallVector<Value *, 16> Args;
20097 auto *F = CGF.CGM.getIntrinsic(IntrinsicID);
20098 auto *FTy = F->getFunctionType();
20099 unsigned ICEArguments = 0;
20100 ASTContext::GetBuiltinTypeError Error;
20101 C.GetBuiltinType(BuiltinID, Error, &ICEArguments);
20102 assert(Error == ASTContext::GE_None && "Should not codegen an error");
20103 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
20104 assert((ICEArguments & (1 << i)) == 0);
20105 auto *ArgValue = CGF.EmitScalarExpr(E->getArg(i));
20106 auto *PTy = FTy->getParamType(i);
20107 if (PTy != ArgValue->getType())
20108 ArgValue = CGF.Builder.CreateBitCast(ArgValue, PTy);
20109 Args.push_back(ArgValue);
20112 return CGF.Builder.CreateCall(F, Args);
20114 } // namespace
20116 Value *CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID,
20117 const CallExpr *E) {
20118 switch (BuiltinID) {
20119 case NVPTX::BI__nvvm_atom_add_gen_i:
20120 case NVPTX::BI__nvvm_atom_add_gen_l:
20121 case NVPTX::BI__nvvm_atom_add_gen_ll:
20122 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
20124 case NVPTX::BI__nvvm_atom_sub_gen_i:
20125 case NVPTX::BI__nvvm_atom_sub_gen_l:
20126 case NVPTX::BI__nvvm_atom_sub_gen_ll:
20127 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
20129 case NVPTX::BI__nvvm_atom_and_gen_i:
20130 case NVPTX::BI__nvvm_atom_and_gen_l:
20131 case NVPTX::BI__nvvm_atom_and_gen_ll:
20132 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
20134 case NVPTX::BI__nvvm_atom_or_gen_i:
20135 case NVPTX::BI__nvvm_atom_or_gen_l:
20136 case NVPTX::BI__nvvm_atom_or_gen_ll:
20137 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
20139 case NVPTX::BI__nvvm_atom_xor_gen_i:
20140 case NVPTX::BI__nvvm_atom_xor_gen_l:
20141 case NVPTX::BI__nvvm_atom_xor_gen_ll:
20142 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
20144 case NVPTX::BI__nvvm_atom_xchg_gen_i:
20145 case NVPTX::BI__nvvm_atom_xchg_gen_l:
20146 case NVPTX::BI__nvvm_atom_xchg_gen_ll:
20147 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
20149 case NVPTX::BI__nvvm_atom_max_gen_i:
20150 case NVPTX::BI__nvvm_atom_max_gen_l:
20151 case NVPTX::BI__nvvm_atom_max_gen_ll:
20152 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
20154 case NVPTX::BI__nvvm_atom_max_gen_ui:
20155 case NVPTX::BI__nvvm_atom_max_gen_ul:
20156 case NVPTX::BI__nvvm_atom_max_gen_ull:
20157 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
20159 case NVPTX::BI__nvvm_atom_min_gen_i:
20160 case NVPTX::BI__nvvm_atom_min_gen_l:
20161 case NVPTX::BI__nvvm_atom_min_gen_ll:
20162 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
20164 case NVPTX::BI__nvvm_atom_min_gen_ui:
20165 case NVPTX::BI__nvvm_atom_min_gen_ul:
20166 case NVPTX::BI__nvvm_atom_min_gen_ull:
20167 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
20169 case NVPTX::BI__nvvm_atom_cas_gen_i:
20170 case NVPTX::BI__nvvm_atom_cas_gen_l:
20171 case NVPTX::BI__nvvm_atom_cas_gen_ll:
20172 // __nvvm_atom_cas_gen_* should return the old value rather than the
20173 // success flag.
20174 return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
20176 case NVPTX::BI__nvvm_atom_add_gen_f:
20177 case NVPTX::BI__nvvm_atom_add_gen_d: {
20178 Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
20179 Value *Val = EmitScalarExpr(E->getArg(1));
20181 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, DestAddr, Val,
20182 AtomicOrdering::SequentiallyConsistent);
20185 case NVPTX::BI__nvvm_atom_inc_gen_ui: {
20186 Value *Ptr = EmitScalarExpr(E->getArg(0));
20187 Value *Val = EmitScalarExpr(E->getArg(1));
20188 Function *FnALI32 =
20189 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
20190 return Builder.CreateCall(FnALI32, {Ptr, Val});
20193 case NVPTX::BI__nvvm_atom_dec_gen_ui: {
20194 Value *Ptr = EmitScalarExpr(E->getArg(0));
20195 Value *Val = EmitScalarExpr(E->getArg(1));
20196 Function *FnALD32 =
20197 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
20198 return Builder.CreateCall(FnALD32, {Ptr, Val});
20201 case NVPTX::BI__nvvm_ldg_c:
20202 case NVPTX::BI__nvvm_ldg_sc:
20203 case NVPTX::BI__nvvm_ldg_c2:
20204 case NVPTX::BI__nvvm_ldg_sc2:
20205 case NVPTX::BI__nvvm_ldg_c4:
20206 case NVPTX::BI__nvvm_ldg_sc4:
20207 case NVPTX::BI__nvvm_ldg_s:
20208 case NVPTX::BI__nvvm_ldg_s2:
20209 case NVPTX::BI__nvvm_ldg_s4:
20210 case NVPTX::BI__nvvm_ldg_i:
20211 case NVPTX::BI__nvvm_ldg_i2:
20212 case NVPTX::BI__nvvm_ldg_i4:
20213 case NVPTX::BI__nvvm_ldg_l:
20214 case NVPTX::BI__nvvm_ldg_l2:
20215 case NVPTX::BI__nvvm_ldg_ll:
20216 case NVPTX::BI__nvvm_ldg_ll2:
20217 case NVPTX::BI__nvvm_ldg_uc:
20218 case NVPTX::BI__nvvm_ldg_uc2:
20219 case NVPTX::BI__nvvm_ldg_uc4:
20220 case NVPTX::BI__nvvm_ldg_us:
20221 case NVPTX::BI__nvvm_ldg_us2:
20222 case NVPTX::BI__nvvm_ldg_us4:
20223 case NVPTX::BI__nvvm_ldg_ui:
20224 case NVPTX::BI__nvvm_ldg_ui2:
20225 case NVPTX::BI__nvvm_ldg_ui4:
20226 case NVPTX::BI__nvvm_ldg_ul:
20227 case NVPTX::BI__nvvm_ldg_ul2:
20228 case NVPTX::BI__nvvm_ldg_ull:
20229 case NVPTX::BI__nvvm_ldg_ull2:
20230 // PTX Interoperability section 2.2: "For a vector with an even number of
20231 // elements, its alignment is set to number of elements times the alignment
20232 // of its member: n*alignof(t)."
20233 return MakeLdgLdu(Intrinsic::nvvm_ldg_global_i, *this, E);
20234 case NVPTX::BI__nvvm_ldg_f:
20235 case NVPTX::BI__nvvm_ldg_f2:
20236 case NVPTX::BI__nvvm_ldg_f4:
20237 case NVPTX::BI__nvvm_ldg_d:
20238 case NVPTX::BI__nvvm_ldg_d2:
20239 return MakeLdgLdu(Intrinsic::nvvm_ldg_global_f, *this, E);
20241 case NVPTX::BI__nvvm_ldu_c:
20242 case NVPTX::BI__nvvm_ldu_sc:
20243 case NVPTX::BI__nvvm_ldu_c2:
20244 case NVPTX::BI__nvvm_ldu_sc2:
20245 case NVPTX::BI__nvvm_ldu_c4:
20246 case NVPTX::BI__nvvm_ldu_sc4:
20247 case NVPTX::BI__nvvm_ldu_s:
20248 case NVPTX::BI__nvvm_ldu_s2:
20249 case NVPTX::BI__nvvm_ldu_s4:
20250 case NVPTX::BI__nvvm_ldu_i:
20251 case NVPTX::BI__nvvm_ldu_i2:
20252 case NVPTX::BI__nvvm_ldu_i4:
20253 case NVPTX::BI__nvvm_ldu_l:
20254 case NVPTX::BI__nvvm_ldu_l2:
20255 case NVPTX::BI__nvvm_ldu_ll:
20256 case NVPTX::BI__nvvm_ldu_ll2:
20257 case NVPTX::BI__nvvm_ldu_uc:
20258 case NVPTX::BI__nvvm_ldu_uc2:
20259 case NVPTX::BI__nvvm_ldu_uc4:
20260 case NVPTX::BI__nvvm_ldu_us:
20261 case NVPTX::BI__nvvm_ldu_us2:
20262 case NVPTX::BI__nvvm_ldu_us4:
20263 case NVPTX::BI__nvvm_ldu_ui:
20264 case NVPTX::BI__nvvm_ldu_ui2:
20265 case NVPTX::BI__nvvm_ldu_ui4:
20266 case NVPTX::BI__nvvm_ldu_ul:
20267 case NVPTX::BI__nvvm_ldu_ul2:
20268 case NVPTX::BI__nvvm_ldu_ull:
20269 case NVPTX::BI__nvvm_ldu_ull2:
20270 return MakeLdgLdu(Intrinsic::nvvm_ldu_global_i, *this, E);
20271 case NVPTX::BI__nvvm_ldu_f:
20272 case NVPTX::BI__nvvm_ldu_f2:
20273 case NVPTX::BI__nvvm_ldu_f4:
20274 case NVPTX::BI__nvvm_ldu_d:
20275 case NVPTX::BI__nvvm_ldu_d2:
20276 return MakeLdgLdu(Intrinsic::nvvm_ldu_global_f, *this, E);
20278 case NVPTX::BI__nvvm_atom_cta_add_gen_i:
20279 case NVPTX::BI__nvvm_atom_cta_add_gen_l:
20280 case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
20281 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta, *this, E);
20282 case NVPTX::BI__nvvm_atom_sys_add_gen_i:
20283 case NVPTX::BI__nvvm_atom_sys_add_gen_l:
20284 case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
20285 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys, *this, E);
20286 case NVPTX::BI__nvvm_atom_cta_add_gen_f:
20287 case NVPTX::BI__nvvm_atom_cta_add_gen_d:
20288 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta, *this, E);
20289 case NVPTX::BI__nvvm_atom_sys_add_gen_f:
20290 case NVPTX::BI__nvvm_atom_sys_add_gen_d:
20291 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys, *this, E);
20292 case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
20293 case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
20294 case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
20295 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta, *this, E);
20296 case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
20297 case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
20298 case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
20299 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys, *this, E);
20300 case NVPTX::BI__nvvm_atom_cta_max_gen_i:
20301 case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
20302 case NVPTX::BI__nvvm_atom_cta_max_gen_l:
20303 case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
20304 case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
20305 case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
20306 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta, *this, E);
20307 case NVPTX::BI__nvvm_atom_sys_max_gen_i:
20308 case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
20309 case NVPTX::BI__nvvm_atom_sys_max_gen_l:
20310 case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
20311 case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
20312 case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
20313 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys, *this, E);
20314 case NVPTX::BI__nvvm_atom_cta_min_gen_i:
20315 case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
20316 case NVPTX::BI__nvvm_atom_cta_min_gen_l:
20317 case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
20318 case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
20319 case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
20320 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta, *this, E);
20321 case NVPTX::BI__nvvm_atom_sys_min_gen_i:
20322 case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
20323 case NVPTX::BI__nvvm_atom_sys_min_gen_l:
20324 case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
20325 case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
20326 case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
20327 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys, *this, E);
20328 case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
20329 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta, *this, E);
20330 case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
20331 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta, *this, E);
20332 case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
20333 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys, *this, E);
20334 case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
20335 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys, *this, E);
20336 case NVPTX::BI__nvvm_atom_cta_and_gen_i:
20337 case NVPTX::BI__nvvm_atom_cta_and_gen_l:
20338 case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
20339 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta, *this, E);
20340 case NVPTX::BI__nvvm_atom_sys_and_gen_i:
20341 case NVPTX::BI__nvvm_atom_sys_and_gen_l:
20342 case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
20343 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys, *this, E);
20344 case NVPTX::BI__nvvm_atom_cta_or_gen_i:
20345 case NVPTX::BI__nvvm_atom_cta_or_gen_l:
20346 case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
20347 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta, *this, E);
20348 case NVPTX::BI__nvvm_atom_sys_or_gen_i:
20349 case NVPTX::BI__nvvm_atom_sys_or_gen_l:
20350 case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
20351 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys, *this, E);
20352 case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
20353 case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
20354 case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
20355 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta, *this, E);
20356 case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
20357 case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
20358 case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
20359 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys, *this, E);
20360 case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
20361 case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
20362 case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
20363 Value *Ptr = EmitScalarExpr(E->getArg(0));
20364 llvm::Type *ElemTy =
20365 ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
20366 return Builder.CreateCall(
20367 CGM.getIntrinsic(
20368 Intrinsic::nvvm_atomic_cas_gen_i_cta, {ElemTy, Ptr->getType()}),
20369 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
20371 case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
20372 case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
20373 case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
20374 Value *Ptr = EmitScalarExpr(E->getArg(0));
20375 llvm::Type *ElemTy =
20376 ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
20377 return Builder.CreateCall(
20378 CGM.getIntrinsic(
20379 Intrinsic::nvvm_atomic_cas_gen_i_sys, {ElemTy, Ptr->getType()}),
20380 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
20382 case NVPTX::BI__nvvm_match_all_sync_i32p:
20383 case NVPTX::BI__nvvm_match_all_sync_i64p: {
20384 Value *Mask = EmitScalarExpr(E->getArg(0));
20385 Value *Val = EmitScalarExpr(E->getArg(1));
20386 Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
20387 Value *ResultPair = Builder.CreateCall(
20388 CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
20389 ? Intrinsic::nvvm_match_all_sync_i32p
20390 : Intrinsic::nvvm_match_all_sync_i64p),
20391 {Mask, Val});
20392 Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
20393 PredOutPtr.getElementType());
20394 Builder.CreateStore(Pred, PredOutPtr);
20395 return Builder.CreateExtractValue(ResultPair, 0);
20398 // FP MMA loads
20399 case NVPTX::BI__hmma_m16n16k16_ld_a:
20400 case NVPTX::BI__hmma_m16n16k16_ld_b:
20401 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
20402 case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
20403 case NVPTX::BI__hmma_m32n8k16_ld_a:
20404 case NVPTX::BI__hmma_m32n8k16_ld_b:
20405 case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
20406 case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
20407 case NVPTX::BI__hmma_m8n32k16_ld_a:
20408 case NVPTX::BI__hmma_m8n32k16_ld_b:
20409 case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
20410 case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
20411 // Integer MMA loads.
