1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This contains code to emit Builtin calls as LLVM code.
11 //===----------------------------------------------------------------------===//
14 #include "CGCUDARuntime.h"
16 #include "CGHLSLRuntime.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenCLRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "PatternInit.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/OSLog.h"
29 #include "clang/AST/OperationKinds.h"
30 #include "clang/Basic/TargetBuiltins.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Basic/TargetOptions.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Frontend/FrontendDiagnostic.h"
35 #include "llvm/ADT/APFloat.h"
36 #include "llvm/ADT/APInt.h"
37 #include "llvm/ADT/FloatingPointMode.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/StringExtras.h"
40 #include "llvm/Analysis/ValueTracking.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/InlineAsm.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/IntrinsicsAArch64.h"
45 #include "llvm/IR/IntrinsicsAMDGPU.h"
46 #include "llvm/IR/IntrinsicsARM.h"
47 #include "llvm/IR/IntrinsicsBPF.h"
48 #include "llvm/IR/IntrinsicsDirectX.h"
49 #include "llvm/IR/IntrinsicsHexagon.h"
50 #include "llvm/IR/IntrinsicsNVPTX.h"
51 #include "llvm/IR/IntrinsicsPowerPC.h"
52 #include "llvm/IR/IntrinsicsR600.h"
53 #include "llvm/IR/IntrinsicsRISCV.h"
54 #include "llvm/IR/IntrinsicsS390.h"
55 #include "llvm/IR/IntrinsicsVE.h"
56 #include "llvm/IR/IntrinsicsWebAssembly.h"
57 #include "llvm/IR/IntrinsicsX86.h"
58 #include "llvm/IR/MDBuilder.h"
59 #include "llvm/IR/MatrixBuilder.h"
60 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
61 #include "llvm/Support/ConvertUTF.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/ScopedPrinter.h"
64 #include "llvm/TargetParser/AArch64TargetParser.h"
65 #include "llvm/TargetParser/X86TargetParser.h"
69 using namespace clang
;
70 using namespace CodeGen
;
73 static void initializeAlloca(CodeGenFunction
&CGF
, AllocaInst
*AI
, Value
*Size
,
74 Align AlignmentInBytes
) {
76 switch (CGF
.getLangOpts().getTrivialAutoVarInit()) {
77 case LangOptions::TrivialAutoVarInitKind::Uninitialized
:
78 // Nothing to initialize.
80 case LangOptions::TrivialAutoVarInitKind::Zero
:
81 Byte
= CGF
.Builder
.getInt8(0x00);
83 case LangOptions::TrivialAutoVarInitKind::Pattern
: {
84 llvm::Type
*Int8
= llvm::IntegerType::getInt8Ty(CGF
.CGM
.getLLVMContext());
85 Byte
= llvm::dyn_cast
<llvm::ConstantInt
>(
86 initializationPatternFor(CGF
.CGM
, Int8
));
90 if (CGF
.CGM
.stopAutoInit())
92 auto *I
= CGF
.Builder
.CreateMemSet(AI
, Byte
, Size
, AlignmentInBytes
);
93 I
->addAnnotationMetadata("auto-init");
96 /// getBuiltinLibFunction - Given a builtin id for a function like
97 /// "__builtin_fabsf", return a Function* for "fabsf".
98 llvm::Constant
*CodeGenModule::getBuiltinLibFunction(const FunctionDecl
*FD
,
100 assert(Context
.BuiltinInfo
.isLibFunction(BuiltinID
));
102 // Get the name, skip over the __builtin_ prefix (if necessary).
106 // TODO: This list should be expanded or refactored after all GCC-compatible
107 // std libcall builtins are implemented.
108 static SmallDenseMap
<unsigned, StringRef
, 64> F128Builtins
{
109 {Builtin::BI__builtin___fprintf_chk
, "__fprintf_chkieee128"},
110 {Builtin::BI__builtin___printf_chk
, "__printf_chkieee128"},
111 {Builtin::BI__builtin___snprintf_chk
, "__snprintf_chkieee128"},
112 {Builtin::BI__builtin___sprintf_chk
, "__sprintf_chkieee128"},
113 {Builtin::BI__builtin___vfprintf_chk
, "__vfprintf_chkieee128"},
114 {Builtin::BI__builtin___vprintf_chk
, "__vprintf_chkieee128"},
115 {Builtin::BI__builtin___vsnprintf_chk
, "__vsnprintf_chkieee128"},
116 {Builtin::BI__builtin___vsprintf_chk
, "__vsprintf_chkieee128"},
117 {Builtin::BI__builtin_fprintf
, "__fprintfieee128"},
118 {Builtin::BI__builtin_printf
, "__printfieee128"},
119 {Builtin::BI__builtin_snprintf
, "__snprintfieee128"},
120 {Builtin::BI__builtin_sprintf
, "__sprintfieee128"},
121 {Builtin::BI__builtin_vfprintf
, "__vfprintfieee128"},
122 {Builtin::BI__builtin_vprintf
, "__vprintfieee128"},
123 {Builtin::BI__builtin_vsnprintf
, "__vsnprintfieee128"},
124 {Builtin::BI__builtin_vsprintf
, "__vsprintfieee128"},
125 {Builtin::BI__builtin_fscanf
, "__fscanfieee128"},
126 {Builtin::BI__builtin_scanf
, "__scanfieee128"},
127 {Builtin::BI__builtin_sscanf
, "__sscanfieee128"},
128 {Builtin::BI__builtin_vfscanf
, "__vfscanfieee128"},
129 {Builtin::BI__builtin_vscanf
, "__vscanfieee128"},
130 {Builtin::BI__builtin_vsscanf
, "__vsscanfieee128"},
131 {Builtin::BI__builtin_nexttowardf128
, "__nexttowardieee128"},
134 // The AIX library functions frexpl, ldexpl, and modfl are for 128-bit
135 // IBM 'long double' (i.e. __ibm128). Map to the 'double' versions
136 // if it is 64-bit 'long double' mode.
137 static SmallDenseMap
<unsigned, StringRef
, 4> AIXLongDouble64Builtins
{
138 {Builtin::BI__builtin_frexpl
, "frexp"},
139 {Builtin::BI__builtin_ldexpl
, "ldexp"},
140 {Builtin::BI__builtin_modfl
, "modf"},
143 // If the builtin has been declared explicitly with an assembler label,
144 // use the mangled name. This differs from the plain label on platforms
145 // that prefix labels.
146 if (FD
->hasAttr
<AsmLabelAttr
>())
147 Name
= getMangledName(D
);
149 // TODO: This mutation should also be applied to other targets other than
150 // PPC, after backend supports IEEE 128-bit style libcalls.
151 if (getTriple().isPPC64() &&
152 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad() &&
153 F128Builtins
.contains(BuiltinID
))
154 Name
= F128Builtins
[BuiltinID
];
155 else if (getTriple().isOSAIX() &&
156 &getTarget().getLongDoubleFormat() ==
157 &llvm::APFloat::IEEEdouble() &&
158 AIXLongDouble64Builtins
.contains(BuiltinID
))
159 Name
= AIXLongDouble64Builtins
[BuiltinID
];
161 Name
= Context
.BuiltinInfo
.getName(BuiltinID
).substr(10);
164 llvm::FunctionType
*Ty
=
165 cast
<llvm::FunctionType
>(getTypes().ConvertType(FD
->getType()));
167 return GetOrCreateLLVMFunction(Name
, Ty
, D
, /*ForVTable=*/false);
170 /// Emit the conversions required to turn the given value into an
171 /// integer of the given size.
172 static Value
*EmitToInt(CodeGenFunction
&CGF
, llvm::Value
*V
,
173 QualType T
, llvm::IntegerType
*IntType
) {
174 V
= CGF
.EmitToMemory(V
, T
);
176 if (V
->getType()->isPointerTy())
177 return CGF
.Builder
.CreatePtrToInt(V
, IntType
);
179 assert(V
->getType() == IntType
);
183 static Value
*EmitFromInt(CodeGenFunction
&CGF
, llvm::Value
*V
,
184 QualType T
, llvm::Type
*ResultType
) {
185 V
= CGF
.EmitFromMemory(V
, T
);
187 if (ResultType
->isPointerTy())
188 return CGF
.Builder
.CreateIntToPtr(V
, ResultType
);
190 assert(V
->getType() == ResultType
);
194 static Address
CheckAtomicAlignment(CodeGenFunction
&CGF
, const CallExpr
*E
) {
195 ASTContext
&Ctx
= CGF
.getContext();
196 Address Ptr
= CGF
.EmitPointerWithAlignment(E
->getArg(0));
197 unsigned Bytes
= Ptr
.getElementType()->isPointerTy()
198 ? Ctx
.getTypeSizeInChars(Ctx
.VoidPtrTy
).getQuantity()
199 : Ptr
.getElementType()->getScalarSizeInBits() / 8;
200 unsigned Align
= Ptr
.getAlignment().getQuantity();
201 if (Align
% Bytes
!= 0) {
202 DiagnosticsEngine
&Diags
= CGF
.CGM
.getDiags();
203 Diags
.Report(E
->getBeginLoc(), diag::warn_sync_op_misaligned
);
204 // Force address to be at least naturally-aligned.
205 return Ptr
.withAlignment(CharUnits::fromQuantity(Bytes
));
210 /// Utility to insert an atomic instruction based on Intrinsic::ID
211 /// and the expression node.
212 static Value
*MakeBinaryAtomicValue(
213 CodeGenFunction
&CGF
, llvm::AtomicRMWInst::BinOp Kind
, const CallExpr
*E
,
214 AtomicOrdering Ordering
= AtomicOrdering::SequentiallyConsistent
) {
216 QualType T
= E
->getType();
217 assert(E
->getArg(0)->getType()->isPointerType());
218 assert(CGF
.getContext().hasSameUnqualifiedType(T
,
219 E
->getArg(0)->getType()->getPointeeType()));
220 assert(CGF
.getContext().hasSameUnqualifiedType(T
, E
->getArg(1)->getType()));
222 Address DestAddr
= CheckAtomicAlignment(CGF
, E
);
224 llvm::IntegerType
*IntType
= llvm::IntegerType::get(
225 CGF
.getLLVMContext(), CGF
.getContext().getTypeSize(T
));
227 llvm::Value
*Val
= CGF
.EmitScalarExpr(E
->getArg(1));
228 llvm::Type
*ValueType
= Val
->getType();
229 Val
= EmitToInt(CGF
, Val
, T
, IntType
);
231 llvm::Value
*Result
=
232 CGF
.Builder
.CreateAtomicRMW(Kind
, DestAddr
, Val
, Ordering
);
233 return EmitFromInt(CGF
, Result
, T
, ValueType
);
236 static Value
*EmitNontemporalStore(CodeGenFunction
&CGF
, const CallExpr
*E
) {
237 Value
*Val
= CGF
.EmitScalarExpr(E
->getArg(0));
238 Address Addr
= CGF
.EmitPointerWithAlignment(E
->getArg(1));
240 Val
= CGF
.EmitToMemory(Val
, E
->getArg(0)->getType());
241 LValue LV
= CGF
.MakeAddrLValue(Addr
, E
->getArg(0)->getType());
242 LV
.setNontemporal(true);
243 CGF
.EmitStoreOfScalar(Val
, LV
, false);
247 static Value
*EmitNontemporalLoad(CodeGenFunction
&CGF
, const CallExpr
*E
) {
248 Address Addr
= CGF
.EmitPointerWithAlignment(E
->getArg(0));
250 LValue LV
= CGF
.MakeAddrLValue(Addr
, E
->getType());
251 LV
.setNontemporal(true);
252 return CGF
.EmitLoadOfScalar(LV
, E
->getExprLoc());
255 static RValue
EmitBinaryAtomic(CodeGenFunction
&CGF
,
256 llvm::AtomicRMWInst::BinOp Kind
,
258 return RValue::get(MakeBinaryAtomicValue(CGF
, Kind
, E
));
261 /// Utility to insert an atomic instruction based Intrinsic::ID and
262 /// the expression node, where the return value is the result of the
264 static RValue
EmitBinaryAtomicPost(CodeGenFunction
&CGF
,
265 llvm::AtomicRMWInst::BinOp Kind
,
267 Instruction::BinaryOps Op
,
268 bool Invert
= false) {
269 QualType T
= E
->getType();
270 assert(E
->getArg(0)->getType()->isPointerType());
271 assert(CGF
.getContext().hasSameUnqualifiedType(T
,
272 E
->getArg(0)->getType()->getPointeeType()));
273 assert(CGF
.getContext().hasSameUnqualifiedType(T
, E
->getArg(1)->getType()));
275 Address DestAddr
= CheckAtomicAlignment(CGF
, E
);
277 llvm::IntegerType
*IntType
= llvm::IntegerType::get(
278 CGF
.getLLVMContext(), CGF
.getContext().getTypeSize(T
));
280 llvm::Value
*Val
= CGF
.EmitScalarExpr(E
->getArg(1));
281 llvm::Type
*ValueType
= Val
->getType();
282 Val
= EmitToInt(CGF
, Val
, T
, IntType
);
284 llvm::Value
*Result
= CGF
.Builder
.CreateAtomicRMW(
285 Kind
, DestAddr
, Val
, llvm::AtomicOrdering::SequentiallyConsistent
);
286 Result
= CGF
.Builder
.CreateBinOp(Op
, Result
, Val
);
289 CGF
.Builder
.CreateBinOp(llvm::Instruction::Xor
, Result
,
290 llvm::ConstantInt::getAllOnesValue(IntType
));
291 Result
= EmitFromInt(CGF
, Result
, T
, ValueType
);
292 return RValue::get(Result
);
295 /// Utility to insert an atomic cmpxchg instruction.
297 /// @param CGF The current codegen function.
298 /// @param E Builtin call expression to convert to cmpxchg.
299 /// arg0 - address to operate on
300 /// arg1 - value to compare with
302 /// @param ReturnBool Specifies whether to return success flag of
303 /// cmpxchg result or the old value.
305 /// @returns result of cmpxchg, according to ReturnBool
307 /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
308 /// invoke the function EmitAtomicCmpXchgForMSIntrin.
309 static Value
*MakeAtomicCmpXchgValue(CodeGenFunction
&CGF
, const CallExpr
*E
,
311 QualType T
= ReturnBool
? E
->getArg(1)->getType() : E
->getType();
312 Address DestAddr
= CheckAtomicAlignment(CGF
, E
);
314 llvm::IntegerType
*IntType
= llvm::IntegerType::get(
315 CGF
.getLLVMContext(), CGF
.getContext().getTypeSize(T
));
317 Value
*Cmp
= CGF
.EmitScalarExpr(E
->getArg(1));
318 llvm::Type
*ValueType
= Cmp
->getType();
319 Cmp
= EmitToInt(CGF
, Cmp
, T
, IntType
);
320 Value
*New
= EmitToInt(CGF
, CGF
.EmitScalarExpr(E
->getArg(2)), T
, IntType
);
322 Value
*Pair
= CGF
.Builder
.CreateAtomicCmpXchg(
323 DestAddr
, Cmp
, New
, llvm::AtomicOrdering::SequentiallyConsistent
,
324 llvm::AtomicOrdering::SequentiallyConsistent
);
326 // Extract boolean success flag and zext it to int.
327 return CGF
.Builder
.CreateZExt(CGF
.Builder
.CreateExtractValue(Pair
, 1),
328 CGF
.ConvertType(E
->getType()));
330 // Extract old value and emit it using the same type as compare value.
331 return EmitFromInt(CGF
, CGF
.Builder
.CreateExtractValue(Pair
, 0), T
,
335 /// This function should be invoked to emit atomic cmpxchg for Microsoft's
336 /// _InterlockedCompareExchange* intrinsics which have the following signature:
337 /// T _InterlockedCompareExchange(T volatile *Destination,
341 /// Whereas the llvm 'cmpxchg' instruction has the following syntax:
342 /// cmpxchg *Destination, Comparand, Exchange.
343 /// So we need to swap Comparand and Exchange when invoking
344 /// CreateAtomicCmpXchg. That is the reason we could not use the above utility
345 /// function MakeAtomicCmpXchgValue since it expects the arguments to be
349 Value
*EmitAtomicCmpXchgForMSIntrin(CodeGenFunction
&CGF
, const CallExpr
*E
,
350 AtomicOrdering SuccessOrdering
= AtomicOrdering::SequentiallyConsistent
) {
351 assert(E
->getArg(0)->getType()->isPointerType());
352 assert(CGF
.getContext().hasSameUnqualifiedType(
353 E
->getType(), E
->getArg(0)->getType()->getPointeeType()));
354 assert(CGF
.getContext().hasSameUnqualifiedType(E
->getType(),
355 E
->getArg(1)->getType()));
356 assert(CGF
.getContext().hasSameUnqualifiedType(E
->getType(),
357 E
->getArg(2)->getType()));
359 Address DestAddr
= CheckAtomicAlignment(CGF
, E
);
361 auto *Comparand
= CGF
.EmitScalarExpr(E
->getArg(2));
362 auto *Exchange
= CGF
.EmitScalarExpr(E
->getArg(1));
364 // For Release ordering, the failure ordering should be Monotonic.
365 auto FailureOrdering
= SuccessOrdering
== AtomicOrdering::Release
?
366 AtomicOrdering::Monotonic
:
369 // The atomic instruction is marked volatile for consistency with MSVC. This
370 // blocks the few atomics optimizations that LLVM has. If we want to optimize
371 // _Interlocked* operations in the future, we will have to remove the volatile
373 auto *Result
= CGF
.Builder
.CreateAtomicCmpXchg(
374 DestAddr
, Comparand
, Exchange
, SuccessOrdering
, FailureOrdering
);
375 Result
->setVolatile(true);
376 return CGF
.Builder
.CreateExtractValue(Result
, 0);
379 // 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are
380 // prototyped like this:
382 // unsigned char _InterlockedCompareExchange128...(
383 // __int64 volatile * _Destination,
384 // __int64 _ExchangeHigh,
385 // __int64 _ExchangeLow,
386 // __int64 * _ComparandResult);
388 // Note that Destination is assumed to be at least 16-byte aligned, despite
389 // being typed int64.
391 static Value
*EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction
&CGF
,
393 AtomicOrdering SuccessOrdering
) {
394 assert(E
->getNumArgs() == 4);
395 llvm::Value
*DestPtr
= CGF
.EmitScalarExpr(E
->getArg(0));
396 llvm::Value
*ExchangeHigh
= CGF
.EmitScalarExpr(E
->getArg(1));
397 llvm::Value
*ExchangeLow
= CGF
.EmitScalarExpr(E
->getArg(2));
398 Address ComparandAddr
= CGF
.EmitPointerWithAlignment(E
->getArg(3));
400 assert(DestPtr
->getType()->isPointerTy());
401 assert(!ExchangeHigh
->getType()->isPointerTy());
402 assert(!ExchangeLow
->getType()->isPointerTy());
404 // For Release ordering, the failure ordering should be Monotonic.
405 auto FailureOrdering
= SuccessOrdering
== AtomicOrdering::Release
406 ? AtomicOrdering::Monotonic
409 // Convert to i128 pointers and values. Alignment is also overridden for
410 // destination pointer.
411 llvm::Type
*Int128Ty
= llvm::IntegerType::get(CGF
.getLLVMContext(), 128);
412 Address
DestAddr(DestPtr
, Int128Ty
,
413 CGF
.getContext().toCharUnitsFromBits(128));
414 ComparandAddr
= ComparandAddr
.withElementType(Int128Ty
);
416 // (((i128)hi) << 64) | ((i128)lo)
417 ExchangeHigh
= CGF
.Builder
.CreateZExt(ExchangeHigh
, Int128Ty
);
418 ExchangeLow
= CGF
.Builder
.CreateZExt(ExchangeLow
, Int128Ty
);
420 CGF
.Builder
.CreateShl(ExchangeHigh
, llvm::ConstantInt::get(Int128Ty
, 64));
421 llvm::Value
*Exchange
= CGF
.Builder
.CreateOr(ExchangeHigh
, ExchangeLow
);
423 // Load the comparand for the instruction.
424 llvm::Value
*Comparand
= CGF
.Builder
.CreateLoad(ComparandAddr
);
426 auto *CXI
= CGF
.Builder
.CreateAtomicCmpXchg(DestAddr
, Comparand
, Exchange
,
427 SuccessOrdering
, FailureOrdering
);
429 // The atomic instruction is marked volatile for consistency with MSVC. This
430 // blocks the few atomics optimizations that LLVM has. If we want to optimize
431 // _Interlocked* operations in the future, we will have to remove the volatile
433 CXI
->setVolatile(true);
435 // Store the result as an outparameter.
436 CGF
.Builder
.CreateStore(CGF
.Builder
.CreateExtractValue(CXI
, 0),
439 // Get the success boolean and zero extend it to i8.
440 Value
*Success
= CGF
.Builder
.CreateExtractValue(CXI
, 1);
441 return CGF
.Builder
.CreateZExt(Success
, CGF
.Int8Ty
);
444 static Value
*EmitAtomicIncrementValue(CodeGenFunction
&CGF
, const CallExpr
*E
,
445 AtomicOrdering Ordering
= AtomicOrdering::SequentiallyConsistent
) {
446 assert(E
->getArg(0)->getType()->isPointerType());
448 auto *IntTy
= CGF
.ConvertType(E
->getType());
449 Address DestAddr
= CheckAtomicAlignment(CGF
, E
);
450 auto *Result
= CGF
.Builder
.CreateAtomicRMW(
451 AtomicRMWInst::Add
, DestAddr
, ConstantInt::get(IntTy
, 1), Ordering
);
452 return CGF
.Builder
.CreateAdd(Result
, ConstantInt::get(IntTy
, 1));
455 static Value
*EmitAtomicDecrementValue(
456 CodeGenFunction
&CGF
, const CallExpr
*E
,
457 AtomicOrdering Ordering
= AtomicOrdering::SequentiallyConsistent
) {
458 assert(E
->getArg(0)->getType()->isPointerType());
460 auto *IntTy
= CGF
.ConvertType(E
->getType());
461 Address DestAddr
= CheckAtomicAlignment(CGF
, E
);
462 auto *Result
= CGF
.Builder
.CreateAtomicRMW(
463 AtomicRMWInst::Sub
, DestAddr
, ConstantInt::get(IntTy
, 1), Ordering
);
464 return CGF
.Builder
.CreateSub(Result
, ConstantInt::get(IntTy
, 1));
467 // Build a plain volatile load.
468 static Value
*EmitISOVolatileLoad(CodeGenFunction
&CGF
, const CallExpr
*E
) {
469 Value
*Ptr
= CGF
.EmitScalarExpr(E
->getArg(0));
470 QualType ElTy
= E
->getArg(0)->getType()->getPointeeType();
471 CharUnits LoadSize
= CGF
.getContext().getTypeSizeInChars(ElTy
);
473 llvm::IntegerType::get(CGF
.getLLVMContext(), LoadSize
.getQuantity() * 8);
474 llvm::LoadInst
*Load
= CGF
.Builder
.CreateAlignedLoad(ITy
, Ptr
, LoadSize
);
475 Load
->setVolatile(true);
479 // Build a plain volatile store.
480 static Value
*EmitISOVolatileStore(CodeGenFunction
&CGF
, const CallExpr
*E
) {
481 Value
*Ptr
= CGF
.EmitScalarExpr(E
->getArg(0));
482 Value
*Value
= CGF
.EmitScalarExpr(E
->getArg(1));
483 QualType ElTy
= E
->getArg(0)->getType()->getPointeeType();
484 CharUnits StoreSize
= CGF
.getContext().getTypeSizeInChars(ElTy
);
485 llvm::StoreInst
*Store
=
486 CGF
.Builder
.CreateAlignedStore(Value
, Ptr
, StoreSize
);
487 Store
->setVolatile(true);
491 // Emit a simple mangled intrinsic that has 1 argument and a return type
492 // matching the argument type. Depending on mode, this may be a constrained
493 // floating-point intrinsic.
494 static Value
*emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction
&CGF
,
495 const CallExpr
*E
, unsigned IntrinsicID
,
496 unsigned ConstrainedIntrinsicID
) {
497 llvm::Value
*Src0
= CGF
.EmitScalarExpr(E
->getArg(0));
499 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(CGF
, E
);
500 if (CGF
.Builder
.getIsFPConstrained()) {
501 Function
*F
= CGF
.CGM
.getIntrinsic(ConstrainedIntrinsicID
, Src0
->getType());
502 return CGF
.Builder
.CreateConstrainedFPCall(F
, { Src0
});
504 Function
*F
= CGF
.CGM
.getIntrinsic(IntrinsicID
, Src0
->getType());
505 return CGF
.Builder
.CreateCall(F
, Src0
);
509 // Emit an intrinsic that has 2 operands of the same type as its result.
510 // Depending on mode, this may be a constrained floating-point intrinsic.
511 static Value
*emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction
&CGF
,
512 const CallExpr
*E
, unsigned IntrinsicID
,
513 unsigned ConstrainedIntrinsicID
) {
514 llvm::Value
*Src0
= CGF
.EmitScalarExpr(E
->getArg(0));
515 llvm::Value
*Src1
= CGF
.EmitScalarExpr(E
->getArg(1));
517 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(CGF
, E
);
518 if (CGF
.Builder
.getIsFPConstrained()) {
519 Function
*F
= CGF
.CGM
.getIntrinsic(ConstrainedIntrinsicID
, Src0
->getType());
520 return CGF
.Builder
.CreateConstrainedFPCall(F
, { Src0
, Src1
});
522 Function
*F
= CGF
.CGM
.getIntrinsic(IntrinsicID
, Src0
->getType());
523 return CGF
.Builder
.CreateCall(F
, { Src0
, Src1
});
527 // Has second type mangled argument.
528 static Value
*emitBinaryExpMaybeConstrainedFPBuiltin(
529 CodeGenFunction
&CGF
, const CallExpr
*E
, llvm::Intrinsic::ID IntrinsicID
,
530 llvm::Intrinsic::ID ConstrainedIntrinsicID
) {
531 llvm::Value
*Src0
= CGF
.EmitScalarExpr(E
->getArg(0));
532 llvm::Value
*Src1
= CGF
.EmitScalarExpr(E
->getArg(1));
534 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(CGF
, E
);
535 if (CGF
.Builder
.getIsFPConstrained()) {
536 Function
*F
= CGF
.CGM
.getIntrinsic(ConstrainedIntrinsicID
,
537 {Src0
->getType(), Src1
->getType()});
538 return CGF
.Builder
.CreateConstrainedFPCall(F
, {Src0
, Src1
});
542 CGF
.CGM
.getIntrinsic(IntrinsicID
, {Src0
->getType(), Src1
->getType()});
543 return CGF
.Builder
.CreateCall(F
, {Src0
, Src1
});
546 // Emit an intrinsic that has 3 operands of the same type as its result.
547 // Depending on mode, this may be a constrained floating-point intrinsic.
548 static Value
*emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction
&CGF
,
549 const CallExpr
*E
, unsigned IntrinsicID
,
550 unsigned ConstrainedIntrinsicID
) {
551 llvm::Value
*Src0
= CGF
.EmitScalarExpr(E
->getArg(0));
552 llvm::Value
*Src1
= CGF
.EmitScalarExpr(E
->getArg(1));
553 llvm::Value
*Src2
= CGF
.EmitScalarExpr(E
->getArg(2));
555 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(CGF
, E
);
556 if (CGF
.Builder
.getIsFPConstrained()) {
557 Function
*F
= CGF
.CGM
.getIntrinsic(ConstrainedIntrinsicID
, Src0
->getType());
558 return CGF
.Builder
.CreateConstrainedFPCall(F
, { Src0
, Src1
, Src2
});
560 Function
*F
= CGF
.CGM
.getIntrinsic(IntrinsicID
, Src0
->getType());
561 return CGF
.Builder
.CreateCall(F
, { Src0
, Src1
, Src2
});
565 // Emit an intrinsic where all operands are of the same type as the result.
566 // Depending on mode, this may be a constrained floating-point intrinsic.
567 static Value
*emitCallMaybeConstrainedFPBuiltin(CodeGenFunction
&CGF
,
568 unsigned IntrinsicID
,
569 unsigned ConstrainedIntrinsicID
,
571 ArrayRef
<Value
*> Args
) {
573 if (CGF
.Builder
.getIsFPConstrained())
574 F
= CGF
.CGM
.getIntrinsic(ConstrainedIntrinsicID
, Ty
);
576 F
= CGF
.CGM
.getIntrinsic(IntrinsicID
, Ty
);
578 if (CGF
.Builder
.getIsFPConstrained())
579 return CGF
.Builder
.CreateConstrainedFPCall(F
, Args
);
581 return CGF
.Builder
.CreateCall(F
, Args
);
584 // Emit a simple intrinsic that has N scalar arguments and a return type
585 // matching the argument type. It is assumed that only the first argument is
587 template <unsigned N
>
588 Value
*emitBuiltinWithOneOverloadedType(CodeGenFunction
&CGF
, const CallExpr
*E
,
589 unsigned IntrinsicID
,
590 llvm::StringRef Name
= "") {
591 static_assert(N
, "expect non-empty argument");
592 SmallVector
<Value
*, N
> Args
;
593 for (unsigned I
= 0; I
< N
; ++I
)
594 Args
.push_back(CGF
.EmitScalarExpr(E
->getArg(I
)));
595 Function
*F
= CGF
.CGM
.getIntrinsic(IntrinsicID
, Args
[0]->getType());
596 return CGF
.Builder
.CreateCall(F
, Args
, Name
);
599 // Emit an intrinsic that has 1 float or double operand, and 1 integer.
600 static Value
*emitFPIntBuiltin(CodeGenFunction
&CGF
,
602 unsigned IntrinsicID
) {
603 llvm::Value
*Src0
= CGF
.EmitScalarExpr(E
->getArg(0));
604 llvm::Value
*Src1
= CGF
.EmitScalarExpr(E
->getArg(1));
606 Function
*F
= CGF
.CGM
.getIntrinsic(IntrinsicID
, Src0
->getType());
607 return CGF
.Builder
.CreateCall(F
, {Src0
, Src1
});
610 // Emit an intrinsic that has overloaded integer result and fp operand.
612 emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction
&CGF
, const CallExpr
*E
,
613 unsigned IntrinsicID
,
614 unsigned ConstrainedIntrinsicID
) {
615 llvm::Type
*ResultType
= CGF
.ConvertType(E
->getType());
616 llvm::Value
*Src0
= CGF
.EmitScalarExpr(E
->getArg(0));
618 if (CGF
.Builder
.getIsFPConstrained()) {
619 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(CGF
, E
);
620 Function
*F
= CGF
.CGM
.getIntrinsic(ConstrainedIntrinsicID
,
621 {ResultType
, Src0
->getType()});
622 return CGF
.Builder
.CreateConstrainedFPCall(F
, {Src0
});
625 CGF
.CGM
.getIntrinsic(IntrinsicID
, {ResultType
, Src0
->getType()});
626 return CGF
.Builder
.CreateCall(F
, Src0
);
630 static Value
*emitFrexpBuiltin(CodeGenFunction
&CGF
, const CallExpr
*E
,
631 llvm::Intrinsic::ID IntrinsicID
) {
632 llvm::Value
*Src0
= CGF
.EmitScalarExpr(E
->getArg(0));
633 llvm::Value
*Src1
= CGF
.EmitScalarExpr(E
->getArg(1));
635 QualType IntPtrTy
= E
->getArg(1)->getType()->getPointeeType();
636 llvm::Type
*IntTy
= CGF
.ConvertType(IntPtrTy
);
638 CGF
.CGM
.getIntrinsic(IntrinsicID
, {Src0
->getType(), IntTy
});
639 llvm::Value
*Call
= CGF
.Builder
.CreateCall(F
, Src0
);
641 llvm::Value
*Exp
= CGF
.Builder
.CreateExtractValue(Call
, 1);
642 LValue LV
= CGF
.MakeNaturalAlignAddrLValue(Src1
, IntPtrTy
);
643 CGF
.EmitStoreOfScalar(Exp
, LV
);
645 return CGF
.Builder
.CreateExtractValue(Call
, 0);
648 /// EmitFAbs - Emit a call to @llvm.fabs().
649 static Value
*EmitFAbs(CodeGenFunction
&CGF
, Value
*V
) {
650 Function
*F
= CGF
.CGM
.getIntrinsic(Intrinsic::fabs
, V
->getType());
651 llvm::CallInst
*Call
= CGF
.Builder
.CreateCall(F
, V
);
652 Call
->setDoesNotAccessMemory();
656 /// Emit the computation of the sign bit for a floating point value. Returns
657 /// the i1 sign bit value.
658 static Value
*EmitSignBit(CodeGenFunction
&CGF
, Value
*V
) {
659 LLVMContext
&C
= CGF
.CGM
.getLLVMContext();
661 llvm::Type
*Ty
= V
->getType();
662 int Width
= Ty
->getPrimitiveSizeInBits();
663 llvm::Type
*IntTy
= llvm::IntegerType::get(C
, Width
);
664 V
= CGF
.Builder
.CreateBitCast(V
, IntTy
);
665 if (Ty
->isPPC_FP128Ty()) {
666 // We want the sign bit of the higher-order double. The bitcast we just
667 // did works as if the double-double was stored to memory and then
668 // read as an i128. The "store" will put the higher-order double in the
669 // lower address in both little- and big-Endian modes, but the "load"
670 // will treat those bits as a different part of the i128: the low bits in
671 // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
672 // we need to shift the high bits down to the low before truncating.
674 if (CGF
.getTarget().isBigEndian()) {
675 Value
*ShiftCst
= llvm::ConstantInt::get(IntTy
, Width
);
676 V
= CGF
.Builder
.CreateLShr(V
, ShiftCst
);
678 // We are truncating value in order to extract the higher-order
679 // double, which we will be using to extract the sign from.
680 IntTy
= llvm::IntegerType::get(C
, Width
);
681 V
= CGF
.Builder
.CreateTrunc(V
, IntTy
);
683 Value
*Zero
= llvm::Constant::getNullValue(IntTy
);
684 return CGF
.Builder
.CreateICmpSLT(V
, Zero
);
687 static RValue
emitLibraryCall(CodeGenFunction
&CGF
, const FunctionDecl
*FD
,
688 const CallExpr
*E
, llvm::Constant
*calleeValue
) {
689 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(CGF
, E
);
690 CGCallee callee
= CGCallee::forDirect(calleeValue
, GlobalDecl(FD
));
692 CGF
.EmitCall(E
->getCallee()->getType(), callee
, E
, ReturnValueSlot());
694 // Check the supported intrinsic.
695 if (unsigned BuiltinID
= FD
->getBuiltinID()) {
696 auto IsErrnoIntrinsic
= [&]() -> unsigned {
698 case Builtin::BIexpf
:
699 case Builtin::BI__builtin_expf
:
700 case Builtin::BI__builtin_expf128
:
703 // TODO: support more FP math libcalls
707 // Restrict to target with errno, for example, MacOS doesn't set errno.
708 if (IsErrnoIntrinsic
&& CGF
.CGM
.getLangOpts().MathErrno
&&
709 !CGF
.Builder
.getIsFPConstrained()) {
710 ASTContext
&Context
= CGF
.getContext();
711 // Emit "int" TBAA metadata on FP math libcalls.
712 clang::QualType IntTy
= Context
.IntTy
;
713 TBAAAccessInfo TBAAInfo
= CGF
.CGM
.getTBAAAccessInfo(IntTy
);
714 Instruction
*Inst
= cast
<llvm::Instruction
>(Call
.getScalarVal());
715 CGF
.CGM
.DecorateInstructionWithTBAA(Inst
, TBAAInfo
);
721 /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
722 /// depending on IntrinsicID.
724 /// \arg CGF The current codegen function.
725 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
726 /// \arg X The first argument to the llvm.*.with.overflow.*.
727 /// \arg Y The second argument to the llvm.*.with.overflow.*.
728 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
729 /// \returns The result (i.e. sum/product) returned by the intrinsic.
730 static llvm::Value
*EmitOverflowIntrinsic(CodeGenFunction
&CGF
,
731 const llvm::Intrinsic::ID IntrinsicID
,
732 llvm::Value
*X
, llvm::Value
*Y
,
733 llvm::Value
*&Carry
) {
734 // Make sure we have integers of the same width.
735 assert(X
->getType() == Y
->getType() &&
736 "Arguments must be the same type. (Did you forget to make sure both "
737 "arguments have the same integer width?)");
739 Function
*Callee
= CGF
.CGM
.getIntrinsic(IntrinsicID
, X
->getType());
740 llvm::Value
*Tmp
= CGF
.Builder
.CreateCall(Callee
, {X
, Y
});
741 Carry
= CGF
.Builder
.CreateExtractValue(Tmp
, 1);
742 return CGF
.Builder
.CreateExtractValue(Tmp
, 0);
745 static Value
*emitRangedBuiltin(CodeGenFunction
&CGF
, unsigned IntrinsicID
,
747 Function
*F
= CGF
.CGM
.getIntrinsic(IntrinsicID
, {});
748 llvm::CallInst
*Call
= CGF
.Builder
.CreateCall(F
);
749 llvm::ConstantRange
CR(APInt(32, low
), APInt(32, high
));
750 Call
->addRangeRetAttr(CR
);
751 Call
->addRetAttr(llvm::Attribute::AttrKind::NoUndef
);
756 struct WidthAndSignedness
{
762 static WidthAndSignedness
763 getIntegerWidthAndSignedness(const clang::ASTContext
&context
,
764 const clang::QualType Type
) {
765 assert(Type
->isIntegerType() && "Given type is not an integer.");
766 unsigned Width
= Type
->isBooleanType() ? 1
767 : Type
->isBitIntType() ? context
.getIntWidth(Type
)
768 : context
.getTypeInfo(Type
).Width
;
769 bool Signed
= Type
->isSignedIntegerType();
770 return {Width
, Signed
};
773 // Given one or more integer types, this function produces an integer type that
774 // encompasses them: any value in one of the given types could be expressed in
775 // the encompassing type.
776 static struct WidthAndSignedness
777 EncompassingIntegerType(ArrayRef
<struct WidthAndSignedness
> Types
) {
778 assert(Types
.size() > 0 && "Empty list of types.");
780 // If any of the given types is signed, we must return a signed type.
782 for (const auto &Type
: Types
) {
783 Signed
|= Type
.Signed
;
786 // The encompassing type must have a width greater than or equal to the width
787 // of the specified types. Additionally, if the encompassing type is signed,
788 // its width must be strictly greater than the width of any unsigned types
791 for (const auto &Type
: Types
) {
792 unsigned MinWidth
= Type
.Width
+ (Signed
&& !Type
.Signed
);
793 if (Width
< MinWidth
) {
798 return {Width
, Signed
};
801 Value
*CodeGenFunction::EmitVAStartEnd(Value
*ArgValue
, bool IsStart
) {
802 Intrinsic::ID inst
= IsStart
? Intrinsic::vastart
: Intrinsic::vaend
;
803 return Builder
.CreateCall(CGM
.getIntrinsic(inst
, {ArgValue
->getType()}),
807 /// Checks if using the result of __builtin_object_size(p, @p From) in place of
808 /// __builtin_object_size(p, @p To) is correct
809 static bool areBOSTypesCompatible(int From
, int To
) {
810 // Note: Our __builtin_object_size implementation currently treats Type=0 and
811 // Type=2 identically. Encoding this implementation detail here may make
812 // improving __builtin_object_size difficult in the future, so it's omitted.
813 return From
== To
|| (From
== 0 && To
== 1) || (From
== 3 && To
== 2);
817 getDefaultBuiltinObjectSizeResult(unsigned Type
, llvm::IntegerType
*ResType
) {
818 return ConstantInt::get(ResType
, (Type
& 2) ? 0 : -1, /*isSigned=*/true);
822 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr
*E
, unsigned Type
,
823 llvm::IntegerType
*ResType
,
824 llvm::Value
*EmittedE
,
827 if (!E
->tryEvaluateObjectSize(ObjectSize
, getContext(), Type
))
828 return emitBuiltinObjectSize(E
, Type
, ResType
, EmittedE
, IsDynamic
);
829 return ConstantInt::get(ResType
, ObjectSize
, /*isSigned=*/true);
832 const FieldDecl
*CodeGenFunction::FindFlexibleArrayMemberFieldAndOffset(
833 ASTContext
&Ctx
, const RecordDecl
*RD
, const FieldDecl
*FAMDecl
,
835 const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel
=
836 getLangOpts().getStrictFlexArraysLevel();
837 uint32_t FieldNo
= 0;
839 if (RD
->isImplicit())
842 for (const FieldDecl
*FD
: RD
->fields()) {
843 if ((!FAMDecl
|| FD
== FAMDecl
) &&
844 Decl::isFlexibleArrayMemberLike(
845 Ctx
, FD
, FD
->getType(), StrictFlexArraysLevel
,
846 /*IgnoreTemplateOrMacroSubstitution=*/true)) {
847 const ASTRecordLayout
&Layout
= Ctx
.getASTRecordLayout(RD
);
848 Offset
+= Layout
.getFieldOffset(FieldNo
);
852 QualType Ty
= FD
->getType();
853 if (Ty
->isRecordType()) {
854 if (const FieldDecl
*Field
= FindFlexibleArrayMemberFieldAndOffset(
855 Ctx
, Ty
->getAsRecordDecl(), FAMDecl
, Offset
)) {
856 const ASTRecordLayout
&Layout
= Ctx
.getASTRecordLayout(RD
);
857 Offset
+= Layout
.getFieldOffset(FieldNo
);
869 static unsigned CountCountedByAttrs(const RecordDecl
*RD
) {
872 for (const FieldDecl
*FD
: RD
->fields()) {
873 if (FD
->getType()->isCountAttributedType())
876 QualType Ty
= FD
->getType();
877 if (Ty
->isRecordType())
878 Num
+= CountCountedByAttrs(Ty
->getAsRecordDecl());
885 CodeGenFunction::emitFlexibleArrayMemberSize(const Expr
*E
, unsigned Type
,
886 llvm::IntegerType
*ResType
) {
887 // The code generated here calculates the size of a struct with a flexible
888 // array member that uses the counted_by attribute. There are two instances
892 // unsigned long flags;
894 // int array[] __attribute__((counted_by(count)));
897 // 1) bdos of the flexible array itself:
899 // __builtin_dynamic_object_size(p->array, 1) ==
900 // p->count * sizeof(*p->array)
902 // 2) bdos of a pointer into the flexible array:
904 // __builtin_dynamic_object_size(&p->array[42], 1) ==
905 // (p->count - 42) * sizeof(*p->array)
907 // 2) bdos of the whole struct, including the flexible array:
909 // __builtin_dynamic_object_size(p, 1) ==
910 // max(sizeof(struct s),
911 // offsetof(struct s, array) + p->count * sizeof(*p->array))
913 ASTContext
&Ctx
= getContext();
914 const Expr
*Base
= E
->IgnoreParenImpCasts();
915 const Expr
*Idx
= nullptr;
917 if (const auto *UO
= dyn_cast
<UnaryOperator
>(Base
);
918 UO
&& UO
->getOpcode() == UO_AddrOf
) {
919 Expr
*SubExpr
= UO
->getSubExpr()->IgnoreParenImpCasts();
920 if (const auto *ASE
= dyn_cast
<ArraySubscriptExpr
>(SubExpr
)) {
921 Base
= ASE
->getBase()->IgnoreParenImpCasts();
922 Idx
= ASE
->getIdx()->IgnoreParenImpCasts();
924 if (const auto *IL
= dyn_cast
<IntegerLiteral
>(Idx
)) {
925 int64_t Val
= IL
->getValue().getSExtValue();
927 return getDefaultBuiltinObjectSizeResult(Type
, ResType
);
930 // The index is 0, so we don't need to take it into account.
934 // Potential pointer to another element in the struct.
939 // Get the flexible array member Decl.
940 const RecordDecl
*OuterRD
= nullptr;
941 const FieldDecl
*FAMDecl
= nullptr;
942 if (const auto *ME
= dyn_cast
<MemberExpr
>(Base
)) {
943 // Check if \p Base is referencing the FAM itself.
944 const ValueDecl
*VD
= ME
->getMemberDecl();
945 OuterRD
= VD
->getDeclContext()->getOuterLexicalRecordContext();
946 FAMDecl
= dyn_cast
<FieldDecl
>(VD
);
949 } else if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(Base
)) {
950 // Check if we're pointing to the whole struct.
951 QualType Ty
= DRE
->getDecl()->getType();
952 if (Ty
->isPointerType())
953 Ty
= Ty
->getPointeeType();
954 OuterRD
= Ty
->getAsRecordDecl();
956 // If we have a situation like this:
958 // struct union_of_fams {
961 // signed char normal_field;
964 // int arr1[] __counted_by(count1);
967 // signed char count2;
968 // int arr2[] __counted_by(count2);
973 // We don't know which 'count' to use in this scenario:
975 // size_t get_size(struct union_of_fams *p) {
976 // return __builtin_dynamic_object_size(p, 1);
979 // Instead of calculating a wrong number, we give up.
980 if (OuterRD
&& CountCountedByAttrs(OuterRD
) > 1)
987 // We call FindFlexibleArrayMemberAndOffset even if FAMDecl is non-null to
991 FindFlexibleArrayMemberFieldAndOffset(Ctx
, OuterRD
, FAMDecl
, Offset
);
992 Offset
= Ctx
.toCharUnitsFromBits(Offset
).getQuantity();
994 if (!FAMDecl
|| !FAMDecl
->getType()->isCountAttributedType())
995 // No flexible array member found or it doesn't have the "counted_by"
999 const FieldDecl
*CountedByFD
= FindCountedByField(FAMDecl
);
1001 // Can't find the field referenced by the "counted_by" attribute.
1004 // Build a load of the counted_by field.
1005 bool IsSigned
= CountedByFD
->getType()->isSignedIntegerType();
1006 Value
*CountedByInst
= EmitCountedByFieldExpr(Base
, FAMDecl
, CountedByFD
);
1008 return getDefaultBuiltinObjectSizeResult(Type
, ResType
);
1010 CountedByInst
= Builder
.CreateIntCast(CountedByInst
, ResType
, IsSigned
);
1012 // Build a load of the index and subtract it from the count.
1013 Value
*IdxInst
= nullptr;
1015 if (Idx
->HasSideEffects(getContext()))
1016 // We can't have side-effects.
1017 return getDefaultBuiltinObjectSizeResult(Type
, ResType
);
1019 bool IdxSigned
= Idx
->getType()->isSignedIntegerType();
1020 IdxInst
= EmitAnyExprToTemp(Idx
).getScalarVal();
1021 IdxInst
= Builder
.CreateIntCast(IdxInst
, ResType
, IdxSigned
);
1023 // We go ahead with the calculation here. If the index turns out to be
1024 // negative, we'll catch it at the end.
1026 Builder
.CreateSub(CountedByInst
, IdxInst
, "", !IsSigned
, IsSigned
);
1029 // Calculate how large the flexible array member is in bytes.
1030 const ArrayType
*ArrayTy
= Ctx
.getAsArrayType(FAMDecl
->getType());
1031 CharUnits Size
= Ctx
.getTypeSizeInChars(ArrayTy
->getElementType());
1032 llvm::Constant
*ElemSize
=
1033 llvm::ConstantInt::get(ResType
, Size
.getQuantity(), IsSigned
);
1035 Builder
.CreateMul(CountedByInst
, ElemSize
, "", !IsSigned
, IsSigned
);
1036 FAMSize
= Builder
.CreateIntCast(FAMSize
, ResType
, IsSigned
);
1037 Value
*Res
= FAMSize
;
1039 if (isa
<DeclRefExpr
>(Base
)) {
1040 // The whole struct is specificed in the __bdos.
1041 const ASTRecordLayout
&Layout
= Ctx
.getASTRecordLayout(OuterRD
);
1043 // Get the offset of the FAM.
1044 llvm::Constant
*FAMOffset
= ConstantInt::get(ResType
, Offset
, IsSigned
);
1045 Value
*OffsetAndFAMSize
=
1046 Builder
.CreateAdd(FAMOffset
, Res
, "", !IsSigned
, IsSigned
);
1048 // Get the full size of the struct.
1049 llvm::Constant
*SizeofStruct
=
1050 ConstantInt::get(ResType
, Layout
.getSize().getQuantity(), IsSigned
);
1052 // max(sizeof(struct s),
1053 // offsetof(struct s, array) + p->count * sizeof(*p->array))
1055 ? Builder
.CreateBinaryIntrinsic(llvm::Intrinsic::smax
,
1056 OffsetAndFAMSize
, SizeofStruct
)
1057 : Builder
.CreateBinaryIntrinsic(llvm::Intrinsic::umax
,
1058 OffsetAndFAMSize
, SizeofStruct
);
1061 // A negative \p IdxInst or \p CountedByInst means that the index lands
1062 // outside of the flexible array member. If that's the case, we want to
1064 Value
*Cmp
= Builder
.CreateIsNotNeg(CountedByInst
);
1066 Cmp
= Builder
.CreateAnd(Builder
.CreateIsNotNeg(IdxInst
), Cmp
);
1068 return Builder
.CreateSelect(Cmp
, Res
, ConstantInt::get(ResType
, 0, IsSigned
));
1071 /// Returns a Value corresponding to the size of the given expression.
1072 /// This Value may be either of the following:
1073 /// - A llvm::Argument (if E is a param with the pass_object_size attribute on
1075 /// - A call to the @llvm.objectsize intrinsic
1077 /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
1078 /// and we wouldn't otherwise try to reference a pass_object_size parameter,
1079 /// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
1081 CodeGenFunction::emitBuiltinObjectSize(const Expr
*E
, unsigned Type
,
1082 llvm::IntegerType
*ResType
,
1083 llvm::Value
*EmittedE
, bool IsDynamic
) {
1084 // We need to reference an argument if the pointer is a parameter with the
1085 // pass_object_size attribute.
1086 if (auto *D
= dyn_cast
<DeclRefExpr
>(E
->IgnoreParenImpCasts())) {
1087 auto *Param
= dyn_cast
<ParmVarDecl
>(D
->getDecl());
1088 auto *PS
= D
->getDecl()->getAttr
<PassObjectSizeAttr
>();
1089 if (Param
!= nullptr && PS
!= nullptr &&
1090 areBOSTypesCompatible(PS
->getType(), Type
)) {
1091 auto Iter
= SizeArguments
.find(Param
);
1092 assert(Iter
!= SizeArguments
.end());
1094 const ImplicitParamDecl
*D
= Iter
->second
;
1095 auto DIter
= LocalDeclMap
.find(D
);
1096 assert(DIter
!= LocalDeclMap
.end());
1098 return EmitLoadOfScalar(DIter
->second
, /*Volatile=*/false,
1099 getContext().getSizeType(), E
->getBeginLoc());
1104 // Emit special code for a flexible array member with the "counted_by"
1106 if (Value
*V
= emitFlexibleArrayMemberSize(E
, Type
, ResType
))
1110 // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
1111 // evaluate E for side-effects. In either case, we shouldn't lower to
1112 // @llvm.objectsize.
1113 if (Type
== 3 || (!EmittedE
&& E
->HasSideEffects(getContext())))
1114 return getDefaultBuiltinObjectSizeResult(Type
, ResType
);
1116 Value
*Ptr
= EmittedE
? EmittedE
: EmitScalarExpr(E
);
1117 assert(Ptr
->getType()->isPointerTy() &&
1118 "Non-pointer passed to __builtin_object_size?");
1121 CGM
.getIntrinsic(Intrinsic::objectsize
, {ResType
, Ptr
->getType()});
1123 // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
1124 Value
*Min
= Builder
.getInt1((Type
& 2) != 0);
1125 // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
1126 Value
*NullIsUnknown
= Builder
.getTrue();
1127 Value
*Dynamic
= Builder
.getInt1(IsDynamic
);
1128 return Builder
.CreateCall(F
, {Ptr
, Min
, NullIsUnknown
, Dynamic
});
1132 /// A struct to generically describe a bit test intrinsic.
1134 enum ActionKind
: uint8_t { TestOnly
, Complement
, Reset
, Set
};
1135 enum InterlockingKind
: uint8_t {
1144 InterlockingKind Interlocking
;
1147 static BitTest
decodeBitTestBuiltin(unsigned BuiltinID
);
1152 BitTest
BitTest::decodeBitTestBuiltin(unsigned BuiltinID
) {
1153 switch (BuiltinID
) {
1154 // Main portable variants.
1155 case Builtin::BI_bittest
:
1156 return {TestOnly
, Unlocked
, false};
1157 case Builtin::BI_bittestandcomplement
:
1158 return {Complement
, Unlocked
, false};
1159 case Builtin::BI_bittestandreset
:
1160 return {Reset
, Unlocked
, false};
1161 case Builtin::BI_bittestandset
:
1162 return {Set
, Unlocked
, false};
1163 case Builtin::BI_interlockedbittestandreset
:
1164 return {Reset
, Sequential
, false};
1165 case Builtin::BI_interlockedbittestandset
:
1166 return {Set
, Sequential
, false};
1168 // X86-specific 64-bit variants.
1169 case Builtin::BI_bittest64
:
1170 return {TestOnly
, Unlocked
, true};
1171 case Builtin::BI_bittestandcomplement64
:
1172 return {Complement
, Unlocked
, true};
1173 case Builtin::BI_bittestandreset64
:
1174 return {Reset
, Unlocked
, true};
1175 case Builtin::BI_bittestandset64
:
1176 return {Set
, Unlocked
, true};
1177 case Builtin::BI_interlockedbittestandreset64
:
1178 return {Reset
, Sequential
, true};
1179 case Builtin::BI_interlockedbittestandset64
:
1180 return {Set
, Sequential
, true};
1182 // ARM/AArch64-specific ordering variants.
1183 case Builtin::BI_interlockedbittestandset_acq
:
1184 return {Set
, Acquire
, false};
1185 case Builtin::BI_interlockedbittestandset_rel
:
1186 return {Set
, Release
, false};
1187 case Builtin::BI_interlockedbittestandset_nf
:
1188 return {Set
, NoFence
, false};
1189 case Builtin::BI_interlockedbittestandreset_acq
:
1190 return {Reset
, Acquire
, false};
1191 case Builtin::BI_interlockedbittestandreset_rel
:
1192 return {Reset
, Release
, false};
1193 case Builtin::BI_interlockedbittestandreset_nf
:
1194 return {Reset
, NoFence
, false};
1196 llvm_unreachable("expected only bittest intrinsics");
1199 static char bitActionToX86BTCode(BitTest::ActionKind A
) {
1201 case BitTest::TestOnly
: return '\0';
1202 case BitTest::Complement
: return 'c';
1203 case BitTest::Reset
: return 'r';
1204 case BitTest::Set
: return 's';
1206 llvm_unreachable("invalid action");
1209 static llvm::Value
*EmitX86BitTestIntrinsic(CodeGenFunction
&CGF
,
1211 const CallExpr
*E
, Value
*BitBase
,
1213 char Action
= bitActionToX86BTCode(BT
.Action
);
1214 char SizeSuffix
= BT
.Is64Bit
? 'q' : 'l';
1216 // Build the assembly.
1217 SmallString
<64> Asm
;
1218 raw_svector_ostream
AsmOS(Asm
);
1219 if (BT
.Interlocking
!= BitTest::Unlocked
)
1224 AsmOS
<< SizeSuffix
<< " $2, ($1)";
1226 // Build the constraints. FIXME: We should support immediates when possible.
1227 std::string Constraints
= "={@ccc},r,r,~{cc},~{memory}";
1228 std::string_view MachineClobbers
= CGF
.getTarget().getClobbers();
1229 if (!MachineClobbers
.empty()) {
1231 Constraints
+= MachineClobbers
;
1233 llvm::IntegerType
*IntType
= llvm::IntegerType::get(
1234 CGF
.getLLVMContext(),
1235 CGF
.getContext().getTypeSize(E
->getArg(1)->getType()));
1236 llvm::FunctionType
*FTy
=
1237 llvm::FunctionType::get(CGF
.Int8Ty
, {CGF
.UnqualPtrTy
, IntType
}, false);
1239 llvm::InlineAsm
*IA
=
1240 llvm::InlineAsm::get(FTy
, Asm
, Constraints
, /*hasSideEffects=*/true);
1241 return CGF
.Builder
.CreateCall(IA
, {BitBase
, BitPos
});
1244 static llvm::AtomicOrdering
1245 getBitTestAtomicOrdering(BitTest::InterlockingKind I
) {
1247 case BitTest::Unlocked
: return llvm::AtomicOrdering::NotAtomic
;
1248 case BitTest::Sequential
: return llvm::AtomicOrdering::SequentiallyConsistent
;
1249 case BitTest::Acquire
: return llvm::AtomicOrdering::Acquire
;
1250 case BitTest::Release
: return llvm::AtomicOrdering::Release
;
1251 case BitTest::NoFence
: return llvm::AtomicOrdering::Monotonic
;
1253 llvm_unreachable("invalid interlocking");
1256 /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
1257 /// bits and a bit position and read and optionally modify the bit at that
1258 /// position. The position index can be arbitrarily large, i.e. it can be larger
1259 /// than 31 or 63, so we need an indexed load in the general case.
1260 static llvm::Value
*EmitBitTestIntrinsic(CodeGenFunction
&CGF
,
1262 const CallExpr
*E
) {
1263 Value
*BitBase
= CGF
.EmitScalarExpr(E
->getArg(0));
1264 Value
*BitPos
= CGF
.EmitScalarExpr(E
->getArg(1));
1266 BitTest BT
= BitTest::decodeBitTestBuiltin(BuiltinID
);
1268 // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
1269 // indexing operation internally. Use them if possible.
1270 if (CGF
.getTarget().getTriple().isX86())
1271 return EmitX86BitTestIntrinsic(CGF
, BT
, E
, BitBase
, BitPos
);
1273 // Otherwise, use generic code to load one byte and test the bit. Use all but
1274 // the bottom three bits as the array index, and the bottom three bits to form
1276 // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
1277 Value
*ByteIndex
= CGF
.Builder
.CreateAShr(
1278 BitPos
, llvm::ConstantInt::get(BitPos
->getType(), 3), "bittest.byteidx");
1279 Value
*BitBaseI8
= CGF
.Builder
.CreatePointerCast(BitBase
, CGF
.Int8PtrTy
);
1280 Address
ByteAddr(CGF
.Builder
.CreateInBoundsGEP(CGF
.Int8Ty
, BitBaseI8
,
1281 ByteIndex
, "bittest.byteaddr"),
1282 CGF
.Int8Ty
, CharUnits::One());
1284 CGF
.Builder
.CreateAnd(CGF
.Builder
.CreateTrunc(BitPos
, CGF
.Int8Ty
),
1285 llvm::ConstantInt::get(CGF
.Int8Ty
, 0x7));
1287 // The updating instructions will need a mask.
1288 Value
*Mask
= nullptr;
1289 if (BT
.Action
!= BitTest::TestOnly
) {
1290 Mask
= CGF
.Builder
.CreateShl(llvm::ConstantInt::get(CGF
.Int8Ty
, 1), PosLow
,
1294 // Check the action and ordering of the interlocked intrinsics.
1295 llvm::AtomicOrdering Ordering
= getBitTestAtomicOrdering(BT
.Interlocking
);
1297 Value
*OldByte
= nullptr;
1298 if (Ordering
!= llvm::AtomicOrdering::NotAtomic
) {
1299 // Emit a combined atomicrmw load/store operation for the interlocked
1301 llvm::AtomicRMWInst::BinOp RMWOp
= llvm::AtomicRMWInst::Or
;
1302 if (BT
.Action
== BitTest::Reset
) {
1303 Mask
= CGF
.Builder
.CreateNot(Mask
);
1304 RMWOp
= llvm::AtomicRMWInst::And
;
1306 OldByte
= CGF
.Builder
.CreateAtomicRMW(RMWOp
, ByteAddr
, Mask
, Ordering
);
1308 // Emit a plain load for the non-interlocked intrinsics.
1309 OldByte
= CGF
.Builder
.CreateLoad(ByteAddr
, "bittest.byte");
1310 Value
*NewByte
= nullptr;
1311 switch (BT
.Action
) {
1312 case BitTest::TestOnly
:
1313 // Don't store anything.
1315 case BitTest::Complement
:
1316 NewByte
= CGF
.Builder
.CreateXor(OldByte
, Mask
);
1318 case BitTest::Reset
:
1319 NewByte
= CGF
.Builder
.CreateAnd(OldByte
, CGF
.Builder
.CreateNot(Mask
));
1322 NewByte
= CGF
.Builder
.CreateOr(OldByte
, Mask
);
1326 CGF
.Builder
.CreateStore(NewByte
, ByteAddr
);
1329 // However we loaded the old byte, either by plain load or atomicrmw, shift
1330 // the bit into the low position and mask it to 0 or 1.
1331 Value
*ShiftedByte
= CGF
.Builder
.CreateLShr(OldByte
, PosLow
, "bittest.shr");
1332 return CGF
.Builder
.CreateAnd(
1333 ShiftedByte
, llvm::ConstantInt::get(CGF
.Int8Ty
, 1), "bittest.res");
1336 static llvm::Value
*emitPPCLoadReserveIntrinsic(CodeGenFunction
&CGF
,
1338 const CallExpr
*E
) {
1339 Value
*Addr
= CGF
.EmitScalarExpr(E
->getArg(0));
1341 SmallString
<64> Asm
;
1342 raw_svector_ostream
AsmOS(Asm
);
1343 llvm::IntegerType
*RetType
= CGF
.Int32Ty
;
1345 switch (BuiltinID
) {
1346 case clang::PPC::BI__builtin_ppc_ldarx
:
1348 RetType
= CGF
.Int64Ty
;
1350 case clang::PPC::BI__builtin_ppc_lwarx
:
1352 RetType
= CGF
.Int32Ty
;
1354 case clang::PPC::BI__builtin_ppc_lharx
:
1356 RetType
= CGF
.Int16Ty
;
1358 case clang::PPC::BI__builtin_ppc_lbarx
:
1360 RetType
= CGF
.Int8Ty
;
1363 llvm_unreachable("Expected only PowerPC load reserve intrinsics");
1366 AsmOS
<< "$0, ${1:y}";
1368 std::string Constraints
= "=r,*Z,~{memory}";
1369 std::string_view MachineClobbers
= CGF
.getTarget().getClobbers();
1370 if (!MachineClobbers
.empty()) {
1372 Constraints
+= MachineClobbers
;
1375 llvm::Type
*PtrType
= CGF
.UnqualPtrTy
;
1376 llvm::FunctionType
*FTy
= llvm::FunctionType::get(RetType
, {PtrType
}, false);
1378 llvm::InlineAsm
*IA
=
1379 llvm::InlineAsm::get(FTy
, Asm
, Constraints
, /*hasSideEffects=*/true);
1380 llvm::CallInst
*CI
= CGF
.Builder
.CreateCall(IA
, {Addr
});
1382 0, Attribute::get(CGF
.getLLVMContext(), Attribute::ElementType
, RetType
));
1387 enum class MSVCSetJmpKind
{
1394 /// MSVC handles setjmp a bit differently on different platforms. On every
1395 /// architecture except 32-bit x86, the frame address is passed. On x86, extra
1396 /// parameters can be passed as variadic arguments, but we always pass none.
1397 static RValue
EmitMSVCRTSetJmp(CodeGenFunction
&CGF
, MSVCSetJmpKind SJKind
,
1398 const CallExpr
*E
) {
1399 llvm::Value
*Arg1
= nullptr;
1400 llvm::Type
*Arg1Ty
= nullptr;
1402 bool IsVarArg
= false;
1403 if (SJKind
== MSVCSetJmpKind::_setjmp3
) {
1405 Arg1Ty
= CGF
.Int32Ty
;
1406 Arg1
= llvm::ConstantInt::get(CGF
.IntTy
, 0);
1409 Name
= SJKind
== MSVCSetJmpKind::_setjmp
? "_setjmp" : "_setjmpex";
1410 Arg1Ty
= CGF
.Int8PtrTy
;
1411 if (CGF
.getTarget().getTriple().getArch() == llvm::Triple::aarch64
) {
1412 Arg1
= CGF
.Builder
.CreateCall(
1413 CGF
.CGM
.getIntrinsic(Intrinsic::sponentry
, CGF
.AllocaInt8PtrTy
));
1415 Arg1
= CGF
.Builder
.CreateCall(
1416 CGF
.CGM
.getIntrinsic(Intrinsic::frameaddress
, CGF
.AllocaInt8PtrTy
),
1417 llvm::ConstantInt::get(CGF
.Int32Ty
, 0));
1420 // Mark the call site and declaration with ReturnsTwice.
1421 llvm::Type
*ArgTypes
[2] = {CGF
.Int8PtrTy
, Arg1Ty
};
1422 llvm::AttributeList ReturnsTwiceAttr
= llvm::AttributeList::get(
1423 CGF
.getLLVMContext(), llvm::AttributeList::FunctionIndex
,
1424 llvm::Attribute::ReturnsTwice
);
1425 llvm::FunctionCallee SetJmpFn
= CGF
.CGM
.CreateRuntimeFunction(
1426 llvm::FunctionType::get(CGF
.IntTy
, ArgTypes
, IsVarArg
), Name
,
1427 ReturnsTwiceAttr
, /*Local=*/true);
1429 llvm::Value
*Buf
= CGF
.Builder
.CreateBitOrPointerCast(
1430 CGF
.EmitScalarExpr(E
->getArg(0)), CGF
.Int8PtrTy
);
1431 llvm::Value
*Args
[] = {Buf
, Arg1
};
1432 llvm::CallBase
*CB
= CGF
.EmitRuntimeCallOrInvoke(SetJmpFn
, Args
);
1433 CB
->setAttributes(ReturnsTwiceAttr
);
1434 return RValue::get(CB
);
1437 // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
1438 // we handle them here.
1439 enum class CodeGenFunction::MSVCIntrin
{
1443 _InterlockedDecrement
,
1444 _InterlockedExchange
,
1445 _InterlockedExchangeAdd
,
1446 _InterlockedExchangeSub
,
1447 _InterlockedIncrement
,
1450 _InterlockedExchangeAdd_acq
,
1451 _InterlockedExchangeAdd_rel
,
1452 _InterlockedExchangeAdd_nf
,
1453 _InterlockedExchange_acq
,
1454 _InterlockedExchange_rel
,
1455 _InterlockedExchange_nf
,
1456 _InterlockedCompareExchange_acq
,
1457 _InterlockedCompareExchange_rel
,
1458 _InterlockedCompareExchange_nf
,
1459 _InterlockedCompareExchange128
,
1460 _InterlockedCompareExchange128_acq
,
1461 _InterlockedCompareExchange128_rel
,
1462 _InterlockedCompareExchange128_nf
,
1466 _InterlockedXor_acq
,
1467 _InterlockedXor_rel
,
1469 _InterlockedAnd_acq
,
1470 _InterlockedAnd_rel
,
1472 _InterlockedIncrement_acq
,
1473 _InterlockedIncrement_rel
,
1474 _InterlockedIncrement_nf
,
1475 _InterlockedDecrement_acq
,
1476 _InterlockedDecrement_rel
,
1477 _InterlockedDecrement_nf
,
1481 static std::optional
<CodeGenFunction::MSVCIntrin
>
1482 translateArmToMsvcIntrin(unsigned BuiltinID
) {
1483 using MSVCIntrin
= CodeGenFunction::MSVCIntrin
;
1484 switch (BuiltinID
) {
1486 return std::nullopt
;
1487 case clang::ARM::BI_BitScanForward
:
1488 case clang::ARM::BI_BitScanForward64
:
1489 return MSVCIntrin::_BitScanForward
;
1490 case clang::ARM::BI_BitScanReverse
:
1491 case clang::ARM::BI_BitScanReverse64
:
1492 return MSVCIntrin::_BitScanReverse
;
1493 case clang::ARM::BI_InterlockedAnd64
:
1494 return MSVCIntrin::_InterlockedAnd
;
1495 case clang::ARM::BI_InterlockedExchange64
:
1496 return MSVCIntrin::_InterlockedExchange
;
1497 case clang::ARM::BI_InterlockedExchangeAdd64
:
1498 return MSVCIntrin::_InterlockedExchangeAdd
;
1499 case clang::ARM::BI_InterlockedExchangeSub64
:
1500 return MSVCIntrin::_InterlockedExchangeSub
;
1501 case clang::ARM::BI_InterlockedOr64
:
1502 return MSVCIntrin::_InterlockedOr
;
1503 case clang::ARM::BI_InterlockedXor64
:
1504 return MSVCIntrin::_InterlockedXor
;
1505 case clang::ARM::BI_InterlockedDecrement64
:
1506 return MSVCIntrin::_InterlockedDecrement
;
1507 case clang::ARM::BI_InterlockedIncrement64
:
1508 return MSVCIntrin::_InterlockedIncrement
;
1509 case clang::ARM::BI_InterlockedExchangeAdd8_acq
:
1510 case clang::ARM::BI_InterlockedExchangeAdd16_acq
:
1511 case clang::ARM::BI_InterlockedExchangeAdd_acq
:
1512 case clang::ARM::BI_InterlockedExchangeAdd64_acq
:
1513 return MSVCIntrin::_InterlockedExchangeAdd_acq
;
1514 case clang::ARM::BI_InterlockedExchangeAdd8_rel
:
1515 case clang::ARM::BI_InterlockedExchangeAdd16_rel
:
1516 case clang::ARM::BI_InterlockedExchangeAdd_rel
:
1517 case clang::ARM::BI_InterlockedExchangeAdd64_rel
:
1518 return MSVCIntrin::_InterlockedExchangeAdd_rel
;
1519 case clang::ARM::BI_InterlockedExchangeAdd8_nf
:
1520 case clang::ARM::BI_InterlockedExchangeAdd16_nf
:
1521 case clang::ARM::BI_InterlockedExchangeAdd_nf
:
1522 case clang::ARM::BI_InterlockedExchangeAdd64_nf
:
1523 return MSVCIntrin::_InterlockedExchangeAdd_nf
;
1524 case clang::ARM::BI_InterlockedExchange8_acq
:
1525 case clang::ARM::BI_InterlockedExchange16_acq
:
1526 case clang::ARM::BI_InterlockedExchange_acq
:
1527 case clang::ARM::BI_InterlockedExchange64_acq
:
1528 return MSVCIntrin::_InterlockedExchange_acq
;
1529 case clang::ARM::BI_InterlockedExchange8_rel
:
1530 case clang::ARM::BI_InterlockedExchange16_rel
:
1531 case clang::ARM::BI_InterlockedExchange_rel
:
1532 case clang::ARM::BI_InterlockedExchange64_rel
:
1533 return MSVCIntrin::_InterlockedExchange_rel
;
1534 case clang::ARM::BI_InterlockedExchange8_nf
:
1535 case clang::ARM::BI_InterlockedExchange16_nf
:
1536 case clang::ARM::BI_InterlockedExchange_nf
:
1537 case clang::ARM::BI_InterlockedExchange64_nf
:
1538 return MSVCIntrin::_InterlockedExchange_nf
;
1539 case clang::ARM::BI_InterlockedCompareExchange8_acq
:
1540 case clang::ARM::BI_InterlockedCompareExchange16_acq
:
1541 case clang::ARM::BI_InterlockedCompareExchange_acq
:
1542 case clang::ARM::BI_InterlockedCompareExchange64_acq
:
1543 return MSVCIntrin::_InterlockedCompareExchange_acq
;
1544 case clang::ARM::BI_InterlockedCompareExchange8_rel
:
1545 case clang::ARM::BI_InterlockedCompareExchange16_rel
:
1546 case clang::ARM::BI_InterlockedCompareExchange_rel
:
1547 case clang::ARM::BI_InterlockedCompareExchange64_rel
:
1548 return MSVCIntrin::_InterlockedCompareExchange_rel
;
1549 case clang::ARM::BI_InterlockedCompareExchange8_nf
:
1550 case clang::ARM::BI_InterlockedCompareExchange16_nf
:
1551 case clang::ARM::BI_InterlockedCompareExchange_nf
:
1552 case clang::ARM::BI_InterlockedCompareExchange64_nf
:
1553 return MSVCIntrin::_InterlockedCompareExchange_nf
;
1554 case clang::ARM::BI_InterlockedOr8_acq
:
1555 case clang::ARM::BI_InterlockedOr16_acq
:
1556 case clang::ARM::BI_InterlockedOr_acq
:
1557 case clang::ARM::BI_InterlockedOr64_acq
:
1558 return MSVCIntrin::_InterlockedOr_acq
;
1559 case clang::ARM::BI_InterlockedOr8_rel
:
1560 case clang::ARM::BI_InterlockedOr16_rel
:
1561 case clang::ARM::BI_InterlockedOr_rel
:
1562 case clang::ARM::BI_InterlockedOr64_rel
:
1563 return MSVCIntrin::_InterlockedOr_rel
;
1564 case clang::ARM::BI_InterlockedOr8_nf
:
1565 case clang::ARM::BI_InterlockedOr16_nf
:
1566 case clang::ARM::BI_InterlockedOr_nf
:
1567 case clang::ARM::BI_InterlockedOr64_nf
:
1568 return MSVCIntrin::_InterlockedOr_nf
;
1569 case clang::ARM::BI_InterlockedXor8_acq
:
1570 case clang::ARM::BI_InterlockedXor16_acq
:
1571 case clang::ARM::BI_InterlockedXor_acq
:
1572 case clang::ARM::BI_InterlockedXor64_acq
:
1573 return MSVCIntrin::_InterlockedXor_acq
;
1574 case clang::ARM::BI_InterlockedXor8_rel
:
1575 case clang::ARM::BI_InterlockedXor16_rel
:
1576 case clang::ARM::BI_InterlockedXor_rel
:
1577 case clang::ARM::BI_InterlockedXor64_rel
:
1578 return MSVCIntrin::_InterlockedXor_rel
;
1579 case clang::ARM::BI_InterlockedXor8_nf
:
1580 case clang::ARM::BI_InterlockedXor16_nf
:
1581 case clang::ARM::BI_InterlockedXor_nf
:
1582 case clang::ARM::BI_InterlockedXor64_nf
:
1583 return MSVCIntrin::_InterlockedXor_nf
;
1584 case clang::ARM::BI_InterlockedAnd8_acq
:
1585 case clang::ARM::BI_InterlockedAnd16_acq
:
1586 case clang::ARM::BI_InterlockedAnd_acq
:
1587 case clang::ARM::BI_InterlockedAnd64_acq
:
1588 return MSVCIntrin::_InterlockedAnd_acq
;
1589 case clang::ARM::BI_InterlockedAnd8_rel
:
1590 case clang::ARM::BI_InterlockedAnd16_rel
:
1591 case clang::ARM::BI_InterlockedAnd_rel
:
1592 case clang::ARM::BI_InterlockedAnd64_rel
:
1593 return MSVCIntrin::_InterlockedAnd_rel
;
1594 case clang::ARM::BI_InterlockedAnd8_nf
:
1595 case clang::ARM::BI_InterlockedAnd16_nf
:
1596 case clang::ARM::BI_InterlockedAnd_nf
:
1597 case clang::ARM::BI_InterlockedAnd64_nf
:
1598 return MSVCIntrin::_InterlockedAnd_nf
;
1599 case clang::ARM::BI_InterlockedIncrement16_acq
:
1600 case clang::ARM::BI_InterlockedIncrement_acq
:
1601 case clang::ARM::BI_InterlockedIncrement64_acq
:
1602 return MSVCIntrin::_InterlockedIncrement_acq
;
1603 case clang::ARM::BI_InterlockedIncrement16_rel
:
1604 case clang::ARM::BI_InterlockedIncrement_rel
:
1605 case clang::ARM::BI_InterlockedIncrement64_rel
:
1606 return MSVCIntrin::_InterlockedIncrement_rel
;
1607 case clang::ARM::BI_InterlockedIncrement16_nf
:
1608 case clang::ARM::BI_InterlockedIncrement_nf
:
1609 case clang::ARM::BI_InterlockedIncrement64_nf
:
1610 return MSVCIntrin::_InterlockedIncrement_nf
;
1611 case clang::ARM::BI_InterlockedDecrement16_acq
:
1612 case clang::ARM::BI_InterlockedDecrement_acq
:
1613 case clang::ARM::BI_InterlockedDecrement64_acq
:
1614 return MSVCIntrin::_InterlockedDecrement_acq
;
1615 case clang::ARM::BI_InterlockedDecrement16_rel
:
1616 case clang::ARM::BI_InterlockedDecrement_rel
:
1617 case clang::ARM::BI_InterlockedDecrement64_rel
:
1618 return MSVCIntrin::_InterlockedDecrement_rel
;
1619 case clang::ARM::BI_InterlockedDecrement16_nf
:
1620 case clang::ARM::BI_InterlockedDecrement_nf
:
1621 case clang::ARM::BI_InterlockedDecrement64_nf
:
1622 return MSVCIntrin::_InterlockedDecrement_nf
;
1624 llvm_unreachable("must return from switch");
1627 static std::optional
<CodeGenFunction::MSVCIntrin
>
1628 translateAarch64ToMsvcIntrin(unsigned BuiltinID
) {
1629 using MSVCIntrin
= CodeGenFunction::MSVCIntrin
;
1630 switch (BuiltinID
) {
1632 return std::nullopt
;
1633 case clang::AArch64::BI_BitScanForward
:
1634 case clang::AArch64::BI_BitScanForward64
:
1635 return MSVCIntrin::_BitScanForward
;
1636 case clang::AArch64::BI_BitScanReverse
:
1637 case clang::AArch64::BI_BitScanReverse64
:
1638 return MSVCIntrin::_BitScanReverse
;
1639 case clang::AArch64::BI_InterlockedAnd64
:
1640 return MSVCIntrin::_InterlockedAnd
;
1641 case clang::AArch64::BI_InterlockedExchange64
:
1642 return MSVCIntrin::_InterlockedExchange
;
1643 case clang::AArch64::BI_InterlockedExchangeAdd64
:
1644 return MSVCIntrin::_InterlockedExchangeAdd
;
1645 case clang::AArch64::BI_InterlockedExchangeSub64
:
1646 return MSVCIntrin::_InterlockedExchangeSub
;
1647 case clang::AArch64::BI_InterlockedOr64
:
1648 return MSVCIntrin::_InterlockedOr
;
1649 case clang::AArch64::BI_InterlockedXor64
:
1650 return MSVCIntrin::_InterlockedXor
;
1651 case clang::AArch64::BI_InterlockedDecrement64
:
1652 return MSVCIntrin::_InterlockedDecrement
;
1653 case clang::AArch64::BI_InterlockedIncrement64
:
1654 return MSVCIntrin::_InterlockedIncrement
;
1655 case clang::AArch64::BI_InterlockedExchangeAdd8_acq
:
1656 case clang::AArch64::BI_InterlockedExchangeAdd16_acq
:
1657 case clang::AArch64::BI_InterlockedExchangeAdd_acq
:
1658 case clang::AArch64::BI_InterlockedExchangeAdd64_acq
:
1659 return MSVCIntrin::_InterlockedExchangeAdd_acq
;
1660 case clang::AArch64::BI_InterlockedExchangeAdd8_rel
:
1661 case clang::AArch64::BI_InterlockedExchangeAdd16_rel
:
1662 case clang::AArch64::BI_InterlockedExchangeAdd_rel
:
1663 case clang::AArch64::BI_InterlockedExchangeAdd64_rel
:
1664 return MSVCIntrin::_InterlockedExchangeAdd_rel
;
1665 case clang::AArch64::BI_InterlockedExchangeAdd8_nf
:
1666 case clang::AArch64::BI_InterlockedExchangeAdd16_nf
:
1667 case clang::AArch64::BI_InterlockedExchangeAdd_nf
:
1668 case clang::AArch64::BI_InterlockedExchangeAdd64_nf
:
1669 return MSVCIntrin::_InterlockedExchangeAdd_nf
;
1670 case clang::AArch64::BI_InterlockedExchange8_acq
:
1671 case clang::AArch64::BI_InterlockedExchange16_acq
:
1672 case clang::AArch64::BI_InterlockedExchange_acq
:
1673 case clang::AArch64::BI_InterlockedExchange64_acq
:
1674 return MSVCIntrin::_InterlockedExchange_acq
;
1675 case clang::AArch64::BI_InterlockedExchange8_rel
:
1676 case clang::AArch64::BI_InterlockedExchange16_rel
:
1677 case clang::AArch64::BI_InterlockedExchange_rel
:
1678 case clang::AArch64::BI_InterlockedExchange64_rel
:
1679 return MSVCIntrin::_InterlockedExchange_rel
;
1680 case clang::AArch64::BI_InterlockedExchange8_nf
:
1681 case clang::AArch64::BI_InterlockedExchange16_nf
:
1682 case clang::AArch64::BI_InterlockedExchange_nf
:
1683 case clang::AArch64::BI_InterlockedExchange64_nf
:
1684 return MSVCIntrin::_InterlockedExchange_nf
;
1685 case clang::AArch64::BI_InterlockedCompareExchange8_acq
:
1686 case clang::AArch64::BI_InterlockedCompareExchange16_acq
:
1687 case clang::AArch64::BI_InterlockedCompareExchange_acq
:
1688 case clang::AArch64::BI_InterlockedCompareExchange64_acq
:
1689 return MSVCIntrin::_InterlockedCompareExchange_acq
;
1690 case clang::AArch64::BI_InterlockedCompareExchange8_rel
:
1691 case clang::AArch64::BI_InterlockedCompareExchange16_rel
:
1692 case clang::AArch64::BI_InterlockedCompareExchange_rel
:
1693 case clang::AArch64::BI_InterlockedCompareExchange64_rel
:
1694 return MSVCIntrin::_InterlockedCompareExchange_rel
;
1695 case clang::AArch64::BI_InterlockedCompareExchange8_nf
:
1696 case clang::AArch64::BI_InterlockedCompareExchange16_nf
:
1697 case clang::AArch64::BI_InterlockedCompareExchange_nf
:
1698 case clang::AArch64::BI_InterlockedCompareExchange64_nf
:
1699 return MSVCIntrin::_InterlockedCompareExchange_nf
;
1700 case clang::AArch64::BI_InterlockedCompareExchange128
:
1701 return MSVCIntrin::_InterlockedCompareExchange128
;
1702 case clang::AArch64::BI_InterlockedCompareExchange128_acq
:
1703 return MSVCIntrin::_InterlockedCompareExchange128_acq
;
1704 case clang::AArch64::BI_InterlockedCompareExchange128_nf
:
1705 return MSVCIntrin::_InterlockedCompareExchange128_nf
;
1706 case clang::AArch64::BI_InterlockedCompareExchange128_rel
:
1707 return MSVCIntrin::_InterlockedCompareExchange128_rel
;
1708 case clang::AArch64::BI_InterlockedOr8_acq
:
1709 case clang::AArch64::BI_InterlockedOr16_acq
:
1710 case clang::AArch64::BI_InterlockedOr_acq
:
1711 case clang::AArch64::BI_InterlockedOr64_acq
:
1712 return MSVCIntrin::_InterlockedOr_acq
;
1713 case clang::AArch64::BI_InterlockedOr8_rel
:
1714 case clang::AArch64::BI_InterlockedOr16_rel
:
1715 case clang::AArch64::BI_InterlockedOr_rel
:
1716 case clang::AArch64::BI_InterlockedOr64_rel
:
1717 return MSVCIntrin::_InterlockedOr_rel
;
1718 case clang::AArch64::BI_InterlockedOr8_nf
:
1719 case clang::AArch64::BI_InterlockedOr16_nf
:
1720 case clang::AArch64::BI_InterlockedOr_nf
:
1721 case clang::AArch64::BI_InterlockedOr64_nf
:
1722 return MSVCIntrin::_InterlockedOr_nf
;
1723 case clang::AArch64::BI_InterlockedXor8_acq
:
1724 case clang::AArch64::BI_InterlockedXor16_acq
:
1725 case clang::AArch64::BI_InterlockedXor_acq
:
1726 case clang::AArch64::BI_InterlockedXor64_acq
:
1727 return MSVCIntrin::_InterlockedXor_acq
;
1728 case clang::AArch64::BI_InterlockedXor8_rel
:
1729 case clang::AArch64::BI_InterlockedXor16_rel
:
1730 case clang::AArch64::BI_InterlockedXor_rel
:
1731 case clang::AArch64::BI_InterlockedXor64_rel
:
1732 return MSVCIntrin::_InterlockedXor_rel
;
1733 case clang::AArch64::BI_InterlockedXor8_nf
:
1734 case clang::AArch64::BI_InterlockedXor16_nf
:
1735 case clang::AArch64::BI_InterlockedXor_nf
:
1736 case clang::AArch64::BI_InterlockedXor64_nf
:
1737 return MSVCIntrin::_InterlockedXor_nf
;
1738 case clang::AArch64::BI_InterlockedAnd8_acq
:
1739 case clang::AArch64::BI_InterlockedAnd16_acq
:
1740 case clang::AArch64::BI_InterlockedAnd_acq
:
1741 case clang::AArch64::BI_InterlockedAnd64_acq
:
1742 return MSVCIntrin::_InterlockedAnd_acq
;
1743 case clang::AArch64::BI_InterlockedAnd8_rel
:
1744 case clang::AArch64::BI_InterlockedAnd16_rel
:
1745 case clang::AArch64::BI_InterlockedAnd_rel
:
1746 case clang::AArch64::BI_InterlockedAnd64_rel
:
1747 return MSVCIntrin::_InterlockedAnd_rel
;
1748 case clang::AArch64::BI_InterlockedAnd8_nf
:
1749 case clang::AArch64::BI_InterlockedAnd16_nf
:
1750 case clang::AArch64::BI_InterlockedAnd_nf
:
1751 case clang::AArch64::BI_InterlockedAnd64_nf
:
1752 return MSVCIntrin::_InterlockedAnd_nf
;
1753 case clang::AArch64::BI_InterlockedIncrement16_acq
:
1754 case clang::AArch64::BI_InterlockedIncrement_acq
:
1755 case clang::AArch64::BI_InterlockedIncrement64_acq
:
1756 return MSVCIntrin::_InterlockedIncrement_acq
;
1757 case clang::AArch64::BI_InterlockedIncrement16_rel
:
1758 case clang::AArch64::BI_InterlockedIncrement_rel
:
1759 case clang::AArch64::BI_InterlockedIncrement64_rel
:
1760 return MSVCIntrin::_InterlockedIncrement_rel
;
1761 case clang::AArch64::BI_InterlockedIncrement16_nf
:
1762 case clang::AArch64::BI_InterlockedIncrement_nf
:
1763 case clang::AArch64::BI_InterlockedIncrement64_nf
:
1764 return MSVCIntrin::_InterlockedIncrement_nf
;
1765 case clang::AArch64::BI_InterlockedDecrement16_acq
:
1766 case clang::AArch64::BI_InterlockedDecrement_acq
:
1767 case clang::AArch64::BI_InterlockedDecrement64_acq
:
1768 return MSVCIntrin::_InterlockedDecrement_acq
;
1769 case clang::AArch64::BI_InterlockedDecrement16_rel
:
1770 case clang::AArch64::BI_InterlockedDecrement_rel
:
1771 case clang::AArch64::BI_InterlockedDecrement64_rel
:
1772 return MSVCIntrin::_InterlockedDecrement_rel
;
1773 case clang::AArch64::BI_InterlockedDecrement16_nf
:
1774 case clang::AArch64::BI_InterlockedDecrement_nf
:
1775 case clang::AArch64::BI_InterlockedDecrement64_nf
:
1776 return MSVCIntrin::_InterlockedDecrement_nf
;
1778 llvm_unreachable("must return from switch");
1781 static std::optional
<CodeGenFunction::MSVCIntrin
>
1782 translateX86ToMsvcIntrin(unsigned BuiltinID
) {
1783 using MSVCIntrin
= CodeGenFunction::MSVCIntrin
;
1784 switch (BuiltinID
) {
1786 return std::nullopt
;
1787 case clang::X86::BI_BitScanForward
:
1788 case clang::X86::BI_BitScanForward64
:
1789 return MSVCIntrin::_BitScanForward
;
1790 case clang::X86::BI_BitScanReverse
:
1791 case clang::X86::BI_BitScanReverse64
:
1792 return MSVCIntrin::_BitScanReverse
;
1793 case clang::X86::BI_InterlockedAnd64
:
1794 return MSVCIntrin::_InterlockedAnd
;
1795 case clang::X86::BI_InterlockedCompareExchange128
:
1796 return MSVCIntrin::_InterlockedCompareExchange128
;
1797 case clang::X86::BI_InterlockedExchange64
:
1798 return MSVCIntrin::_InterlockedExchange
;
1799 case clang::X86::BI_InterlockedExchangeAdd64
:
1800 return MSVCIntrin::_InterlockedExchangeAdd
;
1801 case clang::X86::BI_InterlockedExchangeSub64
:
1802 return MSVCIntrin::_InterlockedExchangeSub
;
1803 case clang::X86::BI_InterlockedOr64
:
1804 return MSVCIntrin::_InterlockedOr
;
1805 case clang::X86::BI_InterlockedXor64
:
1806 return MSVCIntrin::_InterlockedXor
;
1807 case clang::X86::BI_InterlockedDecrement64
:
1808 return MSVCIntrin::_InterlockedDecrement
;
1809 case clang::X86::BI_InterlockedIncrement64
:
1810 return MSVCIntrin::_InterlockedIncrement
;
1812 llvm_unreachable("must return from switch");
1815 // Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated.
1816 Value
*CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID
,
1817 const CallExpr
*E
) {
1818 switch (BuiltinID
) {
1819 case MSVCIntrin::_BitScanForward
:
1820 case MSVCIntrin::_BitScanReverse
: {
1821 Address
IndexAddress(EmitPointerWithAlignment(E
->getArg(0)));
1822 Value
*ArgValue
= EmitScalarExpr(E
->getArg(1));
1824 llvm::Type
*ArgType
= ArgValue
->getType();
1825 llvm::Type
*IndexType
= IndexAddress
.getElementType();
1826 llvm::Type
*ResultType
= ConvertType(E
->getType());
1828 Value
*ArgZero
= llvm::Constant::getNullValue(ArgType
);
1829 Value
*ResZero
= llvm::Constant::getNullValue(ResultType
);
1830 Value
*ResOne
= llvm::ConstantInt::get(ResultType
, 1);
1832 BasicBlock
*Begin
= Builder
.GetInsertBlock();
1833 BasicBlock
*End
= createBasicBlock("bitscan_end", this->CurFn
);
1834 Builder
.SetInsertPoint(End
);
1835 PHINode
*Result
= Builder
.CreatePHI(ResultType
, 2, "bitscan_result");
1837 Builder
.SetInsertPoint(Begin
);
1838 Value
*IsZero
= Builder
.CreateICmpEQ(ArgValue
, ArgZero
);
1839 BasicBlock
*NotZero
= createBasicBlock("bitscan_not_zero", this->CurFn
);
1840 Builder
.CreateCondBr(IsZero
, End
, NotZero
);
1841 Result
->addIncoming(ResZero
, Begin
);
1843 Builder
.SetInsertPoint(NotZero
);
1845 if (BuiltinID
== MSVCIntrin::_BitScanForward
) {
1846 Function
*F
= CGM
.getIntrinsic(Intrinsic::cttz
, ArgType
);
1847 Value
*ZeroCount
= Builder
.CreateCall(F
, {ArgValue
, Builder
.getTrue()});
1848 ZeroCount
= Builder
.CreateIntCast(ZeroCount
, IndexType
, false);
1849 Builder
.CreateStore(ZeroCount
, IndexAddress
, false);
1851 unsigned ArgWidth
= cast
<llvm::IntegerType
>(ArgType
)->getBitWidth();
1852 Value
*ArgTypeLastIndex
= llvm::ConstantInt::get(IndexType
, ArgWidth
- 1);
1854 Function
*F
= CGM
.getIntrinsic(Intrinsic::ctlz
, ArgType
);
1855 Value
*ZeroCount
= Builder
.CreateCall(F
, {ArgValue
, Builder
.getTrue()});
1856 ZeroCount
= Builder
.CreateIntCast(ZeroCount
, IndexType
, false);
1857 Value
*Index
= Builder
.CreateNSWSub(ArgTypeLastIndex
, ZeroCount
);
1858 Builder
.CreateStore(Index
, IndexAddress
, false);
1860 Builder
.CreateBr(End
);
1861 Result
->addIncoming(ResOne
, NotZero
);
1863 Builder
.SetInsertPoint(End
);
1866 case MSVCIntrin::_InterlockedAnd
:
1867 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And
, E
);
1868 case MSVCIntrin::_InterlockedExchange
:
1869 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg
, E
);
1870 case MSVCIntrin::_InterlockedExchangeAdd
:
1871 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add
, E
);
1872 case MSVCIntrin::_InterlockedExchangeSub
:
1873 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub
, E
);
1874 case MSVCIntrin::_InterlockedOr
:
1875 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or
, E
);
1876 case MSVCIntrin::_InterlockedXor
:
1877 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor
, E
);
1878 case MSVCIntrin::_InterlockedExchangeAdd_acq
:
1879 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add
, E
,
1880 AtomicOrdering::Acquire
);
1881 case MSVCIntrin::_InterlockedExchangeAdd_rel
:
1882 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add
, E
,
1883 AtomicOrdering::Release
);
1884 case MSVCIntrin::_InterlockedExchangeAdd_nf
:
1885 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add
, E
,
1886 AtomicOrdering::Monotonic
);
1887 case MSVCIntrin::_InterlockedExchange_acq
:
1888 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg
, E
,
1889 AtomicOrdering::Acquire
);
1890 case MSVCIntrin::_InterlockedExchange_rel
:
1891 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg
, E
,
1892 AtomicOrdering::Release
);
1893 case MSVCIntrin::_InterlockedExchange_nf
:
1894 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg
, E
,
1895 AtomicOrdering::Monotonic
);
1896 case MSVCIntrin::_InterlockedCompareExchange_acq
:
1897 return EmitAtomicCmpXchgForMSIntrin(*this, E
, AtomicOrdering::Acquire
);
1898 case MSVCIntrin::_InterlockedCompareExchange_rel
:
1899 return EmitAtomicCmpXchgForMSIntrin(*this, E
, AtomicOrdering::Release
);
1900 case MSVCIntrin::_InterlockedCompareExchange_nf
:
1901 return EmitAtomicCmpXchgForMSIntrin(*this, E
, AtomicOrdering::Monotonic
);
1902 case MSVCIntrin::_InterlockedCompareExchange128
:
1903 return EmitAtomicCmpXchg128ForMSIntrin(
1904 *this, E
, AtomicOrdering::SequentiallyConsistent
);
1905 case MSVCIntrin::_InterlockedCompareExchange128_acq
:
1906 return EmitAtomicCmpXchg128ForMSIntrin(*this, E
, AtomicOrdering::Acquire
);
1907 case MSVCIntrin::_InterlockedCompareExchange128_rel
:
1908 return EmitAtomicCmpXchg128ForMSIntrin(*this, E
, AtomicOrdering::Release
);
1909 case MSVCIntrin::_InterlockedCompareExchange128_nf
:
1910 return EmitAtomicCmpXchg128ForMSIntrin(*this, E
, AtomicOrdering::Monotonic
);
1911 case MSVCIntrin::_InterlockedOr_acq
:
1912 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or
, E
,
1913 AtomicOrdering::Acquire
);
1914 case MSVCIntrin::_InterlockedOr_rel
:
1915 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or
, E
,
1916 AtomicOrdering::Release
);
1917 case MSVCIntrin::_InterlockedOr_nf
:
1918 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or
, E
,
1919 AtomicOrdering::Monotonic
);
1920 case MSVCIntrin::_InterlockedXor_acq
:
1921 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor
, E
,
1922 AtomicOrdering::Acquire
);
1923 case MSVCIntrin::_InterlockedXor_rel
:
1924 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor
, E
,
1925 AtomicOrdering::Release
);
1926 case MSVCIntrin::_InterlockedXor_nf
:
1927 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor
, E
,
1928 AtomicOrdering::Monotonic
);
1929 case MSVCIntrin::_InterlockedAnd_acq
:
1930 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And
, E
,
1931 AtomicOrdering::Acquire
);
1932 case MSVCIntrin::_InterlockedAnd_rel
:
1933 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And
, E
,
1934 AtomicOrdering::Release
);
1935 case MSVCIntrin::_InterlockedAnd_nf
:
1936 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And
, E
,
1937 AtomicOrdering::Monotonic
);
1938 case MSVCIntrin::_InterlockedIncrement_acq
:
1939 return EmitAtomicIncrementValue(*this, E
, AtomicOrdering::Acquire
);
1940 case MSVCIntrin::_InterlockedIncrement_rel
:
1941 return EmitAtomicIncrementValue(*this, E
, AtomicOrdering::Release
);
1942 case MSVCIntrin::_InterlockedIncrement_nf
:
1943 return EmitAtomicIncrementValue(*this, E
, AtomicOrdering::Monotonic
);
1944 case MSVCIntrin::_InterlockedDecrement_acq
:
1945 return EmitAtomicDecrementValue(*this, E
, AtomicOrdering::Acquire
);
1946 case MSVCIntrin::_InterlockedDecrement_rel
:
1947 return EmitAtomicDecrementValue(*this, E
, AtomicOrdering::Release
);
1948 case MSVCIntrin::_InterlockedDecrement_nf
:
1949 return EmitAtomicDecrementValue(*this, E
, AtomicOrdering::Monotonic
);
1951 case MSVCIntrin::_InterlockedDecrement
:
1952 return EmitAtomicDecrementValue(*this, E
);
1953 case MSVCIntrin::_InterlockedIncrement
:
1954 return EmitAtomicIncrementValue(*this, E
);
1956 case MSVCIntrin::__fastfail
: {
1957 // Request immediate process termination from the kernel. The instruction
1958 // sequences to do this are documented on MSDN:
1959 // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1960 llvm::Triple::ArchType ISA
= getTarget().getTriple().getArch();
1961 StringRef Asm
, Constraints
;
1964 ErrorUnsupported(E
, "__fastfail call for this architecture");
1966 case llvm::Triple::x86
:
1967 case llvm::Triple::x86_64
:
1969 Constraints
= "{cx}";
1971 case llvm::Triple::thumb
:
1973 Constraints
= "{r0}";
1975 case llvm::Triple::aarch64
:
1976 Asm
= "brk #0xF003";
1977 Constraints
= "{w0}";
1979 llvm::FunctionType
*FTy
= llvm::FunctionType::get(VoidTy
, {Int32Ty
}, false);
1980 llvm::InlineAsm
*IA
=
1981 llvm::InlineAsm::get(FTy
, Asm
, Constraints
, /*hasSideEffects=*/true);
1982 llvm::AttributeList NoReturnAttr
= llvm::AttributeList::get(
1983 getLLVMContext(), llvm::AttributeList::FunctionIndex
,
1984 llvm::Attribute::NoReturn
);
1985 llvm::CallInst
*CI
= Builder
.CreateCall(IA
, EmitScalarExpr(E
->getArg(0)));
1986 CI
->setAttributes(NoReturnAttr
);
1990 llvm_unreachable("Incorrect MSVC intrinsic!");
1994 // ARC cleanup for __builtin_os_log_format
1995 struct CallObjCArcUse final
: EHScopeStack::Cleanup
{
1996 CallObjCArcUse(llvm::Value
*object
) : object(object
) {}
1997 llvm::Value
*object
;
1999 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2000 CGF
.EmitARCIntrinsicUse(object
);
2005 Value
*CodeGenFunction::EmitCheckedArgForBuiltin(const Expr
*E
,
2006 BuiltinCheckKind Kind
) {
2007 assert((Kind
== BCK_CLZPassedZero
|| Kind
== BCK_CTZPassedZero
)
2008 && "Unsupported builtin check kind");
2010 Value
*ArgValue
= EmitScalarExpr(E
);
2011 if (!SanOpts
.has(SanitizerKind::Builtin
))
2014 SanitizerScope
SanScope(this);
2015 Value
*Cond
= Builder
.CreateICmpNE(
2016 ArgValue
, llvm::Constant::getNullValue(ArgValue
->getType()));
2017 EmitCheck(std::make_pair(Cond
, SanitizerKind::Builtin
),
2018 SanitizerHandler::InvalidBuiltin
,
2019 {EmitCheckSourceLocation(E
->getExprLoc()),
2020 llvm::ConstantInt::get(Builder
.getInt8Ty(), Kind
)},
2025 static Value
*EmitAbs(CodeGenFunction
&CGF
, Value
*ArgValue
, bool HasNSW
) {
2026 return CGF
.Builder
.CreateBinaryIntrinsic(
2027 Intrinsic::abs
, ArgValue
,
2028 ConstantInt::get(CGF
.Builder
.getInt1Ty(), HasNSW
));
2031 static Value
*EmitOverflowCheckedAbs(CodeGenFunction
&CGF
, const CallExpr
*E
,
2032 bool SanitizeOverflow
) {
2033 Value
*ArgValue
= CGF
.EmitScalarExpr(E
->getArg(0));
2035 // Try to eliminate overflow check.
2036 if (const auto *VCI
= dyn_cast
<llvm::ConstantInt
>(ArgValue
)) {
2037 if (!VCI
->isMinSignedValue())
2038 return EmitAbs(CGF
, ArgValue
, true);
2041 CodeGenFunction::SanitizerScope
SanScope(&CGF
);
2043 Constant
*Zero
= Constant::getNullValue(ArgValue
->getType());
2044 Value
*ResultAndOverflow
= CGF
.Builder
.CreateBinaryIntrinsic(
2045 Intrinsic::ssub_with_overflow
, Zero
, ArgValue
);
2046 Value
*Result
= CGF
.Builder
.CreateExtractValue(ResultAndOverflow
, 0);
2047 Value
*NotOverflow
= CGF
.Builder
.CreateNot(
2048 CGF
.Builder
.CreateExtractValue(ResultAndOverflow
, 1));
2050 // TODO: support -ftrapv-handler.
2051 if (SanitizeOverflow
) {
2052 CGF
.EmitCheck({{NotOverflow
, SanitizerKind::SignedIntegerOverflow
}},
2053 SanitizerHandler::NegateOverflow
,
2054 {CGF
.EmitCheckSourceLocation(E
->getArg(0)->getExprLoc()),
2055 CGF
.EmitCheckTypeDescriptor(E
->getType())},
2058 CGF
.EmitTrapCheck(NotOverflow
, SanitizerHandler::SubOverflow
);
2060 Value
*CmpResult
= CGF
.Builder
.CreateICmpSLT(ArgValue
, Zero
, "abscond");
2061 return CGF
.Builder
.CreateSelect(CmpResult
, Result
, ArgValue
, "abs");
2064 /// Get the argument type for arguments to os_log_helper.
2065 static CanQualType
getOSLogArgType(ASTContext
&C
, int Size
) {
2066 QualType UnsignedTy
= C
.getIntTypeForBitwidth(Size
* 8, /*Signed=*/false);
2067 return C
.getCanonicalType(UnsignedTy
);
2070 llvm::Function
*CodeGenFunction::generateBuiltinOSLogHelperFunction(
2071 const analyze_os_log::OSLogBufferLayout
&Layout
,
2072 CharUnits BufferAlignment
) {
2073 ASTContext
&Ctx
= getContext();
2075 llvm::SmallString
<64> Name
;
2077 raw_svector_ostream
OS(Name
);
2078 OS
<< "__os_log_helper";
2079 OS
<< "_" << BufferAlignment
.getQuantity();
2080 OS
<< "_" << int(Layout
.getSummaryByte());
2081 OS
<< "_" << int(Layout
.getNumArgsByte());
2082 for (const auto &Item
: Layout
.Items
)
2083 OS
<< "_" << int(Item
.getSizeByte()) << "_"
2084 << int(Item
.getDescriptorByte());
2087 if (llvm::Function
*F
= CGM
.getModule().getFunction(Name
))
2090 llvm::SmallVector
<QualType
, 4> ArgTys
;
2091 FunctionArgList Args
;
2092 Args
.push_back(ImplicitParamDecl::Create(
2093 Ctx
, nullptr, SourceLocation(), &Ctx
.Idents
.get("buffer"), Ctx
.VoidPtrTy
,
2094 ImplicitParamKind::Other
));
2095 ArgTys
.emplace_back(Ctx
.VoidPtrTy
);
2097 for (unsigned int I
= 0, E
= Layout
.Items
.size(); I
< E
; ++I
) {
2098 char Size
= Layout
.Items
[I
].getSizeByte();
2102 QualType ArgTy
= getOSLogArgType(Ctx
, Size
);
2103 Args
.push_back(ImplicitParamDecl::Create(
2104 Ctx
, nullptr, SourceLocation(),
2105 &Ctx
.Idents
.get(std::string("arg") + llvm::to_string(I
)), ArgTy
,
2106 ImplicitParamKind::Other
));
2107 ArgTys
.emplace_back(ArgTy
);
2110 QualType ReturnTy
= Ctx
.VoidTy
;
2112 // The helper function has linkonce_odr linkage to enable the linker to merge
2113 // identical functions. To ensure the merging always happens, 'noinline' is
2114 // attached to the function when compiling with -Oz.
2115 const CGFunctionInfo
&FI
=
2116 CGM
.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy
, Args
);
2117 llvm::FunctionType
*FuncTy
= CGM
.getTypes().GetFunctionType(FI
);
2118 llvm::Function
*Fn
= llvm::Function::Create(
2119 FuncTy
, llvm::GlobalValue::LinkOnceODRLinkage
, Name
, &CGM
.getModule());
2120 Fn
->setVisibility(llvm::GlobalValue::HiddenVisibility
);
2121 CGM
.SetLLVMFunctionAttributes(GlobalDecl(), FI
, Fn
, /*IsThunk=*/false);
2122 CGM
.SetLLVMFunctionAttributesForDefinition(nullptr, Fn
);
2123 Fn
->setDoesNotThrow();
2125 // Attach 'noinline' at -Oz.
2126 if (CGM
.getCodeGenOpts().OptimizeSize
== 2)
2127 Fn
->addFnAttr(llvm::Attribute::NoInline
);
2129 auto NL
= ApplyDebugLocation::CreateEmpty(*this);
2130 StartFunction(GlobalDecl(), ReturnTy
, Fn
, FI
, Args
);
2132 // Create a scope with an artificial location for the body of this function.
2133 auto AL
= ApplyDebugLocation::CreateArtificial(*this);
2136 Address BufAddr
= makeNaturalAddressForPointer(
2137 Builder
.CreateLoad(GetAddrOfLocalVar(Args
[0]), "buf"), Ctx
.VoidTy
,
2139 Builder
.CreateStore(Builder
.getInt8(Layout
.getSummaryByte()),
2140 Builder
.CreateConstByteGEP(BufAddr
, Offset
++, "summary"));
2141 Builder
.CreateStore(Builder
.getInt8(Layout
.getNumArgsByte()),
2142 Builder
.CreateConstByteGEP(BufAddr
, Offset
++, "numArgs"));
2145 for (const auto &Item
: Layout
.Items
) {
2146 Builder
.CreateStore(
2147 Builder
.getInt8(Item
.getDescriptorByte()),
2148 Builder
.CreateConstByteGEP(BufAddr
, Offset
++, "argDescriptor"));
2149 Builder
.CreateStore(
2150 Builder
.getInt8(Item
.getSizeByte()),
2151 Builder
.CreateConstByteGEP(BufAddr
, Offset
++, "argSize"));
2153 CharUnits Size
= Item
.size();
2154 if (!Size
.getQuantity())
2157 Address Arg
= GetAddrOfLocalVar(Args
[I
]);
2158 Address Addr
= Builder
.CreateConstByteGEP(BufAddr
, Offset
, "argData");
2159 Addr
= Addr
.withElementType(Arg
.getElementType());
2160 Builder
.CreateStore(Builder
.CreateLoad(Arg
), Addr
);
2170 RValue
CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr
&E
) {
2171 assert(E
.getNumArgs() >= 2 &&
2172 "__builtin_os_log_format takes at least 2 arguments");
2173 ASTContext
&Ctx
= getContext();
2174 analyze_os_log::OSLogBufferLayout Layout
;
2175 analyze_os_log::computeOSLogBufferLayout(Ctx
, &E
, Layout
);
2176 Address BufAddr
= EmitPointerWithAlignment(E
.getArg(0));
2177 llvm::SmallVector
<llvm::Value
*, 4> RetainableOperands
;
2179 // Ignore argument 1, the format string. It is not currently used.
2181 Args
.add(RValue::get(BufAddr
.emitRawPointer(*this)), Ctx
.VoidPtrTy
);
2183 for (const auto &Item
: Layout
.Items
) {
2184 int Size
= Item
.getSizeByte();
2188 llvm::Value
*ArgVal
;
2190 if (Item
.getKind() == analyze_os_log::OSLogBufferItem::MaskKind
) {
2192 for (unsigned I
= 0, E
= Item
.getMaskType().size(); I
< E
; ++I
)
2193 Val
|= ((uint64_t)Item
.getMaskType()[I
]) << I
* 8;
2194 ArgVal
= llvm::Constant::getIntegerValue(Int64Ty
, llvm::APInt(64, Val
));
2195 } else if (const Expr
*TheExpr
= Item
.getExpr()) {
2196 ArgVal
= EmitScalarExpr(TheExpr
, /*Ignore*/ false);
2198 // If a temporary object that requires destruction after the full
2199 // expression is passed, push a lifetime-extended cleanup to extend its
2200 // lifetime to the end of the enclosing block scope.
2201 auto LifetimeExtendObject
= [&](const Expr
*E
) {
2202 E
= E
->IgnoreParenCasts();
2203 // Extend lifetimes of objects returned by function calls and message
2206 // FIXME: We should do this in other cases in which temporaries are
2207 // created including arguments of non-ARC types (e.g., C++
2209 if (isa
<CallExpr
>(E
) || isa
<ObjCMessageExpr
>(E
))
2214 if (TheExpr
->getType()->isObjCRetainableType() &&
2215 getLangOpts().ObjCAutoRefCount
&& LifetimeExtendObject(TheExpr
)) {
2216 assert(getEvaluationKind(TheExpr
->getType()) == TEK_Scalar
&&
2217 "Only scalar can be a ObjC retainable type");
2218 if (!isa
<Constant
>(ArgVal
)) {
2219 CleanupKind Cleanup
= getARCCleanupKind();
2220 QualType Ty
= TheExpr
->getType();
2221 RawAddress Alloca
= RawAddress::invalid();
2222 RawAddress Addr
= CreateMemTemp(Ty
, "os.log.arg", &Alloca
);
2223 ArgVal
= EmitARCRetain(Ty
, ArgVal
);
2224 Builder
.CreateStore(ArgVal
, Addr
);
2225 pushLifetimeExtendedDestroy(Cleanup
, Alloca
, Ty
,
2226 CodeGenFunction::destroyARCStrongPrecise
,
2227 Cleanup
& EHCleanup
);
2229 // Push a clang.arc.use call to ensure ARC optimizer knows that the
2230 // argument has to be alive.
2231 if (CGM
.getCodeGenOpts().OptimizationLevel
!= 0)
2232 pushCleanupAfterFullExpr
<CallObjCArcUse
>(Cleanup
, ArgVal
);
2236 ArgVal
= Builder
.getInt32(Item
.getConstValue().getQuantity());
2239 unsigned ArgValSize
=
2240 CGM
.getDataLayout().getTypeSizeInBits(ArgVal
->getType());
2241 llvm::IntegerType
*IntTy
= llvm::Type::getIntNTy(getLLVMContext(),
2243 ArgVal
= Builder
.CreateBitOrPointerCast(ArgVal
, IntTy
);
2244 CanQualType ArgTy
= getOSLogArgType(Ctx
, Size
);
2245 // If ArgVal has type x86_fp80, zero-extend ArgVal.
2246 ArgVal
= Builder
.CreateZExtOrBitCast(ArgVal
, ConvertType(ArgTy
));
2247 Args
.add(RValue::get(ArgVal
), ArgTy
);
2250 const CGFunctionInfo
&FI
=
2251 CGM
.getTypes().arrangeBuiltinFunctionCall(Ctx
.VoidTy
, Args
);
2252 llvm::Function
*F
= CodeGenFunction(CGM
).generateBuiltinOSLogHelperFunction(
2253 Layout
, BufAddr
.getAlignment());
2254 EmitCall(FI
, CGCallee::forDirect(F
), ReturnValueSlot(), Args
);
2255 return RValue::get(BufAddr
, *this);
2258 static bool isSpecialUnsignedMultiplySignedResult(
2259 unsigned BuiltinID
, WidthAndSignedness Op1Info
, WidthAndSignedness Op2Info
,
2260 WidthAndSignedness ResultInfo
) {
2261 return BuiltinID
== Builtin::BI__builtin_mul_overflow
&&
2262 Op1Info
.Width
== Op2Info
.Width
&& Op2Info
.Width
== ResultInfo
.Width
&&
2263 !Op1Info
.Signed
&& !Op2Info
.Signed
&& ResultInfo
.Signed
;
2266 static RValue
EmitCheckedUnsignedMultiplySignedResult(
2267 CodeGenFunction
&CGF
, const clang::Expr
*Op1
, WidthAndSignedness Op1Info
,
2268 const clang::Expr
*Op2
, WidthAndSignedness Op2Info
,
2269 const clang::Expr
*ResultArg
, QualType ResultQTy
,
2270 WidthAndSignedness ResultInfo
) {
2271 assert(isSpecialUnsignedMultiplySignedResult(
2272 Builtin::BI__builtin_mul_overflow
, Op1Info
, Op2Info
, ResultInfo
) &&
2273 "Cannot specialize this multiply");
2275 llvm::Value
*V1
= CGF
.EmitScalarExpr(Op1
);
2276 llvm::Value
*V2
= CGF
.EmitScalarExpr(Op2
);
2278 llvm::Value
*HasOverflow
;
2279 llvm::Value
*Result
= EmitOverflowIntrinsic(
2280 CGF
, llvm::Intrinsic::umul_with_overflow
, V1
, V2
, HasOverflow
);
2282 // The intrinsic call will detect overflow when the value is > UINT_MAX,
2283 // however, since the original builtin had a signed result, we need to report
2284 // an overflow when the result is greater than INT_MAX.
2285 auto IntMax
= llvm::APInt::getSignedMaxValue(ResultInfo
.Width
);
2286 llvm::Value
*IntMaxValue
= llvm::ConstantInt::get(Result
->getType(), IntMax
);
2288 llvm::Value
*IntMaxOverflow
= CGF
.Builder
.CreateICmpUGT(Result
, IntMaxValue
);
2289 HasOverflow
= CGF
.Builder
.CreateOr(HasOverflow
, IntMaxOverflow
);
2292 ResultArg
->getType()->getPointeeType().isVolatileQualified();
2293 Address ResultPtr
= CGF
.EmitPointerWithAlignment(ResultArg
);
2294 CGF
.Builder
.CreateStore(CGF
.EmitToMemory(Result
, ResultQTy
), ResultPtr
,
2296 return RValue::get(HasOverflow
);
2299 /// Determine if a binop is a checked mixed-sign multiply we can specialize.
2300 static bool isSpecialMixedSignMultiply(unsigned BuiltinID
,
2301 WidthAndSignedness Op1Info
,
2302 WidthAndSignedness Op2Info
,
2303 WidthAndSignedness ResultInfo
) {
2304 return BuiltinID
== Builtin::BI__builtin_mul_overflow
&&
2305 std::max(Op1Info
.Width
, Op2Info
.Width
) >= ResultInfo
.Width
&&
2306 Op1Info
.Signed
!= Op2Info
.Signed
;
2309 /// Emit a checked mixed-sign multiply. This is a cheaper specialization of
2310 /// the generic checked-binop irgen.
2312 EmitCheckedMixedSignMultiply(CodeGenFunction
&CGF
, const clang::Expr
*Op1
,
2313 WidthAndSignedness Op1Info
, const clang::Expr
*Op2
,
2314 WidthAndSignedness Op2Info
,
2315 const clang::Expr
*ResultArg
, QualType ResultQTy
,
2316 WidthAndSignedness ResultInfo
) {
2317 assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow
, Op1Info
,
2318 Op2Info
, ResultInfo
) &&
2319 "Not a mixed-sign multipliction we can specialize");
2321 // Emit the signed and unsigned operands.
2322 const clang::Expr
*SignedOp
= Op1Info
.Signed
? Op1
: Op2
;
2323 const clang::Expr
*UnsignedOp
= Op1Info
.Signed
? Op2
: Op1
;
2324 llvm::Value
*Signed
= CGF
.EmitScalarExpr(SignedOp
);
2325 llvm::Value
*Unsigned
= CGF
.EmitScalarExpr(UnsignedOp
);
2326 unsigned SignedOpWidth
= Op1Info
.Signed
? Op1Info
.Width
: Op2Info
.Width
;
2327 unsigned UnsignedOpWidth
= Op1Info
.Signed
? Op2Info
.Width
: Op1Info
.Width
;
2329 // One of the operands may be smaller than the other. If so, [s|z]ext it.
2330 if (SignedOpWidth
< UnsignedOpWidth
)
2331 Signed
= CGF
.Builder
.CreateSExt(Signed
, Unsigned
->getType(), "op.sext");
2332 if (UnsignedOpWidth
< SignedOpWidth
)
2333 Unsigned
= CGF
.Builder
.CreateZExt(Unsigned
, Signed
->getType(), "op.zext");
2335 llvm::Type
*OpTy
= Signed
->getType();
2336 llvm::Value
*Zero
= llvm::Constant::getNullValue(OpTy
);
2337 Address ResultPtr
= CGF
.EmitPointerWithAlignment(ResultArg
);
2338 llvm::Type
*ResTy
= ResultPtr
.getElementType();
2339 unsigned OpWidth
= std::max(Op1Info
.Width
, Op2Info
.Width
);
2341 // Take the absolute value of the signed operand.
2342 llvm::Value
*IsNegative
= CGF
.Builder
.CreateICmpSLT(Signed
, Zero
);
2343 llvm::Value
*AbsOfNegative
= CGF
.Builder
.CreateSub(Zero
, Signed
);
2344 llvm::Value
*AbsSigned
=
2345 CGF
.Builder
.CreateSelect(IsNegative
, AbsOfNegative
, Signed
);
2347 // Perform a checked unsigned multiplication.
2348 llvm::Value
*UnsignedOverflow
;
2349 llvm::Value
*UnsignedResult
=
2350 EmitOverflowIntrinsic(CGF
, llvm::Intrinsic::umul_with_overflow
, AbsSigned
,
2351 Unsigned
, UnsignedOverflow
);
2353 llvm::Value
*Overflow
, *Result
;
2354 if (ResultInfo
.Signed
) {
2355 // Signed overflow occurs if the result is greater than INT_MAX or lesser
2356 // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
2358 llvm::APInt::getSignedMaxValue(ResultInfo
.Width
).zext(OpWidth
);
2359 llvm::Value
*MaxResult
=
2360 CGF
.Builder
.CreateAdd(llvm::ConstantInt::get(OpTy
, IntMax
),
2361 CGF
.Builder
.CreateZExt(IsNegative
, OpTy
));
2362 llvm::Value
*SignedOverflow
=
2363 CGF
.Builder
.CreateICmpUGT(UnsignedResult
, MaxResult
);
2364 Overflow
= CGF
.Builder
.CreateOr(UnsignedOverflow
, SignedOverflow
);
2366 // Prepare the signed result (possibly by negating it).
2367 llvm::Value
*NegativeResult
= CGF
.Builder
.CreateNeg(UnsignedResult
);
2368 llvm::Value
*SignedResult
=
2369 CGF
.Builder
.CreateSelect(IsNegative
, NegativeResult
, UnsignedResult
);
2370 Result
= CGF
.Builder
.CreateTrunc(SignedResult
, ResTy
);
2372 // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
2373 llvm::Value
*Underflow
= CGF
.Builder
.CreateAnd(
2374 IsNegative
, CGF
.Builder
.CreateIsNotNull(UnsignedResult
));
2375 Overflow
= CGF
.Builder
.CreateOr(UnsignedOverflow
, Underflow
);
2376 if (ResultInfo
.Width
< OpWidth
) {
2378 llvm::APInt::getMaxValue(ResultInfo
.Width
).zext(OpWidth
);
2379 llvm::Value
*TruncOverflow
= CGF
.Builder
.CreateICmpUGT(
2380 UnsignedResult
, llvm::ConstantInt::get(OpTy
, IntMax
));
2381 Overflow
= CGF
.Builder
.CreateOr(Overflow
, TruncOverflow
);
2384 // Negate the product if it would be negative in infinite precision.
2385 Result
= CGF
.Builder
.CreateSelect(
2386 IsNegative
, CGF
.Builder
.CreateNeg(UnsignedResult
), UnsignedResult
);
2388 Result
= CGF
.Builder
.CreateTrunc(Result
, ResTy
);
2390 assert(Overflow
&& Result
&& "Missing overflow or result");
2393 ResultArg
->getType()->getPointeeType().isVolatileQualified();
2394 CGF
.Builder
.CreateStore(CGF
.EmitToMemory(Result
, ResultQTy
), ResultPtr
,
2396 return RValue::get(Overflow
);
2400 TypeRequiresBuiltinLaunderImp(const ASTContext
&Ctx
, QualType Ty
,
2401 llvm::SmallPtrSetImpl
<const Decl
*> &Seen
) {
2402 if (const auto *Arr
= Ctx
.getAsArrayType(Ty
))
2403 Ty
= Ctx
.getBaseElementType(Arr
);
2405 const auto *Record
= Ty
->getAsCXXRecordDecl();
2409 // We've already checked this type, or are in the process of checking it.
2410 if (!Seen
.insert(Record
).second
)
2413 assert(Record
->hasDefinition() &&
2414 "Incomplete types should already be diagnosed");
2416 if (Record
->isDynamicClass())
2419 for (FieldDecl
*F
: Record
->fields()) {
2420 if (TypeRequiresBuiltinLaunderImp(Ctx
, F
->getType(), Seen
))
2426 /// Determine if the specified type requires laundering by checking if it is a
2427 /// dynamic class type or contains a subobject which is a dynamic class type.
2428 static bool TypeRequiresBuiltinLaunder(CodeGenModule
&CGM
, QualType Ty
) {
2429 if (!CGM
.getCodeGenOpts().StrictVTablePointers
)
2431 llvm::SmallPtrSet
<const Decl
*, 16> Seen
;
2432 return TypeRequiresBuiltinLaunderImp(CGM
.getContext(), Ty
, Seen
);
2435 RValue
CodeGenFunction::emitRotate(const CallExpr
*E
, bool IsRotateRight
) {
2436 llvm::Value
*Src
= EmitScalarExpr(E
->getArg(0));
2437 llvm::Value
*ShiftAmt
= EmitScalarExpr(E
->getArg(1));
2439 // The builtin's shift arg may have a different type than the source arg and
2440 // result, but the LLVM intrinsic uses the same type for all values.
2441 llvm::Type
*Ty
= Src
->getType();
2442 ShiftAmt
= Builder
.CreateIntCast(ShiftAmt
, Ty
, false);
2444 // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
2445 unsigned IID
= IsRotateRight
? Intrinsic::fshr
: Intrinsic::fshl
;
2446 Function
*F
= CGM
.getIntrinsic(IID
, Ty
);
2447 return RValue::get(Builder
.CreateCall(F
, { Src
, Src
, ShiftAmt
}));
2450 // Map math builtins for long-double to f128 version.
2451 static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID
) {
2452 switch (BuiltinID
) {
2453 #define MUTATE_LDBL(func) \
2454 case Builtin::BI__builtin_##func##l: \
2455 return Builtin::BI__builtin_##func##f128;
2476 MUTATE_LDBL(nearbyint
)
2480 MUTATE_LDBL(llround
)
2506 MUTATE_LDBL(huge_val
)
2507 MUTATE_LDBL(copysign
)
2508 MUTATE_LDBL(nextafter
)
2509 MUTATE_LDBL(nexttoward
)
2510 MUTATE_LDBL(remainder
)
2512 MUTATE_LDBL(scalbln
)
2522 static Value
*tryUseTestFPKind(CodeGenFunction
&CGF
, unsigned BuiltinID
,
2524 if (CGF
.Builder
.getIsFPConstrained() &&
2525 CGF
.Builder
.getDefaultConstrainedExcept() != fp::ebIgnore
) {
2527 CGF
.getTargetHooks().testFPKind(V
, BuiltinID
, CGF
.Builder
, CGF
.CGM
))
2533 static RValue
EmitHipStdParUnsupportedBuiltin(CodeGenFunction
*CGF
,
2534 const FunctionDecl
*FD
) {
2535 auto Name
= FD
->getNameAsString() + "__hipstdpar_unsupported";
2536 auto FnTy
= CGF
->CGM
.getTypes().GetFunctionType(FD
);
2537 auto UBF
= CGF
->CGM
.getModule().getOrInsertFunction(Name
, FnTy
);
2539 SmallVector
<Value
*, 16> Args
;
2540 for (auto &&FormalTy
: FnTy
->params())
2541 Args
.push_back(llvm::PoisonValue::get(FormalTy
));
2543 return RValue::get(CGF
->Builder
.CreateCall(UBF
, Args
));
2546 RValue
CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD
, unsigned BuiltinID
,
2548 ReturnValueSlot ReturnValue
) {
2549 const FunctionDecl
*FD
= GD
.getDecl()->getAsFunction();
2550 // See if we can constant fold this builtin. If so, don't emit it at all.
2551 // TODO: Extend this handling to all builtin calls that we can constant-fold.
2552 Expr::EvalResult Result
;
2553 if (E
->isPRValue() && E
->EvaluateAsRValue(Result
, CGM
.getContext()) &&
2554 !Result
.hasSideEffects()) {
2555 if (Result
.Val
.isInt())
2556 return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
2557 Result
.Val
.getInt()));
2558 if (Result
.Val
.isFloat())
2559 return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
2560 Result
.Val
.getFloat()));
2563 // If current long-double semantics is IEEE 128-bit, replace math builtins
2564 // of long-double with f128 equivalent.
2565 // TODO: This mutation should also be applied to other targets other than PPC,
2566 // after backend supports IEEE 128-bit style libcalls.
2567 if (getTarget().getTriple().isPPC64() &&
2568 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
2569 BuiltinID
= mutateLongDoubleBuiltin(BuiltinID
);
2571 // If the builtin has been declared explicitly with an assembler label,
2572 // disable the specialized emitting below. Ideally we should communicate the
2573 // rename in IR, or at least avoid generating the intrinsic calls that are
2574 // likely to get lowered to the renamed library functions.
2575 const unsigned BuiltinIDIfNoAsmLabel
=
2576 FD
->hasAttr
<AsmLabelAttr
>() ? 0 : BuiltinID
;
2578 std::optional
<bool> ErrnoOverriden
;
2579 // ErrnoOverriden is true if math-errno is overriden via the
2580 // '#pragma float_control(precise, on)'. This pragma disables fast-math,
2581 // which implies math-errno.
2582 if (E
->hasStoredFPFeatures()) {
2583 FPOptionsOverride OP
= E
->getFPFeatures();
2584 if (OP
.hasMathErrnoOverride())
2585 ErrnoOverriden
= OP
.getMathErrnoOverride();
2587 // True if 'attribute__((optnone))' is used. This attribute overrides
2588 // fast-math which implies math-errno.
2589 bool OptNone
= CurFuncDecl
&& CurFuncDecl
->hasAttr
<OptimizeNoneAttr
>();
2591 // True if we are compiling at -O2 and errno has been disabled
2592 // using the '#pragma float_control(precise, off)', and
2593 // attribute opt-none hasn't been seen.
2594 bool ErrnoOverridenToFalseWithOpt
=
2595 ErrnoOverriden
.has_value() && !ErrnoOverriden
.value() && !OptNone
&&
2596 CGM
.getCodeGenOpts().OptimizationLevel
!= 0;
2598 // There are LLVM math intrinsics/instructions corresponding to math library
2599 // functions except the LLVM op will never set errno while the math library
2600 // might. Also, math builtins have the same semantics as their math library
2601 // twins. Thus, we can transform math library and builtin calls to their
2602 // LLVM counterparts if the call is marked 'const' (known to never set errno).
2603 // In case FP exceptions are enabled, the experimental versions of the
2604 // intrinsics model those.
2606 getContext().BuiltinInfo
.isConst(BuiltinID
);
2608 // There's a special case with the fma builtins where they are always const
2609 // if the target environment is GNU or the target is OS is Windows and we're
2610 // targeting the MSVCRT.dll environment.
2611 // FIXME: This list can be become outdated. Need to find a way to get it some
2613 switch (BuiltinID
) {
2614 case Builtin::BI__builtin_fma
:
2615 case Builtin::BI__builtin_fmaf
:
2616 case Builtin::BI__builtin_fmal
:
2617 case Builtin::BI__builtin_fmaf16
:
2618 case Builtin::BIfma
:
2619 case Builtin::BIfmaf
:
2620 case Builtin::BIfmal
: {
2621 auto &Trip
= CGM
.getTriple();
2622 if (Trip
.isGNUEnvironment() || Trip
.isOSMSVCRT())
2630 bool ConstWithoutErrnoAndExceptions
=
2631 getContext().BuiltinInfo
.isConstWithoutErrnoAndExceptions(BuiltinID
);
2632 bool ConstWithoutExceptions
=
2633 getContext().BuiltinInfo
.isConstWithoutExceptions(BuiltinID
);
2635 // ConstAttr is enabled in fast-math mode. In fast-math mode, math-errno is
2637 // Math intrinsics are generated only when math-errno is disabled. Any pragmas
2638 // or attributes that affect math-errno should prevent or allow math
2639 // intrincs to be generated. Intrinsics are generated:
2640 // 1- In fast math mode, unless math-errno is overriden
2641 // via '#pragma float_control(precise, on)', or via an
2642 // 'attribute__((optnone))'.
2643 // 2- If math-errno was enabled on command line but overriden
2644 // to false via '#pragma float_control(precise, off))' and
2645 // 'attribute__((optnone))' hasn't been used.
2646 // 3- If we are compiling with optimization and errno has been disabled
2647 // via '#pragma float_control(precise, off)', and
2648 // 'attribute__((optnone))' hasn't been used.
2650 bool ConstWithoutErrnoOrExceptions
=
2651 ConstWithoutErrnoAndExceptions
|| ConstWithoutExceptions
;
2652 bool GenerateIntrinsics
=
2653 (ConstAlways
&& !OptNone
) ||
2654 (!getLangOpts().MathErrno
&&
2655 !(ErrnoOverriden
.has_value() && ErrnoOverriden
.value()) && !OptNone
);
2656 if (!GenerateIntrinsics
) {
2657 GenerateIntrinsics
=
2658 ConstWithoutErrnoOrExceptions
&& !ConstWithoutErrnoAndExceptions
;
2659 if (!GenerateIntrinsics
)
2660 GenerateIntrinsics
=
2661 ConstWithoutErrnoOrExceptions
&&
2662 (!getLangOpts().MathErrno
&&
2663 !(ErrnoOverriden
.has_value() && ErrnoOverriden
.value()) && !OptNone
);
2664 if (!GenerateIntrinsics
)
2665 GenerateIntrinsics
=
2666 ConstWithoutErrnoOrExceptions
&& ErrnoOverridenToFalseWithOpt
;
2668 if (GenerateIntrinsics
) {
2669 switch (BuiltinIDIfNoAsmLabel
) {
2670 case Builtin::BIacos
:
2671 case Builtin::BIacosf
:
2672 case Builtin::BIacosl
:
2673 case Builtin::BI__builtin_acos
:
2674 case Builtin::BI__builtin_acosf
:
2675 case Builtin::BI__builtin_acosf16
:
2676 case Builtin::BI__builtin_acosl
:
2677 case Builtin::BI__builtin_acosf128
:
2678 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
2679 *this, E
, Intrinsic::acos
, Intrinsic::experimental_constrained_acos
));
2681 case Builtin::BIasin
:
2682 case Builtin::BIasinf
:
2683 case Builtin::BIasinl
:
2684 case Builtin::BI__builtin_asin
:
2685 case Builtin::BI__builtin_asinf
:
2686 case Builtin::BI__builtin_asinf16
:
2687 case Builtin::BI__builtin_asinl
:
2688 case Builtin::BI__builtin_asinf128
:
2689 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
2690 *this, E
, Intrinsic::asin
, Intrinsic::experimental_constrained_asin
));
2692 case Builtin::BIatan
:
2693 case Builtin::BIatanf
:
2694 case Builtin::BIatanl
:
2695 case Builtin::BI__builtin_atan
:
2696 case Builtin::BI__builtin_atanf
:
2697 case Builtin::BI__builtin_atanf16
:
2698 case Builtin::BI__builtin_atanl
:
2699 case Builtin::BI__builtin_atanf128
:
2700 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
2701 *this, E
, Intrinsic::atan
, Intrinsic::experimental_constrained_atan
));
2703 case Builtin::BIceil
:
2704 case Builtin::BIceilf
:
2705 case Builtin::BIceill
:
2706 case Builtin::BI__builtin_ceil
:
2707 case Builtin::BI__builtin_ceilf
:
2708 case Builtin::BI__builtin_ceilf16
:
2709 case Builtin::BI__builtin_ceill
:
2710 case Builtin::BI__builtin_ceilf128
:
2711 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E
,
2713 Intrinsic::experimental_constrained_ceil
));
2715 case Builtin::BIcopysign
:
2716 case Builtin::BIcopysignf
:
2717 case Builtin::BIcopysignl
:
2718 case Builtin::BI__builtin_copysign
:
2719 case Builtin::BI__builtin_copysignf
:
2720 case Builtin::BI__builtin_copysignf16
:
2721 case Builtin::BI__builtin_copysignl
:
2722 case Builtin::BI__builtin_copysignf128
:
2724 emitBuiltinWithOneOverloadedType
<2>(*this, E
, Intrinsic::copysign
));
2726 case Builtin::BIcos
:
2727 case Builtin::BIcosf
:
2728 case Builtin::BIcosl
:
2729 case Builtin::BI__builtin_cos
:
2730 case Builtin::BI__builtin_cosf
:
2731 case Builtin::BI__builtin_cosf16
:
2732 case Builtin::BI__builtin_cosl
:
2733 case Builtin::BI__builtin_cosf128
:
2734 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E
,
2736 Intrinsic::experimental_constrained_cos
));
2738 case Builtin::BIcosh
:
2739 case Builtin::BIcoshf
:
2740 case Builtin::BIcoshl
:
2741 case Builtin::BI__builtin_cosh
:
2742 case Builtin::BI__builtin_coshf
:
2743 case Builtin::BI__builtin_coshf16
:
2744 case Builtin::BI__builtin_coshl
:
2745 case Builtin::BI__builtin_coshf128
:
2746 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
2747 *this, E
, Intrinsic::cosh
, Intrinsic::experimental_constrained_cosh
));
2749 case Builtin::BIexp
:
2750 case Builtin::BIexpf
:
2751 case Builtin::BIexpl
:
2752 case Builtin::BI__builtin_exp
:
2753 case Builtin::BI__builtin_expf
:
2754 case Builtin::BI__builtin_expf16
:
2755 case Builtin::BI__builtin_expl
:
2756 case Builtin::BI__builtin_expf128
:
2757 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E
,
2759 Intrinsic::experimental_constrained_exp
));
2761 case Builtin::BIexp2
:
2762 case Builtin::BIexp2f
:
2763 case Builtin::BIexp2l
:
2764 case Builtin::BI__builtin_exp2
:
2765 case Builtin::BI__builtin_exp2f
:
2766 case Builtin::BI__builtin_exp2f16
:
2767 case Builtin::BI__builtin_exp2l
:
2768 case Builtin::BI__builtin_exp2f128
:
2769 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E
,
2771 Intrinsic::experimental_constrained_exp2
));
2772 case Builtin::BI__builtin_exp10
:
2773 case Builtin::BI__builtin_exp10f
:
2774 case Builtin::BI__builtin_exp10f16
:
2775 case Builtin::BI__builtin_exp10l
:
2776 case Builtin::BI__builtin_exp10f128
: {
2777 // TODO: strictfp support
2778 if (Builder
.getIsFPConstrained())
2781 emitBuiltinWithOneOverloadedType
<1>(*this, E
, Intrinsic::exp10
));
2783 case Builtin::BIfabs
:
2784 case Builtin::BIfabsf
:
2785 case Builtin::BIfabsl
:
2786 case Builtin::BI__builtin_fabs
:
2787 case Builtin::BI__builtin_fabsf
:
2788 case Builtin::BI__builtin_fabsf16
:
2789 case Builtin::BI__builtin_fabsl
:
2790 case Builtin::BI__builtin_fabsf128
:
2792 emitBuiltinWithOneOverloadedType
<1>(*this, E
, Intrinsic::fabs
));
2794 case Builtin::BIfloor
:
2795 case Builtin::BIfloorf
:
2796 case Builtin::BIfloorl
:
2797 case Builtin::BI__builtin_floor
:
2798 case Builtin::BI__builtin_floorf
:
2799 case Builtin::BI__builtin_floorf16
:
2800 case Builtin::BI__builtin_floorl
:
2801 case Builtin::BI__builtin_floorf128
:
2802 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E
,
2804 Intrinsic::experimental_constrained_floor
));
2806 case Builtin::BIfma
:
2807 case Builtin::BIfmaf
:
2808 case Builtin::BIfmal
:
2809 case Builtin::BI__builtin_fma
:
2810 case Builtin::BI__builtin_fmaf
:
2811 case Builtin::BI__builtin_fmaf16
:
2812 case Builtin::BI__builtin_fmal
:
2813 case Builtin::BI__builtin_fmaf128
:
2814 return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E
,
2816 Intrinsic::experimental_constrained_fma
));
2818 case Builtin::BIfmax
:
2819 case Builtin::BIfmaxf
:
2820 case Builtin::BIfmaxl
:
2821 case Builtin::BI__builtin_fmax
:
2822 case Builtin::BI__builtin_fmaxf
:
2823 case Builtin::BI__builtin_fmaxf16
:
2824 case Builtin::BI__builtin_fmaxl
:
2825 case Builtin::BI__builtin_fmaxf128
:
2826 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E
,
2828 Intrinsic::experimental_constrained_maxnum
));
2830 case Builtin::BIfmin
:
2831 case Builtin::BIfminf
:
2832 case Builtin::BIfminl
:
2833 case Builtin::BI__builtin_fmin
:
2834 case Builtin::BI__builtin_fminf
:
2835 case Builtin::BI__builtin_fminf16
:
2836 case Builtin::BI__builtin_fminl
:
2837 case Builtin::BI__builtin_fminf128
:
2838 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E
,
2840 Intrinsic::experimental_constrained_minnum
));
2842 // fmod() is a special-case. It maps to the frem instruction rather than an
2844 case Builtin::BIfmod
:
2845 case Builtin::BIfmodf
:
2846 case Builtin::BIfmodl
:
2847 case Builtin::BI__builtin_fmod
:
2848 case Builtin::BI__builtin_fmodf
:
2849 case Builtin::BI__builtin_fmodf16
:
2850 case Builtin::BI__builtin_fmodl
:
2851 case Builtin::BI__builtin_fmodf128
: {
2852 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(*this, E
);
2853 Value
*Arg1
= EmitScalarExpr(E
->getArg(0));
2854 Value
*Arg2
= EmitScalarExpr(E
->getArg(1));
2855 return RValue::get(Builder
.CreateFRem(Arg1
, Arg2
, "fmod"));
2858 case Builtin::BIlog
:
2859 case Builtin::BIlogf
:
2860 case Builtin::BIlogl
:
2861 case Builtin::BI__builtin_log
:
2862 case Builtin::BI__builtin_logf
:
2863 case Builtin::BI__builtin_logf16
:
2864 case Builtin::BI__builtin_logl
:
2865 case Builtin::BI__builtin_logf128
:
2866 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E
,
2868 Intrinsic::experimental_constrained_log
));
2870 case Builtin::BIlog10
:
2871 case Builtin::BIlog10f
:
2872 case Builtin::BIlog10l
:
2873 case Builtin::BI__builtin_log10
:
2874 case Builtin::BI__builtin_log10f
:
2875 case Builtin::BI__builtin_log10f16
:
2876 case Builtin::BI__builtin_log10l
:
2877 case Builtin::BI__builtin_log10f128
:
2878 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E
,
2880 Intrinsic::experimental_constrained_log10
));
2882 case Builtin::BIlog2
:
2883 case Builtin::BIlog2f
:
2884 case Builtin::BIlog2l
:
2885 case Builtin::BI__builtin_log2
:
2886 case Builtin::BI__builtin_log2f
:
2887 case Builtin::BI__builtin_log2f16
:
2888 case Builtin::BI__builtin_log2l
:
2889 case Builtin::BI__builtin_log2f128
:
2890 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E
,
2892 Intrinsic::experimental_constrained_log2
));
2894 case Builtin::BInearbyint
:
2895 case Builtin::BInearbyintf
:
2896 case Builtin::BInearbyintl
:
2897 case Builtin::BI__builtin_nearbyint
:
2898 case Builtin::BI__builtin_nearbyintf
:
2899 case Builtin::BI__builtin_nearbyintl
:
2900 case Builtin::BI__builtin_nearbyintf128
:
2901 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E
,
2902 Intrinsic::nearbyint
,
2903 Intrinsic::experimental_constrained_nearbyint
));
2905 case Builtin::BIpow
:
2906 case Builtin::BIpowf
:
2907 case Builtin::BIpowl
:
2908 case Builtin::BI__builtin_pow
:
2909 case Builtin::BI__builtin_powf
:
2910 case Builtin::BI__builtin_powf16
:
2911 case Builtin::BI__builtin_powl
:
2912 case Builtin::BI__builtin_powf128
:
2913 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E
,
2915 Intrinsic::experimental_constrained_pow
));
2917 case Builtin::BIrint
:
2918 case Builtin::BIrintf
:
2919 case Builtin::BIrintl
:
2920 case Builtin::BI__builtin_rint
:
2921 case Builtin::BI__builtin_rintf
:
2922 case Builtin::BI__builtin_rintf16
:
2923 case Builtin::BI__builtin_rintl
:
2924 case Builtin::BI__builtin_rintf128
:
2925 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E
,
2927 Intrinsic::experimental_constrained_rint
));
2929 case Builtin::BIround
:
2930 case Builtin::BIroundf
:
2931 case Builtin::BIroundl
:
2932 case Builtin::BI__builtin_round
:
2933 case Builtin::BI__builtin_roundf
:
2934 case Builtin::BI__builtin_roundf16
:
2935 case Builtin::BI__builtin_roundl
:
2936 case Builtin::BI__builtin_roundf128
:
2937 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E
,
2939 Intrinsic::experimental_constrained_round
));
2941 case Builtin::BIroundeven
:
2942 case Builtin::BIroundevenf
:
2943 case Builtin::BIroundevenl
:
2944 case Builtin::BI__builtin_roundeven
:
2945 case Builtin::BI__builtin_roundevenf
:
2946 case Builtin::BI__builtin_roundevenf16
:
2947 case Builtin::BI__builtin_roundevenl
:
2948 case Builtin::BI__builtin_roundevenf128
:
2949 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E
,
2950 Intrinsic::roundeven
,
2951 Intrinsic::experimental_constrained_roundeven
));
2953 case Builtin::BIsin
:
2954 case Builtin::BIsinf
:
2955 case Builtin::BIsinl
:
2956 case Builtin::BI__builtin_sin
:
2957 case Builtin::BI__builtin_sinf
:
2958 case Builtin::BI__builtin_sinf16
:
2959 case Builtin::BI__builtin_sinl
:
2960 case Builtin::BI__builtin_sinf128
:
2961 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E
,
2963 Intrinsic::experimental_constrained_sin
));
2965 case Builtin::BIsinh
:
2966 case Builtin::BIsinhf
:
2967 case Builtin::BIsinhl
:
2968 case Builtin::BI__builtin_sinh
:
2969 case Builtin::BI__builtin_sinhf
:
2970 case Builtin::BI__builtin_sinhf16
:
2971 case Builtin::BI__builtin_sinhl
:
2972 case Builtin::BI__builtin_sinhf128
:
2973 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
2974 *this, E
, Intrinsic::sinh
, Intrinsic::experimental_constrained_sinh
));
2976 case Builtin::BIsqrt
:
2977 case Builtin::BIsqrtf
:
2978 case Builtin::BIsqrtl
:
2979 case Builtin::BI__builtin_sqrt
:
2980 case Builtin::BI__builtin_sqrtf
:
2981 case Builtin::BI__builtin_sqrtf16
:
2982 case Builtin::BI__builtin_sqrtl
:
2983 case Builtin::BI__builtin_sqrtf128
:
2984 case Builtin::BI__builtin_elementwise_sqrt
: {
2985 llvm::Value
*Call
= emitUnaryMaybeConstrainedFPBuiltin(
2986 *this, E
, Intrinsic::sqrt
, Intrinsic::experimental_constrained_sqrt
);
2987 SetSqrtFPAccuracy(Call
);
2988 return RValue::get(Call
);
2991 case Builtin::BItan
:
2992 case Builtin::BItanf
:
2993 case Builtin::BItanl
:
2994 case Builtin::BI__builtin_tan
:
2995 case Builtin::BI__builtin_tanf
:
2996 case Builtin::BI__builtin_tanf16
:
2997 case Builtin::BI__builtin_tanl
:
2998 case Builtin::BI__builtin_tanf128
:
2999 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
3000 *this, E
, Intrinsic::tan
, Intrinsic::experimental_constrained_tan
));
3002 case Builtin::BItanh
:
3003 case Builtin::BItanhf
:
3004 case Builtin::BItanhl
:
3005 case Builtin::BI__builtin_tanh
:
3006 case Builtin::BI__builtin_tanhf
:
3007 case Builtin::BI__builtin_tanhf16
:
3008 case Builtin::BI__builtin_tanhl
:
3009 case Builtin::BI__builtin_tanhf128
:
3010 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
3011 *this, E
, Intrinsic::tanh
, Intrinsic::experimental_constrained_tanh
));
3013 case Builtin::BItrunc
:
3014 case Builtin::BItruncf
:
3015 case Builtin::BItruncl
:
3016 case Builtin::BI__builtin_trunc
:
3017 case Builtin::BI__builtin_truncf
:
3018 case Builtin::BI__builtin_truncf16
:
3019 case Builtin::BI__builtin_truncl
:
3020 case Builtin::BI__builtin_truncf128
:
3021 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E
,
3023 Intrinsic::experimental_constrained_trunc
));
3025 case Builtin::BIlround
:
3026 case Builtin::BIlroundf
:
3027 case Builtin::BIlroundl
:
3028 case Builtin::BI__builtin_lround
:
3029 case Builtin::BI__builtin_lroundf
:
3030 case Builtin::BI__builtin_lroundl
:
3031 case Builtin::BI__builtin_lroundf128
:
3032 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
3033 *this, E
, Intrinsic::lround
,
3034 Intrinsic::experimental_constrained_lround
));
3036 case Builtin::BIllround
:
3037 case Builtin::BIllroundf
:
3038 case Builtin::BIllroundl
:
3039 case Builtin::BI__builtin_llround
:
3040 case Builtin::BI__builtin_llroundf
:
3041 case Builtin::BI__builtin_llroundl
:
3042 case Builtin::BI__builtin_llroundf128
:
3043 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
3044 *this, E
, Intrinsic::llround
,
3045 Intrinsic::experimental_constrained_llround
));
3047 case Builtin::BIlrint
:
3048 case Builtin::BIlrintf
:
3049 case Builtin::BIlrintl
:
3050 case Builtin::BI__builtin_lrint
:
3051 case Builtin::BI__builtin_lrintf
:
3052 case Builtin::BI__builtin_lrintl
:
3053 case Builtin::BI__builtin_lrintf128
:
3054 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
3055 *this, E
, Intrinsic::lrint
,
3056 Intrinsic::experimental_constrained_lrint
));
3058 case Builtin::BIllrint
:
3059 case Builtin::BIllrintf
:
3060 case Builtin::BIllrintl
:
3061 case Builtin::BI__builtin_llrint
:
3062 case Builtin::BI__builtin_llrintf
:
3063 case Builtin::BI__builtin_llrintl
:
3064 case Builtin::BI__builtin_llrintf128
:
3065 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
3066 *this, E
, Intrinsic::llrint
,
3067 Intrinsic::experimental_constrained_llrint
));
3068 case Builtin::BI__builtin_ldexp
:
3069 case Builtin::BI__builtin_ldexpf
:
3070 case Builtin::BI__builtin_ldexpl
:
3071 case Builtin::BI__builtin_ldexpf16
:
3072 case Builtin::BI__builtin_ldexpf128
: {
3073 return RValue::get(emitBinaryExpMaybeConstrainedFPBuiltin(
3074 *this, E
, Intrinsic::ldexp
,
3075 Intrinsic::experimental_constrained_ldexp
));
3082 // Check NonnullAttribute/NullabilityArg and Alignment.
3083 auto EmitArgCheck
= [&](TypeCheckKind Kind
, Address A
, const Expr
*Arg
,
3085 Value
*Val
= A
.emitRawPointer(*this);
3086 EmitNonNullArgCheck(RValue::get(Val
), Arg
->getType(), Arg
->getExprLoc(), FD
,
3089 if (SanOpts
.has(SanitizerKind::Alignment
)) {
3090 SanitizerSet SkippedChecks
;
3091 SkippedChecks
.set(SanitizerKind::All
);
3092 SkippedChecks
.clear(SanitizerKind::Alignment
);
3093 SourceLocation Loc
= Arg
->getExprLoc();
3094 // Strip an implicit cast.
3095 if (auto *CE
= dyn_cast
<ImplicitCastExpr
>(Arg
))
3096 if (CE
->getCastKind() == CK_BitCast
)
3097 Arg
= CE
->getSubExpr();
3098 EmitTypeCheck(Kind
, Loc
, Val
, Arg
->getType(), A
.getAlignment(),
3103 switch (BuiltinIDIfNoAsmLabel
) {
3105 case Builtin::BI__builtin___CFStringMakeConstantString
:
3106 case Builtin::BI__builtin___NSStringMakeConstantString
:
3107 return RValue::get(ConstantEmitter(*this).emitAbstract(E
, E
->getType()));
3108 case Builtin::BI__builtin_stdarg_start
:
3109 case Builtin::BI__builtin_va_start
:
3110 case Builtin::BI__va_start
:
3111 case Builtin::BI__builtin_va_end
:
3112 EmitVAStartEnd(BuiltinID
== Builtin::BI__va_start
3113 ? EmitScalarExpr(E
->getArg(0))
3114 : EmitVAListRef(E
->getArg(0)).emitRawPointer(*this),
3115 BuiltinID
!= Builtin::BI__builtin_va_end
);
3116 return RValue::get(nullptr);
3117 case Builtin::BI__builtin_va_copy
: {
3118 Value
*DstPtr
= EmitVAListRef(E
->getArg(0)).emitRawPointer(*this);
3119 Value
*SrcPtr
= EmitVAListRef(E
->getArg(1)).emitRawPointer(*this);
3120 Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::vacopy
, {DstPtr
->getType()}),
3122 return RValue::get(nullptr);
3124 case Builtin::BIabs
:
3125 case Builtin::BIlabs
:
3126 case Builtin::BIllabs
:
3127 case Builtin::BI__builtin_abs
:
3128 case Builtin::BI__builtin_labs
:
3129 case Builtin::BI__builtin_llabs
: {
3130 bool SanitizeOverflow
= SanOpts
.has(SanitizerKind::SignedIntegerOverflow
);
3133 switch (getLangOpts().getSignedOverflowBehavior()) {
3134 case LangOptions::SOB_Defined
:
3135 Result
= EmitAbs(*this, EmitScalarExpr(E
->getArg(0)), false);
3137 case LangOptions::SOB_Undefined
:
3138 if (!SanitizeOverflow
) {
3139 Result
= EmitAbs(*this, EmitScalarExpr(E
->getArg(0)), true);
3143 case LangOptions::SOB_Trapping
:
3144 // TODO: Somehow handle the corner case when the address of abs is taken.
3145 Result
= EmitOverflowCheckedAbs(*this, E
, SanitizeOverflow
);
3148 return RValue::get(Result
);
3150 case Builtin::BI__builtin_complex
: {
3151 Value
*Real
= EmitScalarExpr(E
->getArg(0));
3152 Value
*Imag
= EmitScalarExpr(E
->getArg(1));
3153 return RValue::getComplex({Real
, Imag
});
3155 case Builtin::BI__builtin_conj
:
3156 case Builtin::BI__builtin_conjf
:
3157 case Builtin::BI__builtin_conjl
:
3158 case Builtin::BIconj
:
3159 case Builtin::BIconjf
:
3160 case Builtin::BIconjl
: {
3161 ComplexPairTy ComplexVal
= EmitComplexExpr(E
->getArg(0));
3162 Value
*Real
= ComplexVal
.first
;
3163 Value
*Imag
= ComplexVal
.second
;
3164 Imag
= Builder
.CreateFNeg(Imag
, "neg");
3165 return RValue::getComplex(std::make_pair(Real
, Imag
));
3167 case Builtin::BI__builtin_creal
:
3168 case Builtin::BI__builtin_crealf
:
3169 case Builtin::BI__builtin_creall
:
3170 case Builtin::BIcreal
:
3171 case Builtin::BIcrealf
:
3172 case Builtin::BIcreall
: {
3173 ComplexPairTy ComplexVal
= EmitComplexExpr(E
->getArg(0));
3174 return RValue::get(ComplexVal
.first
);
3177 case Builtin::BI__builtin_preserve_access_index
: {
3178 // Only enabled preserved access index region when debuginfo
3179 // is available as debuginfo is needed to preserve user-level
3181 if (!getDebugInfo()) {
3182 CGM
.Error(E
->getExprLoc(), "using builtin_preserve_access_index() without -g");
3183 return RValue::get(EmitScalarExpr(E
->getArg(0)));
3186 // Nested builtin_preserve_access_index() not supported
3187 if (IsInPreservedAIRegion
) {
3188 CGM
.Error(E
->getExprLoc(), "nested builtin_preserve_access_index() not supported");
3189 return RValue::get(EmitScalarExpr(E
->getArg(0)));
3192 IsInPreservedAIRegion
= true;
3193 Value
*Res
= EmitScalarExpr(E
->getArg(0));
3194 IsInPreservedAIRegion
= false;
3195 return RValue::get(Res
);
3198 case Builtin::BI__builtin_cimag
:
3199 case Builtin::BI__builtin_cimagf
:
3200 case Builtin::BI__builtin_cimagl
:
3201 case Builtin::BIcimag
:
3202 case Builtin::BIcimagf
:
3203 case Builtin::BIcimagl
: {
3204 ComplexPairTy ComplexVal
= EmitComplexExpr(E
->getArg(0));
3205 return RValue::get(ComplexVal
.second
);
3208 case Builtin::BI__builtin_clrsb
:
3209 case Builtin::BI__builtin_clrsbl
:
3210 case Builtin::BI__builtin_clrsbll
: {
3211 // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
3212 Value
*ArgValue
= EmitScalarExpr(E
->getArg(0));
3214 llvm::Type
*ArgType
= ArgValue
->getType();
3215 Function
*F
= CGM
.getIntrinsic(Intrinsic::ctlz
, ArgType
);
3217 llvm::Type
*ResultType
= ConvertType(E
->getType());
3218 Value
*Zero
= llvm::Constant::getNullValue(ArgType
);
3219 Value
*IsNeg
= Builder
.CreateICmpSLT(ArgValue
, Zero
, "isneg");
3220 Value
*Inverse
= Builder
.CreateNot(ArgValue
, "not");
3221 Value
*Tmp
= Builder
.CreateSelect(IsNeg
, Inverse
, ArgValue
);
3222 Value
*Ctlz
= Builder
.CreateCall(F
, {Tmp
, Builder
.getFalse()});
3223 Value
*Result
= Builder
.CreateSub(Ctlz
, llvm::ConstantInt::get(ArgType
, 1));
3224 Result
= Builder
.CreateIntCast(Result
, ResultType
, /*isSigned*/true,
3226 return RValue::get(Result
);
3228 case Builtin::BI__builtin_ctzs
:
3229 case Builtin::BI__builtin_ctz
:
3230 case Builtin::BI__builtin_ctzl
:
3231 case Builtin::BI__builtin_ctzll
:
3232 case Builtin::BI__builtin_ctzg
: {
3233 bool HasFallback
= BuiltinIDIfNoAsmLabel
== Builtin::BI__builtin_ctzg
&&
3234 E
->getNumArgs() > 1;
3237 HasFallback
? EmitScalarExpr(E
->getArg(0))
3238 : EmitCheckedArgForBuiltin(E
->getArg(0), BCK_CTZPassedZero
);
3240 llvm::Type
*ArgType
= ArgValue
->getType();
3241 Function
*F
= CGM
.getIntrinsic(Intrinsic::cttz
, ArgType
);
3243 llvm::Type
*ResultType
= ConvertType(E
->getType());
3245 Builder
.getInt1(HasFallback
|| getTarget().isCLZForZeroUndef());
3246 Value
*Result
= Builder
.CreateCall(F
, {ArgValue
, ZeroUndef
});
3247 if (Result
->getType() != ResultType
)
3249 Builder
.CreateIntCast(Result
, ResultType
, /*isSigned*/ false, "cast");
3251 return RValue::get(Result
);
3253 Value
*Zero
= Constant::getNullValue(ArgType
);
3254 Value
*IsZero
= Builder
.CreateICmpEQ(ArgValue
, Zero
, "iszero");
3255 Value
*FallbackValue
= EmitScalarExpr(E
->getArg(1));
3256 Value
*ResultOrFallback
=
3257 Builder
.CreateSelect(IsZero
, FallbackValue
, Result
, "ctzg");
3258 return RValue::get(ResultOrFallback
);
3260 case Builtin::BI__builtin_clzs
:
3261 case Builtin::BI__builtin_clz
:
3262 case Builtin::BI__builtin_clzl
:
3263 case Builtin::BI__builtin_clzll
:
3264 case Builtin::BI__builtin_clzg
: {
3265 bool HasFallback
= BuiltinIDIfNoAsmLabel
== Builtin::BI__builtin_clzg
&&
3266 E
->getNumArgs() > 1;
3269 HasFallback
? EmitScalarExpr(E
->getArg(0))
3270 : EmitCheckedArgForBuiltin(E
->getArg(0), BCK_CLZPassedZero
);
3272 llvm::Type
*ArgType
= ArgValue
->getType();
3273 Function
*F
= CGM
.getIntrinsic(Intrinsic::ctlz
, ArgType
);
3275 llvm::Type
*ResultType
= ConvertType(E
->getType());
3277 Builder
.getInt1(HasFallback
|| getTarget().isCLZForZeroUndef());
3278 Value
*Result
= Builder
.CreateCall(F
, {ArgValue
, ZeroUndef
});
3279 if (Result
->getType() != ResultType
)
3281 Builder
.CreateIntCast(Result
, ResultType
, /*isSigned*/ false, "cast");
3283 return RValue::get(Result
);
3285 Value
*Zero
= Constant::getNullValue(ArgType
);
3286 Value
*IsZero
= Builder
.CreateICmpEQ(ArgValue
, Zero
, "iszero");
3287 Value
*FallbackValue
= EmitScalarExpr(E
->getArg(1));
3288 Value
*ResultOrFallback
=
3289 Builder
.CreateSelect(IsZero
, FallbackValue
, Result
, "clzg");
3290 return RValue::get(ResultOrFallback
);
3292 case Builtin::BI__builtin_ffs
:
3293 case Builtin::BI__builtin_ffsl
:
3294 case Builtin::BI__builtin_ffsll
: {
3295 // ffs(x) -> x ? cttz(x) + 1 : 0
3296 Value
*ArgValue
= EmitScalarExpr(E
->getArg(0));
3298 llvm::Type
*ArgType
= ArgValue
->getType();
3299 Function
*F
= CGM
.getIntrinsic(Intrinsic::cttz
, ArgType
);
3301 llvm::Type
*ResultType
= ConvertType(E
->getType());
3303 Builder
.CreateAdd(Builder
.CreateCall(F
, {ArgValue
, Builder
.getTrue()}),
3304 llvm::ConstantInt::get(ArgType
, 1));
3305 Value
*Zero
= llvm::Constant::getNullValue(ArgType
);
3306 Value
*IsZero
= Builder
.CreateICmpEQ(ArgValue
, Zero
, "iszero");
3307 Value
*Result
= Builder
.CreateSelect(IsZero
, Zero
, Tmp
, "ffs");
3308 if (Result
->getType() != ResultType
)
3309 Result
= Builder
.CreateIntCast(Result
, ResultType
, /*isSigned*/true,
3311 return RValue::get(Result
);
3313 case Builtin::BI__builtin_parity
:
3314 case Builtin::BI__builtin_parityl
:
3315 case Builtin::BI__builtin_parityll
: {
3316 // parity(x) -> ctpop(x) & 1
3317 Value
*ArgValue
= EmitScalarExpr(E
->getArg(0));
3319 llvm::Type
*ArgType
= ArgValue
->getType();
3320 Function
*F
= CGM
.getIntrinsic(Intrinsic::ctpop
, ArgType
);
3322 llvm::Type
*ResultType
= ConvertType(E
->getType());
3323 Value
*Tmp
= Builder
.CreateCall(F
, ArgValue
);
3324 Value
*Result
= Builder
.CreateAnd(Tmp
, llvm::ConstantInt::get(ArgType
, 1));
3325 if (Result
->getType() != ResultType
)
3326 Result
= Builder
.CreateIntCast(Result
, ResultType
, /*isSigned*/true,
3328 return RValue::get(Result
);
3330 case Builtin::BI__lzcnt16
:
3331 case Builtin::BI__lzcnt
:
3332 case Builtin::BI__lzcnt64
: {
3333 Value
*ArgValue
= EmitScalarExpr(E
->getArg(0));
3335 llvm::Type
*ArgType
= ArgValue
->getType();
3336 Function
*F
= CGM
.getIntrinsic(Intrinsic::ctlz
, ArgType
);
3338 llvm::Type
*ResultType
= ConvertType(E
->getType());
3339 Value
*Result
= Builder
.CreateCall(F
, {ArgValue
, Builder
.getFalse()});
3340 if (Result
->getType() != ResultType
)
3341 Result
= Builder
.CreateIntCast(Result
, ResultType
, /*isSigned*/true,
3343 return RValue::get(Result
);
3345 case Builtin::BI__popcnt16
:
3346 case Builtin::BI__popcnt
:
3347 case Builtin::BI__popcnt64
:
3348 case Builtin::BI__builtin_popcount
:
3349 case Builtin::BI__builtin_popcountl
:
3350 case Builtin::BI__builtin_popcountll
:
3351 case Builtin::BI__builtin_popcountg
: {
3352 Value
*ArgValue
= EmitScalarExpr(E
->getArg(0));
3354 llvm::Type
*ArgType
= ArgValue
->getType();
3355 Function
*F
= CGM
.getIntrinsic(Intrinsic::ctpop
, ArgType
);
3357 llvm::Type
*ResultType
= ConvertType(E
->getType());
3358 Value
*Result
= Builder
.CreateCall(F
, ArgValue
);
3359 if (Result
->getType() != ResultType
)
3361 Builder
.CreateIntCast(Result
, ResultType
, /*isSigned*/ false, "cast");
3362 return RValue::get(Result
);
3364 case Builtin::BI__builtin_unpredictable
: {
3365 // Always return the argument of __builtin_unpredictable. LLVM does not
3366 // handle this builtin. Metadata for this builtin should be added directly
3367 // to instructions such as branches or switches that use it.
3368 return RValue::get(EmitScalarExpr(E
->getArg(0)));
3370 case Builtin::BI__builtin_expect
: {
3371 Value
*ArgValue
= EmitScalarExpr(E
->getArg(0));
3372 llvm::Type
*ArgType
= ArgValue
->getType();
3374 Value
*ExpectedValue
= EmitScalarExpr(E
->getArg(1));
3375 // Don't generate llvm.expect on -O0 as the backend won't use it for
3377 // Note, we still IRGen ExpectedValue because it could have side-effects.
3378 if (CGM
.getCodeGenOpts().OptimizationLevel
== 0)
3379 return RValue::get(ArgValue
);
3381 Function
*FnExpect
= CGM
.getIntrinsic(Intrinsic::expect
, ArgType
);
3383 Builder
.CreateCall(FnExpect
, {ArgValue
, ExpectedValue
}, "expval");
3384 return RValue::get(Result
);
3386 case Builtin::BI__builtin_expect_with_probability
: {
3387 Value
*ArgValue
= EmitScalarExpr(E
->getArg(0));
3388 llvm::Type
*ArgType
= ArgValue
->getType();
3390 Value
*ExpectedValue
= EmitScalarExpr(E
->getArg(1));
3391 llvm::APFloat
Probability(0.0);
3392 const Expr
*ProbArg
= E
->getArg(2);
3393 bool EvalSucceed
= ProbArg
->EvaluateAsFloat(Probability
, CGM
.getContext());
3394 assert(EvalSucceed
&& "probability should be able to evaluate as float");
3396 bool LoseInfo
= false;
3397 Probability
.convert(llvm::APFloat::IEEEdouble(),
3398 llvm::RoundingMode::Dynamic
, &LoseInfo
);
3399 llvm::Type
*Ty
= ConvertType(ProbArg
->getType());
3400 Constant
*Confidence
= ConstantFP::get(Ty
, Probability
);
3401 // Don't generate llvm.expect.with.probability on -O0 as the backend
3402 // won't use it for anything.
3403 // Note, we still IRGen ExpectedValue because it could have side-effects.
3404 if (CGM
.getCodeGenOpts().OptimizationLevel
== 0)
3405 return RValue::get(ArgValue
);
3407 Function
*FnExpect
=
3408 CGM
.getIntrinsic(Intrinsic::expect_with_probability
, ArgType
);
3409 Value
*Result
= Builder
.CreateCall(
3410 FnExpect
, {ArgValue
, ExpectedValue
, Confidence
}, "expval");
3411 return RValue::get(Result
);
3413 case Builtin::BI__builtin_assume_aligned
: {
3414 const Expr
*Ptr
= E
->getArg(0);
3415 Value
*PtrValue
= EmitScalarExpr(Ptr
);
3416 Value
*OffsetValue
=
3417 (E
->getNumArgs() > 2) ? EmitScalarExpr(E
->getArg(2)) : nullptr;
3419 Value
*AlignmentValue
= EmitScalarExpr(E
->getArg(1));
3420 ConstantInt
*AlignmentCI
= cast
<ConstantInt
>(AlignmentValue
);
3421 if (AlignmentCI
->getValue().ugt(llvm::Value::MaximumAlignment
))
3422 AlignmentCI
= ConstantInt::get(AlignmentCI
->getIntegerType(),
3423 llvm::Value::MaximumAlignment
);
3425 emitAlignmentAssumption(PtrValue
, Ptr
,
3426 /*The expr loc is sufficient.*/ SourceLocation(),
3427 AlignmentCI
, OffsetValue
);
3428 return RValue::get(PtrValue
);
3430 case Builtin::BI__assume
:
3431 case Builtin::BI__builtin_assume
: {
3432 if (E
->getArg(0)->HasSideEffects(getContext()))
3433 return RValue::get(nullptr);
3435 Value
*ArgValue
= EmitScalarExpr(E
->getArg(0));
3436 Function
*FnAssume
= CGM
.getIntrinsic(Intrinsic::assume
);
3437 Builder
.CreateCall(FnAssume
, ArgValue
);
3438 return RValue::get(nullptr);
3440 case Builtin::BI__builtin_assume_separate_storage
: {
3441 const Expr
*Arg0
= E
->getArg(0);
3442 const Expr
*Arg1
= E
->getArg(1);
3444 Value
*Value0
= EmitScalarExpr(Arg0
);
3445 Value
*Value1
= EmitScalarExpr(Arg1
);
3447 Value
*Values
[] = {Value0
, Value1
};
3448 OperandBundleDefT
<Value
*> OBD("separate_storage", Values
);
3449 Builder
.CreateAssumption(ConstantInt::getTrue(getLLVMContext()), {OBD
});
3450 return RValue::get(nullptr);
3452 case Builtin::BI__builtin_allow_runtime_check
: {
3454 cast
<StringLiteral
>(E
->getArg(0)->IgnoreParenCasts())->getString();
3455 LLVMContext
&Ctx
= CGM
.getLLVMContext();
3456 llvm::Value
*Allow
= Builder
.CreateCall(
3457 CGM
.getIntrinsic(llvm::Intrinsic::allow_runtime_check
),
3458 llvm::MetadataAsValue::get(Ctx
, llvm::MDString::get(Ctx
, Kind
)));
3459 return RValue::get(Allow
);
3461 case Builtin::BI__arithmetic_fence
: {
3462 // Create the builtin call if FastMath is selected, and the target
3463 // supports the builtin, otherwise just return the argument.
3464 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(*this, E
);
3465 llvm::FastMathFlags FMF
= Builder
.getFastMathFlags();
3466 bool isArithmeticFenceEnabled
=
3467 FMF
.allowReassoc() &&
3468 getContext().getTargetInfo().checkArithmeticFenceSupported();
3469 QualType ArgType
= E
->getArg(0)->getType();
3470 if (ArgType
->isComplexType()) {
3471 if (isArithmeticFenceEnabled
) {
3472 QualType ElementType
= ArgType
->castAs
<ComplexType
>()->getElementType();
3473 ComplexPairTy ComplexVal
= EmitComplexExpr(E
->getArg(0));
3474 Value
*Real
= Builder
.CreateArithmeticFence(ComplexVal
.first
,
3475 ConvertType(ElementType
));
3476 Value
*Imag
= Builder
.CreateArithmeticFence(ComplexVal
.second
,
3477 ConvertType(ElementType
));
3478 return RValue::getComplex(std::make_pair(Real
, Imag
));
3480 ComplexPairTy ComplexVal
= EmitComplexExpr(E
->getArg(0));
3481 Value
*Real
= ComplexVal
.first
;
3482 Value
*Imag
= ComplexVal
.second
;
3483 return RValue::getComplex(std::make_pair(Real
, Imag
));
3485 Value
*ArgValue
= EmitScalarExpr(E
->getArg(0));
3486 if (isArithmeticFenceEnabled
)
3488 Builder
.CreateArithmeticFence(ArgValue
, ConvertType(ArgType
)));
3489 return RValue::get(ArgValue
);
3491 case Builtin::BI__builtin_bswap16
:
3492 case Builtin::BI__builtin_bswap32
:
3493 case Builtin::BI__builtin_bswap64
:
3494 case Builtin::BI_byteswap_ushort
:
3495 case Builtin::BI_byteswap_ulong
:
3496 case Builtin::BI_byteswap_uint64
: {
3498 emitBuiltinWithOneOverloadedType
<1>(*this, E
, Intrinsic::bswap
));
3500 case Builtin::BI__builtin_bitreverse8
:
3501 case Builtin::BI__builtin_bitreverse16
:
3502 case Builtin::BI__builtin_bitreverse32
:
3503 case Builtin::BI__builtin_bitreverse64
: {
3505 emitBuiltinWithOneOverloadedType
<1>(*this, E
, Intrinsic::bitreverse
));
3507 case Builtin::BI__builtin_rotateleft8
:
3508 case Builtin::BI__builtin_rotateleft16
:
3509 case Builtin::BI__builtin_rotateleft32
:
3510 case Builtin::BI__builtin_rotateleft64
:
3511 case Builtin::BI_rotl8
: // Microsoft variants of rotate left
3512 case Builtin::BI_rotl16
:
3513 case Builtin::BI_rotl
:
3514 case Builtin::BI_lrotl
:
3515 case Builtin::BI_rotl64
:
3516 return emitRotate(E
, false);
3518 case Builtin::BI__builtin_rotateright8
:
3519 case Builtin::BI__builtin_rotateright16
:
3520 case Builtin::BI__builtin_rotateright32
:
3521 case Builtin::BI__builtin_rotateright64
:
3522 case Builtin::BI_rotr8
: // Microsoft variants of rotate right
3523 case Builtin::BI_rotr16
:
3524 case Builtin::BI_rotr
:
3525 case Builtin::BI_lrotr
:
3526 case Builtin::BI_rotr64
:
3527 return emitRotate(E
, true);
3529 case Builtin::BI__builtin_constant_p
: {
3530 llvm::Type
*ResultType
= ConvertType(E
->getType());
3532 const Expr
*Arg
= E
->getArg(0);
3533 QualType ArgType
= Arg
->getType();
3534 // FIXME: The allowance for Obj-C pointers and block pointers is historical
3535 // and likely a mistake.
3536 if (!ArgType
->isIntegralOrEnumerationType() && !ArgType
->isFloatingType() &&
3537 !ArgType
->isObjCObjectPointerType() && !ArgType
->isBlockPointerType())
3538 // Per the GCC documentation, only numeric constants are recognized after
3540 return RValue::get(ConstantInt::get(ResultType
, 0));
3542 if (Arg
->HasSideEffects(getContext()))
3543 // The argument is unevaluated, so be conservative if it might have
3545 return RValue::get(ConstantInt::get(ResultType
, 0));
3547 Value
*ArgValue
= EmitScalarExpr(Arg
);
3548 if (ArgType
->isObjCObjectPointerType()) {
3549 // Convert Objective-C objects to id because we cannot distinguish between
3550 // LLVM types for Obj-C classes as they are opaque.
3551 ArgType
= CGM
.getContext().getObjCIdType();
3552 ArgValue
= Builder
.CreateBitCast(ArgValue
, ConvertType(ArgType
));
3555 CGM
.getIntrinsic(Intrinsic::is_constant
, ConvertType(ArgType
));
3556 Value
*Result
= Builder
.CreateCall(F
, ArgValue
);
3557 if (Result
->getType() != ResultType
)
3558 Result
= Builder
.CreateIntCast(Result
, ResultType
, /*isSigned*/false);
3559 return RValue::get(Result
);
3561 case Builtin::BI__builtin_dynamic_object_size
:
3562 case Builtin::BI__builtin_object_size
: {
3564 E
->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
3565 auto *ResType
= cast
<llvm::IntegerType
>(ConvertType(E
->getType()));
3567 // We pass this builtin onto the optimizer so that it can figure out the
3568 // object size in more complex cases.
3569 bool IsDynamic
= BuiltinID
== Builtin::BI__builtin_dynamic_object_size
;
3570 return RValue::get(emitBuiltinObjectSize(E
->getArg(0), Type
, ResType
,
3571 /*EmittedE=*/nullptr, IsDynamic
));
3573 case Builtin::BI__builtin_prefetch
: {
3574 Value
*Locality
, *RW
, *Address
= EmitScalarExpr(E
->getArg(0));
3575 // FIXME: Technically these constants should of type 'int', yes?
3576 RW
= (E
->getNumArgs() > 1) ? EmitScalarExpr(E
->getArg(1)) :
3577 llvm::ConstantInt::get(Int32Ty
, 0);
3578 Locality
= (E
->getNumArgs() > 2) ? EmitScalarExpr(E
->getArg(2)) :
3579 llvm::ConstantInt::get(Int32Ty
, 3);
3580 Value
*Data
= llvm::ConstantInt::get(Int32Ty
, 1);
3581 Function
*F
= CGM
.getIntrinsic(Intrinsic::prefetch
, Address
->getType());
3582 Builder
.CreateCall(F
, {Address
, RW
, Locality
, Data
});
3583 return RValue::get(nullptr);
3585 case Builtin::BI__builtin_readcyclecounter
: {
3586 Function
*F
= CGM
.getIntrinsic(Intrinsic::readcyclecounter
);
3587 return RValue::get(Builder
.CreateCall(F
));
3589 case Builtin::BI__builtin_readsteadycounter
: {
3590 Function
*F
= CGM
.getIntrinsic(Intrinsic::readsteadycounter
);
3591 return RValue::get(Builder
.CreateCall(F
));
3593 case Builtin::BI__builtin___clear_cache
: {
3594 Value
*Begin
= EmitScalarExpr(E
->getArg(0));
3595 Value
*End
= EmitScalarExpr(E
->getArg(1));
3596 Function
*F
= CGM
.getIntrinsic(Intrinsic::clear_cache
);
3597 return RValue::get(Builder
.CreateCall(F
, {Begin
, End
}));
3599 case Builtin::BI__builtin_trap
:
3600 EmitTrapCall(Intrinsic::trap
);
3601 return RValue::get(nullptr);
3602 case Builtin::BI__builtin_verbose_trap
: {
3603 llvm::DILocation
*TrapLocation
= Builder
.getCurrentDebugLocation();
3604 if (getDebugInfo()) {
3605 TrapLocation
= getDebugInfo()->CreateTrapFailureMessageFor(
3606 TrapLocation
, *E
->getArg(0)->tryEvaluateString(getContext()),
3607 *E
->getArg(1)->tryEvaluateString(getContext()));
3609 ApplyDebugLocation
ApplyTrapDI(*this, TrapLocation
);
3610 // Currently no attempt is made to prevent traps from being merged.
3611 EmitTrapCall(Intrinsic::trap
);
3612 return RValue::get(nullptr);
3614 case Builtin::BI__debugbreak
:
3615 EmitTrapCall(Intrinsic::debugtrap
);
3616 return RValue::get(nullptr);
3617 case Builtin::BI__builtin_unreachable
: {
3618 EmitUnreachable(E
->getExprLoc());
3620 // We do need to preserve an insertion point.
3621 EmitBlock(createBasicBlock("unreachable.cont"));
3623 return RValue::get(nullptr);
3626 case Builtin::BI__builtin_powi
:
3627 case Builtin::BI__builtin_powif
:
3628 case Builtin::BI__builtin_powil
: {
3629 llvm::Value
*Src0
= EmitScalarExpr(E
->getArg(0));
3630 llvm::Value
*Src1
= EmitScalarExpr(E
->getArg(1));
3632 if (Builder
.getIsFPConstrained()) {
3633 // FIXME: llvm.powi has 2 mangling types,
3634 // llvm.experimental.constrained.powi has one.
3635 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(*this, E
);
3636 Function
*F
= CGM
.getIntrinsic(Intrinsic::experimental_constrained_powi
,
3638 return RValue::get(Builder
.CreateConstrainedFPCall(F
, { Src0
, Src1
}));
3641 Function
*F
= CGM
.getIntrinsic(Intrinsic::powi
,
3642 { Src0
->getType(), Src1
->getType() });
3643 return RValue::get(Builder
.CreateCall(F
, { Src0
, Src1
}));
3645 case Builtin::BI__builtin_frexpl
: {
3646 // Linux PPC will not be adding additional PPCDoubleDouble support.
3647 // WIP to switch default to IEEE long double. Will emit libcall for
3648 // frexpl instead of legalizing this type in the BE.
3649 if (&getTarget().getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble())
3653 case Builtin::BI__builtin_frexp
:
3654 case Builtin::BI__builtin_frexpf
:
3655 case Builtin::BI__builtin_frexpf128
:
3656 case Builtin::BI__builtin_frexpf16
:
3657 return RValue::get(emitFrexpBuiltin(*this, E
, Intrinsic::frexp
));
3658 case Builtin::BI__builtin_isgreater
:
3659 case Builtin::BI__builtin_isgreaterequal
:
3660 case Builtin::BI__builtin_isless
:
3661 case Builtin::BI__builtin_islessequal
:
3662 case Builtin::BI__builtin_islessgreater
:
3663 case Builtin::BI__builtin_isunordered
: {
3664 // Ordered comparisons: we know the arguments to these are matching scalar
3665 // floating point values.
3666 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(*this, E
);
3667 Value
*LHS
= EmitScalarExpr(E
->getArg(0));
3668 Value
*RHS
= EmitScalarExpr(E
->getArg(1));
3670 switch (BuiltinID
) {
3671 default: llvm_unreachable("Unknown ordered comparison");
3672 case Builtin::BI__builtin_isgreater
:
3673 LHS
= Builder
.CreateFCmpOGT(LHS
, RHS
, "cmp");
3675 case Builtin::BI__builtin_isgreaterequal
:
3676 LHS
= Builder
.CreateFCmpOGE(LHS
, RHS
, "cmp");
3678 case Builtin::BI__builtin_isless
:
3679 LHS
= Builder
.CreateFCmpOLT(LHS
, RHS
, "cmp");
3681 case Builtin::BI__builtin_islessequal
:
3682 LHS
= Builder
.CreateFCmpOLE(LHS
, RHS
, "cmp");
3684 case Builtin::BI__builtin_islessgreater
:
3685 LHS
= Builder
.CreateFCmpONE(LHS
, RHS
, "cmp");
3687 case Builtin::BI__builtin_isunordered
:
3688 LHS
= Builder
.CreateFCmpUNO(LHS
, RHS
, "cmp");
3691 // ZExt bool to int type.
3692 return RValue::get(Builder
.CreateZExt(LHS
, ConvertType(E
->getType())));
3695 case Builtin::BI__builtin_isnan
: {
3696 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(*this, E
);
3697 Value
*V
= EmitScalarExpr(E
->getArg(0));
3698 if (Value
*Result
= tryUseTestFPKind(*this, BuiltinID
, V
))
3699 return RValue::get(Result
);
3701 Builder
.CreateZExt(Builder
.createIsFPClass(V
, FPClassTest::fcNan
),
3702 ConvertType(E
->getType())));
3705 case Builtin::BI__builtin_issignaling
: {
3706 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(*this, E
);
3707 Value
*V
= EmitScalarExpr(E
->getArg(0));
3709 Builder
.CreateZExt(Builder
.createIsFPClass(V
, FPClassTest::fcSNan
),
3710 ConvertType(E
->getType())));
3713 case Builtin::BI__builtin_isinf
: {
3714 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(*this, E
);
3715 Value
*V
= EmitScalarExpr(E
->getArg(0));
3716 if (Value
*Result
= tryUseTestFPKind(*this, BuiltinID
, V
))
3717 return RValue::get(Result
);
3719 Builder
.CreateZExt(Builder
.createIsFPClass(V
, FPClassTest::fcInf
),
3720 ConvertType(E
->getType())));
3723 case Builtin::BIfinite
:
3724 case Builtin::BI__finite
:
3725 case Builtin::BIfinitef
:
3726 case Builtin::BI__finitef
:
3727 case Builtin::BIfinitel
:
3728 case Builtin::BI__finitel
:
3729 case Builtin::BI__builtin_isfinite
: {
3730 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(*this, E
);
3731 Value
*V
= EmitScalarExpr(E
->getArg(0));
3732 if (Value
*Result
= tryUseTestFPKind(*this, BuiltinID
, V
))
3733 return RValue::get(Result
);
3735 Builder
.CreateZExt(Builder
.createIsFPClass(V
, FPClassTest::fcFinite
),
3736 ConvertType(E
->getType())));
3739 case Builtin::BI__builtin_isnormal
: {
3740 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(*this, E
);
3741 Value
*V
= EmitScalarExpr(E
->getArg(0));
3743 Builder
.CreateZExt(Builder
.createIsFPClass(V
, FPClassTest::fcNormal
),
3744 ConvertType(E
->getType())));
3747 case Builtin::BI__builtin_issubnormal
: {
3748 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(*this, E
);
3749 Value
*V
= EmitScalarExpr(E
->getArg(0));
3751 Builder
.CreateZExt(Builder
.createIsFPClass(V
, FPClassTest::fcSubnormal
),
3752 ConvertType(E
->getType())));
3755 case Builtin::BI__builtin_iszero
: {
3756 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(*this, E
);
3757 Value
*V
= EmitScalarExpr(E
->getArg(0));
3759 Builder
.CreateZExt(Builder
.createIsFPClass(V
, FPClassTest::fcZero
),
3760 ConvertType(E
->getType())));
3763 case Builtin::BI__builtin_isfpclass
: {
3764 Expr::EvalResult Result
;
3765 if (!E
->getArg(1)->EvaluateAsInt(Result
, CGM
.getContext()))
3767 uint64_t Test
= Result
.Val
.getInt().getLimitedValue();
3768 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(*this, E
);
3769 Value
*V
= EmitScalarExpr(E
->getArg(0));
3770 return RValue::get(Builder
.CreateZExt(Builder
.createIsFPClass(V
, Test
),
3771 ConvertType(E
->getType())));
3774 case Builtin::BI__builtin_nondeterministic_value
: {
3775 llvm::Type
*Ty
= ConvertType(E
->getArg(0)->getType());
3777 Value
*Result
= PoisonValue::get(Ty
);
3778 Result
= Builder
.CreateFreeze(Result
);
3780 return RValue::get(Result
);
3783 case Builtin::BI__builtin_elementwise_abs
: {
3785 QualType QT
= E
->getArg(0)->getType();
3787 if (auto *VecTy
= QT
->getAs
<VectorType
>())
3788 QT
= VecTy
->getElementType();
3789 if (QT
->isIntegerType())
3790 Result
= Builder
.CreateBinaryIntrinsic(
3791 llvm::Intrinsic::abs
, EmitScalarExpr(E
->getArg(0)),
3792 Builder
.getFalse(), nullptr, "elt.abs");
3794 Result
= emitBuiltinWithOneOverloadedType
<1>(
3795 *this, E
, llvm::Intrinsic::fabs
, "elt.abs");
3797 return RValue::get(Result
);
3799 case Builtin::BI__builtin_elementwise_acos
:
3800 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3801 *this, E
, llvm::Intrinsic::acos
, "elt.acos"));
3802 case Builtin::BI__builtin_elementwise_asin
:
3803 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3804 *this, E
, llvm::Intrinsic::asin
, "elt.asin"));
3805 case Builtin::BI__builtin_elementwise_atan
:
3806 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3807 *this, E
, llvm::Intrinsic::atan
, "elt.atan"));
3808 case Builtin::BI__builtin_elementwise_ceil
:
3809 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3810 *this, E
, llvm::Intrinsic::ceil
, "elt.ceil"));
3811 case Builtin::BI__builtin_elementwise_exp
:
3812 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3813 *this, E
, llvm::Intrinsic::exp
, "elt.exp"));
3814 case Builtin::BI__builtin_elementwise_exp2
:
3815 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3816 *this, E
, llvm::Intrinsic::exp2
, "elt.exp2"));
3817 case Builtin::BI__builtin_elementwise_log
:
3818 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3819 *this, E
, llvm::Intrinsic::log
, "elt.log"));
3820 case Builtin::BI__builtin_elementwise_log2
:
3821 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3822 *this, E
, llvm::Intrinsic::log2
, "elt.log2"));
3823 case Builtin::BI__builtin_elementwise_log10
:
3824 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3825 *this, E
, llvm::Intrinsic::log10
, "elt.log10"));
3826 case Builtin::BI__builtin_elementwise_pow
: {
3828 emitBuiltinWithOneOverloadedType
<2>(*this, E
, llvm::Intrinsic::pow
));
3830 case Builtin::BI__builtin_elementwise_bitreverse
:
3831 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3832 *this, E
, llvm::Intrinsic::bitreverse
, "elt.bitreverse"));
3833 case Builtin::BI__builtin_elementwise_cos
:
3834 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3835 *this, E
, llvm::Intrinsic::cos
, "elt.cos"));
3836 case Builtin::BI__builtin_elementwise_cosh
:
3837 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3838 *this, E
, llvm::Intrinsic::cosh
, "elt.cosh"));
3839 case Builtin::BI__builtin_elementwise_floor
:
3840 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3841 *this, E
, llvm::Intrinsic::floor
, "elt.floor"));
3842 case Builtin::BI__builtin_elementwise_roundeven
:
3843 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3844 *this, E
, llvm::Intrinsic::roundeven
, "elt.roundeven"));
3845 case Builtin::BI__builtin_elementwise_round
:
3846 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3847 *this, E
, llvm::Intrinsic::round
, "elt.round"));
3848 case Builtin::BI__builtin_elementwise_rint
:
3849 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3850 *this, E
, llvm::Intrinsic::rint
, "elt.rint"));
3851 case Builtin::BI__builtin_elementwise_nearbyint
:
3852 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3853 *this, E
, llvm::Intrinsic::nearbyint
, "elt.nearbyint"));
3854 case Builtin::BI__builtin_elementwise_sin
:
3855 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3856 *this, E
, llvm::Intrinsic::sin
, "elt.sin"));
3857 case Builtin::BI__builtin_elementwise_sinh
:
3858 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3859 *this, E
, llvm::Intrinsic::sinh
, "elt.sinh"));
3860 case Builtin::BI__builtin_elementwise_tan
:
3861 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3862 *this, E
, llvm::Intrinsic::tan
, "elt.tan"));
3863 case Builtin::BI__builtin_elementwise_tanh
:
3864 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3865 *this, E
, llvm::Intrinsic::tanh
, "elt.tanh"));
3866 case Builtin::BI__builtin_elementwise_trunc
:
3867 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3868 *this, E
, llvm::Intrinsic::trunc
, "elt.trunc"));
3869 case Builtin::BI__builtin_elementwise_canonicalize
:
3870 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3871 *this, E
, llvm::Intrinsic::canonicalize
, "elt.canonicalize"));
3872 case Builtin::BI__builtin_elementwise_copysign
:
3873 return RValue::get(emitBuiltinWithOneOverloadedType
<2>(
3874 *this, E
, llvm::Intrinsic::copysign
));
3875 case Builtin::BI__builtin_elementwise_fma
:
3877 emitBuiltinWithOneOverloadedType
<3>(*this, E
, llvm::Intrinsic::fma
));
3878 case Builtin::BI__builtin_elementwise_add_sat
:
3879 case Builtin::BI__builtin_elementwise_sub_sat
: {
3880 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
3881 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
3883 assert(Op0
->getType()->isIntOrIntVectorTy() && "integer type expected");
3884 QualType Ty
= E
->getArg(0)->getType();
3885 if (auto *VecTy
= Ty
->getAs
<VectorType
>())
3886 Ty
= VecTy
->getElementType();
3887 bool IsSigned
= Ty
->isSignedIntegerType();
3889 if (BuiltinIDIfNoAsmLabel
== Builtin::BI__builtin_elementwise_add_sat
)
3890 Opc
= IsSigned
? llvm::Intrinsic::sadd_sat
: llvm::Intrinsic::uadd_sat
;
3892 Opc
= IsSigned
? llvm::Intrinsic::ssub_sat
: llvm::Intrinsic::usub_sat
;
3893 Result
= Builder
.CreateBinaryIntrinsic(Opc
, Op0
, Op1
, nullptr, "elt.sat");
3894 return RValue::get(Result
);
3897 case Builtin::BI__builtin_elementwise_max
: {
3898 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
3899 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
3901 if (Op0
->getType()->isIntOrIntVectorTy()) {
3902 QualType Ty
= E
->getArg(0)->getType();
3903 if (auto *VecTy
= Ty
->getAs
<VectorType
>())
3904 Ty
= VecTy
->getElementType();
3905 Result
= Builder
.CreateBinaryIntrinsic(Ty
->isSignedIntegerType()
3906 ? llvm::Intrinsic::smax
3907 : llvm::Intrinsic::umax
,
3908 Op0
, Op1
, nullptr, "elt.max");
3910 Result
= Builder
.CreateMaxNum(Op0
, Op1
, "elt.max");
3911 return RValue::get(Result
);
3913 case Builtin::BI__builtin_elementwise_min
: {
3914 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
3915 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
3917 if (Op0
->getType()->isIntOrIntVectorTy()) {
3918 QualType Ty
= E
->getArg(0)->getType();
3919 if (auto *VecTy
= Ty
->getAs
<VectorType
>())
3920 Ty
= VecTy
->getElementType();
3921 Result
= Builder
.CreateBinaryIntrinsic(Ty
->isSignedIntegerType()
3922 ? llvm::Intrinsic::smin
3923 : llvm::Intrinsic::umin
,
3924 Op0
, Op1
, nullptr, "elt.min");
3926 Result
= Builder
.CreateMinNum(Op0
, Op1
, "elt.min");
3927 return RValue::get(Result
);
3930 case Builtin::BI__builtin_reduce_max
: {
3931 auto GetIntrinsicID
= [this](QualType QT
) {
3932 if (auto *VecTy
= QT
->getAs
<VectorType
>())
3933 QT
= VecTy
->getElementType();
3934 else if (QT
->isSizelessVectorType())
3935 QT
= QT
->getSizelessVectorEltType(CGM
.getContext());
3937 if (QT
->isSignedIntegerType())
3938 return llvm::Intrinsic::vector_reduce_smax
;
3939 if (QT
->isUnsignedIntegerType())
3940 return llvm::Intrinsic::vector_reduce_umax
;
3941 assert(QT
->isFloatingType() && "must have a float here");
3942 return llvm::Intrinsic::vector_reduce_fmax
;
3944 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3945 *this, E
, GetIntrinsicID(E
->getArg(0)->getType()), "rdx.min"));
3948 case Builtin::BI__builtin_reduce_min
: {
3949 auto GetIntrinsicID
= [this](QualType QT
) {
3950 if (auto *VecTy
= QT
->getAs
<VectorType
>())
3951 QT
= VecTy
->getElementType();
3952 else if (QT
->isSizelessVectorType())
3953 QT
= QT
->getSizelessVectorEltType(CGM
.getContext());
3955 if (QT
->isSignedIntegerType())
3956 return llvm::Intrinsic::vector_reduce_smin
;
3957 if (QT
->isUnsignedIntegerType())
3958 return llvm::Intrinsic::vector_reduce_umin
;
3959 assert(QT
->isFloatingType() && "must have a float here");
3960 return llvm::Intrinsic::vector_reduce_fmin
;
3963 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3964 *this, E
, GetIntrinsicID(E
->getArg(0)->getType()), "rdx.min"));
3967 case Builtin::BI__builtin_reduce_add
:
3968 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3969 *this, E
, llvm::Intrinsic::vector_reduce_add
, "rdx.add"));
3970 case Builtin::BI__builtin_reduce_mul
:
3971 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3972 *this, E
, llvm::Intrinsic::vector_reduce_mul
, "rdx.mul"));
3973 case Builtin::BI__builtin_reduce_xor
:
3974 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3975 *this, E
, llvm::Intrinsic::vector_reduce_xor
, "rdx.xor"));
3976 case Builtin::BI__builtin_reduce_or
:
3977 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3978 *this, E
, llvm::Intrinsic::vector_reduce_or
, "rdx.or"));
3979 case Builtin::BI__builtin_reduce_and
:
3980 return RValue::get(emitBuiltinWithOneOverloadedType
<1>(
3981 *this, E
, llvm::Intrinsic::vector_reduce_and
, "rdx.and"));
3983 case Builtin::BI__builtin_matrix_transpose
: {
3984 auto *MatrixTy
= E
->getArg(0)->getType()->castAs
<ConstantMatrixType
>();
3985 Value
*MatValue
= EmitScalarExpr(E
->getArg(0));
3986 MatrixBuilder
MB(Builder
);
3987 Value
*Result
= MB
.CreateMatrixTranspose(MatValue
, MatrixTy
->getNumRows(),
3988 MatrixTy
->getNumColumns());
3989 return RValue::get(Result
);
3992 case Builtin::BI__builtin_matrix_column_major_load
: {
3993 MatrixBuilder
MB(Builder
);
3994 // Emit everything that isn't dependent on the first parameter type
3995 Value
*Stride
= EmitScalarExpr(E
->getArg(3));
3996 const auto *ResultTy
= E
->getType()->getAs
<ConstantMatrixType
>();
3997 auto *PtrTy
= E
->getArg(0)->getType()->getAs
<PointerType
>();
3998 assert(PtrTy
&& "arg0 must be of pointer type");
3999 bool IsVolatile
= PtrTy
->getPointeeType().isVolatileQualified();
4001 Address Src
= EmitPointerWithAlignment(E
->getArg(0));
4002 EmitNonNullArgCheck(RValue::get(Src
.emitRawPointer(*this)),
4003 E
->getArg(0)->getType(), E
->getArg(0)->getExprLoc(), FD
,
4005 Value
*Result
= MB
.CreateColumnMajorLoad(
4006 Src
.getElementType(), Src
.emitRawPointer(*this),
4007 Align(Src
.getAlignment().getQuantity()), Stride
, IsVolatile
,
4008 ResultTy
->getNumRows(), ResultTy
->getNumColumns(), "matrix");
4009 return RValue::get(Result
);
4012 case Builtin::BI__builtin_matrix_column_major_store
: {
4013 MatrixBuilder
MB(Builder
);
4014 Value
*Matrix
= EmitScalarExpr(E
->getArg(0));
4015 Address Dst
= EmitPointerWithAlignment(E
->getArg(1));
4016 Value
*Stride
= EmitScalarExpr(E
->getArg(2));
4018 const auto *MatrixTy
= E
->getArg(0)->getType()->getAs
<ConstantMatrixType
>();
4019 auto *PtrTy
= E
->getArg(1)->getType()->getAs
<PointerType
>();
4020 assert(PtrTy
&& "arg1 must be of pointer type");
4021 bool IsVolatile
= PtrTy
->getPointeeType().isVolatileQualified();
4023 EmitNonNullArgCheck(RValue::get(Dst
.emitRawPointer(*this)),
4024 E
->getArg(1)->getType(), E
->getArg(1)->getExprLoc(), FD
,
4026 Value
*Result
= MB
.CreateColumnMajorStore(
4027 Matrix
, Dst
.emitRawPointer(*this),
4028 Align(Dst
.getAlignment().getQuantity()), Stride
, IsVolatile
,
4029 MatrixTy
->getNumRows(), MatrixTy
->getNumColumns());
4030 return RValue::get(Result
);
4033 case Builtin::BI__builtin_isinf_sign
: {
4034 // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
4035 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(*this, E
);
4036 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
4037 Value
*Arg
= EmitScalarExpr(E
->getArg(0));
4038 Value
*AbsArg
= EmitFAbs(*this, Arg
);
4039 Value
*IsInf
= Builder
.CreateFCmpOEQ(
4040 AbsArg
, ConstantFP::getInfinity(Arg
->getType()), "isinf");
4041 Value
*IsNeg
= EmitSignBit(*this, Arg
);
4043 llvm::Type
*IntTy
= ConvertType(E
->getType());
4044 Value
*Zero
= Constant::getNullValue(IntTy
);
4045 Value
*One
= ConstantInt::get(IntTy
, 1);
4046 Value
*NegativeOne
= ConstantInt::get(IntTy
, -1);
4047 Value
*SignResult
= Builder
.CreateSelect(IsNeg
, NegativeOne
, One
);
4048 Value
*Result
= Builder
.CreateSelect(IsInf
, SignResult
, Zero
);
4049 return RValue::get(Result
);
4052 case Builtin::BI__builtin_flt_rounds
: {
4053 Function
*F
= CGM
.getIntrinsic(Intrinsic::get_rounding
);
4055 llvm::Type
*ResultType
= ConvertType(E
->getType());
4056 Value
*Result
= Builder
.CreateCall(F
);
4057 if (Result
->getType() != ResultType
)
4058 Result
= Builder
.CreateIntCast(Result
, ResultType
, /*isSigned*/true,
4060 return RValue::get(Result
);
4063 case Builtin::BI__builtin_set_flt_rounds
: {
4064 Function
*F
= CGM
.getIntrinsic(Intrinsic::set_rounding
);
4066 Value
*V
= EmitScalarExpr(E
->getArg(0));
4067 Builder
.CreateCall(F
, V
);
4068 return RValue::get(nullptr);
4071 case Builtin::BI__builtin_fpclassify
: {
4072 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(*this, E
);
4073 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
4074 Value
*V
= EmitScalarExpr(E
->getArg(5));
4075 llvm::Type
*Ty
= ConvertType(E
->getArg(5)->getType());
4078 BasicBlock
*Begin
= Builder
.GetInsertBlock();
4079 BasicBlock
*End
= createBasicBlock("fpclassify_end", this->CurFn
);
4080 Builder
.SetInsertPoint(End
);
4082 Builder
.CreatePHI(ConvertType(E
->getArg(0)->getType()), 4,
4083 "fpclassify_result");
4085 // if (V==0) return FP_ZERO
4086 Builder
.SetInsertPoint(Begin
);
4087 Value
*IsZero
= Builder
.CreateFCmpOEQ(V
, Constant::getNullValue(Ty
),
4089 Value
*ZeroLiteral
= EmitScalarExpr(E
->getArg(4));
4090 BasicBlock
*NotZero
= createBasicBlock("fpclassify_not_zero", this->CurFn
);
4091 Builder
.CreateCondBr(IsZero
, End
, NotZero
);
4092 Result
->addIncoming(ZeroLiteral
, Begin
);
4094 // if (V != V) return FP_NAN
4095 Builder
.SetInsertPoint(NotZero
);
4096 Value
*IsNan
= Builder
.CreateFCmpUNO(V
, V
, "cmp");
4097 Value
*NanLiteral
= EmitScalarExpr(E
->getArg(0));
4098 BasicBlock
*NotNan
= createBasicBlock("fpclassify_not_nan", this->CurFn
);
4099 Builder
.CreateCondBr(IsNan
, End
, NotNan
);
4100 Result
->addIncoming(NanLiteral
, NotZero
);
4102 // if (fabs(V) == infinity) return FP_INFINITY
4103 Builder
.SetInsertPoint(NotNan
);
4104 Value
*VAbs
= EmitFAbs(*this, V
);
4106 Builder
.CreateFCmpOEQ(VAbs
, ConstantFP::getInfinity(V
->getType()),
4108 Value
*InfLiteral
= EmitScalarExpr(E
->getArg(1));
4109 BasicBlock
*NotInf
= createBasicBlock("fpclassify_not_inf", this->CurFn
);
4110 Builder
.CreateCondBr(IsInf
, End
, NotInf
);
4111 Result
->addIncoming(InfLiteral
, NotNan
);
4113 // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
4114 Builder
.SetInsertPoint(NotInf
);
4115 APFloat Smallest
= APFloat::getSmallestNormalized(
4116 getContext().getFloatTypeSemantics(E
->getArg(5)->getType()));
4118 Builder
.CreateFCmpUGE(VAbs
, ConstantFP::get(V
->getContext(), Smallest
),
4120 Value
*NormalResult
=
4121 Builder
.CreateSelect(IsNormal
, EmitScalarExpr(E
->getArg(2)),
4122 EmitScalarExpr(E
->getArg(3)));
4123 Builder
.CreateBr(End
);
4124 Result
->addIncoming(NormalResult
, NotInf
);
4127 Builder
.SetInsertPoint(End
);
4128 return RValue::get(Result
);
4131 // An alloca will always return a pointer to the alloca (stack) address
4132 // space. This address space need not be the same as the AST / Language
4133 // default (e.g. in C / C++ auto vars are in the generic address space). At
4134 // the AST level this is handled within CreateTempAlloca et al., but for the
4135 // builtin / dynamic alloca we have to handle it here. We use an explicit cast
4136 // instead of passing an AS to CreateAlloca so as to not inhibit optimisation.