20412 case NVPTX::BI__imma_m16n16k16_ld_a_s8:
20413 case NVPTX::BI__imma_m16n16k16_ld_a_u8:
20414 case NVPTX::BI__imma_m16n16k16_ld_b_s8:
20415 case NVPTX::BI__imma_m16n16k16_ld_b_u8:
20416 case NVPTX::BI__imma_m16n16k16_ld_c:
20417 case NVPTX::BI__imma_m32n8k16_ld_a_s8:
20418 case NVPTX::BI__imma_m32n8k16_ld_a_u8:
20419 case NVPTX::BI__imma_m32n8k16_ld_b_s8:
20420 case NVPTX::BI__imma_m32n8k16_ld_b_u8:
20421 case NVPTX::BI__imma_m32n8k16_ld_c:
20422 case NVPTX::BI__imma_m8n32k16_ld_a_s8:
20423 case NVPTX::BI__imma_m8n32k16_ld_a_u8:
20424 case NVPTX::BI__imma_m8n32k16_ld_b_s8:
20425 case NVPTX::BI__imma_m8n32k16_ld_b_u8:
20426 case NVPTX::BI__imma_m8n32k16_ld_c:
20427 // Sub-integer MMA loads.
20428 case NVPTX::BI__imma_m8n8k32_ld_a_s4:
20429 case NVPTX::BI__imma_m8n8k32_ld_a_u4:
20430 case NVPTX::BI__imma_m8n8k32_ld_b_s4:
20431 case NVPTX::BI__imma_m8n8k32_ld_b_u4:
20432 case NVPTX::BI__imma_m8n8k32_ld_c:
20433 case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
20434 case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
20435 case NVPTX::BI__bmma_m8n8k128_ld_c:
20436 // Double MMA loads.
20437 case NVPTX::BI__dmma_m8n8k4_ld_a:
20438 case NVPTX::BI__dmma_m8n8k4_ld_b:
20439 case NVPTX::BI__dmma_m8n8k4_ld_c:
20440 // Alternate float MMA loads.
20441 case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
20442 case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
20443 case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
20444 case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
20445 case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
20446 case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
20447 case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
20448 case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
20449 case NVPTX::BI__mma_tf32_m16n16k8_ld_c: {
20450 Address Dst = EmitPointerWithAlignment(E->getArg(0));
20451 Value *Src = EmitScalarExpr(E->getArg(1));
20452 Value *Ldm = EmitScalarExpr(E->getArg(2));
20453 std::optional<llvm::APSInt> isColMajorArg =
20454 E->getArg(3)->getIntegerConstantExpr(getContext());
20455 if (!isColMajorArg)
20456 return nullptr;
20457 bool isColMajor = isColMajorArg->getSExtValue();
20458 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
20459 unsigned IID = isColMajor ? II.IID_col : II.IID_row;
20460 if (IID == 0)
20461 return nullptr;
20463 Value *Result =
20464 Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
20466 // Save returned values.
20467 assert(II.NumResults);
20468 if (II.NumResults == 1) {
20469 Builder.CreateAlignedStore(Result, Dst.emitRawPointer(*this),
20470 CharUnits::fromQuantity(4));
20471 } else {
20472 for (unsigned i = 0; i < II.NumResults; ++i) {
20473 Builder.CreateAlignedStore(
20474 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
20475 Dst.getElementType()),
20476 Builder.CreateGEP(Dst.getElementType(), Dst.emitRawPointer(*this),
20477 llvm::ConstantInt::get(IntTy, i)),
20478 CharUnits::fromQuantity(4));
20481 return Result;
20484 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
20485 case NVPTX::BI__hmma_m16n16k16_st_c_f32:
20486 case NVPTX::BI__hmma_m32n8k16_st_c_f16:
20487 case NVPTX::BI__hmma_m32n8k16_st_c_f32:
20488 case NVPTX::BI__hmma_m8n32k16_st_c_f16:
20489 case NVPTX::BI__hmma_m8n32k16_st_c_f32:
20490 case NVPTX::BI__imma_m16n16k16_st_c_i32:
20491 case NVPTX::BI__imma_m32n8k16_st_c_i32:
20492 case NVPTX::BI__imma_m8n32k16_st_c_i32:
20493 case NVPTX::BI__imma_m8n8k32_st_c_i32:
20494 case NVPTX::BI__bmma_m8n8k128_st_c_i32:
20495 case NVPTX::BI__dmma_m8n8k4_st_c_f64:
20496 case NVPTX::BI__mma_m16n16k8_st_c_f32: {
20497 Value *Dst = EmitScalarExpr(E->getArg(0));
20498 Address Src = EmitPointerWithAlignment(E->getArg(1));
20499 Value *Ldm = EmitScalarExpr(E->getArg(2));
20500 std::optional<llvm::APSInt> isColMajorArg =
20501 E->getArg(3)->getIntegerConstantExpr(getContext());
20502 if (!isColMajorArg)
20503 return nullptr;
20504 bool isColMajor = isColMajorArg->getSExtValue();
20505 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
20506 unsigned IID = isColMajor ? II.IID_col : II.IID_row;
20507 if (IID == 0)
20508 return nullptr;
20509 Function *Intrinsic =
20510 CGM.getIntrinsic(IID, Dst->getType());
20511 llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
20512 SmallVector<Value *, 10> Values = {Dst};
20513 for (unsigned i = 0; i < II.NumResults; ++i) {
20514 Value *V = Builder.CreateAlignedLoad(
20515 Src.getElementType(),
20516 Builder.CreateGEP(Src.getElementType(), Src.emitRawPointer(*this),
20517 llvm::ConstantInt::get(IntTy, i)),
20518 CharUnits::fromQuantity(4));
20519 Values.push_back(Builder.CreateBitCast(V, ParamType));
20521 Values.push_back(Ldm);
20522 Value *Result = Builder.CreateCall(Intrinsic, Values);
20523 return Result;
20526 // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
20527 // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
20528 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
20529 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
20530 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
20531 case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
20532 case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
20533 case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
20534 case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
20535 case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
20536 case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
20537 case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
20538 case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
20539 case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
20540 case NVPTX::BI__imma_m16n16k16_mma_s8:
20541 case NVPTX::BI__imma_m16n16k16_mma_u8:
20542 case NVPTX::BI__imma_m32n8k16_mma_s8:
20543 case NVPTX::BI__imma_m32n8k16_mma_u8:
20544 case NVPTX::BI__imma_m8n32k16_mma_s8:
20545 case NVPTX::BI__imma_m8n32k16_mma_u8:
20546 case NVPTX::BI__imma_m8n8k32_mma_s4:
20547 case NVPTX::BI__imma_m8n8k32_mma_u4:
20548 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
20549 case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
20550 case NVPTX::BI__dmma_m8n8k4_mma_f64:
20551 case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
20552 case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
20553 case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
20554 case NVPTX::BI__mma_tf32_m16n16k8_mma_f32: {
20555 Address Dst = EmitPointerWithAlignment(E->getArg(0));
20556 Address SrcA = EmitPointerWithAlignment(E->getArg(1));
20557 Address SrcB = EmitPointerWithAlignment(E->getArg(2));
20558 Address SrcC = EmitPointerWithAlignment(E->getArg(3));
20559 std::optional<llvm::APSInt> LayoutArg =
20560 E->getArg(4)->getIntegerConstantExpr(getContext());
20561 if (!LayoutArg)
20562 return nullptr;
20563 int Layout = LayoutArg->getSExtValue();
20564 if (Layout < 0 || Layout > 3)
20565 return nullptr;
20566 llvm::APSInt SatfArg;
20567 if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1 ||
20568 BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1)
20569 SatfArg = 0; // .b1 does not have satf argument.
20570 else if (std::optional<llvm::APSInt> OptSatfArg =
20571 E->getArg(5)->getIntegerConstantExpr(getContext()))
20572 SatfArg = *OptSatfArg;
20573 else
20574 return nullptr;
20575 bool Satf = SatfArg.getSExtValue();
20576 NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
20577 unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
20578 if (IID == 0) // Unsupported combination of Layout/Satf.