4137 case Builtin::BIalloca
:
4138 case Builtin::BI_alloca
:
4139 case Builtin::BI__builtin_alloca_uninitialized
:
4140 case Builtin::BI__builtin_alloca
: {
4141 Value
*Size
= EmitScalarExpr(E
->getArg(0));
4142 const TargetInfo
&TI
= getContext().getTargetInfo();
4143 // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
4144 const Align SuitableAlignmentInBytes
=
4146 .toCharUnitsFromBits(TI
.getSuitableAlign())
4148 AllocaInst
*AI
= Builder
.CreateAlloca(Builder
.getInt8Ty(), Size
);
4149 AI
->setAlignment(SuitableAlignmentInBytes
);
4150 if (BuiltinID
!= Builtin::BI__builtin_alloca_uninitialized
)
4151 initializeAlloca(*this, AI
, Size
, SuitableAlignmentInBytes
);
4152 LangAS AAS
= getASTAllocaAddressSpace();
4153 LangAS EAS
= E
->getType()->getPointeeType().getAddressSpace();
4155 llvm::Type
*Ty
= CGM
.getTypes().ConvertType(E
->getType());
4156 return RValue::get(getTargetHooks().performAddrSpaceCast(*this, AI
, AAS
,
4159 return RValue::get(AI
);
4162 case Builtin::BI__builtin_alloca_with_align_uninitialized
:
4163 case Builtin::BI__builtin_alloca_with_align
: {
4164 Value
*Size
= EmitScalarExpr(E
->getArg(0));
4165 Value
*AlignmentInBitsValue
= EmitScalarExpr(E
->getArg(1));
4166 auto *AlignmentInBitsCI
= cast
<ConstantInt
>(AlignmentInBitsValue
);
4167 unsigned AlignmentInBits
= AlignmentInBitsCI
->getZExtValue();
4168 const Align AlignmentInBytes
=
4169 CGM
.getContext().toCharUnitsFromBits(AlignmentInBits
).getAsAlign();
4170 AllocaInst
*AI
= Builder
.CreateAlloca(Builder
.getInt8Ty(), Size
);
4171 AI
->setAlignment(AlignmentInBytes
);
4172 if (BuiltinID
!= Builtin::BI__builtin_alloca_with_align_uninitialized
)
4173 initializeAlloca(*this, AI
, Size
, AlignmentInBytes
);
4174 LangAS AAS
= getASTAllocaAddressSpace();
4175 LangAS EAS
= E
->getType()->getPointeeType().getAddressSpace();
4177 llvm::Type
*Ty
= CGM
.getTypes().ConvertType(E
->getType());
4178 return RValue::get(getTargetHooks().performAddrSpaceCast(*this, AI
, AAS
,
4181 return RValue::get(AI
);
4184 case Builtin::BIbzero
:
4185 case Builtin::BI__builtin_bzero
: {
4186 Address Dest
= EmitPointerWithAlignment(E
->getArg(0));
4187 Value
*SizeVal
= EmitScalarExpr(E
->getArg(1));
4188 EmitNonNullArgCheck(Dest
, E
->getArg(0)->getType(),
4189 E
->getArg(0)->getExprLoc(), FD
, 0);
4190 Builder
.CreateMemSet(Dest
, Builder
.getInt8(0), SizeVal
, false);
4191 return RValue::get(nullptr);
4194 case Builtin::BIbcopy
:
4195 case Builtin::BI__builtin_bcopy
: {
4196 Address Src
= EmitPointerWithAlignment(E
->getArg(0));
4197 Address Dest
= EmitPointerWithAlignment(E
->getArg(1));
4198 Value
*SizeVal
= EmitScalarExpr(E
->getArg(2));
4199 EmitNonNullArgCheck(RValue::get(Src
.emitRawPointer(*this)),
4200 E
->getArg(0)->getType(), E
->getArg(0)->getExprLoc(), FD
,
4202 EmitNonNullArgCheck(RValue::get(Dest
.emitRawPointer(*this)),
4203 E
->getArg(1)->getType(), E
->getArg(1)->getExprLoc(), FD
,
4205 Builder
.CreateMemMove(Dest
, Src
, SizeVal
, false);
4206 return RValue::get(nullptr);
4209 case Builtin::BImemcpy
:
4210 case Builtin::BI__builtin_memcpy
:
4211 case Builtin::BImempcpy
:
4212 case Builtin::BI__builtin_mempcpy
: {
4213 Address Dest
= EmitPointerWithAlignment(E
->getArg(0));
4214 Address Src
= EmitPointerWithAlignment(E
->getArg(1));
4215 Value
*SizeVal
= EmitScalarExpr(E
->getArg(2));
4216 EmitArgCheck(TCK_Store
, Dest
, E
->getArg(0), 0);
4217 EmitArgCheck(TCK_Load
, Src
, E
->getArg(1), 1);
4218 Builder
.CreateMemCpy(Dest
, Src
, SizeVal
, false);
4219 if (BuiltinID
== Builtin::BImempcpy
||
4220 BuiltinID
== Builtin::BI__builtin_mempcpy
)
4221 return RValue::get(Builder
.CreateInBoundsGEP(
4222 Dest
.getElementType(), Dest
.emitRawPointer(*this), SizeVal
));
4224 return RValue::get(Dest
, *this);
4227 case Builtin::BI__builtin_memcpy_inline
: {
4228 Address Dest
= EmitPointerWithAlignment(E
->getArg(0));
4229 Address Src
= EmitPointerWithAlignment(E
->getArg(1));
4231 E
->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
4232 EmitArgCheck(TCK_Store
, Dest
, E
->getArg(0), 0);
4233 EmitArgCheck(TCK_Load
, Src
, E
->getArg(1), 1);
4234 Builder
.CreateMemCpyInline(Dest
, Src
, Size
);
4235 return RValue::get(nullptr);
4238 case Builtin::BI__builtin_char_memchr
:
4239 BuiltinID
= Builtin::BI__builtin_memchr
;
4242 case Builtin::BI__builtin___memcpy_chk
: {
4243 // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
4244 Expr::EvalResult SizeResult
, DstSizeResult
;
4245 if (!E
->getArg(2)->EvaluateAsInt(SizeResult
, CGM
.getContext()) ||
4246 !E
->getArg(3)->EvaluateAsInt(DstSizeResult
, CGM
.getContext()))
4248 llvm::APSInt Size
= SizeResult
.Val
.getInt();
4249 llvm::APSInt DstSize
= DstSizeResult
.Val
.getInt();
4250 if (Size
.ugt(DstSize
))
4252 Address Dest
= EmitPointerWithAlignment(E
->getArg(0));
4253 Address Src
= EmitPointerWithAlignment(E
->getArg(1));
4254 Value
*SizeVal
= llvm::ConstantInt::get(Builder
.getContext(), Size
);
4255 Builder
.CreateMemCpy(Dest
, Src
, SizeVal
, false);
4256 return RValue::get(Dest
, *this);
4259 case Builtin::BI__builtin_objc_memmove_collectable
: {
4260 Address DestAddr
= EmitPointerWithAlignment(E
->getArg(0));
4261 Address SrcAddr
= EmitPointerWithAlignment(E
->getArg(1));
4262 Value
*SizeVal
= EmitScalarExpr(E
->getArg(2));
4263 CGM
.getObjCRuntime().EmitGCMemmoveCollectable(*this,
4264 DestAddr
, SrcAddr
, SizeVal
);
4265 return RValue::get(DestAddr
, *this);
4268 case Builtin::BI__builtin___memmove_chk
: {
4269 // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
4270 Expr::EvalResult SizeResult
, DstSizeResult
;
4271 if (!E
->getArg(2)->EvaluateAsInt(SizeResult
, CGM
.getContext()) ||
4272 !E
->getArg(3)->EvaluateAsInt(DstSizeResult
, CGM
.getContext()))
4274 llvm::APSInt Size
= SizeResult
.Val
.getInt();
4275 llvm::APSInt DstSize
= DstSizeResult
.Val
.getInt();
4276 if (Size
.ugt(DstSize
))
4278 Address Dest
= EmitPointerWithAlignment(E
->getArg(0));
4279 Address Src
= EmitPointerWithAlignment(E
->getArg(1));
4280 Value
*SizeVal
= llvm::ConstantInt::get(Builder
.getContext(), Size
);
4281 Builder
.CreateMemMove(Dest
, Src
, SizeVal
, false);
4282 return RValue::get(Dest
, *this);
4285 case Builtin::BImemmove
:
4286 case Builtin::BI__builtin_memmove
: {
4287 Address Dest
= EmitPointerWithAlignment(E
->getArg(0));
4288 Address Src
= EmitPointerWithAlignment(E
->getArg(1));
4289 Value
*SizeVal
= EmitScalarExpr(E
->getArg(2));
4290 EmitArgCheck(TCK_Store
, Dest
, E
->getArg(0), 0);
4291 EmitArgCheck(TCK_Load
, Src
, E
->getArg(1), 1);
4292 Builder
.CreateMemMove(Dest
, Src
, SizeVal
, false);
4293 return RValue::get(Dest
, *this);
4295 case Builtin::BImemset
:
4296 case Builtin::BI__builtin_memset
: {
4297 Address Dest
= EmitPointerWithAlignment(E
->getArg(0));
4298 Value
*ByteVal
= Builder
.CreateTrunc(EmitScalarExpr(E
->getArg(1)),
4299 Builder
.getInt8Ty());
4300 Value
*SizeVal
= EmitScalarExpr(E
->getArg(2));
4301 EmitNonNullArgCheck(Dest
, E
->getArg(0)->getType(),
4302 E
->getArg(0)->getExprLoc(), FD
, 0);
4303 Builder
.CreateMemSet(Dest
, ByteVal
, SizeVal
, false);
4304 return RValue::get(Dest
, *this);
4306 case Builtin::BI__builtin_memset_inline
: {
4307 Address Dest
= EmitPointerWithAlignment(E
->getArg(0));
4309 Builder
.CreateTrunc(EmitScalarExpr(E
->getArg(1)), Builder
.getInt8Ty());
4311 E
->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
4312 EmitNonNullArgCheck(RValue::get(Dest
.emitRawPointer(*this)),
4313 E
->getArg(0)->getType(), E
->getArg(0)->getExprLoc(), FD
,
4315 Builder
.CreateMemSetInline(Dest
, ByteVal
, Size
);
4316 return RValue::get(nullptr);
4318 case Builtin::BI__builtin___memset_chk
: {
4319 // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
4320 Expr::EvalResult SizeResult
, DstSizeResult
;
4321 if (!E
->getArg(2)->EvaluateAsInt(SizeResult
, CGM
.getContext()) ||
4322 !E
->getArg(3)->EvaluateAsInt(DstSizeResult
, CGM
.getContext()))
4324 llvm::APSInt Size
= SizeResult
.Val
.getInt();
4325 llvm::APSInt DstSize
= DstSizeResult
.Val
.getInt();
4326 if (Size
.ugt(DstSize
))
4328 Address Dest
= EmitPointerWithAlignment(E
->getArg(0));
4329 Value
*ByteVal
= Builder
.CreateTrunc(EmitScalarExpr(E
->getArg(1)),
4330 Builder
.getInt8Ty());
4331 Value
*SizeVal
= llvm::ConstantInt::get(Builder
.getContext(), Size
);
4332 Builder
.CreateMemSet(Dest
, ByteVal
, SizeVal
, false);
4333 return RValue::get(Dest
, *this);
4335 case Builtin::BI__builtin_wmemchr
: {
4336 // The MSVC runtime library does not provide a definition of wmemchr, so we
4337 // need an inline implementation.
4338 if (!getTarget().getTriple().isOSMSVCRT())
4341 llvm::Type
*WCharTy
= ConvertType(getContext().WCharTy
);
4342 Value
*Str
= EmitScalarExpr(E
->getArg(0));
4343 Value
*Chr
= EmitScalarExpr(E
->getArg(1));
4344 Value
*Size
= EmitScalarExpr(E
->getArg(2));
4346 BasicBlock
*Entry
= Builder
.GetInsertBlock();
4347 BasicBlock
*CmpEq
= createBasicBlock("wmemchr.eq");
4348 BasicBlock
*Next
= createBasicBlock("wmemchr.next");
4349 BasicBlock
*Exit
= createBasicBlock("wmemchr.exit");
4350 Value
*SizeEq0
= Builder
.CreateICmpEQ(Size
, ConstantInt::get(SizeTy
, 0));
4351 Builder
.CreateCondBr(SizeEq0
, Exit
, CmpEq
);
4354 PHINode
*StrPhi
= Builder
.CreatePHI(Str
->getType(), 2);
4355 StrPhi
->addIncoming(Str
, Entry
);
4356 PHINode
*SizePhi
= Builder
.CreatePHI(SizeTy
, 2);
4357 SizePhi
->addIncoming(Size
, Entry
);
4358 CharUnits WCharAlign
=
4359 getContext().getTypeAlignInChars(getContext().WCharTy
);
4360 Value
*StrCh
= Builder
.CreateAlignedLoad(WCharTy
, StrPhi
, WCharAlign
);
4361 Value
*FoundChr
= Builder
.CreateConstInBoundsGEP1_32(WCharTy
, StrPhi
, 0);
4362 Value
*StrEqChr
= Builder
.CreateICmpEQ(StrCh
, Chr
);
4363 Builder
.CreateCondBr(StrEqChr
, Exit
, Next
);
4366 Value
*NextStr
= Builder
.CreateConstInBoundsGEP1_32(WCharTy
, StrPhi
, 1);
4367 Value
*NextSize
= Builder
.CreateSub(SizePhi
, ConstantInt::get(SizeTy
, 1));
4368 Value
*NextSizeEq0
=
4369 Builder
.CreateICmpEQ(NextSize
, ConstantInt::get(SizeTy
, 0));
4370 Builder
.CreateCondBr(NextSizeEq0
, Exit
, CmpEq
);
4371 StrPhi
->addIncoming(NextStr
, Next
);
4372 SizePhi
->addIncoming(NextSize
, Next
);
4375 PHINode
*Ret
= Builder
.CreatePHI(Str
->getType(), 3);
4376 Ret
->addIncoming(llvm::Constant::getNullValue(Str
->getType()), Entry
);
4377 Ret
->addIncoming(llvm::Constant::getNullValue(Str
->getType()), Next
);
4378 Ret
->addIncoming(FoundChr
, CmpEq
);
4379 return RValue::get(Ret
);
4381 case Builtin::BI__builtin_wmemcmp
: {
4382 // The MSVC runtime library does not provide a definition of wmemcmp, so we
4383 // need an inline implementation.
4384 if (!getTarget().getTriple().isOSMSVCRT())
4387 llvm::Type
*WCharTy
= ConvertType(getContext().WCharTy
);
4389 Value
*Dst
= EmitScalarExpr(E
->getArg(0));
4390 Value
*Src
= EmitScalarExpr(E
->getArg(1));
4391 Value
*Size
= EmitScalarExpr(E
->getArg(2));
4393 BasicBlock
*Entry
= Builder
.GetInsertBlock();
4394 BasicBlock
*CmpGT
= createBasicBlock("wmemcmp.gt");
4395 BasicBlock
*CmpLT
= createBasicBlock("wmemcmp.lt");
4396 BasicBlock
*Next
= createBasicBlock("wmemcmp.next");
4397 BasicBlock
*Exit
= createBasicBlock("wmemcmp.exit");
4398 Value
*SizeEq0
= Builder
.CreateICmpEQ(Size
, ConstantInt::get(SizeTy
, 0));
4399 Builder
.CreateCondBr(SizeEq0
, Exit
, CmpGT
);
4402 PHINode
*DstPhi
= Builder
.CreatePHI(Dst
->getType(), 2);
4403 DstPhi
->addIncoming(Dst
, Entry
);
4404 PHINode
*SrcPhi
= Builder
.CreatePHI(Src
->getType(), 2);
4405 SrcPhi
->addIncoming(Src
, Entry
);
4406 PHINode
*SizePhi
= Builder
.CreatePHI(SizeTy
, 2);
4407 SizePhi
->addIncoming(Size
, Entry
);
4408 CharUnits WCharAlign
=
4409 getContext().getTypeAlignInChars(getContext().WCharTy
);
4410 Value
*DstCh
= Builder
.CreateAlignedLoad(WCharTy
, DstPhi
, WCharAlign
);
4411 Value
*SrcCh
= Builder
.CreateAlignedLoad(WCharTy
, SrcPhi
, WCharAlign
);
4412 Value
*DstGtSrc
= Builder
.CreateICmpUGT(DstCh
, SrcCh
);
4413 Builder
.CreateCondBr(DstGtSrc
, Exit
, CmpLT
);
4416 Value
*DstLtSrc
= Builder
.CreateICmpULT(DstCh
, SrcCh
);
4417 Builder
.CreateCondBr(DstLtSrc
, Exit
, Next
);
4420 Value
*NextDst
= Builder
.CreateConstInBoundsGEP1_32(WCharTy
, DstPhi
, 1);
4421 Value
*NextSrc
= Builder
.CreateConstInBoundsGEP1_32(WCharTy
, SrcPhi
, 1);
4422 Value
*NextSize
= Builder
.CreateSub(SizePhi
, ConstantInt::get(SizeTy
, 1));
4423 Value
*NextSizeEq0
=
4424 Builder
.CreateICmpEQ(NextSize
, ConstantInt::get(SizeTy
, 0));
4425 Builder
.CreateCondBr(NextSizeEq0
, Exit
, CmpGT
);
4426 DstPhi
->addIncoming(NextDst
, Next
);
4427 SrcPhi
->addIncoming(NextSrc
, Next
);
4428 SizePhi
->addIncoming(NextSize
, Next
);
4431 PHINode
*Ret
= Builder
.CreatePHI(IntTy
, 4);
4432 Ret
->addIncoming(ConstantInt::get(IntTy
, 0), Entry
);
4433 Ret
->addIncoming(ConstantInt::get(IntTy
, 1), CmpGT
);
4434 Ret
->addIncoming(ConstantInt::get(IntTy
, -1), CmpLT
);
4435 Ret
->addIncoming(ConstantInt::get(IntTy
, 0), Next
);
4436 return RValue::get(Ret
);
4438 case Builtin::BI__builtin_dwarf_cfa
: {
4439 // The offset in bytes from the first argument to the CFA.
4441 // Why on earth is this in the frontend? Is there any reason at
4442 // all that the backend can't reasonably determine this while
4443 // lowering llvm.eh.dwarf.cfa()?
4445 // TODO: If there's a satisfactory reason, add a target hook for
4446 // this instead of hard-coding 0, which is correct for most targets.
4449 Function
*F
= CGM
.getIntrinsic(Intrinsic::eh_dwarf_cfa
);
4450 return RValue::get(Builder
.CreateCall(F
,
4451 llvm::ConstantInt::get(Int32Ty
, Offset
)));
4453 case Builtin::BI__builtin_return_address
: {
4454 Value
*Depth
= ConstantEmitter(*this).emitAbstract(E
->getArg(0),
4455 getContext().UnsignedIntTy
);
4456 Function
*F
= CGM
.getIntrinsic(Intrinsic::returnaddress
);
4457 return RValue::get(Builder
.CreateCall(F
, Depth
));
4459 case Builtin::BI_ReturnAddress
: {
4460 Function
*F
= CGM
.getIntrinsic(Intrinsic::returnaddress
);
4461 return RValue::get(Builder
.CreateCall(F
, Builder
.getInt32(0)));
4463 case Builtin::BI__builtin_frame_address
: {
4464 Value
*Depth
= ConstantEmitter(*this).emitAbstract(E
->getArg(0),
4465 getContext().UnsignedIntTy
);
4466 Function
*F
= CGM
.getIntrinsic(Intrinsic::frameaddress
, AllocaInt8PtrTy
);
4467 return RValue::get(Builder
.CreateCall(F
, Depth
));
4469 case Builtin::BI__builtin_extract_return_addr
: {
4470 Value
*Address
= EmitScalarExpr(E
->getArg(0));
4471 Value
*Result
= getTargetHooks().decodeReturnAddress(*this, Address
);
4472 return RValue::get(Result
);
4474 case Builtin::BI__builtin_frob_return_addr
: {
4475 Value
*Address
= EmitScalarExpr(E
->getArg(0));
4476 Value
*Result
= getTargetHooks().encodeReturnAddress(*this, Address
);
4477 return RValue::get(Result
);
4479 case Builtin::BI__builtin_dwarf_sp_column
: {
4480 llvm::IntegerType
*Ty
4481 = cast
<llvm::IntegerType
>(ConvertType(E
->getType()));
4482 int Column
= getTargetHooks().getDwarfEHStackPointer(CGM
);
4484 CGM
.ErrorUnsupported(E
, "__builtin_dwarf_sp_column");
4485 return RValue::get(llvm::UndefValue::get(Ty
));
4487 return RValue::get(llvm::ConstantInt::get(Ty
, Column
, true));
4489 case Builtin::BI__builtin_init_dwarf_reg_size_table
: {
4490 Value
*Address
= EmitScalarExpr(E
->getArg(0));
4491 if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address
))
4492 CGM
.ErrorUnsupported(E
, "__builtin_init_dwarf_reg_size_table");
4493 return RValue::get(llvm::UndefValue::get(ConvertType(E
->getType())));
4495 case Builtin::BI__builtin_eh_return
: {
4496 Value
*Int
= EmitScalarExpr(E
->getArg(0));
4497 Value
*Ptr
= EmitScalarExpr(E
->getArg(1));
4499 llvm::IntegerType
*IntTy
= cast
<llvm::IntegerType
>(Int
->getType());
4500 assert((IntTy
->getBitWidth() == 32 || IntTy
->getBitWidth() == 64) &&
4501 "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
4503 CGM
.getIntrinsic(IntTy
->getBitWidth() == 32 ? Intrinsic::eh_return_i32
4504 : Intrinsic::eh_return_i64
);
4505 Builder
.CreateCall(F
, {Int
, Ptr
});
4506 Builder
.CreateUnreachable();
4508 // We do need to preserve an insertion point.
4509 EmitBlock(createBasicBlock("builtin_eh_return.cont"));
4511 return RValue::get(nullptr);
4513 case Builtin::BI__builtin_unwind_init
: {
4514 Function
*F
= CGM
.getIntrinsic(Intrinsic::eh_unwind_init
);
4515 Builder
.CreateCall(F
);
4516 return RValue::get(nullptr);
4518 case Builtin::BI__builtin_extend_pointer
: {
4519 // Extends a pointer to the size of an _Unwind_Word, which is
4520 // uint64_t on all platforms. Generally this gets poked into a
4521 // register and eventually used as an address, so if the
4522 // addressing registers are wider than pointers and the platform
4523 // doesn't implicitly ignore high-order bits when doing
4524 // addressing, we need to make sure we zext / sext based on
4525 // the platform's expectations.
4527 // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
4529 // Cast the pointer to intptr_t.
4530 Value
*Ptr
= EmitScalarExpr(E
->getArg(0));
4531 Value
*Result
= Builder
.CreatePtrToInt(Ptr
, IntPtrTy
, "extend.cast");
4533 // If that's 64 bits, we're done.
4534 if (IntPtrTy
->getBitWidth() == 64)
4535 return RValue::get(Result
);
4537 // Otherwise, ask the codegen data what to do.
4538 if (getTargetHooks().extendPointerWithSExt())
4539 return RValue::get(Builder
.CreateSExt(Result
, Int64Ty
, "extend.sext"));
4541 return RValue::get(Builder
.CreateZExt(Result
, Int64Ty
, "extend.zext"));
4543 case Builtin::BI__builtin_setjmp
: {
4544 // Buffer is a void**.
4545 Address Buf
= EmitPointerWithAlignment(E
->getArg(0));
4547 // Store the frame pointer to the setjmp buffer.
4548 Value
*FrameAddr
= Builder
.CreateCall(
4549 CGM
.getIntrinsic(Intrinsic::frameaddress
, AllocaInt8PtrTy
),
4550 ConstantInt::get(Int32Ty
, 0));
4551 Builder
.CreateStore(FrameAddr
, Buf
);
4553 // Store the stack pointer to the setjmp buffer.
4554 Value
*StackAddr
= Builder
.CreateStackSave();
4555 assert(Buf
.emitRawPointer(*this)->getType() == StackAddr
->getType());
4557 Address StackSaveSlot
= Builder
.CreateConstInBoundsGEP(Buf
, 2);
4558 Builder
.CreateStore(StackAddr
, StackSaveSlot
);
4560 // Call LLVM's EH setjmp, which is lightweight.
4561 Function
*F
= CGM
.getIntrinsic(Intrinsic::eh_sjlj_setjmp
);
4562 return RValue::get(Builder
.CreateCall(F
, Buf
.emitRawPointer(*this)));
4564 case Builtin::BI__builtin_longjmp
: {
4565 Value
*Buf
= EmitScalarExpr(E
->getArg(0));
4567 // Call LLVM's EH longjmp, which is lightweight.
4568 Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::eh_sjlj_longjmp
), Buf
);
4570 // longjmp doesn't return; mark this as unreachable.
4571 Builder
.CreateUnreachable();
4573 // We do need to preserve an insertion point.
4574 EmitBlock(createBasicBlock("longjmp.cont"));
4576 return RValue::get(nullptr);
4578 case Builtin::BI__builtin_launder
: {
4579 const Expr
*Arg
= E
->getArg(0);
4580 QualType ArgTy
= Arg
->getType()->getPointeeType();
4581 Value
*Ptr
= EmitScalarExpr(Arg
);
4582 if (TypeRequiresBuiltinLaunder(CGM
, ArgTy
))
4583 Ptr
= Builder
.CreateLaunderInvariantGroup(Ptr
);
4585 return RValue::get(Ptr
);
4587 case Builtin::BI__sync_fetch_and_add
:
4588 case Builtin::BI__sync_fetch_and_sub
:
4589 case Builtin::BI__sync_fetch_and_or
:
4590 case Builtin::BI__sync_fetch_and_and
:
4591 case Builtin::BI__sync_fetch_and_xor
:
4592 case Builtin::BI__sync_fetch_and_nand
:
4593 case Builtin::BI__sync_add_and_fetch
:
4594 case Builtin::BI__sync_sub_and_fetch
:
4595 case Builtin::BI__sync_and_and_fetch
:
4596 case Builtin::BI__sync_or_and_fetch
:
4597 case Builtin::BI__sync_xor_and_fetch
:
4598 case Builtin::BI__sync_nand_and_fetch
:
4599 case Builtin::BI__sync_val_compare_and_swap
:
4600 case Builtin::BI__sync_bool_compare_and_swap
:
4601 case Builtin::BI__sync_lock_test_and_set
:
4602 case Builtin::BI__sync_lock_release
:
4603 case Builtin::BI__sync_swap
:
4604 llvm_unreachable("Shouldn't make it through sema");
4605 case Builtin::BI__sync_fetch_and_add_1
:
4606 case Builtin::BI__sync_fetch_and_add_2
:
4607 case Builtin::BI__sync_fetch_and_add_4
:
4608 case Builtin::BI__sync_fetch_and_add_8
:
4609 case Builtin::BI__sync_fetch_and_add_16
:
4610 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add
, E
);
4611 case Builtin::BI__sync_fetch_and_sub_1
:
4612 case Builtin::BI__sync_fetch_and_sub_2
:
4613 case Builtin::BI__sync_fetch_and_sub_4
:
4614 case Builtin::BI__sync_fetch_and_sub_8
:
4615 case Builtin::BI__sync_fetch_and_sub_16
:
4616 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub
, E
);
4617 case Builtin::BI__sync_fetch_and_or_1
:
4618 case Builtin::BI__sync_fetch_and_or_2
:
4619 case Builtin::BI__sync_fetch_and_or_4
:
4620 case Builtin::BI__sync_fetch_and_or_8
:
4621 case Builtin::BI__sync_fetch_and_or_16
:
4622 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or
, E
);
4623 case Builtin::BI__sync_fetch_and_and_1
:
4624 case Builtin::BI__sync_fetch_and_and_2
:
4625 case Builtin::BI__sync_fetch_and_and_4
:
4626 case Builtin::BI__sync_fetch_and_and_8
:
4627 case Builtin::BI__sync_fetch_and_and_16
:
4628 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And
, E
);
4629 case Builtin::BI__sync_fetch_and_xor_1
:
4630 case Builtin::BI__sync_fetch_and_xor_2
:
4631 case Builtin::BI__sync_fetch_and_xor_4
:
4632 case Builtin::BI__sync_fetch_and_xor_8
:
4633 case Builtin::BI__sync_fetch_and_xor_16
:
4634 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor
, E
);
4635 case Builtin::BI__sync_fetch_and_nand_1
:
4636 case Builtin::BI__sync_fetch_and_nand_2
:
4637 case Builtin::BI__sync_fetch_and_nand_4
:
4638 case Builtin::BI__sync_fetch_and_nand_8
:
4639 case Builtin::BI__sync_fetch_and_nand_16
:
4640 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand
, E
);
4642 // Clang extensions: not overloaded yet.
4643 case Builtin::BI__sync_fetch_and_min
:
4644 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min
, E
);
4645 case Builtin::BI__sync_fetch_and_max
:
4646 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max
, E
);
4647 case Builtin::BI__sync_fetch_and_umin
:
4648 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin
, E
);
4649 case Builtin::BI__sync_fetch_and_umax
:
4650 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax
, E
);
4652 case Builtin::BI__sync_add_and_fetch_1
:
4653 case Builtin::BI__sync_add_and_fetch_2
:
4654 case Builtin::BI__sync_add_and_fetch_4
:
4655 case Builtin::BI__sync_add_and_fetch_8
:
4656 case Builtin::BI__sync_add_and_fetch_16
:
4657 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add
, E
,
4658 llvm::Instruction::Add
);
4659 case Builtin::BI__sync_sub_and_fetch_1
:
4660 case Builtin::BI__sync_sub_and_fetch_2
:
4661 case Builtin::BI__sync_sub_and_fetch_4
:
4662 case Builtin::BI__sync_sub_and_fetch_8
:
4663 case Builtin::BI__sync_sub_and_fetch_16
:
4664 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub
, E
,
4665 llvm::Instruction::Sub
);
4666 case Builtin::BI__sync_and_and_fetch_1
:
4667 case Builtin::BI__sync_and_and_fetch_2
:
4668 case Builtin::BI__sync_and_and_fetch_4
:
4669 case Builtin::BI__sync_and_and_fetch_8
:
4670 case Builtin::BI__sync_and_and_fetch_16
:
4671 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And
, E
,
4672 llvm::Instruction::And
);
4673 case Builtin::BI__sync_or_and_fetch_1
:
4674 case Builtin::BI__sync_or_and_fetch_2
:
4675 case Builtin::BI__sync_or_and_fetch_4
:
4676 case Builtin::BI__sync_or_and_fetch_8
:
4677 case Builtin::BI__sync_or_and_fetch_16
:
4678 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or
, E
,
4679 llvm::Instruction::Or
);
4680 case Builtin::BI__sync_xor_and_fetch_1
:
4681 case Builtin::BI__sync_xor_and_fetch_2
:
4682 case Builtin::BI__sync_xor_and_fetch_4
:
4683 case Builtin::BI__sync_xor_and_fetch_8
:
4684 case Builtin::BI__sync_xor_and_fetch_16
:
4685 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor
, E
,
4686 llvm::Instruction::Xor
);
4687 case Builtin::BI__sync_nand_and_fetch_1
:
4688 case Builtin::BI__sync_nand_and_fetch_2
:
4689 case Builtin::BI__sync_nand_and_fetch_4
:
4690 case Builtin::BI__sync_nand_and_fetch_8
:
4691 case Builtin::BI__sync_nand_and_fetch_16
:
4692 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand
, E
,
4693 llvm::Instruction::And
, true);
4695 case Builtin::BI__sync_val_compare_and_swap_1
:
4696 case Builtin::BI__sync_val_compare_and_swap_2
:
4697 case Builtin::BI__sync_val_compare_and_swap_4
:
4698 case Builtin::BI__sync_val_compare_and_swap_8
:
4699 case Builtin::BI__sync_val_compare_and_swap_16
:
4700 return RValue::get(MakeAtomicCmpXchgValue(*this, E
, false));
4702 case Builtin::BI__sync_bool_compare_and_swap_1
:
4703 case Builtin::BI__sync_bool_compare_and_swap_2
:
4704 case Builtin::BI__sync_bool_compare_and_swap_4
:
4705 case Builtin::BI__sync_bool_compare_and_swap_8
:
4706 case Builtin::BI__sync_bool_compare_and_swap_16
:
4707 return RValue::get(MakeAtomicCmpXchgValue(*this, E
, true));
4709 case Builtin::BI__sync_swap_1
:
4710 case Builtin::BI__sync_swap_2
:
4711 case Builtin::BI__sync_swap_4
:
4712 case Builtin::BI__sync_swap_8
:
4713 case Builtin::BI__sync_swap_16
:
4714 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg
, E
);
4716 case Builtin::BI__sync_lock_test_and_set_1
:
4717 case Builtin::BI__sync_lock_test_and_set_2
:
4718 case Builtin::BI__sync_lock_test_and_set_4
:
4719 case Builtin::BI__sync_lock_test_and_set_8
:
4720 case Builtin::BI__sync_lock_test_and_set_16
:
4721 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg
, E
);
4723 case Builtin::BI__sync_lock_release_1
:
4724 case Builtin::BI__sync_lock_release_2
:
4725 case Builtin::BI__sync_lock_release_4
:
4726 case Builtin::BI__sync_lock_release_8
:
4727 case Builtin::BI__sync_lock_release_16
: {
4728 Address Ptr
= CheckAtomicAlignment(*this, E
);
4729 QualType ElTy
= E
->getArg(0)->getType()->getPointeeType();
4731 llvm::Type
*ITy
= llvm::IntegerType::get(getLLVMContext(),
4732 getContext().getTypeSize(ElTy
));
4733 llvm::StoreInst
*Store
=
4734 Builder
.CreateStore(llvm::Constant::getNullValue(ITy
), Ptr
);
4735 Store
->setAtomic(llvm::AtomicOrdering::Release
);
4736 return RValue::get(nullptr);
4739 case Builtin::BI__sync_synchronize
: {
4740 // We assume this is supposed to correspond to a C++0x-style
4741 // sequentially-consistent fence (i.e. this is only usable for
4742 // synchronization, not device I/O or anything like that). This intrinsic
4743 // is really badly designed in the sense that in theory, there isn't
4744 // any way to safely use it... but in practice, it mostly works
4745 // to use it with non-atomic loads and stores to get acquire/release
4747 Builder
.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent
);
4748 return RValue::get(nullptr);
4751 case Builtin::BI__builtin_nontemporal_load
:
4752 return RValue::get(EmitNontemporalLoad(*this, E
));
4753 case Builtin::BI__builtin_nontemporal_store
:
4754 return RValue::get(EmitNontemporalStore(*this, E
));
4755 case Builtin::BI__c11_atomic_is_lock_free
:
4756 case Builtin::BI__atomic_is_lock_free
: {
4757 // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
4758 // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
4759 // _Atomic(T) is always properly-aligned.
4760 const char *LibCallName
= "__atomic_is_lock_free";
4762 Args
.add(RValue::get(EmitScalarExpr(E
->getArg(0))),
4763 getContext().getSizeType());
4764 if (BuiltinID
== Builtin::BI__atomic_is_lock_free
)
4765 Args
.add(RValue::get(EmitScalarExpr(E
->getArg(1))),
4766 getContext().VoidPtrTy
);
4768 Args
.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy
)),
4769 getContext().VoidPtrTy
);
4770 const CGFunctionInfo
&FuncInfo
=
4771 CGM
.getTypes().arrangeBuiltinFunctionCall(E
->getType(), Args
);
4772 llvm::FunctionType
*FTy
= CGM
.getTypes().GetFunctionType(FuncInfo
);
4773 llvm::FunctionCallee Func
= CGM
.CreateRuntimeFunction(FTy
, LibCallName
);
4774 return EmitCall(FuncInfo
, CGCallee::forDirect(Func
),
4775 ReturnValueSlot(), Args
);
4778 case Builtin::BI__atomic_test_and_set
: {
4779 // Look at the argument type to determine whether this is a volatile
4780 // operation. The parameter type is always volatile.
4781 QualType PtrTy
= E
->getArg(0)->IgnoreImpCasts()->getType();
4783 PtrTy
->castAs
<PointerType
>()->getPointeeType().isVolatileQualified();
4786 EmitPointerWithAlignment(E
->getArg(0)).withElementType(Int8Ty
);
4788 Value
*NewVal
= Builder
.getInt8(1);
4789 Value
*Order
= EmitScalarExpr(E
->getArg(1));
4790 if (isa
<llvm::ConstantInt
>(Order
)) {
4791 int ord
= cast
<llvm::ConstantInt
>(Order
)->getZExtValue();
4792 AtomicRMWInst
*Result
= nullptr;
4794 case 0: // memory_order_relaxed
4795 default: // invalid order
4796 Result
= Builder
.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg
, Ptr
, NewVal
,
4797 llvm::AtomicOrdering::Monotonic
);
4799 case 1: // memory_order_consume
4800 case 2: // memory_order_acquire
4801 Result
= Builder
.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg
, Ptr
, NewVal
,
4802 llvm::AtomicOrdering::Acquire
);
4804 case 3: // memory_order_release
4805 Result
= Builder
.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg
, Ptr
, NewVal
,
4806 llvm::AtomicOrdering::Release
);
4808 case 4: // memory_order_acq_rel
4810 Result
= Builder
.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg
, Ptr
, NewVal
,
4811 llvm::AtomicOrdering::AcquireRelease
);
4813 case 5: // memory_order_seq_cst
4814 Result
= Builder
.CreateAtomicRMW(
4815 llvm::AtomicRMWInst::Xchg
, Ptr
, NewVal
,
4816 llvm::AtomicOrdering::SequentiallyConsistent
);
4819 Result
->setVolatile(Volatile
);
4820 return RValue::get(Builder
.CreateIsNotNull(Result
, "tobool"));
4823 llvm::BasicBlock
*ContBB
= createBasicBlock("atomic.continue", CurFn
);
4825 llvm::BasicBlock
*BBs
[5] = {
4826 createBasicBlock("monotonic", CurFn
),
4827 createBasicBlock("acquire", CurFn
),
4828 createBasicBlock("release", CurFn
),
4829 createBasicBlock("acqrel", CurFn
),
4830 createBasicBlock("seqcst", CurFn
)
4832 llvm::AtomicOrdering Orders
[5] = {
4833 llvm::AtomicOrdering::Monotonic
, llvm::AtomicOrdering::Acquire
,
4834 llvm::AtomicOrdering::Release
, llvm::AtomicOrdering::AcquireRelease
,
4835 llvm::AtomicOrdering::SequentiallyConsistent
};
4837 Order
= Builder
.CreateIntCast(Order
, Builder
.getInt32Ty(), false);
4838 llvm::SwitchInst
*SI
= Builder
.CreateSwitch(Order
, BBs
[0]);
4840 Builder
.SetInsertPoint(ContBB
);
4841 PHINode
*Result
= Builder
.CreatePHI(Int8Ty
, 5, "was_set");
4843 for (unsigned i
= 0; i
< 5; ++i
) {
4844 Builder
.SetInsertPoint(BBs
[i
]);
4845 AtomicRMWInst
*RMW
= Builder
.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg
,
4846 Ptr
, NewVal
, Orders
[i
]);
4847 RMW
->setVolatile(Volatile
);
4848 Result
->addIncoming(RMW
, BBs
[i
]);
4849 Builder
.CreateBr(ContBB
);
4852 SI
->addCase(Builder
.getInt32(0), BBs
[0]);
4853 SI
->addCase(Builder
.getInt32(1), BBs
[1]);
4854 SI
->addCase(Builder
.getInt32(2), BBs
[1]);
4855 SI
->addCase(Builder
.getInt32(3), BBs
[2]);
4856 SI
->addCase(Builder
.getInt32(4), BBs
[3]);
4857 SI
->addCase(Builder
.getInt32(5), BBs
[4]);
4859 Builder
.SetInsertPoint(ContBB
);
4860 return RValue::get(Builder
.CreateIsNotNull(Result
, "tobool"));
4863 case Builtin::BI__atomic_clear
: {
4864 QualType PtrTy
= E
->getArg(0)->IgnoreImpCasts()->getType();
4866 PtrTy
->castAs
<PointerType
>()->getPointeeType().isVolatileQualified();
4868 Address Ptr
= EmitPointerWithAlignment(E
->getArg(0));
4869 Ptr
= Ptr
.withElementType(Int8Ty
);
4870 Value
*NewVal
= Builder
.getInt8(0);
4871 Value
*Order
= EmitScalarExpr(E
->getArg(1));
4872 if (isa
<llvm::ConstantInt
>(Order
)) {
4873 int ord
= cast
<llvm::ConstantInt
>(Order
)->getZExtValue();
4874 StoreInst
*Store
= Builder
.CreateStore(NewVal
, Ptr
, Volatile
);
4876 case 0: // memory_order_relaxed
4877 default: // invalid order
4878 Store
->setOrdering(llvm::AtomicOrdering::Monotonic
);
4880 case 3: // memory_order_release
4881 Store
->setOrdering(llvm::AtomicOrdering::Release
);
4883 case 5: // memory_order_seq_cst
4884 Store
->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent
);
4887 return RValue::get(nullptr);
4890 llvm::BasicBlock
*ContBB
= createBasicBlock("atomic.continue", CurFn
);
4892 llvm::BasicBlock
*BBs
[3] = {
4893 createBasicBlock("monotonic", CurFn
),
4894 createBasicBlock("release", CurFn
),
4895 createBasicBlock("seqcst", CurFn
)
4897 llvm::AtomicOrdering Orders
[3] = {
4898 llvm::AtomicOrdering::Monotonic
, llvm::AtomicOrdering::Release
,
4899 llvm::AtomicOrdering::SequentiallyConsistent
};
4901 Order
= Builder
.CreateIntCast(Order
, Builder
.getInt32Ty(), false);
4902 llvm::SwitchInst
*SI
= Builder
.CreateSwitch(Order
, BBs
[0]);
4904 for (unsigned i
= 0; i
< 3; ++i
) {
4905 Builder
.SetInsertPoint(BBs
[i
]);
4906 StoreInst
*Store
= Builder
.CreateStore(NewVal
, Ptr
, Volatile
);
4907 Store
->setOrdering(Orders
[i
]);
4908 Builder
.CreateBr(ContBB
);
4911 SI
->addCase(Builder
.getInt32(0), BBs
[0]);
4912 SI
->addCase(Builder
.getInt32(3), BBs
[1]);
4913 SI
->addCase(Builder
.getInt32(5), BBs
[2]);
4915 Builder
.SetInsertPoint(ContBB
);
4916 return RValue::get(nullptr);
4919 case Builtin::BI__atomic_thread_fence
:
4920 case Builtin::BI__atomic_signal_fence
:
4921 case Builtin::BI__c11_atomic_thread_fence
:
4922 case Builtin::BI__c11_atomic_signal_fence
: {
4923 llvm::SyncScope::ID SSID
;
4924 if (BuiltinID
== Builtin::BI__atomic_signal_fence
||
4925 BuiltinID
== Builtin::BI__c11_atomic_signal_fence
)
4926 SSID
= llvm::SyncScope::SingleThread
;
4928 SSID
= llvm::SyncScope::System
;
4929 Value
*Order
= EmitScalarExpr(E
->getArg(0));
4930 if (isa
<llvm::ConstantInt
>(Order
)) {
4931 int ord
= cast
<llvm::ConstantInt
>(Order
)->getZExtValue();
4933 case 0: // memory_order_relaxed
4934 default: // invalid order
4936 case 1: // memory_order_consume
4937 case 2: // memory_order_acquire
4938 Builder
.CreateFence(llvm::AtomicOrdering::Acquire
, SSID
);
4940 case 3: // memory_order_release
4941 Builder
.CreateFence(llvm::AtomicOrdering::Release
, SSID
);
4943 case 4: // memory_order_acq_rel
4944 Builder
.CreateFence(llvm::AtomicOrdering::AcquireRelease
, SSID
);
4946 case 5: // memory_order_seq_cst
4947 Builder
.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent
, SSID
);
4950 return RValue::get(nullptr);
4953 llvm::BasicBlock
*AcquireBB
, *ReleaseBB
, *AcqRelBB
, *SeqCstBB
;
4954 AcquireBB
= createBasicBlock("acquire", CurFn
);
4955 ReleaseBB
= createBasicBlock("release", CurFn
);
4956 AcqRelBB
= createBasicBlock("acqrel", CurFn
);
4957 SeqCstBB
= createBasicBlock("seqcst", CurFn
);
4958 llvm::BasicBlock
*ContBB
= createBasicBlock("atomic.continue", CurFn
);
4960 Order
= Builder
.CreateIntCast(Order
, Builder
.getInt32Ty(), false);
4961 llvm::SwitchInst
*SI
= Builder
.CreateSwitch(Order
, ContBB
);
4963 Builder
.SetInsertPoint(AcquireBB
);
4964 Builder
.CreateFence(llvm::AtomicOrdering::Acquire
, SSID
);
4965 Builder
.CreateBr(ContBB
);
4966 SI
->addCase(Builder
.getInt32(1), AcquireBB
);
4967 SI
->addCase(Builder
.getInt32(2), AcquireBB
);
4969 Builder
.SetInsertPoint(ReleaseBB
);
4970 Builder
.CreateFence(llvm::AtomicOrdering::Release
, SSID
);
4971 Builder
.CreateBr(ContBB
);
4972 SI
->addCase(Builder
.getInt32(3), ReleaseBB
);
4974 Builder
.SetInsertPoint(AcqRelBB
);
4975 Builder
.CreateFence(llvm::AtomicOrdering::AcquireRelease
, SSID
);
4976 Builder
.CreateBr(ContBB
);
4977 SI
->addCase(Builder
.getInt32(4), AcqRelBB
);
4979 Builder
.SetInsertPoint(SeqCstBB
);
4980 Builder
.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent
, SSID
);
4981 Builder
.CreateBr(ContBB
);
4982 SI
->addCase(Builder
.getInt32(5), SeqCstBB
);
4984 Builder
.SetInsertPoint(ContBB
);
4985 return RValue::get(nullptr);
4988 case Builtin::BI__builtin_signbit
:
4989 case Builtin::BI__builtin_signbitf
:
4990 case Builtin::BI__builtin_signbitl
: {
4992 Builder
.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E
->getArg(0))),
4993 ConvertType(E
->getType())));
4995 case Builtin::BI__warn_memset_zero_len
:
4996 return RValue::getIgnored();
4997 case Builtin::BI__annotation
: {
4998 // Re-encode each wide string to UTF8 and make an MDString.
4999 SmallVector
<Metadata
*, 1> Strings
;
5000 for (const Expr
*Arg
: E
->arguments()) {
5001 const auto *Str
= cast
<StringLiteral
>(Arg
->IgnoreParenCasts());
5002 assert(Str
->getCharByteWidth() == 2);
5003 StringRef WideBytes
= Str
->getBytes();
5004 std::string StrUtf8
;
5005 if (!convertUTF16ToUTF8String(
5006 ArrayRef(WideBytes
.data(), WideBytes
.size()), StrUtf8
)) {
5007 CGM
.ErrorUnsupported(E
, "non-UTF16 __annotation argument");
5010 Strings
.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8
));
5013 // Build and MDTuple of MDStrings and emit the intrinsic call.
5015 CGM
.getIntrinsic(llvm::Intrinsic::codeview_annotation
, {});
5016 MDTuple
*StrTuple
= MDTuple::get(getLLVMContext(), Strings
);
5017 Builder
.CreateCall(F
, MetadataAsValue::get(getLLVMContext(), StrTuple
));
5018 return RValue::getIgnored();
5020 case Builtin::BI__builtin_annotation
: {
5021 llvm::Value
*AnnVal
= EmitScalarExpr(E
->getArg(0));
5023 CGM
.getIntrinsic(llvm::Intrinsic::annotation
,
5024 {AnnVal
->getType(), CGM
.ConstGlobalsPtrTy
});
5026 // Get the annotation string, go through casts. Sema requires this to be a
5027 // non-wide string literal, potentially casted, so the cast<> is safe.
5028 const Expr
*AnnotationStrExpr
= E
->getArg(1)->IgnoreParenCasts();
5029 StringRef Str
= cast
<StringLiteral
>(AnnotationStrExpr
)->getString();
5031 EmitAnnotationCall(F
, AnnVal
, Str
, E
->getExprLoc(), nullptr));
5033 case Builtin::BI__builtin_addcb
:
5034 case Builtin::BI__builtin_addcs
:
5035 case Builtin::BI__builtin_addc
:
5036 case Builtin::BI__builtin_addcl
:
5037 case Builtin::BI__builtin_addcll
:
5038 case Builtin::BI__builtin_subcb
:
5039 case Builtin::BI__builtin_subcs
:
5040 case Builtin::BI__builtin_subc
:
5041 case Builtin::BI__builtin_subcl
:
5042 case Builtin::BI__builtin_subcll
: {
5044 // We translate all of these builtins from expressions of the form:
5045 // int x = ..., y = ..., carryin = ..., carryout, result;
5046 // result = __builtin_addc(x, y, carryin, &carryout);
5048 // to LLVM IR of the form:
5050 // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
5051 // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
5052 // %carry1 = extractvalue {i32, i1} %tmp1, 1
5053 // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
5055 // %result = extractvalue {i32, i1} %tmp2, 0
5056 // %carry2 = extractvalue {i32, i1} %tmp2, 1
5057 // %tmp3 = or i1 %carry1, %carry2
5058 // %tmp4 = zext i1 %tmp3 to i32
5059 // store i32 %tmp4, i32* %carryout
5061 // Scalarize our inputs.
5062 llvm::Value
*X
= EmitScalarExpr(E
->getArg(0));
5063 llvm::Value
*Y
= EmitScalarExpr(E
->getArg(1));
5064 llvm::Value
*Carryin
= EmitScalarExpr(E
->getArg(2));
5065 Address CarryOutPtr
= EmitPointerWithAlignment(E
->getArg(3));
5067 // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
5068 llvm::Intrinsic::ID IntrinsicId
;
5069 switch (BuiltinID
) {
5070 default: llvm_unreachable("Unknown multiprecision builtin id.");
5071 case Builtin::BI__builtin_addcb
:
5072 case Builtin::BI__builtin_addcs
:
5073 case Builtin::BI__builtin_addc
:
5074 case Builtin::BI__builtin_addcl
:
5075 case Builtin::BI__builtin_addcll
:
5076 IntrinsicId
= llvm::Intrinsic::uadd_with_overflow
;
5078 case Builtin::BI__builtin_subcb
:
5079 case Builtin::BI__builtin_subcs
:
5080 case Builtin::BI__builtin_subc
:
5081 case Builtin::BI__builtin_subcl
:
5082 case Builtin::BI__builtin_subcll
:
5083 IntrinsicId
= llvm::Intrinsic::usub_with_overflow
;
5087 // Construct our resulting LLVM IR expression.
5088 llvm::Value
*Carry1
;
5089 llvm::Value
*Sum1
= EmitOverflowIntrinsic(*this, IntrinsicId
,
5091 llvm::Value
*Carry2
;
5092 llvm::Value
*Sum2
= EmitOverflowIntrinsic(*this, IntrinsicId
,
5093 Sum1
, Carryin
, Carry2
);
5094 llvm::Value
*CarryOut
= Builder
.CreateZExt(Builder
.CreateOr(Carry1
, Carry2
),
5096 Builder
.CreateStore(CarryOut
, CarryOutPtr
);
5097 return RValue::get(Sum2
);
5100 case Builtin::BI__builtin_add_overflow
:
5101 case Builtin::BI__builtin_sub_overflow
:
5102 case Builtin::BI__builtin_mul_overflow
: {
5103 const clang::Expr
*LeftArg
= E
->getArg(0);
5104 const clang::Expr
*RightArg
= E
->getArg(1);
5105 const clang::Expr
*ResultArg
= E
->getArg(2);
5107 clang::QualType ResultQTy
=
5108 ResultArg
->getType()->castAs
<PointerType
>()->getPointeeType();
5110 WidthAndSignedness LeftInfo
=
5111 getIntegerWidthAndSignedness(CGM
.getContext(), LeftArg
->getType());
5112 WidthAndSignedness RightInfo
=
5113 getIntegerWidthAndSignedness(CGM
.getContext(), RightArg
->getType());
5114 WidthAndSignedness ResultInfo
=
5115 getIntegerWidthAndSignedness(CGM
.getContext(), ResultQTy
);
5117 // Handle mixed-sign multiplication as a special case, because adding
5118 // runtime or backend support for our generic irgen would be too expensive.
5119 if (isSpecialMixedSignMultiply(BuiltinID
, LeftInfo
, RightInfo
, ResultInfo
))
5120 return EmitCheckedMixedSignMultiply(*this, LeftArg
, LeftInfo
, RightArg
,
5121 RightInfo
, ResultArg
, ResultQTy
,
5124 if (isSpecialUnsignedMultiplySignedResult(BuiltinID
, LeftInfo
, RightInfo
,
5126 return EmitCheckedUnsignedMultiplySignedResult(
5127 *this, LeftArg
, LeftInfo
, RightArg
, RightInfo
, ResultArg
, ResultQTy
,
5130 WidthAndSignedness EncompassingInfo
=
5131 EncompassingIntegerType({LeftInfo
, RightInfo
, ResultInfo
});
5133 llvm::Type
*EncompassingLLVMTy
=
5134 llvm::IntegerType::get(CGM
.getLLVMContext(), EncompassingInfo
.Width
);
5136 llvm::Type
*ResultLLVMTy
= CGM
.getTypes().ConvertType(ResultQTy
);
5138 llvm::Intrinsic::ID IntrinsicId
;
5139 switch (BuiltinID
) {
5141 llvm_unreachable("Unknown overflow builtin id.");
5142 case Builtin::BI__builtin_add_overflow
:
5143 IntrinsicId
= EncompassingInfo
.Signed
5144 ? llvm::Intrinsic::sadd_with_overflow
5145 : llvm::Intrinsic::uadd_with_overflow
;
5147 case Builtin::BI__builtin_sub_overflow
:
5148 IntrinsicId
= EncompassingInfo
.Signed
5149 ? llvm::Intrinsic::ssub_with_overflow
5150 : llvm::Intrinsic::usub_with_overflow
;
5152 case Builtin::BI__builtin_mul_overflow
:
5153 IntrinsicId
= EncompassingInfo
.Signed
5154 ? llvm::Intrinsic::smul_with_overflow
5155 : llvm::Intrinsic::umul_with_overflow
;
5159 llvm::Value
*Left
= EmitScalarExpr(LeftArg
);
5160 llvm::Value
*Right
= EmitScalarExpr(RightArg
);
5161 Address ResultPtr
= EmitPointerWithAlignment(ResultArg
);
5163 // Extend each operand to the encompassing type.
5164 Left
= Builder
.CreateIntCast(Left
, EncompassingLLVMTy
, LeftInfo
.Signed
);
5165 Right
= Builder
.CreateIntCast(Right
, EncompassingLLVMTy
, RightInfo
.Signed
);
5167 // Perform the operation on the extended values.
5168 llvm::Value
*Overflow
, *Result
;
5169 Result
= EmitOverflowIntrinsic(*this, IntrinsicId
, Left
, Right
, Overflow
);
5171 if (EncompassingInfo
.Width
> ResultInfo
.Width
) {
5172 // The encompassing type is wider than the result type, so we need to
5174 llvm::Value
*ResultTrunc
= Builder
.CreateTrunc(Result
, ResultLLVMTy
);
5176 // To see if the truncation caused an overflow, we will extend
5177 // the result and then compare it to the original result.
5178 llvm::Value
*ResultTruncExt
= Builder
.CreateIntCast(
5179 ResultTrunc
, EncompassingLLVMTy
, ResultInfo
.Signed
);
5180 llvm::Value
*TruncationOverflow
=
5181 Builder
.CreateICmpNE(Result
, ResultTruncExt
);
5183 Overflow
= Builder
.CreateOr(Overflow
, TruncationOverflow
);
5184 Result
= ResultTrunc
;
5187 // Finally, store the result using the pointer.
5189 ResultArg
->getType()->getPointeeType().isVolatileQualified();
5190 Builder
.CreateStore(EmitToMemory(Result
, ResultQTy
), ResultPtr
, isVolatile
);
5192 return RValue::get(Overflow
);
5195 case Builtin::BI__builtin_uadd_overflow
:
5196 case Builtin::BI__builtin_uaddl_overflow
:
5197 case Builtin::BI__builtin_uaddll_overflow
:
5198 case Builtin::BI__builtin_usub_overflow
:
5199 case Builtin::BI__builtin_usubl_overflow
:
5200 case Builtin::BI__builtin_usubll_overflow
:
5201 case Builtin::BI__builtin_umul_overflow
:
5202 case Builtin::BI__builtin_umull_overflow
:
5203 case Builtin::BI__builtin_umulll_overflow
:
5204 case Builtin::BI__builtin_sadd_overflow
:
5205 case Builtin::BI__builtin_saddl_overflow
:
5206 case Builtin::BI__builtin_saddll_overflow
:
5207 case Builtin::BI__builtin_ssub_overflow
:
5208 case Builtin::BI__builtin_ssubl_overflow
:
5209 case Builtin::BI__builtin_ssubll_overflow
:
5210 case Builtin::BI__builtin_smul_overflow
:
5211 case Builtin::BI__builtin_smull_overflow
:
5212 case Builtin::BI__builtin_smulll_overflow
: {
5214 // We translate all of these builtins directly to the relevant llvm IR node.
5216 // Scalarize our inputs.
5217 llvm::Value
*X
= EmitScalarExpr(E
->getArg(0));
5218 llvm::Value
*Y
= EmitScalarExpr(E
->getArg(1));
5219 Address SumOutPtr
= EmitPointerWithAlignment(E
->getArg(2));
5221 // Decide which of the overflow intrinsics we are lowering to:
5222 llvm::Intrinsic::ID IntrinsicId
;
5223 switch (BuiltinID
) {
5224 default: llvm_unreachable("Unknown overflow builtin id.");
5225 case Builtin::BI__builtin_uadd_overflow
:
5226 case Builtin::BI__builtin_uaddl_overflow
:
5227 case Builtin::BI__builtin_uaddll_overflow
:
5228 IntrinsicId
= llvm::Intrinsic::uadd_with_overflow
;
5230 case Builtin::BI__builtin_usub_overflow
:
5231 case Builtin::BI__builtin_usubl_overflow
:
5232 case Builtin::BI__builtin_usubll_overflow
:
5233 IntrinsicId
= llvm::Intrinsic::usub_with_overflow
;
5235 case Builtin::BI__builtin_umul_overflow
:
5236 case Builtin::BI__builtin_umull_overflow
:
5237 case Builtin::BI__builtin_umulll_overflow
:
5238 IntrinsicId
= llvm::Intrinsic::umul_with_overflow
;
5240 case Builtin::BI__builtin_sadd_overflow
:
5241 case Builtin::BI__builtin_saddl_overflow
:
5242 case Builtin::BI__builtin_saddll_overflow
:
5243 IntrinsicId
= llvm::Intrinsic::sadd_with_overflow
;
5245 case Builtin::BI__builtin_ssub_overflow
:
5246 case Builtin::BI__builtin_ssubl_overflow
:
5247 case Builtin::BI__builtin_ssubll_overflow
:
5248 IntrinsicId
= llvm::Intrinsic::ssub_with_overflow
;
5250 case Builtin::BI__builtin_smul_overflow
:
5251 case Builtin::BI__builtin_smull_overflow
:
5252 case Builtin::BI__builtin_smulll_overflow
:
5253 IntrinsicId
= llvm::Intrinsic::smul_with_overflow
;
5259 llvm::Value
*Sum
= EmitOverflowIntrinsic(*this, IntrinsicId
, X
, Y
, Carry
);
5260 Builder
.CreateStore(Sum
, SumOutPtr
);
5262 return RValue::get(Carry
);
5264 case Builtin::BIaddressof
:
5265 case Builtin::BI__addressof
:
5266 case Builtin::BI__builtin_addressof
:
5267 return RValue::get(EmitLValue(E
->getArg(0)).getPointer(*this));
5268 case Builtin::BI__builtin_function_start
:
5269 return RValue::get(CGM
.GetFunctionStart(
5270 E
->getArg(0)->getAsBuiltinConstantDeclRef(CGM
.getContext())));
5271 case Builtin::BI__builtin_operator_new
:
5272 return EmitBuiltinNewDeleteCall(
5273 E
->getCallee()->getType()->castAs
<FunctionProtoType
>(), E
, false);
5274 case Builtin::BI__builtin_operator_delete
:
5275 EmitBuiltinNewDeleteCall(
5276 E
->getCallee()->getType()->castAs
<FunctionProtoType
>(), E
, true);
5277 return RValue::get(nullptr);
5279 case Builtin::BI__builtin_is_aligned
:
5280 return EmitBuiltinIsAligned(E
);
5281 case Builtin::BI__builtin_align_up
:
5282 return EmitBuiltinAlignTo(E
, true);
5283 case Builtin::BI__builtin_align_down
:
5284 return EmitBuiltinAlignTo(E
, false);
5286 case Builtin::BI__noop
:
5287 // __noop always evaluates to an integer literal zero.
5288 return RValue::get(ConstantInt::get(IntTy
, 0));
5289 case Builtin::BI__builtin_call_with_static_chain
: {
5290 const CallExpr
*Call
= cast
<CallExpr
>(E
->getArg(0));
5291 const Expr
*Chain
= E
->getArg(1);
5292 return EmitCall(Call
->getCallee()->getType(),
5293 EmitCallee(Call
->getCallee()), Call
, ReturnValue
,
5294 EmitScalarExpr(Chain
));
5296 case Builtin::BI_InterlockedExchange8
:
5297 case Builtin::BI_InterlockedExchange16
:
5298 case Builtin::BI_InterlockedExchange
:
5299 case Builtin::BI_InterlockedExchangePointer
:
5301 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange
, E
));
5302 case Builtin::BI_InterlockedCompareExchangePointer
:
5303 case Builtin::BI_InterlockedCompareExchangePointer_nf
: {
5305 llvm::IntegerType
*IntType
= IntegerType::get(
5306 getLLVMContext(), getContext().getTypeSize(E
->getType()));
5308 Address DestAddr
= CheckAtomicAlignment(*this, E
);
5310 llvm::Value
*Exchange
= EmitScalarExpr(E
->getArg(1));
5311 RTy
= Exchange
->getType();
5312 Exchange
= Builder
.CreatePtrToInt(Exchange
, IntType
);
5314 llvm::Value
*Comparand
=
5315 Builder
.CreatePtrToInt(EmitScalarExpr(E
->getArg(2)), IntType
);
5318 BuiltinID
== Builtin::BI_InterlockedCompareExchangePointer_nf
?
5319 AtomicOrdering::Monotonic
: AtomicOrdering::SequentiallyConsistent
;
5321 auto Result
= Builder
.CreateAtomicCmpXchg(DestAddr
, Comparand
, Exchange
,
5322 Ordering
, Ordering
);
5323 Result
->setVolatile(true);
5325 return RValue::get(Builder
.CreateIntToPtr(Builder
.CreateExtractValue(Result
,
5329 case Builtin::BI_InterlockedCompareExchange8
:
5330 case Builtin::BI_InterlockedCompareExchange16
:
5331 case Builtin::BI_InterlockedCompareExchange
:
5332 case Builtin::BI_InterlockedCompareExchange64
:
5333 return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E
));
5334 case Builtin::BI_InterlockedIncrement16
:
5335 case Builtin::BI_InterlockedIncrement
:
5337 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement
, E
));
5338 case Builtin::BI_InterlockedDecrement16
:
5339 case Builtin::BI_InterlockedDecrement
:
5341 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement
, E
));
5342 case Builtin::BI_InterlockedAnd8
:
5343 case Builtin::BI_InterlockedAnd16
:
5344 case Builtin::BI_InterlockedAnd
:
5345 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd
, E
));
5346 case Builtin::BI_InterlockedExchangeAdd8
:
5347 case Builtin::BI_InterlockedExchangeAdd16
:
5348 case Builtin::BI_InterlockedExchangeAdd
:
5350 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd
, E
));
5351 case Builtin::BI_InterlockedExchangeSub8
:
5352 case Builtin::BI_InterlockedExchangeSub16
:
5353 case Builtin::BI_InterlockedExchangeSub
:
5355 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub
, E
));
5356 case Builtin::BI_InterlockedOr8
:
5357 case Builtin::BI_InterlockedOr16
:
5358 case Builtin::BI_InterlockedOr
:
5359 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr
, E
));
5360 case Builtin::BI_InterlockedXor8
:
5361 case Builtin::BI_InterlockedXor16
:
5362 case Builtin::BI_InterlockedXor
:
5363 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor
, E
));
5365 case Builtin::BI_bittest64
:
5366 case Builtin::BI_bittest
:
5367 case Builtin::BI_bittestandcomplement64
:
5368 case Builtin::BI_bittestandcomplement
:
5369 case Builtin::BI_bittestandreset64
:
5370 case Builtin::BI_bittestandreset
:
5371 case Builtin::BI_bittestandset64
:
5372 case Builtin::BI_bittestandset
:
5373 case Builtin::BI_interlockedbittestandreset
:
5374 case Builtin::BI_interlockedbittestandreset64
:
5375 case Builtin::BI_interlockedbittestandset64
:
5376 case Builtin::BI_interlockedbittestandset
:
5377 case Builtin::BI_interlockedbittestandset_acq
:
5378 case Builtin::BI_interlockedbittestandset_rel
:
5379 case Builtin::BI_interlockedbittestandset_nf
:
5380 case Builtin::BI_interlockedbittestandreset_acq
:
5381 case Builtin::BI_interlockedbittestandreset_rel
:
5382 case Builtin::BI_interlockedbittestandreset_nf
:
5383 return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID
, E
));
5385 // These builtins exist to emit regular volatile loads and stores not
5386 // affected by the -fms-volatile setting.
5387 case Builtin::BI__iso_volatile_load8
:
5388 case Builtin::BI__iso_volatile_load16
:
5389 case Builtin::BI__iso_volatile_load32
:
5390 case Builtin::BI__iso_volatile_load64
:
5391 return RValue::get(EmitISOVolatileLoad(*this, E
));
5392 case Builtin::BI__iso_volatile_store8
:
5393 case Builtin::BI__iso_volatile_store16
:
5394 case Builtin::BI__iso_volatile_store32
:
5395 case Builtin::BI__iso_volatile_store64
:
5396 return RValue::get(EmitISOVolatileStore(*this, E
));
5398 case Builtin::BI__builtin_ptrauth_sign_constant
:
5399 return RValue::get(ConstantEmitter(*this).emitAbstract(E
, E
->getType()));
5401 case Builtin::BI__builtin_ptrauth_auth
:
5402 case Builtin::BI__builtin_ptrauth_auth_and_resign
:
5403 case Builtin::BI__builtin_ptrauth_blend_discriminator
:
5404 case Builtin::BI__builtin_ptrauth_sign_generic_data
:
5405 case Builtin::BI__builtin_ptrauth_sign_unauthenticated
:
5406 case Builtin::BI__builtin_ptrauth_strip
: {
5407 // Emit the arguments.
5408 SmallVector
<llvm::Value
*, 5> Args
;
5409 for (auto argExpr
: E
->arguments())
5410 Args
.push_back(EmitScalarExpr(argExpr
));
5412 // Cast the value to intptr_t, saving its original type.
5413 llvm::Type
*OrigValueType
= Args
[0]->getType();
5414 if (OrigValueType
->isPointerTy())
5415 Args
[0] = Builder
.CreatePtrToInt(Args
[0], IntPtrTy
);
5417 switch (BuiltinID
) {
5418 case Builtin::BI__builtin_ptrauth_auth_and_resign
:
5419 if (Args
[4]->getType()->isPointerTy())
5420 Args
[4] = Builder
.CreatePtrToInt(Args
[4], IntPtrTy
);
5423 case Builtin::BI__builtin_ptrauth_auth
:
5424 case Builtin::BI__builtin_ptrauth_sign_unauthenticated
:
5425 if (Args
[2]->getType()->isPointerTy())
5426 Args
[2] = Builder
.CreatePtrToInt(Args
[2], IntPtrTy
);
5429 case Builtin::BI__builtin_ptrauth_sign_generic_data
:
5430 if (Args
[1]->getType()->isPointerTy())
5431 Args
[1] = Builder
.CreatePtrToInt(Args
[1], IntPtrTy
);
5434 case Builtin::BI__builtin_ptrauth_blend_discriminator
:
5435 case Builtin::BI__builtin_ptrauth_strip
:
5439 // Call the intrinsic.
5440 auto IntrinsicID
= [&]() -> unsigned {
5441 switch (BuiltinID
) {
5442 case Builtin::BI__builtin_ptrauth_auth
:
5443 return llvm::Intrinsic::ptrauth_auth
;
5444 case Builtin::BI__builtin_ptrauth_auth_and_resign
:
5445 return llvm::Intrinsic::ptrauth_resign
;
5446 case Builtin::BI__builtin_ptrauth_blend_discriminator
:
5447 return llvm::Intrinsic::ptrauth_blend
;
5448 case Builtin::BI__builtin_ptrauth_sign_generic_data
:
5449 return llvm::Intrinsic::ptrauth_sign_generic
;
5450 case Builtin::BI__builtin_ptrauth_sign_unauthenticated
:
5451 return llvm::Intrinsic::ptrauth_sign
;
5452 case Builtin::BI__builtin_ptrauth_strip
:
5453 return llvm::Intrinsic::ptrauth_strip
;
5455 llvm_unreachable("bad ptrauth intrinsic");
5457 auto Intrinsic
= CGM
.getIntrinsic(IntrinsicID
);
5458 llvm::Value
*Result
= EmitRuntimeCall(Intrinsic
, Args
);
5460 if (BuiltinID
!= Builtin::BI__builtin_ptrauth_sign_generic_data
&&
5461 BuiltinID
!= Builtin::BI__builtin_ptrauth_blend_discriminator
&&
5462 OrigValueType
->isPointerTy()) {
5463 Result
= Builder
.CreateIntToPtr(Result
, OrigValueType
);
5465 return RValue::get(Result
);
5468 case Builtin::BI__exception_code
:
5469 case Builtin::BI_exception_code
:
5470 return RValue::get(EmitSEHExceptionCode());
5471 case Builtin::BI__exception_info
:
5472 case Builtin::BI_exception_info
:
5473 return RValue::get(EmitSEHExceptionInfo());
5474 case Builtin::BI__abnormal_termination
:
5475 case Builtin::BI_abnormal_termination
:
5476 return RValue::get(EmitSEHAbnormalTermination());
5477 case Builtin::BI_setjmpex
:
5478 if (getTarget().getTriple().isOSMSVCRT() && E
->getNumArgs() == 1 &&
5479 E
->getArg(0)->getType()->isPointerType())
5480 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex
, E
);
5482 case Builtin::BI_setjmp
:
5483 if (getTarget().getTriple().isOSMSVCRT() && E
->getNumArgs() == 1 &&
5484 E
->getArg(0)->getType()->isPointerType()) {
5485 if (getTarget().getTriple().getArch() == llvm::Triple::x86
)
5486 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3
, E
);
5487 else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64
)
5488 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex
, E
);
5489 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp
, E
);
5493 // C++ std:: builtins.
5494 case Builtin::BImove
:
5495 case Builtin::BImove_if_noexcept
:
5496 case Builtin::BIforward
:
5497 case Builtin::BIforward_like
:
5498 case Builtin::BIas_const
:
5499 return RValue::get(EmitLValue(E
->getArg(0)).getPointer(*this));
5500 case Builtin::BI__GetExceptionInfo
: {
5501 if (llvm::GlobalVariable
*GV
=
5502 CGM
.getCXXABI().getThrowInfo(FD
->getParamDecl(0)->getType()))
5503 return RValue::get(GV
);
5507 case Builtin::BI__fastfail
:
5508 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail
, E
));
5510 case Builtin::BI__builtin_coro_id
:
5511 return EmitCoroutineIntrinsic(E
, Intrinsic::coro_id
);
5512 case Builtin::BI__builtin_coro_promise
:
5513 return EmitCoroutineIntrinsic(E
, Intrinsic::coro_promise
);
5514 case Builtin::BI__builtin_coro_resume
:
5515 EmitCoroutineIntrinsic(E
, Intrinsic::coro_resume
);
5516 return RValue::get(nullptr);
5517 case Builtin::BI__builtin_coro_frame
:
5518 return EmitCoroutineIntrinsic(E
, Intrinsic::coro_frame
);
5519 case Builtin::BI__builtin_coro_noop
:
5520 return EmitCoroutineIntrinsic(E
, Intrinsic::coro_noop
);
5521 case Builtin::BI__builtin_coro_free
:
5522 return EmitCoroutineIntrinsic(E
, Intrinsic::coro_free
);
5523 case Builtin::BI__builtin_coro_destroy
:
5524 EmitCoroutineIntrinsic(E
, Intrinsic::coro_destroy
);
5525 return RValue::get(nullptr);
5526 case Builtin::BI__builtin_coro_done
:
5527 return EmitCoroutineIntrinsic(E
, Intrinsic::coro_done
);
5528 case Builtin::BI__builtin_coro_alloc
:
5529 return EmitCoroutineIntrinsic(E
, Intrinsic::coro_alloc
);
5530 case Builtin::BI__builtin_coro_begin
:
5531 return EmitCoroutineIntrinsic(E
, Intrinsic::coro_begin
);
5532 case Builtin::BI__builtin_coro_end
:
5533 return EmitCoroutineIntrinsic(E
, Intrinsic::coro_end
);
5534 case Builtin::BI__builtin_coro_suspend
:
5535 return EmitCoroutineIntrinsic(E
, Intrinsic::coro_suspend
);
5536 case Builtin::BI__builtin_coro_size
:
5537 return EmitCoroutineIntrinsic(E
, Intrinsic::coro_size
);
5538 case Builtin::BI__builtin_coro_align
:
5539 return EmitCoroutineIntrinsic(E
, Intrinsic::coro_align
);
5541 // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
5542 case Builtin::BIread_pipe
:
5543 case Builtin::BIwrite_pipe
: {
5544 Value
*Arg0
= EmitScalarExpr(E
->getArg(0)),
5545 *Arg1
= EmitScalarExpr(E
->getArg(1));
5546 CGOpenCLRuntime
OpenCLRT(CGM
);
5547 Value
*PacketSize
= OpenCLRT
.getPipeElemSize(E
->getArg(0));
5548 Value
*PacketAlign
= OpenCLRT
.getPipeElemAlign(E
->getArg(0));
5550 // Type of the generic packet parameter.
5551 unsigned GenericAS
=
5552 getContext().getTargetAddressSpace(LangAS::opencl_generic
);
5553 llvm::Type
*I8PTy
= llvm::PointerType::get(getLLVMContext(), GenericAS
);
5555 // Testing which overloaded version we should generate the call for.
5556 if (2U == E
->getNumArgs()) {
5557 const char *Name
= (BuiltinID
== Builtin::BIread_pipe
) ? "__read_pipe_2"
5559 // Creating a generic function type to be able to call with any builtin or
5560 // user defined type.
5561 llvm::Type
*ArgTys
[] = {Arg0
->getType(), I8PTy
, Int32Ty
, Int32Ty
};
5562 llvm::FunctionType
*FTy
= llvm::FunctionType::get(
5563 Int32Ty
, llvm::ArrayRef
<llvm::Type
*>(ArgTys
), false);
5564 Value
*BCast
= Builder
.CreatePointerCast(Arg1
, I8PTy
);
5566 EmitRuntimeCall(CGM
.CreateRuntimeFunction(FTy
, Name
),
5567 {Arg0
, BCast
, PacketSize
, PacketAlign
}));
5569 assert(4 == E
->getNumArgs() &&
5570 "Illegal number of parameters to pipe function");
5571 const char *Name
= (BuiltinID
== Builtin::BIread_pipe
) ? "__read_pipe_4"
5574 llvm::Type
*ArgTys
[] = {Arg0
->getType(), Arg1
->getType(), Int32Ty
, I8PTy
,
5576 Value
*Arg2
= EmitScalarExpr(E
->getArg(2)),
5577 *Arg3
= EmitScalarExpr(E
->getArg(3));
5578 llvm::FunctionType
*FTy
= llvm::FunctionType::get(
5579 Int32Ty
, llvm::ArrayRef
<llvm::Type
*>(ArgTys
), false);
5580 Value
*BCast
= Builder
.CreatePointerCast(Arg3
, I8PTy
);
5581 // We know the third argument is an integer type, but we may need to cast
5583 if (Arg2
->getType() != Int32Ty
)
5584 Arg2
= Builder
.CreateZExtOrTrunc(Arg2
, Int32Ty
);
5586 EmitRuntimeCall(CGM
.CreateRuntimeFunction(FTy
, Name
),
5587 {Arg0
, Arg1
, Arg2
, BCast
, PacketSize
, PacketAlign
}));
5590 // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
5592 case Builtin::BIreserve_read_pipe
:
5593 case Builtin::BIreserve_write_pipe
:
5594 case Builtin::BIwork_group_reserve_read_pipe
:
5595 case Builtin::BIwork_group_reserve_write_pipe
:
5596 case Builtin::BIsub_group_reserve_read_pipe
:
5597 case Builtin::BIsub_group_reserve_write_pipe
: {
5598 // Composing the mangled name for the function.
5600 if (BuiltinID
== Builtin::BIreserve_read_pipe
)
5601 Name
= "__reserve_read_pipe";
5602 else if (BuiltinID
== Builtin::BIreserve_write_pipe
)
5603 Name
= "__reserve_write_pipe";
5604 else if (BuiltinID
== Builtin::BIwork_group_reserve_read_pipe
)
5605 Name
= "__work_group_reserve_read_pipe";
5606 else if (BuiltinID
== Builtin::BIwork_group_reserve_write_pipe
)
5607 Name
= "__work_group_reserve_write_pipe";
5608 else if (BuiltinID
== Builtin::BIsub_group_reserve_read_pipe
)
5609 Name
= "__sub_group_reserve_read_pipe";
5611 Name
= "__sub_group_reserve_write_pipe";
5613 Value
*Arg0
= EmitScalarExpr(E
->getArg(0)),
5614 *Arg1
= EmitScalarExpr(E
->getArg(1));
5615 llvm::Type
*ReservedIDTy
= ConvertType(getContext().OCLReserveIDTy
);
5616 CGOpenCLRuntime
OpenCLRT(CGM
);
5617 Value
*PacketSize
= OpenCLRT
.getPipeElemSize(E
->getArg(0));
5618 Value
*PacketAlign
= OpenCLRT
.getPipeElemAlign(E
->getArg(0));
5620 // Building the generic function prototype.
5621 llvm::Type
*ArgTys
[] = {Arg0
->getType(), Int32Ty
, Int32Ty
, Int32Ty
};
5622 llvm::FunctionType
*FTy
= llvm::FunctionType::get(
5623 ReservedIDTy
, llvm::ArrayRef
<llvm::Type
*>(ArgTys
), false);
5624 // We know the second argument is an integer type, but we may need to cast
5626 if (Arg1
->getType() != Int32Ty
)
5627 Arg1
= Builder
.CreateZExtOrTrunc(Arg1
, Int32Ty
);
5628 return RValue::get(EmitRuntimeCall(CGM
.CreateRuntimeFunction(FTy
, Name
),
5629 {Arg0
, Arg1
, PacketSize
, PacketAlign
}));
5631 // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
5633 case Builtin::BIcommit_read_pipe
:
5634 case Builtin::BIcommit_write_pipe
:
5635 case Builtin::BIwork_group_commit_read_pipe
:
5636 case Builtin::BIwork_group_commit_write_pipe
:
5637 case Builtin::BIsub_group_commit_read_pipe
:
5638 case Builtin::BIsub_group_commit_write_pipe
: {
5640 if (BuiltinID
== Builtin::BIcommit_read_pipe
)
5641 Name
= "__commit_read_pipe";
5642 else if (BuiltinID
== Builtin::BIcommit_write_pipe
)
5643 Name
= "__commit_write_pipe";
5644 else if (BuiltinID
== Builtin::BIwork_group_commit_read_pipe
)
5645 Name
= "__work_group_commit_read_pipe";
5646 else if (BuiltinID
== Builtin::BIwork_group_commit_write_pipe
)
5647 Name
= "__work_group_commit_write_pipe";
5648 else if (BuiltinID
== Builtin::BIsub_group_commit_read_pipe
)
5649 Name
= "__sub_group_commit_read_pipe";
5651 Name
= "__sub_group_commit_write_pipe";
5653 Value
*Arg0
= EmitScalarExpr(E
->getArg(0)),
5654 *Arg1
= EmitScalarExpr(E
->getArg(1));
5655 CGOpenCLRuntime
OpenCLRT(CGM
);
5656 Value
*PacketSize
= OpenCLRT
.getPipeElemSize(E
->getArg(0));
5657 Value
*PacketAlign
= OpenCLRT
.getPipeElemAlign(E
->getArg(0));
5659 // Building the generic function prototype.
5660 llvm::Type
*ArgTys
[] = {Arg0
->getType(), Arg1
->getType(), Int32Ty
, Int32Ty
};
5661 llvm::FunctionType
*FTy
=
5662 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
5663 llvm::ArrayRef
<llvm::Type
*>(ArgTys
), false);
5665 return RValue::get(EmitRuntimeCall(CGM
.CreateRuntimeFunction(FTy
, Name
),
5666 {Arg0
, Arg1
, PacketSize
, PacketAlign
}));
5668 // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
5669 case Builtin::BIget_pipe_num_packets
:
5670 case Builtin::BIget_pipe_max_packets
: {
5671 const char *BaseName
;
5672 const auto *PipeTy
= E
->getArg(0)->getType()->castAs
<PipeType
>();
5673 if (BuiltinID
== Builtin::BIget_pipe_num_packets
)
5674 BaseName
= "__get_pipe_num_packets";
5676 BaseName
= "__get_pipe_max_packets";
5677 std::string Name
= std::string(BaseName
) +
5678 std::string(PipeTy
->isReadOnly() ? "_ro" : "_wo");
5680 // Building the generic function prototype.
5681 Value
*Arg0
= EmitScalarExpr(E
->getArg(0));
5682 CGOpenCLRuntime
OpenCLRT(CGM
);
5683 Value
*PacketSize
= OpenCLRT
.getPipeElemSize(E
->getArg(0));
5684 Value
*PacketAlign
= OpenCLRT
.getPipeElemAlign(E
->getArg(0));
5685 llvm::Type
*ArgTys
[] = {Arg0
->getType(), Int32Ty
, Int32Ty
};
5686 llvm::FunctionType
*FTy
= llvm::FunctionType::get(
5687 Int32Ty
, llvm::ArrayRef
<llvm::Type
*>(ArgTys
), false);
5689 return RValue::get(EmitRuntimeCall(CGM
.CreateRuntimeFunction(FTy
, Name
),
5690 {Arg0
, PacketSize
, PacketAlign
}));
5693 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
5694 case Builtin::BIto_global
:
5695 case Builtin::BIto_local
:
5696 case Builtin::BIto_private
: {
5697 auto Arg0
= EmitScalarExpr(E
->getArg(0));
5698 auto NewArgT
= llvm::PointerType::get(
5700 CGM
.getContext().getTargetAddressSpace(LangAS::opencl_generic
));
5701 auto NewRetT
= llvm::PointerType::get(
5703 CGM
.getContext().getTargetAddressSpace(
5704 E
->getType()->getPointeeType().getAddressSpace()));
5705 auto FTy
= llvm::FunctionType::get(NewRetT
, {NewArgT
}, false);
5706 llvm::Value
*NewArg
;
5707 if (Arg0
->getType()->getPointerAddressSpace() !=
5708 NewArgT
->getPointerAddressSpace())
5709 NewArg
= Builder
.CreateAddrSpaceCast(Arg0
, NewArgT
);
5711 NewArg
= Builder
.CreateBitOrPointerCast(Arg0
, NewArgT
);
5712 auto NewName
= std::string("__") + E
->getDirectCallee()->getName().str();
5714 EmitRuntimeCall(CGM
.CreateRuntimeFunction(FTy
, NewName
), {NewArg
});
5715 return RValue::get(Builder
.CreateBitOrPointerCast(NewCall
,
5716 ConvertType(E
->getType())));
5719 // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
5720 // Table 6.13.17.1 specifies four overload forms of enqueue_kernel.
5721 // The code below expands the builtin call to a call to one of the following
5722 // functions that an OpenCL runtime library will have to provide:
5723 // __enqueue_kernel_basic
5724 // __enqueue_kernel_varargs
5725 // __enqueue_kernel_basic_events
5726 // __enqueue_kernel_events_varargs
5727 case Builtin::BIenqueue_kernel
: {
5728 StringRef Name
; // Generated function call name
5729 unsigned NumArgs
= E
->getNumArgs();
5731 llvm::Type
*QueueTy
= ConvertType(getContext().OCLQueueTy
);
5732 llvm::Type
*GenericVoidPtrTy
= Builder
.getPtrTy(
5733 getContext().getTargetAddressSpace(LangAS::opencl_generic
));
5735 llvm::Value
*Queue
= EmitScalarExpr(E
->getArg(0));
5736 llvm::Value
*Flags
= EmitScalarExpr(E
->getArg(1));
5737 LValue NDRangeL
= EmitAggExprToLValue(E
->getArg(2));
5738 llvm::Value
*Range
= NDRangeL
.getAddress().emitRawPointer(*this);
5739 llvm::Type
*RangeTy
= NDRangeL
.getAddress().getType();
5742 // The most basic form of the call with parameters:
5743 // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
5744 Name
= "__enqueue_kernel_basic";
5745 llvm::Type
*ArgTys
[] = {QueueTy
, Int32Ty
, RangeTy
, GenericVoidPtrTy
,
5747 llvm::FunctionType
*FTy
= llvm::FunctionType::get(
5748 Int32Ty
, llvm::ArrayRef
<llvm::Type
*>(ArgTys
), false);
5751 CGM
.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E
->getArg(3));
5752 llvm::Value
*Kernel
=
5753 Builder
.CreatePointerCast(Info
.KernelHandle
, GenericVoidPtrTy
);
5754 llvm::Value
*Block
=
5755 Builder
.CreatePointerCast(Info
.BlockArg
, GenericVoidPtrTy
);
5757 AttrBuilder
B(Builder
.getContext());
5758 B
.addByValAttr(NDRangeL
.getAddress().getElementType());
5759 llvm::AttributeList ByValAttrSet
=
5760 llvm::AttributeList::get(CGM
.getModule().getContext(), 3U, B
);
5763 EmitRuntimeCall(CGM
.CreateRuntimeFunction(FTy
, Name
, ByValAttrSet
),
5764 {Queue
, Flags
, Range
, Kernel
, Block
});
5765 RTCall
->setAttributes(ByValAttrSet
);
5766 return RValue::get(RTCall
);
5768 assert(NumArgs
>= 5 && "Invalid enqueue_kernel signature");
5770 // Create a temporary array to hold the sizes of local pointer arguments
5771 // for the block. \p First is the position of the first size argument.
5772 auto CreateArrayForSizeVar
= [=](unsigned First
)
5773 -> std::tuple
<llvm::Value
*, llvm::Value
*, llvm::Value
*> {
5774 llvm::APInt
ArraySize(32, NumArgs
- First
);
5775 QualType SizeArrayTy
= getContext().getConstantArrayType(
5776 getContext().getSizeType(), ArraySize
, nullptr,
5777 ArraySizeModifier::Normal
,
5778 /*IndexTypeQuals=*/0);
5779 auto Tmp
= CreateMemTemp(SizeArrayTy
, "block_sizes");
5780 llvm::Value
*TmpPtr
= Tmp
.getPointer();
5781 llvm::Value
*TmpSize
= EmitLifetimeStart(
5782 CGM
.getDataLayout().getTypeAllocSize(Tmp
.getElementType()), TmpPtr
);
5783 llvm::Value
*ElemPtr
;
5784 // Each of the following arguments specifies the size of the corresponding
5785 // argument passed to the enqueued block.
5786 auto *Zero
= llvm::ConstantInt::get(IntTy
, 0);
5787 for (unsigned I
= First
; I
< NumArgs
; ++I
) {
5788 auto *Index
= llvm::ConstantInt::get(IntTy
, I
- First
);
5789 auto *GEP
= Builder
.CreateGEP(Tmp
.getElementType(), TmpPtr
,
5794 Builder
.CreateZExtOrTrunc(EmitScalarExpr(E
->getArg(I
)), SizeTy
);
5795 Builder
.CreateAlignedStore(
5796 V
, GEP
, CGM
.getDataLayout().getPrefTypeAlign(SizeTy
));
5798 return std::tie(ElemPtr
, TmpSize
, TmpPtr
);
5801 // Could have events and/or varargs.
5802 if (E
->getArg(3)->getType()->isBlockPointerType()) {
5803 // No events passed, but has variadic arguments.
5804 Name
= "__enqueue_kernel_varargs";
5806 CGM
.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E
->getArg(3));
5807 llvm::Value
*Kernel
=
5808 Builder
.CreatePointerCast(Info
.KernelHandle
, GenericVoidPtrTy
);
5809 auto *Block
= Builder
.CreatePointerCast(Info
.BlockArg
, GenericVoidPtrTy
);
5810 llvm::Value
*ElemPtr
, *TmpSize
, *TmpPtr
;
5811 std::tie(ElemPtr
, TmpSize
, TmpPtr
) = CreateArrayForSizeVar(4);
5813 // Create a vector of the arguments, as well as a constant value to
5814 // express to the runtime the number of variadic arguments.
5815 llvm::Value
*const Args
[] = {Queue
, Flags
,
5817 Block
, ConstantInt::get(IntTy
, NumArgs
- 4),
5819 llvm::Type
*const ArgTys
[] = {
5820 QueueTy
, IntTy
, RangeTy
, GenericVoidPtrTy
,
5821 GenericVoidPtrTy
, IntTy
, ElemPtr
->getType()};
5823 llvm::FunctionType
*FTy
= llvm::FunctionType::get(Int32Ty
, ArgTys
, false);
5824 auto Call
= RValue::get(
5825 EmitRuntimeCall(CGM
.CreateRuntimeFunction(FTy
, Name
), Args
));
5827 EmitLifetimeEnd(TmpSize
, TmpPtr
);
5830 // Any calls now have event arguments passed.
5832 llvm::PointerType
*PtrTy
= llvm::PointerType::get(
5833 CGM
.getLLVMContext(),
5834 CGM
.getContext().getTargetAddressSpace(LangAS::opencl_generic
));
5836 llvm::Value
*NumEvents
=
5837 Builder
.CreateZExtOrTrunc(EmitScalarExpr(E
->getArg(3)), Int32Ty
);
5839 // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
5840 // to be a null pointer constant (including `0` literal), we can take it
5841 // into account and emit null pointer directly.
5842 llvm::Value
*EventWaitList
= nullptr;
5843 if (E
->getArg(4)->isNullPointerConstant(
5844 getContext(), Expr::NPC_ValueDependentIsNotNull
)) {
5845 EventWaitList
= llvm::ConstantPointerNull::get(PtrTy
);
5848 E
->getArg(4)->getType()->isArrayType()
5849 ? EmitArrayToPointerDecay(E
->getArg(4)).emitRawPointer(*this)
5850 : EmitScalarExpr(E
->getArg(4));
5851 // Convert to generic address space.
5852 EventWaitList
= Builder
.CreatePointerCast(EventWaitList
, PtrTy
);
5854 llvm::Value
*EventRet
= nullptr;
5855 if (E
->getArg(5)->isNullPointerConstant(
5856 getContext(), Expr::NPC_ValueDependentIsNotNull
)) {
5857 EventRet
= llvm::ConstantPointerNull::get(PtrTy
);
5860 Builder
.CreatePointerCast(EmitScalarExpr(E
->getArg(5)), PtrTy
);
5864 CGM
.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E
->getArg(6));
5865 llvm::Value
*Kernel
=
5866 Builder
.CreatePointerCast(Info
.KernelHandle
, GenericVoidPtrTy
);
5867 llvm::Value
*Block
=
5868 Builder
.CreatePointerCast(Info
.BlockArg
, GenericVoidPtrTy
);
5870 std::vector
<llvm::Type
*> ArgTys
= {
5871 QueueTy
, Int32Ty
, RangeTy
, Int32Ty
,
5872 PtrTy
, PtrTy
, GenericVoidPtrTy
, GenericVoidPtrTy
};
5874 std::vector
<llvm::Value
*> Args
= {Queue
, Flags
, Range
,
5875 NumEvents
, EventWaitList
, EventRet
,
5879 // Has events but no variadics.
5880 Name
= "__enqueue_kernel_basic_events";
5881 llvm::FunctionType
*FTy
= llvm::FunctionType::get(
5882 Int32Ty
, llvm::ArrayRef
<llvm::Type
*>(ArgTys
), false);
5884 EmitRuntimeCall(CGM
.CreateRuntimeFunction(FTy
, Name
),
5885 llvm::ArrayRef
<llvm::Value
*>(Args
)));
5887 // Has event info and variadics
5888 // Pass the number of variadics to the runtime function too.
5889 Args
.push_back(ConstantInt::get(Int32Ty
, NumArgs
- 7));
5890 ArgTys
.push_back(Int32Ty
);
5891 Name
= "__enqueue_kernel_events_varargs";
5893 llvm::Value
*ElemPtr
, *TmpSize
, *TmpPtr
;
5894 std::tie(ElemPtr
, TmpSize
, TmpPtr
) = CreateArrayForSizeVar(7);
5895 Args
.push_back(ElemPtr
);
5896 ArgTys
.push_back(ElemPtr
->getType());
5898 llvm::FunctionType
*FTy
= llvm::FunctionType::get(
5899 Int32Ty
, llvm::ArrayRef
<llvm::Type
*>(ArgTys
), false);
5901 RValue::get(EmitRuntimeCall(CGM
.CreateRuntimeFunction(FTy
, Name
),
5902 llvm::ArrayRef
<llvm::Value
*>(Args
)));
5904 EmitLifetimeEnd(TmpSize
, TmpPtr
);
5907 llvm_unreachable("Unexpected enqueue_kernel signature");
5909 // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
5911 case Builtin::BIget_kernel_work_group_size
: {
5912 llvm::Type
*GenericVoidPtrTy
= Builder
.getPtrTy(
5913 getContext().getTargetAddressSpace(LangAS::opencl_generic
));
5915 CGM
.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E
->getArg(0));
5917 Builder
.CreatePointerCast(Info
.KernelHandle
, GenericVoidPtrTy
);
5918 Value
*Arg
= Builder
.CreatePointerCast(Info
.BlockArg
, GenericVoidPtrTy
);
5919 return RValue::get(EmitRuntimeCall(
5920 CGM
.CreateRuntimeFunction(
5921 llvm::FunctionType::get(IntTy
, {GenericVoidPtrTy
, GenericVoidPtrTy
},
5923 "__get_kernel_work_group_size_impl"),
5926 case Builtin::BIget_kernel_preferred_work_group_size_multiple
: {
5927 llvm::Type
*GenericVoidPtrTy
= Builder
.getPtrTy(
5928 getContext().getTargetAddressSpace(LangAS::opencl_generic
));
5930 CGM
.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E
->getArg(0));
5932 Builder
.CreatePointerCast(Info
.KernelHandle
, GenericVoidPtrTy
);
5933 Value
*Arg
= Builder
.CreatePointerCast(Info
.BlockArg
, GenericVoidPtrTy
);
5934 return RValue::get(EmitRuntimeCall(
5935 CGM
.CreateRuntimeFunction(
5936 llvm::FunctionType::get(IntTy
, {GenericVoidPtrTy
, GenericVoidPtrTy
},
5938 "__get_kernel_preferred_work_group_size_multiple_impl"),
5941 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange
:
5942 case Builtin::BIget_kernel_sub_group_count_for_ndrange
: {
5943 llvm::Type
*GenericVoidPtrTy
= Builder
.getPtrTy(
5944 getContext().getTargetAddressSpace(LangAS::opencl_generic
));
5945 LValue NDRangeL
= EmitAggExprToLValue(E
->getArg(0));
5946 llvm::Value
*NDRange
= NDRangeL
.getAddress().emitRawPointer(*this);
5948 CGM
.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E
->getArg(1));
5950 Builder
.CreatePointerCast(Info
.KernelHandle
, GenericVoidPtrTy
);
5951 Value
*Block
= Builder
.CreatePointerCast(Info
.BlockArg
, GenericVoidPtrTy
);
5953 BuiltinID
== Builtin::BIget_kernel_max_sub_group_size_for_ndrange
5954 ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
5955 : "__get_kernel_sub_group_count_for_ndrange_impl";
5956 return RValue::get(EmitRuntimeCall(
5957 CGM
.CreateRuntimeFunction(
5958 llvm::FunctionType::get(
5959 IntTy
, {NDRange
->getType(), GenericVoidPtrTy
, GenericVoidPtrTy
},
5962 {NDRange
, Kernel
, Block
}));
5964 case Builtin::BI__builtin_store_half
:
5965 case Builtin::BI__builtin_store_halff
: {
5966 Value
*Val
= EmitScalarExpr(E
->getArg(0));
5967 Address Address
= EmitPointerWithAlignment(E
->getArg(1));
5968 Value
*HalfVal
= Builder
.CreateFPTrunc(Val
, Builder
.getHalfTy());
5969 Builder
.CreateStore(HalfVal
, Address
);
5970 return RValue::get(nullptr);
5972 case Builtin::BI__builtin_load_half
: {
5973 Address Address
= EmitPointerWithAlignment(E
->getArg(0));
5974 Value
*HalfVal
= Builder
.CreateLoad(Address
);
5975 return RValue::get(Builder
.CreateFPExt(HalfVal
, Builder
.getDoubleTy()));
5977 case Builtin::BI__builtin_load_halff
: {
5978 Address Address
= EmitPointerWithAlignment(E
->getArg(0));
5979 Value
*HalfVal
= Builder
.CreateLoad(Address
);
5980 return RValue::get(Builder
.CreateFPExt(HalfVal
, Builder
.getFloatTy()));
5982 case Builtin::BI__builtin_printf
:
5983 case Builtin::BIprintf
:
5984 if (getTarget().getTriple().isNVPTX() ||
5985 getTarget().getTriple().isAMDGCN() ||
5986 (getTarget().getTriple().isSPIRV() &&
5987 getTarget().getTriple().getVendor() == Triple::VendorType::AMD
)) {
5988 if (getLangOpts().OpenMPIsTargetDevice
)
5989 return EmitOpenMPDevicePrintfCallExpr(E
);
5990 if (getTarget().getTriple().isNVPTX())
5991 return EmitNVPTXDevicePrintfCallExpr(E
);
5992 if ((getTarget().getTriple().isAMDGCN() ||
5993 getTarget().getTriple().isSPIRV()) &&
5995 return EmitAMDGPUDevicePrintfCallExpr(E
);
5999 case Builtin::BI__builtin_canonicalize
:
6000 case Builtin::BI__builtin_canonicalizef
:
6001 case Builtin::BI__builtin_canonicalizef16
:
6002 case Builtin::BI__builtin_canonicalizel
:
6004 emitBuiltinWithOneOverloadedType
<1>(*this, E
, Intrinsic::canonicalize
));
6006 case Builtin::BI__builtin_thread_pointer
: {
6007 if (!getContext().getTargetInfo().isTLSSupported())
6008 CGM
.ErrorUnsupported(E
, "__builtin_thread_pointer");
6009 // Fall through - it's already mapped to the intrinsic by ClangBuiltin.
6012 case Builtin::BI__builtin_os_log_format
:
6013 return emitBuiltinOSLogFormat(*E
);
6015 case Builtin::BI__xray_customevent
: {
6016 if (!ShouldXRayInstrumentFunction())
6017 return RValue::getIgnored();
6019 if (!CGM
.getCodeGenOpts().XRayInstrumentationBundle
.has(
6020 XRayInstrKind::Custom
))
6021 return RValue::getIgnored();
6023 if (const auto *XRayAttr
= CurFuncDecl
->getAttr
<XRayInstrumentAttr
>())
6024 if (XRayAttr
->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
6025 return RValue::getIgnored();
6027 Function
*F
= CGM
.getIntrinsic(Intrinsic::xray_customevent
);
6028 auto FTy
= F
->getFunctionType();
6029 auto Arg0
= E
->getArg(0);
6030 auto Arg0Val
= EmitScalarExpr(Arg0
);
6031 auto Arg0Ty
= Arg0
->getType();
6032 auto PTy0
= FTy
->getParamType(0);
6033 if (PTy0
!= Arg0Val
->getType()) {
6034 if (Arg0Ty
->isArrayType())
6035 Arg0Val
= EmitArrayToPointerDecay(Arg0
).emitRawPointer(*this);
6037 Arg0Val
= Builder
.CreatePointerCast(Arg0Val
, PTy0
);
6039 auto Arg1
= EmitScalarExpr(E
->getArg(1));
6040 auto PTy1
= FTy
->getParamType(1);
6041 if (PTy1
!= Arg1
->getType())
6042 Arg1
= Builder
.CreateTruncOrBitCast(Arg1
, PTy1
);
6043 return RValue::get(Builder
.CreateCall(F
, {Arg0Val
, Arg1
}));
6046 case Builtin::BI__xray_typedevent
: {
6047 // TODO: There should be a way to always emit events even if the current
6048 // function is not instrumented. Losing events in a stream can cripple
6050 if (!ShouldXRayInstrumentFunction())
6051 return RValue::getIgnored();
6053 if (!CGM
.getCodeGenOpts().XRayInstrumentationBundle
.has(
6054 XRayInstrKind::Typed
))
6055 return RValue::getIgnored();
6057 if (const auto *XRayAttr
= CurFuncDecl
->getAttr
<XRayInstrumentAttr
>())
6058 if (XRayAttr
->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
6059 return RValue::getIgnored();
6061 Function
*F
= CGM
.getIntrinsic(Intrinsic::xray_typedevent
);
6062 auto FTy
= F
->getFunctionType();
6063 auto Arg0
= EmitScalarExpr(E
->getArg(0));
6064 auto PTy0
= FTy
->getParamType(0);
6065 if (PTy0
!= Arg0
->getType())
6066 Arg0
= Builder
.CreateTruncOrBitCast(Arg0
, PTy0
);
6067 auto Arg1
= E
->getArg(1);
6068 auto Arg1Val
= EmitScalarExpr(Arg1
);
6069 auto Arg1Ty
= Arg1
->getType();
6070 auto PTy1
= FTy
->getParamType(1);
6071 if (PTy1
!= Arg1Val
->getType()) {
6072 if (Arg1Ty
->isArrayType())
6073 Arg1Val
= EmitArrayToPointerDecay(Arg1
).emitRawPointer(*this);
6075 Arg1Val
= Builder
.CreatePointerCast(Arg1Val
, PTy1
);
6077 auto Arg2
= EmitScalarExpr(E
->getArg(2));
6078 auto PTy2
= FTy
->getParamType(2);
6079 if (PTy2
!= Arg2
->getType())
6080 Arg2
= Builder
.CreateTruncOrBitCast(Arg2
, PTy2
);
6081 return RValue::get(Builder
.CreateCall(F
, {Arg0
, Arg1Val
, Arg2
}));
6084 case Builtin::BI__builtin_ms_va_start
:
6085 case Builtin::BI__builtin_ms_va_end
:
6087 EmitVAStartEnd(EmitMSVAListRef(E
->getArg(0)).emitRawPointer(*this),
6088 BuiltinID
== Builtin::BI__builtin_ms_va_start
));
6090 case Builtin::BI__builtin_ms_va_copy
: {
6091 // Lower this manually. We can't reliably determine whether or not any
6092 // given va_copy() is for a Win64 va_list from the calling convention
6093 // alone, because it's legal to do this from a System V ABI function.
6094 // With opaque pointer types, we won't have enough information in LLVM
6095 // IR to determine this from the argument types, either. Best to do it
6096 // now, while we have enough information.
6097 Address DestAddr
= EmitMSVAListRef(E
->getArg(0));
6098 Address SrcAddr
= EmitMSVAListRef(E
->getArg(1));
6100 DestAddr
= DestAddr
.withElementType(Int8PtrTy
);
6101 SrcAddr
= SrcAddr
.withElementType(Int8PtrTy
);
6103 Value
*ArgPtr
= Builder
.CreateLoad(SrcAddr
, "ap.val");
6104 return RValue::get(Builder
.CreateStore(ArgPtr
, DestAddr
));
6107 case Builtin::BI__builtin_get_device_side_mangled_name
: {
6108 auto Name
= CGM
.getCUDARuntime().getDeviceSideName(
6109 cast
<DeclRefExpr
>(E
->getArg(0)->IgnoreImpCasts())->getDecl());
6110 auto Str
= CGM
.GetAddrOfConstantCString(Name
, "");
6111 return RValue::get(Str
.getPointer());
6115 // If this is an alias for a lib function (e.g. __builtin_sin), emit
6116 // the call using the normal call path, but using the unmangled
6117 // version of the function name.
6118 if (getContext().BuiltinInfo
.isLibFunction(BuiltinID
))
6119 return emitLibraryCall(*this, FD
, E
,
6120 CGM
.getBuiltinLibFunction(FD
, BuiltinID
));
6122 // If this is a predefined lib function (e.g. malloc), emit the call
6123 // using exactly the normal call path.
6124 if (getContext().BuiltinInfo
.isPredefinedLibFunction(BuiltinID
))
6125 return emitLibraryCall(*this, FD
, E
, CGM
.getRawFunctionPointer(FD
));
6127 // Check that a call to a target specific builtin has the correct target
6129 // This is down here to avoid non-target specific builtins, however, if
6130 // generic builtins start to require generic target features then we
6131 // can move this up to the beginning of the function.
6132 checkTargetFeatures(E
, FD
);
6134 if (unsigned VectorWidth
= getContext().BuiltinInfo
.getRequiredVectorWidth(BuiltinID
))
6135 LargestVectorWidth
= std::max(LargestVectorWidth
, VectorWidth
);
6137 // See if we have a target specific intrinsic.
6138 StringRef Name
= getContext().BuiltinInfo
.getName(BuiltinID
);
6139 Intrinsic::ID IntrinsicID
= Intrinsic::not_intrinsic
;
6141 llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
6142 if (!Prefix
.empty()) {
6143 IntrinsicID
= Intrinsic::getIntrinsicForClangBuiltin(Prefix
.data(), Name
);
6144 if (IntrinsicID
== Intrinsic::not_intrinsic
&& Prefix
== "spv" &&
6145 getTarget().getTriple().getOS() == llvm::Triple::OSType::AMDHSA
)
6146 IntrinsicID
= Intrinsic::getIntrinsicForClangBuiltin("amdgcn", Name
);
6147 // NOTE we don't need to perform a compatibility flag check here since the
6148 // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
6149 // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
6150 if (IntrinsicID
== Intrinsic::not_intrinsic
)
6151 IntrinsicID
= Intrinsic::getIntrinsicForMSBuiltin(Prefix
.data(), Name
);
6154 if (IntrinsicID
!= Intrinsic::not_intrinsic
) {
6155 SmallVector
<Value
*, 16> Args
;
6157 // Find out if any arguments are required to be integer constant
6159 unsigned ICEArguments
= 0;
6160 ASTContext::GetBuiltinTypeError Error
;
6161 getContext().GetBuiltinType(BuiltinID
, Error
, &ICEArguments
);
6162 assert(Error
== ASTContext::GE_None
&& "Should not codegen an error");
6164 Function
*F
= CGM
.getIntrinsic(IntrinsicID
);
6165 llvm::FunctionType
*FTy
= F
->getFunctionType();
6167 for (unsigned i
= 0, e
= E
->getNumArgs(); i
!= e
; ++i
) {
6168 Value
*ArgValue
= EmitScalarOrConstFoldImmArg(ICEArguments
, i
, E
);
6169 // If the intrinsic arg type is different from the builtin arg type
6170 // we need to do a bit cast.
6171 llvm::Type
*PTy
= FTy
->getParamType(i
);
6172 if (PTy
!= ArgValue
->getType()) {
6173 // XXX - vector of pointers?
6174 if (auto *PtrTy
= dyn_cast
<llvm::PointerType
>(PTy
)) {
6175 if (PtrTy
->getAddressSpace() !=
6176 ArgValue
->getType()->getPointerAddressSpace()) {
6177 ArgValue
= Builder
.CreateAddrSpaceCast(
6178 ArgValue
, llvm::PointerType::get(getLLVMContext(),
6179 PtrTy
->getAddressSpace()));
6183 // Cast vector type (e.g., v256i32) to x86_amx, this only happen
6184 // in amx intrinsics.
6185 if (PTy
->isX86_AMXTy())
6186 ArgValue
= Builder
.CreateIntrinsic(Intrinsic::x86_cast_vector_to_tile
,
6187 {ArgValue
->getType()}, {ArgValue
});
6189 ArgValue
= Builder
.CreateBitCast(ArgValue
, PTy
);
6192 Args
.push_back(ArgValue
);
6195 Value
*V
= Builder
.CreateCall(F
, Args
);
6196 QualType BuiltinRetType
= E
->getType();
6198 llvm::Type
*RetTy
= VoidTy
;
6199 if (!BuiltinRetType
->isVoidType())
6200 RetTy
= ConvertType(BuiltinRetType
);
6202 if (RetTy
!= V
->getType()) {
6203 // XXX - vector of pointers?
6204 if (auto *PtrTy
= dyn_cast
<llvm::PointerType
>(RetTy
)) {
6205 if (PtrTy
->getAddressSpace() != V
->getType()->getPointerAddressSpace()) {
6206 V
= Builder
.CreateAddrSpaceCast(
6207 V
, llvm::PointerType::get(getLLVMContext(),
6208 PtrTy
->getAddressSpace()));
6212 // Cast x86_amx to vector type (e.g., v256i32), this only happen
6213 // in amx intrinsics.
6214 if (V
->getType()->isX86_AMXTy())
6215 V
= Builder
.CreateIntrinsic(Intrinsic::x86_cast_tile_to_vector
, {RetTy
},
6218 V
= Builder
.CreateBitCast(V
, RetTy
);
6221 if (RetTy
->isVoidTy())
6222 return RValue::get(nullptr);
6224 return RValue::get(V
);
6227 // Some target-specific builtins can have aggregate return values, e.g.
6228 // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
6229 // ReturnValue to be non-null, so that the target-specific emission code can
6230 // always just emit into it.
6231 TypeEvaluationKind EvalKind
= getEvaluationKind(E
->getType());
6232 if (EvalKind
== TEK_Aggregate
&& ReturnValue
.isNull()) {
6233 Address DestPtr
= CreateMemTemp(E
->getType(), "agg.tmp");
6234 ReturnValue
= ReturnValueSlot(DestPtr
, false);
6237 // Now see if we can emit a target-specific builtin.
6238 if (Value
*V
= EmitTargetBuiltinExpr(BuiltinID
, E
, ReturnValue
)) {
6241 if (V
->getType()->isVoidTy())
6242 return RValue::get(nullptr);
6243 return RValue::get(V
);
6245 return RValue::getAggregate(ReturnValue
.getAddress(),
6246 ReturnValue
.isVolatile());
6248 llvm_unreachable("No current target builtin returns complex");
6250 llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr");
6253 // EmitHLSLBuiltinExpr will check getLangOpts().HLSL
6254 if (Value
*V
= EmitHLSLBuiltinExpr(BuiltinID
, E
))
6255 return RValue::get(V
);
6257 if (getLangOpts().HIPStdPar
&& getLangOpts().CUDAIsDevice
)
6258 return EmitHipStdParUnsupportedBuiltin(this, FD
);
6260 ErrorUnsupported(E
, "builtin function");
6262 // Unknown builtin, for now just dump it out and return undef.
6263 return GetUndefRValue(E
->getType());
6266 static Value
*EmitTargetArchBuiltinExpr(CodeGenFunction
*CGF
,
6267 unsigned BuiltinID
, const CallExpr
*E
,
6268 ReturnValueSlot ReturnValue
,
6269 llvm::Triple::ArchType Arch
) {
6270 // When compiling in HipStdPar mode we have to be conservative in rejecting
6271 // target specific features in the FE, and defer the possible error to the
6272 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
6273 // referenced by an accelerator executable function, we emit an error.
6274 // Returning nullptr here leads to the builtin being handled in
6275 // EmitStdParUnsupportedBuiltin.
6276 if (CGF
->getLangOpts().HIPStdPar
&& CGF
->getLangOpts().CUDAIsDevice
&&
6277 Arch
!= CGF
->getTarget().getTriple().getArch())
6281 case llvm::Triple::arm
:
6282 case llvm::Triple::armeb
:
6283 case llvm::Triple::thumb
:
6284 case llvm::Triple::thumbeb
:
6285 return CGF
->EmitARMBuiltinExpr(BuiltinID
, E
, ReturnValue
, Arch
);
6286 case llvm::Triple::aarch64
:
6287 case llvm::Triple::aarch64_32
:
6288 case llvm::Triple::aarch64_be
:
6289 return CGF
->EmitAArch64BuiltinExpr(BuiltinID
, E
, Arch
);
6290 case llvm::Triple::bpfeb
:
6291 case llvm::Triple::bpfel
:
6292 return CGF
->EmitBPFBuiltinExpr(BuiltinID
, E
);
6293 case llvm::Triple::x86
:
6294 case llvm::Triple::x86_64
:
6295 return CGF
->EmitX86BuiltinExpr(BuiltinID
, E
);
6296 case llvm::Triple::ppc
:
6297 case llvm::Triple::ppcle
:
6298 case llvm::Triple::ppc64
:
6299 case llvm::Triple::ppc64le
:
6300 return CGF
->EmitPPCBuiltinExpr(BuiltinID
, E
);
6301 case llvm::Triple::r600
:
6302 case llvm::Triple::amdgcn
:
6303 return CGF
->EmitAMDGPUBuiltinExpr(BuiltinID
, E
);
6304 case llvm::Triple::systemz
:
6305 return CGF
->EmitSystemZBuiltinExpr(BuiltinID
, E
);
6306 case llvm::Triple::nvptx
:
6307 case llvm::Triple::nvptx64
:
6308 return CGF
->EmitNVPTXBuiltinExpr(BuiltinID
, E
);
6309 case llvm::Triple::wasm32
:
6310 case llvm::Triple::wasm64
:
6311 return CGF
->EmitWebAssemblyBuiltinExpr(BuiltinID
, E
);
6312 case llvm::Triple::hexagon
:
6313 return CGF
->EmitHexagonBuiltinExpr(BuiltinID
, E
);
6314 case llvm::Triple::riscv32
:
6315 case llvm::Triple::riscv64
:
6316 return CGF
->EmitRISCVBuiltinExpr(BuiltinID
, E
, ReturnValue
);
6317 case llvm::Triple::spirv64
:
6318 if (CGF
->getTarget().getTriple().getOS() != llvm::Triple::OSType::AMDHSA
)
6320 return CGF
->EmitAMDGPUBuiltinExpr(BuiltinID
, E
);
6326 Value
*CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID
,
6328 ReturnValueSlot ReturnValue
) {
6329 if (getContext().BuiltinInfo
.isAuxBuiltinID(BuiltinID
)) {
6330 assert(getContext().getAuxTargetInfo() && "Missing aux target info");
6331 return EmitTargetArchBuiltinExpr(
6332 this, getContext().BuiltinInfo
.getAuxBuiltinID(BuiltinID
), E
,
6333 ReturnValue
, getContext().getAuxTargetInfo()->getTriple().getArch());
6336 return EmitTargetArchBuiltinExpr(this, BuiltinID
, E
, ReturnValue
,
6337 getTarget().getTriple().getArch());
6340 static llvm::FixedVectorType
*GetNeonType(CodeGenFunction
*CGF
,
6341 NeonTypeFlags TypeFlags
,
6342 bool HasLegalHalfType
= true,
6344 bool AllowBFloatArgsAndRet
= true) {
6345 int IsQuad
= TypeFlags
.isQuad();
6346 switch (TypeFlags
.getEltType()) {
6347 case NeonTypeFlags::Int8
:
6348 case NeonTypeFlags::Poly8
:
6349 return llvm::FixedVectorType::get(CGF
->Int8Ty
, V1Ty
? 1 : (8 << IsQuad
));
6350 case NeonTypeFlags::Int16
:
6351 case NeonTypeFlags::Poly16
:
6352 return llvm::FixedVectorType::get(CGF
->Int16Ty
, V1Ty
? 1 : (4 << IsQuad
));
6353 case NeonTypeFlags::BFloat16
:
6354 if (AllowBFloatArgsAndRet
)
6355 return llvm::FixedVectorType::get(CGF
->BFloatTy
, V1Ty
? 1 : (4 << IsQuad
));
6357 return llvm::FixedVectorType::get(CGF
->Int16Ty
, V1Ty
? 1 : (4 << IsQuad
));
6358 case NeonTypeFlags::Float16
:
6359 if (HasLegalHalfType
)
6360 return llvm::FixedVectorType::get(CGF
->HalfTy
, V1Ty
? 1 : (4 << IsQuad
));
6362 return llvm::FixedVectorType::get(CGF
->Int16Ty
, V1Ty
? 1 : (4 << IsQuad
));
6363 case NeonTypeFlags::Int32
:
6364 return llvm::FixedVectorType::get(CGF
->Int32Ty
, V1Ty
? 1 : (2 << IsQuad
));
6365 case NeonTypeFlags::Int64
:
6366 case NeonTypeFlags::Poly64
:
6367 return llvm::FixedVectorType::get(CGF
->Int64Ty
, V1Ty
? 1 : (1 << IsQuad
));
6368 case NeonTypeFlags::Poly128
:
6369 // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
6370 // There is a lot of i128 and f128 API missing.
6371 // so we use v16i8 to represent poly128 and get pattern matched.
6372 return llvm::FixedVectorType::get(CGF
->Int8Ty
, 16);
6373 case NeonTypeFlags::Float32
:
6374 return llvm::FixedVectorType::get(CGF
->FloatTy
, V1Ty
? 1 : (2 << IsQuad
));
6375 case NeonTypeFlags::Float64
:
6376 return llvm::FixedVectorType::get(CGF
->DoubleTy
, V1Ty
? 1 : (1 << IsQuad
));
6378 llvm_unreachable("Unknown vector element type!");
6381 static llvm::VectorType
*GetFloatNeonType(CodeGenFunction
*CGF
,
6382 NeonTypeFlags IntTypeFlags
) {
6383 int IsQuad
= IntTypeFlags
.isQuad();
6384 switch (IntTypeFlags
.getEltType()) {
6385 case NeonTypeFlags::Int16
:
6386 return llvm::FixedVectorType::get(CGF
->HalfTy
, (4 << IsQuad
));
6387 case NeonTypeFlags::Int32
:
6388 return llvm::FixedVectorType::get(CGF
->FloatTy
, (2 << IsQuad
));
6389 case NeonTypeFlags::Int64
:
6390 return llvm::FixedVectorType::get(CGF
->DoubleTy
, (1 << IsQuad
));
6392 llvm_unreachable("Type can't be converted to floating-point!");
6396 Value
*CodeGenFunction::EmitNeonSplat(Value
*V
, Constant
*C
,
6397 const ElementCount
&Count
) {
6398 Value
*SV
= llvm::ConstantVector::getSplat(Count
, C
);
6399 return Builder
.CreateShuffleVector(V
, V
, SV
, "lane");
6402 Value
*CodeGenFunction::EmitNeonSplat(Value
*V
, Constant
*C
) {
6403 ElementCount EC
= cast
<llvm::VectorType
>(V
->getType())->getElementCount();
6404 return EmitNeonSplat(V
, C
, EC
);
6407 Value
*CodeGenFunction::EmitNeonCall(Function
*F
, SmallVectorImpl
<Value
*> &Ops
,
6409 unsigned shift
, bool rightshift
) {
6411 for (Function::const_arg_iterator ai
= F
->arg_begin(), ae
= F
->arg_end();
6412 ai
!= ae
; ++ai
, ++j
) {
6413 if (F
->isConstrainedFPIntrinsic())
6414 if (ai
->getType()->isMetadataTy())
6416 if (shift
> 0 && shift
== j
)
6417 Ops
[j
] = EmitNeonShiftVector(Ops
[j
], ai
->getType(), rightshift
);
6419 Ops
[j
] = Builder
.CreateBitCast(Ops
[j
], ai
->getType(), name
);
6422 if (F
->isConstrainedFPIntrinsic())
6423 return Builder
.CreateConstrainedFPCall(F
, Ops
, name
);
6425 return Builder
.CreateCall(F
, Ops
, name
);
6428 Value
*CodeGenFunction::EmitNeonShiftVector(Value
*V
, llvm::Type
*Ty
,
6430 int SV
= cast
<ConstantInt
>(V
)->getSExtValue();
6431 return ConstantInt::get(Ty
, neg
? -SV
: SV
);
6434 // Right-shift a vector by a constant.
6435 Value
*CodeGenFunction::EmitNeonRShiftImm(Value
*Vec
, Value
*Shift
,
6436 llvm::Type
*Ty
, bool usgn
,
6438 llvm::VectorType
*VTy
= cast
<llvm::VectorType
>(Ty
);
6440 int ShiftAmt
= cast
<ConstantInt
>(Shift
)->getSExtValue();
6441 int EltSize
= VTy
->getScalarSizeInBits();
6443 Vec
= Builder
.CreateBitCast(Vec
, Ty
);
6445 // lshr/ashr are undefined when the shift amount is equal to the vector
6447 if (ShiftAmt
== EltSize
) {
6449 // Right-shifting an unsigned value by its size yields 0.
6450 return llvm::ConstantAggregateZero::get(VTy
);
6452 // Right-shifting a signed value by its size is equivalent
6453 // to a shift of size-1.
6455 Shift
= ConstantInt::get(VTy
->getElementType(), ShiftAmt
);
6459 Shift
= EmitNeonShiftVector(Shift
, Ty
, false);
6461 return Builder
.CreateLShr(Vec
, Shift
, name
);
6463 return Builder
.CreateAShr(Vec
, Shift
, name
);
6467 AddRetType
= (1 << 0),
6468 Add1ArgType
= (1 << 1),
6469 Add2ArgTypes
= (1 << 2),
6471 VectorizeRetType
= (1 << 3),
6472 VectorizeArgTypes
= (1 << 4),
6474 InventFloatType
= (1 << 5),
6475 UnsignedAlts
= (1 << 6),
6477 Use64BitVectors
= (1 << 7),
6478 Use128BitVectors
= (1 << 8),
6480 Vectorize1ArgType
= Add1ArgType
| VectorizeArgTypes
,
6481 VectorRet
= AddRetType
| VectorizeRetType
,
6482 VectorRetGetArgs01
=
6483 AddRetType
| Add2ArgTypes
| VectorizeRetType
| VectorizeArgTypes
,
6485 AddRetType
| VectorizeRetType
| Add1ArgType
| InventFloatType
6489 struct ARMVectorIntrinsicInfo
{
6490 const char *NameHint
;
6492 unsigned LLVMIntrinsic
;
6493 unsigned AltLLVMIntrinsic
;
6494 uint64_t TypeModifier
;
6496 bool operator<(unsigned RHSBuiltinID
) const {
6497 return BuiltinID
< RHSBuiltinID
;
6499 bool operator<(const ARMVectorIntrinsicInfo
&TE
) const {
6500 return BuiltinID
< TE
.BuiltinID
;
6503 } // end anonymous namespace
6505 #define NEONMAP0(NameBase) \
6506 { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
6508 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
6509 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
6510 Intrinsic::LLVMIntrinsic, 0, TypeModifier }
6512 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
6513 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
6514 Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
6517 static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap
[] = {
6518 NEONMAP1(__a32_vcvt_bf16_f32
, arm_neon_vcvtfp2bf
, 0),
6519 NEONMAP0(splat_lane_v
),
6520 NEONMAP0(splat_laneq_v
),
6521 NEONMAP0(splatq_lane_v
),
6522 NEONMAP0(splatq_laneq_v
),
6523 NEONMAP2(vabd_v
, arm_neon_vabdu
, arm_neon_vabds
, Add1ArgType
| UnsignedAlts
),
6524 NEONMAP2(vabdq_v
, arm_neon_vabdu
, arm_neon_vabds
, Add1ArgType
| UnsignedAlts
),
6525 NEONMAP1(vabs_v
, arm_neon_vabs
, 0),
6526 NEONMAP1(vabsq_v
, arm_neon_vabs
, 0),
6530 NEONMAP1(vaesdq_u8
, arm_neon_aesd
, 0),
6531 NEONMAP1(vaeseq_u8
, arm_neon_aese
, 0),
6532 NEONMAP1(vaesimcq_u8
, arm_neon_aesimc
, 0),
6533 NEONMAP1(vaesmcq_u8
, arm_neon_aesmc
, 0),
6534 NEONMAP1(vbfdot_f32
, arm_neon_bfdot
, 0),
6535 NEONMAP1(vbfdotq_f32
, arm_neon_bfdot
, 0),
6536 NEONMAP1(vbfmlalbq_f32
, arm_neon_bfmlalb
, 0),
6537 NEONMAP1(vbfmlaltq_f32
, arm_neon_bfmlalt
, 0),
6538 NEONMAP1(vbfmmlaq_f32
, arm_neon_bfmmla
, 0),
6539 NEONMAP1(vbsl_v
, arm_neon_vbsl
, AddRetType
),
6540 NEONMAP1(vbslq_v
, arm_neon_vbsl
, AddRetType
),
6541 NEONMAP1(vcadd_rot270_f16
, arm_neon_vcadd_rot270
, Add1ArgType
),
6542 NEONMAP1(vcadd_rot270_f32
, arm_neon_vcadd_rot270
, Add1ArgType
),
6543 NEONMAP1(vcadd_rot90_f16
, arm_neon_vcadd_rot90
, Add1ArgType
),
6544 NEONMAP1(vcadd_rot90_f32
, arm_neon_vcadd_rot90
, Add1ArgType
),
6545 NEONMAP1(vcaddq_rot270_f16
, arm_neon_vcadd_rot270
, Add1ArgType
),
6546 NEONMAP1(vcaddq_rot270_f32
, arm_neon_vcadd_rot270
, Add1ArgType
),
6547 NEONMAP1(vcaddq_rot270_f64
, arm_neon_vcadd_rot270
, Add1ArgType
),
6548 NEONMAP1(vcaddq_rot90_f16
, arm_neon_vcadd_rot90
, Add1ArgType
),
6549 NEONMAP1(vcaddq_rot90_f32
, arm_neon_vcadd_rot90
, Add1ArgType
),
6550 NEONMAP1(vcaddq_rot90_f64
, arm_neon_vcadd_rot90
, Add1ArgType
),
6551 NEONMAP1(vcage_v
, arm_neon_vacge
, 0),
6552 NEONMAP1(vcageq_v
, arm_neon_vacge
, 0),
6553 NEONMAP1(vcagt_v
, arm_neon_vacgt
, 0),
6554 NEONMAP1(vcagtq_v
, arm_neon_vacgt
, 0),
6555 NEONMAP1(vcale_v
, arm_neon_vacge
, 0),
6556 NEONMAP1(vcaleq_v
, arm_neon_vacge
, 0),
6557 NEONMAP1(vcalt_v
, arm_neon_vacgt
, 0),
6558 NEONMAP1(vcaltq_v
, arm_neon_vacgt
, 0),
6567 NEONMAP1(vcls_v
, arm_neon_vcls
, Add1ArgType
),
6568 NEONMAP1(vclsq_v
, arm_neon_vcls
, Add1ArgType
),
6571 NEONMAP1(vclz_v
, ctlz
, Add1ArgType
),
6572 NEONMAP1(vclzq_v
, ctlz
, Add1ArgType
),
6573 NEONMAP1(vcnt_v
, ctpop
, Add1ArgType
),
6574 NEONMAP1(vcntq_v
, ctpop
, Add1ArgType
),
6575 NEONMAP1(vcvt_f16_f32
, arm_neon_vcvtfp2hf
, 0),
6576 NEONMAP0(vcvt_f16_s16
),
6577 NEONMAP0(vcvt_f16_u16
),
6578 NEONMAP1(vcvt_f32_f16
, arm_neon_vcvthf2fp
, 0),
6579 NEONMAP0(vcvt_f32_v
),
6580 NEONMAP1(vcvt_n_f16_s16
, arm_neon_vcvtfxs2fp
, 0),
6581 NEONMAP1(vcvt_n_f16_u16
, arm_neon_vcvtfxu2fp
, 0),
6582 NEONMAP2(vcvt_n_f32_v
, arm_neon_vcvtfxu2fp
, arm_neon_vcvtfxs2fp
, 0),
6583 NEONMAP1(vcvt_n_s16_f16
, arm_neon_vcvtfp2fxs
, 0),
6584 NEONMAP1(vcvt_n_s32_v
, arm_neon_vcvtfp2fxs
, 0),
6585 NEONMAP1(vcvt_n_s64_v
, arm_neon_vcvtfp2fxs
, 0),
6586 NEONMAP1(vcvt_n_u16_f16
, arm_neon_vcvtfp2fxu
, 0),
6587 NEONMAP1(vcvt_n_u32_v
, arm_neon_vcvtfp2fxu
, 0),
6588 NEONMAP1(vcvt_n_u64_v
, arm_neon_vcvtfp2fxu
, 0),
6589 NEONMAP0(vcvt_s16_f16
),
6590 NEONMAP0(vcvt_s32_v
),
6591 NEONMAP0(vcvt_s64_v
),
6592 NEONMAP0(vcvt_u16_f16
),
6593 NEONMAP0(vcvt_u32_v
),
6594 NEONMAP0(vcvt_u64_v
),
6595 NEONMAP1(vcvta_s16_f16
, arm_neon_vcvtas
, 0),
6596 NEONMAP1(vcvta_s32_v
, arm_neon_vcvtas
, 0),
6597 NEONMAP1(vcvta_s64_v
, arm_neon_vcvtas
, 0),
6598 NEONMAP1(vcvta_u16_f16
, arm_neon_vcvtau
, 0),
6599 NEONMAP1(vcvta_u32_v
, arm_neon_vcvtau
, 0),
6600 NEONMAP1(vcvta_u64_v
, arm_neon_vcvtau
, 0),
6601 NEONMAP1(vcvtaq_s16_f16
, arm_neon_vcvtas
, 0),
6602 NEONMAP1(vcvtaq_s32_v
, arm_neon_vcvtas
, 0),
6603 NEONMAP1(vcvtaq_s64_v
, arm_neon_vcvtas
, 0),
6604 NEONMAP1(vcvtaq_u16_f16
, arm_neon_vcvtau
, 0),
6605 NEONMAP1(vcvtaq_u32_v
, arm_neon_vcvtau
, 0),
6606 NEONMAP1(vcvtaq_u64_v
, arm_neon_vcvtau
, 0),
6607 NEONMAP1(vcvth_bf16_f32
, arm_neon_vcvtbfp2bf
, 0),
6608 NEONMAP1(vcvtm_s16_f16
, arm_neon_vcvtms
, 0),
6609 NEONMAP1(vcvtm_s32_v
, arm_neon_vcvtms
, 0),
6610 NEONMAP1(vcvtm_s64_v
, arm_neon_vcvtms
, 0),
6611 NEONMAP1(vcvtm_u16_f16
, arm_neon_vcvtmu
, 0),
6612 NEONMAP1(vcvtm_u32_v
, arm_neon_vcvtmu
, 0),
6613 NEONMAP1(vcvtm_u64_v
, arm_neon_vcvtmu
, 0),
6614 NEONMAP1(vcvtmq_s16_f16
, arm_neon_vcvtms
, 0),
6615 NEONMAP1(vcvtmq_s32_v
, arm_neon_vcvtms
, 0),
6616 NEONMAP1(vcvtmq_s64_v
, arm_neon_vcvtms
, 0),
6617 NEONMAP1(vcvtmq_u16_f16
, arm_neon_vcvtmu
, 0),
6618 NEONMAP1(vcvtmq_u32_v
, arm_neon_vcvtmu
, 0),
6619 NEONMAP1(vcvtmq_u64_v
, arm_neon_vcvtmu
, 0),
6620 NEONMAP1(vcvtn_s16_f16
, arm_neon_vcvtns
, 0),
6621 NEONMAP1(vcvtn_s32_v
, arm_neon_vcvtns
, 0),
6622 NEONMAP1(vcvtn_s64_v
, arm_neon_vcvtns
, 0),
6623 NEONMAP1(vcvtn_u16_f16
, arm_neon_vcvtnu
, 0),
6624 NEONMAP1(vcvtn_u32_v
, arm_neon_vcvtnu
, 0),
6625 NEONMAP1(vcvtn_u64_v
, arm_neon_vcvtnu
, 0),
6626 NEONMAP1(vcvtnq_s16_f16
, arm_neon_vcvtns
, 0),
6627 NEONMAP1(vcvtnq_s32_v
, arm_neon_vcvtns
, 0),
6628 NEONMAP1(vcvtnq_s64_v
, arm_neon_vcvtns
, 0),
6629 NEONMAP1(vcvtnq_u16_f16
, arm_neon_vcvtnu
, 0),
6630 NEONMAP1(vcvtnq_u32_v
, arm_neon_vcvtnu
, 0),
6631 NEONMAP1(vcvtnq_u64_v
, arm_neon_vcvtnu
, 0),
6632 NEONMAP1(vcvtp_s16_f16
, arm_neon_vcvtps
, 0),
6633 NEONMAP1(vcvtp_s32_v
, arm_neon_vcvtps
, 0),
6634 NEONMAP1(vcvtp_s64_v
, arm_neon_vcvtps
, 0),
6635 NEONMAP1(vcvtp_u16_f16
, arm_neon_vcvtpu
, 0),
6636 NEONMAP1(vcvtp_u32_v
, arm_neon_vcvtpu
, 0),
6637 NEONMAP1(vcvtp_u64_v
, arm_neon_vcvtpu
, 0),
6638 NEONMAP1(vcvtpq_s16_f16
, arm_neon_vcvtps
, 0),
6639 NEONMAP1(vcvtpq_s32_v
, arm_neon_vcvtps
, 0),
6640 NEONMAP1(vcvtpq_s64_v
, arm_neon_vcvtps
, 0),
6641 NEONMAP1(vcvtpq_u16_f16
, arm_neon_vcvtpu
, 0),
6642 NEONMAP1(vcvtpq_u32_v
, arm_neon_vcvtpu
, 0),
6643 NEONMAP1(vcvtpq_u64_v
, arm_neon_vcvtpu
, 0),
6644 NEONMAP0(vcvtq_f16_s16
),
6645 NEONMAP0(vcvtq_f16_u16
),
6646 NEONMAP0(vcvtq_f32_v
),
6647 NEONMAP1(vcvtq_n_f16_s16
, arm_neon_vcvtfxs2fp
, 0),
6648 NEONMAP1(vcvtq_n_f16_u16
, arm_neon_vcvtfxu2fp
, 0),
6649 NEONMAP2(vcvtq_n_f32_v
, arm_neon_vcvtfxu2fp
, arm_neon_vcvtfxs2fp
, 0),
6650 NEONMAP1(vcvtq_n_s16_f16
, arm_neon_vcvtfp2fxs
, 0),
6651 NEONMAP1(vcvtq_n_s32_v
, arm_neon_vcvtfp2fxs
, 0),
6652 NEONMAP1(vcvtq_n_s64_v
, arm_neon_vcvtfp2fxs
, 0),
6653 NEONMAP1(vcvtq_n_u16_f16
, arm_neon_vcvtfp2fxu
, 0),
6654 NEONMAP1(vcvtq_n_u32_v
, arm_neon_vcvtfp2fxu
, 0),
6655 NEONMAP1(vcvtq_n_u64_v
, arm_neon_vcvtfp2fxu
, 0),
6656 NEONMAP0(vcvtq_s16_f16
),
6657 NEONMAP0(vcvtq_s32_v
),
6658 NEONMAP0(vcvtq_s64_v
),
6659 NEONMAP0(vcvtq_u16_f16
),
6660 NEONMAP0(vcvtq_u32_v
),
6661 NEONMAP0(vcvtq_u64_v
),
6662 NEONMAP1(vdot_s32
, arm_neon_sdot
, 0),
6663 NEONMAP1(vdot_u32
, arm_neon_udot
, 0),
6664 NEONMAP1(vdotq_s32
, arm_neon_sdot
, 0),
6665 NEONMAP1(vdotq_u32
, arm_neon_udot
, 0),
6670 NEONMAP2(vhadd_v
, arm_neon_vhaddu
, arm_neon_vhadds
, Add1ArgType
| UnsignedAlts
),
6671 NEONMAP2(vhaddq_v
, arm_neon_vhaddu
, arm_neon_vhadds
, Add1ArgType
| UnsignedAlts
),
6672 NEONMAP2(vhsub_v
, arm_neon_vhsubu
, arm_neon_vhsubs
, Add1ArgType
| UnsignedAlts
),
6673 NEONMAP2(vhsubq_v
, arm_neon_vhsubu
, arm_neon_vhsubs
, Add1ArgType
| UnsignedAlts
),
6674 NEONMAP0(vld1_dup_v
),
6675 NEONMAP1(vld1_v
, arm_neon_vld1
, 0),
6676 NEONMAP1(vld1_x2_v
, arm_neon_vld1x2
, 0),
6677 NEONMAP1(vld1_x3_v
, arm_neon_vld1x3
, 0),
6678 NEONMAP1(vld1_x4_v
, arm_neon_vld1x4
, 0),
6679 NEONMAP0(vld1q_dup_v
),
6680 NEONMAP1(vld1q_v
, arm_neon_vld1
, 0),
6681 NEONMAP1(vld1q_x2_v
, arm_neon_vld1x2
, 0),
6682 NEONMAP1(vld1q_x3_v
, arm_neon_vld1x3
, 0),
6683 NEONMAP1(vld1q_x4_v
, arm_neon_vld1x4
, 0),
6684 NEONMAP1(vld2_dup_v
, arm_neon_vld2dup
, 0),
6685 NEONMAP1(vld2_lane_v
, arm_neon_vld2lane
, 0),
6686 NEONMAP1(vld2_v
, arm_neon_vld2
, 0),
6687 NEONMAP1(vld2q_dup_v
, arm_neon_vld2dup
, 0),
6688 NEONMAP1(vld2q_lane_v
, arm_neon_vld2lane
, 0),
6689 NEONMAP1(vld2q_v
, arm_neon_vld2
, 0),
6690 NEONMAP1(vld3_dup_v
, arm_neon_vld3dup
, 0),
6691 NEONMAP1(vld3_lane_v
, arm_neon_vld3lane
, 0),
6692 NEONMAP1(vld3_v
, arm_neon_vld3
, 0),
6693 NEONMAP1(vld3q_dup_v
, arm_neon_vld3dup
, 0),
6694 NEONMAP1(vld3q_lane_v
, arm_neon_vld3lane
, 0),
6695 NEONMAP1(vld3q_v
, arm_neon_vld3
, 0),
6696 NEONMAP1(vld4_dup_v
, arm_neon_vld4dup
, 0),
6697 NEONMAP1(vld4_lane_v
, arm_neon_vld4lane
, 0),
6698 NEONMAP1(vld4_v
, arm_neon_vld4
, 0),
6699 NEONMAP1(vld4q_dup_v
, arm_neon_vld4dup
, 0),
6700 NEONMAP1(vld4q_lane_v
, arm_neon_vld4lane
, 0),
6701 NEONMAP1(vld4q_v
, arm_neon_vld4
, 0),
6702 NEONMAP2(vmax_v
, arm_neon_vmaxu
, arm_neon_vmaxs
, Add1ArgType
| UnsignedAlts
),
6703 NEONMAP1(vmaxnm_v
, arm_neon_vmaxnm
, Add1ArgType
),
6704 NEONMAP1(vmaxnmq_v
, arm_neon_vmaxnm
, Add1ArgType
),
6705 NEONMAP2(vmaxq_v
, arm_neon_vmaxu
, arm_neon_vmaxs
, Add1ArgType
| UnsignedAlts
),
6706 NEONMAP2(vmin_v
, arm_neon_vminu
, arm_neon_vmins
, Add1ArgType
| UnsignedAlts
),
6707 NEONMAP1(vminnm_v
, arm_neon_vminnm
, Add1ArgType
),
6708 NEONMAP1(vminnmq_v
, arm_neon_vminnm
, Add1ArgType
),
6709 NEONMAP2(vminq_v
, arm_neon_vminu
, arm_neon_vmins
, Add1ArgType
| UnsignedAlts
),
6710 NEONMAP1(vmmlaq_s32
, arm_neon_smmla
, 0),
6711 NEONMAP1(vmmlaq_u32
, arm_neon_ummla
, 0),
6714 NEONMAP1(vmul_v
, arm_neon_vmulp
, Add1ArgType
),
6716 NEONMAP1(vmulq_v
, arm_neon_vmulp
, Add1ArgType
),
6717 NEONMAP2(vpadal_v
, arm_neon_vpadalu
, arm_neon_vpadals
, UnsignedAlts
),
6718 NEONMAP2(vpadalq_v
, arm_neon_vpadalu
, arm_neon_vpadals
, UnsignedAlts
),
6719 NEONMAP1(vpadd_v
, arm_neon_vpadd
, Add1ArgType
),
6720 NEONMAP2(vpaddl_v
, arm_neon_vpaddlu
, arm_neon_vpaddls
, UnsignedAlts
),
6721 NEONMAP2(vpaddlq_v
, arm_neon_vpaddlu
, arm_neon_vpaddls
, UnsignedAlts
),
6722 NEONMAP1(vpaddq_v
, arm_neon_vpadd
, Add1ArgType
),
6723 NEONMAP2(vpmax_v
, arm_neon_vpmaxu
, arm_neon_vpmaxs
, Add1ArgType
| UnsignedAlts
),
6724 NEONMAP2(vpmin_v
, arm_neon_vpminu
, arm_neon_vpmins
, Add1ArgType
| UnsignedAlts
),
6725 NEONMAP1(vqabs_v
, arm_neon_vqabs
, Add1ArgType
),
6726 NEONMAP1(vqabsq_v
, arm_neon_vqabs
, Add1ArgType
),
6727 NEONMAP2(vqadd_v
, uadd_sat
, sadd_sat
, Add1ArgType
| UnsignedAlts
),
6728 NEONMAP2(vqaddq_v
, uadd_sat
, sadd_sat
, Add1ArgType
| UnsignedAlts
),
6729 NEONMAP2(vqdmlal_v
, arm_neon_vqdmull
, sadd_sat
, 0),
6730 NEONMAP2(vqdmlsl_v
, arm_neon_vqdmull
, ssub_sat
, 0),
6731 NEONMAP1(vqdmulh_v
, arm_neon_vqdmulh
, Add1ArgType
),
6732 NEONMAP1(vqdmulhq_v
, arm_neon_vqdmulh
, Add1ArgType
),
6733 NEONMAP1(vqdmull_v
, arm_neon_vqdmull
, Add1ArgType
),
6734 NEONMAP2(vqmovn_v
, arm_neon_vqmovnu
, arm_neon_vqmovns
, Add1ArgType
| UnsignedAlts
),
6735 NEONMAP1(vqmovun_v
, arm_neon_vqmovnsu
, Add1ArgType
),
6736 NEONMAP1(vqneg_v
, arm_neon_vqneg
, Add1ArgType
),
6737 NEONMAP1(vqnegq_v
, arm_neon_vqneg
, Add1ArgType
),
6738 NEONMAP1(vqrdmlah_s16
, arm_neon_vqrdmlah
, Add1ArgType
),
6739 NEONMAP1(vqrdmlah_s32
, arm_neon_vqrdmlah
, Add1ArgType
),
6740 NEONMAP1(vqrdmlahq_s16
, arm_neon_vqrdmlah
, Add1ArgType
),
6741 NEONMAP1(vqrdmlahq_s32
, arm_neon_vqrdmlah
, Add1ArgType
),
6742 NEONMAP1(vqrdmlsh_s16
, arm_neon_vqrdmlsh
, Add1ArgType
),
6743 NEONMAP1(vqrdmlsh_s32
, arm_neon_vqrdmlsh
, Add1ArgType
),
6744 NEONMAP1(vqrdmlshq_s16
, arm_neon_vqrdmlsh
, Add1ArgType
),
6745 NEONMAP1(vqrdmlshq_s32
, arm_neon_vqrdmlsh
, Add1ArgType
),
6746 NEONMAP1(vqrdmulh_v
, arm_neon_vqrdmulh
, Add1ArgType
),
6747 NEONMAP1(vqrdmulhq_v
, arm_neon_vqrdmulh
, Add1ArgType
),
6748 NEONMAP2(vqrshl_v
, arm_neon_vqrshiftu
, arm_neon_vqrshifts
, Add1ArgType
| UnsignedAlts
),
6749 NEONMAP2(vqrshlq_v
, arm_neon_vqrshiftu
, arm_neon_vqrshifts
, Add1ArgType
| UnsignedAlts
),
6750 NEONMAP2(vqshl_n_v
, arm_neon_vqshiftu
, arm_neon_vqshifts
, UnsignedAlts
),
6751 NEONMAP2(vqshl_v
, arm_neon_vqshiftu
, arm_neon_vqshifts
, Add1ArgType
| UnsignedAlts
),
6752 NEONMAP2(vqshlq_n_v
, arm_neon_vqshiftu
, arm_neon_vqshifts
, UnsignedAlts
),
6753 NEONMAP2(vqshlq_v
, arm_neon_vqshiftu
, arm_neon_vqshifts
, Add1ArgType
| UnsignedAlts
),
6754 NEONMAP1(vqshlu_n_v
, arm_neon_vqshiftsu
, 0),
6755 NEONMAP1(vqshluq_n_v
, arm_neon_vqshiftsu
, 0),
6756 NEONMAP2(vqsub_v
, usub_sat
, ssub_sat
, Add1ArgType
| UnsignedAlts
),
6757 NEONMAP2(vqsubq_v
, usub_sat
, ssub_sat
, Add1ArgType
| UnsignedAlts
),
6758 NEONMAP1(vraddhn_v
, arm_neon_vraddhn
, Add1ArgType
),
6759 NEONMAP2(vrecpe_v
, arm_neon_vrecpe
, arm_neon_vrecpe
, 0),
6760 NEONMAP2(vrecpeq_v
, arm_neon_vrecpe
, arm_neon_vrecpe
, 0),
6761 NEONMAP1(vrecps_v
, arm_neon_vrecps
, Add1ArgType
),
6762 NEONMAP1(vrecpsq_v
, arm_neon_vrecps
, Add1ArgType
),
6763 NEONMAP2(vrhadd_v
, arm_neon_vrhaddu
, arm_neon_vrhadds
, Add1ArgType
| UnsignedAlts
),
6764 NEONMAP2(vrhaddq_v
, arm_neon_vrhaddu
, arm_neon_vrhadds
, Add1ArgType
| UnsignedAlts
),
6765 NEONMAP1(vrnd_v
, arm_neon_vrintz
, Add1ArgType
),
6766 NEONMAP1(vrnda_v
, arm_neon_vrinta
, Add1ArgType
),
6767 NEONMAP1(vrndaq_v
, arm_neon_vrinta
, Add1ArgType
),
6770 NEONMAP1(vrndm_v
, arm_neon_vrintm
, Add1ArgType
),
6771 NEONMAP1(vrndmq_v
, arm_neon_vrintm
, Add1ArgType
),
6772 NEONMAP1(vrndn_v
, arm_neon_vrintn
, Add1ArgType
),
6773 NEONMAP1(vrndnq_v
, arm_neon_vrintn
, Add1ArgType
),
6774 NEONMAP1(vrndp_v
, arm_neon_vrintp
, Add1ArgType
),
6775 NEONMAP1(vrndpq_v
, arm_neon_vrintp
, Add1ArgType
),
6776 NEONMAP1(vrndq_v
, arm_neon_vrintz
, Add1ArgType
),
6777 NEONMAP1(vrndx_v
, arm_neon_vrintx
, Add1ArgType
),
6778 NEONMAP1(vrndxq_v
, arm_neon_vrintx
, Add1ArgType
),
6779 NEONMAP2(vrshl_v
, arm_neon_vrshiftu
, arm_neon_vrshifts
, Add1ArgType
| UnsignedAlts
),
6780 NEONMAP2(vrshlq_v
, arm_neon_vrshiftu
, arm_neon_vrshifts
, Add1ArgType
| UnsignedAlts
),
6781 NEONMAP2(vrshr_n_v
, arm_neon_vrshiftu
, arm_neon_vrshifts
, UnsignedAlts
),
6782 NEONMAP2(vrshrq_n_v
, arm_neon_vrshiftu
, arm_neon_vrshifts
, UnsignedAlts
),
6783 NEONMAP2(vrsqrte_v
, arm_neon_vrsqrte
, arm_neon_vrsqrte
, 0),
6784 NEONMAP2(vrsqrteq_v
, arm_neon_vrsqrte
, arm_neon_vrsqrte
, 0),
6785 NEONMAP1(vrsqrts_v
, arm_neon_vrsqrts
, Add1ArgType
),
6786 NEONMAP1(vrsqrtsq_v
, arm_neon_vrsqrts
, Add1ArgType
),
6787 NEONMAP1(vrsubhn_v
, arm_neon_vrsubhn
, Add1ArgType
),
6788 NEONMAP1(vsha1su0q_u32
, arm_neon_sha1su0
, 0),
6789 NEONMAP1(vsha1su1q_u32
, arm_neon_sha1su1
, 0),
6790 NEONMAP1(vsha256h2q_u32
, arm_neon_sha256h2
, 0),
6791 NEONMAP1(vsha256hq_u32
, arm_neon_sha256h
, 0),
6792 NEONMAP1(vsha256su0q_u32
, arm_neon_sha256su0
, 0),
6793 NEONMAP1(vsha256su1q_u32
, arm_neon_sha256su1
, 0),
6795 NEONMAP2(vshl_v
, arm_neon_vshiftu
, arm_neon_vshifts
, Add1ArgType
| UnsignedAlts
),
6796 NEONMAP0(vshll_n_v
),
6797 NEONMAP0(vshlq_n_v
),
6798 NEONMAP2(vshlq_v
, arm_neon_vshiftu
, arm_neon_vshifts
, Add1ArgType
| UnsignedAlts
),
6800 NEONMAP0(vshrn_n_v
),
6801 NEONMAP0(vshrq_n_v
),
6802 NEONMAP1(vst1_v
, arm_neon_vst1
, 0),
6803 NEONMAP1(vst1_x2_v
, arm_neon_vst1x2
, 0),
6804 NEONMAP1(vst1_x3_v
, arm_neon_vst1x3
, 0),
6805 NEONMAP1(vst1_x4_v
, arm_neon_vst1x4
, 0),
6806 NEONMAP1(vst1q_v
, arm_neon_vst1
, 0),
6807 NEONMAP1(vst1q_x2_v
, arm_neon_vst1x2
, 0),
6808 NEONMAP1(vst1q_x3_v
, arm_neon_vst1x3
, 0),
6809 NEONMAP1(vst1q_x4_v
, arm_neon_vst1x4
, 0),
6810 NEONMAP1(vst2_lane_v
, arm_neon_vst2lane
, 0),
6811 NEONMAP1(vst2_v
, arm_neon_vst2
, 0),
6812 NEONMAP1(vst2q_lane_v
, arm_neon_vst2lane
, 0),
6813 NEONMAP1(vst2q_v
, arm_neon_vst2
, 0),
6814 NEONMAP1(vst3_lane_v
, arm_neon_vst3lane
, 0),
6815 NEONMAP1(vst3_v
, arm_neon_vst3
, 0),
6816 NEONMAP1(vst3q_lane_v
, arm_neon_vst3lane
, 0),
6817 NEONMAP1(vst3q_v
, arm_neon_vst3
, 0),
6818 NEONMAP1(vst4_lane_v
, arm_neon_vst4lane
, 0),
6819 NEONMAP1(vst4_v
, arm_neon_vst4
, 0),
6820 NEONMAP1(vst4q_lane_v
, arm_neon_vst4lane
, 0),
6821 NEONMAP1(vst4q_v
, arm_neon_vst4
, 0),
6827 NEONMAP1(vusdot_s32
, arm_neon_usdot
, 0),
6828 NEONMAP1(vusdotq_s32
, arm_neon_usdot
, 0),
6829 NEONMAP1(vusmmlaq_s32
, arm_neon_usmmla
, 0),
6836 static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap
[] = {
6837 NEONMAP1(__a64_vcvtq_low_bf16_f32
, aarch64_neon_bfcvtn
, 0),
6838 NEONMAP0(splat_lane_v
),
6839 NEONMAP0(splat_laneq_v
),
6840 NEONMAP0(splatq_lane_v
),
6841 NEONMAP0(splatq_laneq_v
),
6842 NEONMAP1(vabs_v
, aarch64_neon_abs
, 0),
6843 NEONMAP1(vabsq_v
, aarch64_neon_abs
, 0),
6846 NEONMAP0(vaddq_p128
),
6848 NEONMAP1(vaesdq_u8
, aarch64_crypto_aesd
, 0),
6849 NEONMAP1(vaeseq_u8
, aarch64_crypto_aese
, 0),
6850 NEONMAP1(vaesimcq_u8
, aarch64_crypto_aesimc
, 0),
6851 NEONMAP1(vaesmcq_u8
, aarch64_crypto_aesmc
, 0),
6852 NEONMAP2(vbcaxq_s16
, aarch64_crypto_bcaxu
, aarch64_crypto_bcaxs
, Add1ArgType
| UnsignedAlts
),
6853 NEONMAP2(vbcaxq_s32
, aarch64_crypto_bcaxu
, aarch64_crypto_bcaxs
, Add1ArgType
| UnsignedAlts
),
6854 NEONMAP2(vbcaxq_s64
, aarch64_crypto_bcaxu
, aarch64_crypto_bcaxs
, Add1ArgType
| UnsignedAlts
),
6855 NEONMAP2(vbcaxq_s8
, aarch64_crypto_bcaxu
, aarch64_crypto_bcaxs
, Add1ArgType
| UnsignedAlts
),
6856 NEONMAP2(vbcaxq_u16
, aarch64_crypto_bcaxu
, aarch64_crypto_bcaxs
, Add1ArgType
| UnsignedAlts
),
6857 NEONMAP2(vbcaxq_u32
, aarch64_crypto_bcaxu
, aarch64_crypto_bcaxs
, Add1ArgType
| UnsignedAlts
),
6858 NEONMAP2(vbcaxq_u64
, aarch64_crypto_bcaxu
, aarch64_crypto_bcaxs
, Add1ArgType
| UnsignedAlts
),
6859 NEONMAP2(vbcaxq_u8
, aarch64_crypto_bcaxu
, aarch64_crypto_bcaxs
, Add1ArgType
| UnsignedAlts
),
6860 NEONMAP1(vbfdot_f32
, aarch64_neon_bfdot
, 0),
6861 NEONMAP1(vbfdotq_f32
, aarch64_neon_bfdot
, 0),
6862 NEONMAP1(vbfmlalbq_f32
, aarch64_neon_bfmlalb
, 0),
6863 NEONMAP1(vbfmlaltq_f32
, aarch64_neon_bfmlalt
, 0),
6864 NEONMAP1(vbfmmlaq_f32
, aarch64_neon_bfmmla
, 0),
6865 NEONMAP1(vcadd_rot270_f16
, aarch64_neon_vcadd_rot270
, Add1ArgType
),
6866 NEONMAP1(vcadd_rot270_f32
, aarch64_neon_vcadd_rot270
, Add1ArgType
),
6867 NEONMAP1(vcadd_rot90_f16
, aarch64_neon_vcadd_rot90
, Add1ArgType
),
6868 NEONMAP1(vcadd_rot90_f32
, aarch64_neon_vcadd_rot90
, Add1ArgType
),
6869 NEONMAP1(vcaddq_rot270_f16
, aarch64_neon_vcadd_rot270
, Add1ArgType
),
6870 NEONMAP1(vcaddq_rot270_f32
, aarch64_neon_vcadd_rot270
, Add1ArgType
),
6871 NEONMAP1(vcaddq_rot270_f64
, aarch64_neon_vcadd_rot270
, Add1ArgType
),
6872 NEONMAP1(vcaddq_rot90_f16
, aarch64_neon_vcadd_rot90
, Add1ArgType
),
6873 NEONMAP1(vcaddq_rot90_f32
, aarch64_neon_vcadd_rot90
, Add1ArgType
),
6874 NEONMAP1(vcaddq_rot90_f64
, aarch64_neon_vcadd_rot90
, Add1ArgType
),
6875 NEONMAP1(vcage_v
, aarch64_neon_facge
, 0),
6876 NEONMAP1(vcageq_v
, aarch64_neon_facge
, 0),
6877 NEONMAP1(vcagt_v
, aarch64_neon_facgt
, 0),
6878 NEONMAP1(vcagtq_v
, aarch64_neon_facgt
, 0),
6879 NEONMAP1(vcale_v
, aarch64_neon_facge
, 0),
6880 NEONMAP1(vcaleq_v
, aarch64_neon_facge
, 0),
6881 NEONMAP1(vcalt_v
, aarch64_neon_facgt
, 0),
6882 NEONMAP1(vcaltq_v
, aarch64_neon_facgt
, 0),
6891 NEONMAP1(vcls_v
, aarch64_neon_cls
, Add1ArgType
),
6892 NEONMAP1(vclsq_v
, aarch64_neon_cls
, Add1ArgType
),
6895 NEONMAP1(vclz_v
, ctlz
, Add1ArgType
),
6896 NEONMAP1(vclzq_v
, ctlz
, Add1ArgType
),
6897 NEONMAP1(vcmla_f16
, aarch64_neon_vcmla_rot0
, Add1ArgType
),
6898 NEONMAP1(vcmla_f32
, aarch64_neon_vcmla_rot0
, Add1ArgType
),
6899 NEONMAP1(vcmla_rot180_f16
, aarch64_neon_vcmla_rot180
, Add1ArgType
),
6900 NEONMAP1(vcmla_rot180_f32
, aarch64_neon_vcmla_rot180
, Add1ArgType
),
6901 NEONMAP1(vcmla_rot270_f16
, aarch64_neon_vcmla_rot270
, Add1ArgType
),
6902 NEONMAP1(vcmla_rot270_f32
, aarch64_neon_vcmla_rot270
, Add1ArgType
),
6903 NEONMAP1(vcmla_rot90_f16
, aarch64_neon_vcmla_rot90
, Add1ArgType
),
6904 NEONMAP1(vcmla_rot90_f32
, aarch64_neon_vcmla_rot90
, Add1ArgType
),
6905 NEONMAP1(vcmlaq_f16
, aarch64_neon_vcmla_rot0
, Add1ArgType
),
6906 NEONMAP1(vcmlaq_f32
, aarch64_neon_vcmla_rot0
, Add1ArgType
),
6907 NEONMAP1(vcmlaq_f64
, aarch64_neon_vcmla_rot0
, Add1ArgType
),
6908 NEONMAP1(vcmlaq_rot180_f16
, aarch64_neon_vcmla_rot180
, Add1ArgType
),
6909 NEONMAP1(vcmlaq_rot180_f32
, aarch64_neon_vcmla_rot180
, Add1ArgType
),
6910 NEONMAP1(vcmlaq_rot180_f64
, aarch64_neon_vcmla_rot180
, Add1ArgType
),
6911 NEONMAP1(vcmlaq_rot270_f16
, aarch64_neon_vcmla_rot270
, Add1ArgType
),
6912 NEONMAP1(vcmlaq_rot270_f32
, aarch64_neon_vcmla_rot270
, Add1ArgType
),
6913 NEONMAP1(vcmlaq_rot270_f64
, aarch64_neon_vcmla_rot270
, Add1ArgType
),
6914 NEONMAP1(vcmlaq_rot90_f16
, aarch64_neon_vcmla_rot90
, Add1ArgType
),
6915 NEONMAP1(vcmlaq_rot90_f32
, aarch64_neon_vcmla_rot90
, Add1ArgType
),
6916 NEONMAP1(vcmlaq_rot90_f64
, aarch64_neon_vcmla_rot90
, Add1ArgType
),
6917 NEONMAP1(vcnt_v
, ctpop
, Add1ArgType
),
6918 NEONMAP1(vcntq_v
, ctpop
, Add1ArgType
),
6919 NEONMAP1(vcvt_f16_f32
, aarch64_neon_vcvtfp2hf
, 0),
6920 NEONMAP0(vcvt_f16_s16
),
6921 NEONMAP0(vcvt_f16_u16
),
6922 NEONMAP1(vcvt_f32_f16
, aarch64_neon_vcvthf2fp
, 0),
6923 NEONMAP0(vcvt_f32_v
),
6924 NEONMAP1(vcvt_n_f16_s16
, aarch64_neon_vcvtfxs2fp
, 0),
6925 NEONMAP1(vcvt_n_f16_u16
, aarch64_neon_vcvtfxu2fp
, 0),
6926 NEONMAP2(vcvt_n_f32_v
, aarch64_neon_vcvtfxu2fp
, aarch64_neon_vcvtfxs2fp
, 0),
6927 NEONMAP2(vcvt_n_f64_v
, aarch64_neon_vcvtfxu2fp
, aarch64_neon_vcvtfxs2fp
, 0),
6928 NEONMAP1(vcvt_n_s16_f16
, aarch64_neon_vcvtfp2fxs
, 0),
6929 NEONMAP1(vcvt_n_s32_v
, aarch64_neon_vcvtfp2fxs
, 0),
6930 NEONMAP1(vcvt_n_s64_v
, aarch64_neon_vcvtfp2fxs
, 0),
6931 NEONMAP1(vcvt_n_u16_f16
, aarch64_neon_vcvtfp2fxu
, 0),
6932 NEONMAP1(vcvt_n_u32_v
, aarch64_neon_vcvtfp2fxu
, 0),
6933 NEONMAP1(vcvt_n_u64_v
, aarch64_neon_vcvtfp2fxu
, 0),
6934 NEONMAP0(vcvtq_f16_s16
),
6935 NEONMAP0(vcvtq_f16_u16
),
6936 NEONMAP0(vcvtq_f32_v
),
6937 NEONMAP1(vcvtq_high_bf16_f32
, aarch64_neon_bfcvtn2
, 0),
6938 NEONMAP1(vcvtq_n_f16_s16
, aarch64_neon_vcvtfxs2fp
, 0),
6939 NEONMAP1(vcvtq_n_f16_u16
, aarch64_neon_vcvtfxu2fp
, 0),
6940 NEONMAP2(vcvtq_n_f32_v
, aarch64_neon_vcvtfxu2fp
, aarch64_neon_vcvtfxs2fp
, 0),
6941 NEONMAP2(vcvtq_n_f64_v
, aarch64_neon_vcvtfxu2fp
, aarch64_neon_vcvtfxs2fp
, 0),
6942 NEONMAP1(vcvtq_n_s16_f16
, aarch64_neon_vcvtfp2fxs
, 0),
6943 NEONMAP1(vcvtq_n_s32_v
, aarch64_neon_vcvtfp2fxs
, 0),
6944 NEONMAP1(vcvtq_n_s64_v
, aarch64_neon_vcvtfp2fxs
, 0),
6945 NEONMAP1(vcvtq_n_u16_f16
, aarch64_neon_vcvtfp2fxu
, 0),
6946 NEONMAP1(vcvtq_n_u32_v
, aarch64_neon_vcvtfp2fxu
, 0),
6947 NEONMAP1(vcvtq_n_u64_v
, aarch64_neon_vcvtfp2fxu
, 0),
6948 NEONMAP1(vcvtx_f32_v
, aarch64_neon_fcvtxn
, AddRetType
| Add1ArgType
),
6949 NEONMAP1(vdot_s32
, aarch64_neon_sdot
, 0),
6950 NEONMAP1(vdot_u32
, aarch64_neon_udot
, 0),
6951 NEONMAP1(vdotq_s32
, aarch64_neon_sdot
, 0),
6952 NEONMAP1(vdotq_u32
, aarch64_neon_udot
, 0),
6953 NEONMAP2(veor3q_s16
, aarch64_crypto_eor3u
, aarch64_crypto_eor3s
, Add1ArgType
| UnsignedAlts
),
6954 NEONMAP2(veor3q_s32
, aarch64_crypto_eor3u
, aarch64_crypto_eor3s
, Add1ArgType
| UnsignedAlts
),
6955 NEONMAP2(veor3q_s64
, aarch64_crypto_eor3u
, aarch64_crypto_eor3s
, Add1ArgType
| UnsignedAlts
),
6956 NEONMAP2(veor3q_s8
, aarch64_crypto_eor3u
, aarch64_crypto_eor3s
, Add1ArgType
| UnsignedAlts
),
6957 NEONMAP2(veor3q_u16
, aarch64_crypto_eor3u
, aarch64_crypto_eor3s
, Add1ArgType
| UnsignedAlts
),
6958 NEONMAP2(veor3q_u32
, aarch64_crypto_eor3u
, aarch64_crypto_eor3s
, Add1ArgType
| UnsignedAlts
),
6959 NEONMAP2(veor3q_u64
, aarch64_crypto_eor3u
, aarch64_crypto_eor3s
, Add1ArgType
| UnsignedAlts
),
6960 NEONMAP2(veor3q_u8
, aarch64_crypto_eor3u
, aarch64_crypto_eor3s
, Add1ArgType
| UnsignedAlts
),
6965 NEONMAP1(vfmlal_high_f16
, aarch64_neon_fmlal2
, 0),
6966 NEONMAP1(vfmlal_low_f16
, aarch64_neon_fmlal
, 0),
6967 NEONMAP1(vfmlalq_high_f16
, aarch64_neon_fmlal2
, 0),
6968 NEONMAP1(vfmlalq_low_f16
, aarch64_neon_fmlal
, 0),
6969 NEONMAP1(vfmlsl_high_f16
, aarch64_neon_fmlsl2
, 0),
6970 NEONMAP1(vfmlsl_low_f16
, aarch64_neon_fmlsl
, 0),
6971 NEONMAP1(vfmlslq_high_f16
, aarch64_neon_fmlsl2
, 0),
6972 NEONMAP1(vfmlslq_low_f16
, aarch64_neon_fmlsl
, 0),
6973 NEONMAP2(vhadd_v
, aarch64_neon_uhadd
, aarch64_neon_shadd
, Add1ArgType
| UnsignedAlts
),
6974 NEONMAP2(vhaddq_v
, aarch64_neon_uhadd
, aarch64_neon_shadd
, Add1ArgType
| UnsignedAlts
),
6975 NEONMAP2(vhsub_v
, aarch64_neon_uhsub
, aarch64_neon_shsub
, Add1ArgType
| UnsignedAlts
),
6976 NEONMAP2(vhsubq_v
, aarch64_neon_uhsub
, aarch64_neon_shsub
, Add1ArgType
| UnsignedAlts
),
6977 NEONMAP1(vld1_x2_v
, aarch64_neon_ld1x2
, 0),
6978 NEONMAP1(vld1_x3_v
, aarch64_neon_ld1x3
, 0),
6979 NEONMAP1(vld1_x4_v
, aarch64_neon_ld1x4
, 0),
6980 NEONMAP1(vld1q_x2_v
, aarch64_neon_ld1x2
, 0),
6981 NEONMAP1(vld1q_x3_v
, aarch64_neon_ld1x3
, 0),
6982 NEONMAP1(vld1q_x4_v
, aarch64_neon_ld1x4
, 0),
6983 NEONMAP1(vmmlaq_s32
, aarch64_neon_smmla
, 0),
6984 NEONMAP1(vmmlaq_u32
, aarch64_neon_ummla
, 0),
6987 NEONMAP1(vmul_v
, aarch64_neon_pmul
, Add1ArgType
),
6988 NEONMAP1(vmulq_v
, aarch64_neon_pmul
, Add1ArgType
),
6989 NEONMAP1(vpadd_v
, aarch64_neon_addp
, Add1ArgType
),
6990 NEONMAP2(vpaddl_v
, aarch64_neon_uaddlp
, aarch64_neon_saddlp
, UnsignedAlts
),
6991 NEONMAP2(vpaddlq_v
, aarch64_neon_uaddlp
, aarch64_neon_saddlp
, UnsignedAlts
),
6992 NEONMAP1(vpaddq_v
, aarch64_neon_addp
, Add1ArgType
),
6993 NEONMAP1(vqabs_v
, aarch64_neon_sqabs
, Add1ArgType
),
6994 NEONMAP1(vqabsq_v
, aarch64_neon_sqabs
, Add1ArgType
),
6995 NEONMAP2(vqadd_v
, aarch64_neon_uqadd
, aarch64_neon_sqadd
, Add1ArgType
| UnsignedAlts
),
6996 NEONMAP2(vqaddq_v
, aarch64_neon_uqadd
, aarch64_neon_sqadd
, Add1ArgType
| UnsignedAlts
),
6997 NEONMAP2(vqdmlal_v
, aarch64_neon_sqdmull
, aarch64_neon_sqadd
, 0),
6998 NEONMAP2(vqdmlsl_v
, aarch64_neon_sqdmull
, aarch64_neon_sqsub
, 0),
6999 NEONMAP1(vqdmulh_lane_v
, aarch64_neon_sqdmulh_lane
, 0),
7000 NEONMAP1(vqdmulh_laneq_v
, aarch64_neon_sqdmulh_laneq
, 0),
7001 NEONMAP1(vqdmulh_v
, aarch64_neon_sqdmulh
, Add1ArgType
),
7002 NEONMAP1(vqdmulhq_lane_v
, aarch64_neon_sqdmulh_lane
, 0),
7003 NEONMAP1(vqdmulhq_laneq_v
, aarch64_neon_sqdmulh_laneq
, 0),
7004 NEONMAP1(vqdmulhq_v
, aarch64_neon_sqdmulh
, Add1ArgType
),
7005 NEONMAP1(vqdmull_v
, aarch64_neon_sqdmull
, Add1ArgType
),
7006 NEONMAP2(vqmovn_v
, aarch64_neon_uqxtn
, aarch64_neon_sqxtn
, Add1ArgType
| UnsignedAlts
),
7007 NEONMAP1(vqmovun_v
, aarch64_neon_sqxtun
, Add1ArgType
),
7008 NEONMAP1(vqneg_v
, aarch64_neon_sqneg
, Add1ArgType
),
7009 NEONMAP1(vqnegq_v
, aarch64_neon_sqneg
, Add1ArgType
),
7010 NEONMAP1(vqrdmlah_s16
, aarch64_neon_sqrdmlah
, Add1ArgType
),
7011 NEONMAP1(vqrdmlah_s32
, aarch64_neon_sqrdmlah
, Add1ArgType
),
7012 NEONMAP1(vqrdmlahq_s16
, aarch64_neon_sqrdmlah
, Add1ArgType
),
7013 NEONMAP1(vqrdmlahq_s32
, aarch64_neon_sqrdmlah
, Add1ArgType
),
7014 NEONMAP1(vqrdmlsh_s16
, aarch64_neon_sqrdmlsh
, Add1ArgType
),
7015 NEONMAP1(vqrdmlsh_s32
, aarch64_neon_sqrdmlsh
, Add1ArgType
),
7016 NEONMAP1(vqrdmlshq_s16
, aarch64_neon_sqrdmlsh
, Add1ArgType
),
7017 NEONMAP1(vqrdmlshq_s32
, aarch64_neon_sqrdmlsh
, Add1ArgType
),
7018 NEONMAP1(vqrdmulh_lane_v
, aarch64_neon_sqrdmulh_lane
, 0),
7019 NEONMAP1(vqrdmulh_laneq_v
, aarch64_neon_sqrdmulh_laneq
, 0),
7020 NEONMAP1(vqrdmulh_v
, aarch64_neon_sqrdmulh
, Add1ArgType
),
7021 NEONMAP1(vqrdmulhq_lane_v
, aarch64_neon_sqrdmulh_lane
, 0),
7022 NEONMAP1(vqrdmulhq_laneq_v
, aarch64_neon_sqrdmulh_laneq
, 0),
7023 NEONMAP1(vqrdmulhq_v
, aarch64_neon_sqrdmulh
, Add1ArgType
),
7024 NEONMAP2(vqrshl_v
, aarch64_neon_uqrshl
, aarch64_neon_sqrshl
, Add1ArgType
| UnsignedAlts
),
7025 NEONMAP2(vqrshlq_v
, aarch64_neon_uqrshl
, aarch64_neon_sqrshl
, Add1ArgType
| UnsignedAlts
),
7026 NEONMAP2(vqshl_n_v
, aarch64_neon_uqshl
, aarch64_neon_sqshl
, UnsignedAlts
),
7027 NEONMAP2(vqshl_v
, aarch64_neon_uqshl
, aarch64_neon_sqshl
, Add1ArgType
| UnsignedAlts
),
7028 NEONMAP2(vqshlq_n_v
, aarch64_neon_uqshl
, aarch64_neon_sqshl
,UnsignedAlts
),
7029 NEONMAP2(vqshlq_v
, aarch64_neon_uqshl
, aarch64_neon_sqshl
, Add1ArgType
| UnsignedAlts
),
7030 NEONMAP1(vqshlu_n_v
, aarch64_neon_sqshlu
, 0),
7031 NEONMAP1(vqshluq_n_v
, aarch64_neon_sqshlu
, 0),
7032 NEONMAP2(vqsub_v
, aarch64_neon_uqsub
, aarch64_neon_sqsub
, Add1ArgType
| UnsignedAlts
),
7033 NEONMAP2(vqsubq_v
, aarch64_neon_uqsub
, aarch64_neon_sqsub
, Add1ArgType
| UnsignedAlts
),
7034 NEONMAP1(vraddhn_v
, aarch64_neon_raddhn
, Add1ArgType
),
7035 NEONMAP1(vrax1q_u64
, aarch64_crypto_rax1
, 0),
7036 NEONMAP2(vrecpe_v
, aarch64_neon_frecpe
, aarch64_neon_urecpe
, 0),
7037 NEONMAP2(vrecpeq_v
, aarch64_neon_frecpe
, aarch64_neon_urecpe
, 0),
7038 NEONMAP1(vrecps_v
, aarch64_neon_frecps
, Add1ArgType
),
7039 NEONMAP1(vrecpsq_v
, aarch64_neon_frecps
, Add1ArgType
),
7040 NEONMAP2(vrhadd_v
, aarch64_neon_urhadd
, aarch64_neon_srhadd
, Add1ArgType
| UnsignedAlts
),
7041 NEONMAP2(vrhaddq_v
, aarch64_neon_urhadd
, aarch64_neon_srhadd
, Add1ArgType
| UnsignedAlts
),
7042 NEONMAP1(vrnd32x_f32
, aarch64_neon_frint32x
, Add1ArgType
),
7043 NEONMAP1(vrnd32x_f64
, aarch64_neon_frint32x
, Add1ArgType
),
7044 NEONMAP1(vrnd32xq_f32
, aarch64_neon_frint32x
, Add1ArgType
),
7045 NEONMAP1(vrnd32xq_f64
, aarch64_neon_frint32x
, Add1ArgType
),
7046 NEONMAP1(vrnd32z_f32
, aarch64_neon_frint32z
, Add1ArgType
),
7047 NEONMAP1(vrnd32z_f64
, aarch64_neon_frint32z
, Add1ArgType
),
7048 NEONMAP1(vrnd32zq_f32
, aarch64_neon_frint32z
, Add1ArgType
),
7049 NEONMAP1(vrnd32zq_f64
, aarch64_neon_frint32z
, Add1ArgType
),
7050 NEONMAP1(vrnd64x_f32
, aarch64_neon_frint64x
, Add1ArgType
),
7051 NEONMAP1(vrnd64x_f64
, aarch64_neon_frint64x
, Add1ArgType
),
7052 NEONMAP1(vrnd64xq_f32
, aarch64_neon_frint64x
, Add1ArgType
),
7053 NEONMAP1(vrnd64xq_f64
, aarch64_neon_frint64x
, Add1ArgType
),
7054 NEONMAP1(vrnd64z_f32
, aarch64_neon_frint64z
, Add1ArgType
),
7055 NEONMAP1(vrnd64z_f64
, aarch64_neon_frint64z
, Add1ArgType
),
7056 NEONMAP1(vrnd64zq_f32
, aarch64_neon_frint64z
, Add1ArgType
),
7057 NEONMAP1(vrnd64zq_f64
, aarch64_neon_frint64z
, Add1ArgType
),
7060 NEONMAP2(vrshl_v
, aarch64_neon_urshl
, aarch64_neon_srshl
, Add1ArgType
| UnsignedAlts
),
7061 NEONMAP2(vrshlq_v
, aarch64_neon_urshl
, aarch64_neon_srshl
, Add1ArgType
| UnsignedAlts
),
7062 NEONMAP2(vrshr_n_v
, aarch64_neon_urshl
, aarch64_neon_srshl
, UnsignedAlts
),
7063 NEONMAP2(vrshrq_n_v
, aarch64_neon_urshl
, aarch64_neon_srshl
, UnsignedAlts
),
7064 NEONMAP2(vrsqrte_v
, aarch64_neon_frsqrte
, aarch64_neon_ursqrte
, 0),
7065 NEONMAP2(vrsqrteq_v
, aarch64_neon_frsqrte
, aarch64_neon_ursqrte
, 0),
7066 NEONMAP1(vrsqrts_v
, aarch64_neon_frsqrts
, Add1ArgType
),
7067 NEONMAP1(vrsqrtsq_v
, aarch64_neon_frsqrts
, Add1ArgType
),
7068 NEONMAP1(vrsubhn_v
, aarch64_neon_rsubhn
, Add1ArgType
),
7069 NEONMAP1(vsha1su0q_u32
, aarch64_crypto_sha1su0
, 0),
7070 NEONMAP1(vsha1su1q_u32
, aarch64_crypto_sha1su1
, 0),
7071 NEONMAP1(vsha256h2q_u32
, aarch64_crypto_sha256h2
, 0),
7072 NEONMAP1(vsha256hq_u32
, aarch64_crypto_sha256h
, 0),
7073 NEONMAP1(vsha256su0q_u32
, aarch64_crypto_sha256su0
, 0),
7074 NEONMAP1(vsha256su1q_u32
, aarch64_crypto_sha256su1
, 0),
7075 NEONMAP1(vsha512h2q_u64
, aarch64_crypto_sha512h2
, 0),
7076 NEONMAP1(vsha512hq_u64
, aarch64_crypto_sha512h
, 0),
7077 NEONMAP1(vsha512su0q_u64
, aarch64_crypto_sha512su0
, 0),
7078 NEONMAP1(vsha512su1q_u64
, aarch64_crypto_sha512su1
, 0),
7080 NEONMAP2(vshl_v
, aarch64_neon_ushl
, aarch64_neon_sshl
, Add1ArgType
| UnsignedAlts
),
7081 NEONMAP0(vshll_n_v
),
7082 NEONMAP0(vshlq_n_v
),
7083 NEONMAP2(vshlq_v
, aarch64_neon_ushl
, aarch64_neon_sshl
, Add1ArgType
| UnsignedAlts
),
7085 NEONMAP0(vshrn_n_v
),
7086 NEONMAP0(vshrq_n_v
),
7087 NEONMAP1(vsm3partw1q_u32
, aarch64_crypto_sm3partw1
, 0),
7088 NEONMAP1(vsm3partw2q_u32
, aarch64_crypto_sm3partw2
, 0),
7089 NEONMAP1(vsm3ss1q_u32
, aarch64_crypto_sm3ss1
, 0),
7090 NEONMAP1(vsm3tt1aq_u32
, aarch64_crypto_sm3tt1a
, 0),
7091 NEONMAP1(vsm3tt1bq_u32
, aarch64_crypto_sm3tt1b
, 0),
7092 NEONMAP1(vsm3tt2aq_u32
, aarch64_crypto_sm3tt2a
, 0),
7093 NEONMAP1(vsm3tt2bq_u32
, aarch64_crypto_sm3tt2b
, 0),
7094 NEONMAP1(vsm4ekeyq_u32
, aarch64_crypto_sm4ekey
, 0),
7095 NEONMAP1(vsm4eq_u32
, aarch64_crypto_sm4e
, 0),
7096 NEONMAP1(vst1_x2_v
, aarch64_neon_st1x2
, 0),
7097 NEONMAP1(vst1_x3_v
, aarch64_neon_st1x3
, 0),
7098 NEONMAP1(vst1_x4_v
, aarch64_neon_st1x4
, 0),
7099 NEONMAP1(vst1q_x2_v
, aarch64_neon_st1x2
, 0),
7100 NEONMAP1(vst1q_x3_v
, aarch64_neon_st1x3
, 0),
7101 NEONMAP1(vst1q_x4_v
, aarch64_neon_st1x4
, 0),
7105 NEONMAP1(vusdot_s32
, aarch64_neon_usdot
, 0),
7106 NEONMAP1(vusdotq_s32
, aarch64_neon_usdot
, 0),
7107 NEONMAP1(vusmmlaq_s32
, aarch64_neon_usmmla
, 0),
7108 NEONMAP1(vxarq_u64
, aarch64_crypto_xar
, 0),
7111 static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap
[] = {
7112 NEONMAP1(vabdd_f64
, aarch64_sisd_fabd
, Add1ArgType
),
7113 NEONMAP1(vabds_f32
, aarch64_sisd_fabd
, Add1ArgType
),
7114 NEONMAP1(vabsd_s64
, aarch64_neon_abs
, Add1ArgType
),
7115 NEONMAP1(vaddlv_s32
, aarch64_neon_saddlv
, AddRetType
| Add1ArgType
),
7116 NEONMAP1(vaddlv_u32
, aarch64_neon_uaddlv
, AddRetType
| Add1ArgType
),
7117 NEONMAP1(vaddlvq_s32
, aarch64_neon_saddlv
, AddRetType
| Add1ArgType
),
7118 NEONMAP1(vaddlvq_u32
, aarch64_neon_uaddlv
, AddRetType
| Add1ArgType
),
7119 NEONMAP1(vaddv_f32
, aarch64_neon_faddv
, AddRetType
| Add1ArgType
),
7120 NEONMAP1(vaddv_s32
, aarch64_neon_saddv
, AddRetType
| Add1ArgType
),
7121 NEONMAP1(vaddv_u32
, aarch64_neon_uaddv
, AddRetType
| Add1ArgType
),
7122 NEONMAP1(vaddvq_f32
, aarch64_neon_faddv
, AddRetType
| Add1ArgType
),
7123 NEONMAP1(vaddvq_f64
, aarch64_neon_faddv
, AddRetType
| Add1ArgType
),
7124 NEONMAP1(vaddvq_s32
, aarch64_neon_saddv
, AddRetType
| Add1ArgType
),
7125 NEONMAP1(vaddvq_s64
, aarch64_neon_saddv
, AddRetType
| Add1ArgType
),
7126 NEONMAP1(vaddvq_u32
, aarch64_neon_uaddv
, AddRetType
| Add1ArgType
),
7127 NEONMAP1(vaddvq_u64
, aarch64_neon_uaddv
, AddRetType
| Add1ArgType
),
7128 NEONMAP1(vcaged_f64
, aarch64_neon_facge
, AddRetType
| Add1ArgType
),
7129 NEONMAP1(vcages_f32
, aarch64_neon_facge
, AddRetType
| Add1ArgType
),
7130 NEONMAP1(vcagtd_f64
, aarch64_neon_facgt
, AddRetType
| Add1ArgType
),
7131 NEONMAP1(vcagts_f32
, aarch64_neon_facgt
, AddRetType
| Add1ArgType
),
7132 NEONMAP1(vcaled_f64
, aarch64_neon_facge
, AddRetType
| Add1ArgType
),
7133 NEONMAP1(vcales_f32
, aarch64_neon_facge
, AddRetType
| Add1ArgType
),
7134 NEONMAP1(vcaltd_f64
, aarch64_neon_facgt
, AddRetType
| Add1ArgType
),
7135 NEONMAP1(vcalts_f32
, aarch64_neon_facgt
, AddRetType
| Add1ArgType
),
7136 NEONMAP1(vcvtad_s64_f64
, aarch64_neon_fcvtas
, AddRetType
| Add1ArgType
),
7137 NEONMAP1(vcvtad_u64_f64
, aarch64_neon_fcvtau
, AddRetType
| Add1ArgType
),
7138 NEONMAP1(vcvtas_s32_f32
, aarch64_neon_fcvtas
, AddRetType
| Add1ArgType
),
7139 NEONMAP1(vcvtas_u32_f32
, aarch64_neon_fcvtau
, AddRetType
| Add1ArgType
),
7140 NEONMAP1(vcvtd_n_f64_s64
, aarch64_neon_vcvtfxs2fp
, AddRetType
| Add1ArgType
),
7141 NEONMAP1(vcvtd_n_f64_u64
, aarch64_neon_vcvtfxu2fp
, AddRetType
| Add1ArgType
),
7142 NEONMAP1(vcvtd_n_s64_f64
, aarch64_neon_vcvtfp2fxs
, AddRetType
| Add1ArgType
),
7143 NEONMAP1(vcvtd_n_u64_f64
, aarch64_neon_vcvtfp2fxu
, AddRetType
| Add1ArgType
),
7144 NEONMAP1(vcvtd_s64_f64
, aarch64_neon_fcvtzs
, AddRetType
| Add1ArgType
),
7145 NEONMAP1(vcvtd_u64_f64
, aarch64_neon_fcvtzu
, AddRetType
| Add1ArgType
),
7146 NEONMAP1(vcvth_bf16_f32
, aarch64_neon_bfcvt
, 0),
7147 NEONMAP1(vcvtmd_s64_f64
, aarch64_neon_fcvtms
, AddRetType
| Add1ArgType
),
7148 NEONMAP1(vcvtmd_u64_f64
, aarch64_neon_fcvtmu
, AddRetType
| Add1ArgType
),
7149 NEONMAP1(vcvtms_s32_f32
, aarch64_neon_fcvtms
, AddRetType
| Add1ArgType
),
7150 NEONMAP1(vcvtms_u32_f32
, aarch64_neon_fcvtmu
, AddRetType
| Add1ArgType
),
7151 NEONMAP1(vcvtnd_s64_f64
, aarch64_neon_fcvtns
, AddRetType
| Add1ArgType
),
7152 NEONMAP1(vcvtnd_u64_f64
, aarch64_neon_fcvtnu
, AddRetType
| Add1ArgType
),
7153 NEONMAP1(vcvtns_s32_f32
, aarch64_neon_fcvtns
, AddRetType
| Add1ArgType
),
7154 NEONMAP1(vcvtns_u32_f32
, aarch64_neon_fcvtnu
, AddRetType
| Add1ArgType
),
7155 NEONMAP1(vcvtpd_s64_f64
, aarch64_neon_fcvtps
, AddRetType
| Add1ArgType
),
7156 NEONMAP1(vcvtpd_u64_f64
, aarch64_neon_fcvtpu
, AddRetType
| Add1ArgType
),
7157 NEONMAP1(vcvtps_s32_f32
, aarch64_neon_fcvtps
, AddRetType
| Add1ArgType
),
7158 NEONMAP1(vcvtps_u32_f32
, aarch64_neon_fcvtpu
, AddRetType
| Add1ArgType
),
7159 NEONMAP1(vcvts_n_f32_s32
, aarch64_neon_vcvtfxs2fp
, AddRetType
| Add1ArgType
),
7160 NEONMAP1(vcvts_n_f32_u32
, aarch64_neon_vcvtfxu2fp
, AddRetType
| Add1ArgType
),
7161 NEONMAP1(vcvts_n_s32_f32
, aarch64_neon_vcvtfp2fxs
, AddRetType
| Add1ArgType
),
7162 NEONMAP1(vcvts_n_u32_f32
, aarch64_neon_vcvtfp2fxu
, AddRetType
| Add1ArgType
),
7163 NEONMAP1(vcvts_s32_f32
, aarch64_neon_fcvtzs
, AddRetType
| Add1ArgType
),
7164 NEONMAP1(vcvts_u32_f32
, aarch64_neon_fcvtzu
, AddRetType
| Add1ArgType
),
7165 NEONMAP1(vcvtxd_f32_f64
, aarch64_sisd_fcvtxn
, 0),
7166 NEONMAP1(vmaxnmv_f32
, aarch64_neon_fmaxnmv
, AddRetType
| Add1ArgType
),
7167 NEONMAP1(vmaxnmvq_f32
, aarch64_neon_fmaxnmv
, AddRetType
| Add1ArgType
),
7168 NEONMAP1(vmaxnmvq_f64
, aarch64_neon_fmaxnmv
, AddRetType
| Add1ArgType
),
7169 NEONMAP1(vmaxv_f32
, aarch64_neon_fmaxv
, AddRetType
| Add1ArgType
),
7170 NEONMAP1(vmaxv_s32
, aarch64_neon_smaxv
, AddRetType
| Add1ArgType
),
7171 NEONMAP1(vmaxv_u32
, aarch64_neon_umaxv
, AddRetType
| Add1ArgType
),
7172 NEONMAP1(vmaxvq_f32
, aarch64_neon_fmaxv
, AddRetType
| Add1ArgType
),
7173 NEONMAP1(vmaxvq_f64
, aarch64_neon_fmaxv
, AddRetType
| Add1ArgType
),
7174 NEONMAP1(vmaxvq_s32
, aarch64_neon_smaxv
, AddRetType
| Add1ArgType
),
7175 NEONMAP1(vmaxvq_u32
, aarch64_neon_umaxv
, AddRetType
| Add1ArgType
),
7176 NEONMAP1(vminnmv_f32
, aarch64_neon_fminnmv
, AddRetType
| Add1ArgType
),
7177 NEONMAP1(vminnmvq_f32
, aarch64_neon_fminnmv
, AddRetType
| Add1ArgType
),
7178 NEONMAP1(vminnmvq_f64
, aarch64_neon_fminnmv
, AddRetType
| Add1ArgType
),
7179 NEONMAP1(vminv_f32
, aarch64_neon_fminv
, AddRetType
| Add1ArgType
),
7180 NEONMAP1(vminv_s32
, aarch64_neon_sminv
, AddRetType
| Add1ArgType
),
7181 NEONMAP1(vminv_u32
, aarch64_neon_uminv
, AddRetType
| Add1ArgType
),
7182 NEONMAP1(vminvq_f32
, aarch64_neon_fminv
, AddRetType
| Add1ArgType
),
7183 NEONMAP1(vminvq_f64
, aarch64_neon_fminv
, AddRetType
| Add1ArgType
),
7184 NEONMAP1(vminvq_s32
, aarch64_neon_sminv
, AddRetType
| Add1ArgType
),
7185 NEONMAP1(vminvq_u32
, aarch64_neon_uminv
, AddRetType
| Add1ArgType
),
7186 NEONMAP1(vmull_p64
, aarch64_neon_pmull64
, 0),
7187 NEONMAP1(vmulxd_f64
, aarch64_neon_fmulx
, Add1ArgType
),
7188 NEONMAP1(vmulxs_f32
, aarch64_neon_fmulx
, Add1ArgType
),
7189 NEONMAP1(vpaddd_s64
, aarch64_neon_uaddv
, AddRetType
| Add1ArgType
),
7190 NEONMAP1(vpaddd_u64
, aarch64_neon_uaddv
, AddRetType
| Add1ArgType
),
7191 NEONMAP1(vpmaxnmqd_f64
, aarch64_neon_fmaxnmv
, AddRetType
| Add1ArgType
),
7192 NEONMAP1(vpmaxnms_f32
, aarch64_neon_fmaxnmv
, AddRetType
| Add1ArgType
),
7193 NEONMAP1(vpmaxqd_f64
, aarch64_neon_fmaxv
, AddRetType
| Add1ArgType
),
7194 NEONMAP1(vpmaxs_f32
, aarch64_neon_fmaxv
, AddRetType
| Add1ArgType
),
7195 NEONMAP1(vpminnmqd_f64
, aarch64_neon_fminnmv
, AddRetType
| Add1ArgType
),
7196 NEONMAP1(vpminnms_f32
, aarch64_neon_fminnmv
, AddRetType
| Add1ArgType
),
7197 NEONMAP1(vpminqd_f64
, aarch64_neon_fminv
, AddRetType
| Add1ArgType
),
7198 NEONMAP1(vpmins_f32
, aarch64_neon_fminv
, AddRetType
| Add1ArgType
),
7199 NEONMAP1(vqabsb_s8
, aarch64_neon_sqabs
, Vectorize1ArgType
| Use64BitVectors
),
7200 NEONMAP1(vqabsd_s64
, aarch64_neon_sqabs
, Add1ArgType
),
7201 NEONMAP1(vqabsh_s16
, aarch64_neon_sqabs
, Vectorize1ArgType
| Use64BitVectors
),
7202 NEONMAP1(vqabss_s32
, aarch64_neon_sqabs
, Add1ArgType
),
7203 NEONMAP1(vqaddb_s8
, aarch64_neon_sqadd
, Vectorize1ArgType
| Use64BitVectors
),
7204 NEONMAP1(vqaddb_u8
, aarch64_neon_uqadd
, Vectorize1ArgType
| Use64BitVectors
),
7205 NEONMAP1(vqaddd_s64
, aarch64_neon_sqadd
, Add1ArgType
),
7206 NEONMAP1(vqaddd_u64
, aarch64_neon_uqadd
, Add1ArgType
),
7207 NEONMAP1(vqaddh_s16
, aarch64_neon_sqadd
, Vectorize1ArgType
| Use64BitVectors
),
7208 NEONMAP1(vqaddh_u16
, aarch64_neon_uqadd
, Vectorize1ArgType
| Use64BitVectors
),
7209 NEONMAP1(vqadds_s32
, aarch64_neon_sqadd
, Add1ArgType
),
7210 NEONMAP1(vqadds_u32
, aarch64_neon_uqadd
, Add1ArgType
),
7211 NEONMAP1(vqdmulhh_s16
, aarch64_neon_sqdmulh
, Vectorize1ArgType
| Use64BitVectors
),
7212 NEONMAP1(vqdmulhs_s32
, aarch64_neon_sqdmulh
, Add1ArgType
),
7213 NEONMAP1(vqdmullh_s16
, aarch64_neon_sqdmull
, VectorRet
| Use128BitVectors
),
7214 NEONMAP1(vqdmulls_s32
, aarch64_neon_sqdmulls_scalar
, 0),
7215 NEONMAP1(vqmovnd_s64
, aarch64_neon_scalar_sqxtn
, AddRetType
| Add1ArgType
),
7216 NEONMAP1(vqmovnd_u64
, aarch64_neon_scalar_uqxtn
, AddRetType
| Add1ArgType
),
7217 NEONMAP1(vqmovnh_s16
, aarch64_neon_sqxtn
, VectorRet
| Use64BitVectors
),
7218 NEONMAP1(vqmovnh_u16
, aarch64_neon_uqxtn
, VectorRet
| Use64BitVectors
),
7219 NEONMAP1(vqmovns_s32
, aarch64_neon_sqxtn
, VectorRet
| Use64BitVectors
),
7220 NEONMAP1(vqmovns_u32
, aarch64_neon_uqxtn
, VectorRet
| Use64BitVectors
),
7221 NEONMAP1(vqmovund_s64
, aarch64_neon_scalar_sqxtun
, AddRetType
| Add1ArgType
),
7222 NEONMAP1(vqmovunh_s16
, aarch64_neon_sqxtun
, VectorRet
| Use64BitVectors
),
7223 NEONMAP1(vqmovuns_s32
, aarch64_neon_sqxtun
, VectorRet
| Use64BitVectors
),
7224 NEONMAP1(vqnegb_s8
, aarch64_neon_sqneg
, Vectorize1ArgType
| Use64BitVectors
),
7225 NEONMAP1(vqnegd_s64
, aarch64_neon_sqneg
, Add1ArgType
),
7226 NEONMAP1(vqnegh_s16
, aarch64_neon_sqneg
, Vectorize1ArgType
| Use64BitVectors
),
7227 NEONMAP1(vqnegs_s32
, aarch64_neon_sqneg
, Add1ArgType
),
7228 NEONMAP1(vqrdmlahh_s16
, aarch64_neon_sqrdmlah
, Vectorize1ArgType
| Use64BitVectors
),
7229 NEONMAP1(vqrdmlahs_s32
, aarch64_neon_sqrdmlah
, Add1ArgType
),
7230 NEONMAP1(vqrdmlshh_s16
, aarch64_neon_sqrdmlsh
, Vectorize1ArgType
| Use64BitVectors
),
7231 NEONMAP1(vqrdmlshs_s32
, aarch64_neon_sqrdmlsh
, Add1ArgType
),
7232 NEONMAP1(vqrdmulhh_s16
, aarch64_neon_sqrdmulh
, Vectorize1ArgType
| Use64BitVectors
),
7233 NEONMAP1(vqrdmulhs_s32
, aarch64_neon_sqrdmulh
, Add1ArgType
),
7234 NEONMAP1(vqrshlb_s8
, aarch64_neon_sqrshl
, Vectorize1ArgType
| Use64BitVectors
),
7235 NEONMAP1(vqrshlb_u8
, aarch64_neon_uqrshl
, Vectorize1ArgType
| Use64BitVectors
),
7236 NEONMAP1(vqrshld_s64
, aarch64_neon_sqrshl
, Add1ArgType
),
7237 NEONMAP1(vqrshld_u64
, aarch64_neon_uqrshl
, Add1ArgType
),
7238 NEONMAP1(vqrshlh_s16
, aarch64_neon_sqrshl
, Vectorize1ArgType
| Use64BitVectors
),
7239 NEONMAP1(vqrshlh_u16
, aarch64_neon_uqrshl
, Vectorize1ArgType
| Use64BitVectors
),
7240 NEONMAP1(vqrshls_s32
, aarch64_neon_sqrshl
, Add1ArgType
),
7241 NEONMAP1(vqrshls_u32
, aarch64_neon_uqrshl
, Add1ArgType
),
7242 NEONMAP1(vqrshrnd_n_s64
, aarch64_neon_sqrshrn
, AddRetType
),
7243 NEONMAP1(vqrshrnd_n_u64
, aarch64_neon_uqrshrn
, AddRetType
),
7244 NEONMAP1(vqrshrnh_n_s16
, aarch64_neon_sqrshrn
, VectorRet
| Use64BitVectors
),
7245 NEONMAP1(vqrshrnh_n_u16
, aarch64_neon_uqrshrn
, VectorRet
| Use64BitVectors
),
7246 NEONMAP1(vqrshrns_n_s32
, aarch64_neon_sqrshrn
, VectorRet
| Use64BitVectors
),
7247 NEONMAP1(vqrshrns_n_u32
, aarch64_neon_uqrshrn
, VectorRet
| Use64BitVectors
),
7248 NEONMAP1(vqrshrund_n_s64
, aarch64_neon_sqrshrun
, AddRetType
),
7249 NEONMAP1(vqrshrunh_n_s16
, aarch64_neon_sqrshrun
, VectorRet
| Use64BitVectors
),
7250 NEONMAP1(vqrshruns_n_s32
, aarch64_neon_sqrshrun
, VectorRet
| Use64BitVectors
),
7251 NEONMAP1(vqshlb_n_s8
, aarch64_neon_sqshl
, Vectorize1ArgType
| Use64BitVectors
),
7252 NEONMAP1(vqshlb_n_u8
, aarch64_neon_uqshl
, Vectorize1ArgType
| Use64BitVectors
),
7253 NEONMAP1(vqshlb_s8
, aarch64_neon_sqshl
, Vectorize1ArgType
| Use64BitVectors
),
7254 NEONMAP1(vqshlb_u8
, aarch64_neon_uqshl
, Vectorize1ArgType
| Use64BitVectors
),
7255 NEONMAP1(vqshld_s64
, aarch64_neon_sqshl
, Add1ArgType
),
7256 NEONMAP1(vqshld_u64
, aarch64_neon_uqshl
, Add1ArgType
),
7257 NEONMAP1(vqshlh_n_s16
, aarch64_neon_sqshl
, Vectorize1ArgType
| Use64BitVectors
),
7258 NEONMAP1(vqshlh_n_u16
, aarch64_neon_uqshl
, Vectorize1ArgType
| Use64BitVectors
),
7259 NEONMAP1(vqshlh_s16
, aarch64_neon_sqshl
, Vectorize1ArgType
| Use64BitVectors
),
7260 NEONMAP1(vqshlh_u16
, aarch64_neon_uqshl
, Vectorize1ArgType
| Use64BitVectors
),
7261 NEONMAP1(vqshls_n_s32
, aarch64_neon_sqshl
, Add1ArgType
),
7262 NEONMAP1(vqshls_n_u32
, aarch64_neon_uqshl
, Add1ArgType
),
7263 NEONMAP1(vqshls_s32
, aarch64_neon_sqshl
, Add1ArgType
),
7264 NEONMAP1(vqshls_u32
, aarch64_neon_uqshl
, Add1ArgType
),
7265 NEONMAP1(vqshlub_n_s8
, aarch64_neon_sqshlu
, Vectorize1ArgType
| Use64BitVectors
),
7266 NEONMAP1(vqshluh_n_s16
, aarch64_neon_sqshlu
, Vectorize1ArgType
| Use64BitVectors
),
7267 NEONMAP1(vqshlus_n_s32
, aarch64_neon_sqshlu
, Add1ArgType
),
7268 NEONMAP1(vqshrnd_n_s64
, aarch64_neon_sqshrn
, AddRetType
),
7269 NEONMAP1(vqshrnd_n_u64
, aarch64_neon_uqshrn
, AddRetType
),
7270 NEONMAP1(vqshrnh_n_s16
, aarch64_neon_sqshrn
, VectorRet
| Use64BitVectors
),
7271 NEONMAP1(vqshrnh_n_u16
, aarch64_neon_uqshrn
, VectorRet
| Use64BitVectors
),
7272 NEONMAP1(vqshrns_n_s32
, aarch64_neon_sqshrn
, VectorRet
| Use64BitVectors
),
7273 NEONMAP1(vqshrns_n_u32
, aarch64_neon_uqshrn
, VectorRet
| Use64BitVectors
),
7274 NEONMAP1(vqshrund_n_s64
, aarch64_neon_sqshrun
, AddRetType
),
7275 NEONMAP1(vqshrunh_n_s16
, aarch64_neon_sqshrun
, VectorRet
| Use64BitVectors
),
7276 NEONMAP1(vqshruns_n_s32
, aarch64_neon_sqshrun
, VectorRet
| Use64BitVectors
),
7277 NEONMAP1(vqsubb_s8
, aarch64_neon_sqsub
, Vectorize1ArgType
| Use64BitVectors
),
7278 NEONMAP1(vqsubb_u8
, aarch64_neon_uqsub
, Vectorize1ArgType
| Use64BitVectors
),
7279 NEONMAP1(vqsubd_s64
, aarch64_neon_sqsub
, Add1ArgType
),
7280 NEONMAP1(vqsubd_u64
, aarch64_neon_uqsub
, Add1ArgType
),
7281 NEONMAP1(vqsubh_s16
, aarch64_neon_sqsub
, Vectorize1ArgType
| Use64BitVectors
),
7282 NEONMAP1(vqsubh_u16
, aarch64_neon_uqsub
, Vectorize1ArgType
| Use64BitVectors
),
7283 NEONMAP1(vqsubs_s32
, aarch64_neon_sqsub
, Add1ArgType
),
7284 NEONMAP1(vqsubs_u32
, aarch64_neon_uqsub
, Add1ArgType
),
7285 NEONMAP1(vrecped_f64
, aarch64_neon_frecpe
, Add1ArgType
),
7286 NEONMAP1(vrecpes_f32
, aarch64_neon_frecpe
, Add1ArgType
),
7287 NEONMAP1(vrecpxd_f64
, aarch64_neon_frecpx
, Add1ArgType
),
7288 NEONMAP1(vrecpxs_f32
, aarch64_neon_frecpx
, Add1ArgType
),
7289 NEONMAP1(vrshld_s64
, aarch64_neon_srshl
, Add1ArgType
),
7290 NEONMAP1(vrshld_u64
, aarch64_neon_urshl
, Add1ArgType
),
7291 NEONMAP1(vrsqrted_f64
, aarch64_neon_frsqrte
, Add1ArgType
),
7292 NEONMAP1(vrsqrtes_f32
, aarch64_neon_frsqrte
, Add1ArgType
),
7293 NEONMAP1(vrsqrtsd_f64
, aarch64_neon_frsqrts
, Add1ArgType
),
7294 NEONMAP1(vrsqrtss_f32
, aarch64_neon_frsqrts
, Add1ArgType
),
7295 NEONMAP1(vsha1cq_u32
, aarch64_crypto_sha1c
, 0),
7296 NEONMAP1(vsha1h_u32
, aarch64_crypto_sha1h
, 0),
7297 NEONMAP1(vsha1mq_u32
, aarch64_crypto_sha1m
, 0),
7298 NEONMAP1(vsha1pq_u32
, aarch64_crypto_sha1p
, 0),
7299 NEONMAP1(vshld_s64
, aarch64_neon_sshl
, Add1ArgType
),
7300 NEONMAP1(vshld_u64
, aarch64_neon_ushl
, Add1ArgType
),
7301 NEONMAP1(vslid_n_s64
, aarch64_neon_vsli
, Vectorize1ArgType
),
7302 NEONMAP1(vslid_n_u64
, aarch64_neon_vsli
, Vectorize1ArgType
),
7303 NEONMAP1(vsqaddb_u8
, aarch64_neon_usqadd
, Vectorize1ArgType
| Use64BitVectors
),
7304 NEONMAP1(vsqaddd_u64
, aarch64_neon_usqadd
, Add1ArgType
),
7305 NEONMAP1(vsqaddh_u16
, aarch64_neon_usqadd
, Vectorize1ArgType
| Use64BitVectors
),
7306 NEONMAP1(vsqadds_u32
, aarch64_neon_usqadd
, Add1ArgType
),
7307 NEONMAP1(vsrid_n_s64
, aarch64_neon_vsri
, Vectorize1ArgType
),
7308 NEONMAP1(vsrid_n_u64
, aarch64_neon_vsri
, Vectorize1ArgType
),
7309 NEONMAP1(vuqaddb_s8
, aarch64_neon_suqadd
, Vectorize1ArgType
| Use64BitVectors
),
7310 NEONMAP1(vuqaddd_s64
, aarch64_neon_suqadd
, Add1ArgType
),
7311 NEONMAP1(vuqaddh_s16
, aarch64_neon_suqadd
, Vectorize1ArgType
| Use64BitVectors
),
7312 NEONMAP1(vuqadds_s32
, aarch64_neon_suqadd
, Add1ArgType
),
7313 // FP16 scalar intrinisics go here.