20579 return nullptr;
20581 SmallVector<Value *, 24> Values;
20582 Function *Intrinsic = CGM.getIntrinsic(IID);
20583 llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
20584 // Load A
20585 for (unsigned i = 0; i < MI.NumEltsA; ++i) {
20586 Value *V = Builder.CreateAlignedLoad(
20587 SrcA.getElementType(),
20588 Builder.CreateGEP(SrcA.getElementType(), SrcA.emitRawPointer(*this),
20589 llvm::ConstantInt::get(IntTy, i)),
20590 CharUnits::fromQuantity(4));
20591 Values.push_back(Builder.CreateBitCast(V, AType));
20593 // Load B
20594 llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
20595 for (unsigned i = 0; i < MI.NumEltsB; ++i) {
20596 Value *V = Builder.CreateAlignedLoad(
20597 SrcB.getElementType(),
20598 Builder.CreateGEP(SrcB.getElementType(), SrcB.emitRawPointer(*this),
20599 llvm::ConstantInt::get(IntTy, i)),
20600 CharUnits::fromQuantity(4));
20601 Values.push_back(Builder.CreateBitCast(V, BType));
20603 // Load C
20604 llvm::Type *CType =
20605 Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
20606 for (unsigned i = 0; i < MI.NumEltsC; ++i) {
20607 Value *V = Builder.CreateAlignedLoad(
20608 SrcC.getElementType(),
20609 Builder.CreateGEP(SrcC.getElementType(), SrcC.emitRawPointer(*this),
20610 llvm::ConstantInt::get(IntTy, i)),
20611 CharUnits::fromQuantity(4));
20612 Values.push_back(Builder.CreateBitCast(V, CType));
20614 Value *Result = Builder.CreateCall(Intrinsic, Values);
20615 llvm::Type *DType = Dst.getElementType();
20616 for (unsigned i = 0; i < MI.NumEltsD; ++i)
20617 Builder.CreateAlignedStore(
20618 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
20619 Builder.CreateGEP(Dst.getElementType(), Dst.emitRawPointer(*this),
20620 llvm::ConstantInt::get(IntTy, i)),
20621 CharUnits::fromQuantity(4));
20622 return Result;
20624 // The following builtins require half type support
20625 case NVPTX::BI__nvvm_ex2_approx_f16:
20626 return MakeHalfType(Intrinsic::nvvm_ex2_approx_f16, BuiltinID, E, *this);
20627 case NVPTX::BI__nvvm_ex2_approx_f16x2:
20628 return MakeHalfType(Intrinsic::nvvm_ex2_approx_f16x2, BuiltinID, E, *this);
20629 case NVPTX::BI__nvvm_ff2f16x2_rn:
20630 return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rn, BuiltinID, E, *this);
20631 case NVPTX::BI__nvvm_ff2f16x2_rn_relu:
20632 return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rn_relu, BuiltinID, E, *this);
20633 case NVPTX::BI__nvvm_ff2f16x2_rz:
20634 return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rz, BuiltinID, E, *this);
20635 case NVPTX::BI__nvvm_ff2f16x2_rz_relu:
20636 return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rz_relu, BuiltinID, E, *this);
20637 case NVPTX::BI__nvvm_fma_rn_f16:
20638 return MakeHalfType(Intrinsic::nvvm_fma_rn_f16, BuiltinID, E, *this);
20639 case NVPTX::BI__nvvm_fma_rn_f16x2:
20640 return MakeHalfType(Intrinsic::nvvm_fma_rn_f16x2, BuiltinID, E, *this);
20641 case NVPTX::BI__nvvm_fma_rn_ftz_f16:
20642 return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_f16, BuiltinID, E, *this);
20643 case NVPTX::BI__nvvm_fma_rn_ftz_f16x2:
20644 return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_f16x2, BuiltinID, E, *this);
20645 case NVPTX::BI__nvvm_fma_rn_ftz_relu_f16:
20646 return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_relu_f16, BuiltinID, E,
20647 *this);
20648 case NVPTX::BI__nvvm_fma_rn_ftz_relu_f16x2:
20649 return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_relu_f16x2, BuiltinID, E,
20650 *this);
20651 case NVPTX::BI__nvvm_fma_rn_ftz_sat_f16:
20652 return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_sat_f16, BuiltinID, E,
20653 *this);
20654 case NVPTX::BI__nvvm_fma_rn_ftz_sat_f16x2:
20655 return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_sat_f16x2, BuiltinID, E,
20656 *this);
20657 case NVPTX::BI__nvvm_fma_rn_relu_f16:
20658 return MakeHalfType(Intrinsic::nvvm_fma_rn_relu_f16, BuiltinID, E, *this);
20659 case NVPTX::BI__nvvm_fma_rn_relu_f16x2:
20660 return MakeHalfType(Intrinsic::nvvm_fma_rn_relu_f16x2, BuiltinID, E, *this);
20661 case NVPTX::BI__nvvm_fma_rn_sat_f16:
20662 return MakeHalfType(Intrinsic::nvvm_fma_rn_sat_f16, BuiltinID, E, *this);
20663 case NVPTX::BI__nvvm_fma_rn_sat_f16x2:
20664 return MakeHalfType(Intrinsic::nvvm_fma_rn_sat_f16x2, BuiltinID, E, *this);
20665 case NVPTX::BI__nvvm_fmax_f16:
20666 return MakeHalfType(Intrinsic::nvvm_fmax_f16, BuiltinID, E, *this);
20667 case NVPTX::BI__nvvm_fmax_f16x2:
20668 return MakeHalfType(Intrinsic::nvvm_fmax_f16x2, BuiltinID, E, *this);
20669 case NVPTX::BI__nvvm_fmax_ftz_f16:
20670 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_f16, BuiltinID, E, *this);
20671 case NVPTX::BI__nvvm_fmax_ftz_f16x2:
20672 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_f16x2, BuiltinID, E, *this);
20673 case NVPTX::BI__nvvm_fmax_ftz_nan_f16:
20674 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_f16, BuiltinID, E, *this);
20675 case NVPTX::BI__nvvm_fmax_ftz_nan_f16x2:
20676 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_f16x2, BuiltinID, E,
20677 *this);
20678 case NVPTX::BI__nvvm_fmax_ftz_nan_xorsign_abs_f16:
20679 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f16, BuiltinID,
20680 E, *this);
20681 case NVPTX::BI__nvvm_fmax_ftz_nan_xorsign_abs_f16x2:
20682 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f16x2,
20683 BuiltinID, E, *this);
20684 case NVPTX::BI__nvvm_fmax_ftz_xorsign_abs_f16:
20685 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_xorsign_abs_f16, BuiltinID, E,
20686 *this);
20687 case NVPTX::BI__nvvm_fmax_ftz_xorsign_abs_f16x2:
20688 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_xorsign_abs_f16x2, BuiltinID,
20689 E, *this);
20690 case NVPTX::BI__nvvm_fmax_nan_f16:
20691 return MakeHalfType(Intrinsic::nvvm_fmax_nan_f16, BuiltinID, E, *this);
20692 case NVPTX::BI__nvvm_fmax_nan_f16x2:
20693 return MakeHalfType(Intrinsic::nvvm_fmax_nan_f16x2, BuiltinID, E, *this);
20694 case NVPTX::BI__nvvm_fmax_nan_xorsign_abs_f16:
20695 return MakeHalfType(Intrinsic::nvvm_fmax_nan_xorsign_abs_f16, BuiltinID, E,
20696 *this);
20697 case NVPTX::BI__nvvm_fmax_nan_xorsign_abs_f16x2:
20698 return MakeHalfType(Intrinsic::nvvm_fmax_nan_xorsign_abs_f16x2, BuiltinID,
20699 E, *this);
20700 case NVPTX::BI__nvvm_fmax_xorsign_abs_f16:
20701 return MakeHalfType(Intrinsic::nvvm_fmax_xorsign_abs_f16, BuiltinID, E,
20702 *this);
20703 case NVPTX::BI__nvvm_fmax_xorsign_abs_f16x2:
20704 return MakeHalfType(Intrinsic::nvvm_fmax_xorsign_abs_f16x2, BuiltinID, E,
20705 *this);
20706 case NVPTX::BI__nvvm_fmin_f16:
20707 return MakeHalfType(Intrinsic::nvvm_fmin_f16, BuiltinID, E, *this);
20708 case NVPTX::BI__nvvm_fmin_f16x2:
20709 return MakeHalfType(Intrinsic::nvvm_fmin_f16x2, BuiltinID, E, *this);
20710 case NVPTX::BI__nvvm_fmin_ftz_f16:
20711 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_f16, BuiltinID, E, *this);
20712 case NVPTX::BI__nvvm_fmin_ftz_f16x2:
20713 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_f16x2, BuiltinID, E, *this);
20714 case NVPTX::BI__nvvm_fmin_ftz_nan_f16:
20715 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_f16, BuiltinID, E, *this);
20716 case NVPTX::BI__nvvm_fmin_ftz_nan_f16x2:
20717 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_f16x2, BuiltinID, E,
20718 *this);
20719 case NVPTX::BI__nvvm_fmin_ftz_nan_xorsign_abs_f16:
20720 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f16, BuiltinID,
20721 E, *this);
20722 case NVPTX::BI__nvvm_fmin_ftz_nan_xorsign_abs_f16x2:
20723 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f16x2,
20724 BuiltinID, E, *this);
20725 case NVPTX::BI__nvvm_fmin_ftz_xorsign_abs_f16:
20726 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_xorsign_abs_f16, BuiltinID, E,
20727 *this);
20728 case NVPTX::BI__nvvm_fmin_ftz_xorsign_abs_f16x2:
20729 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_xorsign_abs_f16x2, BuiltinID,
20730 E, *this);
20731 case NVPTX::BI__nvvm_fmin_nan_f16:
20732 return MakeHalfType(Intrinsic::nvvm_fmin_nan_f16, BuiltinID, E, *this);
20733 case NVPTX::BI__nvvm_fmin_nan_f16x2:
20734 return MakeHalfType(Intrinsic::nvvm_fmin_nan_f16x2, BuiltinID, E, *this);
20735 case NVPTX::BI__nvvm_fmin_nan_xorsign_abs_f16:
20736 return MakeHalfType(Intrinsic::nvvm_fmin_nan_xorsign_abs_f16, BuiltinID, E,
20737 *this);
20738 case NVPTX::BI__nvvm_fmin_nan_xorsign_abs_f16x2:
20739 return MakeHalfType(Intrinsic::nvvm_fmin_nan_xorsign_abs_f16x2, BuiltinID,
20740 E, *this);
20741 case NVPTX::BI__nvvm_fmin_xorsign_abs_f16:
20742 return MakeHalfType(Intrinsic::nvvm_fmin_xorsign_abs_f16, BuiltinID, E,
20743 *this);
20744 case NVPTX::BI__nvvm_fmin_xorsign_abs_f16x2:
20745 return MakeHalfType(Intrinsic::nvvm_fmin_xorsign_abs_f16x2, BuiltinID, E,
20746 *this);
20747 case NVPTX::BI__nvvm_ldg_h:
20748 return MakeHalfType(Intrinsic::nvvm_ldg_global_f, BuiltinID, E, *this);
20749 case NVPTX::BI__nvvm_ldg_h2:
20750 return MakeHalfType(Intrinsic::nvvm_ldg_global_f, BuiltinID, E, *this);
20751 case NVPTX::BI__nvvm_ldu_h:
20752 return MakeHalfType(Intrinsic::nvvm_ldu_global_f, BuiltinID, E, *this);
20753 case NVPTX::BI__nvvm_ldu_h2: {
20754 return MakeHalfType(Intrinsic::nvvm_ldu_global_f, BuiltinID, E, *this);
20756 case NVPTX::BI__nvvm_cp_async_ca_shared_global_4:
20757 return MakeCpAsync(Intrinsic::nvvm_cp_async_ca_shared_global_4,
20758 Intrinsic::nvvm_cp_async_ca_shared_global_4_s, *this, E,
20760 case NVPTX::BI__nvvm_cp_async_ca_shared_global_8:
20761 return MakeCpAsync(Intrinsic::nvvm_cp_async_ca_shared_global_8,
20762 Intrinsic::nvvm_cp_async_ca_shared_global_8_s, *this, E,
20764 case NVPTX::BI__nvvm_cp_async_ca_shared_global_16:
20765 return MakeCpAsync(Intrinsic::nvvm_cp_async_ca_shared_global_16,
20766 Intrinsic::nvvm_cp_async_ca_shared_global_16_s, *this, E,
20767 16);
20768 case NVPTX::BI__nvvm_cp_async_cg_shared_global_16:
20769 return MakeCpAsync(Intrinsic::nvvm_cp_async_cg_shared_global_16,
20770 Intrinsic::nvvm_cp_async_cg_shared_global_16_s, *this, E,
20771 16);
20772 case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_x:
20773 return Builder.CreateCall(
20774 CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_x));
20775 case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_y:
20776 return Builder.CreateCall(
20777 CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_y));
20778 case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_z:
20779 return Builder.CreateCall(
20780 CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_z));
20781 case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_w:
20782 return Builder.CreateCall(
20783 CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_w));
20784 case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_x:
20785 return Builder.CreateCall(
20786 CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_x));
20787 case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_y:
20788 return Builder.CreateCall(
20789 CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_y));
20790 case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_z:
20791 return Builder.CreateCall(
20792 CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_z));
20793 case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_w:
20794 return Builder.CreateCall(
20795 CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_w));
20796 case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_x:
20797 return Builder.CreateCall(
20798 CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_x));
20799 case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_y:
20800 return Builder.CreateCall(
20801 CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_y));
20802 case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_z:
20803 return Builder.CreateCall(
20804 CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_z));
20805 case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_w:
20806 return Builder.CreateCall(
20807 CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_w));
20808 case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_x:
20809 return Builder.CreateCall(
20810 CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_x));
20811 case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_y:
20812 return Builder.CreateCall(
20813 CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_y));
20814 case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_z:
20815 return Builder.CreateCall(
20816 CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_z));
20817 case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_w:
20818 return Builder.CreateCall(
20819 CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_w));
20820 case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctarank:
20821 return Builder.CreateCall(
20822 CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctarank));
20823 case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctarank:
20824 return Builder.CreateCall(
20825 CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctarank));
20826 case NVPTX::BI__nvvm_is_explicit_cluster:
20827 return Builder.CreateCall(
20828 CGM.getIntrinsic(Intrinsic::nvvm_is_explicit_cluster));
20829 case NVPTX::BI__nvvm_isspacep_shared_cluster:
20830 return Builder.CreateCall(
20831 CGM.getIntrinsic(Intrinsic::nvvm_isspacep_shared_cluster),
20832 EmitScalarExpr(E->getArg(0)));
20833 case NVPTX::BI__nvvm_mapa:
20834 return Builder.CreateCall(
20835 CGM.getIntrinsic(Intrinsic::nvvm_mapa),
20836 {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1))});
20837 case NVPTX::BI__nvvm_mapa_shared_cluster:
20838 return Builder.CreateCall(
20839 CGM.getIntrinsic(Intrinsic::nvvm_mapa_shared_cluster),
20840 {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1))});
20841 case NVPTX::BI__nvvm_getctarank:
20842 return Builder.CreateCall(
20843 CGM.getIntrinsic(Intrinsic::nvvm_getctarank),
20844 EmitScalarExpr(E->getArg(0)));
20845 case NVPTX::BI__nvvm_getctarank_shared_cluster:
20846 return Builder.CreateCall(
20847 CGM.getIntrinsic(Intrinsic::nvvm_getctarank_shared_cluster),
20848 EmitScalarExpr(E->getArg(0)));
20849 case NVPTX::BI__nvvm_barrier_cluster_arrive:
20850 return Builder.CreateCall(
20851 CGM.getIntrinsic(Intrinsic::nvvm_barrier_cluster_arrive));
20852 case NVPTX::BI__nvvm_barrier_cluster_arrive_relaxed:
20853 return Builder.CreateCall(
20854 CGM.getIntrinsic(Intrinsic::nvvm_barrier_cluster_arrive_relaxed));
20855 case NVPTX::BI__nvvm_barrier_cluster_wait:
20856 return Builder.CreateCall(
20857 CGM.getIntrinsic(Intrinsic::nvvm_barrier_cluster_wait));
20858 case NVPTX::BI__nvvm_fence_sc_cluster:
20859 return Builder.CreateCall(
20860 CGM.getIntrinsic(Intrinsic::nvvm_fence_sc_cluster));
20861 default:
20862 return nullptr;
20866 namespace {
20867 struct BuiltinAlignArgs {
20868 llvm::Value *Src = nullptr;
20869 llvm::Type *SrcType = nullptr;
20870 llvm::Value *Alignment = nullptr;
20871 llvm::Value *Mask = nullptr;
20872 llvm::IntegerType *IntType = nullptr;
20874 BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) {
20875 QualType AstType = E->getArg(0)->getType();
20876 if (AstType->isArrayType())
20877 Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(CGF);
20878 else
20879 Src = CGF.EmitScalarExpr(E->getArg(0));
20880 SrcType = Src->getType();
20881 if (SrcType->isPointerTy()) {
20882 IntType = IntegerType::get(
20883 CGF.getLLVMContext(),
20884 CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType));
20885 } else {
20886 assert(SrcType->isIntegerTy());
20887 IntType = cast<llvm::IntegerType>(SrcType);
20889 Alignment = CGF.EmitScalarExpr(E->getArg(1));
20890 Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment");
20891 auto *One = llvm::ConstantInt::get(IntType, 1);
20892 Mask = CGF.Builder.CreateSub(Alignment, One, "mask");
20895 } // namespace
20897 /// Generate (x & (y-1)) == 0.
20898 RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) {
20899 BuiltinAlignArgs Args(E, *this);
20900 llvm::Value *SrcAddress = Args.Src;
20901 if (Args.SrcType->isPointerTy())
20902 SrcAddress =
20903 Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr");
20904 return RValue::get(Builder.CreateICmpEQ(
20905 Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"),
20906 llvm::Constant::getNullValue(Args.IntType), "is_aligned"));
20909 /// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up.
20910 /// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the
20911 /// llvm.ptrmask intrinsic (with a GEP before in the align_up case).
20912 RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) {
20913 BuiltinAlignArgs Args(E, *this);
20914 llvm::Value *SrcForMask = Args.Src;
20915 if (AlignUp) {
20916 // When aligning up we have to first add the mask to ensure we go over the
20917 // next alignment value and then align down to the next valid multiple.
20918 // By adding the mask, we ensure that align_up on an already aligned
20919 // value will not change the value.
20920 if (Args.Src->getType()->isPointerTy()) {
20921 if (getLangOpts().isSignedOverflowDefined())
20922 SrcForMask =
20923 Builder.CreateGEP(Int8Ty, SrcForMask, Args.Mask, "over_boundary");
20924 else
20925 SrcForMask = EmitCheckedInBoundsGEP(Int8Ty, SrcForMask, Args.Mask,
20926 /*SignedIndices=*/true,
20927 /*isSubtraction=*/false,
20928 E->getExprLoc(), "over_boundary");
20929 } else {
20930 SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary");
20933 // Invert the mask to only clear the lower bits.
20934 llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask");
20935 llvm::Value *Result = nullptr;
20936 if (Args.Src->getType()->isPointerTy()) {
20937 Result = Builder.CreateIntrinsic(
20938 Intrinsic::ptrmask, {Args.SrcType, Args.IntType},
20939 {SrcForMask, InvertedMask}, nullptr, "aligned_result");
20940 } else {
20941 Result = Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result");
20943 assert(Result->getType() == Args.SrcType);
20944 return RValue::get(Result);
20947 Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
20948 const CallExpr *E) {
20949 switch (BuiltinID) {
20950 case WebAssembly::BI__builtin_wasm_memory_size: {
20951 llvm::Type *ResultType = ConvertType(E->getType());
20952 Value *I = EmitScalarExpr(E->getArg(0));
20953 Function *Callee =
20954 CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
20955 return Builder.CreateCall(Callee, I);
20957 case WebAssembly::BI__builtin_wasm_memory_grow: {
20958 llvm::Type *ResultType = ConvertType(E->getType());
20959 Value *Args[] = {EmitScalarExpr(E->getArg(0)),
20960 EmitScalarExpr(E->getArg(1))};
20961 Function *Callee =
20962 CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
20963 return Builder.CreateCall(Callee, Args);
20965 case WebAssembly::BI__builtin_wasm_tls_size: {
20966 llvm::Type *ResultType = ConvertType(E->getType());
20967 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
20968 return Builder.CreateCall(Callee);
20970 case WebAssembly::BI__builtin_wasm_tls_align: {
20971 llvm::Type *ResultType = ConvertType(E->getType());
20972 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
20973 return Builder.CreateCall(Callee);
20975 case WebAssembly::BI__builtin_wasm_tls_base: {
20976 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
20977 return Builder.CreateCall(Callee);
20979 case WebAssembly::BI__builtin_wasm_throw: {
20980 Value *Tag = EmitScalarExpr(E->getArg(0));
20981 Value *Obj = EmitScalarExpr(E->getArg(1));
20982 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
20983 return Builder.CreateCall(Callee, {Tag, Obj});
20985 case WebAssembly::BI__builtin_wasm_rethrow: {
20986 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow);
20987 return Builder.CreateCall(Callee);
20989 case WebAssembly::BI__builtin_wasm_memory_atomic_wait32: {
20990 Value *Addr = EmitScalarExpr(E->getArg(0));
20991 Value *Expected = EmitScalarExpr(E->getArg(1));
20992 Value *Timeout = EmitScalarExpr(E->getArg(2));
20993 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32);
20994 return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
20996 case WebAssembly::BI__builtin_wasm_memory_atomic_wait64: {
20997 Value *Addr = EmitScalarExpr(E->getArg(0));
20998 Value *Expected = EmitScalarExpr(E->getArg(1));
20999 Value *Timeout = EmitScalarExpr(E->getArg(2));
21000 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64);
21001 return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
21003 case WebAssembly::BI__builtin_wasm_memory_atomic_notify: {
21004 Value *Addr = EmitScalarExpr(E->getArg(0));
21005 Value *Count = EmitScalarExpr(E->getArg(1));
21006 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_notify);
21007 return Builder.CreateCall(Callee, {Addr, Count});
21009 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
21010 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
21011 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
21012 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
21013 Value *Src = EmitScalarExpr(E->getArg(0));
21014 llvm::Type *ResT = ConvertType(E->getType());
21015 Function *Callee =
21016 CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
21017 return Builder.CreateCall(Callee, {Src});
21019 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
21020 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
21021 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
21022 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
21023 Value *Src = EmitScalarExpr(E->getArg(0));
21024 llvm::Type *ResT = ConvertType(E->getType());
21025 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
21026 {ResT, Src->getType()});
21027 return Builder.CreateCall(Callee, {Src});
21029 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
21030 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
21031 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
21032 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
21033 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: {
21034 Value *Src = EmitScalarExpr(E->getArg(0));
21035 llvm::Type *ResT = ConvertType(E->getType());
21036 Function *Callee =
21037 CGM.getIntrinsic(Intrinsic::fptosi_sat, {ResT, Src->getType()});
21038 return Builder.CreateCall(Callee, {Src});
21040 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
21041 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
21042 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
21043 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
21044 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: {
21045 Value *Src = EmitScalarExpr(E->getArg(0));
21046 llvm::Type *ResT = ConvertType(E->getType());
21047 Function *Callee =
21048 CGM.getIntrinsic(Intrinsic::fptoui_sat, {ResT, Src->getType()});
21049 return Builder.CreateCall(Callee, {Src});
21051 case WebAssembly::BI__builtin_wasm_min_f32:
21052 case WebAssembly::BI__builtin_wasm_min_f64:
21053 case WebAssembly::BI__builtin_wasm_min_f16x8:
21054 case WebAssembly::BI__builtin_wasm_min_f32x4:
21055 case WebAssembly::BI__builtin_wasm_min_f64x2: {
21056 Value *LHS = EmitScalarExpr(E->getArg(0));
21057 Value *RHS = EmitScalarExpr(E->getArg(1));
21058 Function *Callee =
21059 CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType()));
21060 return Builder.CreateCall(Callee, {LHS, RHS});
21062 case WebAssembly::BI__builtin_wasm_max_f32:
21063 case WebAssembly::BI__builtin_wasm_max_f64:
21064 case WebAssembly::BI__builtin_wasm_max_f16x8:
21065 case WebAssembly::BI__builtin_wasm_max_f32x4:
21066 case WebAssembly::BI__builtin_wasm_max_f64x2: {
21067 Value *LHS = EmitScalarExpr(E->getArg(0));
21068 Value *RHS = EmitScalarExpr(E->getArg(1));
21069 Function *Callee =
21070 CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType()));
21071 return Builder.CreateCall(Callee, {LHS, RHS});
21073 case WebAssembly::BI__builtin_wasm_pmin_f16x8:
21074 case WebAssembly::BI__builtin_wasm_pmin_f32x4:
21075 case WebAssembly::BI__builtin_wasm_pmin_f64x2: {
21076 Value *LHS = EmitScalarExpr(E->getArg(0));
21077 Value *RHS = EmitScalarExpr(E->getArg(1));
21078 Function *Callee =
21079 CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType()));
21080 return Builder.CreateCall(Callee, {LHS, RHS});
21082 case WebAssembly::BI__builtin_wasm_pmax_f16x8:
21083 case WebAssembly::BI__builtin_wasm_pmax_f32x4:
21084 case WebAssembly::BI__builtin_wasm_pmax_f64x2: {
21085 Value *LHS = EmitScalarExpr(E->getArg(0));
21086 Value *RHS = EmitScalarExpr(E->getArg(1));
21087 Function *Callee =
21088 CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType()));
21089 return Builder.CreateCall(Callee, {LHS, RHS});
21091 case WebAssembly::BI__builtin_wasm_ceil_f32x4:
21092 case WebAssembly::BI__builtin_wasm_floor_f32x4:
21093 case WebAssembly::BI__builtin_wasm_trunc_f32x4:
21094 case WebAssembly::BI__builtin_wasm_nearest_f32x4:
21095 case WebAssembly::BI__builtin_wasm_ceil_f64x2:
21096 case WebAssembly::BI__builtin_wasm_floor_f64x2:
21097 case WebAssembly::BI__builtin_wasm_trunc_f64x2:
21098 case WebAssembly::BI__builtin_wasm_nearest_f64x2: {
21099 unsigned IntNo;
21100 switch (BuiltinID) {
21101 case WebAssembly::BI__builtin_wasm_ceil_f32x4:
21102 case WebAssembly::BI__builtin_wasm_ceil_f64x2:
21103 IntNo = Intrinsic::ceil;
21104 break;
21105 case WebAssembly::BI__builtin_wasm_floor_f32x4:
21106 case WebAssembly::BI__builtin_wasm_floor_f64x2:
21107 IntNo = Intrinsic::floor;
21108 break;
21109 case WebAssembly::BI__builtin_wasm_trunc_f32x4:
21110 case WebAssembly::BI__builtin_wasm_trunc_f64x2:
21111 IntNo = Intrinsic::trunc;
21112 break;
21113 case WebAssembly::BI__builtin_wasm_nearest_f32x4:
21114 case WebAssembly::BI__builtin_wasm_nearest_f64x2:
21115 IntNo = Intrinsic::nearbyint;
21116 break;
21117 default:
21118 llvm_unreachable("unexpected builtin ID");
21120 Value *Value = EmitScalarExpr(E->getArg(0));
21121 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
21122 return Builder.CreateCall(Callee, Value);
21124 case WebAssembly::BI__builtin_wasm_ref_null_extern: {
21125 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_ref_null_extern);
21126 return Builder.CreateCall(Callee);
21128 case WebAssembly::BI__builtin_wasm_ref_null_func: {
21129 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_ref_null_func);
21130 return Builder.CreateCall(Callee);
21132 case WebAssembly::BI__builtin_wasm_swizzle_i8x16: {
21133 Value *Src = EmitScalarExpr(E->getArg(0));
21134 Value *Indices = EmitScalarExpr(E->getArg(1));
21135 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
21136 return Builder.CreateCall(Callee, {Src, Indices});
21138 case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
21139 case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
21140 case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
21141 case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
21142 case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
21143 case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
21144 case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
21145 case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8: {
21146 unsigned IntNo;
21147 switch (BuiltinID) {
21148 case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
21149 case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
21150 IntNo = Intrinsic::sadd_sat;
21151 break;
21152 case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
21153 case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
21154 IntNo = Intrinsic::uadd_sat;
21155 break;
21156 case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
21157 case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
21158 IntNo = Intrinsic::wasm_sub_sat_signed;
21159 break;
21160 case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
21161 case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8:
21162 IntNo = Intrinsic::wasm_sub_sat_unsigned;
21163 break;
21164 default:
21165 llvm_unreachable("unexpected builtin ID");
21167 Value *LHS = EmitScalarExpr(E->getArg(0));
21168 Value *RHS = EmitScalarExpr(E->getArg(1));
21169 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
21170 return Builder.CreateCall(Callee, {LHS, RHS});
21172 case WebAssembly::BI__builtin_wasm_abs_i8x16:
21173 case WebAssembly::BI__builtin_wasm_abs_i16x8:
21174 case WebAssembly::BI__builtin_wasm_abs_i32x4:
21175 case WebAssembly::BI__builtin_wasm_abs_i64x2: {
21176 Value *Vec = EmitScalarExpr(E->getArg(0));
21177 Value *Neg = Builder.CreateNeg(Vec, "neg");
21178 Constant *Zero = llvm::Constant::getNullValue(Vec->getType());
21179 Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond");
21180 return Builder.CreateSelect(ICmp, Neg, Vec, "abs");
21182 case WebAssembly::BI__builtin_wasm_min_s_i8x16:
21183 case WebAssembly::BI__builtin_wasm_min_u_i8x16:
21184 case WebAssembly::BI__builtin_wasm_max_s_i8x16:
21185 case WebAssembly::BI__builtin_wasm_max_u_i8x16:
21186 case WebAssembly::BI__builtin_wasm_min_s_i16x8:
21187 case WebAssembly::BI__builtin_wasm_min_u_i16x8:
21188 case WebAssembly::BI__builtin_wasm_max_s_i16x8:
21189 case WebAssembly::BI__builtin_wasm_max_u_i16x8:
21190 case WebAssembly::BI__builtin_wasm_min_s_i32x4:
21191 case WebAssembly::BI__builtin_wasm_min_u_i32x4:
21192 case WebAssembly::BI__builtin_wasm_max_s_i32x4:
21193 case WebAssembly::BI__builtin_wasm_max_u_i32x4: {
21194 Value *LHS = EmitScalarExpr(E->getArg(0));
21195 Value *RHS = EmitScalarExpr(E->getArg(1));
21196 Value *ICmp;
21197 switch (BuiltinID) {
21198 case WebAssembly::BI__builtin_wasm_min_s_i8x16:
21199 case WebAssembly::BI__builtin_wasm_min_s_i16x8:
21200 case WebAssembly::BI__builtin_wasm_min_s_i32x4:
21201 ICmp = Builder.CreateICmpSLT(LHS, RHS);
21202 break;
21203 case WebAssembly::BI__builtin_wasm_min_u_i8x16:
21204 case WebAssembly::BI__builtin_wasm_min_u_i16x8:
21205 case WebAssembly::BI__builtin_wasm_min_u_i32x4:
21206 ICmp = Builder.CreateICmpULT(LHS, RHS);
21207 break;
21208 case WebAssembly::BI__builtin_wasm_max_s_i8x16:
21209 case WebAssembly::BI__builtin_wasm_max_s_i16x8:
21210 case WebAssembly::BI__builtin_wasm_max_s_i32x4:
21211 ICmp = Builder.CreateICmpSGT(LHS, RHS);
21212 break;
21213 case WebAssembly::BI__builtin_wasm_max_u_i8x16:
21214 case WebAssembly::BI__builtin_wasm_max_u_i16x8:
21215 case WebAssembly::BI__builtin_wasm_max_u_i32x4:
21216 ICmp = Builder.CreateICmpUGT(LHS, RHS);
21217 break;
21218 default:
21219 llvm_unreachable("unexpected builtin ID");
21221 return Builder.CreateSelect(ICmp, LHS, RHS);
21223 case WebAssembly::BI__builtin_wasm_avgr_u_i8x16:
21224 case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: {
21225 Value *LHS = EmitScalarExpr(E->getArg(0));
21226 Value *RHS = EmitScalarExpr(E->getArg(1));
21227 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned,
21228 ConvertType(E->getType()));
21229 return Builder.CreateCall(Callee, {LHS, RHS});
21231 case WebAssembly::BI__builtin_wasm_q15mulr_sat_s_i16x8: {
21232 Value *LHS = EmitScalarExpr(E->getArg(0));
21233 Value *RHS = EmitScalarExpr(E->getArg(1));
21234 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_q15mulr_sat_signed);
21235 return Builder.CreateCall(Callee, {LHS, RHS});
21237 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
21238 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
21239 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
21240 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: {
21241 Value *Vec = EmitScalarExpr(E->getArg(0));
21242 unsigned IntNo;
21243 switch (BuiltinID) {
21244 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
21245 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
21246 IntNo = Intrinsic::wasm_extadd_pairwise_signed;
21247 break;
21248 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
21249 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4:
21250 IntNo = Intrinsic::wasm_extadd_pairwise_unsigned;
21251 break;
21252 default:
21253 llvm_unreachable("unexpected builtin ID");
21256 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
21257 return Builder.CreateCall(Callee, Vec);
21259 case WebAssembly::BI__builtin_wasm_bitselect: {
21260 Value *V1 = EmitScalarExpr(E->getArg(0));
21261 Value *V2 = EmitScalarExpr(E->getArg(1));
21262 Value *C = EmitScalarExpr(E->getArg(2));
21263 Function *Callee =
21264 CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType()));
21265 return Builder.CreateCall(Callee, {V1, V2, C});
21267 case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: {
21268 Value *LHS = EmitScalarExpr(E->getArg(0));
21269 Value *RHS = EmitScalarExpr(E->getArg(1));
21270 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot);
21271 return Builder.CreateCall(Callee, {LHS, RHS});
21273 case WebAssembly::BI__builtin_wasm_popcnt_i8x16: {
21274 Value *Vec = EmitScalarExpr(E->getArg(0));
21275 Function *Callee =
21276 CGM.getIntrinsic(Intrinsic::ctpop, ConvertType(E->getType()));
21277 return Builder.CreateCall(Callee, {Vec});
21279 case WebAssembly::BI__builtin_wasm_any_true_v128:
21280 case WebAssembly::BI__builtin_wasm_all_true_i8x16:
21281 case WebAssembly::BI__builtin_wasm_all_true_i16x8:
21282 case WebAssembly::BI__builtin_wasm_all_true_i32x4:
21283 case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
21284 unsigned IntNo;
21285 switch (BuiltinID) {
21286 case WebAssembly::BI__builtin_wasm_any_true_v128:
21287 IntNo = Intrinsic::wasm_anytrue;
21288 break;
21289 case WebAssembly::BI__builtin_wasm_all_true_i8x16:
21290 case WebAssembly::BI__builtin_wasm_all_true_i16x8:
21291 case WebAssembly::BI__builtin_wasm_all_true_i32x4:
21292 case WebAssembly::BI__builtin_wasm_all_true_i64x2:
21293 IntNo = Intrinsic::wasm_alltrue;
21294 break;
21295 default:
21296 llvm_unreachable("unexpected builtin ID");
21298 Value *Vec = EmitScalarExpr(E->getArg(0));
21299 Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
21300 return Builder.CreateCall(Callee, {Vec});
21302 case WebAssembly::BI__builtin_wasm_bitmask_i8x16:
21303 case WebAssembly::BI__builtin_wasm_bitmask_i16x8:
21304 case WebAssembly::BI__builtin_wasm_bitmask_i32x4:
21305 case WebAssembly::BI__builtin_wasm_bitmask_i64x2: {
21306 Value *Vec = EmitScalarExpr(E->getArg(0));
21307 Function *Callee =
21308 CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType());
21309 return Builder.CreateCall(Callee, {Vec});
21311 case WebAssembly::BI__builtin_wasm_abs_f32x4:
21312 case WebAssembly::BI__builtin_wasm_abs_f64x2: {
21313 Value *Vec = EmitScalarExpr(E->getArg(0));
21314 Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