7314 NEONMAP1(vabdh_f16
, aarch64_sisd_fabd
, Add1ArgType
),
7315 NEONMAP1(vcvtah_s32_f16
, aarch64_neon_fcvtas
, AddRetType
| Add1ArgType
),
7316 NEONMAP1(vcvtah_s64_f16
, aarch64_neon_fcvtas
, AddRetType
| Add1ArgType
),
7317 NEONMAP1(vcvtah_u32_f16
, aarch64_neon_fcvtau
, AddRetType
| Add1ArgType
),
7318 NEONMAP1(vcvtah_u64_f16
, aarch64_neon_fcvtau
, AddRetType
| Add1ArgType
),
7319 NEONMAP1(vcvth_n_f16_s32
, aarch64_neon_vcvtfxs2fp
, AddRetType
| Add1ArgType
),
7320 NEONMAP1(vcvth_n_f16_s64
, aarch64_neon_vcvtfxs2fp
, AddRetType
| Add1ArgType
),
7321 NEONMAP1(vcvth_n_f16_u32
, aarch64_neon_vcvtfxu2fp
, AddRetType
| Add1ArgType
),
7322 NEONMAP1(vcvth_n_f16_u64
, aarch64_neon_vcvtfxu2fp
, AddRetType
| Add1ArgType
),
7323 NEONMAP1(vcvth_n_s32_f16
, aarch64_neon_vcvtfp2fxs
, AddRetType
| Add1ArgType
),
7324 NEONMAP1(vcvth_n_s64_f16
, aarch64_neon_vcvtfp2fxs
, AddRetType
| Add1ArgType
),
7325 NEONMAP1(vcvth_n_u32_f16
, aarch64_neon_vcvtfp2fxu
, AddRetType
| Add1ArgType
),
7326 NEONMAP1(vcvth_n_u64_f16
, aarch64_neon_vcvtfp2fxu
, AddRetType
| Add1ArgType
),
7327 NEONMAP1(vcvth_s32_f16
, aarch64_neon_fcvtzs
, AddRetType
| Add1ArgType
),
7328 NEONMAP1(vcvth_s64_f16
, aarch64_neon_fcvtzs
, AddRetType
| Add1ArgType
),
7329 NEONMAP1(vcvth_u32_f16
, aarch64_neon_fcvtzu
, AddRetType
| Add1ArgType
),
7330 NEONMAP1(vcvth_u64_f16
, aarch64_neon_fcvtzu
, AddRetType
| Add1ArgType
),
7331 NEONMAP1(vcvtmh_s32_f16
, aarch64_neon_fcvtms
, AddRetType
| Add1ArgType
),
7332 NEONMAP1(vcvtmh_s64_f16
, aarch64_neon_fcvtms
, AddRetType
| Add1ArgType
),
7333 NEONMAP1(vcvtmh_u32_f16
, aarch64_neon_fcvtmu
, AddRetType
| Add1ArgType
),
7334 NEONMAP1(vcvtmh_u64_f16
, aarch64_neon_fcvtmu
, AddRetType
| Add1ArgType
),
7335 NEONMAP1(vcvtnh_s32_f16
, aarch64_neon_fcvtns
, AddRetType
| Add1ArgType
),
7336 NEONMAP1(vcvtnh_s64_f16
, aarch64_neon_fcvtns
, AddRetType
| Add1ArgType
),
7337 NEONMAP1(vcvtnh_u32_f16
, aarch64_neon_fcvtnu
, AddRetType
| Add1ArgType
),
7338 NEONMAP1(vcvtnh_u64_f16
, aarch64_neon_fcvtnu
, AddRetType
| Add1ArgType
),
7339 NEONMAP1(vcvtph_s32_f16
, aarch64_neon_fcvtps
, AddRetType
| Add1ArgType
),
7340 NEONMAP1(vcvtph_s64_f16
, aarch64_neon_fcvtps
, AddRetType
| Add1ArgType
),
7341 NEONMAP1(vcvtph_u32_f16
, aarch64_neon_fcvtpu
, AddRetType
| Add1ArgType
),
7342 NEONMAP1(vcvtph_u64_f16
, aarch64_neon_fcvtpu
, AddRetType
| Add1ArgType
),
7343 NEONMAP1(vmulxh_f16
, aarch64_neon_fmulx
, Add1ArgType
),
7344 NEONMAP1(vrecpeh_f16
, aarch64_neon_frecpe
, Add1ArgType
),
7345 NEONMAP1(vrecpxh_f16
, aarch64_neon_frecpx
, Add1ArgType
),
7346 NEONMAP1(vrsqrteh_f16
, aarch64_neon_frsqrte
, Add1ArgType
),
7347 NEONMAP1(vrsqrtsh_f16
, aarch64_neon_frsqrts
, Add1ArgType
),
7350 // Some intrinsics are equivalent for codegen.
7351 static const std::pair
<unsigned, unsigned> NEONEquivalentIntrinsicMap
[] = {
7352 { NEON::BI__builtin_neon_splat_lane_bf16
, NEON::BI__builtin_neon_splat_lane_v
, },
7353 { NEON::BI__builtin_neon_splat_laneq_bf16
, NEON::BI__builtin_neon_splat_laneq_v
, },
7354 { NEON::BI__builtin_neon_splatq_lane_bf16
, NEON::BI__builtin_neon_splatq_lane_v
, },
7355 { NEON::BI__builtin_neon_splatq_laneq_bf16
, NEON::BI__builtin_neon_splatq_laneq_v
, },
7356 { NEON::BI__builtin_neon_vabd_f16
, NEON::BI__builtin_neon_vabd_v
, },
7357 { NEON::BI__builtin_neon_vabdq_f16
, NEON::BI__builtin_neon_vabdq_v
, },
7358 { NEON::BI__builtin_neon_vabs_f16
, NEON::BI__builtin_neon_vabs_v
, },
7359 { NEON::BI__builtin_neon_vabsq_f16
, NEON::BI__builtin_neon_vabsq_v
, },
7360 { NEON::BI__builtin_neon_vcage_f16
, NEON::BI__builtin_neon_vcage_v
, },
7361 { NEON::BI__builtin_neon_vcageq_f16
, NEON::BI__builtin_neon_vcageq_v
, },
7362 { NEON::BI__builtin_neon_vcagt_f16
, NEON::BI__builtin_neon_vcagt_v
, },
7363 { NEON::BI__builtin_neon_vcagtq_f16
, NEON::BI__builtin_neon_vcagtq_v
, },
7364 { NEON::BI__builtin_neon_vcale_f16
, NEON::BI__builtin_neon_vcale_v
, },
7365 { NEON::BI__builtin_neon_vcaleq_f16
, NEON::BI__builtin_neon_vcaleq_v
, },
7366 { NEON::BI__builtin_neon_vcalt_f16
, NEON::BI__builtin_neon_vcalt_v
, },
7367 { NEON::BI__builtin_neon_vcaltq_f16
, NEON::BI__builtin_neon_vcaltq_v
, },
7368 { NEON::BI__builtin_neon_vceqz_f16
, NEON::BI__builtin_neon_vceqz_v
, },
7369 { NEON::BI__builtin_neon_vceqzq_f16
, NEON::BI__builtin_neon_vceqzq_v
, },
7370 { NEON::BI__builtin_neon_vcgez_f16
, NEON::BI__builtin_neon_vcgez_v
, },
7371 { NEON::BI__builtin_neon_vcgezq_f16
, NEON::BI__builtin_neon_vcgezq_v
, },
7372 { NEON::BI__builtin_neon_vcgtz_f16
, NEON::BI__builtin_neon_vcgtz_v
, },
7373 { NEON::BI__builtin_neon_vcgtzq_f16
, NEON::BI__builtin_neon_vcgtzq_v
, },
7374 { NEON::BI__builtin_neon_vclez_f16
, NEON::BI__builtin_neon_vclez_v
, },
7375 { NEON::BI__builtin_neon_vclezq_f16
, NEON::BI__builtin_neon_vclezq_v
, },
7376 { NEON::BI__builtin_neon_vcltz_f16
, NEON::BI__builtin_neon_vcltz_v
, },
7377 { NEON::BI__builtin_neon_vcltzq_f16
, NEON::BI__builtin_neon_vcltzq_v
, },
7378 { NEON::BI__builtin_neon_vfma_f16
, NEON::BI__builtin_neon_vfma_v
, },
7379 { NEON::BI__builtin_neon_vfma_lane_f16
, NEON::BI__builtin_neon_vfma_lane_v
, },
7380 { NEON::BI__builtin_neon_vfma_laneq_f16
, NEON::BI__builtin_neon_vfma_laneq_v
, },
7381 { NEON::BI__builtin_neon_vfmaq_f16
, NEON::BI__builtin_neon_vfmaq_v
, },
7382 { NEON::BI__builtin_neon_vfmaq_lane_f16
, NEON::BI__builtin_neon_vfmaq_lane_v
, },
7383 { NEON::BI__builtin_neon_vfmaq_laneq_f16
, NEON::BI__builtin_neon_vfmaq_laneq_v
, },
7384 { NEON::BI__builtin_neon_vld1_bf16_x2
, NEON::BI__builtin_neon_vld1_x2_v
},
7385 { NEON::BI__builtin_neon_vld1_bf16_x3
, NEON::BI__builtin_neon_vld1_x3_v
},
7386 { NEON::BI__builtin_neon_vld1_bf16_x4
, NEON::BI__builtin_neon_vld1_x4_v
},
7387 { NEON::BI__builtin_neon_vld1_bf16
, NEON::BI__builtin_neon_vld1_v
},
7388 { NEON::BI__builtin_neon_vld1_dup_bf16
, NEON::BI__builtin_neon_vld1_dup_v
},
7389 { NEON::BI__builtin_neon_vld1_lane_bf16
, NEON::BI__builtin_neon_vld1_lane_v
},
7390 { NEON::BI__builtin_neon_vld1q_bf16_x2
, NEON::BI__builtin_neon_vld1q_x2_v
},
7391 { NEON::BI__builtin_neon_vld1q_bf16_x3
, NEON::BI__builtin_neon_vld1q_x3_v
},
7392 { NEON::BI__builtin_neon_vld1q_bf16_x4
, NEON::BI__builtin_neon_vld1q_x4_v
},
7393 { NEON::BI__builtin_neon_vld1q_bf16
, NEON::BI__builtin_neon_vld1q_v
},
7394 { NEON::BI__builtin_neon_vld1q_dup_bf16
, NEON::BI__builtin_neon_vld1q_dup_v
},
7395 { NEON::BI__builtin_neon_vld1q_lane_bf16
, NEON::BI__builtin_neon_vld1q_lane_v
},
7396 { NEON::BI__builtin_neon_vld2_bf16
, NEON::BI__builtin_neon_vld2_v
},
7397 { NEON::BI__builtin_neon_vld2_dup_bf16
, NEON::BI__builtin_neon_vld2_dup_v
},
7398 { NEON::BI__builtin_neon_vld2_lane_bf16
, NEON::BI__builtin_neon_vld2_lane_v
},
7399 { NEON::BI__builtin_neon_vld2q_bf16
, NEON::BI__builtin_neon_vld2q_v
},
7400 { NEON::BI__builtin_neon_vld2q_dup_bf16
, NEON::BI__builtin_neon_vld2q_dup_v
},
7401 { NEON::BI__builtin_neon_vld2q_lane_bf16
, NEON::BI__builtin_neon_vld2q_lane_v
},
7402 { NEON::BI__builtin_neon_vld3_bf16
, NEON::BI__builtin_neon_vld3_v
},
7403 { NEON::BI__builtin_neon_vld3_dup_bf16
, NEON::BI__builtin_neon_vld3_dup_v
},
7404 { NEON::BI__builtin_neon_vld3_lane_bf16
, NEON::BI__builtin_neon_vld3_lane_v
},
7405 { NEON::BI__builtin_neon_vld3q_bf16
, NEON::BI__builtin_neon_vld3q_v
},
7406 { NEON::BI__builtin_neon_vld3q_dup_bf16
, NEON::BI__builtin_neon_vld3q_dup_v
},
7407 { NEON::BI__builtin_neon_vld3q_lane_bf16
, NEON::BI__builtin_neon_vld3q_lane_v
},
7408 { NEON::BI__builtin_neon_vld4_bf16
, NEON::BI__builtin_neon_vld4_v
},
7409 { NEON::BI__builtin_neon_vld4_dup_bf16
, NEON::BI__builtin_neon_vld4_dup_v
},
7410 { NEON::BI__builtin_neon_vld4_lane_bf16
, NEON::BI__builtin_neon_vld4_lane_v
},
7411 { NEON::BI__builtin_neon_vld4q_bf16
, NEON::BI__builtin_neon_vld4q_v
},
7412 { NEON::BI__builtin_neon_vld4q_dup_bf16
, NEON::BI__builtin_neon_vld4q_dup_v
},
7413 { NEON::BI__builtin_neon_vld4q_lane_bf16
, NEON::BI__builtin_neon_vld4q_lane_v
},
7414 { NEON::BI__builtin_neon_vmax_f16
, NEON::BI__builtin_neon_vmax_v
, },
7415 { NEON::BI__builtin_neon_vmaxnm_f16
, NEON::BI__builtin_neon_vmaxnm_v
, },
7416 { NEON::BI__builtin_neon_vmaxnmq_f16
, NEON::BI__builtin_neon_vmaxnmq_v
, },
7417 { NEON::BI__builtin_neon_vmaxq_f16
, NEON::BI__builtin_neon_vmaxq_v
, },
7418 { NEON::BI__builtin_neon_vmin_f16
, NEON::BI__builtin_neon_vmin_v
, },
7419 { NEON::BI__builtin_neon_vminnm_f16
, NEON::BI__builtin_neon_vminnm_v
, },
7420 { NEON::BI__builtin_neon_vminnmq_f16
, NEON::BI__builtin_neon_vminnmq_v
, },
7421 { NEON::BI__builtin_neon_vminq_f16
, NEON::BI__builtin_neon_vminq_v
, },
7422 { NEON::BI__builtin_neon_vmulx_f16
, NEON::BI__builtin_neon_vmulx_v
, },
7423 { NEON::BI__builtin_neon_vmulxq_f16
, NEON::BI__builtin_neon_vmulxq_v
, },
7424 { NEON::BI__builtin_neon_vpadd_f16
, NEON::BI__builtin_neon_vpadd_v
, },
7425 { NEON::BI__builtin_neon_vpaddq_f16
, NEON::BI__builtin_neon_vpaddq_v
, },
7426 { NEON::BI__builtin_neon_vpmax_f16
, NEON::BI__builtin_neon_vpmax_v
, },
7427 { NEON::BI__builtin_neon_vpmaxnm_f16
, NEON::BI__builtin_neon_vpmaxnm_v
, },
7428 { NEON::BI__builtin_neon_vpmaxnmq_f16
, NEON::BI__builtin_neon_vpmaxnmq_v
, },
7429 { NEON::BI__builtin_neon_vpmaxq_f16
, NEON::BI__builtin_neon_vpmaxq_v
, },
7430 { NEON::BI__builtin_neon_vpmin_f16
, NEON::BI__builtin_neon_vpmin_v
, },
7431 { NEON::BI__builtin_neon_vpminnm_f16
, NEON::BI__builtin_neon_vpminnm_v
, },
7432 { NEON::BI__builtin_neon_vpminnmq_f16
, NEON::BI__builtin_neon_vpminnmq_v
, },
7433 { NEON::BI__builtin_neon_vpminq_f16
, NEON::BI__builtin_neon_vpminq_v
, },
7434 { NEON::BI__builtin_neon_vrecpe_f16
, NEON::BI__builtin_neon_vrecpe_v
, },
7435 { NEON::BI__builtin_neon_vrecpeq_f16
, NEON::BI__builtin_neon_vrecpeq_v
, },
7436 { NEON::BI__builtin_neon_vrecps_f16
, NEON::BI__builtin_neon_vrecps_v
, },
7437 { NEON::BI__builtin_neon_vrecpsq_f16
, NEON::BI__builtin_neon_vrecpsq_v
, },
7438 { NEON::BI__builtin_neon_vrnd_f16
, NEON::BI__builtin_neon_vrnd_v
, },
7439 { NEON::BI__builtin_neon_vrnda_f16
, NEON::BI__builtin_neon_vrnda_v
, },
7440 { NEON::BI__builtin_neon_vrndaq_f16
, NEON::BI__builtin_neon_vrndaq_v
, },
7441 { NEON::BI__builtin_neon_vrndi_f16
, NEON::BI__builtin_neon_vrndi_v
, },
7442 { NEON::BI__builtin_neon_vrndiq_f16
, NEON::BI__builtin_neon_vrndiq_v
, },
7443 { NEON::BI__builtin_neon_vrndm_f16
, NEON::BI__builtin_neon_vrndm_v
, },
7444 { NEON::BI__builtin_neon_vrndmq_f16
, NEON::BI__builtin_neon_vrndmq_v
, },
7445 { NEON::BI__builtin_neon_vrndn_f16
, NEON::BI__builtin_neon_vrndn_v
, },
7446 { NEON::BI__builtin_neon_vrndnq_f16
, NEON::BI__builtin_neon_vrndnq_v
, },
7447 { NEON::BI__builtin_neon_vrndp_f16
, NEON::BI__builtin_neon_vrndp_v
, },
7448 { NEON::BI__builtin_neon_vrndpq_f16
, NEON::BI__builtin_neon_vrndpq_v
, },
7449 { NEON::BI__builtin_neon_vrndq_f16
, NEON::BI__builtin_neon_vrndq_v
, },
7450 { NEON::BI__builtin_neon_vrndx_f16
, NEON::BI__builtin_neon_vrndx_v
, },
7451 { NEON::BI__builtin_neon_vrndxq_f16
, NEON::BI__builtin_neon_vrndxq_v
, },
7452 { NEON::BI__builtin_neon_vrsqrte_f16
, NEON::BI__builtin_neon_vrsqrte_v
, },
7453 { NEON::BI__builtin_neon_vrsqrteq_f16
, NEON::BI__builtin_neon_vrsqrteq_v
, },
7454 { NEON::BI__builtin_neon_vrsqrts_f16
, NEON::BI__builtin_neon_vrsqrts_v
, },
7455 { NEON::BI__builtin_neon_vrsqrtsq_f16
, NEON::BI__builtin_neon_vrsqrtsq_v
, },
7456 { NEON::BI__builtin_neon_vsqrt_f16
, NEON::BI__builtin_neon_vsqrt_v
, },
7457 { NEON::BI__builtin_neon_vsqrtq_f16
, NEON::BI__builtin_neon_vsqrtq_v
, },
7458 { NEON::BI__builtin_neon_vst1_bf16_x2
, NEON::BI__builtin_neon_vst1_x2_v
},
7459 { NEON::BI__builtin_neon_vst1_bf16_x3
, NEON::BI__builtin_neon_vst1_x3_v
},
7460 { NEON::BI__builtin_neon_vst1_bf16_x4
, NEON::BI__builtin_neon_vst1_x4_v
},
7461 { NEON::BI__builtin_neon_vst1_bf16
, NEON::BI__builtin_neon_vst1_v
},
7462 { NEON::BI__builtin_neon_vst1_lane_bf16
, NEON::BI__builtin_neon_vst1_lane_v
},
7463 { NEON::BI__builtin_neon_vst1q_bf16_x2
, NEON::BI__builtin_neon_vst1q_x2_v
},
7464 { NEON::BI__builtin_neon_vst1q_bf16_x3
, NEON::BI__builtin_neon_vst1q_x3_v
},
7465 { NEON::BI__builtin_neon_vst1q_bf16_x4
, NEON::BI__builtin_neon_vst1q_x4_v
},
7466 { NEON::BI__builtin_neon_vst1q_bf16
, NEON::BI__builtin_neon_vst1q_v
},
7467 { NEON::BI__builtin_neon_vst1q_lane_bf16
, NEON::BI__builtin_neon_vst1q_lane_v
},
7468 { NEON::BI__builtin_neon_vst2_bf16
, NEON::BI__builtin_neon_vst2_v
},
7469 { NEON::BI__builtin_neon_vst2_lane_bf16
, NEON::BI__builtin_neon_vst2_lane_v
},
7470 { NEON::BI__builtin_neon_vst2q_bf16
, NEON::BI__builtin_neon_vst2q_v
},
7471 { NEON::BI__builtin_neon_vst2q_lane_bf16
, NEON::BI__builtin_neon_vst2q_lane_v
},
7472 { NEON::BI__builtin_neon_vst3_bf16
, NEON::BI__builtin_neon_vst3_v
},
7473 { NEON::BI__builtin_neon_vst3_lane_bf16
, NEON::BI__builtin_neon_vst3_lane_v
},
7474 { NEON::BI__builtin_neon_vst3q_bf16
, NEON::BI__builtin_neon_vst3q_v
},
7475 { NEON::BI__builtin_neon_vst3q_lane_bf16
, NEON::BI__builtin_neon_vst3q_lane_v
},
7476 { NEON::BI__builtin_neon_vst4_bf16
, NEON::BI__builtin_neon_vst4_v
},
7477 { NEON::BI__builtin_neon_vst4_lane_bf16
, NEON::BI__builtin_neon_vst4_lane_v
},
7478 { NEON::BI__builtin_neon_vst4q_bf16
, NEON::BI__builtin_neon_vst4q_v
},
7479 { NEON::BI__builtin_neon_vst4q_lane_bf16
, NEON::BI__builtin_neon_vst4q_lane_v
},
7480 // The mangling rules cause us to have one ID for each type for vldap1(q)_lane
7481 // and vstl1(q)_lane, but codegen is equivalent for all of them. Choose an
7482 // arbitrary one to be handled as tha canonical variation.
7483 { NEON::BI__builtin_neon_vldap1_lane_u64
, NEON::BI__builtin_neon_vldap1_lane_s64
},
7484 { NEON::BI__builtin_neon_vldap1_lane_f64
, NEON::BI__builtin_neon_vldap1_lane_s64
},
7485 { NEON::BI__builtin_neon_vldap1_lane_p64
, NEON::BI__builtin_neon_vldap1_lane_s64
},
7486 { NEON::BI__builtin_neon_vldap1q_lane_u64
, NEON::BI__builtin_neon_vldap1q_lane_s64
},
7487 { NEON::BI__builtin_neon_vldap1q_lane_f64
, NEON::BI__builtin_neon_vldap1q_lane_s64
},
7488 { NEON::BI__builtin_neon_vldap1q_lane_p64
, NEON::BI__builtin_neon_vldap1q_lane_s64
},
7489 { NEON::BI__builtin_neon_vstl1_lane_u64
, NEON::BI__builtin_neon_vstl1_lane_s64
},
7490 { NEON::BI__builtin_neon_vstl1_lane_f64
, NEON::BI__builtin_neon_vstl1_lane_s64
},
7491 { NEON::BI__builtin_neon_vstl1_lane_p64
, NEON::BI__builtin_neon_vstl1_lane_s64
},
7492 { NEON::BI__builtin_neon_vstl1q_lane_u64
, NEON::BI__builtin_neon_vstl1q_lane_s64
},
7493 { NEON::BI__builtin_neon_vstl1q_lane_f64
, NEON::BI__builtin_neon_vstl1q_lane_s64
},
7494 { NEON::BI__builtin_neon_vstl1q_lane_p64
, NEON::BI__builtin_neon_vstl1q_lane_s64
},
7501 #define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
7503 #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0, \
7507 #define SVEMAP2(NameBase, TypeModifier) \
7508 { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier }
7509 static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap
[] = {
7510 #define GET_SVE_LLVM_INTRINSIC_MAP
7511 #include "clang/Basic/arm_sve_builtin_cg.inc"
7512 #include "clang/Basic/BuiltinsAArch64NeonSVEBridge_cg.def"
7513 #undef GET_SVE_LLVM_INTRINSIC_MAP
7519 #define SMEMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
7521 #NameBase, SME::BI__builtin_sme_##NameBase, Intrinsic::LLVMIntrinsic, 0, \
7525 #define SMEMAP2(NameBase, TypeModifier) \
7526 { #NameBase, SME::BI__builtin_sme_##NameBase, 0, 0, TypeModifier }
7527 static const ARMVectorIntrinsicInfo AArch64SMEIntrinsicMap
[] = {
7528 #define GET_SME_LLVM_INTRINSIC_MAP
7529 #include "clang/Basic/arm_sme_builtin_cg.inc"
7530 #undef GET_SME_LLVM_INTRINSIC_MAP
7536 static bool NEONSIMDIntrinsicsProvenSorted
= false;
7538 static bool AArch64SIMDIntrinsicsProvenSorted
= false;
7539 static bool AArch64SISDIntrinsicsProvenSorted
= false;
7540 static bool AArch64SVEIntrinsicsProvenSorted
= false;
7541 static bool AArch64SMEIntrinsicsProvenSorted
= false;
7543 static const ARMVectorIntrinsicInfo
*
7544 findARMVectorIntrinsicInMap(ArrayRef
<ARMVectorIntrinsicInfo
> IntrinsicMap
,
7545 unsigned BuiltinID
, bool &MapProvenSorted
) {
7548 if (!MapProvenSorted
) {
7549 assert(llvm::is_sorted(IntrinsicMap
));
7550 MapProvenSorted
= true;
7554 const ARMVectorIntrinsicInfo
*Builtin
=
7555 llvm::lower_bound(IntrinsicMap
, BuiltinID
);
7557 if (Builtin
!= IntrinsicMap
.end() && Builtin
->BuiltinID
== BuiltinID
)
7563 Function
*CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID
,
7565 llvm::Type
*ArgType
,
7566 const CallExpr
*E
) {
7568 if (Modifier
& Use64BitVectors
)
7570 else if (Modifier
& Use128BitVectors
)
7574 SmallVector
<llvm::Type
*, 3> Tys
;
7575 if (Modifier
& AddRetType
) {
7576 llvm::Type
*Ty
= ConvertType(E
->getCallReturnType(getContext()));
7577 if (Modifier
& VectorizeRetType
)
7578 Ty
= llvm::FixedVectorType::get(
7579 Ty
, VectorSize
? VectorSize
/ Ty
->getPrimitiveSizeInBits() : 1);
7585 if (Modifier
& VectorizeArgTypes
) {
7586 int Elts
= VectorSize
? VectorSize
/ ArgType
->getPrimitiveSizeInBits() : 1;
7587 ArgType
= llvm::FixedVectorType::get(ArgType
, Elts
);
7590 if (Modifier
& (Add1ArgType
| Add2ArgTypes
))
7591 Tys
.push_back(ArgType
);
7593 if (Modifier
& Add2ArgTypes
)
7594 Tys
.push_back(ArgType
);
7596 if (Modifier
& InventFloatType
)
7597 Tys
.push_back(FloatTy
);
7599 return CGM
.getIntrinsic(IntrinsicID
, Tys
);
7602 static Value
*EmitCommonNeonSISDBuiltinExpr(
7603 CodeGenFunction
&CGF
, const ARMVectorIntrinsicInfo
&SISDInfo
,
7604 SmallVectorImpl
<Value
*> &Ops
, const CallExpr
*E
) {
7605 unsigned BuiltinID
= SISDInfo
.BuiltinID
;
7606 unsigned int Int
= SISDInfo
.LLVMIntrinsic
;
7607 unsigned Modifier
= SISDInfo
.TypeModifier
;
7608 const char *s
= SISDInfo
.NameHint
;
7610 switch (BuiltinID
) {
7611 case NEON::BI__builtin_neon_vcled_s64
:
7612 case NEON::BI__builtin_neon_vcled_u64
:
7613 case NEON::BI__builtin_neon_vcles_f32
:
7614 case NEON::BI__builtin_neon_vcled_f64
:
7615 case NEON::BI__builtin_neon_vcltd_s64
:
7616 case NEON::BI__builtin_neon_vcltd_u64
:
7617 case NEON::BI__builtin_neon_vclts_f32
:
7618 case NEON::BI__builtin_neon_vcltd_f64
:
7619 case NEON::BI__builtin_neon_vcales_f32
:
7620 case NEON::BI__builtin_neon_vcaled_f64
:
7621 case NEON::BI__builtin_neon_vcalts_f32
:
7622 case NEON::BI__builtin_neon_vcaltd_f64
:
7623 // Only one direction of comparisons actually exist, cmle is actually a cmge
7624 // with swapped operands. The table gives us the right intrinsic but we
7625 // still need to do the swap.
7626 std::swap(Ops
[0], Ops
[1]);
7630 assert(Int
&& "Generic code assumes a valid intrinsic");
7632 // Determine the type(s) of this overloaded AArch64 intrinsic.
7633 const Expr
*Arg
= E
->getArg(0);
7634 llvm::Type
*ArgTy
= CGF
.ConvertType(Arg
->getType());
7635 Function
*F
= CGF
.LookupNeonLLVMIntrinsic(Int
, Modifier
, ArgTy
, E
);
7638 ConstantInt
*C0
= ConstantInt::get(CGF
.SizeTy
, 0);
7639 for (Function::const_arg_iterator ai
= F
->arg_begin(), ae
= F
->arg_end();
7640 ai
!= ae
; ++ai
, ++j
) {
7641 llvm::Type
*ArgTy
= ai
->getType();
7642 if (Ops
[j
]->getType()->getPrimitiveSizeInBits() ==
7643 ArgTy
->getPrimitiveSizeInBits())
7646 assert(ArgTy
->isVectorTy() && !Ops
[j
]->getType()->isVectorTy());
7647 // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
7648 // it before inserting.
7649 Ops
[j
] = CGF
.Builder
.CreateTruncOrBitCast(
7650 Ops
[j
], cast
<llvm::VectorType
>(ArgTy
)->getElementType());
7652 CGF
.Builder
.CreateInsertElement(PoisonValue::get(ArgTy
), Ops
[j
], C0
);
7655 Value
*Result
= CGF
.EmitNeonCall(F
, Ops
, s
);
7656 llvm::Type
*ResultType
= CGF
.ConvertType(E
->getType());
7657 if (ResultType
->getPrimitiveSizeInBits().getFixedValue() <
7658 Result
->getType()->getPrimitiveSizeInBits().getFixedValue())
7659 return CGF
.Builder
.CreateExtractElement(Result
, C0
);
7661 return CGF
.Builder
.CreateBitCast(Result
, ResultType
, s
);
7664 Value
*CodeGenFunction::EmitCommonNeonBuiltinExpr(
7665 unsigned BuiltinID
, unsigned LLVMIntrinsic
, unsigned AltLLVMIntrinsic
,
7666 const char *NameHint
, unsigned Modifier
, const CallExpr
*E
,
7667 SmallVectorImpl
<llvm::Value
*> &Ops
, Address PtrOp0
, Address PtrOp1
,
7668 llvm::Triple::ArchType Arch
) {
7669 // Get the last argument, which specifies the vector type.
7670 const Expr
*Arg
= E
->getArg(E
->getNumArgs() - 1);
7671 std::optional
<llvm::APSInt
> NeonTypeConst
=
7672 Arg
->getIntegerConstantExpr(getContext());
7676 // Determine the type of this overloaded NEON intrinsic.
7677 NeonTypeFlags
Type(NeonTypeConst
->getZExtValue());
7678 bool Usgn
= Type
.isUnsigned();
7679 bool Quad
= Type
.isQuad();
7680 const bool HasLegalHalfType
= getTarget().hasLegalHalfType();
7681 const bool AllowBFloatArgsAndRet
=
7682 getTargetHooks().getABIInfo().allowBFloatArgsAndRet();
7684 llvm::FixedVectorType
*VTy
=
7685 GetNeonType(this, Type
, HasLegalHalfType
, false, AllowBFloatArgsAndRet
);
7686 llvm::Type
*Ty
= VTy
;
7690 auto getAlignmentValue32
= [&](Address addr
) -> Value
* {
7691 return Builder
.getInt32(addr
.getAlignment().getQuantity());
7694 unsigned Int
= LLVMIntrinsic
;
7695 if ((Modifier
& UnsignedAlts
) && !Usgn
)
7696 Int
= AltLLVMIntrinsic
;
7698 switch (BuiltinID
) {
7700 case NEON::BI__builtin_neon_splat_lane_v
:
7701 case NEON::BI__builtin_neon_splat_laneq_v
:
7702 case NEON::BI__builtin_neon_splatq_lane_v
:
7703 case NEON::BI__builtin_neon_splatq_laneq_v
: {
7704 auto NumElements
= VTy
->getElementCount();
7705 if (BuiltinID
== NEON::BI__builtin_neon_splatq_lane_v
)
7706 NumElements
= NumElements
* 2;
7707 if (BuiltinID
== NEON::BI__builtin_neon_splat_laneq_v
)
7708 NumElements
= NumElements
.divideCoefficientBy(2);
7710 Ops
[0] = Builder
.CreateBitCast(Ops
[0], VTy
);
7711 return EmitNeonSplat(Ops
[0], cast
<ConstantInt
>(Ops
[1]), NumElements
);
7713 case NEON::BI__builtin_neon_vpadd_v
:
7714 case NEON::BI__builtin_neon_vpaddq_v
:
7715 // We don't allow fp/int overloading of intrinsics.
7716 if (VTy
->getElementType()->isFloatingPointTy() &&
7717 Int
== Intrinsic::aarch64_neon_addp
)
7718 Int
= Intrinsic::aarch64_neon_faddp
;
7720 case NEON::BI__builtin_neon_vabs_v
:
7721 case NEON::BI__builtin_neon_vabsq_v
:
7722 if (VTy
->getElementType()->isFloatingPointTy())
7723 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::fabs
, Ty
), Ops
, "vabs");
7724 return EmitNeonCall(CGM
.getIntrinsic(LLVMIntrinsic
, Ty
), Ops
, "vabs");
7725 case NEON::BI__builtin_neon_vadd_v
:
7726 case NEON::BI__builtin_neon_vaddq_v
: {
7727 llvm::Type
*VTy
= llvm::FixedVectorType::get(Int8Ty
, Quad
? 16 : 8);
7728 Ops
[0] = Builder
.CreateBitCast(Ops
[0], VTy
);
7729 Ops
[1] = Builder
.CreateBitCast(Ops
[1], VTy
);
7730 Ops
[0] = Builder
.CreateXor(Ops
[0], Ops
[1]);
7731 return Builder
.CreateBitCast(Ops
[0], Ty
);
7733 case NEON::BI__builtin_neon_vaddhn_v
: {
7734 llvm::FixedVectorType
*SrcTy
=
7735 llvm::FixedVectorType::getExtendedElementVectorType(VTy
);
7737 // %sum = add <4 x i32> %lhs, %rhs
7738 Ops
[0] = Builder
.CreateBitCast(Ops
[0], SrcTy
);
7739 Ops
[1] = Builder
.CreateBitCast(Ops
[1], SrcTy
);
7740 Ops
[0] = Builder
.CreateAdd(Ops
[0], Ops
[1], "vaddhn");
7742 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
7743 Constant
*ShiftAmt
=
7744 ConstantInt::get(SrcTy
, SrcTy
->getScalarSizeInBits() / 2);
7745 Ops
[0] = Builder
.CreateLShr(Ops
[0], ShiftAmt
, "vaddhn");
7747 // %res = trunc <4 x i32> %high to <4 x i16>
7748 return Builder
.CreateTrunc(Ops
[0], VTy
, "vaddhn");
7750 case NEON::BI__builtin_neon_vcale_v
:
7751 case NEON::BI__builtin_neon_vcaleq_v
:
7752 case NEON::BI__builtin_neon_vcalt_v
:
7753 case NEON::BI__builtin_neon_vcaltq_v
:
7754 std::swap(Ops
[0], Ops
[1]);
7756 case NEON::BI__builtin_neon_vcage_v
:
7757 case NEON::BI__builtin_neon_vcageq_v
:
7758 case NEON::BI__builtin_neon_vcagt_v
:
7759 case NEON::BI__builtin_neon_vcagtq_v
: {
7761 switch (VTy
->getScalarSizeInBits()) {
7762 default: llvm_unreachable("unexpected type");
7773 auto *VecFlt
= llvm::FixedVectorType::get(Ty
, VTy
->getNumElements());
7774 llvm::Type
*Tys
[] = { VTy
, VecFlt
};
7775 Function
*F
= CGM
.getIntrinsic(LLVMIntrinsic
, Tys
);
7776 return EmitNeonCall(F
, Ops
, NameHint
);
7778 case NEON::BI__builtin_neon_vceqz_v
:
7779 case NEON::BI__builtin_neon_vceqzq_v
:
7780 return EmitAArch64CompareBuiltinExpr(Ops
[0], Ty
, ICmpInst::FCMP_OEQ
,
7781 ICmpInst::ICMP_EQ
, "vceqz");
7782 case NEON::BI__builtin_neon_vcgez_v
:
7783 case NEON::BI__builtin_neon_vcgezq_v
:
7784 return EmitAArch64CompareBuiltinExpr(Ops
[0], Ty
, ICmpInst::FCMP_OGE
,
7785 ICmpInst::ICMP_SGE
, "vcgez");
7786 case NEON::BI__builtin_neon_vclez_v
:
7787 case NEON::BI__builtin_neon_vclezq_v
:
7788 return EmitAArch64CompareBuiltinExpr(Ops
[0], Ty
, ICmpInst::FCMP_OLE
,
7789 ICmpInst::ICMP_SLE
, "vclez");
7790 case NEON::BI__builtin_neon_vcgtz_v
:
7791 case NEON::BI__builtin_neon_vcgtzq_v
:
7792 return EmitAArch64CompareBuiltinExpr(Ops
[0], Ty
, ICmpInst::FCMP_OGT
,
7793 ICmpInst::ICMP_SGT
, "vcgtz");
7794 case NEON::BI__builtin_neon_vcltz_v
:
7795 case NEON::BI__builtin_neon_vcltzq_v
:
7796 return EmitAArch64CompareBuiltinExpr(Ops
[0], Ty
, ICmpInst::FCMP_OLT
,
7797 ICmpInst::ICMP_SLT
, "vcltz");
7798 case NEON::BI__builtin_neon_vclz_v
:
7799 case NEON::BI__builtin_neon_vclzq_v
:
7800 // We generate target-independent intrinsic, which needs a second argument
7801 // for whether or not clz of zero is undefined; on ARM it isn't.
7802 Ops
.push_back(Builder
.getInt1(getTarget().isCLZForZeroUndef()));
7804 case NEON::BI__builtin_neon_vcvt_f32_v
:
7805 case NEON::BI__builtin_neon_vcvtq_f32_v
:
7806 Ops
[0] = Builder
.CreateBitCast(Ops
[0], Ty
);
7807 Ty
= GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32
, false, Quad
),
7809 return Usgn
? Builder
.CreateUIToFP(Ops
[0], Ty
, "vcvt")
7810 : Builder
.CreateSIToFP(Ops
[0], Ty
, "vcvt");
7811 case NEON::BI__builtin_neon_vcvt_f16_s16
:
7812 case NEON::BI__builtin_neon_vcvt_f16_u16
:
7813 case NEON::BI__builtin_neon_vcvtq_f16_s16
:
7814 case NEON::BI__builtin_neon_vcvtq_f16_u16
:
7815 Ops
[0] = Builder
.CreateBitCast(Ops
[0], Ty
);
7816 Ty
= GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16
, false, Quad
),
7818 return Usgn
? Builder
.CreateUIToFP(Ops
[0], Ty
, "vcvt")
7819 : Builder
.CreateSIToFP(Ops
[0], Ty
, "vcvt");
7820 case NEON::BI__builtin_neon_vcvt_n_f16_s16
:
7821 case NEON::BI__builtin_neon_vcvt_n_f16_u16
:
7822 case NEON::BI__builtin_neon_vcvtq_n_f16_s16
:
7823 case NEON::BI__builtin_neon_vcvtq_n_f16_u16
: {
7824 llvm::Type
*Tys
[2] = { GetFloatNeonType(this, Type
), Ty
};
7825 Function
*F
= CGM
.getIntrinsic(Int
, Tys
);
7826 return EmitNeonCall(F
, Ops
, "vcvt_n");
7828 case NEON::BI__builtin_neon_vcvt_n_f32_v
:
7829 case NEON::BI__builtin_neon_vcvt_n_f64_v
:
7830 case NEON::BI__builtin_neon_vcvtq_n_f32_v
:
7831 case NEON::BI__builtin_neon_vcvtq_n_f64_v
: {
7832 llvm::Type
*Tys
[2] = { GetFloatNeonType(this, Type
), Ty
};
7833 Int
= Usgn
? LLVMIntrinsic
: AltLLVMIntrinsic
;
7834 Function
*F
= CGM
.getIntrinsic(Int
, Tys
);
7835 return EmitNeonCall(F
, Ops
, "vcvt_n");
7837 case NEON::BI__builtin_neon_vcvt_n_s16_f16
:
7838 case NEON::BI__builtin_neon_vcvt_n_s32_v
:
7839 case NEON::BI__builtin_neon_vcvt_n_u16_f16
:
7840 case NEON::BI__builtin_neon_vcvt_n_u32_v
:
7841 case NEON::BI__builtin_neon_vcvt_n_s64_v
:
7842 case NEON::BI__builtin_neon_vcvt_n_u64_v
:
7843 case NEON::BI__builtin_neon_vcvtq_n_s16_f16
:
7844 case NEON::BI__builtin_neon_vcvtq_n_s32_v
:
7845 case NEON::BI__builtin_neon_vcvtq_n_u16_f16
:
7846 case NEON::BI__builtin_neon_vcvtq_n_u32_v
:
7847 case NEON::BI__builtin_neon_vcvtq_n_s64_v
:
7848 case NEON::BI__builtin_neon_vcvtq_n_u64_v
: {
7849 llvm::Type
*Tys
[2] = { Ty
, GetFloatNeonType(this, Type
) };
7850 Function
*F
= CGM
.getIntrinsic(LLVMIntrinsic
, Tys
);
7851 return EmitNeonCall(F
, Ops
, "vcvt_n");
7853 case NEON::BI__builtin_neon_vcvt_s32_v
:
7854 case NEON::BI__builtin_neon_vcvt_u32_v
:
7855 case NEON::BI__builtin_neon_vcvt_s64_v
:
7856 case NEON::BI__builtin_neon_vcvt_u64_v
:
7857 case NEON::BI__builtin_neon_vcvt_s16_f16
:
7858 case NEON::BI__builtin_neon_vcvt_u16_f16
:
7859 case NEON::BI__builtin_neon_vcvtq_s32_v
:
7860 case NEON::BI__builtin_neon_vcvtq_u32_v
:
7861 case NEON::BI__builtin_neon_vcvtq_s64_v
:
7862 case NEON::BI__builtin_neon_vcvtq_u64_v
:
7863 case NEON::BI__builtin_neon_vcvtq_s16_f16
:
7864 case NEON::BI__builtin_neon_vcvtq_u16_f16
: {
7865 Ops
[0] = Builder
.CreateBitCast(Ops
[0], GetFloatNeonType(this, Type
));
7866 return Usgn
? Builder
.CreateFPToUI(Ops
[0], Ty
, "vcvt")
7867 : Builder
.CreateFPToSI(Ops
[0], Ty
, "vcvt");
7869 case NEON::BI__builtin_neon_vcvta_s16_f16
:
7870 case NEON::BI__builtin_neon_vcvta_s32_v
:
7871 case NEON::BI__builtin_neon_vcvta_s64_v
:
7872 case NEON::BI__builtin_neon_vcvta_u16_f16
:
7873 case NEON::BI__builtin_neon_vcvta_u32_v
:
7874 case NEON::BI__builtin_neon_vcvta_u64_v
:
7875 case NEON::BI__builtin_neon_vcvtaq_s16_f16
:
7876 case NEON::BI__builtin_neon_vcvtaq_s32_v
:
7877 case NEON::BI__builtin_neon_vcvtaq_s64_v
:
7878 case NEON::BI__builtin_neon_vcvtaq_u16_f16
:
7879 case NEON::BI__builtin_neon_vcvtaq_u32_v
:
7880 case NEON::BI__builtin_neon_vcvtaq_u64_v
:
7881 case NEON::BI__builtin_neon_vcvtn_s16_f16
:
7882 case NEON::BI__builtin_neon_vcvtn_s32_v
:
7883 case NEON::BI__builtin_neon_vcvtn_s64_v
:
7884 case NEON::BI__builtin_neon_vcvtn_u16_f16
:
7885 case NEON::BI__builtin_neon_vcvtn_u32_v
:
7886 case NEON::BI__builtin_neon_vcvtn_u64_v
:
7887 case NEON::BI__builtin_neon_vcvtnq_s16_f16
:
7888 case NEON::BI__builtin_neon_vcvtnq_s32_v
:
7889 case NEON::BI__builtin_neon_vcvtnq_s64_v
:
7890 case NEON::BI__builtin_neon_vcvtnq_u16_f16
:
7891 case NEON::BI__builtin_neon_vcvtnq_u32_v
:
7892 case NEON::BI__builtin_neon_vcvtnq_u64_v
:
7893 case NEON::BI__builtin_neon_vcvtp_s16_f16
:
7894 case NEON::BI__builtin_neon_vcvtp_s32_v
:
7895 case NEON::BI__builtin_neon_vcvtp_s64_v
:
7896 case NEON::BI__builtin_neon_vcvtp_u16_f16
:
7897 case NEON::BI__builtin_neon_vcvtp_u32_v
:
7898 case NEON::BI__builtin_neon_vcvtp_u64_v
:
7899 case NEON::BI__builtin_neon_vcvtpq_s16_f16
:
7900 case NEON::BI__builtin_neon_vcvtpq_s32_v
:
7901 case NEON::BI__builtin_neon_vcvtpq_s64_v
:
7902 case NEON::BI__builtin_neon_vcvtpq_u16_f16
:
7903 case NEON::BI__builtin_neon_vcvtpq_u32_v
:
7904 case NEON::BI__builtin_neon_vcvtpq_u64_v
:
7905 case NEON::BI__builtin_neon_vcvtm_s16_f16
:
7906 case NEON::BI__builtin_neon_vcvtm_s32_v
:
7907 case NEON::BI__builtin_neon_vcvtm_s64_v
:
7908 case NEON::BI__builtin_neon_vcvtm_u16_f16
:
7909 case NEON::BI__builtin_neon_vcvtm_u32_v
:
7910 case NEON::BI__builtin_neon_vcvtm_u64_v
:
7911 case NEON::BI__builtin_neon_vcvtmq_s16_f16
:
7912 case NEON::BI__builtin_neon_vcvtmq_s32_v
:
7913 case NEON::BI__builtin_neon_vcvtmq_s64_v
:
7914 case NEON::BI__builtin_neon_vcvtmq_u16_f16
:
7915 case NEON::BI__builtin_neon_vcvtmq_u32_v
:
7916 case NEON::BI__builtin_neon_vcvtmq_u64_v
: {
7917 llvm::Type
*Tys
[2] = { Ty
, GetFloatNeonType(this, Type
) };
7918 return EmitNeonCall(CGM
.getIntrinsic(LLVMIntrinsic
, Tys
), Ops
, NameHint
);
7920 case NEON::BI__builtin_neon_vcvtx_f32_v
: {
7921 llvm::Type
*Tys
[2] = { VTy
->getTruncatedElementVectorType(VTy
), Ty
};
7922 return EmitNeonCall(CGM
.getIntrinsic(LLVMIntrinsic
, Tys
), Ops
, NameHint
);
7925 case NEON::BI__builtin_neon_vext_v
:
7926 case NEON::BI__builtin_neon_vextq_v
: {
7927 int CV
= cast
<ConstantInt
>(Ops
[2])->getSExtValue();
7928 SmallVector
<int, 16> Indices
;
7929 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
)
7930 Indices
.push_back(i
+CV
);
7932 Ops
[0] = Builder
.CreateBitCast(Ops
[0], Ty
);
7933 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
7934 return Builder
.CreateShuffleVector(Ops
[0], Ops
[1], Indices
, "vext");
7936 case NEON::BI__builtin_neon_vfma_v
:
7937 case NEON::BI__builtin_neon_vfmaq_v
: {
7938 Ops
[0] = Builder
.CreateBitCast(Ops
[0], Ty
);
7939 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
7940 Ops
[2] = Builder
.CreateBitCast(Ops
[2], Ty
);
7942 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
7943 return emitCallMaybeConstrainedFPBuiltin(
7944 *this, Intrinsic::fma
, Intrinsic::experimental_constrained_fma
, Ty
,
7945 {Ops
[1], Ops
[2], Ops
[0]});
7947 case NEON::BI__builtin_neon_vld1_v
:
7948 case NEON::BI__builtin_neon_vld1q_v
: {
7949 llvm::Type
*Tys
[] = {Ty
, Int8PtrTy
};
7950 Ops
.push_back(getAlignmentValue32(PtrOp0
));
7951 return EmitNeonCall(CGM
.getIntrinsic(LLVMIntrinsic
, Tys
), Ops
, "vld1");
7953 case NEON::BI__builtin_neon_vld1_x2_v
:
7954 case NEON::BI__builtin_neon_vld1q_x2_v
:
7955 case NEON::BI__builtin_neon_vld1_x3_v
:
7956 case NEON::BI__builtin_neon_vld1q_x3_v
:
7957 case NEON::BI__builtin_neon_vld1_x4_v
:
7958 case NEON::BI__builtin_neon_vld1q_x4_v
: {
7959 llvm::Type
*Tys
[2] = {VTy
, UnqualPtrTy
};
7960 Function
*F
= CGM
.getIntrinsic(LLVMIntrinsic
, Tys
);
7961 Ops
[1] = Builder
.CreateCall(F
, Ops
[1], "vld1xN");
7962 return Builder
.CreateDefaultAlignedStore(Ops
[1], Ops
[0]);
7964 case NEON::BI__builtin_neon_vld2_v
:
7965 case NEON::BI__builtin_neon_vld2q_v
:
7966 case NEON::BI__builtin_neon_vld3_v
:
7967 case NEON::BI__builtin_neon_vld3q_v
:
7968 case NEON::BI__builtin_neon_vld4_v
:
7969 case NEON::BI__builtin_neon_vld4q_v
:
7970 case NEON::BI__builtin_neon_vld2_dup_v
:
7971 case NEON::BI__builtin_neon_vld2q_dup_v
:
7972 case NEON::BI__builtin_neon_vld3_dup_v
:
7973 case NEON::BI__builtin_neon_vld3q_dup_v
:
7974 case NEON::BI__builtin_neon_vld4_dup_v
:
7975 case NEON::BI__builtin_neon_vld4q_dup_v
: {
7976 llvm::Type
*Tys
[] = {Ty
, Int8PtrTy
};
7977 Function
*F
= CGM
.getIntrinsic(LLVMIntrinsic
, Tys
);
7978 Value
*Align
= getAlignmentValue32(PtrOp1
);
7979 Ops
[1] = Builder
.CreateCall(F
, {Ops
[1], Align
}, NameHint
);
7980 return Builder
.CreateDefaultAlignedStore(Ops
[1], Ops
[0]);
7982 case NEON::BI__builtin_neon_vld1_dup_v
:
7983 case NEON::BI__builtin_neon_vld1q_dup_v
: {
7984 Value
*V
= PoisonValue::get(Ty
);
7985 PtrOp0
= PtrOp0
.withElementType(VTy
->getElementType());
7986 LoadInst
*Ld
= Builder
.CreateLoad(PtrOp0
);
7987 llvm::Constant
*CI
= ConstantInt::get(SizeTy
, 0);
7988 Ops
[0] = Builder
.CreateInsertElement(V
, Ld
, CI
);
7989 return EmitNeonSplat(Ops
[0], CI
);
7991 case NEON::BI__builtin_neon_vld2_lane_v
:
7992 case NEON::BI__builtin_neon_vld2q_lane_v
:
7993 case NEON::BI__builtin_neon_vld3_lane_v
:
7994 case NEON::BI__builtin_neon_vld3q_lane_v
:
7995 case NEON::BI__builtin_neon_vld4_lane_v
:
7996 case NEON::BI__builtin_neon_vld4q_lane_v
: {
7997 llvm::Type
*Tys
[] = {Ty
, Int8PtrTy
};
7998 Function
*F
= CGM
.getIntrinsic(LLVMIntrinsic
, Tys
);
7999 for (unsigned I
= 2; I
< Ops
.size() - 1; ++I
)
8000 Ops
[I
] = Builder
.CreateBitCast(Ops
[I
], Ty
);
8001 Ops
.push_back(getAlignmentValue32(PtrOp1
));
8002 Ops
[1] = Builder
.CreateCall(F
, ArrayRef(Ops
).slice(1), NameHint
);
8003 return Builder
.CreateDefaultAlignedStore(Ops
[1], Ops
[0]);
8005 case NEON::BI__builtin_neon_vmovl_v
: {
8006 llvm::FixedVectorType
*DTy
=
8007 llvm::FixedVectorType::getTruncatedElementVectorType(VTy
);
8008 Ops
[0] = Builder
.CreateBitCast(Ops
[0], DTy
);
8010 return Builder
.CreateZExt(Ops
[0], Ty
, "vmovl");
8011 return Builder
.CreateSExt(Ops
[0], Ty
, "vmovl");
8013 case NEON::BI__builtin_neon_vmovn_v
: {
8014 llvm::FixedVectorType
*QTy
=
8015 llvm::FixedVectorType::getExtendedElementVectorType(VTy
);
8016 Ops
[0] = Builder
.CreateBitCast(Ops
[0], QTy
);
8017 return Builder
.CreateTrunc(Ops
[0], Ty
, "vmovn");
8019 case NEON::BI__builtin_neon_vmull_v
:
8020 // FIXME: the integer vmull operations could be emitted in terms of pure
8021 // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
8022 // hoisting the exts outside loops. Until global ISel comes along that can
8023 // see through such movement this leads to bad CodeGen. So we need an
8024 // intrinsic for now.
8025 Int
= Usgn
? Intrinsic::arm_neon_vmullu
: Intrinsic::arm_neon_vmulls
;
8026 Int
= Type
.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp
: Int
;
8027 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vmull");
8028 case NEON::BI__builtin_neon_vpadal_v
:
8029 case NEON::BI__builtin_neon_vpadalq_v
: {
8030 // The source operand type has twice as many elements of half the size.
8031 unsigned EltBits
= VTy
->getElementType()->getPrimitiveSizeInBits();
8033 llvm::IntegerType::get(getLLVMContext(), EltBits
/ 2);
8035 llvm::FixedVectorType::get(EltTy
, VTy
->getNumElements() * 2);
8036 llvm::Type
*Tys
[2] = { Ty
, NarrowTy
};
8037 return EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, NameHint
);
8039 case NEON::BI__builtin_neon_vpaddl_v
:
8040 case NEON::BI__builtin_neon_vpaddlq_v
: {
8041 // The source operand type has twice as many elements of half the size.
8042 unsigned EltBits
= VTy
->getElementType()->getPrimitiveSizeInBits();
8043 llvm::Type
*EltTy
= llvm::IntegerType::get(getLLVMContext(), EltBits
/ 2);
8045 llvm::FixedVectorType::get(EltTy
, VTy
->getNumElements() * 2);
8046 llvm::Type
*Tys
[2] = { Ty
, NarrowTy
};
8047 return EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vpaddl");
8049 case NEON::BI__builtin_neon_vqdmlal_v
:
8050 case NEON::BI__builtin_neon_vqdmlsl_v
: {
8051 SmallVector
<Value
*, 2> MulOps(Ops
.begin() + 1, Ops
.end());
8053 EmitNeonCall(CGM
.getIntrinsic(LLVMIntrinsic
, Ty
), MulOps
, "vqdmlal");
8055 return EmitNeonCall(CGM
.getIntrinsic(AltLLVMIntrinsic
, Ty
), Ops
, NameHint
);
8057 case NEON::BI__builtin_neon_vqdmulhq_lane_v
:
8058 case NEON::BI__builtin_neon_vqdmulh_lane_v
:
8059 case NEON::BI__builtin_neon_vqrdmulhq_lane_v
:
8060 case NEON::BI__builtin_neon_vqrdmulh_lane_v
: {
8061 auto *RTy
= cast
<llvm::FixedVectorType
>(Ty
);
8062 if (BuiltinID
== NEON::BI__builtin_neon_vqdmulhq_lane_v
||
8063 BuiltinID
== NEON::BI__builtin_neon_vqrdmulhq_lane_v
)
8064 RTy
= llvm::FixedVectorType::get(RTy
->getElementType(),
8065 RTy
->getNumElements() * 2);
8066 llvm::Type
*Tys
[2] = {
8067 RTy
, GetNeonType(this, NeonTypeFlags(Type
.getEltType(), false,
8068 /*isQuad*/ false))};
8069 return EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, NameHint
);
8071 case NEON::BI__builtin_neon_vqdmulhq_laneq_v
:
8072 case NEON::BI__builtin_neon_vqdmulh_laneq_v
:
8073 case NEON::BI__builtin_neon_vqrdmulhq_laneq_v
:
8074 case NEON::BI__builtin_neon_vqrdmulh_laneq_v
: {
8075 llvm::Type
*Tys
[2] = {
8076 Ty
, GetNeonType(this, NeonTypeFlags(Type
.getEltType(), false,
8078 return EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, NameHint
);
8080 case NEON::BI__builtin_neon_vqshl_n_v
:
8081 case NEON::BI__builtin_neon_vqshlq_n_v
:
8082 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vqshl_n",
8084 case NEON::BI__builtin_neon_vqshlu_n_v
:
8085 case NEON::BI__builtin_neon_vqshluq_n_v
:
8086 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vqshlu_n",
8088 case NEON::BI__builtin_neon_vrecpe_v
:
8089 case NEON::BI__builtin_neon_vrecpeq_v
:
8090 case NEON::BI__builtin_neon_vrsqrte_v
:
8091 case NEON::BI__builtin_neon_vrsqrteq_v
:
8092 Int
= Ty
->isFPOrFPVectorTy() ? LLVMIntrinsic
: AltLLVMIntrinsic
;
8093 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, NameHint
);
8094 case NEON::BI__builtin_neon_vrndi_v
:
8095 case NEON::BI__builtin_neon_vrndiq_v
:
8096 Int
= Builder
.getIsFPConstrained()
8097 ? Intrinsic::experimental_constrained_nearbyint
8098 : Intrinsic::nearbyint
;
8099 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, NameHint
);
8100 case NEON::BI__builtin_neon_vrshr_n_v
:
8101 case NEON::BI__builtin_neon_vrshrq_n_v
:
8102 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vrshr_n",
8104 case NEON::BI__builtin_neon_vsha512hq_u64
:
8105 case NEON::BI__builtin_neon_vsha512h2q_u64
:
8106 case NEON::BI__builtin_neon_vsha512su0q_u64
:
8107 case NEON::BI__builtin_neon_vsha512su1q_u64
: {
8108 Function
*F
= CGM
.getIntrinsic(Int
);
8109 return EmitNeonCall(F
, Ops
, "");
8111 case NEON::BI__builtin_neon_vshl_n_v
:
8112 case NEON::BI__builtin_neon_vshlq_n_v
:
8113 Ops
[1] = EmitNeonShiftVector(Ops
[1], Ty
, false);
8114 return Builder
.CreateShl(Builder
.CreateBitCast(Ops
[0],Ty
), Ops
[1],
8116 case NEON::BI__builtin_neon_vshll_n_v
: {
8117 llvm::FixedVectorType
*SrcTy
=
8118 llvm::FixedVectorType::getTruncatedElementVectorType(VTy
);
8119 Ops
[0] = Builder
.CreateBitCast(Ops
[0], SrcTy
);
8121 Ops
[0] = Builder
.CreateZExt(Ops
[0], VTy
);
8123 Ops
[0] = Builder
.CreateSExt(Ops
[0], VTy
);
8124 Ops
[1] = EmitNeonShiftVector(Ops
[1], VTy
, false);
8125 return Builder
.CreateShl(Ops
[0], Ops
[1], "vshll_n");
8127 case NEON::BI__builtin_neon_vshrn_n_v
: {
8128 llvm::FixedVectorType
*SrcTy
=
8129 llvm::FixedVectorType::getExtendedElementVectorType(VTy
);
8130 Ops
[0] = Builder
.CreateBitCast(Ops
[0], SrcTy
);
8131 Ops
[1] = EmitNeonShiftVector(Ops
[1], SrcTy
, false);
8133 Ops
[0] = Builder
.CreateLShr(Ops
[0], Ops
[1]);
8135 Ops
[0] = Builder
.CreateAShr(Ops
[0], Ops
[1]);
8136 return Builder
.CreateTrunc(Ops
[0], Ty
, "vshrn_n");
8138 case NEON::BI__builtin_neon_vshr_n_v
:
8139 case NEON::BI__builtin_neon_vshrq_n_v
:
8140 return EmitNeonRShiftImm(Ops
[0], Ops
[1], Ty
, Usgn
, "vshr_n");
8141 case NEON::BI__builtin_neon_vst1_v
:
8142 case NEON::BI__builtin_neon_vst1q_v
:
8143 case NEON::BI__builtin_neon_vst2_v
:
8144 case NEON::BI__builtin_neon_vst2q_v
:
8145 case NEON::BI__builtin_neon_vst3_v
:
8146 case NEON::BI__builtin_neon_vst3q_v
:
8147 case NEON::BI__builtin_neon_vst4_v
:
8148 case NEON::BI__builtin_neon_vst4q_v
:
8149 case NEON::BI__builtin_neon_vst2_lane_v
:
8150 case NEON::BI__builtin_neon_vst2q_lane_v
:
8151 case NEON::BI__builtin_neon_vst3_lane_v
:
8152 case NEON::BI__builtin_neon_vst3q_lane_v
:
8153 case NEON::BI__builtin_neon_vst4_lane_v
:
8154 case NEON::BI__builtin_neon_vst4q_lane_v
: {
8155 llvm::Type
*Tys
[] = {Int8PtrTy
, Ty
};
8156 Ops
.push_back(getAlignmentValue32(PtrOp0
));
8157 return EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "");
8159 case NEON::BI__builtin_neon_vsm3partw1q_u32
:
8160 case NEON::BI__builtin_neon_vsm3partw2q_u32
:
8161 case NEON::BI__builtin_neon_vsm3ss1q_u32
:
8162 case NEON::BI__builtin_neon_vsm4ekeyq_u32
:
8163 case NEON::BI__builtin_neon_vsm4eq_u32
: {
8164 Function
*F
= CGM
.getIntrinsic(Int
);
8165 return EmitNeonCall(F
, Ops
, "");
8167 case NEON::BI__builtin_neon_vsm3tt1aq_u32
:
8168 case NEON::BI__builtin_neon_vsm3tt1bq_u32
:
8169 case NEON::BI__builtin_neon_vsm3tt2aq_u32
:
8170 case NEON::BI__builtin_neon_vsm3tt2bq_u32
: {
8171 Function
*F
= CGM
.getIntrinsic(Int
);
8172 Ops
[3] = Builder
.CreateZExt(Ops
[3], Int64Ty
);
8173 return EmitNeonCall(F
, Ops
, "");
8175 case NEON::BI__builtin_neon_vst1_x2_v
:
8176 case NEON::BI__builtin_neon_vst1q_x2_v
:
8177 case NEON::BI__builtin_neon_vst1_x3_v
:
8178 case NEON::BI__builtin_neon_vst1q_x3_v
:
8179 case NEON::BI__builtin_neon_vst1_x4_v
:
8180 case NEON::BI__builtin_neon_vst1q_x4_v
: {
8181 // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
8182 // in AArch64 it comes last. We may want to stick to one or another.
8183 if (Arch
== llvm::Triple::aarch64
|| Arch
== llvm::Triple::aarch64_be
||
8184 Arch
== llvm::Triple::aarch64_32
) {
8185 llvm::Type
*Tys
[2] = {VTy
, UnqualPtrTy
};
8186 std::rotate(Ops
.begin(), Ops
.begin() + 1, Ops
.end());
8187 return EmitNeonCall(CGM
.getIntrinsic(LLVMIntrinsic
, Tys
), Ops
, "");
8189 llvm::Type
*Tys
[2] = {UnqualPtrTy
, VTy
};
8190 return EmitNeonCall(CGM
.getIntrinsic(LLVMIntrinsic
, Tys
), Ops
, "");
8192 case NEON::BI__builtin_neon_vsubhn_v
: {
8193 llvm::FixedVectorType
*SrcTy
=
8194 llvm::FixedVectorType::getExtendedElementVectorType(VTy
);
8196 // %sum = add <4 x i32> %lhs, %rhs
8197 Ops
[0] = Builder
.CreateBitCast(Ops
[0], SrcTy
);
8198 Ops
[1] = Builder
.CreateBitCast(Ops
[1], SrcTy
);
8199 Ops
[0] = Builder
.CreateSub(Ops
[0], Ops
[1], "vsubhn");
8201 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
8202 Constant
*ShiftAmt
=
8203 ConstantInt::get(SrcTy
, SrcTy
->getScalarSizeInBits() / 2);
8204 Ops
[0] = Builder
.CreateLShr(Ops
[0], ShiftAmt
, "vsubhn");
8206 // %res = trunc <4 x i32> %high to <4 x i16>
8207 return Builder
.CreateTrunc(Ops
[0], VTy
, "vsubhn");
8209 case NEON::BI__builtin_neon_vtrn_v
:
8210 case NEON::BI__builtin_neon_vtrnq_v
: {
8211 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
8212 Ops
[2] = Builder
.CreateBitCast(Ops
[2], Ty
);
8213 Value
*SV
= nullptr;
8215 for (unsigned vi
= 0; vi
!= 2; ++vi
) {
8216 SmallVector
<int, 16> Indices
;
8217 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; i
+= 2) {
8218 Indices
.push_back(i
+vi
);
8219 Indices
.push_back(i
+e
+vi
);
8221 Value
*Addr
= Builder
.CreateConstInBoundsGEP1_32(Ty
, Ops
[0], vi
);
8222 SV
= Builder
.CreateShuffleVector(Ops
[1], Ops
[2], Indices
, "vtrn");
8223 SV
= Builder
.CreateDefaultAlignedStore(SV
, Addr
);
8227 case NEON::BI__builtin_neon_vtst_v
:
8228 case NEON::BI__builtin_neon_vtstq_v
: {
8229 Ops
[0] = Builder
.CreateBitCast(Ops
[0], Ty
);
8230 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
8231 Ops
[0] = Builder
.CreateAnd(Ops
[0], Ops
[1]);
8232 Ops
[0] = Builder
.CreateICmp(ICmpInst::ICMP_NE
, Ops
[0],
8233 ConstantAggregateZero::get(Ty
));
8234 return Builder
.CreateSExt(Ops
[0], Ty
, "vtst");
8236 case NEON::BI__builtin_neon_vuzp_v
:
8237 case NEON::BI__builtin_neon_vuzpq_v
: {
8238 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
8239 Ops
[2] = Builder
.CreateBitCast(Ops
[2], Ty
);
8240 Value
*SV
= nullptr;
8242 for (unsigned vi
= 0; vi
!= 2; ++vi
) {
8243 SmallVector
<int, 16> Indices
;
8244 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
)
8245 Indices
.push_back(2*i
+vi
);
8247 Value
*Addr
= Builder
.CreateConstInBoundsGEP1_32(Ty
, Ops
[0], vi
);
8248 SV
= Builder
.CreateShuffleVector(Ops
[1], Ops
[2], Indices
, "vuzp");
8249 SV
= Builder
.CreateDefaultAlignedStore(SV
, Addr
);
8253 case NEON::BI__builtin_neon_vxarq_u64
: {
8254 Function
*F
= CGM
.getIntrinsic(Int
);
8255 Ops
[2] = Builder
.CreateZExt(Ops
[2], Int64Ty
);
8256 return EmitNeonCall(F
, Ops
, "");
8258 case NEON::BI__builtin_neon_vzip_v
:
8259 case NEON::BI__builtin_neon_vzipq_v
: {
8260 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
8261 Ops
[2] = Builder
.CreateBitCast(Ops
[2], Ty
);
8262 Value
*SV
= nullptr;
8264 for (unsigned vi
= 0; vi
!= 2; ++vi
) {
8265 SmallVector
<int, 16> Indices
;
8266 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; i
+= 2) {
8267 Indices
.push_back((i
+ vi
*e
) >> 1);
8268 Indices
.push_back(((i
+ vi
*e
) >> 1)+e
);
8270 Value
*Addr
= Builder
.CreateConstInBoundsGEP1_32(Ty
, Ops
[0], vi
);
8271 SV
= Builder
.CreateShuffleVector(Ops
[1], Ops
[2], Indices
, "vzip");
8272 SV
= Builder
.CreateDefaultAlignedStore(SV
, Addr
);
8276 case NEON::BI__builtin_neon_vdot_s32
:
8277 case NEON::BI__builtin_neon_vdot_u32
:
8278 case NEON::BI__builtin_neon_vdotq_s32
:
8279 case NEON::BI__builtin_neon_vdotq_u32
: {
8281 llvm::FixedVectorType::get(Int8Ty
, Ty
->getPrimitiveSizeInBits() / 8);
8282 llvm::Type
*Tys
[2] = { Ty
, InputTy
};
8283 return EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vdot");
8285 case NEON::BI__builtin_neon_vfmlal_low_f16
:
8286 case NEON::BI__builtin_neon_vfmlalq_low_f16
: {
8288 llvm::FixedVectorType::get(HalfTy
, Ty
->getPrimitiveSizeInBits() / 16);
8289 llvm::Type
*Tys
[2] = { Ty
, InputTy
};
8290 return EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vfmlal_low");
8292 case NEON::BI__builtin_neon_vfmlsl_low_f16
:
8293 case NEON::BI__builtin_neon_vfmlslq_low_f16
: {
8295 llvm::FixedVectorType::get(HalfTy
, Ty
->getPrimitiveSizeInBits() / 16);
8296 llvm::Type
*Tys
[2] = { Ty
, InputTy
};
8297 return EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vfmlsl_low");
8299 case NEON::BI__builtin_neon_vfmlal_high_f16
:
8300 case NEON::BI__builtin_neon_vfmlalq_high_f16
: {
8302 llvm::FixedVectorType::get(HalfTy
, Ty
->getPrimitiveSizeInBits() / 16);
8303 llvm::Type
*Tys
[2] = { Ty
, InputTy
};
8304 return EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vfmlal_high");
8306 case NEON::BI__builtin_neon_vfmlsl_high_f16
:
8307 case NEON::BI__builtin_neon_vfmlslq_high_f16
: {
8309 llvm::FixedVectorType::get(HalfTy
, Ty
->getPrimitiveSizeInBits() / 16);
8310 llvm::Type
*Tys
[2] = { Ty
, InputTy
};
8311 return EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vfmlsl_high");
8313 case NEON::BI__builtin_neon_vmmlaq_s32
:
8314 case NEON::BI__builtin_neon_vmmlaq_u32
: {
8316 llvm::FixedVectorType::get(Int8Ty
, Ty
->getPrimitiveSizeInBits() / 8);
8317 llvm::Type
*Tys
[2] = { Ty
, InputTy
};
8318 return EmitNeonCall(CGM
.getIntrinsic(LLVMIntrinsic
, Tys
), Ops
, "vmmla");
8320 case NEON::BI__builtin_neon_vusmmlaq_s32
: {
8322 llvm::FixedVectorType::get(Int8Ty
, Ty
->getPrimitiveSizeInBits() / 8);
8323 llvm::Type
*Tys
[2] = { Ty
, InputTy
};
8324 return EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vusmmla");
8326 case NEON::BI__builtin_neon_vusdot_s32
:
8327 case NEON::BI__builtin_neon_vusdotq_s32
: {
8329 llvm::FixedVectorType::get(Int8Ty
, Ty
->getPrimitiveSizeInBits() / 8);
8330 llvm::Type
*Tys
[2] = { Ty
, InputTy
};
8331 return EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vusdot");
8333 case NEON::BI__builtin_neon_vbfdot_f32
:
8334 case NEON::BI__builtin_neon_vbfdotq_f32
: {
8335 llvm::Type
*InputTy
=
8336 llvm::FixedVectorType::get(BFloatTy
, Ty
->getPrimitiveSizeInBits() / 16);
8337 llvm::Type
*Tys
[2] = { Ty
, InputTy
};
8338 return EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vbfdot");
8340 case NEON::BI__builtin_neon___a32_vcvt_bf16_f32
: {
8341 llvm::Type
*Tys
[1] = { Ty
};
8342 Function
*F
= CGM
.getIntrinsic(Int
, Tys
);
8343 return EmitNeonCall(F
, Ops
, "vcvtfp2bf");
8348 assert(Int
&& "Expected valid intrinsic number");
8350 // Determine the type(s) of this overloaded AArch64 intrinsic.
8351 Function
*F
= LookupNeonLLVMIntrinsic(Int
, Modifier
, Ty
, E
);
8353 Value
*Result
= EmitNeonCall(F
, Ops
, NameHint
);
8354 llvm::Type
*ResultType
= ConvertType(E
->getType());
8355 // AArch64 intrinsic one-element vector type cast to
8356 // scalar type expected by the builtin
8357 return Builder
.CreateBitCast(Result
, ResultType
, NameHint
);
8360 Value
*CodeGenFunction::EmitAArch64CompareBuiltinExpr(
8361 Value
*Op
, llvm::Type
*Ty
, const CmpInst::Predicate Fp
,
8362 const CmpInst::Predicate Ip
, const Twine
&Name
) {
8363 llvm::Type
*OTy
= Op
->getType();
8365 // FIXME: this is utterly horrific. We should not be looking at previous
8366 // codegen context to find out what needs doing. Unfortunately TableGen
8367 // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
8369 if (BitCastInst
*BI
= dyn_cast
<BitCastInst
>(Op
))
8370 OTy
= BI
->getOperand(0)->getType();
8372 Op
= Builder
.CreateBitCast(Op
, OTy
);
8373 if (OTy
->getScalarType()->isFloatingPointTy()) {
8374 if (Fp
== CmpInst::FCMP_OEQ
)
8375 Op
= Builder
.CreateFCmp(Fp
, Op
, Constant::getNullValue(OTy
));
8377 Op
= Builder
.CreateFCmpS(Fp
, Op
, Constant::getNullValue(OTy
));
8379 Op
= Builder
.CreateICmp(Ip
, Op
, Constant::getNullValue(OTy
));
8381 return Builder
.CreateSExt(Op
, Ty
, Name
);
8384 static Value
*packTBLDVectorList(CodeGenFunction
&CGF
, ArrayRef
<Value
*> Ops
,
8385 Value
*ExtOp
, Value
*IndexOp
,
8386 llvm::Type
*ResTy
, unsigned IntID
,
8388 SmallVector
<Value
*, 2> TblOps
;
8390 TblOps
.push_back(ExtOp
);
8392 // Build a vector containing sequential number like (0, 1, 2, ..., 15)
8393 SmallVector
<int, 16> Indices
;
8394 auto *TblTy
= cast
<llvm::FixedVectorType
>(Ops
[0]->getType());
8395 for (unsigned i
= 0, e
= TblTy
->getNumElements(); i
!= e
; ++i
) {
8396 Indices
.push_back(2*i
);
8397 Indices
.push_back(2*i
+1);
8400 int PairPos
= 0, End
= Ops
.size() - 1;
8401 while (PairPos
< End
) {
8402 TblOps
.push_back(CGF
.Builder
.CreateShuffleVector(Ops
[PairPos
],
8403 Ops
[PairPos
+1], Indices
,
8408 // If there's an odd number of 64-bit lookup table, fill the high 64-bit
8409 // of the 128-bit lookup table with zero.
8410 if (PairPos
== End
) {
8411 Value
*ZeroTbl
= ConstantAggregateZero::get(TblTy
);
8412 TblOps
.push_back(CGF
.Builder
.CreateShuffleVector(Ops
[PairPos
],
8413 ZeroTbl
, Indices
, Name
));
8417 TblOps
.push_back(IndexOp
);
8418 TblF
= CGF
.CGM
.getIntrinsic(IntID
, ResTy
);
8420 return CGF
.EmitNeonCall(TblF
, TblOps
, Name
);
8423 Value
*CodeGenFunction::GetValueForARMHint(unsigned BuiltinID
) {
8425 switch (BuiltinID
) {
8428 case clang::ARM::BI__builtin_arm_nop
:
8431 case clang::ARM::BI__builtin_arm_yield
:
8432 case clang::ARM::BI__yield
:
8435 case clang::ARM::BI__builtin_arm_wfe
:
8436 case clang::ARM::BI__wfe
:
8439 case clang::ARM::BI__builtin_arm_wfi
:
8440 case clang::ARM::BI__wfi
:
8443 case clang::ARM::BI__builtin_arm_sev
:
8444 case clang::ARM::BI__sev
:
8447 case clang::ARM::BI__builtin_arm_sevl
:
8448 case clang::ARM::BI__sevl
:
8453 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::arm_hint
),
8454 llvm::ConstantInt::get(Int32Ty
, Value
));
8457 enum SpecialRegisterAccessKind
{
8463 // Generates the IR for __builtin_read_exec_*.
8464 // Lowers the builtin to amdgcn_ballot intrinsic.
8465 static Value
*EmitAMDGCNBallotForExec(CodeGenFunction
&CGF
, const CallExpr
*E
,
8466 llvm::Type
*RegisterType
,
8467 llvm::Type
*ValueType
, bool isExecHi
) {
8468 CodeGen::CGBuilderTy
&Builder
= CGF
.Builder
;
8469 CodeGen::CodeGenModule
&CGM
= CGF
.CGM
;
8471 Function
*F
= CGM
.getIntrinsic(Intrinsic::amdgcn_ballot
, {RegisterType
});
8472 llvm::Value
*Call
= Builder
.CreateCall(F
, {Builder
.getInt1(true)});
8475 Value
*Rt2
= Builder
.CreateLShr(Call
, 32);
8476 Rt2
= Builder
.CreateTrunc(Rt2
, CGF
.Int32Ty
);
8483 // Generates the IR for the read/write special register builtin,
8484 // ValueType is the type of the value that is to be written or read,
8485 // RegisterType is the type of the register being written to or read from.
8486 static Value
*EmitSpecialRegisterBuiltin(CodeGenFunction
&CGF
,
8488 llvm::Type
*RegisterType
,
8489 llvm::Type
*ValueType
,
8490 SpecialRegisterAccessKind AccessKind
,
8491 StringRef SysReg
= "") {
8492 // write and register intrinsics only support 32, 64 and 128 bit operations.
8493 assert((RegisterType
->isIntegerTy(32) || RegisterType
->isIntegerTy(64) ||
8494 RegisterType
->isIntegerTy(128)) &&
8495 "Unsupported size for register.");
8497 CodeGen::CGBuilderTy
&Builder
= CGF
.Builder
;
8498 CodeGen::CodeGenModule
&CGM
= CGF
.CGM
;
8499 LLVMContext
&Context
= CGM
.getLLVMContext();
8501 if (SysReg
.empty()) {
8502 const Expr
*SysRegStrExpr
= E
->getArg(0)->IgnoreParenCasts();
8503 SysReg
= cast
<clang::StringLiteral
>(SysRegStrExpr
)->getString();
8506 llvm::Metadata
*Ops
[] = { llvm::MDString::get(Context
, SysReg
) };
8507 llvm::MDNode
*RegName
= llvm::MDNode::get(Context
, Ops
);
8508 llvm::Value
*Metadata
= llvm::MetadataAsValue::get(Context
, RegName
);
8510 llvm::Type
*Types
[] = { RegisterType
};
8512 bool MixedTypes
= RegisterType
->isIntegerTy(64) && ValueType
->isIntegerTy(32);
8513 assert(!(RegisterType
->isIntegerTy(32) && ValueType
->isIntegerTy(64))
8514 && "Can't fit 64-bit value in 32-bit register");
8516 if (AccessKind
!= Write
) {
8517 assert(AccessKind
== NormalRead
|| AccessKind
== VolatileRead
);
8518 llvm::Function
*F
= CGM
.getIntrinsic(
8519 AccessKind
== VolatileRead
? llvm::Intrinsic::read_volatile_register
8520 : llvm::Intrinsic::read_register
,
8522 llvm::Value
*Call
= Builder
.CreateCall(F
, Metadata
);
8525 // Read into 64 bit register and then truncate result to 32 bit.
8526 return Builder
.CreateTrunc(Call
, ValueType
);
8528 if (ValueType
->isPointerTy())
8529 // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
8530 return Builder
.CreateIntToPtr(Call
, ValueType
);
8535 llvm::Function
*F
= CGM
.getIntrinsic(llvm::Intrinsic::write_register
, Types
);
8536 llvm::Value
*ArgValue
= CGF
.EmitScalarExpr(E
->getArg(1));
8538 // Extend 32 bit write value to 64 bit to pass to write.
8539 ArgValue
= Builder
.CreateZExt(ArgValue
, RegisterType
);
8540 return Builder
.CreateCall(F
, { Metadata
, ArgValue
});
8543 if (ValueType
->isPointerTy()) {
8544 // Have VoidPtrTy ArgValue but want to return an i32/i64.
8545 ArgValue
= Builder
.CreatePtrToInt(ArgValue
, RegisterType
);
8546 return Builder
.CreateCall(F
, { Metadata
, ArgValue
});
8549 return Builder
.CreateCall(F
, { Metadata
, ArgValue
});
8552 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
8553 /// argument that specifies the vector type.
8554 static bool HasExtraNeonArgument(unsigned BuiltinID
) {
8555 switch (BuiltinID
) {
8557 case NEON::BI__builtin_neon_vget_lane_i8
:
8558 case NEON::BI__builtin_neon_vget_lane_i16
:
8559 case NEON::BI__builtin_neon_vget_lane_bf16
:
8560 case NEON::BI__builtin_neon_vget_lane_i32
:
8561 case NEON::BI__builtin_neon_vget_lane_i64
:
8562 case NEON::BI__builtin_neon_vget_lane_f32
:
8563 case NEON::BI__builtin_neon_vgetq_lane_i8
:
8564 case NEON::BI__builtin_neon_vgetq_lane_i16
:
8565 case NEON::BI__builtin_neon_vgetq_lane_bf16
:
8566 case NEON::BI__builtin_neon_vgetq_lane_i32
:
8567 case NEON::BI__builtin_neon_vgetq_lane_i64
:
8568 case NEON::BI__builtin_neon_vgetq_lane_f32
:
8569 case NEON::BI__builtin_neon_vduph_lane_bf16
:
8570 case NEON::BI__builtin_neon_vduph_laneq_bf16
:
8571 case NEON::BI__builtin_neon_vset_lane_i8
:
8572 case NEON::BI__builtin_neon_vset_lane_i16
:
8573 case NEON::BI__builtin_neon_vset_lane_bf16
:
8574 case NEON::BI__builtin_neon_vset_lane_i32
:
8575 case NEON::BI__builtin_neon_vset_lane_i64
:
8576 case NEON::BI__builtin_neon_vset_lane_f32
:
8577 case NEON::BI__builtin_neon_vsetq_lane_i8
:
8578 case NEON::BI__builtin_neon_vsetq_lane_i16
:
8579 case NEON::BI__builtin_neon_vsetq_lane_bf16
:
8580 case NEON::BI__builtin_neon_vsetq_lane_i32
:
8581 case NEON::BI__builtin_neon_vsetq_lane_i64
:
8582 case NEON::BI__builtin_neon_vsetq_lane_f32
:
8583 case NEON::BI__builtin_neon_vsha1h_u32
:
8584 case NEON::BI__builtin_neon_vsha1cq_u32
:
8585 case NEON::BI__builtin_neon_vsha1pq_u32
:
8586 case NEON::BI__builtin_neon_vsha1mq_u32
:
8587 case NEON::BI__builtin_neon_vcvth_bf16_f32
:
8588 case clang::ARM::BI_MoveToCoprocessor
:
8589 case clang::ARM::BI_MoveToCoprocessor2
:
8595 Value
*CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID
,
8597 ReturnValueSlot ReturnValue
,
8598 llvm::Triple::ArchType Arch
) {
8599 if (auto Hint
= GetValueForARMHint(BuiltinID
))
8602 if (BuiltinID
== clang::ARM::BI__emit
) {
8603 bool IsThumb
= getTarget().getTriple().getArch() == llvm::Triple::thumb
;
8604 llvm::FunctionType
*FTy
=
8605 llvm::FunctionType::get(VoidTy
, /*Variadic=*/false);
8607 Expr::EvalResult Result
;
8608 if (!E
->getArg(0)->EvaluateAsInt(Result
, CGM
.getContext()))
8609 llvm_unreachable("Sema will ensure that the parameter is constant");
8611 llvm::APSInt Value
= Result
.Val
.getInt();
8612 uint64_t ZExtValue
= Value
.zextOrTrunc(IsThumb
? 16 : 32).getZExtValue();
8614 llvm::InlineAsm
*Emit
=
8615 IsThumb
? InlineAsm::get(FTy
, ".inst.n 0x" + utohexstr(ZExtValue
), "",
8616 /*hasSideEffects=*/true)
8617 : InlineAsm::get(FTy
, ".inst 0x" + utohexstr(ZExtValue
), "",
8618 /*hasSideEffects=*/true);
8620 return Builder
.CreateCall(Emit
);
8623 if (BuiltinID
== clang::ARM::BI__builtin_arm_dbg
) {
8624 Value
*Option
= EmitScalarExpr(E
->getArg(0));
8625 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::arm_dbg
), Option
);
8628 if (BuiltinID
== clang::ARM::BI__builtin_arm_prefetch
) {
8629 Value
*Address
= EmitScalarExpr(E
->getArg(0));
8630 Value
*RW
= EmitScalarExpr(E
->getArg(1));
8631 Value
*IsData
= EmitScalarExpr(E
->getArg(2));
8633 // Locality is not supported on ARM target
8634 Value
*Locality
= llvm::ConstantInt::get(Int32Ty
, 3);
8636 Function
*F
= CGM
.getIntrinsic(Intrinsic::prefetch
, Address
->getType());
8637 return Builder
.CreateCall(F
, {Address
, RW
, Locality
, IsData
});
8640 if (BuiltinID
== clang::ARM::BI__builtin_arm_rbit
) {
8641 llvm::Value
*Arg
= EmitScalarExpr(E
->getArg(0));
8642 return Builder
.CreateCall(
8643 CGM
.getIntrinsic(Intrinsic::bitreverse
, Arg
->getType()), Arg
, "rbit");
8646 if (BuiltinID
== clang::ARM::BI__builtin_arm_clz
||
8647 BuiltinID
== clang::ARM::BI__builtin_arm_clz64
) {
8648 llvm::Value
*Arg
= EmitScalarExpr(E
->getArg(0));
8649 Function
*F
= CGM
.getIntrinsic(Intrinsic::ctlz
, Arg
->getType());
8650 Value
*Res
= Builder
.CreateCall(F
, {Arg
, Builder
.getInt1(false)});
8651 if (BuiltinID
== clang::ARM::BI__builtin_arm_clz64
)
8652 Res
= Builder
.CreateTrunc(Res
, Builder
.getInt32Ty());
8657 if (BuiltinID
== clang::ARM::BI__builtin_arm_cls
) {
8658 llvm::Value
*Arg
= EmitScalarExpr(E
->getArg(0));
8659 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::arm_cls
), Arg
, "cls");
8661 if (BuiltinID
== clang::ARM::BI__builtin_arm_cls64
) {
8662 llvm::Value
*Arg
= EmitScalarExpr(E
->getArg(0));
8663 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::arm_cls64
), Arg
,
8667 if (BuiltinID
== clang::ARM::BI__clear_cache
) {
8668 assert(E
->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
8669 const FunctionDecl
*FD
= E
->getDirectCallee();
8671 for (unsigned i
= 0; i
< 2; i
++)
8672 Ops
[i
] = EmitScalarExpr(E
->getArg(i
));
8673 llvm::Type
*Ty
= CGM
.getTypes().ConvertType(FD
->getType());
8674 llvm::FunctionType
*FTy
= cast
<llvm::FunctionType
>(Ty
);
8675 StringRef Name
= FD
->getName();
8676 return EmitNounwindRuntimeCall(CGM
.CreateRuntimeFunction(FTy
, Name
), Ops
);
8679 if (BuiltinID
== clang::ARM::BI__builtin_arm_mcrr
||
8680 BuiltinID
== clang::ARM::BI__builtin_arm_mcrr2
) {
8683 switch (BuiltinID
) {
8684 default: llvm_unreachable("unexpected builtin");
8685 case clang::ARM::BI__builtin_arm_mcrr
:
8686 F
= CGM
.getIntrinsic(Intrinsic::arm_mcrr
);
8688 case clang::ARM::BI__builtin_arm_mcrr2
:
8689 F
= CGM
.getIntrinsic(Intrinsic::arm_mcrr2
);
8693 // MCRR{2} instruction has 5 operands but
8694 // the intrinsic has 4 because Rt and Rt2
8695 // are represented as a single unsigned 64
8696 // bit integer in the intrinsic definition
8697 // but internally it's represented as 2 32
8700 Value
*Coproc
= EmitScalarExpr(E
->getArg(0));
8701 Value
*Opc1
= EmitScalarExpr(E
->getArg(1));
8702 Value
*RtAndRt2
= EmitScalarExpr(E
->getArg(2));
8703 Value
*CRm
= EmitScalarExpr(E
->getArg(3));
8705 Value
*C1
= llvm::ConstantInt::get(Int64Ty
, 32);
8706 Value
*Rt
= Builder
.CreateTruncOrBitCast(RtAndRt2
, Int32Ty
);
8707 Value
*Rt2
= Builder
.CreateLShr(RtAndRt2
, C1
);
8708 Rt2
= Builder
.CreateTruncOrBitCast(Rt2
, Int32Ty
);
8710 return Builder
.CreateCall(F
, {Coproc
, Opc1
, Rt
, Rt2
, CRm
});
8713 if (BuiltinID
== clang::ARM::BI__builtin_arm_mrrc
||
8714 BuiltinID
== clang::ARM::BI__builtin_arm_mrrc2
) {
8717 switch (BuiltinID
) {
8718 default: llvm_unreachable("unexpected builtin");
8719 case clang::ARM::BI__builtin_arm_mrrc
:
8720 F
= CGM
.getIntrinsic(Intrinsic::arm_mrrc
);
8722 case clang::ARM::BI__builtin_arm_mrrc2
:
8723 F
= CGM
.getIntrinsic(Intrinsic::arm_mrrc2
);
8727 Value
*Coproc
= EmitScalarExpr(E
->getArg(0));
8728 Value
*Opc1
= EmitScalarExpr(E
->getArg(1));
8729 Value
*CRm
= EmitScalarExpr(E
->getArg(2));
8730 Value
*RtAndRt2
= Builder
.CreateCall(F
, {Coproc
, Opc1
, CRm
});
8732 // Returns an unsigned 64 bit integer, represented
8733 // as two 32 bit integers.