21315 return Builder.CreateCall(Callee, {Vec});
21317 case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
21318 case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
21319 Value *Vec = EmitScalarExpr(E->getArg(0));
21320 Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
21321 return Builder.CreateCall(Callee, {Vec});
21323 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
21324 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
21325 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
21326 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
21327 Value *Low = EmitScalarExpr(E->getArg(0));
21328 Value *High = EmitScalarExpr(E->getArg(1));
21329 unsigned IntNo;
21330 switch (BuiltinID) {
21331 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
21332 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
21333 IntNo = Intrinsic::wasm_narrow_signed;
21334 break;
21335 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
21336 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
21337 IntNo = Intrinsic::wasm_narrow_unsigned;
21338 break;
21339 default:
21340 llvm_unreachable("unexpected builtin ID");
21342 Function *Callee =
21343 CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
21344 return Builder.CreateCall(Callee, {Low, High});
21346 case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4:
21347 case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4: {
21348 Value *Vec = EmitScalarExpr(E->getArg(0));
21349 unsigned IntNo;
21350 switch (BuiltinID) {
21351 case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4:
21352 IntNo = Intrinsic::fptosi_sat;
21353 break;
21354 case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4:
21355 IntNo = Intrinsic::fptoui_sat;
21356 break;
21357 default:
21358 llvm_unreachable("unexpected builtin ID");
21360 llvm::Type *SrcT = Vec->getType();
21361 llvm::Type *TruncT = SrcT->getWithNewType(Builder.getInt32Ty());
21362 Function *Callee = CGM.getIntrinsic(IntNo, {TruncT, SrcT});
21363 Value *Trunc = Builder.CreateCall(Callee, Vec);
21364 Value *Splat = Constant::getNullValue(TruncT);
21365 return Builder.CreateShuffleVector(Trunc, Splat, ArrayRef<int>{0, 1, 2, 3});
21367 case WebAssembly::BI__builtin_wasm_shuffle_i8x16: {
21368 Value *Ops[18];
21369 size_t OpIdx = 0;
21370 Ops[OpIdx++] = EmitScalarExpr(E->getArg(0));
21371 Ops[OpIdx++] = EmitScalarExpr(E->getArg(1));
21372 while (OpIdx < 18) {
21373 std::optional<llvm::APSInt> LaneConst =
21374 E->getArg(OpIdx)->getIntegerConstantExpr(getContext());
21375 assert(LaneConst && "Constant arg isn't actually constant?");
21376 Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst);
21378 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle);
21379 return Builder.CreateCall(Callee, Ops);
21381 case WebAssembly::BI__builtin_wasm_relaxed_madd_f16x8:
21382 case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f16x8:
21383 case WebAssembly::BI__builtin_wasm_relaxed_madd_f32x4:
21384 case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f32x4:
21385 case WebAssembly::BI__builtin_wasm_relaxed_madd_f64x2:
21386 case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f64x2: {
21387 Value *A = EmitScalarExpr(E->getArg(0));
21388 Value *B = EmitScalarExpr(E->getArg(1));
21389 Value *C = EmitScalarExpr(E->getArg(2));
21390 unsigned IntNo;
21391 switch (BuiltinID) {
21392 case WebAssembly::BI__builtin_wasm_relaxed_madd_f16x8:
21393 case WebAssembly::BI__builtin_wasm_relaxed_madd_f32x4:
21394 case WebAssembly::BI__builtin_wasm_relaxed_madd_f64x2:
21395 IntNo = Intrinsic::wasm_relaxed_madd;
21396 break;
21397 case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f16x8:
21398 case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f32x4:
21399 case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f64x2:
21400 IntNo = Intrinsic::wasm_relaxed_nmadd;
21401 break;
21402 default:
21403 llvm_unreachable("unexpected builtin ID");
21405 Function *Callee = CGM.getIntrinsic(IntNo, A->getType());
21406 return Builder.CreateCall(Callee, {A, B, C});
21408 case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i8x16:
21409 case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i16x8:
21410 case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i32x4:
21411 case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i64x2: {
21412 Value *A = EmitScalarExpr(E->getArg(0));
21413 Value *B = EmitScalarExpr(E->getArg(1));
21414 Value *C = EmitScalarExpr(E->getArg(2));
21415 Function *Callee =
21416 CGM.getIntrinsic(Intrinsic::wasm_relaxed_laneselect, A->getType());
21417 return Builder.CreateCall(Callee, {A, B, C});
21419 case WebAssembly::BI__builtin_wasm_relaxed_swizzle_i8x16: {
21420 Value *Src = EmitScalarExpr(E->getArg(0));
21421 Value *Indices = EmitScalarExpr(E->getArg(1));
21422 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_relaxed_swizzle);
21423 return Builder.CreateCall(Callee, {Src, Indices});
21425 case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4:
21426 case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4:
21427 case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2:
21428 case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2: {
21429 Value *LHS = EmitScalarExpr(E->getArg(0));
21430 Value *RHS = EmitScalarExpr(E->getArg(1));
21431 unsigned IntNo;
21432 switch (BuiltinID) {
21433 case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4:
21434 case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2:
21435 IntNo = Intrinsic::wasm_relaxed_min;
21436 break;
21437 case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4:
21438 case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2:
21439 IntNo = Intrinsic::wasm_relaxed_max;
21440 break;
21441 default:
21442 llvm_unreachable("unexpected builtin ID");
21444 Function *Callee = CGM.getIntrinsic(IntNo, LHS->getType());
21445 return Builder.CreateCall(Callee, {LHS, RHS});
21447 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4:
21448 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4:
21449 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2:
21450 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2: {
21451 Value *Vec = EmitScalarExpr(E->getArg(0));
21452 unsigned IntNo;
21453 switch (BuiltinID) {
21454 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4:
21455 IntNo = Intrinsic::wasm_relaxed_trunc_signed;
21456 break;
21457 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4:
21458 IntNo = Intrinsic::wasm_relaxed_trunc_unsigned;
21459 break;
21460 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2:
21461 IntNo = Intrinsic::wasm_relaxed_trunc_signed_zero;
21462 break;
21463 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2:
21464 IntNo = Intrinsic::wasm_relaxed_trunc_unsigned_zero;
21465 break;
21466 default:
21467 llvm_unreachable("unexpected builtin ID");
21469 Function *Callee = CGM.getIntrinsic(IntNo);
21470 return Builder.CreateCall(Callee, {Vec});
21472 case WebAssembly::BI__builtin_wasm_relaxed_q15mulr_s_i16x8: {
21473 Value *LHS = EmitScalarExpr(E->getArg(0));
21474 Value *RHS = EmitScalarExpr(E->getArg(1));
21475 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_relaxed_q15mulr_signed);
21476 return Builder.CreateCall(Callee, {LHS, RHS});
21478 case WebAssembly::BI__builtin_wasm_relaxed_dot_i8x16_i7x16_s_i16x8: {
21479 Value *LHS = EmitScalarExpr(E->getArg(0));
21480 Value *RHS = EmitScalarExpr(E->getArg(1));
21481 Function *Callee =
21482 CGM.getIntrinsic(Intrinsic::wasm_relaxed_dot_i8x16_i7x16_signed);
21483 return Builder.CreateCall(Callee, {LHS, RHS});
21485 case WebAssembly::BI__builtin_wasm_relaxed_dot_i8x16_i7x16_add_s_i32x4: {
21486 Value *LHS = EmitScalarExpr(E->getArg(0));
21487 Value *RHS = EmitScalarExpr(E->getArg(1));
21488 Value *Acc = EmitScalarExpr(E->getArg(2));
21489 Function *Callee =
21490 CGM.getIntrinsic(Intrinsic::wasm_relaxed_dot_i8x16_i7x16_add_signed);
21491 return Builder.CreateCall(Callee, {LHS, RHS, Acc});
21493 case WebAssembly::BI__builtin_wasm_relaxed_dot_bf16x8_add_f32_f32x4: {
21494 Value *LHS = EmitScalarExpr(E->getArg(0));
21495 Value *RHS = EmitScalarExpr(E->getArg(1));
21496 Value *Acc = EmitScalarExpr(E->getArg(2));
21497 Function *Callee =
21498 CGM.getIntrinsic(Intrinsic::wasm_relaxed_dot_bf16x8_add_f32);
21499 return Builder.CreateCall(Callee, {LHS, RHS, Acc});
21501 case WebAssembly::BI__builtin_wasm_loadf16_f32: {
21502 Value *Addr = EmitScalarExpr(E->getArg(0));
21503 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_loadf16_f32);
21504 return Builder.CreateCall(Callee, {Addr});
21506 case WebAssembly::BI__builtin_wasm_storef16_f32: {
21507 Value *Val = EmitScalarExpr(E->getArg(0));
21508 Value *Addr = EmitScalarExpr(E->getArg(1));
21509 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_storef16_f32);
21510 return Builder.CreateCall(Callee, {Val, Addr});
21512 case WebAssembly::BI__builtin_wasm_splat_f16x8: {
21513 Value *Val = EmitScalarExpr(E->getArg(0));
21514 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_splat_f16x8);
21515 return Builder.CreateCall(Callee, {Val});
21517 case WebAssembly::BI__builtin_wasm_extract_lane_f16x8: {
21518 Value *Vector = EmitScalarExpr(E->getArg(0));
21519 Value *Index = EmitScalarExpr(E->getArg(1));
21520 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_extract_lane_f16x8);
21521 return Builder.CreateCall(Callee, {Vector, Index});
21523 case WebAssembly::BI__builtin_wasm_table_get: {
21524 assert(E->getArg(0)->getType()->isArrayType());
21525 Value *Table = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this);
21526 Value *Index = EmitScalarExpr(E->getArg(1));
21527 Function *Callee;
21528 if (E->getType().isWebAssemblyExternrefType())
21529 Callee = CGM.getIntrinsic(Intrinsic::wasm_table_get_externref);
21530 else if (E->getType().isWebAssemblyFuncrefType())
21531 Callee = CGM.getIntrinsic(Intrinsic::wasm_table_get_funcref);
21532 else
21533 llvm_unreachable(
21534 "Unexpected reference type for __builtin_wasm_table_get");
21535 return Builder.CreateCall(Callee, {Table, Index});
21537 case WebAssembly::BI__builtin_wasm_table_set: {
21538 assert(E->getArg(0)->getType()->isArrayType());
21539 Value *Table = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this);
21540 Value *Index = EmitScalarExpr(E->getArg(1));
21541 Value *Val = EmitScalarExpr(E->getArg(2));
21542 Function *Callee;
21543 if (E->getArg(2)->getType().isWebAssemblyExternrefType())
21544 Callee = CGM.getIntrinsic(Intrinsic::wasm_table_set_externref);
21545 else if (E->getArg(2)->getType().isWebAssemblyFuncrefType())
21546 Callee = CGM.getIntrinsic(Intrinsic::wasm_table_set_funcref);
21547 else
21548 llvm_unreachable(
21549 "Unexpected reference type for __builtin_wasm_table_set");
21550 return Builder.CreateCall(Callee, {Table, Index, Val});
21552 case WebAssembly::BI__builtin_wasm_table_size: {
21553 assert(E->getArg(0)->getType()->isArrayType());
21554 Value *Value = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this);
21555 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_table_size);
21556 return Builder.CreateCall(Callee, Value);
21558 case WebAssembly::BI__builtin_wasm_table_grow: {
21559 assert(E->getArg(0)->getType()->isArrayType());
21560 Value *Table = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this);
21561 Value *Val = EmitScalarExpr(E->getArg(1));
21562 Value *NElems = EmitScalarExpr(E->getArg(2));
21564 Function *Callee;