8735 Value
*Rt
= Builder
.CreateExtractValue(RtAndRt2
, 1);
8736 Value
*Rt1
= Builder
.CreateExtractValue(RtAndRt2
, 0);
8737 Rt
= Builder
.CreateZExt(Rt
, Int64Ty
);
8738 Rt1
= Builder
.CreateZExt(Rt1
, Int64Ty
);
8740 Value
*ShiftCast
= llvm::ConstantInt::get(Int64Ty
, 32);
8741 RtAndRt2
= Builder
.CreateShl(Rt
, ShiftCast
, "shl", true);
8742 RtAndRt2
= Builder
.CreateOr(RtAndRt2
, Rt1
);
8744 return Builder
.CreateBitCast(RtAndRt2
, ConvertType(E
->getType()));
8747 if (BuiltinID
== clang::ARM::BI__builtin_arm_ldrexd
||
8748 ((BuiltinID
== clang::ARM::BI__builtin_arm_ldrex
||
8749 BuiltinID
== clang::ARM::BI__builtin_arm_ldaex
) &&
8750 getContext().getTypeSize(E
->getType()) == 64) ||
8751 BuiltinID
== clang::ARM::BI__ldrexd
) {
8754 switch (BuiltinID
) {
8755 default: llvm_unreachable("unexpected builtin");
8756 case clang::ARM::BI__builtin_arm_ldaex
:
8757 F
= CGM
.getIntrinsic(Intrinsic::arm_ldaexd
);
8759 case clang::ARM::BI__builtin_arm_ldrexd
:
8760 case clang::ARM::BI__builtin_arm_ldrex
:
8761 case clang::ARM::BI__ldrexd
:
8762 F
= CGM
.getIntrinsic(Intrinsic::arm_ldrexd
);
8766 Value
*LdPtr
= EmitScalarExpr(E
->getArg(0));
8767 Value
*Val
= Builder
.CreateCall(F
, LdPtr
, "ldrexd");
8769 Value
*Val0
= Builder
.CreateExtractValue(Val
, 1);
8770 Value
*Val1
= Builder
.CreateExtractValue(Val
, 0);
8771 Val0
= Builder
.CreateZExt(Val0
, Int64Ty
);
8772 Val1
= Builder
.CreateZExt(Val1
, Int64Ty
);
8774 Value
*ShiftCst
= llvm::ConstantInt::get(Int64Ty
, 32);
8775 Val
= Builder
.CreateShl(Val0
, ShiftCst
, "shl", true /* nuw */);
8776 Val
= Builder
.CreateOr(Val
, Val1
);
8777 return Builder
.CreateBitCast(Val
, ConvertType(E
->getType()));
8780 if (BuiltinID
== clang::ARM::BI__builtin_arm_ldrex
||
8781 BuiltinID
== clang::ARM::BI__builtin_arm_ldaex
) {
8782 Value
*LoadAddr
= EmitScalarExpr(E
->getArg(0));
8784 QualType Ty
= E
->getType();
8785 llvm::Type
*RealResTy
= ConvertType(Ty
);
8787 llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty
));
8789 Function
*F
= CGM
.getIntrinsic(
8790 BuiltinID
== clang::ARM::BI__builtin_arm_ldaex
? Intrinsic::arm_ldaex
8791 : Intrinsic::arm_ldrex
,
8793 CallInst
*Val
= Builder
.CreateCall(F
, LoadAddr
, "ldrex");
8795 0, Attribute::get(getLLVMContext(), Attribute::ElementType
, IntTy
));
8797 if (RealResTy
->isPointerTy())
8798 return Builder
.CreateIntToPtr(Val
, RealResTy
);
8800 llvm::Type
*IntResTy
= llvm::IntegerType::get(
8801 getLLVMContext(), CGM
.getDataLayout().getTypeSizeInBits(RealResTy
));
8802 return Builder
.CreateBitCast(Builder
.CreateTruncOrBitCast(Val
, IntResTy
),
8807 if (BuiltinID
== clang::ARM::BI__builtin_arm_strexd
||
8808 ((BuiltinID
== clang::ARM::BI__builtin_arm_stlex
||
8809 BuiltinID
== clang::ARM::BI__builtin_arm_strex
) &&
8810 getContext().getTypeSize(E
->getArg(0)->getType()) == 64)) {
8811 Function
*F
= CGM
.getIntrinsic(
8812 BuiltinID
== clang::ARM::BI__builtin_arm_stlex
? Intrinsic::arm_stlexd
8813 : Intrinsic::arm_strexd
);
8814 llvm::Type
*STy
= llvm::StructType::get(Int32Ty
, Int32Ty
);
8816 Address Tmp
= CreateMemTemp(E
->getArg(0)->getType());
8817 Value
*Val
= EmitScalarExpr(E
->getArg(0));
8818 Builder
.CreateStore(Val
, Tmp
);
8820 Address LdPtr
= Tmp
.withElementType(STy
);
8821 Val
= Builder
.CreateLoad(LdPtr
);
8823 Value
*Arg0
= Builder
.CreateExtractValue(Val
, 0);
8824 Value
*Arg1
= Builder
.CreateExtractValue(Val
, 1);
8825 Value
*StPtr
= EmitScalarExpr(E
->getArg(1));
8826 return Builder
.CreateCall(F
, {Arg0
, Arg1
, StPtr
}, "strexd");
8829 if (BuiltinID
== clang::ARM::BI__builtin_arm_strex
||
8830 BuiltinID
== clang::ARM::BI__builtin_arm_stlex
) {
8831 Value
*StoreVal
= EmitScalarExpr(E
->getArg(0));
8832 Value
*StoreAddr
= EmitScalarExpr(E
->getArg(1));
8834 QualType Ty
= E
->getArg(0)->getType();
8835 llvm::Type
*StoreTy
=
8836 llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty
));
8838 if (StoreVal
->getType()->isPointerTy())
8839 StoreVal
= Builder
.CreatePtrToInt(StoreVal
, Int32Ty
);
8841 llvm::Type
*IntTy
= llvm::IntegerType::get(
8843 CGM
.getDataLayout().getTypeSizeInBits(StoreVal
->getType()));
8844 StoreVal
= Builder
.CreateBitCast(StoreVal
, IntTy
);
8845 StoreVal
= Builder
.CreateZExtOrBitCast(StoreVal
, Int32Ty
);
8848 Function
*F
= CGM
.getIntrinsic(
8849 BuiltinID
== clang::ARM::BI__builtin_arm_stlex
? Intrinsic::arm_stlex
8850 : Intrinsic::arm_strex
,
8851 StoreAddr
->getType());
8853 CallInst
*CI
= Builder
.CreateCall(F
, {StoreVal
, StoreAddr
}, "strex");
8855 1, Attribute::get(getLLVMContext(), Attribute::ElementType
, StoreTy
));
8859 if (BuiltinID
== clang::ARM::BI__builtin_arm_clrex
) {
8860 Function
*F
= CGM
.getIntrinsic(Intrinsic::arm_clrex
);
8861 return Builder
.CreateCall(F
);
8865 Intrinsic::ID CRCIntrinsicID
= Intrinsic::not_intrinsic
;
8866 switch (BuiltinID
) {
8867 case clang::ARM::BI__builtin_arm_crc32b
:
8868 CRCIntrinsicID
= Intrinsic::arm_crc32b
; break;
8869 case clang::ARM::BI__builtin_arm_crc32cb
:
8870 CRCIntrinsicID
= Intrinsic::arm_crc32cb
; break;
8871 case clang::ARM::BI__builtin_arm_crc32h
:
8872 CRCIntrinsicID
= Intrinsic::arm_crc32h
; break;
8873 case clang::ARM::BI__builtin_arm_crc32ch
:
8874 CRCIntrinsicID
= Intrinsic::arm_crc32ch
; break;
8875 case clang::ARM::BI__builtin_arm_crc32w
:
8876 case clang::ARM::BI__builtin_arm_crc32d
:
8877 CRCIntrinsicID
= Intrinsic::arm_crc32w
; break;
8878 case clang::ARM::BI__builtin_arm_crc32cw
:
8879 case clang::ARM::BI__builtin_arm_crc32cd
:
8880 CRCIntrinsicID
= Intrinsic::arm_crc32cw
; break;
8883 if (CRCIntrinsicID
!= Intrinsic::not_intrinsic
) {
8884 Value
*Arg0
= EmitScalarExpr(E
->getArg(0));
8885 Value
*Arg1
= EmitScalarExpr(E
->getArg(1));
8887 // crc32{c,}d intrinsics are implemented as two calls to crc32{c,}w
8888 // intrinsics, hence we need different codegen for these cases.
8889 if (BuiltinID
== clang::ARM::BI__builtin_arm_crc32d
||
8890 BuiltinID
== clang::ARM::BI__builtin_arm_crc32cd
) {
8891 Value
*C1
= llvm::ConstantInt::get(Int64Ty
, 32);
8892 Value
*Arg1a
= Builder
.CreateTruncOrBitCast(Arg1
, Int32Ty
);
8893 Value
*Arg1b
= Builder
.CreateLShr(Arg1
, C1
);
8894 Arg1b
= Builder
.CreateTruncOrBitCast(Arg1b
, Int32Ty
);
8896 Function
*F
= CGM
.getIntrinsic(CRCIntrinsicID
);
8897 Value
*Res
= Builder
.CreateCall(F
, {Arg0
, Arg1a
});
8898 return Builder
.CreateCall(F
, {Res
, Arg1b
});
8900 Arg1
= Builder
.CreateZExtOrBitCast(Arg1
, Int32Ty
);
8902 Function
*F
= CGM
.getIntrinsic(CRCIntrinsicID
);
8903 return Builder
.CreateCall(F
, {Arg0
, Arg1
});
8907 if (BuiltinID
== clang::ARM::BI__builtin_arm_rsr
||
8908 BuiltinID
== clang::ARM::BI__builtin_arm_rsr64
||
8909 BuiltinID
== clang::ARM::BI__builtin_arm_rsrp
||
8910 BuiltinID
== clang::ARM::BI__builtin_arm_wsr
||
8911 BuiltinID
== clang::ARM::BI__builtin_arm_wsr64
||
8912 BuiltinID
== clang::ARM::BI__builtin_arm_wsrp
) {
8914 SpecialRegisterAccessKind AccessKind
= Write
;
8915 if (BuiltinID
== clang::ARM::BI__builtin_arm_rsr
||
8916 BuiltinID
== clang::ARM::BI__builtin_arm_rsr64
||
8917 BuiltinID
== clang::ARM::BI__builtin_arm_rsrp
)
8918 AccessKind
= VolatileRead
;
8920 bool IsPointerBuiltin
= BuiltinID
== clang::ARM::BI__builtin_arm_rsrp
||
8921 BuiltinID
== clang::ARM::BI__builtin_arm_wsrp
;
8923 bool Is64Bit
= BuiltinID
== clang::ARM::BI__builtin_arm_rsr64
||
8924 BuiltinID
== clang::ARM::BI__builtin_arm_wsr64
;
8926 llvm::Type
*ValueType
;
8927 llvm::Type
*RegisterType
;
8928 if (IsPointerBuiltin
) {
8929 ValueType
= VoidPtrTy
;
8930 RegisterType
= Int32Ty
;
8931 } else if (Is64Bit
) {
8932 ValueType
= RegisterType
= Int64Ty
;
8934 ValueType
= RegisterType
= Int32Ty
;
8937 return EmitSpecialRegisterBuiltin(*this, E
, RegisterType
, ValueType
,
8941 if (BuiltinID
== ARM::BI__builtin_sponentry
) {
8942 llvm::Function
*F
= CGM
.getIntrinsic(Intrinsic::sponentry
, AllocaInt8PtrTy
);
8943 return Builder
.CreateCall(F
);
8946 // Handle MSVC intrinsics before argument evaluation to prevent double
8948 if (std::optional
<MSVCIntrin
> MsvcIntId
= translateArmToMsvcIntrin(BuiltinID
))
8949 return EmitMSVCBuiltinExpr(*MsvcIntId
, E
);
8951 // Deal with MVE builtins
8952 if (Value
*Result
= EmitARMMVEBuiltinExpr(BuiltinID
, E
, ReturnValue
, Arch
))
8954 // Handle CDE builtins
8955 if (Value
*Result
= EmitARMCDEBuiltinExpr(BuiltinID
, E
, ReturnValue
, Arch
))
8958 // Some intrinsics are equivalent - if they are use the base intrinsic ID.
8959 auto It
= llvm::find_if(NEONEquivalentIntrinsicMap
, [BuiltinID
](auto &P
) {
8960 return P
.first
== BuiltinID
;
8962 if (It
!= end(NEONEquivalentIntrinsicMap
))
8963 BuiltinID
= It
->second
;
8965 // Find out if any arguments are required to be integer constant
8967 unsigned ICEArguments
= 0;
8968 ASTContext::GetBuiltinTypeError Error
;
8969 getContext().GetBuiltinType(BuiltinID
, Error
, &ICEArguments
);
8970 assert(Error
== ASTContext::GE_None
&& "Should not codegen an error");
8972 auto getAlignmentValue32
= [&](Address addr
) -> Value
* {
8973 return Builder
.getInt32(addr
.getAlignment().getQuantity());
8976 Address PtrOp0
= Address::invalid();
8977 Address PtrOp1
= Address::invalid();
8978 SmallVector
<Value
*, 4> Ops
;
8979 bool HasExtraArg
= HasExtraNeonArgument(BuiltinID
);
8980 unsigned NumArgs
= E
->getNumArgs() - (HasExtraArg
? 1 : 0);
8981 for (unsigned i
= 0, e
= NumArgs
; i
!= e
; i
++) {
8983 switch (BuiltinID
) {
8984 case NEON::BI__builtin_neon_vld1_v
:
8985 case NEON::BI__builtin_neon_vld1q_v
:
8986 case NEON::BI__builtin_neon_vld1q_lane_v
:
8987 case NEON::BI__builtin_neon_vld1_lane_v
:
8988 case NEON::BI__builtin_neon_vld1_dup_v
:
8989 case NEON::BI__builtin_neon_vld1q_dup_v
:
8990 case NEON::BI__builtin_neon_vst1_v
:
8991 case NEON::BI__builtin_neon_vst1q_v
:
8992 case NEON::BI__builtin_neon_vst1q_lane_v
:
8993 case NEON::BI__builtin_neon_vst1_lane_v
:
8994 case NEON::BI__builtin_neon_vst2_v
:
8995 case NEON::BI__builtin_neon_vst2q_v
:
8996 case NEON::BI__builtin_neon_vst2_lane_v
:
8997 case NEON::BI__builtin_neon_vst2q_lane_v
:
8998 case NEON::BI__builtin_neon_vst3_v
:
8999 case NEON::BI__builtin_neon_vst3q_v
:
9000 case NEON::BI__builtin_neon_vst3_lane_v
:
9001 case NEON::BI__builtin_neon_vst3q_lane_v
:
9002 case NEON::BI__builtin_neon_vst4_v
:
9003 case NEON::BI__builtin_neon_vst4q_v
:
9004 case NEON::BI__builtin_neon_vst4_lane_v
:
9005 case NEON::BI__builtin_neon_vst4q_lane_v
:
9006 // Get the alignment for the argument in addition to the value;
9007 // we'll use it later.
9008 PtrOp0
= EmitPointerWithAlignment(E
->getArg(0));
9009 Ops
.push_back(PtrOp0
.emitRawPointer(*this));
9014 switch (BuiltinID
) {
9015 case NEON::BI__builtin_neon_vld2_v
:
9016 case NEON::BI__builtin_neon_vld2q_v
:
9017 case NEON::BI__builtin_neon_vld3_v
:
9018 case NEON::BI__builtin_neon_vld3q_v
:
9019 case NEON::BI__builtin_neon_vld4_v
:
9020 case NEON::BI__builtin_neon_vld4q_v
:
9021 case NEON::BI__builtin_neon_vld2_lane_v
:
9022 case NEON::BI__builtin_neon_vld2q_lane_v
:
9023 case NEON::BI__builtin_neon_vld3_lane_v
:
9024 case NEON::BI__builtin_neon_vld3q_lane_v
:
9025 case NEON::BI__builtin_neon_vld4_lane_v
:
9026 case NEON::BI__builtin_neon_vld4q_lane_v
:
9027 case NEON::BI__builtin_neon_vld2_dup_v
:
9028 case NEON::BI__builtin_neon_vld2q_dup_v
:
9029 case NEON::BI__builtin_neon_vld3_dup_v
:
9030 case NEON::BI__builtin_neon_vld3q_dup_v
:
9031 case NEON::BI__builtin_neon_vld4_dup_v
:
9032 case NEON::BI__builtin_neon_vld4q_dup_v
:
9033 // Get the alignment for the argument in addition to the value;
9034 // we'll use it later.
9035 PtrOp1
= EmitPointerWithAlignment(E
->getArg(1));
9036 Ops
.push_back(PtrOp1
.emitRawPointer(*this));
9041 Ops
.push_back(EmitScalarOrConstFoldImmArg(ICEArguments
, i
, E
));
9044 switch (BuiltinID
) {
9047 case NEON::BI__builtin_neon_vget_lane_i8
:
9048 case NEON::BI__builtin_neon_vget_lane_i16
:
9049 case NEON::BI__builtin_neon_vget_lane_i32
:
9050 case NEON::BI__builtin_neon_vget_lane_i64
:
9051 case NEON::BI__builtin_neon_vget_lane_bf16
:
9052 case NEON::BI__builtin_neon_vget_lane_f32
:
9053 case NEON::BI__builtin_neon_vgetq_lane_i8
:
9054 case NEON::BI__builtin_neon_vgetq_lane_i16
:
9055 case NEON::BI__builtin_neon_vgetq_lane_i32
:
9056 case NEON::BI__builtin_neon_vgetq_lane_i64
:
9057 case NEON::BI__builtin_neon_vgetq_lane_bf16
:
9058 case NEON::BI__builtin_neon_vgetq_lane_f32
:
9059 case NEON::BI__builtin_neon_vduph_lane_bf16
:
9060 case NEON::BI__builtin_neon_vduph_laneq_bf16
:
9061 return Builder
.CreateExtractElement(Ops
[0], Ops
[1], "vget_lane");
9063 case NEON::BI__builtin_neon_vrndns_f32
: {
9064 Value
*Arg
= EmitScalarExpr(E
->getArg(0));
9065 llvm::Type
*Tys
[] = {Arg
->getType()};
9066 Function
*F
= CGM
.getIntrinsic(Intrinsic::arm_neon_vrintn
, Tys
);
9067 return Builder
.CreateCall(F
, {Arg
}, "vrndn"); }
9069 case NEON::BI__builtin_neon_vset_lane_i8
:
9070 case NEON::BI__builtin_neon_vset_lane_i16
:
9071 case NEON::BI__builtin_neon_vset_lane_i32
:
9072 case NEON::BI__builtin_neon_vset_lane_i64
:
9073 case NEON::BI__builtin_neon_vset_lane_bf16
:
9074 case NEON::BI__builtin_neon_vset_lane_f32
:
9075 case NEON::BI__builtin_neon_vsetq_lane_i8
:
9076 case NEON::BI__builtin_neon_vsetq_lane_i16
:
9077 case NEON::BI__builtin_neon_vsetq_lane_i32
:
9078 case NEON::BI__builtin_neon_vsetq_lane_i64
:
9079 case NEON::BI__builtin_neon_vsetq_lane_bf16
:
9080 case NEON::BI__builtin_neon_vsetq_lane_f32
:
9081 return Builder
.CreateInsertElement(Ops
[1], Ops
[0], Ops
[2], "vset_lane");
9083 case NEON::BI__builtin_neon_vsha1h_u32
:
9084 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::arm_neon_sha1h
), Ops
,
9086 case NEON::BI__builtin_neon_vsha1cq_u32
:
9087 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::arm_neon_sha1c
), Ops
,
9089 case NEON::BI__builtin_neon_vsha1pq_u32
:
9090 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::arm_neon_sha1p
), Ops
,
9092 case NEON::BI__builtin_neon_vsha1mq_u32
:
9093 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::arm_neon_sha1m
), Ops
,
9096 case NEON::BI__builtin_neon_vcvth_bf16_f32
: {
9097 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf
), Ops
,
9101 // The ARM _MoveToCoprocessor builtins put the input register value as
9102 // the first argument, but the LLVM intrinsic expects it as the third one.
9103 case clang::ARM::BI_MoveToCoprocessor
:
9104 case clang::ARM::BI_MoveToCoprocessor2
: {
9105 Function
*F
= CGM
.getIntrinsic(BuiltinID
== clang::ARM::BI_MoveToCoprocessor
9106 ? Intrinsic::arm_mcr
9107 : Intrinsic::arm_mcr2
);
9108 return Builder
.CreateCall(F
, {Ops
[1], Ops
[2], Ops
[0],
9109 Ops
[3], Ops
[4], Ops
[5]});
9113 // Get the last argument, which specifies the vector type.
9114 assert(HasExtraArg
);
9115 const Expr
*Arg
= E
->getArg(E
->getNumArgs()-1);
9116 std::optional
<llvm::APSInt
> Result
=
9117 Arg
->getIntegerConstantExpr(getContext());
9121 if (BuiltinID
== clang::ARM::BI__builtin_arm_vcvtr_f
||
9122 BuiltinID
== clang::ARM::BI__builtin_arm_vcvtr_d
) {
9123 // Determine the overloaded type of this builtin.
9125 if (BuiltinID
== clang::ARM::BI__builtin_arm_vcvtr_f
)
9130 // Determine whether this is an unsigned conversion or not.
9131 bool usgn
= Result
->getZExtValue() == 1;
9132 unsigned Int
= usgn
? Intrinsic::arm_vcvtru
: Intrinsic::arm_vcvtr
;
9134 // Call the appropriate intrinsic.
9135 Function
*F
= CGM
.getIntrinsic(Int
, Ty
);
9136 return Builder
.CreateCall(F
, Ops
, "vcvtr");
9139 // Determine the type of this overloaded NEON intrinsic.
9140 NeonTypeFlags Type
= Result
->getZExtValue();
9141 bool usgn
= Type
.isUnsigned();
9142 bool rightShift
= false;
9144 llvm::FixedVectorType
*VTy
=
9145 GetNeonType(this, Type
, getTarget().hasLegalHalfType(), false,
9146 getTarget().hasBFloat16Type());
9147 llvm::Type
*Ty
= VTy
;
9151 // Many NEON builtins have identical semantics and uses in ARM and
9152 // AArch64. Emit these in a single function.
9153 auto IntrinsicMap
= ArrayRef(ARMSIMDIntrinsicMap
);
9154 const ARMVectorIntrinsicInfo
*Builtin
= findARMVectorIntrinsicInMap(
9155 IntrinsicMap
, BuiltinID
, NEONSIMDIntrinsicsProvenSorted
);
9157 return EmitCommonNeonBuiltinExpr(
9158 Builtin
->BuiltinID
, Builtin
->LLVMIntrinsic
, Builtin
->AltLLVMIntrinsic
,
9159 Builtin
->NameHint
, Builtin
->TypeModifier
, E
, Ops
, PtrOp0
, PtrOp1
, Arch
);
9162 switch (BuiltinID
) {
9163 default: return nullptr;
9164 case NEON::BI__builtin_neon_vld1q_lane_v
:
9165 // Handle 64-bit integer elements as a special case. Use shuffles of
9166 // one-element vectors to avoid poor code for i64 in the backend.
9167 if (VTy
->getElementType()->isIntegerTy(64)) {
9168 // Extract the other lane.
9169 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
9170 int Lane
= cast
<ConstantInt
>(Ops
[2])->getZExtValue();
9171 Value
*SV
= llvm::ConstantVector::get(ConstantInt::get(Int32Ty
, 1-Lane
));
9172 Ops
[1] = Builder
.CreateShuffleVector(Ops
[1], Ops
[1], SV
);
9173 // Load the value as a one-element vector.
9174 Ty
= llvm::FixedVectorType::get(VTy
->getElementType(), 1);
9175 llvm::Type
*Tys
[] = {Ty
, Int8PtrTy
};
9176 Function
*F
= CGM
.getIntrinsic(Intrinsic::arm_neon_vld1
, Tys
);
9177 Value
*Align
= getAlignmentValue32(PtrOp0
);
9178 Value
*Ld
= Builder
.CreateCall(F
, {Ops
[0], Align
});
9180 int Indices
[] = {1 - Lane
, Lane
};
9181 return Builder
.CreateShuffleVector(Ops
[1], Ld
, Indices
, "vld1q_lane");
9184 case NEON::BI__builtin_neon_vld1_lane_v
: {
9185 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
9186 PtrOp0
= PtrOp0
.withElementType(VTy
->getElementType());
9187 Value
*Ld
= Builder
.CreateLoad(PtrOp0
);
9188 return Builder
.CreateInsertElement(Ops
[1], Ld
, Ops
[2], "vld1_lane");
9190 case NEON::BI__builtin_neon_vqrshrn_n_v
:
9192 usgn
? Intrinsic::arm_neon_vqrshiftnu
: Intrinsic::arm_neon_vqrshiftns
;
9193 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vqrshrn_n",
9195 case NEON::BI__builtin_neon_vqrshrun_n_v
:
9196 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu
, Ty
),
9197 Ops
, "vqrshrun_n", 1, true);
9198 case NEON::BI__builtin_neon_vqshrn_n_v
:
9199 Int
= usgn
? Intrinsic::arm_neon_vqshiftnu
: Intrinsic::arm_neon_vqshiftns
;
9200 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vqshrn_n",
9202 case NEON::BI__builtin_neon_vqshrun_n_v
:
9203 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu
, Ty
),
9204 Ops
, "vqshrun_n", 1, true);
9205 case NEON::BI__builtin_neon_vrecpe_v
:
9206 case NEON::BI__builtin_neon_vrecpeq_v
:
9207 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::arm_neon_vrecpe
, Ty
),
9209 case NEON::BI__builtin_neon_vrshrn_n_v
:
9210 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::arm_neon_vrshiftn
, Ty
),
9211 Ops
, "vrshrn_n", 1, true);
9212 case NEON::BI__builtin_neon_vrsra_n_v
:
9213 case NEON::BI__builtin_neon_vrsraq_n_v
:
9214 Ops
[0] = Builder
.CreateBitCast(Ops
[0], Ty
);
9215 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
9216 Ops
[2] = EmitNeonShiftVector(Ops
[2], Ty
, true);
9217 Int
= usgn
? Intrinsic::arm_neon_vrshiftu
: Intrinsic::arm_neon_vrshifts
;
9218 Ops
[1] = Builder
.CreateCall(CGM
.getIntrinsic(Int
, Ty
), {Ops
[1], Ops
[2]});
9219 return Builder
.CreateAdd(Ops
[0], Ops
[1], "vrsra_n");
9220 case NEON::BI__builtin_neon_vsri_n_v
:
9221 case NEON::BI__builtin_neon_vsriq_n_v
:
9224 case NEON::BI__builtin_neon_vsli_n_v
:
9225 case NEON::BI__builtin_neon_vsliq_n_v
:
9226 Ops
[2] = EmitNeonShiftVector(Ops
[2], Ty
, rightShift
);
9227 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::arm_neon_vshiftins
, Ty
),
9229 case NEON::BI__builtin_neon_vsra_n_v
:
9230 case NEON::BI__builtin_neon_vsraq_n_v
:
9231 Ops
[0] = Builder
.CreateBitCast(Ops
[0], Ty
);
9232 Ops
[1] = EmitNeonRShiftImm(Ops
[1], Ops
[2], Ty
, usgn
, "vsra_n");
9233 return Builder
.CreateAdd(Ops
[0], Ops
[1]);
9234 case NEON::BI__builtin_neon_vst1q_lane_v
:
9235 // Handle 64-bit integer elements as a special case. Use a shuffle to get
9236 // a one-element vector and avoid poor code for i64 in the backend.
9237 if (VTy
->getElementType()->isIntegerTy(64)) {
9238 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
9239 Value
*SV
= llvm::ConstantVector::get(cast
<llvm::Constant
>(Ops
[2]));
9240 Ops
[1] = Builder
.CreateShuffleVector(Ops
[1], Ops
[1], SV
);
9241 Ops
[2] = getAlignmentValue32(PtrOp0
);
9242 llvm::Type
*Tys
[] = {Int8PtrTy
, Ops
[1]->getType()};
9243 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::arm_neon_vst1
,
9247 case NEON::BI__builtin_neon_vst1_lane_v
: {
9248 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
9249 Ops
[1] = Builder
.CreateExtractElement(Ops
[1], Ops
[2]);
9250 return Builder
.CreateStore(Ops
[1],
9251 PtrOp0
.withElementType(Ops
[1]->getType()));
9253 case NEON::BI__builtin_neon_vtbl1_v
:
9254 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::arm_neon_vtbl1
),
9256 case NEON::BI__builtin_neon_vtbl2_v
:
9257 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::arm_neon_vtbl2
),
9259 case NEON::BI__builtin_neon_vtbl3_v
:
9260 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::arm_neon_vtbl3
),
9262 case NEON::BI__builtin_neon_vtbl4_v
:
9263 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::arm_neon_vtbl4
),
9265 case NEON::BI__builtin_neon_vtbx1_v
:
9266 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::arm_neon_vtbx1
),
9268 case NEON::BI__builtin_neon_vtbx2_v
:
9269 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::arm_neon_vtbx2
),
9271 case NEON::BI__builtin_neon_vtbx3_v
:
9272 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::arm_neon_vtbx3
),
9274 case NEON::BI__builtin_neon_vtbx4_v
:
9275 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::arm_neon_vtbx4
),
9280 template<typename Integer
>
9281 static Integer
GetIntegerConstantValue(const Expr
*E
, ASTContext
&Context
) {
9282 return E
->getIntegerConstantExpr(Context
)->getExtValue();
9285 static llvm::Value
*SignOrZeroExtend(CGBuilderTy
&Builder
, llvm::Value
*V
,
9286 llvm::Type
*T
, bool Unsigned
) {
9287 // Helper function called by Tablegen-constructed ARM MVE builtin codegen,
9288 // which finds it convenient to specify signed/unsigned as a boolean flag.
9289 return Unsigned
? Builder
.CreateZExt(V
, T
) : Builder
.CreateSExt(V
, T
);
9292 static llvm::Value
*MVEImmediateShr(CGBuilderTy
&Builder
, llvm::Value
*V
,
9293 uint32_t Shift
, bool Unsigned
) {
9294 // MVE helper function for integer shift right. This must handle signed vs
9295 // unsigned, and also deal specially with the case where the shift count is
9296 // equal to the lane size. In LLVM IR, an LShr with that parameter would be
9297 // undefined behavior, but in MVE it's legal, so we must convert it to code
9298 // that is not undefined in IR.
9299 unsigned LaneBits
= cast
<llvm::VectorType
>(V
->getType())
9301 ->getPrimitiveSizeInBits();
9302 if (Shift
== LaneBits
) {
9303 // An unsigned shift of the full lane size always generates zero, so we can
9304 // simply emit a zero vector. A signed shift of the full lane size does the
9305 // same thing as shifting by one bit fewer.
9307 return llvm::Constant::getNullValue(V
->getType());
9311 return Unsigned
? Builder
.CreateLShr(V
, Shift
) : Builder
.CreateAShr(V
, Shift
);
9314 static llvm::Value
*ARMMVEVectorSplat(CGBuilderTy
&Builder
, llvm::Value
*V
) {
9315 // MVE-specific helper function for a vector splat, which infers the element
9316 // count of the output vector by knowing that MVE vectors are all 128 bits
9318 unsigned Elements
= 128 / V
->getType()->getPrimitiveSizeInBits();
9319 return Builder
.CreateVectorSplat(Elements
, V
);
9322 static llvm::Value
*ARMMVEVectorReinterpret(CGBuilderTy
&Builder
,
9323 CodeGenFunction
*CGF
,
9325 llvm::Type
*DestType
) {
9326 // Convert one MVE vector type into another by reinterpreting its in-register
9329 // Little-endian, this is identical to a bitcast (which reinterprets the
9330 // memory format). But big-endian, they're not necessarily the same, because
9331 // the register and memory formats map to each other differently depending on
9334 // We generate a bitcast whenever we can (if we're little-endian, or if the
9335 // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic
9336 // that performs the different kind of reinterpretation.
9337 if (CGF
->getTarget().isBigEndian() &&
9338 V
->getType()->getScalarSizeInBits() != DestType
->getScalarSizeInBits()) {
9339 return Builder
.CreateCall(
9340 CGF
->CGM
.getIntrinsic(Intrinsic::arm_mve_vreinterpretq
,
9341 {DestType
, V
->getType()}),
9344 return Builder
.CreateBitCast(V
, DestType
);
9348 static llvm::Value
*VectorUnzip(CGBuilderTy
&Builder
, llvm::Value
*V
, bool Odd
) {
9349 // Make a shufflevector that extracts every other element of a vector (evens
9350 // or odds, as desired).
9351 SmallVector
<int, 16> Indices
;
9352 unsigned InputElements
=
9353 cast
<llvm::FixedVectorType
>(V
->getType())->getNumElements();
9354 for (unsigned i
= 0; i
< InputElements
; i
+= 2)
9355 Indices
.push_back(i
+ Odd
);
9356 return Builder
.CreateShuffleVector(V
, Indices
);
9359 static llvm::Value
*VectorZip(CGBuilderTy
&Builder
, llvm::Value
*V0
,
9361 // Make a shufflevector that interleaves two vectors element by element.
9362 assert(V0
->getType() == V1
->getType() && "Can't zip different vector types");
9363 SmallVector
<int, 16> Indices
;
9364 unsigned InputElements
=
9365 cast
<llvm::FixedVectorType
>(V0
->getType())->getNumElements();
9366 for (unsigned i
= 0; i
< InputElements
; i
++) {
9367 Indices
.push_back(i
);
9368 Indices
.push_back(i
+ InputElements
);
9370 return Builder
.CreateShuffleVector(V0
, V1
, Indices
);
9373 template<unsigned HighBit
, unsigned OtherBits
>
9374 static llvm::Value
*ARMMVEConstantSplat(CGBuilderTy
&Builder
, llvm::Type
*VT
) {
9375 // MVE-specific helper function to make a vector splat of a constant such as
9376 // UINT_MAX or INT_MIN, in which all bits below the highest one are equal.
9377 llvm::Type
*T
= cast
<llvm::VectorType
>(VT
)->getElementType();
9378 unsigned LaneBits
= T
->getPrimitiveSizeInBits();
9379 uint32_t Value
= HighBit
<< (LaneBits
- 1);
9381 Value
|= (1UL << (LaneBits
- 1)) - 1;
9382 llvm::Value
*Lane
= llvm::ConstantInt::get(T
, Value
);
9383 return ARMMVEVectorSplat(Builder
, Lane
);
9386 static llvm::Value
*ARMMVEVectorElementReverse(CGBuilderTy
&Builder
,
9388 unsigned ReverseWidth
) {
9389 // MVE-specific helper function which reverses the elements of a
9390 // vector within every (ReverseWidth)-bit collection of lanes.
9391 SmallVector
<int, 16> Indices
;
9392 unsigned LaneSize
= V
->getType()->getScalarSizeInBits();
9393 unsigned Elements
= 128 / LaneSize
;
9394 unsigned Mask
= ReverseWidth
/ LaneSize
- 1;
9395 for (unsigned i
= 0; i
< Elements
; i
++)
9396 Indices
.push_back(i
^ Mask
);
9397 return Builder
.CreateShuffleVector(V
, Indices
);
9400 Value
*CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID
,
9402 ReturnValueSlot ReturnValue
,
9403 llvm::Triple::ArchType Arch
) {
9404 enum class CustomCodeGen
{ VLD24
, VST24
} CustomCodeGenType
;
9405 Intrinsic::ID IRIntr
;
9406 unsigned NumVectors
;
9408 // Code autogenerated by Tablegen will handle all the simple builtins.
9409 switch (BuiltinID
) {
9410 #include "clang/Basic/arm_mve_builtin_cg.inc"
9412 // If we didn't match an MVE builtin id at all, go back to the
9413 // main EmitARMBuiltinExpr.
9418 // Anything that breaks from that switch is an MVE builtin that
9419 // needs handwritten code to generate.
9421 switch (CustomCodeGenType
) {
9423 case CustomCodeGen::VLD24
: {
9424 llvm::SmallVector
<Value
*, 4> Ops
;
9425 llvm::SmallVector
<llvm::Type
*, 4> Tys
;
9427 auto MvecCType
= E
->getType();
9428 auto MvecLType
= ConvertType(MvecCType
);
9429 assert(MvecLType
->isStructTy() &&
9430 "Return type for vld[24]q should be a struct");
9431 assert(MvecLType
->getStructNumElements() == 1 &&
9432 "Return-type struct for vld[24]q should have one element");
9433 auto MvecLTypeInner
= MvecLType
->getStructElementType(0);
9434 assert(MvecLTypeInner
->isArrayTy() &&
9435 "Return-type struct for vld[24]q should contain an array");
9436 assert(MvecLTypeInner
->getArrayNumElements() == NumVectors
&&
9437 "Array member of return-type struct vld[24]q has wrong length");
9438 auto VecLType
= MvecLTypeInner
->getArrayElementType();
9440 Tys
.push_back(VecLType
);
9442 auto Addr
= E
->getArg(0);
9443 Ops
.push_back(EmitScalarExpr(Addr
));
9444 Tys
.push_back(ConvertType(Addr
->getType()));
9446 Function
*F
= CGM
.getIntrinsic(IRIntr
, ArrayRef(Tys
));
9447 Value
*LoadResult
= Builder
.CreateCall(F
, Ops
);
9448 Value
*MvecOut
= PoisonValue::get(MvecLType
);
9449 for (unsigned i
= 0; i
< NumVectors
; ++i
) {
9450 Value
*Vec
= Builder
.CreateExtractValue(LoadResult
, i
);
9451 MvecOut
= Builder
.CreateInsertValue(MvecOut
, Vec
, {0, i
});
9454 if (ReturnValue
.isNull())
9457 return Builder
.CreateStore(MvecOut
, ReturnValue
.getAddress());
9460 case CustomCodeGen::VST24
: {
9461 llvm::SmallVector
<Value
*, 4> Ops
;
9462 llvm::SmallVector
<llvm::Type
*, 4> Tys
;
9464 auto Addr
= E
->getArg(0);
9465 Ops
.push_back(EmitScalarExpr(Addr
));
9466 Tys
.push_back(ConvertType(Addr
->getType()));
9468 auto MvecCType
= E
->getArg(1)->getType();
9469 auto MvecLType
= ConvertType(MvecCType
);
9470 assert(MvecLType
->isStructTy() && "Data type for vst2q should be a struct");
9471 assert(MvecLType
->getStructNumElements() == 1 &&
9472 "Data-type struct for vst2q should have one element");
9473 auto MvecLTypeInner
= MvecLType
->getStructElementType(0);
9474 assert(MvecLTypeInner
->isArrayTy() &&
9475 "Data-type struct for vst2q should contain an array");
9476 assert(MvecLTypeInner
->getArrayNumElements() == NumVectors
&&
9477 "Array member of return-type struct vld[24]q has wrong length");
9478 auto VecLType
= MvecLTypeInner
->getArrayElementType();
9480 Tys
.push_back(VecLType
);
9482 AggValueSlot MvecSlot
= CreateAggTemp(MvecCType
);
9483 EmitAggExpr(E
->getArg(1), MvecSlot
);
9484 auto Mvec
= Builder
.CreateLoad(MvecSlot
.getAddress());
9485 for (unsigned i
= 0; i
< NumVectors
; i
++)
9486 Ops
.push_back(Builder
.CreateExtractValue(Mvec
, {0, i
}));
9488 Function
*F
= CGM
.getIntrinsic(IRIntr
, ArrayRef(Tys
));
9489 Value
*ToReturn
= nullptr;
9490 for (unsigned i
= 0; i
< NumVectors
; i
++) {
9491 Ops
.push_back(llvm::ConstantInt::get(Int32Ty
, i
));
9492 ToReturn
= Builder
.CreateCall(F
, Ops
);
9498 llvm_unreachable("unknown custom codegen type.");
9501 Value
*CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID
,
9503 ReturnValueSlot ReturnValue
,
9504 llvm::Triple::ArchType Arch
) {
9505 switch (BuiltinID
) {
9508 #include "clang/Basic/arm_cde_builtin_cg.inc"
9512 static Value
*EmitAArch64TblBuiltinExpr(CodeGenFunction
&CGF
, unsigned BuiltinID
,
9514 SmallVectorImpl
<Value
*> &Ops
,
9515 llvm::Triple::ArchType Arch
) {
9516 unsigned int Int
= 0;
9517 const char *s
= nullptr;
9519 switch (BuiltinID
) {
9522 case NEON::BI__builtin_neon_vtbl1_v
:
9523 case NEON::BI__builtin_neon_vqtbl1_v
:
9524 case NEON::BI__builtin_neon_vqtbl1q_v
:
9525 case NEON::BI__builtin_neon_vtbl2_v
:
9526 case NEON::BI__builtin_neon_vqtbl2_v
:
9527 case NEON::BI__builtin_neon_vqtbl2q_v
:
9528 case NEON::BI__builtin_neon_vtbl3_v
:
9529 case NEON::BI__builtin_neon_vqtbl3_v
:
9530 case NEON::BI__builtin_neon_vqtbl3q_v
:
9531 case NEON::BI__builtin_neon_vtbl4_v
:
9532 case NEON::BI__builtin_neon_vqtbl4_v
:
9533 case NEON::BI__builtin_neon_vqtbl4q_v
:
9535 case NEON::BI__builtin_neon_vtbx1_v
:
9536 case NEON::BI__builtin_neon_vqtbx1_v
:
9537 case NEON::BI__builtin_neon_vqtbx1q_v
:
9538 case NEON::BI__builtin_neon_vtbx2_v
:
9539 case NEON::BI__builtin_neon_vqtbx2_v
:
9540 case NEON::BI__builtin_neon_vqtbx2q_v
:
9541 case NEON::BI__builtin_neon_vtbx3_v
:
9542 case NEON::BI__builtin_neon_vqtbx3_v
:
9543 case NEON::BI__builtin_neon_vqtbx3q_v
:
9544 case NEON::BI__builtin_neon_vtbx4_v
:
9545 case NEON::BI__builtin_neon_vqtbx4_v
:
9546 case NEON::BI__builtin_neon_vqtbx4q_v
:
9550 assert(E
->getNumArgs() >= 3);
9552 // Get the last argument, which specifies the vector type.
9553 const Expr
*Arg
= E
->getArg(E
->getNumArgs() - 1);
9554 std::optional
<llvm::APSInt
> Result
=
9555 Arg
->getIntegerConstantExpr(CGF
.getContext());
9559 // Determine the type of this overloaded NEON intrinsic.
9560 NeonTypeFlags Type
= Result
->getZExtValue();
9561 llvm::FixedVectorType
*Ty
= GetNeonType(&CGF
, Type
);
9565 CodeGen::CGBuilderTy
&Builder
= CGF
.Builder
;
9567 // AArch64 scalar builtins are not overloaded, they do not have an extra
9568 // argument that specifies the vector type, need to handle each case.
9569 switch (BuiltinID
) {
9570 case NEON::BI__builtin_neon_vtbl1_v
: {
9571 return packTBLDVectorList(CGF
, ArrayRef(Ops
).slice(0, 1), nullptr, Ops
[1],
9572 Ty
, Intrinsic::aarch64_neon_tbl1
, "vtbl1");
9574 case NEON::BI__builtin_neon_vtbl2_v
: {
9575 return packTBLDVectorList(CGF
, ArrayRef(Ops
).slice(0, 2), nullptr, Ops
[2],
9576 Ty
, Intrinsic::aarch64_neon_tbl1
, "vtbl1");
9578 case NEON::BI__builtin_neon_vtbl3_v
: {
9579 return packTBLDVectorList(CGF
, ArrayRef(Ops
).slice(0, 3), nullptr, Ops
[3],
9580 Ty
, Intrinsic::aarch64_neon_tbl2
, "vtbl2");
9582 case NEON::BI__builtin_neon_vtbl4_v
: {
9583 return packTBLDVectorList(CGF
, ArrayRef(Ops
).slice(0, 4), nullptr, Ops
[4],
9584 Ty
, Intrinsic::aarch64_neon_tbl2
, "vtbl2");
9586 case NEON::BI__builtin_neon_vtbx1_v
: {
9588 packTBLDVectorList(CGF
, ArrayRef(Ops
).slice(1, 1), nullptr, Ops
[2], Ty
,
9589 Intrinsic::aarch64_neon_tbl1
, "vtbl1");
9591 llvm::Constant
*EightV
= ConstantInt::get(Ty
, 8);
9592 Value
*CmpRes
= Builder
.CreateICmp(ICmpInst::ICMP_UGE
, Ops
[2], EightV
);
9593 CmpRes
= Builder
.CreateSExt(CmpRes
, Ty
);
9595 Value
*EltsFromInput
= Builder
.CreateAnd(CmpRes
, Ops
[0]);
9596 Value
*EltsFromTbl
= Builder
.CreateAnd(Builder
.CreateNot(CmpRes
), TblRes
);
9597 return Builder
.CreateOr(EltsFromInput
, EltsFromTbl
, "vtbx");
9599 case NEON::BI__builtin_neon_vtbx2_v
: {
9600 return packTBLDVectorList(CGF
, ArrayRef(Ops
).slice(1, 2), Ops
[0], Ops
[3],
9601 Ty
, Intrinsic::aarch64_neon_tbx1
, "vtbx1");
9603 case NEON::BI__builtin_neon_vtbx3_v
: {
9605 packTBLDVectorList(CGF
, ArrayRef(Ops
).slice(1, 3), nullptr, Ops
[4], Ty
,
9606 Intrinsic::aarch64_neon_tbl2
, "vtbl2");
9608 llvm::Constant
*TwentyFourV
= ConstantInt::get(Ty
, 24);
9609 Value
*CmpRes
= Builder
.CreateICmp(ICmpInst::ICMP_UGE
, Ops
[4],
9611 CmpRes
= Builder
.CreateSExt(CmpRes
, Ty
);
9613 Value
*EltsFromInput
= Builder
.CreateAnd(CmpRes
, Ops
[0]);
9614 Value
*EltsFromTbl
= Builder
.CreateAnd(Builder
.CreateNot(CmpRes
), TblRes
);
9615 return Builder
.CreateOr(EltsFromInput
, EltsFromTbl
, "vtbx");
9617 case NEON::BI__builtin_neon_vtbx4_v
: {
9618 return packTBLDVectorList(CGF
, ArrayRef(Ops
).slice(1, 4), Ops
[0], Ops
[5],
9619 Ty
, Intrinsic::aarch64_neon_tbx2
, "vtbx2");
9621 case NEON::BI__builtin_neon_vqtbl1_v
:
9622 case NEON::BI__builtin_neon_vqtbl1q_v
:
9623 Int
= Intrinsic::aarch64_neon_tbl1
; s
= "vtbl1"; break;
9624 case NEON::BI__builtin_neon_vqtbl2_v
:
9625 case NEON::BI__builtin_neon_vqtbl2q_v
: {
9626 Int
= Intrinsic::aarch64_neon_tbl2
; s
= "vtbl2"; break;
9627 case NEON::BI__builtin_neon_vqtbl3_v
:
9628 case NEON::BI__builtin_neon_vqtbl3q_v
:
9629 Int
= Intrinsic::aarch64_neon_tbl3
; s
= "vtbl3"; break;
9630 case NEON::BI__builtin_neon_vqtbl4_v
:
9631 case NEON::BI__builtin_neon_vqtbl4q_v
:
9632 Int
= Intrinsic::aarch64_neon_tbl4
; s
= "vtbl4"; break;
9633 case NEON::BI__builtin_neon_vqtbx1_v
:
9634 case NEON::BI__builtin_neon_vqtbx1q_v
:
9635 Int
= Intrinsic::aarch64_neon_tbx1
; s
= "vtbx1"; break;
9636 case NEON::BI__builtin_neon_vqtbx2_v
:
9637 case NEON::BI__builtin_neon_vqtbx2q_v
:
9638 Int
= Intrinsic::aarch64_neon_tbx2
; s
= "vtbx2"; break;
9639 case NEON::BI__builtin_neon_vqtbx3_v
:
9640 case NEON::BI__builtin_neon_vqtbx3q_v
:
9641 Int
= Intrinsic::aarch64_neon_tbx3
; s
= "vtbx3"; break;
9642 case NEON::BI__builtin_neon_vqtbx4_v
:
9643 case NEON::BI__builtin_neon_vqtbx4q_v
:
9644 Int
= Intrinsic::aarch64_neon_tbx4
; s
= "vtbx4"; break;
9651 Function
*F
= CGF
.CGM
.getIntrinsic(Int
, Ty
);
9652 return CGF
.EmitNeonCall(F
, Ops
, s
);
9655 Value
*CodeGenFunction::vectorWrapScalar16(Value
*Op
) {
9656 auto *VTy
= llvm::FixedVectorType::get(Int16Ty
, 4);
9657 Op
= Builder
.CreateBitCast(Op
, Int16Ty
);
9658 Value
*V
= PoisonValue::get(VTy
);
9659 llvm::Constant
*CI
= ConstantInt::get(SizeTy
, 0);
9660 Op
= Builder
.CreateInsertElement(V
, Op
, CI
);
9664 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
9665 /// access builtin. Only required if it can't be inferred from the base pointer
9667 llvm::Type
*CodeGenFunction::SVEBuiltinMemEltTy(const SVETypeFlags
&TypeFlags
) {
9668 switch (TypeFlags
.getMemEltType()) {
9669 case SVETypeFlags::MemEltTyDefault
:
9670 return getEltType(TypeFlags
);
9671 case SVETypeFlags::MemEltTyInt8
:
9672 return Builder
.getInt8Ty();
9673 case SVETypeFlags::MemEltTyInt16
:
9674 return Builder
.getInt16Ty();
9675 case SVETypeFlags::MemEltTyInt32
:
9676 return Builder
.getInt32Ty();
9677 case SVETypeFlags::MemEltTyInt64
:
9678 return Builder
.getInt64Ty();
9680 llvm_unreachable("Unknown MemEltType");
9683 llvm::Type
*CodeGenFunction::getEltType(const SVETypeFlags
&TypeFlags
) {
9684 switch (TypeFlags
.getEltType()) {
9686 llvm_unreachable("Invalid SVETypeFlag!");
9688 case SVETypeFlags::EltTyInt8
:
9689 return Builder
.getInt8Ty();
9690 case SVETypeFlags::EltTyInt16
:
9691 return Builder
.getInt16Ty();
9692 case SVETypeFlags::EltTyInt32
:
9693 return Builder
.getInt32Ty();
9694 case SVETypeFlags::EltTyInt64
:
9695 return Builder
.getInt64Ty();
9696 case SVETypeFlags::EltTyInt128
:
9697 return Builder
.getInt128Ty();
9699 case SVETypeFlags::EltTyFloat16
:
9700 return Builder
.getHalfTy();
9701 case SVETypeFlags::EltTyFloat32
:
9702 return Builder
.getFloatTy();
9703 case SVETypeFlags::EltTyFloat64
:
9704 return Builder
.getDoubleTy();
9706 case SVETypeFlags::EltTyBFloat16
:
9707 return Builder
.getBFloatTy();
9709 case SVETypeFlags::EltTyBool8
:
9710 case SVETypeFlags::EltTyBool16
:
9711 case SVETypeFlags::EltTyBool32
:
9712 case SVETypeFlags::EltTyBool64
:
9713 return Builder
.getInt1Ty();
9717 // Return the llvm predicate vector type corresponding to the specified element
9719 llvm::ScalableVectorType
*
9720 CodeGenFunction::getSVEPredType(const SVETypeFlags
&TypeFlags
) {
9721 switch (TypeFlags
.getEltType()) {
9722 default: llvm_unreachable("Unhandled SVETypeFlag!");
9724 case SVETypeFlags::EltTyInt8
:
9725 return llvm::ScalableVectorType::get(Builder
.getInt1Ty(), 16);
9726 case SVETypeFlags::EltTyInt16
:
9727 return llvm::ScalableVectorType::get(Builder
.getInt1Ty(), 8);
9728 case SVETypeFlags::EltTyInt32
:
9729 return llvm::ScalableVectorType::get(Builder
.getInt1Ty(), 4);
9730 case SVETypeFlags::EltTyInt64
:
9731 return llvm::ScalableVectorType::get(Builder
.getInt1Ty(), 2);
9733 case SVETypeFlags::EltTyBFloat16
:
9734 return llvm::ScalableVectorType::get(Builder
.getInt1Ty(), 8);
9735 case SVETypeFlags::EltTyFloat16
:
9736 return llvm::ScalableVectorType::get(Builder
.getInt1Ty(), 8);
9737 case SVETypeFlags::EltTyFloat32
:
9738 return llvm::ScalableVectorType::get(Builder
.getInt1Ty(), 4);
9739 case SVETypeFlags::EltTyFloat64
:
9740 return llvm::ScalableVectorType::get(Builder
.getInt1Ty(), 2);
9742 case SVETypeFlags::EltTyBool8
:
9743 return llvm::ScalableVectorType::get(Builder
.getInt1Ty(), 16);
9744 case SVETypeFlags::EltTyBool16
:
9745 return llvm::ScalableVectorType::get(Builder
.getInt1Ty(), 8);
9746 case SVETypeFlags::EltTyBool32
:
9747 return llvm::ScalableVectorType::get(Builder
.getInt1Ty(), 4);
9748 case SVETypeFlags::EltTyBool64
:
9749 return llvm::ScalableVectorType::get(Builder
.getInt1Ty(), 2);
9753 // Return the llvm vector type corresponding to the specified element TypeFlags.
9754 llvm::ScalableVectorType
*
9755 CodeGenFunction::getSVEType(const SVETypeFlags
&TypeFlags
) {
9756 switch (TypeFlags
.getEltType()) {
9758 llvm_unreachable("Invalid SVETypeFlag!");
9760 case SVETypeFlags::EltTyInt8
:
9761 return llvm::ScalableVectorType::get(Builder
.getInt8Ty(), 16);
9762 case SVETypeFlags::EltTyInt16
:
9763 return llvm::ScalableVectorType::get(Builder
.getInt16Ty(), 8);
9764 case SVETypeFlags::EltTyInt32
:
9765 return llvm::ScalableVectorType::get(Builder
.getInt32Ty(), 4);
9766 case SVETypeFlags::EltTyInt64
:
9767 return llvm::ScalableVectorType::get(Builder
.getInt64Ty(), 2);
9769 case SVETypeFlags::EltTyFloat16
:
9770 return llvm::ScalableVectorType::get(Builder
.getHalfTy(), 8);
9771 case SVETypeFlags::EltTyBFloat16
:
9772 return llvm::ScalableVectorType::get(Builder
.getBFloatTy(), 8);
9773 case SVETypeFlags::EltTyFloat32
:
9774 return llvm::ScalableVectorType::get(Builder
.getFloatTy(), 4);
9775 case SVETypeFlags::EltTyFloat64
:
9776 return llvm::ScalableVectorType::get(Builder
.getDoubleTy(), 2);
9778 case SVETypeFlags::EltTyBool8
:
9779 return llvm::ScalableVectorType::get(Builder
.getInt1Ty(), 16);
9780 case SVETypeFlags::EltTyBool16
:
9781 return llvm::ScalableVectorType::get(Builder
.getInt1Ty(), 8);
9782 case SVETypeFlags::EltTyBool32
:
9783 return llvm::ScalableVectorType::get(Builder
.getInt1Ty(), 4);
9784 case SVETypeFlags::EltTyBool64
:
9785 return llvm::ScalableVectorType::get(Builder
.getInt1Ty(), 2);
9790 CodeGenFunction::EmitSVEAllTruePred(const SVETypeFlags
&TypeFlags
) {
9792 CGM
.getIntrinsic(Intrinsic::aarch64_sve_ptrue
, getSVEPredType(TypeFlags
));
9793 return Builder
.CreateCall(Ptrue
, {Builder
.getInt32(/*SV_ALL*/ 31)});
9796 constexpr unsigned SVEBitsPerBlock
= 128;
9798 static llvm::ScalableVectorType
*getSVEVectorForElementType(llvm::Type
*EltTy
) {
9799 unsigned NumElts
= SVEBitsPerBlock
/ EltTy
->getScalarSizeInBits();
9800 return llvm::ScalableVectorType::get(EltTy
, NumElts
);
9803 // Reinterpret the input predicate so that it can be used to correctly isolate
9804 // the elements of the specified datatype.
9805 Value
*CodeGenFunction::EmitSVEPredicateCast(Value
*Pred
,
9806 llvm::ScalableVectorType
*VTy
) {
9808 if (isa
<TargetExtType
>(Pred
->getType()) &&
9809 cast
<TargetExtType
>(Pred
->getType())->getName() == "aarch64.svcount")
9812 auto *RTy
= llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy
);
9813 if (Pred
->getType() == RTy
)
9817 llvm::Type
*IntrinsicTy
;
9818 switch (VTy
->getMinNumElements()) {
9820 llvm_unreachable("unsupported element count!");
9825 IntID
= Intrinsic::aarch64_sve_convert_from_svbool
;
9829 IntID
= Intrinsic::aarch64_sve_convert_to_svbool
;
9830 IntrinsicTy
= Pred
->getType();
9834 Function
*F
= CGM
.getIntrinsic(IntID
, IntrinsicTy
);
9835 Value
*C
= Builder
.CreateCall(F
, Pred
);
9836 assert(C
->getType() == RTy
&& "Unexpected return type!");
9840 Value
*CodeGenFunction::EmitSVEGatherLoad(const SVETypeFlags
&TypeFlags
,
9841 SmallVectorImpl
<Value
*> &Ops
,
9843 auto *ResultTy
= getSVEType(TypeFlags
);
9844 auto *OverloadedTy
=
9845 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags
), ResultTy
);
9847 Function
*F
= nullptr;
9848 if (Ops
[1]->getType()->isVectorTy())
9849 // This is the "vector base, scalar offset" case. In order to uniquely
9850 // map this built-in to an LLVM IR intrinsic, we need both the return type
9851 // and the type of the vector base.
9852 F
= CGM
.getIntrinsic(IntID
, {OverloadedTy
, Ops
[1]->getType()});
9854 // This is the "scalar base, vector offset case". The type of the offset
9855 // is encoded in the name of the intrinsic. We only need to specify the
9856 // return type in order to uniquely map this built-in to an LLVM IR
9858 F
= CGM
.getIntrinsic(IntID
, OverloadedTy
);
9860 // At the ACLE level there's only one predicate type, svbool_t, which is
9861 // mapped to <n x 16 x i1>. However, this might be incompatible with the
9862 // actual type being loaded. For example, when loading doubles (i64) the
9863 // predicate should be <n x 2 x i1> instead. At the IR level the type of
9864 // the predicate and the data being loaded must match. Cast to the type
9865 // expected by the intrinsic. The intrinsic itself should be defined in
9866 // a way than enforces relations between parameter types.
9867 Ops
[0] = EmitSVEPredicateCast(
9868 Ops
[0], cast
<llvm::ScalableVectorType
>(F
->getArg(0)->getType()));
9870 // Pass 0 when the offset is missing. This can only be applied when using
9871 // the "vector base" addressing mode for which ACLE allows no offset. The
9872 // corresponding LLVM IR always requires an offset.
9873 if (Ops
.size() == 2) {
9874 assert(Ops
[1]->getType()->isVectorTy() && "Scalar base requires an offset");
9875 Ops
.push_back(ConstantInt::get(Int64Ty
, 0));
9878 // For "vector base, scalar index" scale the index so that it becomes a
9880 if (!TypeFlags
.isByteIndexed() && Ops
[1]->getType()->isVectorTy()) {
9881 unsigned BytesPerElt
=
9882 OverloadedTy
->getElementType()->getScalarSizeInBits() / 8;
9883 Ops
[2] = Builder
.CreateShl(Ops
[2], Log2_32(BytesPerElt
));
9886 Value
*Call
= Builder
.CreateCall(F
, Ops
);
9888 // The following sext/zext is only needed when ResultTy != OverloadedTy. In
9889 // other cases it's folded into a nop.
9890 return TypeFlags
.isZExtReturn() ? Builder
.CreateZExt(Call
, ResultTy
)
9891 : Builder
.CreateSExt(Call
, ResultTy
);
9894 Value
*CodeGenFunction::EmitSVEScatterStore(const SVETypeFlags
&TypeFlags
,
9895 SmallVectorImpl
<Value
*> &Ops
,
9897 auto *SrcDataTy
= getSVEType(TypeFlags
);
9898 auto *OverloadedTy
=
9899 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags
), SrcDataTy
);
9901 // In ACLE the source data is passed in the last argument, whereas in LLVM IR
9902 // it's the first argument. Move it accordingly.
9903 Ops
.insert(Ops
.begin(), Ops
.pop_back_val());
9905 Function
*F
= nullptr;
9906 if (Ops
[2]->getType()->isVectorTy())
9907 // This is the "vector base, scalar offset" case. In order to uniquely
9908 // map this built-in to an LLVM IR intrinsic, we need both the return type
9909 // and the type of the vector base.
9910 F
= CGM
.getIntrinsic(IntID
, {OverloadedTy
, Ops
[2]->getType()});
9912 // This is the "scalar base, vector offset case". The type of the offset
9913 // is encoded in the name of the intrinsic. We only need to specify the
9914 // return type in order to uniquely map this built-in to an LLVM IR
9916 F
= CGM
.getIntrinsic(IntID
, OverloadedTy
);
9918 // Pass 0 when the offset is missing. This can only be applied when using
9919 // the "vector base" addressing mode for which ACLE allows no offset. The
9920 // corresponding LLVM IR always requires an offset.
9921 if (Ops
.size() == 3) {
9922 assert(Ops
[1]->getType()->isVectorTy() && "Scalar base requires an offset");
9923 Ops
.push_back(ConstantInt::get(Int64Ty
, 0));
9926 // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's
9927 // folded into a nop.
9928 Ops
[0] = Builder
.CreateTrunc(Ops
[0], OverloadedTy
);
9930 // At the ACLE level there's only one predicate type, svbool_t, which is
9931 // mapped to <n x 16 x i1>. However, this might be incompatible with the
9932 // actual type being stored. For example, when storing doubles (i64) the
9933 // predicated should be <n x 2 x i1> instead. At the IR level the type of
9934 // the predicate and the data being stored must match. Cast to the type
9935 // expected by the intrinsic. The intrinsic itself should be defined in
9936 // a way that enforces relations between parameter types.
9937 Ops
[1] = EmitSVEPredicateCast(
9938 Ops
[1], cast
<llvm::ScalableVectorType
>(F
->getArg(1)->getType()));
9940 // For "vector base, scalar index" scale the index so that it becomes a
9942 if (!TypeFlags
.isByteIndexed() && Ops
[2]->getType()->isVectorTy()) {
9943 unsigned BytesPerElt
=
9944 OverloadedTy
->getElementType()->getScalarSizeInBits() / 8;
9945 Ops
[3] = Builder
.CreateShl(Ops
[3], Log2_32(BytesPerElt
));
9948 return Builder
.CreateCall(F
, Ops
);
9951 Value
*CodeGenFunction::EmitSVEGatherPrefetch(const SVETypeFlags
&TypeFlags
,
9952 SmallVectorImpl
<Value
*> &Ops
,
9954 // The gather prefetches are overloaded on the vector input - this can either
9955 // be the vector of base addresses or vector of offsets.
9956 auto *OverloadedTy
= dyn_cast
<llvm::ScalableVectorType
>(Ops
[1]->getType());
9958 OverloadedTy
= cast
<llvm::ScalableVectorType
>(Ops
[2]->getType());
9960 // Cast the predicate from svbool_t to the right number of elements.
9961 Ops
[0] = EmitSVEPredicateCast(Ops
[0], OverloadedTy
);
9963 // vector + imm addressing modes
9964 if (Ops
[1]->getType()->isVectorTy()) {
9965 if (Ops
.size() == 3) {
9966 // Pass 0 for 'vector+imm' when the index is omitted.
9967 Ops
.push_back(ConstantInt::get(Int64Ty
, 0));
9969 // The sv_prfop is the last operand in the builtin and IR intrinsic.
9970 std::swap(Ops
[2], Ops
[3]);
9972 // Index needs to be passed as scaled offset.
9973 llvm::Type
*MemEltTy
= SVEBuiltinMemEltTy(TypeFlags
);
9974 unsigned BytesPerElt
= MemEltTy
->getPrimitiveSizeInBits() / 8;
9975 if (BytesPerElt
> 1)
9976 Ops
[2] = Builder
.CreateShl(Ops
[2], Log2_32(BytesPerElt
));
9980 Function
*F
= CGM
.getIntrinsic(IntID
, OverloadedTy
);
9981 return Builder
.CreateCall(F
, Ops
);
9984 Value
*CodeGenFunction::EmitSVEStructLoad(const SVETypeFlags
&TypeFlags
,
9985 SmallVectorImpl
<Value
*> &Ops
,
9987 llvm::ScalableVectorType
*VTy
= getSVEType(TypeFlags
);
9991 case Intrinsic::aarch64_sve_ld2_sret
:
9992 case Intrinsic::aarch64_sve_ld1_pn_x2
:
9993 case Intrinsic::aarch64_sve_ldnt1_pn_x2
:
9994 case Intrinsic::aarch64_sve_ld2q_sret
:
9997 case Intrinsic::aarch64_sve_ld3_sret
:
9998 case Intrinsic::aarch64_sve_ld3q_sret
:
10001 case Intrinsic::aarch64_sve_ld4_sret
:
10002 case Intrinsic::aarch64_sve_ld1_pn_x4
:
10003 case Intrinsic::aarch64_sve_ldnt1_pn_x4
:
10004 case Intrinsic::aarch64_sve_ld4q_sret
:
10008 llvm_unreachable("unknown intrinsic!");
10010 auto RetTy
= llvm::VectorType::get(VTy
->getElementType(),
10011 VTy
->getElementCount() * N
);
10013 Value
*Predicate
= EmitSVEPredicateCast(Ops
[0], VTy
);
10014 Value
*BasePtr
= Ops
[1];
10016 // Does the load have an offset?
10017 if (Ops
.size() > 2)
10018 BasePtr
= Builder
.CreateGEP(VTy
, BasePtr
, Ops
[2]);
10020 Function
*F
= CGM
.getIntrinsic(IntID
, {VTy
});
10021 Value
*Call
= Builder
.CreateCall(F
, {Predicate
, BasePtr
});
10022 unsigned MinElts
= VTy
->getMinNumElements();
10023 Value
*Ret
= llvm::PoisonValue::get(RetTy
);
10024 for (unsigned I
= 0; I
< N
; I
++) {
10025 Value
*Idx
= ConstantInt::get(CGM
.Int64Ty
, I
* MinElts
);
10026 Value
*SRet
= Builder
.CreateExtractValue(Call
, I
);
10027 Ret
= Builder
.CreateInsertVector(RetTy
, Ret
, SRet
, Idx
);
10032 Value
*CodeGenFunction::EmitSVEStructStore(const SVETypeFlags
&TypeFlags
,
10033 SmallVectorImpl
<Value
*> &Ops
,
10035 llvm::ScalableVectorType
*VTy
= getSVEType(TypeFlags
);
10039 case Intrinsic::aarch64_sve_st2
:
10040 case Intrinsic::aarch64_sve_st1_pn_x2
:
10041 case Intrinsic::aarch64_sve_stnt1_pn_x2
:
10042 case Intrinsic::aarch64_sve_st2q
:
10045 case Intrinsic::aarch64_sve_st3
:
10046 case Intrinsic::aarch64_sve_st3q
:
10049 case Intrinsic::aarch64_sve_st4
:
10050 case Intrinsic::aarch64_sve_st1_pn_x4
:
10051 case Intrinsic::aarch64_sve_stnt1_pn_x4
:
10052 case Intrinsic::aarch64_sve_st4q
:
10056 llvm_unreachable("unknown intrinsic!");
10059 Value
*Predicate
= EmitSVEPredicateCast(Ops
[0], VTy
);
10060 Value
*BasePtr
= Ops
[1];
10062 // Does the store have an offset?
10063 if (Ops
.size() > (2 + N
))
10064 BasePtr
= Builder
.CreateGEP(VTy
, BasePtr
, Ops
[2]);
10066 // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we
10067 // need to break up the tuple vector.
10068 SmallVector
<llvm::Value
*, 5> Operands
;
10069 for (unsigned I
= Ops
.size() - N
; I
< Ops
.size(); ++I
)
10070 Operands
.push_back(Ops
[I
]);
10071 Operands
.append({Predicate
, BasePtr
});
10072 Function
*F
= CGM
.getIntrinsic(IntID
, { VTy
});
10074 return Builder
.CreateCall(F
, Operands
);
10077 // SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and
10078 // svpmullt_pair intrinsics, with the exception that their results are bitcast
10079 // to a wider type.
10080 Value
*CodeGenFunction::EmitSVEPMull(const SVETypeFlags
&TypeFlags
,
10081 SmallVectorImpl
<Value
*> &Ops
,
10082 unsigned BuiltinID
) {
10083 // Splat scalar operand to vector (intrinsics with _n infix)
10084 if (TypeFlags
.hasSplatOperand()) {
10085 unsigned OpNo
= TypeFlags
.getSplatOperand();
10086 Ops
[OpNo
] = EmitSVEDupX(Ops
[OpNo
]);
10089 // The pair-wise function has a narrower overloaded type.
10090 Function
*F
= CGM
.getIntrinsic(BuiltinID
, Ops
[0]->getType());
10091 Value
*Call
= Builder
.CreateCall(F
, {Ops
[0], Ops
[1]});
10093 // Now bitcast to the wider result type.
10094 llvm::ScalableVectorType
*Ty
= getSVEType(TypeFlags
);
10095 return EmitSVEReinterpret(Call
, Ty
);
10098 Value
*CodeGenFunction::EmitSVEMovl(const SVETypeFlags
&TypeFlags
,
10099 ArrayRef
<Value
*> Ops
, unsigned BuiltinID
) {
10100 llvm::Type
*OverloadedTy
= getSVEType(TypeFlags
);
10101 Function
*F
= CGM
.getIntrinsic(BuiltinID
, OverloadedTy
);
10102 return Builder
.CreateCall(F
, {Ops
[0], Builder
.getInt32(0)});
10105 Value
*CodeGenFunction::EmitSVEPrefetchLoad(const SVETypeFlags
&TypeFlags
,
10106 SmallVectorImpl
<Value
*> &Ops
,
10107 unsigned BuiltinID
) {
10108 auto *MemEltTy
= SVEBuiltinMemEltTy(TypeFlags
);
10109 auto *VectorTy
= getSVEVectorForElementType(MemEltTy
);
10110 auto *MemoryTy
= llvm::ScalableVectorType::get(MemEltTy
, VectorTy
);
10112 Value
*Predicate
= EmitSVEPredicateCast(Ops
[0], MemoryTy
);
10113 Value
*BasePtr
= Ops
[1];
10115 // Implement the index operand if not omitted.
10116 if (Ops
.size() > 3)
10117 BasePtr
= Builder
.CreateGEP(MemoryTy
, BasePtr
, Ops
[2]);
10119 Value
*PrfOp
= Ops
.back();
10121 Function
*F
= CGM
.getIntrinsic(BuiltinID
, Predicate
->getType());
10122 return Builder
.CreateCall(F
, {Predicate
, BasePtr
, PrfOp
});
10125 Value
*CodeGenFunction::EmitSVEMaskedLoad(const CallExpr
*E
,
10126 llvm::Type
*ReturnTy
,
10127 SmallVectorImpl
<Value
*> &Ops
,
10128 unsigned IntrinsicID
,
10129 bool IsZExtReturn
) {
10130 QualType LangPTy
= E
->getArg(1)->getType();
10131 llvm::Type
*MemEltTy
= CGM
.getTypes().ConvertType(
10132 LangPTy
->castAs
<PointerType
>()->getPointeeType());
10134 // The vector type that is returned may be different from the
10135 // eventual type loaded from memory.
10136 auto VectorTy
= cast
<llvm::ScalableVectorType
>(ReturnTy
);
10137 llvm::ScalableVectorType
*MemoryTy
= nullptr;
10138 llvm::ScalableVectorType
*PredTy
= nullptr;
10139 bool IsQuadLoad
= false;
10140 switch (IntrinsicID
) {
10141 case Intrinsic::aarch64_sve_ld1uwq
:
10142 case Intrinsic::aarch64_sve_ld1udq
:
10143 MemoryTy
= llvm::ScalableVectorType::get(MemEltTy
, 1);
10144 PredTy
= llvm::ScalableVectorType::get(
10145 llvm::Type::getInt1Ty(getLLVMContext()), 1);
10149 MemoryTy
= llvm::ScalableVectorType::get(MemEltTy
, VectorTy
);
10154 Value
*Predicate
= EmitSVEPredicateCast(Ops
[0], PredTy
);
10155 Value
*BasePtr
= Ops
[1];
10157 // Does the load have an offset?
10158 if (Ops
.size() > 2)
10159 BasePtr
= Builder
.CreateGEP(MemoryTy
, BasePtr
, Ops
[2]);
10161 Function
*F
= CGM
.getIntrinsic(IntrinsicID
, IsQuadLoad
? VectorTy
: MemoryTy
);
10163 cast
<llvm::Instruction
>(Builder
.CreateCall(F
, {Predicate
, BasePtr
}));
10164 auto TBAAInfo
= CGM
.getTBAAAccessInfo(LangPTy
->getPointeeType());
10165 CGM
.DecorateInstructionWithTBAA(Load
, TBAAInfo
);
10170 return IsZExtReturn
? Builder
.CreateZExt(Load
, VectorTy
)
10171 : Builder
.CreateSExt(Load
, VectorTy
);
10174 Value
*CodeGenFunction::EmitSVEMaskedStore(const CallExpr
*E
,
10175 SmallVectorImpl
<Value
*> &Ops
,
10176 unsigned IntrinsicID
) {
10177 QualType LangPTy
= E
->getArg(1)->getType();
10178 llvm::Type
*MemEltTy
= CGM
.getTypes().ConvertType(
10179 LangPTy
->castAs
<PointerType
>()->getPointeeType());
10181 // The vector type that is stored may be different from the
10182 // eventual type stored to memory.
10183 auto VectorTy
= cast
<llvm::ScalableVectorType
>(Ops
.back()->getType());
10184 auto MemoryTy
= llvm::ScalableVectorType::get(MemEltTy
, VectorTy
);
10186 auto PredTy
= MemoryTy
;
10187 auto AddrMemoryTy
= MemoryTy
;
10188 bool IsQuadStore
= false;
10190 switch (IntrinsicID
) {
10191 case Intrinsic::aarch64_sve_st1wq
:
10192 case Intrinsic::aarch64_sve_st1dq
:
10193 AddrMemoryTy
= llvm::ScalableVectorType::get(MemEltTy
, 1);
10195 llvm::ScalableVectorType::get(IntegerType::get(getLLVMContext(), 1), 1);
10196 IsQuadStore
= true;
10201 Value
*Predicate
= EmitSVEPredicateCast(Ops
[0], PredTy
);
10202 Value
*BasePtr
= Ops
[1];
10204 // Does the store have an offset?
10205 if (Ops
.size() == 4)
10206 BasePtr
= Builder
.CreateGEP(AddrMemoryTy
, BasePtr
, Ops
[2]);
10208 // Last value is always the data
10210 IsQuadStore
? Ops
.back() : Builder
.CreateTrunc(Ops
.back(), MemoryTy
);
10213 CGM
.getIntrinsic(IntrinsicID
, IsQuadStore
? VectorTy
: MemoryTy
);
10215 cast
<llvm::Instruction
>(Builder
.CreateCall(F
, {Val
, Predicate
, BasePtr
}));
10216 auto TBAAInfo
= CGM
.getTBAAAccessInfo(LangPTy
->getPointeeType());
10217 CGM
.DecorateInstructionWithTBAA(Store
, TBAAInfo
);
10221 Value
*CodeGenFunction::EmitSMELd1St1(const SVETypeFlags
&TypeFlags
,
10222 SmallVectorImpl
<Value
*> &Ops
,
10224 Ops
[2] = EmitSVEPredicateCast(
10225 Ops
[2], getSVEVectorForElementType(SVEBuiltinMemEltTy(TypeFlags
)));
10227 SmallVector
<Value
*> NewOps
;
10228 NewOps
.push_back(Ops
[2]);
10230 llvm::Value
*BasePtr
= Ops
[3];
10232 // If the intrinsic contains the vnum parameter, multiply it with the vector
10234 if (Ops
.size() == 5) {
10235 Function
*StreamingVectorLength
=
10236 CGM
.getIntrinsic(Intrinsic::aarch64_sme_cntsb
);
10237 llvm::Value
*StreamingVectorLengthCall
=
10238 Builder
.CreateCall(StreamingVectorLength
);
10239 llvm::Value
*Mulvl
=
10240 Builder
.CreateMul(StreamingVectorLengthCall
, Ops
[4], "mulvl");
10241 // The type of the ptr parameter is void *, so use Int8Ty here.
10242 BasePtr
= Builder
.CreateGEP(Int8Ty
, Ops
[3], Mulvl
);
10244 NewOps
.push_back(BasePtr
);
10245 NewOps
.push_back(Ops
[0]);
10246 NewOps
.push_back(Ops
[1]);
10247 Function
*F
= CGM
.getIntrinsic(IntID
);
10248 return Builder
.CreateCall(F
, NewOps
);
10251 Value
*CodeGenFunction::EmitSMEReadWrite(const SVETypeFlags
&TypeFlags
,
10252 SmallVectorImpl
<Value
*> &Ops
,
10254 auto *VecTy
= getSVEType(TypeFlags
);
10255 Function
*F
= CGM
.getIntrinsic(IntID
, VecTy
);
10256 if (TypeFlags
.isReadZA())
10257 Ops
[1] = EmitSVEPredicateCast(Ops
[1], VecTy
);
10258 else if (TypeFlags
.isWriteZA())
10259 Ops
[2] = EmitSVEPredicateCast(Ops
[2], VecTy
);
10260 return Builder
.CreateCall(F
, Ops
);
10263 Value
*CodeGenFunction::EmitSMEZero(const SVETypeFlags
&TypeFlags
,
10264 SmallVectorImpl
<Value
*> &Ops
,
10266 // svzero_za() intrinsic zeros the entire za tile and has no paramters.
10267 if (Ops
.size() == 0)
10268 Ops
.push_back(llvm::ConstantInt::get(Int32Ty
, 255));
10269 Function
*F
= CGM
.getIntrinsic(IntID
, {});
10270 return Builder
.CreateCall(F
, Ops
);
10273 Value
*CodeGenFunction::EmitSMELdrStr(const SVETypeFlags
&TypeFlags
,
10274 SmallVectorImpl
<Value
*> &Ops
,
10276 if (Ops
.size() == 2)
10277 Ops
.push_back(Builder
.getInt32(0));
10279 Ops
[2] = Builder
.CreateIntCast(Ops
[2], Int32Ty
, true);
10280 Function
*F
= CGM
.getIntrinsic(IntID
, {});
10281 return Builder
.CreateCall(F
, Ops
);
10284 // Limit the usage of scalable llvm IR generated by the ACLE by using the
10285 // sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat.
10286 Value
*CodeGenFunction::EmitSVEDupX(Value
*Scalar
, llvm::Type
*Ty
) {
10287 return Builder
.CreateVectorSplat(
10288 cast
<llvm::VectorType
>(Ty
)->getElementCount(), Scalar
);
10291 Value
*CodeGenFunction::EmitSVEDupX(Value
* Scalar
) {
10292 return EmitSVEDupX(Scalar
, getSVEVectorForElementType(Scalar
->getType()));
10295 Value
*CodeGenFunction::EmitSVEReinterpret(Value
*Val
, llvm::Type
*Ty
) {
10296 // FIXME: For big endian this needs an additional REV, or needs a separate
10297 // intrinsic that is code-generated as a no-op, because the LLVM bitcast
10298 // instruction is defined as 'bitwise' equivalent from memory point of
10299 // view (when storing/reloading), whereas the svreinterpret builtin
10300 // implements bitwise equivalent cast from register point of view.
10301 // LLVM CodeGen for a bitcast must add an explicit REV for big-endian.
10302 return Builder
.CreateBitCast(Val
, Ty
);
10305 static void InsertExplicitZeroOperand(CGBuilderTy
&Builder
, llvm::Type
*Ty
,
10306 SmallVectorImpl
<Value
*> &Ops
) {
10307 auto *SplatZero
= Constant::getNullValue(Ty
);
10308 Ops
.insert(Ops
.begin(), SplatZero
);
10311 static void InsertExplicitUndefOperand(CGBuilderTy
&Builder
, llvm::Type
*Ty
,
10312 SmallVectorImpl
<Value
*> &Ops
) {
10313 auto *SplatUndef
= UndefValue::get(Ty
);
10314 Ops
.insert(Ops
.begin(), SplatUndef
);
10317 SmallVector
<llvm::Type
*, 2>
10318 CodeGenFunction::getSVEOverloadTypes(const SVETypeFlags
&TypeFlags
,
10319 llvm::Type
*ResultType
,
10320 ArrayRef
<Value
*> Ops
) {
10321 if (TypeFlags
.isOverloadNone())
10324 llvm::Type
*DefaultType
= getSVEType(TypeFlags
);
10326 if (TypeFlags
.isOverloadWhileOrMultiVecCvt())
10327 return {DefaultType
, Ops
[1]->getType()};
10329 if (TypeFlags
.isOverloadWhileRW())
10330 return {getSVEPredType(TypeFlags
), Ops
[0]->getType()};
10332 if (TypeFlags
.isOverloadCvt())
10333 return {Ops
[0]->getType(), Ops
.back()->getType()};
10335 if (TypeFlags
.isReductionQV() && !ResultType
->isScalableTy() &&
10336 ResultType
->isVectorTy())
10337 return {ResultType
, Ops
[1]->getType()};
10339 assert(TypeFlags
.isOverloadDefault() && "Unexpected value for overloads");
10340 return {DefaultType
};
10343 Value
*CodeGenFunction::EmitSVETupleSetOrGet(const SVETypeFlags
&TypeFlags
,
10345 ArrayRef
<Value
*> Ops
) {
10346 assert((TypeFlags
.isTupleSet() || TypeFlags
.isTupleGet()) &&
10347 "Expects TypleFlags.isTupleSet() or TypeFlags.isTupleGet()");
10349 unsigned I
= cast
<ConstantInt
>(Ops
[1])->getSExtValue();
10350 auto *SingleVecTy
= dyn_cast
<llvm::ScalableVectorType
>(
10351 TypeFlags
.isTupleSet() ? Ops
[2]->getType() : Ty
);
10356 Value
*Idx
= ConstantInt::get(CGM
.Int64Ty
,
10357 I
* SingleVecTy
->getMinNumElements());
10359 if (TypeFlags
.isTupleSet())
10360 return Builder
.CreateInsertVector(Ty
, Ops
[0], Ops
[2], Idx
);
10361 return Builder
.CreateExtractVector(Ty
, Ops
[0], Idx
);
10364 Value
*CodeGenFunction::EmitSVETupleCreate(const SVETypeFlags
&TypeFlags
,
10366 ArrayRef
<Value
*> Ops
) {
10367 assert(TypeFlags
.isTupleCreate() && "Expects TypleFlag isTupleCreate");
10369 auto *SrcTy
= dyn_cast
<llvm::ScalableVectorType
>(Ops
[0]->getType());
10374 unsigned MinElts
= SrcTy
->getMinNumElements();
10375 Value
*Call
= llvm::PoisonValue::get(Ty
);
10376 for (unsigned I
= 0; I
< Ops
.size(); I
++) {
10377 Value
*Idx
= ConstantInt::get(CGM
.Int64Ty
, I
* MinElts
);
10378 Call
= Builder
.CreateInsertVector(Ty
, Call
, Ops
[I
], Idx
);
10384 Value
*CodeGenFunction::FormSVEBuiltinResult(Value
*Call
) {
10385 // Multi-vector results should be broken up into a single (wide) result
10387 auto *StructTy
= dyn_cast
<StructType
>(Call
->getType());
10391 auto *VTy
= dyn_cast
<ScalableVectorType
>(StructTy
->getTypeAtIndex(0U));
10394 unsigned N
= StructTy
->getNumElements();
10396 // We may need to emit a cast to a svbool_t
10397 bool IsPredTy
= VTy
->getElementType()->isIntegerTy(1);
10398 unsigned MinElts
= IsPredTy
? 16 : VTy
->getMinNumElements();
10400 ScalableVectorType
*WideVTy
=
10401 ScalableVectorType::get(VTy
->getElementType(), MinElts
* N
);
10402 Value
*Ret
= llvm::PoisonValue::get(WideVTy
);
10403 for (unsigned I
= 0; I
< N
; ++I
) {
10404 Value
*SRet
= Builder
.CreateExtractValue(Call
, I
);
10405 assert(SRet
->getType() == VTy
&& "Unexpected type for result value");
10406 Value
*Idx
= ConstantInt::get(CGM
.Int64Ty
, I
* MinElts
);
10409 SRet
= EmitSVEPredicateCast(
10410 SRet
, ScalableVectorType::get(Builder
.getInt1Ty(), 16));
10412 Ret
= Builder
.CreateInsertVector(WideVTy
, Ret
, SRet
, Idx
);
10419 void CodeGenFunction::GetAArch64SVEProcessedOperands(
10420 unsigned BuiltinID
, const CallExpr
*E
, SmallVectorImpl
<Value
*> &Ops
,
10421 SVETypeFlags TypeFlags
) {
10422 // Find out if any arguments are required to be integer constant expressions.
10423 unsigned ICEArguments
= 0;
10424 ASTContext::GetBuiltinTypeError Error
;
10425 getContext().GetBuiltinType(BuiltinID
, Error
, &ICEArguments
);
10426 assert(Error
== ASTContext::GE_None
&& "Should not codegen an error");
10428 // Tuple set/get only requires one insert/extract vector, which is
10429 // created by EmitSVETupleSetOrGet.
10430 bool IsTupleGetOrSet
= TypeFlags
.isTupleSet() || TypeFlags
.isTupleGet();
10432 for (unsigned i
= 0, e
= E
->getNumArgs(); i
!= e
; i
++) {
10433 bool IsICE
= ICEArguments
& (1 << i
);
10434 Value
*Arg
= EmitScalarExpr(E
->getArg(i
));
10437 // If this is required to be a constant, constant fold it so that we know
10438 // that the generated intrinsic gets a ConstantInt.
10439 std::optional
<llvm::APSInt
> Result
=
10440 E
->getArg(i
)->getIntegerConstantExpr(getContext());
10441 assert(Result
&& "Expected argument to be a constant");
10443 // Immediates for SVE llvm intrinsics are always 32bit. We can safely
10444 // truncate because the immediate has been range checked and no valid
10445 // immediate requires more than a handful of bits.
10446 *Result
= Result
->extOrTrunc(32);
10447 Ops
.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result
));
10451 if (IsTupleGetOrSet
|| !isa
<ScalableVectorType
>(Arg
->getType())) {
10452 Ops
.push_back(Arg
);
10456 auto *VTy
= cast
<ScalableVectorType
>(Arg
->getType());
10457 unsigned MinElts
= VTy
->getMinNumElements();
10458 bool IsPred
= VTy
->getElementType()->isIntegerTy(1);
10459 unsigned N
= (MinElts
* VTy
->getScalarSizeInBits()) / (IsPred
? 16 : 128);
10462 Ops
.push_back(Arg
);
10466 for (unsigned I
= 0; I
< N
; ++I
) {
10467 Value
*Idx
= ConstantInt::get(CGM
.Int64Ty
, (I
* MinElts
) / N
);
10469 ScalableVectorType::get(VTy
->getElementType(), MinElts
/ N
);
10470 Ops
.push_back(Builder
.CreateExtractVector(NewVTy
, Arg
, Idx
));
10475 Value
*CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID
,
10476 const CallExpr
*E
) {
10477 llvm::Type
*Ty
= ConvertType(E
->getType());
10478 if (BuiltinID
>= SVE::BI__builtin_sve_reinterpret_s8_s8
&&
10479 BuiltinID
<= SVE::BI__builtin_sve_reinterpret_f64_f64_x4
) {
10480 Value
*Val
= EmitScalarExpr(E
->getArg(0));
10481 return EmitSVEReinterpret(Val
, Ty
);
10484 auto *Builtin
= findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap
, BuiltinID
,
10485 AArch64SVEIntrinsicsProvenSorted
);
10487 llvm::SmallVector
<Value
*, 4> Ops
;
10488 SVETypeFlags
TypeFlags(Builtin
->TypeModifier
);
10489 GetAArch64SVEProcessedOperands(BuiltinID
, E
, Ops
, TypeFlags
);
10491 if (TypeFlags
.isLoad())
10492 return EmitSVEMaskedLoad(E
, Ty
, Ops
, Builtin
->LLVMIntrinsic
,
10493 TypeFlags
.isZExtReturn());
10494 else if (TypeFlags
.isStore())
10495 return EmitSVEMaskedStore(E
, Ops
, Builtin
->LLVMIntrinsic
);
10496 else if (TypeFlags
.isGatherLoad())
10497 return EmitSVEGatherLoad(TypeFlags
, Ops
, Builtin
->LLVMIntrinsic
);
10498 else if (TypeFlags
.isScatterStore())
10499 return EmitSVEScatterStore(TypeFlags
, Ops
, Builtin
->LLVMIntrinsic
);
10500 else if (TypeFlags
.isPrefetch())
10501 return EmitSVEPrefetchLoad(TypeFlags
, Ops
, Builtin
->LLVMIntrinsic
);
10502 else if (TypeFlags
.isGatherPrefetch())
10503 return EmitSVEGatherPrefetch(TypeFlags
, Ops
, Builtin
->LLVMIntrinsic
);
10504 else if (TypeFlags
.isStructLoad())
10505 return EmitSVEStructLoad(TypeFlags
, Ops
, Builtin
->LLVMIntrinsic
);
10506 else if (TypeFlags
.isStructStore())
10507 return EmitSVEStructStore(TypeFlags
, Ops
, Builtin
->LLVMIntrinsic
);
10508 else if (TypeFlags
.isTupleSet() || TypeFlags
.isTupleGet())
10509 return EmitSVETupleSetOrGet(TypeFlags
, Ty
, Ops
);
10510 else if (TypeFlags
.isTupleCreate())
10511 return EmitSVETupleCreate(TypeFlags
, Ty
, Ops
);
10512 else if (TypeFlags
.isUndef())
10513 return UndefValue::get(Ty
);
10514 else if (Builtin
->LLVMIntrinsic
!= 0) {
10515 if (TypeFlags
.getMergeType() == SVETypeFlags::MergeZeroExp
)
10516 InsertExplicitZeroOperand(Builder
, Ty
, Ops
);
10518 if (TypeFlags
.getMergeType() == SVETypeFlags::MergeAnyExp
)
10519 InsertExplicitUndefOperand(Builder
, Ty
, Ops
);
10521 // Some ACLE builtins leave out the argument to specify the predicate
10522 // pattern, which is expected to be expanded to an SV_ALL pattern.
10523 if (TypeFlags
.isAppendSVALL())
10524 Ops
.push_back(Builder
.getInt32(/*SV_ALL*/ 31));
10525 if (TypeFlags
.isInsertOp1SVALL())
10526 Ops
.insert(&Ops
[1], Builder
.getInt32(/*SV_ALL*/ 31));
10528 // Predicates must match the main datatype.
10529 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
10530 if (auto PredTy
= dyn_cast
<llvm::VectorType
>(Ops
[i
]->getType()))
10531 if (PredTy
->getElementType()->isIntegerTy(1))
10532 Ops
[i
] = EmitSVEPredicateCast(Ops
[i
], getSVEType(TypeFlags
));
10534 // Splat scalar operand to vector (intrinsics with _n infix)
10535 if (TypeFlags
.hasSplatOperand()) {
10536 unsigned OpNo
= TypeFlags
.getSplatOperand();
10537 Ops
[OpNo
] = EmitSVEDupX(Ops
[OpNo
]);
10540 if (TypeFlags
.isReverseCompare())
10541 std::swap(Ops
[1], Ops
[2]);
10542 else if (TypeFlags
.isReverseUSDOT())
10543 std::swap(Ops
[1], Ops
[2]);
10544 else if (TypeFlags
.isReverseMergeAnyBinOp() &&
10545 TypeFlags
.getMergeType() == SVETypeFlags::MergeAny
)
10546 std::swap(Ops
[1], Ops
[2]);
10547 else if (TypeFlags
.isReverseMergeAnyAccOp() &&
10548 TypeFlags
.getMergeType() == SVETypeFlags::MergeAny
)
10549 std::swap(Ops
[1], Ops
[3]);
10551 // Predicated intrinsics with _z suffix need a select w/ zeroinitializer.
10552 if (TypeFlags
.getMergeType() == SVETypeFlags::MergeZero
) {
10553 llvm::Type
*OpndTy
= Ops
[1]->getType();
10554 auto *SplatZero
= Constant::getNullValue(OpndTy
);
10555 Ops
[1] = Builder
.CreateSelect(Ops
[0], Ops
[1], SplatZero
);
10558 Function
*F
= CGM
.getIntrinsic(Builtin
->LLVMIntrinsic
,
10559 getSVEOverloadTypes(TypeFlags
, Ty
, Ops
));
10560 Value
*Call
= Builder
.CreateCall(F
, Ops
);
10562 // Predicate results must be converted to svbool_t.
10563 if (auto PredTy
= dyn_cast
<llvm::VectorType
>(Call
->getType()))
10564 if (PredTy
->getScalarType()->isIntegerTy(1))
10565 Call
= EmitSVEPredicateCast(Call
, cast
<llvm::ScalableVectorType
>(Ty
));
10567 return FormSVEBuiltinResult(Call
);
10570 switch (BuiltinID
) {
10574 case SVE::BI__builtin_sve_svreinterpret_b
: {
10576 llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount");
10577 Function
*CastFromSVCountF
=
10578 CGM
.getIntrinsic(Intrinsic::aarch64_sve_convert_to_svbool
, SVCountTy
);
10579 return Builder
.CreateCall(CastFromSVCountF
, Ops
[0]);
10581 case SVE::BI__builtin_sve_svreinterpret_c
: {
10583 llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount");
10584 Function
*CastToSVCountF
=
10585 CGM
.getIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool
, SVCountTy
);
10586 return Builder
.CreateCall(CastToSVCountF
, Ops
[0]);
10589 case SVE::BI__builtin_sve_svpsel_lane_b8
:
10590 case SVE::BI__builtin_sve_svpsel_lane_b16
:
10591 case SVE::BI__builtin_sve_svpsel_lane_b32
:
10592 case SVE::BI__builtin_sve_svpsel_lane_b64
:
10593 case SVE::BI__builtin_sve_svpsel_lane_c8
:
10594 case SVE::BI__builtin_sve_svpsel_lane_c16
:
10595 case SVE::BI__builtin_sve_svpsel_lane_c32
:
10596 case SVE::BI__builtin_sve_svpsel_lane_c64
: {
10597 bool IsSVCount
= isa
<TargetExtType
>(Ops
[0]->getType());
10598 assert(((!IsSVCount
|| cast
<TargetExtType
>(Ops
[0]->getType())->getName() ==
10599 "aarch64.svcount")) &&
10600 "Unexpected TargetExtType");
10602 llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount");
10603 Function
*CastFromSVCountF
=
10604 CGM
.getIntrinsic(Intrinsic::aarch64_sve_convert_to_svbool
, SVCountTy
);
10605 Function
*CastToSVCountF
=
10606 CGM
.getIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool
, SVCountTy
);
10608 auto OverloadedTy
= getSVEType(SVETypeFlags(Builtin
->TypeModifier
));
10609 Function
*F
= CGM
.getIntrinsic(Intrinsic::aarch64_sve_psel
, OverloadedTy
);
10610 llvm::Value
*Ops0
=
10611 IsSVCount
? Builder
.CreateCall(CastFromSVCountF
, Ops
[0]) : Ops
[0];
10612 llvm::Value
*Ops1
= EmitSVEPredicateCast(Ops
[1], OverloadedTy
);
10613 llvm::Value
*PSel
= Builder
.CreateCall(F
, {Ops0
, Ops1
, Ops
[2]});
10614 return IsSVCount
? Builder
.CreateCall(CastToSVCountF
, PSel
) : PSel
;
10616 case SVE::BI__builtin_sve_svmov_b_z
: {
10617 // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op)
10618 SVETypeFlags
TypeFlags(Builtin
->TypeModifier
);
10619 llvm::Type
* OverloadedTy
= getSVEType(TypeFlags
);
10620 Function
*F
= CGM
.getIntrinsic(Intrinsic::aarch64_sve_and_z
, OverloadedTy
);
10621 return Builder
.CreateCall(F
, {Ops
[0], Ops
[1], Ops
[1]});
10624 case SVE::BI__builtin_sve_svnot_b_z
: {
10625 // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg)
10626 SVETypeFlags
TypeFlags(Builtin
->TypeModifier
);
10627 llvm::Type
* OverloadedTy
= getSVEType(TypeFlags
);
10628 Function
*F
= CGM
.getIntrinsic(Intrinsic::aarch64_sve_eor_z
, OverloadedTy
);
10629 return Builder
.CreateCall(F
, {Ops
[0], Ops
[1], Ops
[0]});
10632 case SVE::BI__builtin_sve_svmovlb_u16
:
10633 case SVE::BI__builtin_sve_svmovlb_u32
:
10634 case SVE::BI__builtin_sve_svmovlb_u64
:
10635 return EmitSVEMovl(TypeFlags
, Ops
, Intrinsic::aarch64_sve_ushllb
);
10637 case SVE::BI__builtin_sve_svmovlb_s16
:
10638 case SVE::BI__builtin_sve_svmovlb_s32
:
10639 case SVE::BI__builtin_sve_svmovlb_s64
:
10640 return EmitSVEMovl(TypeFlags
, Ops
, Intrinsic::aarch64_sve_sshllb
);
10642 case SVE::BI__builtin_sve_svmovlt_u16
:
10643 case SVE::BI__builtin_sve_svmovlt_u32
:
10644 case SVE::BI__builtin_sve_svmovlt_u64
:
10645 return EmitSVEMovl(TypeFlags
, Ops
, Intrinsic::aarch64_sve_ushllt
);
10647 case SVE::BI__builtin_sve_svmovlt_s16
:
10648 case SVE::BI__builtin_sve_svmovlt_s32
:
10649 case SVE::BI__builtin_sve_svmovlt_s64
:
10650 return EmitSVEMovl(TypeFlags
, Ops
, Intrinsic::aarch64_sve_sshllt
);
10652 case SVE::BI__builtin_sve_svpmullt_u16
:
10653 case SVE::BI__builtin_sve_svpmullt_u64
:
10654 case SVE::BI__builtin_sve_svpmullt_n_u16
:
10655 case SVE::BI__builtin_sve_svpmullt_n_u64
:
10656 return EmitSVEPMull(TypeFlags
, Ops
, Intrinsic::aarch64_sve_pmullt_pair
);
10658 case SVE::BI__builtin_sve_svpmullb_u16
:
10659 case SVE::BI__builtin_sve_svpmullb_u64
:
10660 case SVE::BI__builtin_sve_svpmullb_n_u16
:
10661 case SVE::BI__builtin_sve_svpmullb_n_u64
:
10662 return EmitSVEPMull(TypeFlags
, Ops
, Intrinsic::aarch64_sve_pmullb_pair
);
10664 case SVE::BI__builtin_sve_svdup_n_b8
:
10665 case SVE::BI__builtin_sve_svdup_n_b16
:
10666 case SVE::BI__builtin_sve_svdup_n_b32
:
10667 case SVE::BI__builtin_sve_svdup_n_b64
: {
10669 Builder
.CreateICmpNE(Ops
[0], Constant::getNullValue(Ops
[0]->getType()));
10670 llvm::ScalableVectorType
*OverloadedTy
= getSVEType(TypeFlags
);
10671 Value
*Dup
= EmitSVEDupX(CmpNE
, OverloadedTy
);
10672 return EmitSVEPredicateCast(Dup
, cast
<llvm::ScalableVectorType
>(Ty
));
10675 case SVE::BI__builtin_sve_svdupq_n_b8
:
10676 case SVE::BI__builtin_sve_svdupq_n_b16
:
10677 case SVE::BI__builtin_sve_svdupq_n_b32
:
10678 case SVE::BI__builtin_sve_svdupq_n_b64
:
10679 case SVE::BI__builtin_sve_svdupq_n_u8
:
10680 case SVE::BI__builtin_sve_svdupq_n_s8
:
10681 case SVE::BI__builtin_sve_svdupq_n_u64
:
10682 case SVE::BI__builtin_sve_svdupq_n_f64
:
10683 case SVE::BI__builtin_sve_svdupq_n_s64
:
10684 case SVE::BI__builtin_sve_svdupq_n_u16
:
10685 case SVE::BI__builtin_sve_svdupq_n_f16
:
10686 case SVE::BI__builtin_sve_svdupq_n_bf16
:
10687 case SVE::BI__builtin_sve_svdupq_n_s16
:
10688 case SVE::BI__builtin_sve_svdupq_n_u32
:
10689 case SVE::BI__builtin_sve_svdupq_n_f32
:
10690 case SVE::BI__builtin_sve_svdupq_n_s32
: {
10691 // These builtins are implemented by storing each element to an array and using
10692 // ld1rq to materialize a vector.
10693 unsigned NumOpnds
= Ops
.size();
10696 cast
<llvm::VectorType
>(Ty
)->getElementType()->isIntegerTy(1);
10698 // For svdupq_n_b* the element type of is an integer of type 128/numelts,
10699 // so that the compare can use the width that is natural for the expected
10700 // number of predicate lanes.
10701 llvm::Type
*EltTy
= Ops
[0]->getType();
10703 EltTy
= IntegerType::get(getLLVMContext(), SVEBitsPerBlock
/ NumOpnds
);
10705 SmallVector
<llvm::Value
*, 16> VecOps
;
10706 for (unsigned I
= 0; I
< NumOpnds
; ++I
)
10707 VecOps
.push_back(Builder
.CreateZExt(Ops
[I
], EltTy
));
10708 Value
*Vec
= BuildVector(VecOps
);
10710 llvm::Type
*OverloadedTy
= getSVEVectorForElementType(EltTy
);
10711 Value
*InsertSubVec
= Builder
.CreateInsertVector(
10712 OverloadedTy
, PoisonValue::get(OverloadedTy
), Vec
, Builder
.getInt64(0));
10715 CGM
.getIntrinsic(Intrinsic::aarch64_sve_dupq_lane
, OverloadedTy
);
10717 Builder
.CreateCall(F
, {InsertSubVec
, Builder
.getInt64(0)});
10722 SVETypeFlags
TypeFlags(Builtin
->TypeModifier
);
10723 Value
*Pred
= EmitSVEAllTruePred(TypeFlags
);
10725 // For svdupq_n_b* we need to add an additional 'cmpne' with '0'.
10726 F
= CGM
.getIntrinsic(NumOpnds
== 2 ? Intrinsic::aarch64_sve_cmpne
10727 : Intrinsic::aarch64_sve_cmpne_wide
,
10729 Value
*Call
= Builder
.CreateCall(
10730 F
, {Pred
, DupQLane
, EmitSVEDupX(Builder
.getInt64(0))});
10731 return EmitSVEPredicateCast(Call
, cast
<llvm::ScalableVectorType
>(Ty
));
10734 case SVE::BI__builtin_sve_svpfalse_b
:
10735 return ConstantInt::getFalse(Ty
);
10737 case SVE::BI__builtin_sve_svpfalse_c
: {
10738 auto SVBoolTy
= ScalableVectorType::get(Builder
.getInt1Ty(), 16);
10739 Function
*CastToSVCountF
=
10740 CGM
.getIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool
, Ty
);
10741 return Builder
.CreateCall(CastToSVCountF
, ConstantInt::getFalse(SVBoolTy
));
10744 case SVE::BI__builtin_sve_svlen_bf16
:
10745 case SVE::BI__builtin_sve_svlen_f16
:
10746 case SVE::BI__builtin_sve_svlen_f32
:
10747 case SVE::BI__builtin_sve_svlen_f64
:
10748 case SVE::BI__builtin_sve_svlen_s8
:
10749 case SVE::BI__builtin_sve_svlen_s16
:
10750 case SVE::BI__builtin_sve_svlen_s32
:
10751 case SVE::BI__builtin_sve_svlen_s64
:
10752 case SVE::BI__builtin_sve_svlen_u8
:
10753 case SVE::BI__builtin_sve_svlen_u16
:
10754 case SVE::BI__builtin_sve_svlen_u32
:
10755 case SVE::BI__builtin_sve_svlen_u64
: {
10756 SVETypeFlags
TF(Builtin
->TypeModifier
);
10757 auto VTy
= cast
<llvm::VectorType
>(getSVEType(TF
));
10759 llvm::ConstantInt::get(Ty
, VTy
->getElementCount().getKnownMinValue());
10761 Function
*F
= CGM
.getIntrinsic(Intrinsic::vscale
, Ty
);
10762 return Builder
.CreateMul(NumEls
, Builder
.CreateCall(F
));
10765 case SVE::BI__builtin_sve_svtbl2_u8
:
10766 case SVE::BI__builtin_sve_svtbl2_s8
:
10767 case SVE::BI__builtin_sve_svtbl2_u16
:
10768 case SVE::BI__builtin_sve_svtbl2_s16
:
10769 case SVE::BI__builtin_sve_svtbl2_u32
:
10770 case SVE::BI__builtin_sve_svtbl2_s32
:
10771 case SVE::BI__builtin_sve_svtbl2_u64
:
10772 case SVE::BI__builtin_sve_svtbl2_s64
:
10773 case SVE::BI__builtin_sve_svtbl2_f16
:
10774 case SVE::BI__builtin_sve_svtbl2_bf16
:
10775 case SVE::BI__builtin_sve_svtbl2_f32
:
10776 case SVE::BI__builtin_sve_svtbl2_f64
: {
10777 SVETypeFlags
TF(Builtin
->TypeModifier
);
10778 auto VTy
= cast
<llvm::ScalableVectorType
>(getSVEType(TF
));
10779 Function
*F
= CGM
.getIntrinsic(Intrinsic::aarch64_sve_tbl2
, VTy
);
10780 return Builder
.CreateCall(F
, Ops
);
10783 case SVE::BI__builtin_sve_svset_neonq_s8
:
10784 case SVE::BI__builtin_sve_svset_neonq_s16
:
10785 case SVE::BI__builtin_sve_svset_neonq_s32
:
10786 case SVE::BI__builtin_sve_svset_neonq_s64
:
10787 case SVE::BI__builtin_sve_svset_neonq_u8
:
10788 case SVE::BI__builtin_sve_svset_neonq_u16
:
10789 case SVE::BI__builtin_sve_svset_neonq_u32
:
10790 case SVE::BI__builtin_sve_svset_neonq_u64
:
10791 case SVE::BI__builtin_sve_svset_neonq_f16
:
10792 case SVE::BI__builtin_sve_svset_neonq_f32
:
10793 case SVE::BI__builtin_sve_svset_neonq_f64
:
10794 case SVE::BI__builtin_sve_svset_neonq_bf16
: {
10795 return Builder
.CreateInsertVector(Ty
, Ops
[0], Ops
[1], Builder
.getInt64(0));
10798 case SVE::BI__builtin_sve_svget_neonq_s8
:
10799 case SVE::BI__builtin_sve_svget_neonq_s16
:
10800 case SVE::BI__builtin_sve_svget_neonq_s32
:
10801 case SVE::BI__builtin_sve_svget_neonq_s64
:
10802 case SVE::BI__builtin_sve_svget_neonq_u8
:
10803 case SVE::BI__builtin_sve_svget_neonq_u16
:
10804 case SVE::BI__builtin_sve_svget_neonq_u32
:
10805 case SVE::BI__builtin_sve_svget_neonq_u64
:
10806 case SVE::BI__builtin_sve_svget_neonq_f16
:
10807 case SVE::BI__builtin_sve_svget_neonq_f32
:
10808 case SVE::BI__builtin_sve_svget_neonq_f64
:
10809 case SVE::BI__builtin_sve_svget_neonq_bf16
: {
10810 return Builder
.CreateExtractVector(Ty
, Ops
[0], Builder
.getInt64(0));
10813 case SVE::BI__builtin_sve_svdup_neonq_s8
:
10814 case SVE::BI__builtin_sve_svdup_neonq_s16
:
10815 case SVE::BI__builtin_sve_svdup_neonq_s32
:
10816 case SVE::BI__builtin_sve_svdup_neonq_s64
:
10817 case SVE::BI__builtin_sve_svdup_neonq_u8
:
10818 case SVE::BI__builtin_sve_svdup_neonq_u16
:
10819 case SVE::BI__builtin_sve_svdup_neonq_u32
:
10820 case SVE::BI__builtin_sve_svdup_neonq_u64
:
10821 case SVE::BI__builtin_sve_svdup_neonq_f16
:
10822 case SVE::BI__builtin_sve_svdup_neonq_f32
:
10823 case SVE::BI__builtin_sve_svdup_neonq_f64
:
10824 case SVE::BI__builtin_sve_svdup_neonq_bf16
: {
10825 Value
*Insert
= Builder
.CreateInsertVector(Ty
, PoisonValue::get(Ty
), Ops
[0],
10826 Builder
.getInt64(0));
10827 return Builder
.CreateIntrinsic(Intrinsic::aarch64_sve_dupq_lane
, {Ty
},
10828 {Insert
, Builder
.getInt64(0)});
10832 /// Should not happen
10836 static void swapCommutativeSMEOperands(unsigned BuiltinID
,
10837 SmallVectorImpl
<Value
*> &Ops
) {
10839 switch (BuiltinID
) {
10842 case SME::BI__builtin_sme_svsumla_za32_s8_vg4x1
:
10845 case SME::BI__builtin_sme_svsumla_za32_s8_vg4x2
:
10846 case SME::BI__builtin_sme_svsudot_za32_s8_vg1x2
:
10849 case SME::BI__builtin_sme_svsudot_za32_s8_vg1x4
:
10850 case SME::BI__builtin_sme_svsumla_za32_s8_vg4x4
:
10856 for (unsigned I
= 0; I
< MultiVec
; ++I
)
10857 std::swap(Ops
[I
+ 1], Ops
[I
+ 1 + MultiVec
]);
10860 Value
*CodeGenFunction::EmitAArch64SMEBuiltinExpr(unsigned BuiltinID
,
10861 const CallExpr
*E
) {
10862 auto *Builtin
= findARMVectorIntrinsicInMap(AArch64SMEIntrinsicMap
, BuiltinID
,
10863 AArch64SMEIntrinsicsProvenSorted
);
10865 llvm::SmallVector
<Value
*, 4> Ops
;
10866 SVETypeFlags
TypeFlags(Builtin
->TypeModifier
);
10867 GetAArch64SVEProcessedOperands(BuiltinID
, E
, Ops
, TypeFlags
);
10869 if (TypeFlags
.isLoad() || TypeFlags
.isStore())
10870 return EmitSMELd1St1(TypeFlags
, Ops
, Builtin
->LLVMIntrinsic
);
10871 else if (TypeFlags
.isReadZA() || TypeFlags
.isWriteZA())
10872 return EmitSMEReadWrite(TypeFlags
, Ops
, Builtin
->LLVMIntrinsic
);
10873 else if (BuiltinID
== SME::BI__builtin_sme_svzero_mask_za
||
10874 BuiltinID
== SME::BI__builtin_sme_svzero_za
)
10875 return EmitSMEZero(TypeFlags
, Ops
, Builtin
->LLVMIntrinsic
);
10876 else if (BuiltinID
== SME::BI__builtin_sme_svldr_vnum_za
||
10877 BuiltinID
== SME::BI__builtin_sme_svstr_vnum_za
||
10878 BuiltinID
== SME::BI__builtin_sme_svldr_za
||
10879 BuiltinID
== SME::BI__builtin_sme_svstr_za
)
10880 return EmitSMELdrStr(TypeFlags
, Ops
, Builtin
->LLVMIntrinsic
);
10882 // Handle builtins which require their multi-vector operands to be swapped
10883 swapCommutativeSMEOperands(BuiltinID
, Ops
);
10885 // Should not happen!
10886 if (Builtin
->LLVMIntrinsic
== 0)
10889 // Predicates must match the main datatype.
10890 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
10891 if (auto PredTy
= dyn_cast
<llvm::VectorType
>(Ops
[i
]->getType()))
10892 if (PredTy
->getElementType()->isIntegerTy(1))
10893 Ops
[i
] = EmitSVEPredicateCast(Ops
[i
], getSVEType(TypeFlags
));
10896 TypeFlags
.isOverloadNone()
10897 ? CGM
.getIntrinsic(Builtin
->LLVMIntrinsic
)
10898 : CGM
.getIntrinsic(Builtin
->LLVMIntrinsic
, {getSVEType(TypeFlags
)});
10899 Value
*Call
= Builder
.CreateCall(F
, Ops
);
10901 return FormSVEBuiltinResult(Call
);
10904 Value
*CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID
,
10906 llvm::Triple::ArchType Arch
) {
10907 if (BuiltinID
>= clang::AArch64::FirstSVEBuiltin
&&
10908 BuiltinID
<= clang::AArch64::LastSVEBuiltin
)
10909 return EmitAArch64SVEBuiltinExpr(BuiltinID
, E
);
10911 if (BuiltinID
>= clang::AArch64::FirstSMEBuiltin
&&
10912 BuiltinID
<= clang::AArch64::LastSMEBuiltin
)
10913 return EmitAArch64SMEBuiltinExpr(BuiltinID
, E
);
10915 if (BuiltinID
== Builtin::BI__builtin_cpu_supports
)
10916 return EmitAArch64CpuSupports(E
);
10918 unsigned HintID
= static_cast<unsigned>(-1);
10919 switch (BuiltinID
) {
10921 case clang::AArch64::BI__builtin_arm_nop
:
10924 case clang::AArch64::BI__builtin_arm_yield
:
10925 case clang::AArch64::BI__yield
:
10928 case clang::AArch64::BI__builtin_arm_wfe
:
10929 case clang::AArch64::BI__wfe
:
10932 case clang::AArch64::BI__builtin_arm_wfi
:
10933 case clang::AArch64::BI__wfi
:
10936 case clang::AArch64::BI__builtin_arm_sev
:
10937 case clang::AArch64::BI__sev
:
10940 case clang::AArch64::BI__builtin_arm_sevl
:
10941 case clang::AArch64::BI__sevl
:
10946 if (HintID
!= static_cast<unsigned>(-1)) {
10947 Function
*F
= CGM
.getIntrinsic(Intrinsic::aarch64_hint
);
10948 return Builder
.CreateCall(F
, llvm::ConstantInt::get(Int32Ty
, HintID
));
10951 if (BuiltinID
== clang::AArch64::BI__builtin_arm_trap
) {
10952 Function
*F
= CGM
.getIntrinsic(Intrinsic::aarch64_break
);
10953 llvm::Value
*Arg
= EmitScalarExpr(E
->getArg(0));
10954 return Builder
.CreateCall(F
, Builder
.CreateZExt(Arg
, CGM
.Int32Ty
));
10957 if (BuiltinID
== clang::AArch64::BI__builtin_arm_get_sme_state
) {
10958 // Create call to __arm_sme_state and store the results to the two pointers.
10959 CallInst
*CI
= EmitRuntimeCall(CGM
.CreateRuntimeFunction(
10960 llvm::FunctionType::get(StructType::get(CGM
.Int64Ty
, CGM
.Int64Ty
), {},
10962 "__arm_sme_state"));
10963 auto Attrs
= AttributeList().addFnAttribute(getLLVMContext(),
10964 "aarch64_pstate_sm_compatible");
10965 CI
->setAttributes(Attrs
);
10966 CI
->setCallingConv(
10967 llvm::CallingConv::
10968 AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2
);
10969 Builder
.CreateStore(Builder
.CreateExtractValue(CI
, 0),
10970 EmitPointerWithAlignment(E
->getArg(0)));
10971 return Builder
.CreateStore(Builder
.CreateExtractValue(CI
, 1),
10972 EmitPointerWithAlignment(E
->getArg(1)));
10975 if (BuiltinID
== clang::AArch64::BI__builtin_arm_rbit
) {
10976 assert((getContext().getTypeSize(E
->getType()) == 32) &&
10977 "rbit of unusual size!");
10978 llvm::Value
*Arg
= EmitScalarExpr(E
->getArg(0));
10979 return Builder
.CreateCall(
10980 CGM
.getIntrinsic(Intrinsic::bitreverse
, Arg
->getType()), Arg
, "rbit");
10982 if (BuiltinID
== clang::AArch64::BI__builtin_arm_rbit64
) {
10983 assert((getContext().getTypeSize(E
->getType()) == 64) &&
10984 "rbit of unusual size!");
10985 llvm::Value
*Arg
= EmitScalarExpr(E
->getArg(0));
10986 return Builder
.CreateCall(
10987 CGM
.getIntrinsic(Intrinsic::bitreverse
, Arg
->getType()), Arg
, "rbit");
10990 if (BuiltinID
== clang::AArch64::BI__builtin_arm_clz
||
10991 BuiltinID
== clang::AArch64::BI__builtin_arm_clz64
) {
10992 llvm::Value
*Arg
= EmitScalarExpr(E
->getArg(0));
10993 Function
*F
= CGM
.getIntrinsic(Intrinsic::ctlz
, Arg
->getType());
10994 Value
*Res
= Builder
.CreateCall(F
, {Arg
, Builder
.getInt1(false)});
10995 if (BuiltinID
== clang::AArch64::BI__builtin_arm_clz64
)
10996 Res
= Builder
.CreateTrunc(Res
, Builder
.getInt32Ty());
11000 if (BuiltinID
== clang::AArch64::BI__builtin_arm_cls
) {
11001 llvm::Value
*Arg
= EmitScalarExpr(E
->getArg(0));
11002 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::aarch64_cls
), Arg
,
11005 if (BuiltinID
== clang::AArch64::BI__builtin_arm_cls64
) {
11006 llvm::Value
*Arg
= EmitScalarExpr(E
->getArg(0));
11007 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::aarch64_cls64
), Arg
,
11011 if (BuiltinID
== clang::AArch64::BI__builtin_arm_rint32zf
||
11012 BuiltinID
== clang::AArch64::BI__builtin_arm_rint32z
) {
11013 llvm::Value
*Arg
= EmitScalarExpr(E
->getArg(0));
11014 llvm::Type
*Ty
= Arg
->getType();
11015 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::aarch64_frint32z
, Ty
),
11019 if (BuiltinID
== clang::AArch64::BI__builtin_arm_rint64zf
||
11020 BuiltinID
== clang::AArch64::BI__builtin_arm_rint64z
) {
11021 llvm::Value
*Arg
= EmitScalarExpr(E
->getArg(0));
11022 llvm::Type
*Ty
= Arg
->getType();
11023 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::aarch64_frint64z
, Ty
),
11027 if (BuiltinID
== clang::AArch64::BI__builtin_arm_rint32xf
||
11028 BuiltinID
== clang::AArch64::BI__builtin_arm_rint32x
) {
11029 llvm::Value
*Arg
= EmitScalarExpr(E
->getArg(0));
11030 llvm::Type
*Ty
= Arg
->getType();
11031 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::aarch64_frint32x
, Ty
),
11035 if (BuiltinID
== clang::AArch64::BI__builtin_arm_rint64xf
||
11036 BuiltinID
== clang::AArch64::BI__builtin_arm_rint64x
) {
11037 llvm::Value
*Arg
= EmitScalarExpr(E
->getArg(0));
11038 llvm::Type
*Ty
= Arg
->getType();
11039 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::aarch64_frint64x
, Ty
),
11043 if (BuiltinID
== clang::AArch64::BI__builtin_arm_jcvt
) {
11044 assert((getContext().getTypeSize(E
->getType()) == 32) &&
11045 "__jcvt of unusual size!");
11046 llvm::Value
*Arg
= EmitScalarExpr(E
->getArg(0));
11047 return Builder
.CreateCall(
11048 CGM
.getIntrinsic(Intrinsic::aarch64_fjcvtzs
), Arg
);
11051 if (BuiltinID
== clang::AArch64::BI__builtin_arm_ld64b
||
11052 BuiltinID
== clang::AArch64::BI__builtin_arm_st64b
||
11053 BuiltinID
== clang::AArch64::BI__builtin_arm_st64bv
||
11054 BuiltinID
== clang::AArch64::BI__builtin_arm_st64bv0
) {
11055 llvm::Value
*MemAddr
= EmitScalarExpr(E
->getArg(0));
11056 llvm::Value
*ValPtr
= EmitScalarExpr(E
->getArg(1));
11058 if (BuiltinID
== clang::AArch64::BI__builtin_arm_ld64b
) {
11059 // Load from the address via an LLVM intrinsic, receiving a
11060 // tuple of 8 i64 words, and store each one to ValPtr.
11061 Function
*F
= CGM
.getIntrinsic(Intrinsic::aarch64_ld64b
);
11062 llvm::Value
*Val
= Builder
.CreateCall(F
, MemAddr
);
11063 llvm::Value
*ToRet
;
11064 for (size_t i
= 0; i
< 8; i
++) {
11065 llvm::Value
*ValOffsetPtr
=
11066 Builder
.CreateGEP(Int64Ty
, ValPtr
, Builder
.getInt32(i
));
11068 Address(ValOffsetPtr
, Int64Ty
, CharUnits::fromQuantity(8));
11069 ToRet
= Builder
.CreateStore(Builder
.CreateExtractValue(Val
, i
), Addr
);
11073 // Load 8 i64 words from ValPtr, and store them to the address
11074 // via an LLVM intrinsic.
11075 SmallVector
<llvm::Value
*, 9> Args
;
11076 Args
.push_back(MemAddr
);
11077 for (size_t i
= 0; i
< 8; i
++) {
11078 llvm::Value
*ValOffsetPtr
=
11079 Builder
.CreateGEP(Int64Ty
, ValPtr
, Builder
.getInt32(i
));
11081 Address(ValOffsetPtr
, Int64Ty
, CharUnits::fromQuantity(8));
11082 Args
.push_back(Builder
.CreateLoad(Addr
));
11085 auto Intr
= (BuiltinID
== clang::AArch64::BI__builtin_arm_st64b
11086 ? Intrinsic::aarch64_st64b
11087 : BuiltinID
== clang::AArch64::BI__builtin_arm_st64bv
11088 ? Intrinsic::aarch64_st64bv
11089 : Intrinsic::aarch64_st64bv0
);
11090 Function
*F
= CGM
.getIntrinsic(Intr
);
11091 return Builder
.CreateCall(F
, Args
);
11095 if (BuiltinID
== clang::AArch64::BI__builtin_arm_rndr
||
11096 BuiltinID
== clang::AArch64::BI__builtin_arm_rndrrs
) {
11098 auto Intr
= (BuiltinID
== clang::AArch64::BI__builtin_arm_rndr
11099 ? Intrinsic::aarch64_rndr
11100 : Intrinsic::aarch64_rndrrs
);
11101 Function
*F
= CGM
.getIntrinsic(Intr
);
11102 llvm::Value
*Val
= Builder
.CreateCall(F
);
11103 Value
*RandomValue
= Builder
.CreateExtractValue(Val
, 0);
11104 Value
*Status
= Builder
.CreateExtractValue(Val
, 1);
11106 Address MemAddress
= EmitPointerWithAlignment(E
->getArg(0));
11107 Builder
.CreateStore(RandomValue
, MemAddress
);
11108 Status
= Builder
.CreateZExt(Status
, Int32Ty
);
11112 if (BuiltinID
== clang::AArch64::BI__clear_cache
) {
11113 assert(E
->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
11114 const FunctionDecl
*FD
= E
->getDirectCallee();
11116 for (unsigned i
= 0; i
< 2; i
++)
11117 Ops
[i
] = EmitScalarExpr(E
->getArg(i
));
11118 llvm::Type
*Ty
= CGM
.getTypes().ConvertType(FD
->getType());
11119 llvm::FunctionType
*FTy
= cast
<llvm::FunctionType
>(Ty
);
11120 StringRef Name
= FD
->getName();
11121 return EmitNounwindRuntimeCall(CGM
.CreateRuntimeFunction(FTy
, Name
), Ops
);
11124 if ((BuiltinID
== clang::AArch64::BI__builtin_arm_ldrex
||
11125 BuiltinID
== clang::AArch64::BI__builtin_arm_ldaex
) &&
11126 getContext().getTypeSize(E
->getType()) == 128) {
11128 CGM
.getIntrinsic(BuiltinID
== clang::AArch64::BI__builtin_arm_ldaex
11129 ? Intrinsic::aarch64_ldaxp
11130 : Intrinsic::aarch64_ldxp
);
11132 Value
*LdPtr
= EmitScalarExpr(E
->getArg(0));
11133 Value
*Val
= Builder
.CreateCall(F
, LdPtr
, "ldxp");
11135 Value
*Val0
= Builder
.CreateExtractValue(Val
, 1);
11136 Value
*Val1
= Builder
.CreateExtractValue(Val
, 0);
11137 llvm::Type
*Int128Ty
= llvm::IntegerType::get(getLLVMContext(), 128);
11138 Val0
= Builder
.CreateZExt(Val0
, Int128Ty
);
11139 Val1
= Builder
.CreateZExt(Val1
, Int128Ty
);
11141 Value
*ShiftCst
= llvm::ConstantInt::get(Int128Ty
, 64);
11142 Val
= Builder
.CreateShl(Val0
, ShiftCst
, "shl", true /* nuw */);
11143 Val
= Builder
.CreateOr(Val
, Val1
);
11144 return Builder
.CreateBitCast(Val
, ConvertType(E
->getType()));
11145 } else if (BuiltinID
== clang::AArch64::BI__builtin_arm_ldrex
||
11146 BuiltinID
== clang::AArch64::BI__builtin_arm_ldaex
) {
11147 Value
*LoadAddr
= EmitScalarExpr(E
->getArg(0));
11149 QualType Ty
= E
->getType();
11150 llvm::Type
*RealResTy
= ConvertType(Ty
);
11151 llvm::Type
*IntTy
=
11152 llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty
));
11155 CGM
.getIntrinsic(BuiltinID
== clang::AArch64::BI__builtin_arm_ldaex
11156 ? Intrinsic::aarch64_ldaxr
11157 : Intrinsic::aarch64_ldxr
,
11159 CallInst
*Val
= Builder
.CreateCall(F
, LoadAddr
, "ldxr");
11161 0, Attribute::get(getLLVMContext(), Attribute::ElementType
, IntTy
));
11163 if (RealResTy
->isPointerTy())
11164 return Builder
.CreateIntToPtr(Val
, RealResTy
);
11166 llvm::Type
*IntResTy
= llvm::IntegerType::get(
11167 getLLVMContext(), CGM
.getDataLayout().getTypeSizeInBits(RealResTy
));
11168 return Builder
.CreateBitCast(Builder
.CreateTruncOrBitCast(Val
, IntResTy
),
11172 if ((BuiltinID
== clang::AArch64::BI__builtin_arm_strex
||
11173 BuiltinID
== clang::AArch64::BI__builtin_arm_stlex
) &&
11174 getContext().getTypeSize(E
->getArg(0)->getType()) == 128) {
11176 CGM
.getIntrinsic(BuiltinID
== clang::AArch64::BI__builtin_arm_stlex
11177 ? Intrinsic::aarch64_stlxp
11178 : Intrinsic::aarch64_stxp
);
11179 llvm::Type
*STy
= llvm::StructType::get(Int64Ty
, Int64Ty
);
11181 Address Tmp
= CreateMemTemp(E
->getArg(0)->getType());
11182 EmitAnyExprToMem(E
->getArg(0), Tmp
, Qualifiers(), /*init*/ true);
11184 Tmp
= Tmp
.withElementType(STy
);
11185 llvm::Value
*Val
= Builder
.CreateLoad(Tmp
);
11187 Value
*Arg0
= Builder
.CreateExtractValue(Val
, 0);
11188 Value
*Arg1
= Builder
.CreateExtractValue(Val
, 1);
11189 Value
*StPtr
= EmitScalarExpr(E
->getArg(1));
11190 return Builder
.CreateCall(F
, {Arg0
, Arg1
, StPtr
}, "stxp");
11193 if (BuiltinID
== clang::AArch64::BI__builtin_arm_strex
||
11194 BuiltinID
== clang::AArch64::BI__builtin_arm_stlex
) {
11195 Value
*StoreVal
= EmitScalarExpr(E
->getArg(0));
11196 Value
*StoreAddr
= EmitScalarExpr(E
->getArg(1));
11198 QualType Ty
= E
->getArg(0)->getType();
11199 llvm::Type
*StoreTy
=
11200 llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty
));
11202 if (StoreVal
->getType()->isPointerTy())
11203 StoreVal
= Builder
.CreatePtrToInt(StoreVal
, Int64Ty
);
11205 llvm::Type
*IntTy
= llvm::IntegerType::get(
11207 CGM
.getDataLayout().getTypeSizeInBits(StoreVal
->getType()));
11208 StoreVal
= Builder
.CreateBitCast(StoreVal
, IntTy
);
11209 StoreVal
= Builder
.CreateZExtOrBitCast(StoreVal
, Int64Ty
);
11213 CGM
.getIntrinsic(BuiltinID
== clang::AArch64::BI__builtin_arm_stlex
11214 ? Intrinsic::aarch64_stlxr
11215 : Intrinsic::aarch64_stxr
,
11216 StoreAddr
->getType());
11217 CallInst
*CI
= Builder
.CreateCall(F
, {StoreVal
, StoreAddr
}, "stxr");
11219 1, Attribute::get(getLLVMContext(), Attribute::ElementType
, StoreTy
));
11223 if (BuiltinID
== clang::AArch64::BI__getReg
) {
11224 Expr::EvalResult Result
;
11225 if (!E
->getArg(0)->EvaluateAsInt(Result
, CGM
.getContext()))
11226 llvm_unreachable("Sema will ensure that the parameter is constant");
11228 llvm::APSInt Value
= Result
.Val
.getInt();
11229 LLVMContext
&Context
= CGM
.getLLVMContext();
11230 std::string Reg
= Value
== 31 ? "sp" : "x" + toString(Value
, 10);
11232 llvm::Metadata
*Ops
[] = {llvm::MDString::get(Context
, Reg
)};
11233 llvm::MDNode
*RegName
= llvm::MDNode::get(Context
, Ops
);
11234 llvm::Value
*Metadata
= llvm::MetadataAsValue::get(Context
, RegName
);
11236 llvm::Function
*F
=
11237 CGM
.getIntrinsic(llvm::Intrinsic::read_register
, {Int64Ty
});
11238 return Builder
.CreateCall(F
, Metadata
);
11241 if (BuiltinID
== clang::AArch64::BI__break
) {
11242 Expr::EvalResult Result
;
11243 if (!E
->getArg(0)->EvaluateAsInt(Result
, CGM
.getContext()))
11244 llvm_unreachable("Sema will ensure that the parameter is constant");
11246 llvm::Function
*F
= CGM
.getIntrinsic(llvm::Intrinsic::aarch64_break
);
11247 return Builder
.CreateCall(F
, {EmitScalarExpr(E
->getArg(0))});
11250 if (BuiltinID
== clang::AArch64::BI__builtin_arm_clrex
) {
11251 Function
*F
= CGM
.getIntrinsic(Intrinsic::aarch64_clrex
);
11252 return Builder
.CreateCall(F
);
11255 if (BuiltinID
== clang::AArch64::BI_ReadWriteBarrier
)
11256 return Builder
.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent
,
11257 llvm::SyncScope::SingleThread
);
11260 Intrinsic::ID CRCIntrinsicID
= Intrinsic::not_intrinsic
;
11261 switch (BuiltinID
) {
11262 case clang::AArch64::BI__builtin_arm_crc32b
:
11263 CRCIntrinsicID
= Intrinsic::aarch64_crc32b
; break;
11264 case clang::AArch64::BI__builtin_arm_crc32cb
:
11265 CRCIntrinsicID
= Intrinsic::aarch64_crc32cb
; break;
11266 case clang::AArch64::BI__builtin_arm_crc32h
:
11267 CRCIntrinsicID
= Intrinsic::aarch64_crc32h
; break;
11268 case clang::AArch64::BI__builtin_arm_crc32ch
:
11269 CRCIntrinsicID
= Intrinsic::aarch64_crc32ch
; break;
11270 case clang::AArch64::BI__builtin_arm_crc32w
:
11271 CRCIntrinsicID
= Intrinsic::aarch64_crc32w
; break;
11272 case clang::AArch64::BI__builtin_arm_crc32cw
:
11273 CRCIntrinsicID
= Intrinsic::aarch64_crc32cw
; break;
11274 case clang::AArch64::BI__builtin_arm_crc32d
:
11275 CRCIntrinsicID
= Intrinsic::aarch64_crc32x
; break;
11276 case clang::AArch64::BI__builtin_arm_crc32cd
:
11277 CRCIntrinsicID
= Intrinsic::aarch64_crc32cx
; break;
11280 if (CRCIntrinsicID
!= Intrinsic::not_intrinsic
) {
11281 Value
*Arg0
= EmitScalarExpr(E
->getArg(0));
11282 Value
*Arg1
= EmitScalarExpr(E
->getArg(1));
11283 Function
*F
= CGM
.getIntrinsic(CRCIntrinsicID
);
11285 llvm::Type
*DataTy
= F
->getFunctionType()->getParamType(1);
11286 Arg1
= Builder
.CreateZExtOrBitCast(Arg1
, DataTy
);
11288 return Builder
.CreateCall(F
, {Arg0
, Arg1
});
11291 // Memory Operations (MOPS)
11292 if (BuiltinID
== AArch64::BI__builtin_arm_mops_memset_tag
) {
11293 Value
*Dst
= EmitScalarExpr(E
->getArg(0));
11294 Value
*Val
= EmitScalarExpr(E
->getArg(1));
11295 Value
*Size
= EmitScalarExpr(E
->getArg(2));
11296 Dst
= Builder
.CreatePointerCast(Dst
, Int8PtrTy
);
11297 Val
= Builder
.CreateTrunc(Val
, Int8Ty
);
11298 Size
= Builder
.CreateIntCast(Size
, Int64Ty
, false);
11299 return Builder
.CreateCall(
11300 CGM
.getIntrinsic(Intrinsic::aarch64_mops_memset_tag
), {Dst
, Val
, Size
});
11303 // Memory Tagging Extensions (MTE) Intrinsics
11304 Intrinsic::ID MTEIntrinsicID
= Intrinsic::not_intrinsic
;
11305 switch (BuiltinID
) {
11306 case clang::AArch64::BI__builtin_arm_irg
:
11307 MTEIntrinsicID
= Intrinsic::aarch64_irg
; break;
11308 case clang::AArch64::BI__builtin_arm_addg
:
11309 MTEIntrinsicID
= Intrinsic::aarch64_addg
; break;
11310 case clang::AArch64::BI__builtin_arm_gmi
:
11311 MTEIntrinsicID
= Intrinsic::aarch64_gmi
; break;
11312 case clang::AArch64::BI__builtin_arm_ldg
:
11313 MTEIntrinsicID
= Intrinsic::aarch64_ldg
; break;
11314 case clang::AArch64::BI__builtin_arm_stg
:
11315 MTEIntrinsicID
= Intrinsic::aarch64_stg
; break;
11316 case clang::AArch64::BI__builtin_arm_subp
:
11317 MTEIntrinsicID
= Intrinsic::aarch64_subp
; break;
11320 if (MTEIntrinsicID
!= Intrinsic::not_intrinsic
) {
11321 llvm::Type
*T
= ConvertType(E
->getType());
11323 if (MTEIntrinsicID
== Intrinsic::aarch64_irg
) {
11324 Value
*Pointer
= EmitScalarExpr(E
->getArg(0));
11325 Value
*Mask
= EmitScalarExpr(E
->getArg(1));
11327 Pointer
= Builder
.CreatePointerCast(Pointer
, Int8PtrTy
);
11328 Mask
= Builder
.CreateZExt(Mask
, Int64Ty
);
11329 Value
*RV
= Builder
.CreateCall(
11330 CGM
.getIntrinsic(MTEIntrinsicID
), {Pointer
, Mask
});
11331 return Builder
.CreatePointerCast(RV
, T
);
11333 if (MTEIntrinsicID
== Intrinsic::aarch64_addg
) {
11334 Value
*Pointer
= EmitScalarExpr(E
->getArg(0));
11335 Value
*TagOffset
= EmitScalarExpr(E
->getArg(1));
11337 Pointer
= Builder
.CreatePointerCast(Pointer
, Int8PtrTy
);
11338 TagOffset
= Builder
.CreateZExt(TagOffset
, Int64Ty
);
11339 Value
*RV
= Builder
.CreateCall(
11340 CGM
.getIntrinsic(MTEIntrinsicID
), {Pointer
, TagOffset
});
11341 return Builder
.CreatePointerCast(RV
, T
);
11343 if (MTEIntrinsicID
== Intrinsic::aarch64_gmi
) {
11344 Value
*Pointer
= EmitScalarExpr(E
->getArg(0));
11345 Value
*ExcludedMask
= EmitScalarExpr(E
->getArg(1));
11347 ExcludedMask
= Builder
.CreateZExt(ExcludedMask
, Int64Ty
);
11348 Pointer
= Builder
.CreatePointerCast(Pointer
, Int8PtrTy
);
11349 return Builder
.CreateCall(
11350 CGM
.getIntrinsic(MTEIntrinsicID
), {Pointer
, ExcludedMask
});
11352 // Although it is possible to supply a different return
11353 // address (first arg) to this intrinsic, for now we set
11354 // return address same as input address.
11355 if (MTEIntrinsicID
== Intrinsic::aarch64_ldg
) {
11356 Value
*TagAddress
= EmitScalarExpr(E
->getArg(0));
11357 TagAddress
= Builder
.CreatePointerCast(TagAddress
, Int8PtrTy
);
11358 Value
*RV
= Builder
.CreateCall(
11359 CGM
.getIntrinsic(MTEIntrinsicID
), {TagAddress
, TagAddress
});
11360 return Builder
.CreatePointerCast(RV
, T
);
11362 // Although it is possible to supply a different tag (to set)
11363 // to this intrinsic (as first arg), for now we supply
11364 // the tag that is in input address arg (common use case).
11365 if (MTEIntrinsicID
== Intrinsic::aarch64_stg
) {
11366 Value
*TagAddress
= EmitScalarExpr(E
->getArg(0));
11367 TagAddress
= Builder
.CreatePointerCast(TagAddress
, Int8PtrTy
);
11368 return Builder
.CreateCall(
11369 CGM
.getIntrinsic(MTEIntrinsicID
), {TagAddress
, TagAddress
});
11371 if (MTEIntrinsicID
== Intrinsic::aarch64_subp
) {
11372 Value
*PointerA
= EmitScalarExpr(E
->getArg(0));
11373 Value
*PointerB
= EmitScalarExpr(E
->getArg(1));
11374 PointerA
= Builder
.CreatePointerCast(PointerA
, Int8PtrTy
);
11375 PointerB
= Builder
.CreatePointerCast(PointerB
, Int8PtrTy
);
11376 return Builder
.CreateCall(
11377 CGM
.getIntrinsic(MTEIntrinsicID
), {PointerA
, PointerB
});
11381 if (BuiltinID
== clang::AArch64::BI__builtin_arm_rsr
||
11382 BuiltinID
== clang::AArch64::BI__builtin_arm_rsr64
||
11383 BuiltinID
== clang::AArch64::BI__builtin_arm_rsr128
||
11384 BuiltinID
== clang::AArch64::BI__builtin_arm_rsrp
||
11385 BuiltinID
== clang::AArch64::BI__builtin_arm_wsr
||
11386 BuiltinID
== clang::AArch64::BI__builtin_arm_wsr64
||
11387 BuiltinID
== clang::AArch64::BI__builtin_arm_wsr128
||
11388 BuiltinID
== clang::AArch64::BI__builtin_arm_wsrp
) {
11390 SpecialRegisterAccessKind AccessKind
= Write
;
11391 if (BuiltinID
== clang::AArch64::BI__builtin_arm_rsr
||
11392 BuiltinID
== clang::AArch64::BI__builtin_arm_rsr64
||
11393 BuiltinID
== clang::AArch64::BI__builtin_arm_rsr128
||
11394 BuiltinID
== clang::AArch64::BI__builtin_arm_rsrp
)
11395 AccessKind
= VolatileRead
;
11397 bool IsPointerBuiltin
= BuiltinID
== clang::AArch64::BI__builtin_arm_rsrp
||
11398 BuiltinID
== clang::AArch64::BI__builtin_arm_wsrp
;
11400 bool Is32Bit
= BuiltinID
== clang::AArch64::BI__builtin_arm_rsr
||
11401 BuiltinID
== clang::AArch64::BI__builtin_arm_wsr
;
11403 bool Is128Bit
= BuiltinID
== clang::AArch64::BI__builtin_arm_rsr128
||
11404 BuiltinID
== clang::AArch64::BI__builtin_arm_wsr128
;
11406 llvm::Type
*ValueType
;
11407 llvm::Type
*RegisterType
= Int64Ty
;
11409 ValueType
= Int32Ty
;
11410 } else if (Is128Bit
) {
11411 llvm::Type
*Int128Ty
=
11412 llvm::IntegerType::getInt128Ty(CGM
.getLLVMContext());
11413 ValueType
= Int128Ty
;
11414 RegisterType
= Int128Ty
;
11415 } else if (IsPointerBuiltin
) {
11416 ValueType
= VoidPtrTy
;
11418 ValueType
= Int64Ty
;
11421 return EmitSpecialRegisterBuiltin(*this, E
, RegisterType
, ValueType
,
11425 if (BuiltinID
== clang::AArch64::BI_ReadStatusReg
||
11426 BuiltinID
== clang::AArch64::BI_WriteStatusReg
) {
11427 LLVMContext
&Context
= CGM
.getLLVMContext();
11430 E
->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
11432 std::string SysRegStr
;
11433 llvm::raw_string_ostream(SysRegStr
) <<
11434 ((1 << 1) | ((SysReg
>> 14) & 1)) << ":" <<
11435 ((SysReg
>> 11) & 7) << ":" <<
11436 ((SysReg
>> 7) & 15) << ":" <<
11437 ((SysReg
>> 3) & 15) << ":" <<
11440 llvm::Metadata
*Ops
[] = { llvm::MDString::get(Context
, SysRegStr
) };
11441 llvm::MDNode
*RegName
= llvm::MDNode::get(Context
, Ops
);
11442 llvm::Value
*Metadata
= llvm::MetadataAsValue::get(Context
, RegName
);
11444 llvm::Type
*RegisterType
= Int64Ty
;
11445 llvm::Type
*Types
[] = { RegisterType
};
11447 if (BuiltinID
== clang::AArch64::BI_ReadStatusReg
) {
11448 llvm::Function
*F
= CGM
.getIntrinsic(llvm::Intrinsic::read_register
, Types
);
11450 return Builder
.CreateCall(F
, Metadata
);
11453 llvm::Function
*F
= CGM
.getIntrinsic(llvm::Intrinsic::write_register
, Types
);
11454 llvm::Value
*ArgValue
= EmitScalarExpr(E
->getArg(1));
11456 return Builder
.CreateCall(F
, { Metadata
, ArgValue
});
11459 if (BuiltinID
== clang::AArch64::BI_AddressOfReturnAddress
) {
11460 llvm::Function
*F
=
11461 CGM
.getIntrinsic(Intrinsic::addressofreturnaddress
, AllocaInt8PtrTy
);
11462 return Builder
.CreateCall(F
);
11465 if (BuiltinID
== clang::AArch64::BI__builtin_sponentry
) {
11466 llvm::Function
*F
= CGM
.getIntrinsic(Intrinsic::sponentry
, AllocaInt8PtrTy
);
11467 return Builder
.CreateCall(F
);
11470 if (BuiltinID
== clang::AArch64::BI__mulh
||
11471 BuiltinID
== clang::AArch64::BI__umulh
) {
11472 llvm::Type
*ResType
= ConvertType(E
->getType());
11473 llvm::Type
*Int128Ty
= llvm::IntegerType::get(getLLVMContext(), 128);
11475 bool IsSigned
= BuiltinID
== clang::AArch64::BI__mulh
;
11477 Builder
.CreateIntCast(EmitScalarExpr(E
->getArg(0)), Int128Ty
, IsSigned
);
11479 Builder
.CreateIntCast(EmitScalarExpr(E
->getArg(1)), Int128Ty
, IsSigned
);
11481 Value
*MulResult
, *HigherBits
;
11483 MulResult
= Builder
.CreateNSWMul(LHS
, RHS
);
11484 HigherBits
= Builder
.CreateAShr(MulResult
, 64);
11486 MulResult
= Builder
.CreateNUWMul(LHS
, RHS
);
11487 HigherBits
= Builder
.CreateLShr(MulResult
, 64);
11489 HigherBits
= Builder
.CreateIntCast(HigherBits
, ResType
, IsSigned
);
11494 if (BuiltinID
== AArch64::BI__writex18byte
||
11495 BuiltinID
== AArch64::BI__writex18word
||
11496 BuiltinID
== AArch64::BI__writex18dword
||
11497 BuiltinID
== AArch64::BI__writex18qword
) {
11499 LLVMContext
&Context
= CGM
.getLLVMContext();
11500 llvm::Metadata
*Ops
[] = {llvm::MDString::get(Context
, "x18")};
11501 llvm::MDNode
*RegName
= llvm::MDNode::get(Context
, Ops
);
11502 llvm::Value
*Metadata
= llvm::MetadataAsValue::get(Context
, RegName
);
11503 llvm::Function
*F
=
11504 CGM
.getIntrinsic(llvm::Intrinsic::read_register
, {Int64Ty
});
11505 llvm::Value
*X18
= Builder
.CreateCall(F
, Metadata
);
11506 X18
= Builder
.CreateIntToPtr(X18
, Int8PtrTy
);
11508 // Store val at x18 + offset
11509 Value
*Offset
= Builder
.CreateZExt(EmitScalarExpr(E
->getArg(0)), Int64Ty
);
11510 Value
*Ptr
= Builder
.CreateGEP(Int8Ty
, X18
, Offset
);
11511 Value
*Val
= EmitScalarExpr(E
->getArg(1));
11512 StoreInst
*Store
= Builder
.CreateAlignedStore(Val
, Ptr
, CharUnits::One());
11516 if (BuiltinID
== AArch64::BI__readx18byte
||
11517 BuiltinID
== AArch64::BI__readx18word
||
11518 BuiltinID
== AArch64::BI__readx18dword
||
11519 BuiltinID
== AArch64::BI__readx18qword
) {
11520 llvm::Type
*IntTy
= ConvertType(E
->getType());
11523 LLVMContext
&Context
= CGM
.getLLVMContext();
11524 llvm::Metadata
*Ops
[] = {llvm::MDString::get(Context
, "x18")};
11525 llvm::MDNode
*RegName
= llvm::MDNode::get(Context
, Ops
);
11526 llvm::Value
*Metadata
= llvm::MetadataAsValue::get(Context
, RegName
);
11527 llvm::Function
*F
=
11528 CGM
.getIntrinsic(llvm::Intrinsic::read_register
, {Int64Ty
});
11529 llvm::Value
*X18
= Builder
.CreateCall(F
, Metadata
);
11530 X18
= Builder
.CreateIntToPtr(X18
, Int8PtrTy
);
11532 // Load x18 + offset
11533 Value
*Offset
= Builder
.CreateZExt(EmitScalarExpr(E
->getArg(0)), Int64Ty
);
11534 Value
*Ptr
= Builder
.CreateGEP(Int8Ty
, X18
, Offset
);
11535 LoadInst
*Load
= Builder
.CreateAlignedLoad(IntTy
, Ptr
, CharUnits::One());
11539 if (BuiltinID
== AArch64::BI_CopyDoubleFromInt64
||
11540 BuiltinID
== AArch64::BI_CopyFloatFromInt32
||
11541 BuiltinID
== AArch64::BI_CopyInt32FromFloat
||
11542 BuiltinID
== AArch64::BI_CopyInt64FromDouble
) {
11543 Value
*Arg
= EmitScalarExpr(E
->getArg(0));
11544 llvm::Type
*RetTy
= ConvertType(E
->getType());
11545 return Builder
.CreateBitCast(Arg
, RetTy
);
11548 if (BuiltinID
== AArch64::BI_CountLeadingOnes
||
11549 BuiltinID
== AArch64::BI_CountLeadingOnes64
||
11550 BuiltinID
== AArch64::BI_CountLeadingZeros
||
11551 BuiltinID
== AArch64::BI_CountLeadingZeros64
) {
11552 Value
*Arg
= EmitScalarExpr(E
->getArg(0));
11553 llvm::Type
*ArgType
= Arg
->getType();
11555 if (BuiltinID
== AArch64::BI_CountLeadingOnes
||
11556 BuiltinID
== AArch64::BI_CountLeadingOnes64
)
11557 Arg
= Builder
.CreateXor(Arg
, Constant::getAllOnesValue(ArgType
));
11559 Function
*F
= CGM
.getIntrinsic(Intrinsic::ctlz
, ArgType
);
11560 Value
*Result
= Builder
.CreateCall(F
, {Arg
, Builder
.getInt1(false)});
11562 if (BuiltinID
== AArch64::BI_CountLeadingOnes64
||
11563 BuiltinID
== AArch64::BI_CountLeadingZeros64
)
11564 Result
= Builder
.CreateTrunc(Result
, Builder
.getInt32Ty());
11568 if (BuiltinID
== AArch64::BI_CountLeadingSigns
||
11569 BuiltinID
== AArch64::BI_CountLeadingSigns64
) {
11570 Value
*Arg
= EmitScalarExpr(E
->getArg(0));
11572 Function
*F
= (BuiltinID
== AArch64::BI_CountLeadingSigns
)
11573 ? CGM
.getIntrinsic(Intrinsic::aarch64_cls
)
11574 : CGM
.getIntrinsic(Intrinsic::aarch64_cls64
);
11576 Value
*Result
= Builder
.CreateCall(F
, Arg
, "cls");
11577 if (BuiltinID
== AArch64::BI_CountLeadingSigns64
)
11578 Result
= Builder
.CreateTrunc(Result
, Builder
.getInt32Ty());
11582 if (BuiltinID
== AArch64::BI_CountOneBits
||
11583 BuiltinID
== AArch64::BI_CountOneBits64
) {
11584 Value
*ArgValue
= EmitScalarExpr(E
->getArg(0));
11585 llvm::Type
*ArgType
= ArgValue
->getType();
11586 Function
*F
= CGM
.getIntrinsic(Intrinsic::ctpop
, ArgType
);
11588 Value
*Result
= Builder
.CreateCall(F
, ArgValue
);
11589 if (BuiltinID
== AArch64::BI_CountOneBits64
)
11590 Result
= Builder
.CreateTrunc(Result
, Builder
.getInt32Ty());
11594 if (BuiltinID
== AArch64::BI__prefetch
) {
11595 Value
*Address
= EmitScalarExpr(E
->getArg(0));
11596 Value
*RW
= llvm::ConstantInt::get(Int32Ty
, 0);
11597 Value
*Locality
= ConstantInt::get(Int32Ty
, 3);
11598 Value
*Data
= llvm::ConstantInt::get(Int32Ty
, 1);
11599 Function
*F
= CGM
.getIntrinsic(Intrinsic::prefetch
, Address
->getType());
11600 return Builder
.CreateCall(F
, {Address
, RW
, Locality
, Data
});
11603 if (BuiltinID
== AArch64::BI__hlt
) {
11604 Function
*F
= CGM
.getIntrinsic(Intrinsic::aarch64_hlt
);
11605 Builder
.CreateCall(F
, {EmitScalarExpr(E
->getArg(0))});
11607 // Return 0 for convenience, even though MSVC returns some other undefined
11609 return ConstantInt::get(Builder
.getInt32Ty(), 0);
11612 // Handle MSVC intrinsics before argument evaluation to prevent double
11614 if (std::optional
<MSVCIntrin
> MsvcIntId
=
11615 translateAarch64ToMsvcIntrin(BuiltinID
))
11616 return EmitMSVCBuiltinExpr(*MsvcIntId
, E
);
11618 // Some intrinsics are equivalent - if they are use the base intrinsic ID.
11619 auto It
= llvm::find_if(NEONEquivalentIntrinsicMap
, [BuiltinID
](auto &P
) {
11620 return P
.first
== BuiltinID
;
11622 if (It
!= end(NEONEquivalentIntrinsicMap
))
11623 BuiltinID
= It
->second
;
11625 // Find out if any arguments are required to be integer constant
11627 unsigned ICEArguments
= 0;
11628 ASTContext::GetBuiltinTypeError Error
;
11629 getContext().GetBuiltinType(BuiltinID
, Error
, &ICEArguments
);
11630 assert(Error
== ASTContext::GE_None
&& "Should not codegen an error");
11632 llvm::SmallVector
<Value
*, 4> Ops
;
11633 Address PtrOp0
= Address::invalid();
11634 for (unsigned i
= 0, e
= E
->getNumArgs() - 1; i
!= e
; i
++) {
11636 switch (BuiltinID
) {
11637 case NEON::BI__builtin_neon_vld1_v
:
11638 case NEON::BI__builtin_neon_vld1q_v
:
11639 case NEON::BI__builtin_neon_vld1_dup_v
:
11640 case NEON::BI__builtin_neon_vld1q_dup_v
:
11641 case NEON::BI__builtin_neon_vld1_lane_v
:
11642 case NEON::BI__builtin_neon_vld1q_lane_v
:
11643 case NEON::BI__builtin_neon_vst1_v
:
11644 case NEON::BI__builtin_neon_vst1q_v
:
11645 case NEON::BI__builtin_neon_vst1_lane_v
:
11646 case NEON::BI__builtin_neon_vst1q_lane_v
:
11647 case NEON::BI__builtin_neon_vldap1_lane_s64
:
11648 case NEON::BI__builtin_neon_vldap1q_lane_s64
:
11649 case NEON::BI__builtin_neon_vstl1_lane_s64
:
11650 case NEON::BI__builtin_neon_vstl1q_lane_s64
:
11651 // Get the alignment for the argument in addition to the value;
11652 // we'll use it later.
11653 PtrOp0
= EmitPointerWithAlignment(E
->getArg(0));
11654 Ops
.push_back(PtrOp0
.emitRawPointer(*this));
11658 Ops
.push_back(EmitScalarOrConstFoldImmArg(ICEArguments
, i
, E
));
11661 auto SISDMap
= ArrayRef(AArch64SISDIntrinsicMap
);
11662 const ARMVectorIntrinsicInfo
*Builtin
= findARMVectorIntrinsicInMap(
11663 SISDMap
, BuiltinID
, AArch64SISDIntrinsicsProvenSorted
);
11666 Ops
.push_back(EmitScalarExpr(E
->getArg(E
->getNumArgs() - 1)));
11667 Value
*Result
= EmitCommonNeonSISDBuiltinExpr(*this, *Builtin
, Ops
, E
);
11668 assert(Result
&& "SISD intrinsic should have been handled");
11672 const Expr
*Arg
= E
->getArg(E
->getNumArgs()-1);
11673 NeonTypeFlags
Type(0);
11674 if (std::optional
<llvm::APSInt
> Result
=
11675 Arg
->getIntegerConstantExpr(getContext()))
11676 // Determine the type of this overloaded NEON intrinsic.
11677 Type
= NeonTypeFlags(Result
->getZExtValue());
11679 bool usgn
= Type
.isUnsigned();
11680 bool quad
= Type
.isQuad();
11682 // Handle non-overloaded intrinsics first.
11683 switch (BuiltinID
) {
11685 case NEON::BI__builtin_neon_vabsh_f16
:
11686 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
11687 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::fabs
, HalfTy
), Ops
, "vabs");
11688 case NEON::BI__builtin_neon_vaddq_p128
: {
11689 llvm::Type
*Ty
= GetNeonType(this, NeonTypeFlags::Poly128
);
11690 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
11691 Ops
[0] = Builder
.CreateBitCast(Ops
[0], Ty
);
11692 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
11693 Ops
[0] = Builder
.CreateXor(Ops
[0], Ops
[1]);
11694 llvm::Type
*Int128Ty
= llvm::Type::getIntNTy(getLLVMContext(), 128);
11695 return Builder
.CreateBitCast(Ops
[0], Int128Ty
);
11697 case NEON::BI__builtin_neon_vldrq_p128
: {
11698 llvm::Type
*Int128Ty
= llvm::Type::getIntNTy(getLLVMContext(), 128);
11699 Value
*Ptr
= EmitScalarExpr(E
->getArg(0));
11700 return Builder
.CreateAlignedLoad(Int128Ty
, Ptr
,
11701 CharUnits::fromQuantity(16));
11703 case NEON::BI__builtin_neon_vstrq_p128
: {
11704 Value
*Ptr
= Ops
[0];
11705 return Builder
.CreateDefaultAlignedStore(EmitScalarExpr(E
->getArg(1)), Ptr
);
11707 case NEON::BI__builtin_neon_vcvts_f32_u32
:
11708 case NEON::BI__builtin_neon_vcvtd_f64_u64
:
11711 case NEON::BI__builtin_neon_vcvts_f32_s32
:
11712 case NEON::BI__builtin_neon_vcvtd_f64_s64
: {
11713 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
11714 bool Is64
= Ops
[0]->getType()->getPrimitiveSizeInBits() == 64;
11715 llvm::Type
*InTy
= Is64
? Int64Ty
: Int32Ty
;
11716 llvm::Type
*FTy
= Is64
? DoubleTy
: FloatTy
;
11717 Ops
[0] = Builder
.CreateBitCast(Ops
[0], InTy
);
11719 return Builder
.CreateUIToFP(Ops
[0], FTy
);
11720 return Builder
.CreateSIToFP(Ops
[0], FTy
);
11722 case NEON::BI__builtin_neon_vcvth_f16_u16
:
11723 case NEON::BI__builtin_neon_vcvth_f16_u32
:
11724 case NEON::BI__builtin_neon_vcvth_f16_u64
:
11727 case NEON::BI__builtin_neon_vcvth_f16_s16
:
11728 case NEON::BI__builtin_neon_vcvth_f16_s32
:
11729 case NEON::BI__builtin_neon_vcvth_f16_s64
: {
11730 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
11731 llvm::Type
*FTy
= HalfTy
;
11733 if (Ops
[0]->getType()->getPrimitiveSizeInBits() == 64)
11735 else if (Ops
[0]->getType()->getPrimitiveSizeInBits() == 32)
11739 Ops
[0] = Builder
.CreateBitCast(Ops
[0], InTy
);
11741 return Builder
.CreateUIToFP(Ops
[0], FTy
);
11742 return Builder
.CreateSIToFP(Ops
[0], FTy
);
11744 case NEON::BI__builtin_neon_vcvtah_u16_f16
:
11745 case NEON::BI__builtin_neon_vcvtmh_u16_f16
:
11746 case NEON::BI__builtin_neon_vcvtnh_u16_f16
:
11747 case NEON::BI__builtin_neon_vcvtph_u16_f16
:
11748 case NEON::BI__builtin_neon_vcvth_u16_f16
:
11749 case NEON::BI__builtin_neon_vcvtah_s16_f16
:
11750 case NEON::BI__builtin_neon_vcvtmh_s16_f16
:
11751 case NEON::BI__builtin_neon_vcvtnh_s16_f16
:
11752 case NEON::BI__builtin_neon_vcvtph_s16_f16
:
11753 case NEON::BI__builtin_neon_vcvth_s16_f16
: {
11755 llvm::Type
* InTy
= Int32Ty
;
11756 llvm::Type
* FTy
= HalfTy
;
11757 llvm::Type
*Tys
[2] = {InTy
, FTy
};
11758 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
11759 switch (BuiltinID
) {
11760 default: llvm_unreachable("missing builtin ID in switch!");
11761 case NEON::BI__builtin_neon_vcvtah_u16_f16
:
11762 Int
= Intrinsic::aarch64_neon_fcvtau
; break;
11763 case NEON::BI__builtin_neon_vcvtmh_u16_f16
:
11764 Int
= Intrinsic::aarch64_neon_fcvtmu
; break;
11765 case NEON::BI__builtin_neon_vcvtnh_u16_f16
:
11766 Int
= Intrinsic::aarch64_neon_fcvtnu
; break;
11767 case NEON::BI__builtin_neon_vcvtph_u16_f16
:
11768 Int
= Intrinsic::aarch64_neon_fcvtpu
; break;
11769 case NEON::BI__builtin_neon_vcvth_u16_f16
:
11770 Int
= Intrinsic::aarch64_neon_fcvtzu
; break;
11771 case NEON::BI__builtin_neon_vcvtah_s16_f16
:
11772 Int
= Intrinsic::aarch64_neon_fcvtas
; break;
11773 case NEON::BI__builtin_neon_vcvtmh_s16_f16
:
11774 Int
= Intrinsic::aarch64_neon_fcvtms
; break;
11775 case NEON::BI__builtin_neon_vcvtnh_s16_f16
:
11776 Int
= Intrinsic::aarch64_neon_fcvtns
; break;
11777 case NEON::BI__builtin_neon_vcvtph_s16_f16
:
11778 Int
= Intrinsic::aarch64_neon_fcvtps
; break;
11779 case NEON::BI__builtin_neon_vcvth_s16_f16
:
11780 Int
= Intrinsic::aarch64_neon_fcvtzs
; break;
11782 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "fcvt");
11783 return Builder
.CreateTrunc(Ops
[0], Int16Ty
);
11785 case NEON::BI__builtin_neon_vcaleh_f16
:
11786 case NEON::BI__builtin_neon_vcalth_f16
:
11787 case NEON::BI__builtin_neon_vcageh_f16
:
11788 case NEON::BI__builtin_neon_vcagth_f16
: {
11790 llvm::Type
* InTy
= Int32Ty
;
11791 llvm::Type
* FTy
= HalfTy
;
11792 llvm::Type
*Tys
[2] = {InTy
, FTy
};
11793 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
11794 switch (BuiltinID
) {
11795 default: llvm_unreachable("missing builtin ID in switch!");
11796 case NEON::BI__builtin_neon_vcageh_f16
:
11797 Int
= Intrinsic::aarch64_neon_facge
; break;
11798 case NEON::BI__builtin_neon_vcagth_f16
:
11799 Int
= Intrinsic::aarch64_neon_facgt
; break;
11800 case NEON::BI__builtin_neon_vcaleh_f16
:
11801 Int
= Intrinsic::aarch64_neon_facge
; std::swap(Ops
[0], Ops
[1]); break;
11802 case NEON::BI__builtin_neon_vcalth_f16
:
11803 Int
= Intrinsic::aarch64_neon_facgt
; std::swap(Ops
[0], Ops
[1]); break;
11805 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "facg");
11806 return Builder
.CreateTrunc(Ops
[0], Int16Ty
);
11808 case NEON::BI__builtin_neon_vcvth_n_s16_f16
:
11809 case NEON::BI__builtin_neon_vcvth_n_u16_f16
: {
11811 llvm::Type
* InTy
= Int32Ty
;
11812 llvm::Type
* FTy
= HalfTy
;
11813 llvm::Type
*Tys
[2] = {InTy
, FTy
};
11814 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
11815 switch (BuiltinID
) {
11816 default: llvm_unreachable("missing builtin ID in switch!");
11817 case NEON::BI__builtin_neon_vcvth_n_s16_f16
:
11818 Int
= Intrinsic::aarch64_neon_vcvtfp2fxs
; break;
11819 case NEON::BI__builtin_neon_vcvth_n_u16_f16
:
11820 Int
= Intrinsic::aarch64_neon_vcvtfp2fxu
; break;
11822 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "fcvth_n");
11823 return Builder
.CreateTrunc(Ops
[0], Int16Ty
);
11825 case NEON::BI__builtin_neon_vcvth_n_f16_s16
:
11826 case NEON::BI__builtin_neon_vcvth_n_f16_u16
: {
11828 llvm::Type
* FTy
= HalfTy
;
11829 llvm::Type
* InTy
= Int32Ty
;
11830 llvm::Type
*Tys
[2] = {FTy
, InTy
};
11831 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
11832 switch (BuiltinID
) {
11833 default: llvm_unreachable("missing builtin ID in switch!");
11834 case NEON::BI__builtin_neon_vcvth_n_f16_s16
:
11835 Int
= Intrinsic::aarch64_neon_vcvtfxs2fp
;
11836 Ops
[0] = Builder
.CreateSExt(Ops
[0], InTy
, "sext");
11838 case NEON::BI__builtin_neon_vcvth_n_f16_u16
:
11839 Int
= Intrinsic::aarch64_neon_vcvtfxu2fp
;
11840 Ops
[0] = Builder
.CreateZExt(Ops
[0], InTy
);
11843 return EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "fcvth_n");
11845 case NEON::BI__builtin_neon_vpaddd_s64
: {
11846 auto *Ty
= llvm::FixedVectorType::get(Int64Ty
, 2);
11847 Value
*Vec
= EmitScalarExpr(E
->getArg(0));
11848 // The vector is v2f64, so make sure it's bitcast to that.
11849 Vec
= Builder
.CreateBitCast(Vec
, Ty
, "v2i64");
11850 llvm::Value
*Idx0
= llvm::ConstantInt::get(SizeTy
, 0);
11851 llvm::Value
*Idx1
= llvm::ConstantInt::get(SizeTy
, 1);
11852 Value
*Op0
= Builder
.CreateExtractElement(Vec
, Idx0
, "lane0");
11853 Value
*Op1
= Builder
.CreateExtractElement(Vec
, Idx1
, "lane1");
11854 // Pairwise addition of a v2f64 into a scalar f64.
11855 return Builder
.CreateAdd(Op0
, Op1
, "vpaddd");
11857 case NEON::BI__builtin_neon_vpaddd_f64
: {
11858 auto *Ty
= llvm::FixedVectorType::get(DoubleTy
, 2);
11859 Value
*Vec
= EmitScalarExpr(E
->getArg(0));
11860 // The vector is v2f64, so make sure it's bitcast to that.
11861 Vec
= Builder
.CreateBitCast(Vec
, Ty
, "v2f64");
11862 llvm::Value
*Idx0
= llvm::ConstantInt::get(SizeTy
, 0);
11863 llvm::Value
*Idx1
= llvm::ConstantInt::get(SizeTy
, 1);
11864 Value
*Op0
= Builder
.CreateExtractElement(Vec
, Idx0
, "lane0");
11865 Value
*Op1
= Builder
.CreateExtractElement(Vec
, Idx1
, "lane1");
11866 // Pairwise addition of a v2f64 into a scalar f64.
11867 return Builder
.CreateFAdd(Op0
, Op1
, "vpaddd");
11869 case NEON::BI__builtin_neon_vpadds_f32
: {
11870 auto *Ty
= llvm::FixedVectorType::get(FloatTy
, 2);
11871 Value
*Vec
= EmitScalarExpr(E
->getArg(0));
11872 // The vector is v2f32, so make sure it's bitcast to that.
11873 Vec
= Builder
.CreateBitCast(Vec
, Ty
, "v2f32");
11874 llvm::Value
*Idx0
= llvm::ConstantInt::get(SizeTy
, 0);
11875 llvm::Value
*Idx1
= llvm::ConstantInt::get(SizeTy
, 1);
11876 Value
*Op0
= Builder
.CreateExtractElement(Vec
, Idx0
, "lane0");
11877 Value
*Op1
= Builder
.CreateExtractElement(Vec
, Idx1
, "lane1");
11878 // Pairwise addition of a v2f32 into a scalar f32.
11879 return Builder
.CreateFAdd(Op0
, Op1
, "vpaddd");
11881 case NEON::BI__builtin_neon_vceqzd_s64
:
11882 case NEON::BI__builtin_neon_vceqzd_f64
:
11883 case NEON::BI__builtin_neon_vceqzs_f32
:
11884 case NEON::BI__builtin_neon_vceqzh_f16
:
11885 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
11886 return EmitAArch64CompareBuiltinExpr(
11887 Ops
[0], ConvertType(E
->getCallReturnType(getContext())),
11888 ICmpInst::FCMP_OEQ
, ICmpInst::ICMP_EQ
, "vceqz");
11889 case NEON::BI__builtin_neon_vcgezd_s64
:
11890 case NEON::BI__builtin_neon_vcgezd_f64
:
11891 case NEON::BI__builtin_neon_vcgezs_f32
:
11892 case NEON::BI__builtin_neon_vcgezh_f16
:
11893 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
11894 return EmitAArch64CompareBuiltinExpr(
11895 Ops
[0], ConvertType(E
->getCallReturnType(getContext())),
11896 ICmpInst::FCMP_OGE
, ICmpInst::ICMP_SGE
, "vcgez");
11897 case NEON::BI__builtin_neon_vclezd_s64
:
11898 case NEON::BI__builtin_neon_vclezd_f64
:
11899 case NEON::BI__builtin_neon_vclezs_f32
:
11900 case NEON::BI__builtin_neon_vclezh_f16
:
11901 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
11902 return EmitAArch64CompareBuiltinExpr(
11903 Ops
[0], ConvertType(E
->getCallReturnType(getContext())),
11904 ICmpInst::FCMP_OLE
, ICmpInst::ICMP_SLE
, "vclez");
11905 case NEON::BI__builtin_neon_vcgtzd_s64
:
11906 case NEON::BI__builtin_neon_vcgtzd_f64
:
11907 case NEON::BI__builtin_neon_vcgtzs_f32
:
11908 case NEON::BI__builtin_neon_vcgtzh_f16
:
11909 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
11910 return EmitAArch64CompareBuiltinExpr(
11911 Ops
[0], ConvertType(E
->getCallReturnType(getContext())),
11912 ICmpInst::FCMP_OGT
, ICmpInst::ICMP_SGT
, "vcgtz");
11913 case NEON::BI__builtin_neon_vcltzd_s64
:
11914 case NEON::BI__builtin_neon_vcltzd_f64
:
11915 case NEON::BI__builtin_neon_vcltzs_f32
:
11916 case NEON::BI__builtin_neon_vcltzh_f16
:
11917 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
11918 return EmitAArch64CompareBuiltinExpr(
11919 Ops
[0], ConvertType(E
->getCallReturnType(getContext())),
11920 ICmpInst::FCMP_OLT
, ICmpInst::ICMP_SLT
, "vcltz");
11922 case NEON::BI__builtin_neon_vceqzd_u64
: {
11923 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
11924 Ops
[0] = Builder
.CreateBitCast(Ops
[0], Int64Ty
);
11926 Builder
.CreateICmpEQ(Ops
[0], llvm::Constant::getNullValue(Int64Ty
));
11927 return Builder
.CreateSExt(Ops
[0], Int64Ty
, "vceqzd");
11929 case NEON::BI__builtin_neon_vceqd_f64
:
11930 case NEON::BI__builtin_neon_vcled_f64
:
11931 case NEON::BI__builtin_neon_vcltd_f64
:
11932 case NEON::BI__builtin_neon_vcged_f64
:
11933 case NEON::BI__builtin_neon_vcgtd_f64
: {
11934 llvm::CmpInst::Predicate P
;
11935 switch (BuiltinID
) {
11936 default: llvm_unreachable("missing builtin ID in switch!");
11937 case NEON::BI__builtin_neon_vceqd_f64
: P
= llvm::FCmpInst::FCMP_OEQ
; break;
11938 case NEON::BI__builtin_neon_vcled_f64
: P
= llvm::FCmpInst::FCMP_OLE
; break;
11939 case NEON::BI__builtin_neon_vcltd_f64
: P
= llvm::FCmpInst::FCMP_OLT
; break;
11940 case NEON::BI__builtin_neon_vcged_f64
: P
= llvm::FCmpInst::FCMP_OGE
; break;
11941 case NEON::BI__builtin_neon_vcgtd_f64
: P
= llvm::FCmpInst::FCMP_OGT
; break;
11943 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
11944 Ops
[0] = Builder
.CreateBitCast(Ops
[0], DoubleTy
);
11945 Ops
[1] = Builder
.CreateBitCast(Ops
[1], DoubleTy
);
11946 if (P
== llvm::FCmpInst::FCMP_OEQ
)
11947 Ops
[0] = Builder
.CreateFCmp(P
, Ops
[0], Ops
[1]);
11949 Ops
[0] = Builder
.CreateFCmpS(P
, Ops
[0], Ops
[1]);
11950 return Builder
.CreateSExt(Ops
[0], Int64Ty
, "vcmpd");
11952 case NEON::BI__builtin_neon_vceqs_f32
:
11953 case NEON::BI__builtin_neon_vcles_f32
:
11954 case NEON::BI__builtin_neon_vclts_f32
:
11955 case NEON::BI__builtin_neon_vcges_f32
:
11956 case NEON::BI__builtin_neon_vcgts_f32
: {
11957 llvm::CmpInst::Predicate P
;
11958 switch (BuiltinID
) {
11959 default: llvm_unreachable("missing builtin ID in switch!");
11960 case NEON::BI__builtin_neon_vceqs_f32
: P
= llvm::FCmpInst::FCMP_OEQ
; break;
11961 case NEON::BI__builtin_neon_vcles_f32
: P
= llvm::FCmpInst::FCMP_OLE
; break;
11962 case NEON::BI__builtin_neon_vclts_f32
: P
= llvm::FCmpInst::FCMP_OLT
; break;
11963 case NEON::BI__builtin_neon_vcges_f32
: P
= llvm::FCmpInst::FCMP_OGE
; break;
11964 case NEON::BI__builtin_neon_vcgts_f32
: P
= llvm::FCmpInst::FCMP_OGT
; break;
11966 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
11967 Ops
[0] = Builder
.CreateBitCast(Ops
[0], FloatTy
);
11968 Ops
[1] = Builder
.CreateBitCast(Ops
[1], FloatTy
);
11969 if (P
== llvm::FCmpInst::FCMP_OEQ
)
11970 Ops
[0] = Builder
.CreateFCmp(P
, Ops
[0], Ops
[1]);
11972 Ops
[0] = Builder
.CreateFCmpS(P
, Ops
[0], Ops
[1]);
11973 return Builder
.CreateSExt(Ops
[0], Int32Ty
, "vcmpd");
11975 case NEON::BI__builtin_neon_vceqh_f16
:
11976 case NEON::BI__builtin_neon_vcleh_f16
:
11977 case NEON::BI__builtin_neon_vclth_f16
:
11978 case NEON::BI__builtin_neon_vcgeh_f16
:
11979 case NEON::BI__builtin_neon_vcgth_f16
: {
11980 llvm::CmpInst::Predicate P
;
11981 switch (BuiltinID
) {
11982 default: llvm_unreachable("missing builtin ID in switch!");
11983 case NEON::BI__builtin_neon_vceqh_f16
: P
= llvm::FCmpInst::FCMP_OEQ
; break;
11984 case NEON::BI__builtin_neon_vcleh_f16
: P
= llvm::FCmpInst::FCMP_OLE
; break;
11985 case NEON::BI__builtin_neon_vclth_f16
: P
= llvm::FCmpInst::FCMP_OLT
; break;
11986 case NEON::BI__builtin_neon_vcgeh_f16
: P
= llvm::FCmpInst::FCMP_OGE
; break;
11987 case NEON::BI__builtin_neon_vcgth_f16
: P
= llvm::FCmpInst::FCMP_OGT
; break;
11989 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
11990 Ops
[0] = Builder
.CreateBitCast(Ops
[0], HalfTy
);
11991 Ops
[1] = Builder
.CreateBitCast(Ops
[1], HalfTy
);
11992 if (P
== llvm::FCmpInst::FCMP_OEQ
)
11993 Ops
[0] = Builder
.CreateFCmp(P
, Ops
[0], Ops
[1]);
11995 Ops
[0] = Builder
.CreateFCmpS(P
, Ops
[0], Ops
[1]);
11996 return Builder
.CreateSExt(Ops
[0], Int16Ty
, "vcmpd");
11998 case NEON::BI__builtin_neon_vceqd_s64
:
11999 case NEON::BI__builtin_neon_vceqd_u64
:
12000 case NEON::BI__builtin_neon_vcgtd_s64
:
12001 case NEON::BI__builtin_neon_vcgtd_u64
:
12002 case NEON::BI__builtin_neon_vcltd_s64
:
12003 case NEON::BI__builtin_neon_vcltd_u64
:
12004 case NEON::BI__builtin_neon_vcged_u64
:
12005 case NEON::BI__builtin_neon_vcged_s64
:
12006 case NEON::BI__builtin_neon_vcled_u64
:
12007 case NEON::BI__builtin_neon_vcled_s64
: {
12008 llvm::CmpInst::Predicate P
;
12009 switch (BuiltinID
) {
12010 default: llvm_unreachable("missing builtin ID in switch!");
12011 case NEON::BI__builtin_neon_vceqd_s64
:
12012 case NEON::BI__builtin_neon_vceqd_u64
:P
= llvm::ICmpInst::ICMP_EQ
;break;
12013 case NEON::BI__builtin_neon_vcgtd_s64
:P
= llvm::ICmpInst::ICMP_SGT
;break;
12014 case NEON::BI__builtin_neon_vcgtd_u64
:P
= llvm::ICmpInst::ICMP_UGT
;break;
12015 case NEON::BI__builtin_neon_vcltd_s64
:P
= llvm::ICmpInst::ICMP_SLT
;break;
12016 case NEON::BI__builtin_neon_vcltd_u64
:P
= llvm::ICmpInst::ICMP_ULT
;break;
12017 case NEON::BI__builtin_neon_vcged_u64
:P
= llvm::ICmpInst::ICMP_UGE
;break;
12018 case NEON::BI__builtin_neon_vcged_s64
:P
= llvm::ICmpInst::ICMP_SGE
;break;
12019 case NEON::BI__builtin_neon_vcled_u64
:P
= llvm::ICmpInst::ICMP_ULE
;break;
12020 case NEON::BI__builtin_neon_vcled_s64
:P
= llvm::ICmpInst::ICMP_SLE
;break;
12022 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
12023 Ops
[0] = Builder
.CreateBitCast(Ops
[0], Int64Ty
);
12024 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Int64Ty
);
12025 Ops
[0] = Builder
.CreateICmp(P
, Ops
[0], Ops
[1]);
12026 return Builder
.CreateSExt(Ops
[0], Int64Ty
, "vceqd");
12028 case NEON::BI__builtin_neon_vtstd_s64
:
12029 case NEON::BI__builtin_neon_vtstd_u64
: {
12030 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
12031 Ops
[0] = Builder
.CreateBitCast(Ops
[0], Int64Ty
);
12032 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Int64Ty
);
12033 Ops
[0] = Builder
.CreateAnd(Ops
[0], Ops
[1]);
12034 Ops
[0] = Builder
.CreateICmp(ICmpInst::ICMP_NE
, Ops
[0],
12035 llvm::Constant::getNullValue(Int64Ty
));
12036 return Builder
.CreateSExt(Ops
[0], Int64Ty
, "vtstd");
12038 case NEON::BI__builtin_neon_vset_lane_i8
:
12039 case NEON::BI__builtin_neon_vset_lane_i16
:
12040 case NEON::BI__builtin_neon_vset_lane_i32
:
12041 case NEON::BI__builtin_neon_vset_lane_i64
:
12042 case NEON::BI__builtin_neon_vset_lane_bf16
:
12043 case NEON::BI__builtin_neon_vset_lane_f32
:
12044 case NEON::BI__builtin_neon_vsetq_lane_i8
:
12045 case NEON::BI__builtin_neon_vsetq_lane_i16
:
12046 case NEON::BI__builtin_neon_vsetq_lane_i32
:
12047 case NEON::BI__builtin_neon_vsetq_lane_i64
:
12048 case NEON::BI__builtin_neon_vsetq_lane_bf16
:
12049 case NEON::BI__builtin_neon_vsetq_lane_f32
:
12050 Ops
.push_back(EmitScalarExpr(E
->getArg(2)));
12051 return Builder
.CreateInsertElement(Ops
[1], Ops
[0], Ops
[2], "vset_lane");
12052 case NEON::BI__builtin_neon_vset_lane_f64
:
12053 // The vector type needs a cast for the v1f64 variant.
12055 Builder
.CreateBitCast(Ops
[1], llvm::FixedVectorType::get(DoubleTy
, 1));
12056 Ops
.push_back(EmitScalarExpr(E
->getArg(2)));
12057 return Builder
.CreateInsertElement(Ops
[1], Ops
[0], Ops
[2], "vset_lane");
12058 case NEON::BI__builtin_neon_vsetq_lane_f64
:
12059 // The vector type needs a cast for the v2f64 variant.
12061 Builder
.CreateBitCast(Ops
[1], llvm::FixedVectorType::get(DoubleTy
, 2));
12062 Ops
.push_back(EmitScalarExpr(E
->getArg(2)));
12063 return Builder
.CreateInsertElement(Ops
[1], Ops
[0], Ops
[2], "vset_lane");
12065 case NEON::BI__builtin_neon_vget_lane_i8
:
12066 case NEON::BI__builtin_neon_vdupb_lane_i8
:
12068 Builder
.CreateBitCast(Ops
[0], llvm::FixedVectorType::get(Int8Ty
, 8));
12069 return Builder
.CreateExtractElement(Ops
[0], EmitScalarExpr(E
->getArg(1)),
12071 case NEON::BI__builtin_neon_vgetq_lane_i8
:
12072 case NEON::BI__builtin_neon_vdupb_laneq_i8
:
12074 Builder
.CreateBitCast(Ops
[0], llvm::FixedVectorType::get(Int8Ty
, 16));
12075 return Builder
.CreateExtractElement(Ops
[0], EmitScalarExpr(E
->getArg(1)),
12077 case NEON::BI__builtin_neon_vget_lane_i16
:
12078 case NEON::BI__builtin_neon_vduph_lane_i16
:
12080 Builder
.CreateBitCast(Ops
[0], llvm::FixedVectorType::get(Int16Ty
, 4));
12081 return Builder
.CreateExtractElement(Ops
[0], EmitScalarExpr(E
->getArg(1)),
12083 case NEON::BI__builtin_neon_vgetq_lane_i16
:
12084 case NEON::BI__builtin_neon_vduph_laneq_i16
:
12086 Builder
.CreateBitCast(Ops
[0], llvm::FixedVectorType::get(Int16Ty
, 8));
12087 return Builder
.CreateExtractElement(Ops
[0], EmitScalarExpr(E
->getArg(1)),
12089 case NEON::BI__builtin_neon_vget_lane_i32
:
12090 case NEON::BI__builtin_neon_vdups_lane_i32
:
12092 Builder
.CreateBitCast(Ops
[0], llvm::FixedVectorType::get(Int32Ty
, 2));
12093 return Builder
.CreateExtractElement(Ops
[0], EmitScalarExpr(E
->getArg(1)),
12095 case NEON::BI__builtin_neon_vdups_lane_f32
:
12097 Builder
.CreateBitCast(Ops
[0], llvm::FixedVectorType::get(FloatTy
, 2));
12098 return Builder
.CreateExtractElement(Ops
[0], EmitScalarExpr(E
->getArg(1)),
12100 case NEON::BI__builtin_neon_vgetq_lane_i32
:
12101 case NEON::BI__builtin_neon_vdups_laneq_i32
:
12103 Builder
.CreateBitCast(Ops
[0], llvm::FixedVectorType::get(Int32Ty
, 4));
12104 return Builder
.CreateExtractElement(Ops
[0], EmitScalarExpr(E
->getArg(1)),
12106 case NEON::BI__builtin_neon_vget_lane_i64
:
12107 case NEON::BI__builtin_neon_vdupd_lane_i64
:
12109 Builder
.CreateBitCast(Ops
[0], llvm::FixedVectorType::get(Int64Ty
, 1));
12110 return Builder
.CreateExtractElement(Ops
[0], EmitScalarExpr(E
->getArg(1)),
12112 case NEON::BI__builtin_neon_vdupd_lane_f64
:
12114 Builder
.CreateBitCast(Ops
[0], llvm::FixedVectorType::get(DoubleTy
, 1));
12115 return Builder
.CreateExtractElement(Ops
[0], EmitScalarExpr(E
->getArg(1)),
12117 case NEON::BI__builtin_neon_vgetq_lane_i64
:
12118 case NEON::BI__builtin_neon_vdupd_laneq_i64
:
12120 Builder
.CreateBitCast(Ops
[0], llvm::FixedVectorType::get(Int64Ty
, 2));
12121 return Builder
.CreateExtractElement(Ops
[0], EmitScalarExpr(E
->getArg(1)),
12123 case NEON::BI__builtin_neon_vget_lane_f32
:
12125 Builder
.CreateBitCast(Ops
[0], llvm::FixedVectorType::get(FloatTy
, 2));
12126 return Builder
.CreateExtractElement(Ops
[0], EmitScalarExpr(E
->getArg(1)),
12128 case NEON::BI__builtin_neon_vget_lane_f64
:
12130 Builder
.CreateBitCast(Ops
[0], llvm::FixedVectorType::get(DoubleTy
, 1));
12131 return Builder
.CreateExtractElement(Ops
[0], EmitScalarExpr(E
->getArg(1)),
12133 case NEON::BI__builtin_neon_vgetq_lane_f32
:
12134 case NEON::BI__builtin_neon_vdups_laneq_f32
:
12136 Builder
.CreateBitCast(Ops
[0], llvm::FixedVectorType::get(FloatTy
, 4));
12137 return Builder
.CreateExtractElement(Ops
[0], EmitScalarExpr(E
->getArg(1)),
12139 case NEON::BI__builtin_neon_vgetq_lane_f64
:
12140 case NEON::BI__builtin_neon_vdupd_laneq_f64
:
12142 Builder
.CreateBitCast(Ops
[0], llvm::FixedVectorType::get(DoubleTy
, 2));
12143 return Builder
.CreateExtractElement(Ops
[0], EmitScalarExpr(E
->getArg(1)),
12145 case NEON::BI__builtin_neon_vaddh_f16
:
12146 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
12147 return Builder
.CreateFAdd(Ops
[0], Ops
[1], "vaddh");
12148 case NEON::BI__builtin_neon_vsubh_f16
:
12149 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
12150 return Builder
.CreateFSub(Ops
[0], Ops
[1], "vsubh");
12151 case NEON::BI__builtin_neon_vmulh_f16
:
12152 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
12153 return Builder
.CreateFMul(Ops
[0], Ops
[1], "vmulh");
12154 case NEON::BI__builtin_neon_vdivh_f16
:
12155 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
12156 return Builder
.CreateFDiv(Ops
[0], Ops
[1], "vdivh");
12157 case NEON::BI__builtin_neon_vfmah_f16
:
12158 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
12159 return emitCallMaybeConstrainedFPBuiltin(
12160 *this, Intrinsic::fma
, Intrinsic::experimental_constrained_fma
, HalfTy
,
12161 {EmitScalarExpr(E
->getArg(1)), EmitScalarExpr(E
->getArg(2)), Ops
[0]});
12162 case NEON::BI__builtin_neon_vfmsh_f16
: {
12163 Value
* Neg
= Builder
.CreateFNeg(EmitScalarExpr(E
->getArg(1)), "vsubh");
12165 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
12166 return emitCallMaybeConstrainedFPBuiltin(
12167 *this, Intrinsic::fma
, Intrinsic::experimental_constrained_fma
, HalfTy
,
12168 {Neg
, EmitScalarExpr(E
->getArg(2)), Ops
[0]});
12170 case NEON::BI__builtin_neon_vaddd_s64
:
12171 case NEON::BI__builtin_neon_vaddd_u64
:
12172 return Builder
.CreateAdd(Ops
[0], EmitScalarExpr(E
->getArg(1)), "vaddd");
12173 case NEON::BI__builtin_neon_vsubd_s64
:
12174 case NEON::BI__builtin_neon_vsubd_u64
:
12175 return Builder
.CreateSub(Ops
[0], EmitScalarExpr(E
->getArg(1)), "vsubd");
12176 case NEON::BI__builtin_neon_vqdmlalh_s16
:
12177 case NEON::BI__builtin_neon_vqdmlslh_s16
: {
12178 SmallVector
<Value
*, 2> ProductOps
;
12179 ProductOps
.push_back(vectorWrapScalar16(Ops
[1]));
12180 ProductOps
.push_back(vectorWrapScalar16(EmitScalarExpr(E
->getArg(2))));
12181 auto *VTy
= llvm::FixedVectorType::get(Int32Ty
, 4);
12182 Ops
[1] = EmitNeonCall(CGM
.getIntrinsic(Intrinsic::aarch64_neon_sqdmull
, VTy
),
12183 ProductOps
, "vqdmlXl");
12184 Constant
*CI
= ConstantInt::get(SizeTy
, 0);
12185 Ops
[1] = Builder
.CreateExtractElement(Ops
[1], CI
, "lane0");
12187 unsigned AccumInt
= BuiltinID
== NEON::BI__builtin_neon_vqdmlalh_s16
12188 ? Intrinsic::aarch64_neon_sqadd
12189 : Intrinsic::aarch64_neon_sqsub
;
12190 return EmitNeonCall(CGM
.getIntrinsic(AccumInt
, Int32Ty
), Ops
, "vqdmlXl");
12192 case NEON::BI__builtin_neon_vqshlud_n_s64
: {
12193 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
12194 Ops
[1] = Builder
.CreateZExt(Ops
[1], Int64Ty
);
12195 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::aarch64_neon_sqshlu
, Int64Ty
),
12198 case NEON::BI__builtin_neon_vqshld_n_u64
:
12199 case NEON::BI__builtin_neon_vqshld_n_s64
: {
12200 unsigned Int
= BuiltinID
== NEON::BI__builtin_neon_vqshld_n_u64
12201 ? Intrinsic::aarch64_neon_uqshl
12202 : Intrinsic::aarch64_neon_sqshl
;
12203 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
12204 Ops
[1] = Builder
.CreateZExt(Ops
[1], Int64Ty
);
12205 return EmitNeonCall(CGM
.getIntrinsic(Int
, Int64Ty
), Ops
, "vqshl_n");
12207 case NEON::BI__builtin_neon_vrshrd_n_u64
:
12208 case NEON::BI__builtin_neon_vrshrd_n_s64
: {
12209 unsigned Int
= BuiltinID
== NEON::BI__builtin_neon_vrshrd_n_u64
12210 ? Intrinsic::aarch64_neon_urshl
12211 : Intrinsic::aarch64_neon_srshl
;
12212 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
12213 int SV
= cast
<ConstantInt
>(Ops
[1])->getSExtValue();
12214 Ops
[1] = ConstantInt::get(Int64Ty
, -SV
);
12215 return EmitNeonCall(CGM
.getIntrinsic(Int
, Int64Ty
), Ops
, "vrshr_n");
12217 case NEON::BI__builtin_neon_vrsrad_n_u64
:
12218 case NEON::BI__builtin_neon_vrsrad_n_s64
: {
12219 unsigned Int
= BuiltinID
== NEON::BI__builtin_neon_vrsrad_n_u64
12220 ? Intrinsic::aarch64_neon_urshl
12221 : Intrinsic::aarch64_neon_srshl
;
12222 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Int64Ty
);
12223 Ops
.push_back(Builder
.CreateNeg(EmitScalarExpr(E
->getArg(2))));
12224 Ops
[1] = Builder
.CreateCall(CGM
.getIntrinsic(Int
, Int64Ty
),
12225 {Ops
[1], Builder
.CreateSExt(Ops
[2], Int64Ty
)});
12226 return Builder
.CreateAdd(Ops
[0], Builder
.CreateBitCast(Ops
[1], Int64Ty
));
12228 case NEON::BI__builtin_neon_vshld_n_s64
:
12229 case NEON::BI__builtin_neon_vshld_n_u64
: {
12230 llvm::ConstantInt
*Amt
= cast
<ConstantInt
>(EmitScalarExpr(E
->getArg(1)));
12231 return Builder
.CreateShl(
12232 Ops
[0], ConstantInt::get(Int64Ty
, Amt
->getZExtValue()), "shld_n");
12234 case NEON::BI__builtin_neon_vshrd_n_s64
: {
12235 llvm::ConstantInt
*Amt
= cast
<ConstantInt
>(EmitScalarExpr(E
->getArg(1)));
12236 return Builder
.CreateAShr(
12237 Ops
[0], ConstantInt::get(Int64Ty
, std::min(static_cast<uint64_t>(63),
12238 Amt
->getZExtValue())),
12241 case NEON::BI__builtin_neon_vshrd_n_u64
: {
12242 llvm::ConstantInt
*Amt
= cast
<ConstantInt
>(EmitScalarExpr(E
->getArg(1)));
12243 uint64_t ShiftAmt
= Amt
->getZExtValue();
12244 // Right-shifting an unsigned value by its size yields 0.
12245 if (ShiftAmt
== 64)
12246 return ConstantInt::get(Int64Ty
, 0);
12247 return Builder
.CreateLShr(Ops
[0], ConstantInt::get(Int64Ty
, ShiftAmt
),
12250 case NEON::BI__builtin_neon_vsrad_n_s64
: {
12251 llvm::ConstantInt
*Amt
= cast
<ConstantInt
>(EmitScalarExpr(E
->getArg(2)));
12252 Ops
[1] = Builder
.CreateAShr(
12253 Ops
[1], ConstantInt::get(Int64Ty
, std::min(static_cast<uint64_t>(63),
12254 Amt
->getZExtValue())),
12256 return Builder
.CreateAdd(Ops
[0], Ops
[1]);
12258 case NEON::BI__builtin_neon_vsrad_n_u64
: {
12259 llvm::ConstantInt
*Amt
= cast
<ConstantInt
>(EmitScalarExpr(E
->getArg(2)));
12260 uint64_t ShiftAmt
= Amt
->getZExtValue();
12261 // Right-shifting an unsigned value by its size yields 0.
12262 // As Op + 0 = Op, return Ops[0] directly.
12263 if (ShiftAmt
== 64)
12265 Ops
[1] = Builder
.CreateLShr(Ops
[1], ConstantInt::get(Int64Ty
, ShiftAmt
),
12267 return Builder
.CreateAdd(Ops
[0], Ops
[1]);
12269 case NEON::BI__builtin_neon_vqdmlalh_lane_s16
:
12270 case NEON::BI__builtin_neon_vqdmlalh_laneq_s16
:
12271 case NEON::BI__builtin_neon_vqdmlslh_lane_s16
:
12272 case NEON::BI__builtin_neon_vqdmlslh_laneq_s16
: {
12273 Ops
[2] = Builder
.CreateExtractElement(Ops
[2], EmitScalarExpr(E
->getArg(3)),
12275 SmallVector
<Value
*, 2> ProductOps
;
12276 ProductOps
.push_back(vectorWrapScalar16(Ops
[1]));
12277 ProductOps
.push_back(vectorWrapScalar16(Ops
[2]));
12278 auto *VTy
= llvm::FixedVectorType::get(Int32Ty
, 4);
12279 Ops
[1] = EmitNeonCall(CGM
.getIntrinsic(Intrinsic::aarch64_neon_sqdmull
, VTy
),
12280 ProductOps
, "vqdmlXl");
12281 Constant
*CI
= ConstantInt::get(SizeTy
, 0);
12282 Ops
[1] = Builder
.CreateExtractElement(Ops
[1], CI
, "lane0");
12285 unsigned AccInt
= (BuiltinID
== NEON::BI__builtin_neon_vqdmlalh_lane_s16
||
12286 BuiltinID
== NEON::BI__builtin_neon_vqdmlalh_laneq_s16
)
12287 ? Intrinsic::aarch64_neon_sqadd
12288 : Intrinsic::aarch64_neon_sqsub
;
12289 return EmitNeonCall(CGM
.getIntrinsic(AccInt
, Int32Ty
), Ops
, "vqdmlXl");
12291 case NEON::BI__builtin_neon_vqdmlals_s32
:
12292 case NEON::BI__builtin_neon_vqdmlsls_s32
: {
12293 SmallVector
<Value
*, 2> ProductOps
;
12294 ProductOps
.push_back(Ops
[1]);
12295 ProductOps
.push_back(EmitScalarExpr(E
->getArg(2)));
12297 EmitNeonCall(CGM
.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar
),
12298 ProductOps
, "vqdmlXl");
12300 unsigned AccumInt
= BuiltinID
== NEON::BI__builtin_neon_vqdmlals_s32
12301 ? Intrinsic::aarch64_neon_sqadd
12302 : Intrinsic::aarch64_neon_sqsub
;
12303 return EmitNeonCall(CGM
.getIntrinsic(AccumInt
, Int64Ty
), Ops
, "vqdmlXl");
12305 case NEON::BI__builtin_neon_vqdmlals_lane_s32
:
12306 case NEON::BI__builtin_neon_vqdmlals_laneq_s32
:
12307 case NEON::BI__builtin_neon_vqdmlsls_lane_s32
:
12308 case NEON::BI__builtin_neon_vqdmlsls_laneq_s32
: {
12309 Ops
[2] = Builder
.CreateExtractElement(Ops
[2], EmitScalarExpr(E
->getArg(3)),
12311 SmallVector
<Value
*, 2> ProductOps
;
12312 ProductOps
.push_back(Ops
[1]);
12313 ProductOps
.push_back(Ops
[2]);
12315 EmitNeonCall(CGM
.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar
),
12316 ProductOps
, "vqdmlXl");
12319 unsigned AccInt
= (BuiltinID
== NEON::BI__builtin_neon_vqdmlals_lane_s32
||
12320 BuiltinID
== NEON::BI__builtin_neon_vqdmlals_laneq_s32
)
12321 ? Intrinsic::aarch64_neon_sqadd
12322 : Intrinsic::aarch64_neon_sqsub
;
12323 return EmitNeonCall(CGM
.getIntrinsic(AccInt
, Int64Ty
), Ops
, "vqdmlXl");
12325 case NEON::BI__builtin_neon_vget_lane_bf16
:
12326 case NEON::BI__builtin_neon_vduph_lane_bf16
:
12327 case NEON::BI__builtin_neon_vduph_lane_f16
: {
12328 return Builder
.CreateExtractElement(Ops
[0], EmitScalarExpr(E
->getArg(1)),
12331 case NEON::BI__builtin_neon_vgetq_lane_bf16
:
12332 case NEON::BI__builtin_neon_vduph_laneq_bf16
:
12333 case NEON::BI__builtin_neon_vduph_laneq_f16
: {
12334 return Builder
.CreateExtractElement(Ops
[0], EmitScalarExpr(E
->getArg(1)),
12338 case clang::AArch64::BI_InterlockedAdd
:
12339 case clang::AArch64::BI_InterlockedAdd64
: {
12340 Address DestAddr
= CheckAtomicAlignment(*this, E
);
12341 Value
*Val
= EmitScalarExpr(E
->getArg(1));
12342 AtomicRMWInst
*RMWI
=
12343 Builder
.CreateAtomicRMW(AtomicRMWInst::Add
, DestAddr
, Val
,
12344 llvm::AtomicOrdering::SequentiallyConsistent
);
12345 return Builder
.CreateAdd(RMWI
, Val
);
12349 llvm::FixedVectorType
*VTy
= GetNeonType(this, Type
);
12350 llvm::Type
*Ty
= VTy
;
12354 // Not all intrinsics handled by the common case work for AArch64 yet, so only
12355 // defer to common code if it's been added to our special map.
12356 Builtin
= findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap
, BuiltinID
,
12357 AArch64SIMDIntrinsicsProvenSorted
);
12360 return EmitCommonNeonBuiltinExpr(
12361 Builtin
->BuiltinID
, Builtin
->LLVMIntrinsic
, Builtin
->AltLLVMIntrinsic
,
12362 Builtin
->NameHint
, Builtin
->TypeModifier
, E
, Ops
,
12363 /*never use addresses*/ Address::invalid(), Address::invalid(), Arch
);
12365 if (Value
*V
= EmitAArch64TblBuiltinExpr(*this, BuiltinID
, E
, Ops
, Arch
))
12369 switch (BuiltinID
) {
12370 default: return nullptr;
12371 case NEON::BI__builtin_neon_vbsl_v
:
12372 case NEON::BI__builtin_neon_vbslq_v
: {
12373 llvm::Type
*BitTy
= llvm::VectorType::getInteger(VTy
);
12374 Ops
[0] = Builder
.CreateBitCast(Ops
[0], BitTy
, "vbsl");
12375 Ops
[1] = Builder
.CreateBitCast(Ops
[1], BitTy
, "vbsl");
12376 Ops
[2] = Builder
.CreateBitCast(Ops
[2], BitTy
, "vbsl");
12378 Ops
[1] = Builder
.CreateAnd(Ops
[0], Ops
[1], "vbsl");
12379 Ops
[2] = Builder
.CreateAnd(Builder
.CreateNot(Ops
[0]), Ops
[2], "vbsl");
12380 Ops
[0] = Builder
.CreateOr(Ops
[1], Ops
[2], "vbsl");
12381 return Builder
.CreateBitCast(Ops
[0], Ty
);
12383 case NEON::BI__builtin_neon_vfma_lane_v
:
12384 case NEON::BI__builtin_neon_vfmaq_lane_v
: { // Only used for FP types
12385 // The ARM builtins (and instructions) have the addend as the first
12386 // operand, but the 'fma' intrinsics have it last. Swap it around here.
12387 Value
*Addend
= Ops
[0];
12388 Value
*Multiplicand
= Ops
[1];
12389 Value
*LaneSource
= Ops
[2];
12390 Ops
[0] = Multiplicand
;
12391 Ops
[1] = LaneSource
;
12394 // Now adjust things to handle the lane access.