21565 if (E->getArg(1)->getType().isWebAssemblyExternrefType())
21566 Callee = CGM.getIntrinsic(Intrinsic::wasm_table_grow_externref);
21567 else if (E->getArg(2)->getType().isWebAssemblyFuncrefType())
21568 Callee = CGM.getIntrinsic(Intrinsic::wasm_table_fill_funcref);
21569 else
21570 llvm_unreachable(
21571 "Unexpected reference type for __builtin_wasm_table_grow");
21573 return Builder.CreateCall(Callee, {Table, Val, NElems});
21575 case WebAssembly::BI__builtin_wasm_table_fill: {
21576 assert(E->getArg(0)->getType()->isArrayType());
21577 Value *Table = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this);
21578 Value *Index = EmitScalarExpr(E->getArg(1));
21579 Value *Val = EmitScalarExpr(E->getArg(2));
21580 Value *NElems = EmitScalarExpr(E->getArg(3));
21582 Function *Callee;
21583 if (E->getArg(2)->getType().isWebAssemblyExternrefType())
21584 Callee = CGM.getIntrinsic(Intrinsic::wasm_table_fill_externref);
21585 else if (E->getArg(2)->getType().isWebAssemblyFuncrefType())
21586 Callee = CGM.getIntrinsic(Intrinsic::wasm_table_fill_funcref);
21587 else
21588 llvm_unreachable(
21589 "Unexpected reference type for __builtin_wasm_table_fill");
21591 return Builder.CreateCall(Callee, {Table, Index, Val, NElems});
21593 case WebAssembly::BI__builtin_wasm_table_copy: {
21594 assert(E->getArg(0)->getType()->isArrayType());
21595 Value *TableX = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this);
21596 Value *TableY = EmitArrayToPointerDecay(E->getArg(1)).emitRawPointer(*this);
21597 Value *DstIdx = EmitScalarExpr(E->getArg(2));
21598 Value *SrcIdx = EmitScalarExpr(E->getArg(3));
21599 Value *NElems = EmitScalarExpr(E->getArg(4));
21601 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_table_copy);
21603 return Builder.CreateCall(Callee, {TableX, TableY, SrcIdx, DstIdx, NElems});
21605 default:
21606 return nullptr;
21610 static std::pair<Intrinsic::ID, unsigned>
21611 getIntrinsicForHexagonNonClangBuiltin(unsigned BuiltinID) {
21612 struct Info {
21613 unsigned BuiltinID;
21614 Intrinsic::ID IntrinsicID;
21615 unsigned VecLen;
21617 static Info Infos[] = {
21618 #define CUSTOM_BUILTIN_MAPPING(x,s) \
21619 { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s },
21620 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0)
21621 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0)
21622 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0)
21623 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0)
21624 CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0)
21625 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0)
21626 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0)
21627 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0)
21628 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0)
21629 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0)
21630 CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0)
21631 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0)
21632 CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0)
21633 CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0)
21634 CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0)
21635 CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0)
21636 CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0)
21637 CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0)
21638 CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0)
21639 CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0)
21640 CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0)
21641 CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0)
21642 // Legacy builtins that take a vector in place of a vector predicate.
21643 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64)
21644 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64)
21645 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64)
21646 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64)
21647 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128)
21648 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128)
21649 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128)
21650 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128)
21651 #include "clang/Basic/BuiltinsHexagonMapCustomDep.def"
21652 #undef CUSTOM_BUILTIN_MAPPING
21655 auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; };
21656 static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true);
21657 (void)SortOnce;
21659 const Info *F = llvm::lower_bound(Infos, Info{BuiltinID, 0, 0}, CmpInfo);
21660 if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
21661 return {Intrinsic::not_intrinsic, 0};
21663 return {F->IntrinsicID, F->VecLen};
21666 Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
21667 const CallExpr *E) {
21668 Intrinsic::ID ID;
21669 unsigned VecLen;
21670 std::tie(ID, VecLen) = getIntrinsicForHexagonNonClangBuiltin(BuiltinID);
21672 auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) {
21673 // The base pointer is passed by address, so it needs to be loaded.
21674 Address A = EmitPointerWithAlignment(E->getArg(0));
21675 Address BP = Address(A.emitRawPointer(*this), Int8PtrTy, A.getAlignment());
21676 llvm::Value *Base = Builder.CreateLoad(BP);
21677 // The treatment of both loads and stores is the same: the arguments for
21678 // the builtin are the same as the arguments for the intrinsic.
21679 // Load:
21680 // builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start)
21681 // builtin(Base, Mod, Start) -> intr(Base, Mod, Start)
21682 // Store:
21683 // builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start)
21684 // builtin(Base, Mod, Val, Start) -> intr(Base, Mod, Val, Start)
21685 SmallVector<llvm::Value*,5> Ops = { Base };
21686 for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i)
21687 Ops.push_back(EmitScalarExpr(E->getArg(i)));
21689 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
21690 // The load intrinsics generate two results (Value, NewBase), stores
21691 // generate one (NewBase). The new base address needs to be stored.
21692 llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1)
21693 : Result;
21694 llvm::Value *LV = EmitScalarExpr(E->getArg(0));
21695 Address Dest = EmitPointerWithAlignment(E->getArg(0));
21696 llvm::Value *RetVal =
21697 Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
21698 if (IsLoad)
21699 RetVal = Builder.CreateExtractValue(Result, 0);
21700 return RetVal;
21703 // Handle the conversion of bit-reverse load intrinsics to bit code.
21704 // The intrinsic call after this function only reads from memory and the
21705 // write to memory is dealt by the store instruction.
21706 auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) {
21707 // The intrinsic generates one result, which is the new value for the base
21708 // pointer. It needs to be returned. The result of the load instruction is
21709 // passed to intrinsic by address, so the value needs to be stored.
21710 llvm::Value *BaseAddress = EmitScalarExpr(E->getArg(0));
21712 // Expressions like &(*pt++) will be incremented per evaluation.
21713 // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
21714 // per call.
21715 Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
21716 DestAddr = DestAddr.withElementType(Int8Ty);
21717 llvm::Value *DestAddress = DestAddr.emitRawPointer(*this);
21719 // Operands are Base, Dest, Modifier.
21720 // The intrinsic format in LLVM IR is defined as
21721 // { ValueType, i8* } (i8*, i32).
21722 llvm::Value *Result = Builder.CreateCall(
21723 CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))});
21725 // The value needs to be stored as the variable is passed by reference.
21726 llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
21728 // The store needs to be truncated to fit the destination type.
21729 // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
21730 // to be handled with stores of respective destination type.
21731 DestVal = Builder.CreateTrunc(DestVal, DestTy);
21733 Builder.CreateAlignedStore(DestVal, DestAddress, DestAddr.getAlignment());
21734 // The updated value of the base pointer is returned.
21735 return Builder.CreateExtractValue(Result, 1);
21738 auto V2Q = [this, VecLen] (llvm::Value *Vec) {
21739 Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B
21740 : Intrinsic::hexagon_V6_vandvrt;
21741 return Builder.CreateCall(CGM.getIntrinsic(ID),
21742 {Vec, Builder.getInt32(-1)});
21744 auto Q2V = [this, VecLen] (llvm::Value *Pred) {
21745 Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B
21746 : Intrinsic::hexagon_V6_vandqrt;
21747 return Builder.CreateCall(CGM.getIntrinsic(ID),
21748 {Pred, Builder.getInt32(-1)});
21751 switch (BuiltinID) {
21752 // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR,
21753 // and the corresponding C/C++ builtins use loads/stores to update
21754 // the predicate.
21755 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
21756 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B:
21757 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
21758 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
21759 // Get the type from the 0-th argument.
21760 llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
21761 Address PredAddr =
21762 EmitPointerWithAlignment(E->getArg(2)).withElementType(VecType);
21763 llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr));
21764 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
21765 {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn});
21767 llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
21768 Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.emitRawPointer(*this),
21769 PredAddr.getAlignment());
21770 return Builder.CreateExtractValue(Result, 0);
21772 // These are identical to the builtins above, except they don't consume
21773 // input carry, only generate carry-out. Since they still produce two
21774 // outputs, generate the store of the predicate, but no load.
21775 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarryo:
21776 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarryo_128B:
21777 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarryo:
21778 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarryo_128B: {
21779 // Get the type from the 0-th argument.
21780 llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
21781 Address PredAddr =
21782 EmitPointerWithAlignment(E->getArg(2)).withElementType(VecType);
21783 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
21784 {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1))});
21786 llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
21787 Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.emitRawPointer(*this),
21788 PredAddr.getAlignment());
21789 return Builder.CreateExtractValue(Result, 0);
21792 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq:
21793 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq:
21794 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq:
21795 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq:
21796 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq_128B:
21797 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq_128B:
21798 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq_128B:
21799 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq_128B: {
21800 SmallVector<llvm::Value*,4> Ops;
21801 const Expr *PredOp = E->getArg(0);
21802 // There will be an implicit cast to a boolean vector. Strip it.
21803 if (auto *Cast = dyn_cast<ImplicitCastExpr>(PredOp)) {
21804 if (Cast->getCastKind() == CK_BitCast)
21805 PredOp = Cast->getSubExpr();
21806 Ops.push_back(V2Q(EmitScalarExpr(PredOp)));
21808 for (int i = 1, e = E->getNumArgs(); i != e; ++i)
21809 Ops.push_back(EmitScalarExpr(E->getArg(i)));
21810 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
21813 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
21814 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
21815 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
21816 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
21817 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
21818 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
21819 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
21820 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
21821 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
21822 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
21823 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
21824 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
21825 return MakeCircOp(ID, /*IsLoad=*/true);
21826 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
21827 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
21828 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
21829 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
21830 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
21831 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
21832 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
21833 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
21834 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
21835 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
21836 return MakeCircOp(ID, /*IsLoad=*/false);
21837 case Hexagon::BI__builtin_brev_ldub:
21838 return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
21839 case Hexagon::BI__builtin_brev_ldb:
21840 return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
21841 case Hexagon::BI__builtin_brev_lduh:
21842 return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
21843 case Hexagon::BI__builtin_brev_ldh:
21844 return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
21845 case Hexagon::BI__builtin_brev_ldw:
21846 return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
21847 case Hexagon::BI__builtin_brev_ldd:
21848 return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
21849 } // switch
21851 return nullptr;
21854 Value *CodeGenFunction::EmitRISCVBuiltinExpr(unsigned BuiltinID,
21855 const CallExpr *E,
21856 ReturnValueSlot ReturnValue) {
21857 SmallVector<Value *, 4> Ops;
21858 llvm::Type *ResultType = ConvertType(E->getType());
21860 // Find out if any arguments are required to be integer constant expressions.
21861 unsigned ICEArguments = 0;
21862 ASTContext::GetBuiltinTypeError Error;
21863 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
21864 if (Error == ASTContext::GE_Missing_type) {
21865 // Vector intrinsics don't have a type string.
21866 assert(BuiltinID >= clang::RISCV::FirstRVVBuiltin &&
21867 BuiltinID <= clang::RISCV::LastRVVBuiltin);
21868 ICEArguments = 0;
21869 if (BuiltinID == RISCVVector::BI__builtin_rvv_vget_v ||
21870 BuiltinID == RISCVVector::BI__builtin_rvv_vset_v)
21871 ICEArguments = 1 << 1;
21872 } else {
21873 assert(Error == ASTContext::GE_None && "Unexpected error");
21876 if (BuiltinID == RISCV::BI__builtin_riscv_ntl_load)
21877 ICEArguments |= (1 << 1);
21878 if (BuiltinID == RISCV::BI__builtin_riscv_ntl_store)
21879 ICEArguments |= (1 << 2);
21881 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
21882 // Handle aggregate argument, namely RVV tuple types in segment load/store
21883 if (hasAggregateEvaluationKind(E->getArg(i)->getType())) {
21884 LValue L = EmitAggExprToLValue(E->getArg(i));
21885 llvm::Value *AggValue = Builder.CreateLoad(L.getAddress());
21886 Ops.push_back(AggValue);
21887 continue;
21889 Ops.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, i, E));
21892 Intrinsic::ID ID = Intrinsic::not_intrinsic;
21893 unsigned NF = 1;
21894 // The 0th bit simulates the `vta` of RVV
21895 // The 1st bit simulates the `vma` of RVV
21896 constexpr unsigned RVV_VTA = 0x1;
21897 constexpr unsigned RVV_VMA = 0x2;
21898 int PolicyAttrs = 0;
21899 bool IsMasked = false;
21901 // Required for overloaded intrinsics.
21902 llvm::SmallVector<llvm::Type *, 2> IntrinsicTypes;
21903 switch (BuiltinID) {
21904 default: llvm_unreachable("unexpected builtin ID");
21905 case RISCV::BI__builtin_riscv_orc_b_32:
21906 case RISCV::BI__builtin_riscv_orc_b_64:
21907 case RISCV::BI__builtin_riscv_clz_32:
21908 case RISCV::BI__builtin_riscv_clz_64:
21909 case RISCV::BI__builtin_riscv_ctz_32:
21910 case RISCV::BI__builtin_riscv_ctz_64:
21911 case RISCV::BI__builtin_riscv_clmul_32:
21912 case RISCV::BI__builtin_riscv_clmul_64:
21913 case RISCV::BI__builtin_riscv_clmulh_32:
21914 case RISCV::BI__builtin_riscv_clmulh_64:
21915 case RISCV::BI__builtin_riscv_clmulr_32:
21916 case RISCV::BI__builtin_riscv_clmulr_64:
21917 case RISCV::BI__builtin_riscv_xperm4_32:
21918 case RISCV::BI__builtin_riscv_xperm4_64:
21919 case RISCV::BI__builtin_riscv_xperm8_32:
21920 case RISCV::BI__builtin_riscv_xperm8_64:
21921 case RISCV::BI__builtin_riscv_brev8_32:
21922 case RISCV::BI__builtin_riscv_brev8_64:
21923 case RISCV::BI__builtin_riscv_zip_32:
21924 case RISCV::BI__builtin_riscv_unzip_32: {
21925 switch (BuiltinID) {
21926 default: llvm_unreachable("unexpected builtin ID");
21927 // Zbb
21928 case RISCV::BI__builtin_riscv_orc_b_32:
21929 case RISCV::BI__builtin_riscv_orc_b_64:
21930 ID = Intrinsic::riscv_orc_b;
21931 break;
21932 case RISCV::BI__builtin_riscv_clz_32:
21933 case RISCV::BI__builtin_riscv_clz_64: {
21934 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
21935 Value *Result = Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
21936 if (Result->getType() != ResultType)
21937 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
21938 "cast");
21939 return Result;
21941 case RISCV::BI__builtin_riscv_ctz_32:
21942 case RISCV::BI__builtin_riscv_ctz_64: {
21943 Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
21944 Value *Result = Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
21945 if (Result->getType() != ResultType)
21946 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
21947 "cast");
21948 return Result;
21951 // Zbc
21952 case RISCV::BI__builtin_riscv_clmul_32:
21953 case RISCV::BI__builtin_riscv_clmul_64:
21954 ID = Intrinsic::riscv_clmul;
21955 break;
21956 case RISCV::BI__builtin_riscv_clmulh_32:
21957 case RISCV::BI__builtin_riscv_clmulh_64:
21958 ID = Intrinsic::riscv_clmulh;
21959 break;
21960 case RISCV::BI__builtin_riscv_clmulr_32:
21961 case RISCV::BI__builtin_riscv_clmulr_64:
21962 ID = Intrinsic::riscv_clmulr;
21963 break;
21965 // Zbkx
21966 case RISCV::BI__builtin_riscv_xperm8_32:
21967 case RISCV::BI__builtin_riscv_xperm8_64:
21968 ID = Intrinsic::riscv_xperm8;
21969 break;
21970 case RISCV::BI__builtin_riscv_xperm4_32:
21971 case RISCV::BI__builtin_riscv_xperm4_64:
21972 ID = Intrinsic::riscv_xperm4;
21973 break;
21975 // Zbkb
21976 case RISCV::BI__builtin_riscv_brev8_32:
21977 case RISCV::BI__builtin_riscv_brev8_64:
21978 ID = Intrinsic::riscv_brev8;
21979 break;
21980 case RISCV::BI__builtin_riscv_zip_32:
21981 ID = Intrinsic::riscv_zip;
21982 break;
21983 case RISCV::BI__builtin_riscv_unzip_32:
21984 ID = Intrinsic::riscv_unzip;
21985 break;
21988 IntrinsicTypes = {ResultType};
21989 break;
21992 // Zk builtins
21994 // Zknh
21995 case RISCV::BI__builtin_riscv_sha256sig0:
21996 ID = Intrinsic::riscv_sha256sig0;
21997 break;
21998 case RISCV::BI__builtin_riscv_sha256sig1:
21999 ID = Intrinsic::riscv_sha256sig1;
22000 break;
22001 case RISCV::BI__builtin_riscv_sha256sum0:
22002 ID = Intrinsic::riscv_sha256sum0;
22003 break;
22004 case RISCV::BI__builtin_riscv_sha256sum1:
22005 ID = Intrinsic::riscv_sha256sum1;
22006 break;
22008 // Zksed
22009 case RISCV::BI__builtin_riscv_sm4ks:
22010 ID = Intrinsic::riscv_sm4ks;
22011 break;
22012 case RISCV::BI__builtin_riscv_sm4ed:
22013 ID = Intrinsic::riscv_sm4ed;
22014 break;
22016 // Zksh
22017 case RISCV::BI__builtin_riscv_sm3p0:
22018 ID = Intrinsic::riscv_sm3p0;
22019 break;
22020 case RISCV::BI__builtin_riscv_sm3p1:
22021 ID = Intrinsic::riscv_sm3p1;
22022 break;
22024 // Zihintntl
22025 case RISCV::BI__builtin_riscv_ntl_load: {
22026 llvm::Type *ResTy = ConvertType(E->getType());
22027 unsigned DomainVal = 5; // Default __RISCV_NTLH_ALL
22028 if (Ops.size() == 2)
22029 DomainVal = cast<ConstantInt>(Ops[1])->getZExtValue();
22031 llvm::MDNode *RISCVDomainNode = llvm::MDNode::get(
22032 getLLVMContext(),
22033 llvm::ConstantAsMetadata::get(Builder.getInt32(DomainVal)));
22034 llvm::MDNode *NontemporalNode = llvm::MDNode::get(
22035 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
22037 int Width;
22038 if(ResTy->isScalableTy()) {
22039 const ScalableVectorType *SVTy = cast<ScalableVectorType>(ResTy);
22040 llvm::Type *ScalarTy = ResTy->getScalarType();
22041 Width = ScalarTy->getPrimitiveSizeInBits() *
22042 SVTy->getElementCount().getKnownMinValue();
22043 } else
22044 Width = ResTy->getPrimitiveSizeInBits();
22045 LoadInst *Load = Builder.CreateLoad(
22046 Address(Ops[0], ResTy, CharUnits::fromQuantity(Width / 8)));
22048 Load->setMetadata(llvm::LLVMContext::MD_nontemporal, NontemporalNode);
22049 Load->setMetadata(CGM.getModule().getMDKindID("riscv-nontemporal-domain"),
22050 RISCVDomainNode);
22052 return Load;
22054 case RISCV::BI__builtin_riscv_ntl_store: {
22055 unsigned DomainVal = 5; // Default __RISCV_NTLH_ALL
22056 if (Ops.size() == 3)
22057 DomainVal = cast<ConstantInt>(Ops[2])->getZExtValue();
22059 llvm::MDNode *RISCVDomainNode = llvm::MDNode::get(
22060 getLLVMContext(),
22061 llvm::ConstantAsMetadata::get(Builder.getInt32(DomainVal)));
22062 llvm::MDNode *NontemporalNode = llvm::MDNode::get(
22063 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
22065 StoreInst *Store = Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
22066 Store->setMetadata(llvm::LLVMContext::MD_nontemporal, NontemporalNode);
22067 Store->setMetadata(CGM.getModule().getMDKindID("riscv-nontemporal-domain"),
22068 RISCVDomainNode);
22070 return Store;
22073 // Vector builtins are handled from here.
22074 #include "clang/Basic/riscv_vector_builtin_cg.inc"
22075 // SiFive Vector builtins are handled from here.
22076 #include "clang/Basic/riscv_sifive_vector_builtin_cg.inc"
22079 assert(ID != Intrinsic::not_intrinsic);
22081 llvm::Function *F = CGM.getIntrinsic(ID, IntrinsicTypes);
22082 return Builder.CreateCall(F, Ops, "");