12395 auto *SourceTy
= BuiltinID
== NEON::BI__builtin_neon_vfmaq_lane_v
12396 ? llvm::FixedVectorType::get(VTy
->getElementType(),
12397 VTy
->getNumElements() / 2)
12399 llvm::Constant
*cst
= cast
<Constant
>(Ops
[3]);
12400 Value
*SV
= llvm::ConstantVector::getSplat(VTy
->getElementCount(), cst
);
12401 Ops
[1] = Builder
.CreateBitCast(Ops
[1], SourceTy
);
12402 Ops
[1] = Builder
.CreateShuffleVector(Ops
[1], Ops
[1], SV
, "lane");
12405 Int
= Builder
.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma
12407 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "fmla");
12409 case NEON::BI__builtin_neon_vfma_laneq_v
: {
12410 auto *VTy
= cast
<llvm::FixedVectorType
>(Ty
);
12411 // v1f64 fma should be mapped to Neon scalar f64 fma
12412 if (VTy
&& VTy
->getElementType() == DoubleTy
) {
12413 Ops
[0] = Builder
.CreateBitCast(Ops
[0], DoubleTy
);
12414 Ops
[1] = Builder
.CreateBitCast(Ops
[1], DoubleTy
);
12415 llvm::FixedVectorType
*VTy
=
12416 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64
, false, true));
12417 Ops
[2] = Builder
.CreateBitCast(Ops
[2], VTy
);
12418 Ops
[2] = Builder
.CreateExtractElement(Ops
[2], Ops
[3], "extract");
12420 Result
= emitCallMaybeConstrainedFPBuiltin(
12421 *this, Intrinsic::fma
, Intrinsic::experimental_constrained_fma
,
12422 DoubleTy
, {Ops
[1], Ops
[2], Ops
[0]});
12423 return Builder
.CreateBitCast(Result
, Ty
);
12425 Ops
[0] = Builder
.CreateBitCast(Ops
[0], Ty
);
12426 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
12428 auto *STy
= llvm::FixedVectorType::get(VTy
->getElementType(),
12429 VTy
->getNumElements() * 2);
12430 Ops
[2] = Builder
.CreateBitCast(Ops
[2], STy
);
12431 Value
*SV
= llvm::ConstantVector::getSplat(VTy
->getElementCount(),
12432 cast
<ConstantInt
>(Ops
[3]));
12433 Ops
[2] = Builder
.CreateShuffleVector(Ops
[2], Ops
[2], SV
, "lane");
12435 return emitCallMaybeConstrainedFPBuiltin(
12436 *this, Intrinsic::fma
, Intrinsic::experimental_constrained_fma
, Ty
,
12437 {Ops
[2], Ops
[1], Ops
[0]});
12439 case NEON::BI__builtin_neon_vfmaq_laneq_v
: {
12440 Ops
[0] = Builder
.CreateBitCast(Ops
[0], Ty
);
12441 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
12443 Ops
[2] = Builder
.CreateBitCast(Ops
[2], Ty
);
12444 Ops
[2] = EmitNeonSplat(Ops
[2], cast
<ConstantInt
>(Ops
[3]));
12445 return emitCallMaybeConstrainedFPBuiltin(
12446 *this, Intrinsic::fma
, Intrinsic::experimental_constrained_fma
, Ty
,
12447 {Ops
[2], Ops
[1], Ops
[0]});
12449 case NEON::BI__builtin_neon_vfmah_lane_f16
:
12450 case NEON::BI__builtin_neon_vfmas_lane_f32
:
12451 case NEON::BI__builtin_neon_vfmah_laneq_f16
:
12452 case NEON::BI__builtin_neon_vfmas_laneq_f32
:
12453 case NEON::BI__builtin_neon_vfmad_lane_f64
:
12454 case NEON::BI__builtin_neon_vfmad_laneq_f64
: {
12455 Ops
.push_back(EmitScalarExpr(E
->getArg(3)));
12456 llvm::Type
*Ty
= ConvertType(E
->getCallReturnType(getContext()));
12457 Ops
[2] = Builder
.CreateExtractElement(Ops
[2], Ops
[3], "extract");
12458 return emitCallMaybeConstrainedFPBuiltin(
12459 *this, Intrinsic::fma
, Intrinsic::experimental_constrained_fma
, Ty
,
12460 {Ops
[1], Ops
[2], Ops
[0]});
12462 case NEON::BI__builtin_neon_vmull_v
:
12463 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12464 Int
= usgn
? Intrinsic::aarch64_neon_umull
: Intrinsic::aarch64_neon_smull
;
12465 if (Type
.isPoly()) Int
= Intrinsic::aarch64_neon_pmull
;
12466 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vmull");
12467 case NEON::BI__builtin_neon_vmax_v
:
12468 case NEON::BI__builtin_neon_vmaxq_v
:
12469 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12470 Int
= usgn
? Intrinsic::aarch64_neon_umax
: Intrinsic::aarch64_neon_smax
;
12471 if (Ty
->isFPOrFPVectorTy()) Int
= Intrinsic::aarch64_neon_fmax
;
12472 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vmax");
12473 case NEON::BI__builtin_neon_vmaxh_f16
: {
12474 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
12475 Int
= Intrinsic::aarch64_neon_fmax
;
12476 return EmitNeonCall(CGM
.getIntrinsic(Int
, HalfTy
), Ops
, "vmax");
12478 case NEON::BI__builtin_neon_vmin_v
:
12479 case NEON::BI__builtin_neon_vminq_v
:
12480 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12481 Int
= usgn
? Intrinsic::aarch64_neon_umin
: Intrinsic::aarch64_neon_smin
;
12482 if (Ty
->isFPOrFPVectorTy()) Int
= Intrinsic::aarch64_neon_fmin
;
12483 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vmin");
12484 case NEON::BI__builtin_neon_vminh_f16
: {
12485 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
12486 Int
= Intrinsic::aarch64_neon_fmin
;
12487 return EmitNeonCall(CGM
.getIntrinsic(Int
, HalfTy
), Ops
, "vmin");
12489 case NEON::BI__builtin_neon_vabd_v
:
12490 case NEON::BI__builtin_neon_vabdq_v
:
12491 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12492 Int
= usgn
? Intrinsic::aarch64_neon_uabd
: Intrinsic::aarch64_neon_sabd
;
12493 if (Ty
->isFPOrFPVectorTy()) Int
= Intrinsic::aarch64_neon_fabd
;
12494 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vabd");
12495 case NEON::BI__builtin_neon_vpadal_v
:
12496 case NEON::BI__builtin_neon_vpadalq_v
: {
12497 unsigned ArgElts
= VTy
->getNumElements();
12498 llvm::IntegerType
*EltTy
= cast
<IntegerType
>(VTy
->getElementType());
12499 unsigned BitWidth
= EltTy
->getBitWidth();
12500 auto *ArgTy
= llvm::FixedVectorType::get(
12501 llvm::IntegerType::get(getLLVMContext(), BitWidth
/ 2), 2 * ArgElts
);
12502 llvm::Type
* Tys
[2] = { VTy
, ArgTy
};
12503 Int
= usgn
? Intrinsic::aarch64_neon_uaddlp
: Intrinsic::aarch64_neon_saddlp
;
12504 SmallVector
<llvm::Value
*, 1> TmpOps
;
12505 TmpOps
.push_back(Ops
[1]);
12506 Function
*F
= CGM
.getIntrinsic(Int
, Tys
);
12507 llvm::Value
*tmp
= EmitNeonCall(F
, TmpOps
, "vpadal");
12508 llvm::Value
*addend
= Builder
.CreateBitCast(Ops
[0], tmp
->getType());
12509 return Builder
.CreateAdd(tmp
, addend
);
12511 case NEON::BI__builtin_neon_vpmin_v
:
12512 case NEON::BI__builtin_neon_vpminq_v
:
12513 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12514 Int
= usgn
? Intrinsic::aarch64_neon_uminp
: Intrinsic::aarch64_neon_sminp
;
12515 if (Ty
->isFPOrFPVectorTy()) Int
= Intrinsic::aarch64_neon_fminp
;
12516 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vpmin");
12517 case NEON::BI__builtin_neon_vpmax_v
:
12518 case NEON::BI__builtin_neon_vpmaxq_v
:
12519 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12520 Int
= usgn
? Intrinsic::aarch64_neon_umaxp
: Intrinsic::aarch64_neon_smaxp
;
12521 if (Ty
->isFPOrFPVectorTy()) Int
= Intrinsic::aarch64_neon_fmaxp
;
12522 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vpmax");
12523 case NEON::BI__builtin_neon_vminnm_v
:
12524 case NEON::BI__builtin_neon_vminnmq_v
:
12525 Int
= Intrinsic::aarch64_neon_fminnm
;
12526 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vminnm");
12527 case NEON::BI__builtin_neon_vminnmh_f16
:
12528 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
12529 Int
= Intrinsic::aarch64_neon_fminnm
;
12530 return EmitNeonCall(CGM
.getIntrinsic(Int
, HalfTy
), Ops
, "vminnm");
12531 case NEON::BI__builtin_neon_vmaxnm_v
:
12532 case NEON::BI__builtin_neon_vmaxnmq_v
:
12533 Int
= Intrinsic::aarch64_neon_fmaxnm
;
12534 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vmaxnm");
12535 case NEON::BI__builtin_neon_vmaxnmh_f16
:
12536 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
12537 Int
= Intrinsic::aarch64_neon_fmaxnm
;
12538 return EmitNeonCall(CGM
.getIntrinsic(Int
, HalfTy
), Ops
, "vmaxnm");
12539 case NEON::BI__builtin_neon_vrecpss_f32
: {
12540 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
12541 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::aarch64_neon_frecps
, FloatTy
),
12544 case NEON::BI__builtin_neon_vrecpsd_f64
:
12545 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
12546 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::aarch64_neon_frecps
, DoubleTy
),
12548 case NEON::BI__builtin_neon_vrecpsh_f16
:
12549 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
12550 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::aarch64_neon_frecps
, HalfTy
),
12552 case NEON::BI__builtin_neon_vqshrun_n_v
:
12553 Int
= Intrinsic::aarch64_neon_sqshrun
;
12554 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vqshrun_n");
12555 case NEON::BI__builtin_neon_vqrshrun_n_v
:
12556 Int
= Intrinsic::aarch64_neon_sqrshrun
;
12557 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vqrshrun_n");
12558 case NEON::BI__builtin_neon_vqshrn_n_v
:
12559 Int
= usgn
? Intrinsic::aarch64_neon_uqshrn
: Intrinsic::aarch64_neon_sqshrn
;
12560 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vqshrn_n");
12561 case NEON::BI__builtin_neon_vrshrn_n_v
:
12562 Int
= Intrinsic::aarch64_neon_rshrn
;
12563 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vrshrn_n");
12564 case NEON::BI__builtin_neon_vqrshrn_n_v
:
12565 Int
= usgn
? Intrinsic::aarch64_neon_uqrshrn
: Intrinsic::aarch64_neon_sqrshrn
;
12566 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vqrshrn_n");
12567 case NEON::BI__builtin_neon_vrndah_f16
: {
12568 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12569 Int
= Builder
.getIsFPConstrained()
12570 ? Intrinsic::experimental_constrained_round
12571 : Intrinsic::round
;
12572 return EmitNeonCall(CGM
.getIntrinsic(Int
, HalfTy
), Ops
, "vrnda");
12574 case NEON::BI__builtin_neon_vrnda_v
:
12575 case NEON::BI__builtin_neon_vrndaq_v
: {
12576 Int
= Builder
.getIsFPConstrained()
12577 ? Intrinsic::experimental_constrained_round
12578 : Intrinsic::round
;
12579 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vrnda");
12581 case NEON::BI__builtin_neon_vrndih_f16
: {
12582 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12583 Int
= Builder
.getIsFPConstrained()
12584 ? Intrinsic::experimental_constrained_nearbyint
12585 : Intrinsic::nearbyint
;
12586 return EmitNeonCall(CGM
.getIntrinsic(Int
, HalfTy
), Ops
, "vrndi");
12588 case NEON::BI__builtin_neon_vrndmh_f16
: {
12589 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12590 Int
= Builder
.getIsFPConstrained()
12591 ? Intrinsic::experimental_constrained_floor
12592 : Intrinsic::floor
;
12593 return EmitNeonCall(CGM
.getIntrinsic(Int
, HalfTy
), Ops
, "vrndm");
12595 case NEON::BI__builtin_neon_vrndm_v
:
12596 case NEON::BI__builtin_neon_vrndmq_v
: {
12597 Int
= Builder
.getIsFPConstrained()
12598 ? Intrinsic::experimental_constrained_floor
12599 : Intrinsic::floor
;
12600 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vrndm");
12602 case NEON::BI__builtin_neon_vrndnh_f16
: {
12603 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12604 Int
= Builder
.getIsFPConstrained()
12605 ? Intrinsic::experimental_constrained_roundeven
12606 : Intrinsic::roundeven
;
12607 return EmitNeonCall(CGM
.getIntrinsic(Int
, HalfTy
), Ops
, "vrndn");
12609 case NEON::BI__builtin_neon_vrndn_v
:
12610 case NEON::BI__builtin_neon_vrndnq_v
: {
12611 Int
= Builder
.getIsFPConstrained()
12612 ? Intrinsic::experimental_constrained_roundeven
12613 : Intrinsic::roundeven
;
12614 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vrndn");
12616 case NEON::BI__builtin_neon_vrndns_f32
: {
12617 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12618 Int
= Builder
.getIsFPConstrained()
12619 ? Intrinsic::experimental_constrained_roundeven
12620 : Intrinsic::roundeven
;
12621 return EmitNeonCall(CGM
.getIntrinsic(Int
, FloatTy
), Ops
, "vrndn");
12623 case NEON::BI__builtin_neon_vrndph_f16
: {
12624 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12625 Int
= Builder
.getIsFPConstrained()
12626 ? Intrinsic::experimental_constrained_ceil
12628 return EmitNeonCall(CGM
.getIntrinsic(Int
, HalfTy
), Ops
, "vrndp");
12630 case NEON::BI__builtin_neon_vrndp_v
:
12631 case NEON::BI__builtin_neon_vrndpq_v
: {
12632 Int
= Builder
.getIsFPConstrained()
12633 ? Intrinsic::experimental_constrained_ceil
12635 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vrndp");
12637 case NEON::BI__builtin_neon_vrndxh_f16
: {
12638 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12639 Int
= Builder
.getIsFPConstrained()
12640 ? Intrinsic::experimental_constrained_rint
12642 return EmitNeonCall(CGM
.getIntrinsic(Int
, HalfTy
), Ops
, "vrndx");
12644 case NEON::BI__builtin_neon_vrndx_v
:
12645 case NEON::BI__builtin_neon_vrndxq_v
: {
12646 Int
= Builder
.getIsFPConstrained()
12647 ? Intrinsic::experimental_constrained_rint
12649 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vrndx");
12651 case NEON::BI__builtin_neon_vrndh_f16
: {
12652 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12653 Int
= Builder
.getIsFPConstrained()
12654 ? Intrinsic::experimental_constrained_trunc
12655 : Intrinsic::trunc
;
12656 return EmitNeonCall(CGM
.getIntrinsic(Int
, HalfTy
), Ops
, "vrndz");
12658 case NEON::BI__builtin_neon_vrnd32x_f32
:
12659 case NEON::BI__builtin_neon_vrnd32xq_f32
:
12660 case NEON::BI__builtin_neon_vrnd32x_f64
:
12661 case NEON::BI__builtin_neon_vrnd32xq_f64
: {
12662 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12663 Int
= Intrinsic::aarch64_neon_frint32x
;
12664 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vrnd32x");
12666 case NEON::BI__builtin_neon_vrnd32z_f32
:
12667 case NEON::BI__builtin_neon_vrnd32zq_f32
:
12668 case NEON::BI__builtin_neon_vrnd32z_f64
:
12669 case NEON::BI__builtin_neon_vrnd32zq_f64
: {
12670 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12671 Int
= Intrinsic::aarch64_neon_frint32z
;
12672 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vrnd32z");
12674 case NEON::BI__builtin_neon_vrnd64x_f32
:
12675 case NEON::BI__builtin_neon_vrnd64xq_f32
:
12676 case NEON::BI__builtin_neon_vrnd64x_f64
:
12677 case NEON::BI__builtin_neon_vrnd64xq_f64
: {
12678 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12679 Int
= Intrinsic::aarch64_neon_frint64x
;
12680 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vrnd64x");
12682 case NEON::BI__builtin_neon_vrnd64z_f32
:
12683 case NEON::BI__builtin_neon_vrnd64zq_f32
:
12684 case NEON::BI__builtin_neon_vrnd64z_f64
:
12685 case NEON::BI__builtin_neon_vrnd64zq_f64
: {
12686 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12687 Int
= Intrinsic::aarch64_neon_frint64z
;
12688 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vrnd64z");
12690 case NEON::BI__builtin_neon_vrnd_v
:
12691 case NEON::BI__builtin_neon_vrndq_v
: {
12692 Int
= Builder
.getIsFPConstrained()
12693 ? Intrinsic::experimental_constrained_trunc
12694 : Intrinsic::trunc
;
12695 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vrndz");
12697 case NEON::BI__builtin_neon_vcvt_f64_v
:
12698 case NEON::BI__builtin_neon_vcvtq_f64_v
:
12699 Ops
[0] = Builder
.CreateBitCast(Ops
[0], Ty
);
12700 Ty
= GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64
, false, quad
));
12701 return usgn
? Builder
.CreateUIToFP(Ops
[0], Ty
, "vcvt")
12702 : Builder
.CreateSIToFP(Ops
[0], Ty
, "vcvt");
12703 case NEON::BI__builtin_neon_vcvt_f64_f32
: {
12704 assert(Type
.getEltType() == NeonTypeFlags::Float64
&& quad
&&
12705 "unexpected vcvt_f64_f32 builtin");
12706 NeonTypeFlags SrcFlag
= NeonTypeFlags(NeonTypeFlags::Float32
, false, false);
12707 Ops
[0] = Builder
.CreateBitCast(Ops
[0], GetNeonType(this, SrcFlag
));
12709 return Builder
.CreateFPExt(Ops
[0], Ty
, "vcvt");
12711 case NEON::BI__builtin_neon_vcvt_f32_f64
: {
12712 assert(Type
.getEltType() == NeonTypeFlags::Float32
&&
12713 "unexpected vcvt_f32_f64 builtin");
12714 NeonTypeFlags SrcFlag
= NeonTypeFlags(NeonTypeFlags::Float64
, false, true);
12715 Ops
[0] = Builder
.CreateBitCast(Ops
[0], GetNeonType(this, SrcFlag
));
12717 return Builder
.CreateFPTrunc(Ops
[0], Ty
, "vcvt");
12719 case NEON::BI__builtin_neon_vcvt_s32_v
:
12720 case NEON::BI__builtin_neon_vcvt_u32_v
:
12721 case NEON::BI__builtin_neon_vcvt_s64_v
:
12722 case NEON::BI__builtin_neon_vcvt_u64_v
:
12723 case NEON::BI__builtin_neon_vcvt_s16_f16
:
12724 case NEON::BI__builtin_neon_vcvt_u16_f16
:
12725 case NEON::BI__builtin_neon_vcvtq_s32_v
:
12726 case NEON::BI__builtin_neon_vcvtq_u32_v
:
12727 case NEON::BI__builtin_neon_vcvtq_s64_v
:
12728 case NEON::BI__builtin_neon_vcvtq_u64_v
:
12729 case NEON::BI__builtin_neon_vcvtq_s16_f16
:
12730 case NEON::BI__builtin_neon_vcvtq_u16_f16
: {
12732 usgn
? Intrinsic::aarch64_neon_fcvtzu
: Intrinsic::aarch64_neon_fcvtzs
;
12733 llvm::Type
*Tys
[2] = {Ty
, GetFloatNeonType(this, Type
)};
12734 return EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vcvtz");
12736 case NEON::BI__builtin_neon_vcvta_s16_f16
:
12737 case NEON::BI__builtin_neon_vcvta_u16_f16
:
12738 case NEON::BI__builtin_neon_vcvta_s32_v
:
12739 case NEON::BI__builtin_neon_vcvtaq_s16_f16
:
12740 case NEON::BI__builtin_neon_vcvtaq_s32_v
:
12741 case NEON::BI__builtin_neon_vcvta_u32_v
:
12742 case NEON::BI__builtin_neon_vcvtaq_u16_f16
:
12743 case NEON::BI__builtin_neon_vcvtaq_u32_v
:
12744 case NEON::BI__builtin_neon_vcvta_s64_v
:
12745 case NEON::BI__builtin_neon_vcvtaq_s64_v
:
12746 case NEON::BI__builtin_neon_vcvta_u64_v
:
12747 case NEON::BI__builtin_neon_vcvtaq_u64_v
: {
12748 Int
= usgn
? Intrinsic::aarch64_neon_fcvtau
: Intrinsic::aarch64_neon_fcvtas
;
12749 llvm::Type
*Tys
[2] = { Ty
, GetFloatNeonType(this, Type
) };
12750 return EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vcvta");
12752 case NEON::BI__builtin_neon_vcvtm_s16_f16
:
12753 case NEON::BI__builtin_neon_vcvtm_s32_v
:
12754 case NEON::BI__builtin_neon_vcvtmq_s16_f16
:
12755 case NEON::BI__builtin_neon_vcvtmq_s32_v
:
12756 case NEON::BI__builtin_neon_vcvtm_u16_f16
:
12757 case NEON::BI__builtin_neon_vcvtm_u32_v
:
12758 case NEON::BI__builtin_neon_vcvtmq_u16_f16
:
12759 case NEON::BI__builtin_neon_vcvtmq_u32_v
:
12760 case NEON::BI__builtin_neon_vcvtm_s64_v
:
12761 case NEON::BI__builtin_neon_vcvtmq_s64_v
:
12762 case NEON::BI__builtin_neon_vcvtm_u64_v
:
12763 case NEON::BI__builtin_neon_vcvtmq_u64_v
: {
12764 Int
= usgn
? Intrinsic::aarch64_neon_fcvtmu
: Intrinsic::aarch64_neon_fcvtms
;
12765 llvm::Type
*Tys
[2] = { Ty
, GetFloatNeonType(this, Type
) };
12766 return EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vcvtm");
12768 case NEON::BI__builtin_neon_vcvtn_s16_f16
:
12769 case NEON::BI__builtin_neon_vcvtn_s32_v
:
12770 case NEON::BI__builtin_neon_vcvtnq_s16_f16
:
12771 case NEON::BI__builtin_neon_vcvtnq_s32_v
:
12772 case NEON::BI__builtin_neon_vcvtn_u16_f16
:
12773 case NEON::BI__builtin_neon_vcvtn_u32_v
:
12774 case NEON::BI__builtin_neon_vcvtnq_u16_f16
:
12775 case NEON::BI__builtin_neon_vcvtnq_u32_v
:
12776 case NEON::BI__builtin_neon_vcvtn_s64_v
:
12777 case NEON::BI__builtin_neon_vcvtnq_s64_v
:
12778 case NEON::BI__builtin_neon_vcvtn_u64_v
:
12779 case NEON::BI__builtin_neon_vcvtnq_u64_v
: {
12780 Int
= usgn
? Intrinsic::aarch64_neon_fcvtnu
: Intrinsic::aarch64_neon_fcvtns
;
12781 llvm::Type
*Tys
[2] = { Ty
, GetFloatNeonType(this, Type
) };
12782 return EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vcvtn");
12784 case NEON::BI__builtin_neon_vcvtp_s16_f16
:
12785 case NEON::BI__builtin_neon_vcvtp_s32_v
:
12786 case NEON::BI__builtin_neon_vcvtpq_s16_f16
:
12787 case NEON::BI__builtin_neon_vcvtpq_s32_v
:
12788 case NEON::BI__builtin_neon_vcvtp_u16_f16
:
12789 case NEON::BI__builtin_neon_vcvtp_u32_v
:
12790 case NEON::BI__builtin_neon_vcvtpq_u16_f16
:
12791 case NEON::BI__builtin_neon_vcvtpq_u32_v
:
12792 case NEON::BI__builtin_neon_vcvtp_s64_v
:
12793 case NEON::BI__builtin_neon_vcvtpq_s64_v
:
12794 case NEON::BI__builtin_neon_vcvtp_u64_v
:
12795 case NEON::BI__builtin_neon_vcvtpq_u64_v
: {
12796 Int
= usgn
? Intrinsic::aarch64_neon_fcvtpu
: Intrinsic::aarch64_neon_fcvtps
;
12797 llvm::Type
*Tys
[2] = { Ty
, GetFloatNeonType(this, Type
) };
12798 return EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vcvtp");
12800 case NEON::BI__builtin_neon_vmulx_v
:
12801 case NEON::BI__builtin_neon_vmulxq_v
: {
12802 Int
= Intrinsic::aarch64_neon_fmulx
;
12803 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vmulx");
12805 case NEON::BI__builtin_neon_vmulxh_lane_f16
:
12806 case NEON::BI__builtin_neon_vmulxh_laneq_f16
: {
12807 // vmulx_lane should be mapped to Neon scalar mulx after
12808 // extracting the scalar element
12809 Ops
.push_back(EmitScalarExpr(E
->getArg(2)));
12810 Ops
[1] = Builder
.CreateExtractElement(Ops
[1], Ops
[2], "extract");
12812 Int
= Intrinsic::aarch64_neon_fmulx
;
12813 return EmitNeonCall(CGM
.getIntrinsic(Int
, HalfTy
), Ops
, "vmulx");
12815 case NEON::BI__builtin_neon_vmul_lane_v
:
12816 case NEON::BI__builtin_neon_vmul_laneq_v
: {
12817 // v1f64 vmul_lane should be mapped to Neon scalar mul lane
12819 if (BuiltinID
== NEON::BI__builtin_neon_vmul_laneq_v
)
12821 Ops
[0] = Builder
.CreateBitCast(Ops
[0], DoubleTy
);
12822 llvm::FixedVectorType
*VTy
=
12823 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64
, false, Quad
));
12824 Ops
[1] = Builder
.CreateBitCast(Ops
[1], VTy
);
12825 Ops
[1] = Builder
.CreateExtractElement(Ops
[1], Ops
[2], "extract");
12826 Value
*Result
= Builder
.CreateFMul(Ops
[0], Ops
[1]);
12827 return Builder
.CreateBitCast(Result
, Ty
);
12829 case NEON::BI__builtin_neon_vnegd_s64
:
12830 return Builder
.CreateNeg(EmitScalarExpr(E
->getArg(0)), "vnegd");
12831 case NEON::BI__builtin_neon_vnegh_f16
:
12832 return Builder
.CreateFNeg(EmitScalarExpr(E
->getArg(0)), "vnegh");
12833 case NEON::BI__builtin_neon_vpmaxnm_v
:
12834 case NEON::BI__builtin_neon_vpmaxnmq_v
: {
12835 Int
= Intrinsic::aarch64_neon_fmaxnmp
;
12836 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vpmaxnm");
12838 case NEON::BI__builtin_neon_vpminnm_v
:
12839 case NEON::BI__builtin_neon_vpminnmq_v
: {
12840 Int
= Intrinsic::aarch64_neon_fminnmp
;
12841 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vpminnm");
12843 case NEON::BI__builtin_neon_vsqrth_f16
: {
12844 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12845 Int
= Builder
.getIsFPConstrained()
12846 ? Intrinsic::experimental_constrained_sqrt
12848 return EmitNeonCall(CGM
.getIntrinsic(Int
, HalfTy
), Ops
, "vsqrt");
12850 case NEON::BI__builtin_neon_vsqrt_v
:
12851 case NEON::BI__builtin_neon_vsqrtq_v
: {
12852 Int
= Builder
.getIsFPConstrained()
12853 ? Intrinsic::experimental_constrained_sqrt
12855 Ops
[0] = Builder
.CreateBitCast(Ops
[0], Ty
);
12856 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vsqrt");
12858 case NEON::BI__builtin_neon_vrbit_v
:
12859 case NEON::BI__builtin_neon_vrbitq_v
: {
12860 Int
= Intrinsic::bitreverse
;
12861 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vrbit");
12863 case NEON::BI__builtin_neon_vaddv_u8
:
12864 // FIXME: These are handled by the AArch64 scalar code.
12867 case NEON::BI__builtin_neon_vaddv_s8
: {
12868 Int
= usgn
? Intrinsic::aarch64_neon_uaddv
: Intrinsic::aarch64_neon_saddv
;
12870 VTy
= llvm::FixedVectorType::get(Int8Ty
, 8);
12871 llvm::Type
*Tys
[2] = { Ty
, VTy
};
12872 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12873 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vaddv");
12874 return Builder
.CreateTrunc(Ops
[0], Int8Ty
);
12876 case NEON::BI__builtin_neon_vaddv_u16
:
12879 case NEON::BI__builtin_neon_vaddv_s16
: {
12880 Int
= usgn
? Intrinsic::aarch64_neon_uaddv
: Intrinsic::aarch64_neon_saddv
;
12882 VTy
= llvm::FixedVectorType::get(Int16Ty
, 4);
12883 llvm::Type
*Tys
[2] = { Ty
, VTy
};
12884 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12885 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vaddv");
12886 return Builder
.CreateTrunc(Ops
[0], Int16Ty
);
12888 case NEON::BI__builtin_neon_vaddvq_u8
:
12891 case NEON::BI__builtin_neon_vaddvq_s8
: {
12892 Int
= usgn
? Intrinsic::aarch64_neon_uaddv
: Intrinsic::aarch64_neon_saddv
;
12894 VTy
= llvm::FixedVectorType::get(Int8Ty
, 16);
12895 llvm::Type
*Tys
[2] = { Ty
, VTy
};
12896 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12897 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vaddv");
12898 return Builder
.CreateTrunc(Ops
[0], Int8Ty
);
12900 case NEON::BI__builtin_neon_vaddvq_u16
:
12903 case NEON::BI__builtin_neon_vaddvq_s16
: {
12904 Int
= usgn
? Intrinsic::aarch64_neon_uaddv
: Intrinsic::aarch64_neon_saddv
;
12906 VTy
= llvm::FixedVectorType::get(Int16Ty
, 8);
12907 llvm::Type
*Tys
[2] = { Ty
, VTy
};
12908 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12909 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vaddv");
12910 return Builder
.CreateTrunc(Ops
[0], Int16Ty
);
12912 case NEON::BI__builtin_neon_vmaxv_u8
: {
12913 Int
= Intrinsic::aarch64_neon_umaxv
;
12915 VTy
= llvm::FixedVectorType::get(Int8Ty
, 8);
12916 llvm::Type
*Tys
[2] = { Ty
, VTy
};
12917 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12918 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vmaxv");
12919 return Builder
.CreateTrunc(Ops
[0], Int8Ty
);
12921 case NEON::BI__builtin_neon_vmaxv_u16
: {
12922 Int
= Intrinsic::aarch64_neon_umaxv
;
12924 VTy
= llvm::FixedVectorType::get(Int16Ty
, 4);
12925 llvm::Type
*Tys
[2] = { Ty
, VTy
};
12926 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12927 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vmaxv");
12928 return Builder
.CreateTrunc(Ops
[0], Int16Ty
);
12930 case NEON::BI__builtin_neon_vmaxvq_u8
: {
12931 Int
= Intrinsic::aarch64_neon_umaxv
;
12933 VTy
= llvm::FixedVectorType::get(Int8Ty
, 16);
12934 llvm::Type
*Tys
[2] = { Ty
, VTy
};
12935 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12936 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vmaxv");
12937 return Builder
.CreateTrunc(Ops
[0], Int8Ty
);
12939 case NEON::BI__builtin_neon_vmaxvq_u16
: {
12940 Int
= Intrinsic::aarch64_neon_umaxv
;
12942 VTy
= llvm::FixedVectorType::get(Int16Ty
, 8);
12943 llvm::Type
*Tys
[2] = { Ty
, VTy
};
12944 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12945 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vmaxv");
12946 return Builder
.CreateTrunc(Ops
[0], Int16Ty
);
12948 case NEON::BI__builtin_neon_vmaxv_s8
: {
12949 Int
= Intrinsic::aarch64_neon_smaxv
;
12951 VTy
= llvm::FixedVectorType::get(Int8Ty
, 8);
12952 llvm::Type
*Tys
[2] = { Ty
, VTy
};
12953 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12954 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vmaxv");
12955 return Builder
.CreateTrunc(Ops
[0], Int8Ty
);
12957 case NEON::BI__builtin_neon_vmaxv_s16
: {
12958 Int
= Intrinsic::aarch64_neon_smaxv
;
12960 VTy
= llvm::FixedVectorType::get(Int16Ty
, 4);
12961 llvm::Type
*Tys
[2] = { Ty
, VTy
};
12962 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12963 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vmaxv");
12964 return Builder
.CreateTrunc(Ops
[0], Int16Ty
);
12966 case NEON::BI__builtin_neon_vmaxvq_s8
: {
12967 Int
= Intrinsic::aarch64_neon_smaxv
;
12969 VTy
= llvm::FixedVectorType::get(Int8Ty
, 16);
12970 llvm::Type
*Tys
[2] = { Ty
, VTy
};
12971 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12972 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vmaxv");
12973 return Builder
.CreateTrunc(Ops
[0], Int8Ty
);
12975 case NEON::BI__builtin_neon_vmaxvq_s16
: {
12976 Int
= Intrinsic::aarch64_neon_smaxv
;
12978 VTy
= llvm::FixedVectorType::get(Int16Ty
, 8);
12979 llvm::Type
*Tys
[2] = { Ty
, VTy
};
12980 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12981 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vmaxv");
12982 return Builder
.CreateTrunc(Ops
[0], Int16Ty
);
12984 case NEON::BI__builtin_neon_vmaxv_f16
: {
12985 Int
= Intrinsic::aarch64_neon_fmaxv
;
12987 VTy
= llvm::FixedVectorType::get(HalfTy
, 4);
12988 llvm::Type
*Tys
[2] = { Ty
, VTy
};
12989 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12990 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vmaxv");
12991 return Builder
.CreateTrunc(Ops
[0], HalfTy
);
12993 case NEON::BI__builtin_neon_vmaxvq_f16
: {
12994 Int
= Intrinsic::aarch64_neon_fmaxv
;
12996 VTy
= llvm::FixedVectorType::get(HalfTy
, 8);
12997 llvm::Type
*Tys
[2] = { Ty
, VTy
};
12998 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
12999 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vmaxv");
13000 return Builder
.CreateTrunc(Ops
[0], HalfTy
);
13002 case NEON::BI__builtin_neon_vminv_u8
: {
13003 Int
= Intrinsic::aarch64_neon_uminv
;
13005 VTy
= llvm::FixedVectorType::get(Int8Ty
, 8);
13006 llvm::Type
*Tys
[2] = { Ty
, VTy
};
13007 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
13008 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vminv");
13009 return Builder
.CreateTrunc(Ops
[0], Int8Ty
);
13011 case NEON::BI__builtin_neon_vminv_u16
: {
13012 Int
= Intrinsic::aarch64_neon_uminv
;
13014 VTy
= llvm::FixedVectorType::get(Int16Ty
, 4);
13015 llvm::Type
*Tys
[2] = { Ty
, VTy
};
13016 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
13017 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vminv");
13018 return Builder
.CreateTrunc(Ops
[0], Int16Ty
);
13020 case NEON::BI__builtin_neon_vminvq_u8
: {
13021 Int
= Intrinsic::aarch64_neon_uminv
;
13023 VTy
= llvm::FixedVectorType::get(Int8Ty
, 16);
13024 llvm::Type
*Tys
[2] = { Ty
, VTy
};
13025 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
13026 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vminv");
13027 return Builder
.CreateTrunc(Ops
[0], Int8Ty
);
13029 case NEON::BI__builtin_neon_vminvq_u16
: {
13030 Int
= Intrinsic::aarch64_neon_uminv
;
13032 VTy
= llvm::FixedVectorType::get(Int16Ty
, 8);
13033 llvm::Type
*Tys
[2] = { Ty
, VTy
};
13034 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
13035 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vminv");
13036 return Builder
.CreateTrunc(Ops
[0], Int16Ty
);
13038 case NEON::BI__builtin_neon_vminv_s8
: {
13039 Int
= Intrinsic::aarch64_neon_sminv
;
13041 VTy
= llvm::FixedVectorType::get(Int8Ty
, 8);
13042 llvm::Type
*Tys
[2] = { Ty
, VTy
};
13043 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
13044 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vminv");
13045 return Builder
.CreateTrunc(Ops
[0], Int8Ty
);
13047 case NEON::BI__builtin_neon_vminv_s16
: {
13048 Int
= Intrinsic::aarch64_neon_sminv
;
13050 VTy
= llvm::FixedVectorType::get(Int16Ty
, 4);
13051 llvm::Type
*Tys
[2] = { Ty
, VTy
};
13052 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
13053 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vminv");
13054 return Builder
.CreateTrunc(Ops
[0], Int16Ty
);
13056 case NEON::BI__builtin_neon_vminvq_s8
: {
13057 Int
= Intrinsic::aarch64_neon_sminv
;
13059 VTy
= llvm::FixedVectorType::get(Int8Ty
, 16);
13060 llvm::Type
*Tys
[2] = { Ty
, VTy
};
13061 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
13062 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vminv");
13063 return Builder
.CreateTrunc(Ops
[0], Int8Ty
);
13065 case NEON::BI__builtin_neon_vminvq_s16
: {
13066 Int
= Intrinsic::aarch64_neon_sminv
;
13068 VTy
= llvm::FixedVectorType::get(Int16Ty
, 8);
13069 llvm::Type
*Tys
[2] = { Ty
, VTy
};
13070 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
13071 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vminv");
13072 return Builder
.CreateTrunc(Ops
[0], Int16Ty
);
13074 case NEON::BI__builtin_neon_vminv_f16
: {
13075 Int
= Intrinsic::aarch64_neon_fminv
;
13077 VTy
= llvm::FixedVectorType::get(HalfTy
, 4);
13078 llvm::Type
*Tys
[2] = { Ty
, VTy
};
13079 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
13080 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vminv");
13081 return Builder
.CreateTrunc(Ops
[0], HalfTy
);
13083 case NEON::BI__builtin_neon_vminvq_f16
: {
13084 Int
= Intrinsic::aarch64_neon_fminv
;
13086 VTy
= llvm::FixedVectorType::get(HalfTy
, 8);
13087 llvm::Type
*Tys
[2] = { Ty
, VTy
};
13088 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
13089 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vminv");
13090 return Builder
.CreateTrunc(Ops
[0], HalfTy
);
13092 case NEON::BI__builtin_neon_vmaxnmv_f16
: {
13093 Int
= Intrinsic::aarch64_neon_fmaxnmv
;
13095 VTy
= llvm::FixedVectorType::get(HalfTy
, 4);
13096 llvm::Type
*Tys
[2] = { Ty
, VTy
};
13097 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
13098 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vmaxnmv");
13099 return Builder
.CreateTrunc(Ops
[0], HalfTy
);
13101 case NEON::BI__builtin_neon_vmaxnmvq_f16
: {
13102 Int
= Intrinsic::aarch64_neon_fmaxnmv
;
13104 VTy
= llvm::FixedVectorType::get(HalfTy
, 8);
13105 llvm::Type
*Tys
[2] = { Ty
, VTy
};
13106 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
13107 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vmaxnmv");
13108 return Builder
.CreateTrunc(Ops
[0], HalfTy
);
13110 case NEON::BI__builtin_neon_vminnmv_f16
: {
13111 Int
= Intrinsic::aarch64_neon_fminnmv
;
13113 VTy
= llvm::FixedVectorType::get(HalfTy
, 4);
13114 llvm::Type
*Tys
[2] = { Ty
, VTy
};
13115 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
13116 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vminnmv");
13117 return Builder
.CreateTrunc(Ops
[0], HalfTy
);
13119 case NEON::BI__builtin_neon_vminnmvq_f16
: {
13120 Int
= Intrinsic::aarch64_neon_fminnmv
;
13122 VTy
= llvm::FixedVectorType::get(HalfTy
, 8);
13123 llvm::Type
*Tys
[2] = { Ty
, VTy
};
13124 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
13125 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vminnmv");
13126 return Builder
.CreateTrunc(Ops
[0], HalfTy
);
13128 case NEON::BI__builtin_neon_vmul_n_f64
: {
13129 Ops
[0] = Builder
.CreateBitCast(Ops
[0], DoubleTy
);
13130 Value
*RHS
= Builder
.CreateBitCast(EmitScalarExpr(E
->getArg(1)), DoubleTy
);
13131 return Builder
.CreateFMul(Ops
[0], RHS
);
13133 case NEON::BI__builtin_neon_vaddlv_u8
: {
13134 Int
= Intrinsic::aarch64_neon_uaddlv
;
13136 VTy
= llvm::FixedVectorType::get(Int8Ty
, 8);
13137 llvm::Type
*Tys
[2] = { Ty
, VTy
};
13138 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
13139 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vaddlv");
13140 return Builder
.CreateTrunc(Ops
[0], Int16Ty
);
13142 case NEON::BI__builtin_neon_vaddlv_u16
: {
13143 Int
= Intrinsic::aarch64_neon_uaddlv
;
13145 VTy
= llvm::FixedVectorType::get(Int16Ty
, 4);
13146 llvm::Type
*Tys
[2] = { Ty
, VTy
};
13147 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
13148 return EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vaddlv");
13150 case NEON::BI__builtin_neon_vaddlvq_u8
: {
13151 Int
= Intrinsic::aarch64_neon_uaddlv
;
13153 VTy
= llvm::FixedVectorType::get(Int8Ty
, 16);
13154 llvm::Type
*Tys
[2] = { Ty
, VTy
};
13155 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
13156 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vaddlv");
13157 return Builder
.CreateTrunc(Ops
[0], Int16Ty
);
13159 case NEON::BI__builtin_neon_vaddlvq_u16
: {
13160 Int
= Intrinsic::aarch64_neon_uaddlv
;
13162 VTy
= llvm::FixedVectorType::get(Int16Ty
, 8);
13163 llvm::Type
*Tys
[2] = { Ty
, VTy
};
13164 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
13165 return EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vaddlv");
13167 case NEON::BI__builtin_neon_vaddlv_s8
: {
13168 Int
= Intrinsic::aarch64_neon_saddlv
;
13170 VTy
= llvm::FixedVectorType::get(Int8Ty
, 8);
13171 llvm::Type
*Tys
[2] = { Ty
, VTy
};
13172 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
13173 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vaddlv");
13174 return Builder
.CreateTrunc(Ops
[0], Int16Ty
);
13176 case NEON::BI__builtin_neon_vaddlv_s16
: {
13177 Int
= Intrinsic::aarch64_neon_saddlv
;
13179 VTy
= llvm::FixedVectorType::get(Int16Ty
, 4);
13180 llvm::Type
*Tys
[2] = { Ty
, VTy
};
13181 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
13182 return EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vaddlv");
13184 case NEON::BI__builtin_neon_vaddlvq_s8
: {
13185 Int
= Intrinsic::aarch64_neon_saddlv
;
13187 VTy
= llvm::FixedVectorType::get(Int8Ty
, 16);
13188 llvm::Type
*Tys
[2] = { Ty
, VTy
};
13189 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
13190 Ops
[0] = EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vaddlv");
13191 return Builder
.CreateTrunc(Ops
[0], Int16Ty
);
13193 case NEON::BI__builtin_neon_vaddlvq_s16
: {
13194 Int
= Intrinsic::aarch64_neon_saddlv
;
13196 VTy
= llvm::FixedVectorType::get(Int16Ty
, 8);
13197 llvm::Type
*Tys
[2] = { Ty
, VTy
};
13198 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
13199 return EmitNeonCall(CGM
.getIntrinsic(Int
, Tys
), Ops
, "vaddlv");
13201 case NEON::BI__builtin_neon_vsri_n_v
:
13202 case NEON::BI__builtin_neon_vsriq_n_v
: {
13203 Int
= Intrinsic::aarch64_neon_vsri
;
13204 llvm::Function
*Intrin
= CGM
.getIntrinsic(Int
, Ty
);
13205 return EmitNeonCall(Intrin
, Ops
, "vsri_n");
13207 case NEON::BI__builtin_neon_vsli_n_v
:
13208 case NEON::BI__builtin_neon_vsliq_n_v
: {
13209 Int
= Intrinsic::aarch64_neon_vsli
;
13210 llvm::Function
*Intrin
= CGM
.getIntrinsic(Int
, Ty
);
13211 return EmitNeonCall(Intrin
, Ops
, "vsli_n");
13213 case NEON::BI__builtin_neon_vsra_n_v
:
13214 case NEON::BI__builtin_neon_vsraq_n_v
:
13215 Ops
[0] = Builder
.CreateBitCast(Ops
[0], Ty
);
13216 Ops
[1] = EmitNeonRShiftImm(Ops
[1], Ops
[2], Ty
, usgn
, "vsra_n");
13217 return Builder
.CreateAdd(Ops
[0], Ops
[1]);
13218 case NEON::BI__builtin_neon_vrsra_n_v
:
13219 case NEON::BI__builtin_neon_vrsraq_n_v
: {
13220 Int
= usgn
? Intrinsic::aarch64_neon_urshl
: Intrinsic::aarch64_neon_srshl
;
13221 SmallVector
<llvm::Value
*,2> TmpOps
;
13222 TmpOps
.push_back(Ops
[1]);
13223 TmpOps
.push_back(Ops
[2]);
13224 Function
* F
= CGM
.getIntrinsic(Int
, Ty
);
13225 llvm::Value
*tmp
= EmitNeonCall(F
, TmpOps
, "vrshr_n", 1, true);
13226 Ops
[0] = Builder
.CreateBitCast(Ops
[0], VTy
);
13227 return Builder
.CreateAdd(Ops
[0], tmp
);
13229 case NEON::BI__builtin_neon_vld1_v
:
13230 case NEON::BI__builtin_neon_vld1q_v
: {
13231 return Builder
.CreateAlignedLoad(VTy
, Ops
[0], PtrOp0
.getAlignment());
13233 case NEON::BI__builtin_neon_vst1_v
:
13234 case NEON::BI__builtin_neon_vst1q_v
:
13235 Ops
[1] = Builder
.CreateBitCast(Ops
[1], VTy
);
13236 return Builder
.CreateAlignedStore(Ops
[1], Ops
[0], PtrOp0
.getAlignment());
13237 case NEON::BI__builtin_neon_vld1_lane_v
:
13238 case NEON::BI__builtin_neon_vld1q_lane_v
: {
13239 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
13240 Ops
[0] = Builder
.CreateAlignedLoad(VTy
->getElementType(), Ops
[0],
13241 PtrOp0
.getAlignment());
13242 return Builder
.CreateInsertElement(Ops
[1], Ops
[0], Ops
[2], "vld1_lane");
13244 case NEON::BI__builtin_neon_vldap1_lane_s64
:
13245 case NEON::BI__builtin_neon_vldap1q_lane_s64
: {
13246 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
13247 llvm::LoadInst
*LI
= Builder
.CreateAlignedLoad(
13248 VTy
->getElementType(), Ops
[0], PtrOp0
.getAlignment());
13249 LI
->setAtomic(llvm::AtomicOrdering::Acquire
);
13251 return Builder
.CreateInsertElement(Ops
[1], Ops
[0], Ops
[2], "vldap1_lane");
13253 case NEON::BI__builtin_neon_vld1_dup_v
:
13254 case NEON::BI__builtin_neon_vld1q_dup_v
: {
13255 Value
*V
= PoisonValue::get(Ty
);
13256 Ops
[0] = Builder
.CreateAlignedLoad(VTy
->getElementType(), Ops
[0],
13257 PtrOp0
.getAlignment());
13258 llvm::Constant
*CI
= ConstantInt::get(Int32Ty
, 0);
13259 Ops
[0] = Builder
.CreateInsertElement(V
, Ops
[0], CI
);
13260 return EmitNeonSplat(Ops
[0], CI
);
13262 case NEON::BI__builtin_neon_vst1_lane_v
:
13263 case NEON::BI__builtin_neon_vst1q_lane_v
:
13264 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
13265 Ops
[1] = Builder
.CreateExtractElement(Ops
[1], Ops
[2]);
13266 return Builder
.CreateAlignedStore(Ops
[1], Ops
[0], PtrOp0
.getAlignment());
13267 case NEON::BI__builtin_neon_vstl1_lane_s64
:
13268 case NEON::BI__builtin_neon_vstl1q_lane_s64
: {
13269 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
13270 Ops
[1] = Builder
.CreateExtractElement(Ops
[1], Ops
[2]);
13271 llvm::StoreInst
*SI
=
13272 Builder
.CreateAlignedStore(Ops
[1], Ops
[0], PtrOp0
.getAlignment());
13273 SI
->setAtomic(llvm::AtomicOrdering::Release
);
13276 case NEON::BI__builtin_neon_vld2_v
:
13277 case NEON::BI__builtin_neon_vld2q_v
: {
13278 llvm::Type
*Tys
[2] = {VTy
, UnqualPtrTy
};
13279 Function
*F
= CGM
.getIntrinsic(Intrinsic::aarch64_neon_ld2
, Tys
);
13280 Ops
[1] = Builder
.CreateCall(F
, Ops
[1], "vld2");
13281 return Builder
.CreateDefaultAlignedStore(Ops
[1], Ops
[0]);
13283 case NEON::BI__builtin_neon_vld3_v
:
13284 case NEON::BI__builtin_neon_vld3q_v
: {
13285 llvm::Type
*Tys
[2] = {VTy
, UnqualPtrTy
};
13286 Function
*F
= CGM
.getIntrinsic(Intrinsic::aarch64_neon_ld3
, Tys
);
13287 Ops
[1] = Builder
.CreateCall(F
, Ops
[1], "vld3");
13288 return Builder
.CreateDefaultAlignedStore(Ops
[1], Ops
[0]);
13290 case NEON::BI__builtin_neon_vld4_v
:
13291 case NEON::BI__builtin_neon_vld4q_v
: {
13292 llvm::Type
*Tys
[2] = {VTy
, UnqualPtrTy
};
13293 Function
*F
= CGM
.getIntrinsic(Intrinsic::aarch64_neon_ld4
, Tys
);
13294 Ops
[1] = Builder
.CreateCall(F
, Ops
[1], "vld4");
13295 return Builder
.CreateDefaultAlignedStore(Ops
[1], Ops
[0]);
13297 case NEON::BI__builtin_neon_vld2_dup_v
:
13298 case NEON::BI__builtin_neon_vld2q_dup_v
: {
13299 llvm::Type
*Tys
[2] = {VTy
, UnqualPtrTy
};
13300 Function
*F
= CGM
.getIntrinsic(Intrinsic::aarch64_neon_ld2r
, Tys
);
13301 Ops
[1] = Builder
.CreateCall(F
, Ops
[1], "vld2");
13302 return Builder
.CreateDefaultAlignedStore(Ops
[1], Ops
[0]);
13304 case NEON::BI__builtin_neon_vld3_dup_v
:
13305 case NEON::BI__builtin_neon_vld3q_dup_v
: {
13306 llvm::Type
*Tys
[2] = {VTy
, UnqualPtrTy
};
13307 Function
*F
= CGM
.getIntrinsic(Intrinsic::aarch64_neon_ld3r
, Tys
);
13308 Ops
[1] = Builder
.CreateCall(F
, Ops
[1], "vld3");
13309 return Builder
.CreateDefaultAlignedStore(Ops
[1], Ops
[0]);
13311 case NEON::BI__builtin_neon_vld4_dup_v
:
13312 case NEON::BI__builtin_neon_vld4q_dup_v
: {
13313 llvm::Type
*Tys
[2] = {VTy
, UnqualPtrTy
};
13314 Function
*F
= CGM
.getIntrinsic(Intrinsic::aarch64_neon_ld4r
, Tys
);
13315 Ops
[1] = Builder
.CreateCall(F
, Ops
[1], "vld4");
13316 return Builder
.CreateDefaultAlignedStore(Ops
[1], Ops
[0]);
13318 case NEON::BI__builtin_neon_vld2_lane_v
:
13319 case NEON::BI__builtin_neon_vld2q_lane_v
: {
13320 llvm::Type
*Tys
[2] = { VTy
, Ops
[1]->getType() };
13321 Function
*F
= CGM
.getIntrinsic(Intrinsic::aarch64_neon_ld2lane
, Tys
);
13322 std::rotate(Ops
.begin() + 1, Ops
.begin() + 2, Ops
.end());
13323 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
13324 Ops
[2] = Builder
.CreateBitCast(Ops
[2], Ty
);
13325 Ops
[3] = Builder
.CreateZExt(Ops
[3], Int64Ty
);
13326 Ops
[1] = Builder
.CreateCall(F
, ArrayRef(Ops
).slice(1), "vld2_lane");
13327 return Builder
.CreateDefaultAlignedStore(Ops
[1], Ops
[0]);
13329 case NEON::BI__builtin_neon_vld3_lane_v
:
13330 case NEON::BI__builtin_neon_vld3q_lane_v
: {
13331 llvm::Type
*Tys
[2] = { VTy
, Ops
[1]->getType() };
13332 Function
*F
= CGM
.getIntrinsic(Intrinsic::aarch64_neon_ld3lane
, Tys
);
13333 std::rotate(Ops
.begin() + 1, Ops
.begin() + 2, Ops
.end());
13334 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
13335 Ops
[2] = Builder
.CreateBitCast(Ops
[2], Ty
);
13336 Ops
[3] = Builder
.CreateBitCast(Ops
[3], Ty
);
13337 Ops
[4] = Builder
.CreateZExt(Ops
[4], Int64Ty
);
13338 Ops
[1] = Builder
.CreateCall(F
, ArrayRef(Ops
).slice(1), "vld3_lane");
13339 return Builder
.CreateDefaultAlignedStore(Ops
[1], Ops
[0]);
13341 case NEON::BI__builtin_neon_vld4_lane_v
:
13342 case NEON::BI__builtin_neon_vld4q_lane_v
: {
13343 llvm::Type
*Tys
[2] = { VTy
, Ops
[1]->getType() };
13344 Function
*F
= CGM
.getIntrinsic(Intrinsic::aarch64_neon_ld4lane
, Tys
);
13345 std::rotate(Ops
.begin() + 1, Ops
.begin() + 2, Ops
.end());
13346 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
13347 Ops
[2] = Builder
.CreateBitCast(Ops
[2], Ty
);
13348 Ops
[3] = Builder
.CreateBitCast(Ops
[3], Ty
);
13349 Ops
[4] = Builder
.CreateBitCast(Ops
[4], Ty
);
13350 Ops
[5] = Builder
.CreateZExt(Ops
[5], Int64Ty
);
13351 Ops
[1] = Builder
.CreateCall(F
, ArrayRef(Ops
).slice(1), "vld4_lane");
13352 return Builder
.CreateDefaultAlignedStore(Ops
[1], Ops
[0]);
13354 case NEON::BI__builtin_neon_vst2_v
:
13355 case NEON::BI__builtin_neon_vst2q_v
: {
13356 std::rotate(Ops
.begin(), Ops
.begin() + 1, Ops
.end());
13357 llvm::Type
*Tys
[2] = { VTy
, Ops
[2]->getType() };
13358 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::aarch64_neon_st2
, Tys
),
13361 case NEON::BI__builtin_neon_vst2_lane_v
:
13362 case NEON::BI__builtin_neon_vst2q_lane_v
: {
13363 std::rotate(Ops
.begin(), Ops
.begin() + 1, Ops
.end());
13364 Ops
[2] = Builder
.CreateZExt(Ops
[2], Int64Ty
);
13365 llvm::Type
*Tys
[2] = { VTy
, Ops
[3]->getType() };
13366 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::aarch64_neon_st2lane
, Tys
),
13369 case NEON::BI__builtin_neon_vst3_v
:
13370 case NEON::BI__builtin_neon_vst3q_v
: {
13371 std::rotate(Ops
.begin(), Ops
.begin() + 1, Ops
.end());
13372 llvm::Type
*Tys
[2] = { VTy
, Ops
[3]->getType() };
13373 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::aarch64_neon_st3
, Tys
),
13376 case NEON::BI__builtin_neon_vst3_lane_v
:
13377 case NEON::BI__builtin_neon_vst3q_lane_v
: {
13378 std::rotate(Ops
.begin(), Ops
.begin() + 1, Ops
.end());
13379 Ops
[3] = Builder
.CreateZExt(Ops
[3], Int64Ty
);
13380 llvm::Type
*Tys
[2] = { VTy
, Ops
[4]->getType() };
13381 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::aarch64_neon_st3lane
, Tys
),
13384 case NEON::BI__builtin_neon_vst4_v
:
13385 case NEON::BI__builtin_neon_vst4q_v
: {
13386 std::rotate(Ops
.begin(), Ops
.begin() + 1, Ops
.end());
13387 llvm::Type
*Tys
[2] = { VTy
, Ops
[4]->getType() };
13388 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::aarch64_neon_st4
, Tys
),
13391 case NEON::BI__builtin_neon_vst4_lane_v
:
13392 case NEON::BI__builtin_neon_vst4q_lane_v
: {
13393 std::rotate(Ops
.begin(), Ops
.begin() + 1, Ops
.end());
13394 Ops
[4] = Builder
.CreateZExt(Ops
[4], Int64Ty
);
13395 llvm::Type
*Tys
[2] = { VTy
, Ops
[5]->getType() };
13396 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::aarch64_neon_st4lane
, Tys
),
13399 case NEON::BI__builtin_neon_vtrn_v
:
13400 case NEON::BI__builtin_neon_vtrnq_v
: {
13401 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
13402 Ops
[2] = Builder
.CreateBitCast(Ops
[2], Ty
);
13403 Value
*SV
= nullptr;
13405 for (unsigned vi
= 0; vi
!= 2; ++vi
) {
13406 SmallVector
<int, 16> Indices
;
13407 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; i
+= 2) {
13408 Indices
.push_back(i
+vi
);
13409 Indices
.push_back(i
+e
+vi
);
13411 Value
*Addr
= Builder
.CreateConstInBoundsGEP1_32(Ty
, Ops
[0], vi
);
13412 SV
= Builder
.CreateShuffleVector(Ops
[1], Ops
[2], Indices
, "vtrn");
13413 SV
= Builder
.CreateDefaultAlignedStore(SV
, Addr
);
13417 case NEON::BI__builtin_neon_vuzp_v
:
13418 case NEON::BI__builtin_neon_vuzpq_v
: {
13419 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
13420 Ops
[2] = Builder
.CreateBitCast(Ops
[2], Ty
);
13421 Value
*SV
= nullptr;
13423 for (unsigned vi
= 0; vi
!= 2; ++vi
) {
13424 SmallVector
<int, 16> Indices
;
13425 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
)
13426 Indices
.push_back(2*i
+vi
);
13428 Value
*Addr
= Builder
.CreateConstInBoundsGEP1_32(Ty
, Ops
[0], vi
);
13429 SV
= Builder
.CreateShuffleVector(Ops
[1], Ops
[2], Indices
, "vuzp");
13430 SV
= Builder
.CreateDefaultAlignedStore(SV
, Addr
);
13434 case NEON::BI__builtin_neon_vzip_v
:
13435 case NEON::BI__builtin_neon_vzipq_v
: {
13436 Ops
[1] = Builder
.CreateBitCast(Ops
[1], Ty
);
13437 Ops
[2] = Builder
.CreateBitCast(Ops
[2], Ty
);
13438 Value
*SV
= nullptr;
13440 for (unsigned vi
= 0; vi
!= 2; ++vi
) {
13441 SmallVector
<int, 16> Indices
;
13442 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; i
+= 2) {
13443 Indices
.push_back((i
+ vi
*e
) >> 1);
13444 Indices
.push_back(((i
+ vi
*e
) >> 1)+e
);
13446 Value
*Addr
= Builder
.CreateConstInBoundsGEP1_32(Ty
, Ops
[0], vi
);
13447 SV
= Builder
.CreateShuffleVector(Ops
[1], Ops
[2], Indices
, "vzip");
13448 SV
= Builder
.CreateDefaultAlignedStore(SV
, Addr
);
13452 case NEON::BI__builtin_neon_vqtbl1q_v
: {
13453 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::aarch64_neon_tbl1
, Ty
),
13456 case NEON::BI__builtin_neon_vqtbl2q_v
: {
13457 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::aarch64_neon_tbl2
, Ty
),
13460 case NEON::BI__builtin_neon_vqtbl3q_v
: {
13461 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::aarch64_neon_tbl3
, Ty
),
13464 case NEON::BI__builtin_neon_vqtbl4q_v
: {
13465 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::aarch64_neon_tbl4
, Ty
),
13468 case NEON::BI__builtin_neon_vqtbx1q_v
: {
13469 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::aarch64_neon_tbx1
, Ty
),
13472 case NEON::BI__builtin_neon_vqtbx2q_v
: {
13473 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::aarch64_neon_tbx2
, Ty
),
13476 case NEON::BI__builtin_neon_vqtbx3q_v
: {
13477 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::aarch64_neon_tbx3
, Ty
),
13480 case NEON::BI__builtin_neon_vqtbx4q_v
: {
13481 return EmitNeonCall(CGM
.getIntrinsic(Intrinsic::aarch64_neon_tbx4
, Ty
),
13484 case NEON::BI__builtin_neon_vsqadd_v
:
13485 case NEON::BI__builtin_neon_vsqaddq_v
: {
13486 Int
= Intrinsic::aarch64_neon_usqadd
;
13487 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vsqadd");
13489 case NEON::BI__builtin_neon_vuqadd_v
:
13490 case NEON::BI__builtin_neon_vuqaddq_v
: {
13491 Int
= Intrinsic::aarch64_neon_suqadd
;
13492 return EmitNeonCall(CGM
.getIntrinsic(Int
, Ty
), Ops
, "vuqadd");
13497 Value
*CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID
,
13498 const CallExpr
*E
) {
13499 assert((BuiltinID
== BPF::BI__builtin_preserve_field_info
||
13500 BuiltinID
== BPF::BI__builtin_btf_type_id
||
13501 BuiltinID
== BPF::BI__builtin_preserve_type_info
||
13502 BuiltinID
== BPF::BI__builtin_preserve_enum_value
) &&
13503 "unexpected BPF builtin");
13505 // A sequence number, injected into IR builtin functions, to
13506 // prevent CSE given the only difference of the function
13507 // may just be the debuginfo metadata.
13508 static uint32_t BuiltinSeqNum
;
13510 switch (BuiltinID
) {
13512 llvm_unreachable("Unexpected BPF builtin");
13513 case BPF::BI__builtin_preserve_field_info
: {
13514 const Expr
*Arg
= E
->getArg(0);
13515 bool IsBitField
= Arg
->IgnoreParens()->getObjectKind() == OK_BitField
;
13517 if (!getDebugInfo()) {
13518 CGM
.Error(E
->getExprLoc(),
13519 "using __builtin_preserve_field_info() without -g");
13520 return IsBitField
? EmitLValue(Arg
).getRawBitFieldPointer(*this)
13521 : EmitLValue(Arg
).emitRawPointer(*this);
13524 // Enable underlying preserve_*_access_index() generation.
13525 bool OldIsInPreservedAIRegion
= IsInPreservedAIRegion
;
13526 IsInPreservedAIRegion
= true;
13527 Value
*FieldAddr
= IsBitField
? EmitLValue(Arg
).getRawBitFieldPointer(*this)
13528 : EmitLValue(Arg
).emitRawPointer(*this);
13529 IsInPreservedAIRegion
= OldIsInPreservedAIRegion
;
13531 ConstantInt
*C
= cast
<ConstantInt
>(EmitScalarExpr(E
->getArg(1)));
13532 Value
*InfoKind
= ConstantInt::get(Int64Ty
, C
->getSExtValue());
13534 // Built the IR for the preserve_field_info intrinsic.
13535 llvm::Function
*FnGetFieldInfo
= llvm::Intrinsic::getDeclaration(
13536 &CGM
.getModule(), llvm::Intrinsic::bpf_preserve_field_info
,
13537 {FieldAddr
->getType()});
13538 return Builder
.CreateCall(FnGetFieldInfo
, {FieldAddr
, InfoKind
});
13540 case BPF::BI__builtin_btf_type_id
:
13541 case BPF::BI__builtin_preserve_type_info
: {
13542 if (!getDebugInfo()) {
13543 CGM
.Error(E
->getExprLoc(), "using builtin function without -g");
13547 const Expr
*Arg0
= E
->getArg(0);
13548 llvm::DIType
*DbgInfo
= getDebugInfo()->getOrCreateStandaloneType(
13549 Arg0
->getType(), Arg0
->getExprLoc());
13551 ConstantInt
*Flag
= cast
<ConstantInt
>(EmitScalarExpr(E
->getArg(1)));
13552 Value
*FlagValue
= ConstantInt::get(Int64Ty
, Flag
->getSExtValue());
13553 Value
*SeqNumVal
= ConstantInt::get(Int32Ty
, BuiltinSeqNum
++);
13555 llvm::Function
*FnDecl
;
13556 if (BuiltinID
== BPF::BI__builtin_btf_type_id
)
13557 FnDecl
= llvm::Intrinsic::getDeclaration(
13558 &CGM
.getModule(), llvm::Intrinsic::bpf_btf_type_id
, {});
13560 FnDecl
= llvm::Intrinsic::getDeclaration(
13561 &CGM
.getModule(), llvm::Intrinsic::bpf_preserve_type_info
, {});
13562 CallInst
*Fn
= Builder
.CreateCall(FnDecl
, {SeqNumVal
, FlagValue
});
13563 Fn
->setMetadata(LLVMContext::MD_preserve_access_index
, DbgInfo
);
13566 case BPF::BI__builtin_preserve_enum_value
: {
13567 if (!getDebugInfo()) {
13568 CGM
.Error(E
->getExprLoc(), "using builtin function without -g");
13572 const Expr
*Arg0
= E
->getArg(0);
13573 llvm::DIType
*DbgInfo
= getDebugInfo()->getOrCreateStandaloneType(
13574 Arg0
->getType(), Arg0
->getExprLoc());
13577 const auto *UO
= cast
<UnaryOperator
>(Arg0
->IgnoreParens());
13578 const auto *CE
= cast
<CStyleCastExpr
>(UO
->getSubExpr());
13579 const auto *DR
= cast
<DeclRefExpr
>(CE
->getSubExpr());
13580 const auto *Enumerator
= cast
<EnumConstantDecl
>(DR
->getDecl());
13582 auto InitVal
= Enumerator
->getInitVal();
13583 std::string InitValStr
;
13584 if (InitVal
.isNegative() || InitVal
> uint64_t(INT64_MAX
))
13585 InitValStr
= std::to_string(InitVal
.getSExtValue());
13587 InitValStr
= std::to_string(InitVal
.getZExtValue());
13588 std::string EnumStr
= Enumerator
->getNameAsString() + ":" + InitValStr
;
13589 Value
*EnumStrVal
= Builder
.CreateGlobalStringPtr(EnumStr
);
13591 ConstantInt
*Flag
= cast
<ConstantInt
>(EmitScalarExpr(E
->getArg(1)));
13592 Value
*FlagValue
= ConstantInt::get(Int64Ty
, Flag
->getSExtValue());
13593 Value
*SeqNumVal
= ConstantInt::get(Int32Ty
, BuiltinSeqNum
++);
13595 llvm::Function
*IntrinsicFn
= llvm::Intrinsic::getDeclaration(
13596 &CGM
.getModule(), llvm::Intrinsic::bpf_preserve_enum_value
, {});
13598 Builder
.CreateCall(IntrinsicFn
, {SeqNumVal
, EnumStrVal
, FlagValue
});
13599 Fn
->setMetadata(LLVMContext::MD_preserve_access_index
, DbgInfo
);
13605 llvm::Value
*CodeGenFunction::
13606 BuildVector(ArrayRef
<llvm::Value
*> Ops
) {
13607 assert((Ops
.size() & (Ops
.size() - 1)) == 0 &&
13608 "Not a power-of-two sized vector!");
13609 bool AllConstants
= true;
13610 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
&& AllConstants
; ++i
)
13611 AllConstants
&= isa
<Constant
>(Ops
[i
]);
13613 // If this is a constant vector, create a ConstantVector.
13614 if (AllConstants
) {
13615 SmallVector
<llvm::Constant
*, 16> CstOps
;
13616 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
13617 CstOps
.push_back(cast
<Constant
>(Ops
[i
]));
13618 return llvm::ConstantVector::get(CstOps
);
13621 // Otherwise, insertelement the values to build the vector.
13622 Value
*Result
= llvm::PoisonValue::get(
13623 llvm::FixedVectorType::get(Ops
[0]->getType(), Ops
.size()));
13625 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
13626 Result
= Builder
.CreateInsertElement(Result
, Ops
[i
], Builder
.getInt64(i
));
13631 // Convert the mask from an integer type to a vector of i1.
13632 static Value
*getMaskVecValue(CodeGenFunction
&CGF
, Value
*Mask
,
13633 unsigned NumElts
) {
13635 auto *MaskTy
= llvm::FixedVectorType::get(
13636 CGF
.Builder
.getInt1Ty(),
13637 cast
<IntegerType
>(Mask
->getType())->getBitWidth());
13638 Value
*MaskVec
= CGF
.Builder
.CreateBitCast(Mask
, MaskTy
);
13640 // If we have less than 8 elements, then the starting mask was an i8 and
13641 // we need to extract down to the right number of elements.
13644 for (unsigned i
= 0; i
!= NumElts
; ++i
)
13646 MaskVec
= CGF
.Builder
.CreateShuffleVector(
13647 MaskVec
, MaskVec
, ArrayRef(Indices
, NumElts
), "extract");
13652 static Value
*EmitX86MaskedStore(CodeGenFunction
&CGF
, ArrayRef
<Value
*> Ops
,
13654 Value
*Ptr
= Ops
[0];
13656 Value
*MaskVec
= getMaskVecValue(
13658 cast
<llvm::FixedVectorType
>(Ops
[1]->getType())->getNumElements());
13660 return CGF
.Builder
.CreateMaskedStore(Ops
[1], Ptr
, Alignment
, MaskVec
);
13663 static Value
*EmitX86MaskedLoad(CodeGenFunction
&CGF
, ArrayRef
<Value
*> Ops
,
13665 llvm::Type
*Ty
= Ops
[1]->getType();
13666 Value
*Ptr
= Ops
[0];
13668 Value
*MaskVec
= getMaskVecValue(
13669 CGF
, Ops
[2], cast
<llvm::FixedVectorType
>(Ty
)->getNumElements());
13671 return CGF
.Builder
.CreateMaskedLoad(Ty
, Ptr
, Alignment
, MaskVec
, Ops
[1]);
13674 static Value
*EmitX86ExpandLoad(CodeGenFunction
&CGF
,
13675 ArrayRef
<Value
*> Ops
) {
13676 auto *ResultTy
= cast
<llvm::VectorType
>(Ops
[1]->getType());
13677 Value
*Ptr
= Ops
[0];
13679 Value
*MaskVec
= getMaskVecValue(
13680 CGF
, Ops
[2], cast
<FixedVectorType
>(ResultTy
)->getNumElements());
13682 llvm::Function
*F
= CGF
.CGM
.getIntrinsic(Intrinsic::masked_expandload
,
13684 return CGF
.Builder
.CreateCall(F
, { Ptr
, MaskVec
, Ops
[1] });
13687 static Value
*EmitX86CompressExpand(CodeGenFunction
&CGF
,
13688 ArrayRef
<Value
*> Ops
,
13690 auto *ResultTy
= cast
<llvm::FixedVectorType
>(Ops
[1]->getType());
13692 Value
*MaskVec
= getMaskVecValue(CGF
, Ops
[2], ResultTy
->getNumElements());
13694 Intrinsic::ID IID
= IsCompress
? Intrinsic::x86_avx512_mask_compress
13695 : Intrinsic::x86_avx512_mask_expand
;
13696 llvm::Function
*F
= CGF
.CGM
.getIntrinsic(IID
, ResultTy
);
13697 return CGF
.Builder
.CreateCall(F
, { Ops
[0], Ops
[1], MaskVec
});
13700 static Value
*EmitX86CompressStore(CodeGenFunction
&CGF
,
13701 ArrayRef
<Value
*> Ops
) {
13702 auto *ResultTy
= cast
<llvm::FixedVectorType
>(Ops
[1]->getType());
13703 Value
*Ptr
= Ops
[0];
13705 Value
*MaskVec
= getMaskVecValue(CGF
, Ops
[2], ResultTy
->getNumElements());
13707 llvm::Function
*F
= CGF
.CGM
.getIntrinsic(Intrinsic::masked_compressstore
,
13709 return CGF
.Builder
.CreateCall(F
, { Ops
[1], Ptr
, MaskVec
});
13712 static Value
*EmitX86MaskLogic(CodeGenFunction
&CGF
, Instruction::BinaryOps Opc
,
13713 ArrayRef
<Value
*> Ops
,
13714 bool InvertLHS
= false) {
13715 unsigned NumElts
= Ops
[0]->getType()->getIntegerBitWidth();
13716 Value
*LHS
= getMaskVecValue(CGF
, Ops
[0], NumElts
);
13717 Value
*RHS
= getMaskVecValue(CGF
, Ops
[1], NumElts
);
13720 LHS
= CGF
.Builder
.CreateNot(LHS
);
13722 return CGF
.Builder
.CreateBitCast(CGF
.Builder
.CreateBinOp(Opc
, LHS
, RHS
),
13723 Ops
[0]->getType());
13726 static Value
*EmitX86FunnelShift(CodeGenFunction
&CGF
, Value
*Op0
, Value
*Op1
,
13727 Value
*Amt
, bool IsRight
) {
13728 llvm::Type
*Ty
= Op0
->getType();
13730 // Amount may be scalar immediate, in which case create a splat vector.
13731 // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
13732 // we only care about the lowest log2 bits anyway.
13733 if (Amt
->getType() != Ty
) {
13734 unsigned NumElts
= cast
<llvm::FixedVectorType
>(Ty
)->getNumElements();
13735 Amt
= CGF
.Builder
.CreateIntCast(Amt
, Ty
->getScalarType(), false);
13736 Amt
= CGF
.Builder
.CreateVectorSplat(NumElts
, Amt
);
13739 unsigned IID
= IsRight
? Intrinsic::fshr
: Intrinsic::fshl
;
13740 Function
*F
= CGF
.CGM
.getIntrinsic(IID
, Ty
);
13741 return CGF
.Builder
.CreateCall(F
, {Op0
, Op1
, Amt
});
13744 static Value
*EmitX86vpcom(CodeGenFunction
&CGF
, ArrayRef
<Value
*> Ops
,
13746 Value
*Op0
= Ops
[0];
13747 Value
*Op1
= Ops
[1];
13748 llvm::Type
*Ty
= Op0
->getType();
13749 uint64_t Imm
= cast
<llvm::ConstantInt
>(Ops
[2])->getZExtValue() & 0x7;
13751 CmpInst::Predicate Pred
;
13754 Pred
= IsSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
13757 Pred
= IsSigned
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
13760 Pred
= IsSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
13763 Pred
= IsSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
;
13766 Pred
= ICmpInst::ICMP_EQ
;
13769 Pred
= ICmpInst::ICMP_NE
;
13772 return llvm::Constant::getNullValue(Ty
); // FALSE
13774 return llvm::Constant::getAllOnesValue(Ty
); // TRUE
13776 llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
13779 Value
*Cmp
= CGF
.Builder
.CreateICmp(Pred
, Op0
, Op1
);
13780 Value
*Res
= CGF
.Builder
.CreateSExt(Cmp
, Ty
);
13784 static Value
*EmitX86Select(CodeGenFunction
&CGF
,
13785 Value
*Mask
, Value
*Op0
, Value
*Op1
) {
13787 // If the mask is all ones just return first argument.
13788 if (const auto *C
= dyn_cast
<Constant
>(Mask
))
13789 if (C
->isAllOnesValue())
13792 Mask
= getMaskVecValue(
13793 CGF
, Mask
, cast
<llvm::FixedVectorType
>(Op0
->getType())->getNumElements());
13795 return CGF
.Builder
.CreateSelect(Mask
, Op0
, Op1
);
13798 static Value
*EmitX86ScalarSelect(CodeGenFunction
&CGF
,
13799 Value
*Mask
, Value
*Op0
, Value
*Op1
) {
13800 // If the mask is all ones just return first argument.
13801 if (const auto *C
= dyn_cast
<Constant
>(Mask
))
13802 if (C
->isAllOnesValue())
13805 auto *MaskTy
= llvm::FixedVectorType::get(
13806 CGF
.Builder
.getInt1Ty(), Mask
->getType()->getIntegerBitWidth());
13807 Mask
= CGF
.Builder
.CreateBitCast(Mask
, MaskTy
);
13808 Mask
= CGF
.Builder
.CreateExtractElement(Mask
, (uint64_t)0);
13809 return CGF
.Builder
.CreateSelect(Mask
, Op0
, Op1
);
13812 static Value
*EmitX86MaskedCompareResult(CodeGenFunction
&CGF
, Value
*Cmp
,
13813 unsigned NumElts
, Value
*MaskIn
) {
13815 const auto *C
= dyn_cast
<Constant
>(MaskIn
);
13816 if (!C
|| !C
->isAllOnesValue())
13817 Cmp
= CGF
.Builder
.CreateAnd(Cmp
, getMaskVecValue(CGF
, MaskIn
, NumElts
));
13822 for (unsigned i
= 0; i
!= NumElts
; ++i
)
13824 for (unsigned i
= NumElts
; i
!= 8; ++i
)
13825 Indices
[i
] = i
% NumElts
+ NumElts
;
13826 Cmp
= CGF
.Builder
.CreateShuffleVector(
13827 Cmp
, llvm::Constant::getNullValue(Cmp
->getType()), Indices
);
13830 return CGF
.Builder
.CreateBitCast(Cmp
,
13831 IntegerType::get(CGF
.getLLVMContext(),
13832 std::max(NumElts
, 8U)));
13835 static Value
*EmitX86MaskedCompare(CodeGenFunction
&CGF
, unsigned CC
,
13836 bool Signed
, ArrayRef
<Value
*> Ops
) {
13837 assert((Ops
.size() == 2 || Ops
.size() == 4) &&
13838 "Unexpected number of arguments");
13840 cast
<llvm::FixedVectorType
>(Ops
[0]->getType())->getNumElements();
13844 Cmp
= Constant::getNullValue(
13845 llvm::FixedVectorType::get(CGF
.Builder
.getInt1Ty(), NumElts
));
13846 } else if (CC
== 7) {
13847 Cmp
= Constant::getAllOnesValue(
13848 llvm::FixedVectorType::get(CGF
.Builder
.getInt1Ty(), NumElts
));
13850 ICmpInst::Predicate Pred
;
13852 default: llvm_unreachable("Unknown condition code");
13853 case 0: Pred
= ICmpInst::ICMP_EQ
; break;
13854 case 1: Pred
= Signed
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
; break;
13855 case 2: Pred
= Signed
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
; break;
13856 case 4: Pred
= ICmpInst::ICMP_NE
; break;
13857 case 5: Pred
= Signed
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
; break;
13858 case 6: Pred
= Signed
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
; break;
13860 Cmp
= CGF
.Builder
.CreateICmp(Pred
, Ops
[0], Ops
[1]);
13863 Value
*MaskIn
= nullptr;
13864 if (Ops
.size() == 4)
13867 return EmitX86MaskedCompareResult(CGF
, Cmp
, NumElts
, MaskIn
);
13870 static Value
*EmitX86ConvertToMask(CodeGenFunction
&CGF
, Value
*In
) {
13871 Value
*Zero
= Constant::getNullValue(In
->getType());
13872 return EmitX86MaskedCompare(CGF
, 1, true, { In
, Zero
});
13875 static Value
*EmitX86ConvertIntToFp(CodeGenFunction
&CGF
, const CallExpr
*E
,
13876 ArrayRef
<Value
*> Ops
, bool IsSigned
) {
13877 unsigned Rnd
= cast
<llvm::ConstantInt
>(Ops
[3])->getZExtValue();
13878 llvm::Type
*Ty
= Ops
[1]->getType();
13882 Intrinsic::ID IID
= IsSigned
? Intrinsic::x86_avx512_sitofp_round
13883 : Intrinsic::x86_avx512_uitofp_round
;
13884 Function
*F
= CGF
.CGM
.getIntrinsic(IID
, { Ty
, Ops
[0]->getType() });
13885 Res
= CGF
.Builder
.CreateCall(F
, { Ops
[0], Ops
[3] });
13887 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(CGF
, E
);
13888 Res
= IsSigned
? CGF
.Builder
.CreateSIToFP(Ops
[0], Ty
)
13889 : CGF
.Builder
.CreateUIToFP(Ops
[0], Ty
);
13892 return EmitX86Select(CGF
, Ops
[2], Res
, Ops
[1]);
13895 // Lowers X86 FMA intrinsics to IR.
13896 static Value
*EmitX86FMAExpr(CodeGenFunction
&CGF
, const CallExpr
*E
,
13897 ArrayRef
<Value
*> Ops
, unsigned BuiltinID
,
13900 bool Subtract
= false;
13901 Intrinsic::ID IID
= Intrinsic::not_intrinsic
;
13902 switch (BuiltinID
) {
13904 case clang::X86::BI__builtin_ia32_vfmsubph512_mask3
:
13907 case clang::X86::BI__builtin_ia32_vfmaddph512_mask
:
13908 case clang::X86::BI__builtin_ia32_vfmaddph512_maskz
:
13909 case clang::X86::BI__builtin_ia32_vfmaddph512_mask3
:
13910 IID
= llvm::Intrinsic::x86_avx512fp16_vfmadd_ph_512
;
13912 case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3
:
13915 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask
:
13916 case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz
:
13917 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3
:
13918 IID
= llvm::Intrinsic::x86_avx512fp16_vfmaddsub_ph_512
;
13920 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3
:
13923 case clang::X86::BI__builtin_ia32_vfmaddps512_mask
:
13924 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz
:
13925 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3
:
13926 IID
= llvm::Intrinsic::x86_avx512_vfmadd_ps_512
; break;
13927 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3
:
13930 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask
:
13931 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz
:
13932 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3
:
13933 IID
= llvm::Intrinsic::x86_avx512_vfmadd_pd_512
; break;
13934 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3
:
13937 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask
:
13938 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz
:
13939 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3
:
13940 IID
= llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512
;
13942 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3
:
13945 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask
:
13946 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz
:
13947 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3
:
13948 IID
= llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512
;
13957 C
= CGF
.Builder
.CreateFNeg(C
);
13961 // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
13962 if (IID
!= Intrinsic::not_intrinsic
&&
13963 (cast
<llvm::ConstantInt
>(Ops
.back())->getZExtValue() != (uint64_t)4 ||
13965 Function
*Intr
= CGF
.CGM
.getIntrinsic(IID
);
13966 Res
= CGF
.Builder
.CreateCall(Intr
, {A
, B
, C
, Ops
.back() });
13968 llvm::Type
*Ty
= A
->getType();
13970 if (CGF
.Builder
.getIsFPConstrained()) {
13971 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(CGF
, E
);
13972 FMA
= CGF
.CGM
.getIntrinsic(Intrinsic::experimental_constrained_fma
, Ty
);
13973 Res
= CGF
.Builder
.CreateConstrainedFPCall(FMA
, {A
, B
, C
});
13975 FMA
= CGF
.CGM
.getIntrinsic(Intrinsic::fma
, Ty
);
13976 Res
= CGF
.Builder
.CreateCall(FMA
, {A
, B
, C
});
13980 // Handle any required masking.
13981 Value
*MaskFalseVal
= nullptr;
13982 switch (BuiltinID
) {
13983 case clang::X86::BI__builtin_ia32_vfmaddph512_mask
:
13984 case clang::X86::BI__builtin_ia32_vfmaddps512_mask
:
13985 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask
:
13986 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask
:
13987 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask
:
13988 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask
:
13989 MaskFalseVal
= Ops
[0];
13991 case clang::X86::BI__builtin_ia32_vfmaddph512_maskz
:
13992 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz
:
13993 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz
:
13994 case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz
:
13995 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz
:
13996 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz
:
13997 MaskFalseVal
= Constant::getNullValue(Ops
[0]->getType());
13999 case clang::X86::BI__builtin_ia32_vfmsubph512_mask3
:
14000 case clang::X86::BI__builtin_ia32_vfmaddph512_mask3
:
14001 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3
:
14002 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3
:
14003 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3
:
14004 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3
:
14005 case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3
:
14006 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3
:
14007 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3
:
14008 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3
:
14009 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3
:
14010 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3
:
14011 MaskFalseVal
= Ops
[2];
14016 return EmitX86Select(CGF
, Ops
[3], Res
, MaskFalseVal
);
14021 static Value
*EmitScalarFMAExpr(CodeGenFunction
&CGF
, const CallExpr
*E
,
14022 MutableArrayRef
<Value
*> Ops
, Value
*Upper
,
14023 bool ZeroMask
= false, unsigned PTIdx
= 0,
14024 bool NegAcc
= false) {
14026 if (Ops
.size() > 4)
14027 Rnd
= cast
<llvm::ConstantInt
>(Ops
[4])->getZExtValue();
14030 Ops
[2] = CGF
.Builder
.CreateFNeg(Ops
[2]);
14032 Ops
[0] = CGF
.Builder
.CreateExtractElement(Ops
[0], (uint64_t)0);
14033 Ops
[1] = CGF
.Builder
.CreateExtractElement(Ops
[1], (uint64_t)0);
14034 Ops
[2] = CGF
.Builder
.CreateExtractElement(Ops
[2], (uint64_t)0);
14039 switch (Ops
[0]->getType()->getPrimitiveSizeInBits()) {
14041 IID
= Intrinsic::x86_avx512fp16_vfmadd_f16
;
14044 IID
= Intrinsic::x86_avx512_vfmadd_f32
;
14047 IID
= Intrinsic::x86_avx512_vfmadd_f64
;
14050 llvm_unreachable("Unexpected size");
14052 Res
= CGF
.Builder
.CreateCall(CGF
.CGM
.getIntrinsic(IID
),
14053 {Ops
[0], Ops
[1], Ops
[2], Ops
[4]});
14054 } else if (CGF
.Builder
.getIsFPConstrained()) {
14055 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(CGF
, E
);
14056 Function
*FMA
= CGF
.CGM
.getIntrinsic(
14057 Intrinsic::experimental_constrained_fma
, Ops
[0]->getType());
14058 Res
= CGF
.Builder
.CreateConstrainedFPCall(FMA
, Ops
.slice(0, 3));
14060 Function
*FMA
= CGF
.CGM
.getIntrinsic(Intrinsic::fma
, Ops
[0]->getType());
14061 Res
= CGF
.Builder
.CreateCall(FMA
, Ops
.slice(0, 3));
14063 // If we have more than 3 arguments, we need to do masking.
14064 if (Ops
.size() > 3) {
14065 Value
*PassThru
= ZeroMask
? Constant::getNullValue(Res
->getType())
14068 // If we negated the accumulator and the its the PassThru value we need to
14069 // bypass the negate. Conveniently Upper should be the same thing in this
14071 if (NegAcc
&& PTIdx
== 2)
14072 PassThru
= CGF
.Builder
.CreateExtractElement(Upper
, (uint64_t)0);
14074 Res
= EmitX86ScalarSelect(CGF
, Ops
[3], Res
, PassThru
);
14076 return CGF
.Builder
.CreateInsertElement(Upper
, Res
, (uint64_t)0);
14079 static Value
*EmitX86Muldq(CodeGenFunction
&CGF
, bool IsSigned
,
14080 ArrayRef
<Value
*> Ops
) {
14081 llvm::Type
*Ty
= Ops
[0]->getType();
14082 // Arguments have a vXi32 type so cast to vXi64.
14083 Ty
= llvm::FixedVectorType::get(CGF
.Int64Ty
,
14084 Ty
->getPrimitiveSizeInBits() / 64);
14085 Value
*LHS
= CGF
.Builder
.CreateBitCast(Ops
[0], Ty
);
14086 Value
*RHS
= CGF
.Builder
.CreateBitCast(Ops
[1], Ty
);
14089 // Shift left then arithmetic shift right.
14090 Constant
*ShiftAmt
= ConstantInt::get(Ty
, 32);
14091 LHS
= CGF
.Builder
.CreateShl(LHS
, ShiftAmt
);
14092 LHS
= CGF
.Builder
.CreateAShr(LHS
, ShiftAmt
);
14093 RHS
= CGF
.Builder
.CreateShl(RHS
, ShiftAmt
);
14094 RHS
= CGF
.Builder
.CreateAShr(RHS
, ShiftAmt
);
14096 // Clear the upper bits.
14097 Constant
*Mask
= ConstantInt::get(Ty
, 0xffffffff);
14098 LHS
= CGF
.Builder
.CreateAnd(LHS
, Mask
);
14099 RHS
= CGF
.Builder
.CreateAnd(RHS
, Mask
);
14102 return CGF
.Builder
.CreateMul(LHS
, RHS
);
14105 // Emit a masked pternlog intrinsic. This only exists because the header has to
14106 // use a macro and we aren't able to pass the input argument to a pternlog
14107 // builtin and a select builtin without evaluating it twice.
14108 static Value
*EmitX86Ternlog(CodeGenFunction
&CGF
, bool ZeroMask
,
14109 ArrayRef
<Value
*> Ops
) {
14110 llvm::Type
*Ty
= Ops
[0]->getType();
14112 unsigned VecWidth
= Ty
->getPrimitiveSizeInBits();
14113 unsigned EltWidth
= Ty
->getScalarSizeInBits();
14115 if (VecWidth
== 128 && EltWidth
== 32)
14116 IID
= Intrinsic::x86_avx512_pternlog_d_128
;
14117 else if (VecWidth
== 256 && EltWidth
== 32)
14118 IID
= Intrinsic::x86_avx512_pternlog_d_256
;
14119 else if (VecWidth
== 512 && EltWidth
== 32)
14120 IID
= Intrinsic::x86_avx512_pternlog_d_512
;
14121 else if (VecWidth
== 128 && EltWidth
== 64)
14122 IID
= Intrinsic::x86_avx512_pternlog_q_128
;
14123 else if (VecWidth
== 256 && EltWidth
== 64)
14124 IID
= Intrinsic::x86_avx512_pternlog_q_256
;
14125 else if (VecWidth
== 512 && EltWidth
== 64)
14126 IID
= Intrinsic::x86_avx512_pternlog_q_512
;
14128 llvm_unreachable("Unexpected intrinsic");
14130 Value
*Ternlog
= CGF
.Builder
.CreateCall(CGF
.CGM
.getIntrinsic(IID
),
14132 Value
*PassThru
= ZeroMask
? ConstantAggregateZero::get(Ty
) : Ops
[0];
14133 return EmitX86Select(CGF
, Ops
[4], Ternlog
, PassThru
);
14136 static Value
*EmitX86SExtMask(CodeGenFunction
&CGF
, Value
*Op
,
14137 llvm::Type
*DstTy
) {
14138 unsigned NumberOfElements
=
14139 cast
<llvm::FixedVectorType
>(DstTy
)->getNumElements();
14140 Value
*Mask
= getMaskVecValue(CGF
, Op
, NumberOfElements
);
14141 return CGF
.Builder
.CreateSExt(Mask
, DstTy
, "vpmovm2");
14144 Value
*CodeGenFunction::EmitX86CpuIs(const CallExpr
*E
) {
14145 const Expr
*CPUExpr
= E
->getArg(0)->IgnoreParenCasts();
14146 StringRef CPUStr
= cast
<clang::StringLiteral
>(CPUExpr
)->getString();
14147 return EmitX86CpuIs(CPUStr
);
14150 // Convert F16 halfs to floats.
14151 static Value
*EmitX86CvtF16ToFloatExpr(CodeGenFunction
&CGF
,
14152 ArrayRef
<Value
*> Ops
,
14153 llvm::Type
*DstTy
) {
14154 assert((Ops
.size() == 1 || Ops
.size() == 3 || Ops
.size() == 4) &&
14155 "Unknown cvtph2ps intrinsic");
14157 // If the SAE intrinsic doesn't use default rounding then we can't upgrade.
14158 if (Ops
.size() == 4 && cast
<llvm::ConstantInt
>(Ops
[3])->getZExtValue() != 4) {
14160 CGF
.CGM
.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512
);
14161 return CGF
.Builder
.CreateCall(F
, {Ops
[0], Ops
[1], Ops
[2], Ops
[3]});
14164 unsigned NumDstElts
= cast
<llvm::FixedVectorType
>(DstTy
)->getNumElements();
14165 Value
*Src
= Ops
[0];
14167 // Extract the subvector.
14169 cast
<llvm::FixedVectorType
>(Src
->getType())->getNumElements()) {
14170 assert(NumDstElts
== 4 && "Unexpected vector size");
14171 Src
= CGF
.Builder
.CreateShuffleVector(Src
, ArrayRef
<int>{0, 1, 2, 3});
14174 // Bitcast from vXi16 to vXf16.
14175 auto *HalfTy
= llvm::FixedVectorType::get(
14176 llvm::Type::getHalfTy(CGF
.getLLVMContext()), NumDstElts
);
14177 Src
= CGF
.Builder
.CreateBitCast(Src
, HalfTy
);
14179 // Perform the fp-extension.
14180 Value
*Res
= CGF
.Builder
.CreateFPExt(Src
, DstTy
, "cvtph2ps");
14182 if (Ops
.size() >= 3)
14183 Res
= EmitX86Select(CGF
, Ops
[2], Res
, Ops
[1]);
14187 Value
*CodeGenFunction::EmitX86CpuIs(StringRef CPUStr
) {
14189 llvm::Type
*Int32Ty
= Builder
.getInt32Ty();
14191 // Matching the struct layout from the compiler-rt/libgcc structure that is
14193 // unsigned int __cpu_vendor;
14194 // unsigned int __cpu_type;
14195 // unsigned int __cpu_subtype;
14196 // unsigned int __cpu_features[1];
14197 llvm::Type
*STy
= llvm::StructType::get(Int32Ty
, Int32Ty
, Int32Ty
,
14198 llvm::ArrayType::get(Int32Ty
, 1));
14200 // Grab the global __cpu_model.
14201 llvm::Constant
*CpuModel
= CGM
.CreateRuntimeVariable(STy
, "__cpu_model");
14202 cast
<llvm::GlobalValue
>(CpuModel
)->setDSOLocal(true);
14204 // Calculate the index needed to access the correct field based on the
14205 // range. Also adjust the expected value.
14208 std::tie(Index
, Value
) = StringSwitch
<std::pair
<unsigned, unsigned>>(CPUStr
)
14209 #define X86_VENDOR(ENUM, STRING) \
14210 .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
14211 #define X86_CPU_TYPE_ALIAS(ENUM, ALIAS) \
14212 .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
14213 #define X86_CPU_TYPE(ENUM, STR) \
14214 .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
14215 #define X86_CPU_SUBTYPE_ALIAS(ENUM, ALIAS) \
14216 .Case(ALIAS, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
14217 #define X86_CPU_SUBTYPE(ENUM, STR) \
14218 .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
14219 #include "llvm/TargetParser/X86TargetParser.def"
14221 assert(Value
!= 0 && "Invalid CPUStr passed to CpuIs");
14223 // Grab the appropriate field from __cpu_model.
14224 llvm::Value
*Idxs
[] = {ConstantInt::get(Int32Ty
, 0),
14225 ConstantInt::get(Int32Ty
, Index
)};
14226 llvm::Value
*CpuValue
= Builder
.CreateInBoundsGEP(STy
, CpuModel
, Idxs
);
14227 CpuValue
= Builder
.CreateAlignedLoad(Int32Ty
, CpuValue
,
14228 CharUnits::fromQuantity(4));
14230 // Check the value of the field against the requested value.
14231 return Builder
.CreateICmpEQ(CpuValue
,
14232 llvm::ConstantInt::get(Int32Ty
, Value
));
14235 Value
*CodeGenFunction::EmitX86CpuSupports(const CallExpr
*E
) {
14236 const Expr
*FeatureExpr
= E
->getArg(0)->IgnoreParenCasts();
14237 StringRef FeatureStr
= cast
<StringLiteral
>(FeatureExpr
)->getString();
14238 if (!getContext().getTargetInfo().validateCpuSupports(FeatureStr
))
14239 return Builder
.getFalse();
14240 return EmitX86CpuSupports(FeatureStr
);
14243 Value
*CodeGenFunction::EmitX86CpuSupports(ArrayRef
<StringRef
> FeatureStrs
) {
14244 return EmitX86CpuSupports(llvm::X86::getCpuSupportsMask(FeatureStrs
));
14248 CodeGenFunction::EmitX86CpuSupports(std::array
<uint32_t, 4> FeatureMask
) {
14249 Value
*Result
= Builder
.getTrue();
14250 if (FeatureMask
[0] != 0) {
14251 // Matching the struct layout from the compiler-rt/libgcc structure that is
14253 // unsigned int __cpu_vendor;
14254 // unsigned int __cpu_type;
14255 // unsigned int __cpu_subtype;
14256 // unsigned int __cpu_features[1];
14257 llvm::Type
*STy
= llvm::StructType::get(Int32Ty
, Int32Ty
, Int32Ty
,
14258 llvm::ArrayType::get(Int32Ty
, 1));
14260 // Grab the global __cpu_model.
14261 llvm::Constant
*CpuModel
= CGM
.CreateRuntimeVariable(STy
, "__cpu_model");
14262 cast
<llvm::GlobalValue
>(CpuModel
)->setDSOLocal(true);
14264 // Grab the first (0th) element from the field __cpu_features off of the
14265 // global in the struct STy.
14266 Value
*Idxs
[] = {Builder
.getInt32(0), Builder
.getInt32(3),
14267 Builder
.getInt32(0)};
14268 Value
*CpuFeatures
= Builder
.CreateInBoundsGEP(STy
, CpuModel
, Idxs
);
14269 Value
*Features
= Builder
.CreateAlignedLoad(Int32Ty
, CpuFeatures
,
14270 CharUnits::fromQuantity(4));
14272 // Check the value of the bit corresponding to the feature requested.
14273 Value
*Mask
= Builder
.getInt32(FeatureMask
[0]);
14274 Value
*Bitset
= Builder
.CreateAnd(Features
, Mask
);
14275 Value
*Cmp
= Builder
.CreateICmpEQ(Bitset
, Mask
);
14276 Result
= Builder
.CreateAnd(Result
, Cmp
);
14279 llvm::Type
*ATy
= llvm::ArrayType::get(Int32Ty
, 3);
14280 llvm::Constant
*CpuFeatures2
=
14281 CGM
.CreateRuntimeVariable(ATy
, "__cpu_features2");
14282 cast
<llvm::GlobalValue
>(CpuFeatures2
)->setDSOLocal(true);
14283 for (int i
= 1; i
!= 4; ++i
) {
14284 const uint32_t M
= FeatureMask
[i
];
14287 Value
*Idxs
[] = {Builder
.getInt32(0), Builder
.getInt32(i
- 1)};
14288 Value
*Features
= Builder
.CreateAlignedLoad(
14289 Int32Ty
, Builder
.CreateInBoundsGEP(ATy
, CpuFeatures2
, Idxs
),
14290 CharUnits::fromQuantity(4));
14291 // Check the value of the bit corresponding to the feature requested.
14292 Value
*Mask
= Builder
.getInt32(M
);
14293 Value
*Bitset
= Builder
.CreateAnd(Features
, Mask
);
14294 Value
*Cmp
= Builder
.CreateICmpEQ(Bitset
, Mask
);
14295 Result
= Builder
.CreateAnd(Result
, Cmp
);
14301 Value
*CodeGenFunction::EmitAArch64CpuInit() {
14302 llvm::FunctionType
*FTy
= llvm::FunctionType::get(VoidTy
, false);
14303 llvm::FunctionCallee Func
=
14304 CGM
.CreateRuntimeFunction(FTy
, "__init_cpu_features_resolver");
14305 cast
<llvm::GlobalValue
>(Func
.getCallee())->setDSOLocal(true);
14306 cast
<llvm::GlobalValue
>(Func
.getCallee())
14307 ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass
);
14308 return Builder
.CreateCall(Func
);
14311 Value
*CodeGenFunction::EmitX86CpuInit() {
14312 llvm::FunctionType
*FTy
= llvm::FunctionType::get(VoidTy
,
14313 /*Variadic*/ false);
14314 llvm::FunctionCallee Func
=
14315 CGM
.CreateRuntimeFunction(FTy
, "__cpu_indicator_init");
14316 cast
<llvm::GlobalValue
>(Func
.getCallee())->setDSOLocal(true);
14317 cast
<llvm::GlobalValue
>(Func
.getCallee())
14318 ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass
);
14319 return Builder
.CreateCall(Func
);
14322 Value
*CodeGenFunction::EmitAArch64CpuSupports(const CallExpr
*E
) {
14323 const Expr
*ArgExpr
= E
->getArg(0)->IgnoreParenCasts();
14324 StringRef ArgStr
= cast
<StringLiteral
>(ArgExpr
)->getString();
14325 llvm::SmallVector
<StringRef
, 8> Features
;
14326 ArgStr
.split(Features
, "+");
14327 for (auto &Feature
: Features
) {
14328 Feature
= Feature
.trim();
14329 if (!llvm::AArch64::parseFMVExtension(Feature
))
14330 return Builder
.getFalse();
14331 if (Feature
!= "default")
14332 Features
.push_back(Feature
);
14334 return EmitAArch64CpuSupports(Features
);
14338 CodeGenFunction::EmitAArch64CpuSupports(ArrayRef
<StringRef
> FeaturesStrs
) {
14339 uint64_t FeaturesMask
= llvm::AArch64::getCpuSupportsMask(FeaturesStrs
);
14340 Value
*Result
= Builder
.getTrue();
14341 if (FeaturesMask
!= 0) {
14342 // Get features from structure in runtime library
14344 // unsigned long long features;
14345 // } __aarch64_cpu_features;
14346 llvm::Type
*STy
= llvm::StructType::get(Int64Ty
);
14347 llvm::Constant
*AArch64CPUFeatures
=
14348 CGM
.CreateRuntimeVariable(STy
, "__aarch64_cpu_features");
14349 cast
<llvm::GlobalValue
>(AArch64CPUFeatures
)->setDSOLocal(true);
14350 llvm::Value
*CpuFeatures
= Builder
.CreateGEP(
14351 STy
, AArch64CPUFeatures
,
14352 {ConstantInt::get(Int32Ty
, 0), ConstantInt::get(Int32Ty
, 0)});
14353 Value
*Features
= Builder
.CreateAlignedLoad(Int64Ty
, CpuFeatures
,
14354 CharUnits::fromQuantity(8));
14355 Value
*Mask
= Builder
.getInt64(FeaturesMask
);
14356 Value
*Bitset
= Builder
.CreateAnd(Features
, Mask
);
14357 Value
*Cmp
= Builder
.CreateICmpEQ(Bitset
, Mask
);
14358 Result
= Builder
.CreateAnd(Result
, Cmp
);
14363 Value
*CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID
,
14364 const CallExpr
*E
) {
14365 if (BuiltinID
== Builtin::BI__builtin_cpu_is
)
14366 return EmitX86CpuIs(E
);
14367 if (BuiltinID
== Builtin::BI__builtin_cpu_supports
)
14368 return EmitX86CpuSupports(E
);
14369 if (BuiltinID
== Builtin::BI__builtin_cpu_init
)
14370 return EmitX86CpuInit();
14372 // Handle MSVC intrinsics before argument evaluation to prevent double
14374 if (std::optional
<MSVCIntrin
> MsvcIntId
= translateX86ToMsvcIntrin(BuiltinID
))
14375 return EmitMSVCBuiltinExpr(*MsvcIntId
, E
);
14377 SmallVector
<Value
*, 4> Ops
;
14378 bool IsMaskFCmp
= false;
14379 bool IsConjFMA
= false;
14381 // Find out if any arguments are required to be integer constant expressions.
14382 unsigned ICEArguments
= 0;
14383 ASTContext::GetBuiltinTypeError Error
;
14384 getContext().GetBuiltinType(BuiltinID
, Error
, &ICEArguments
);
14385 assert(Error
== ASTContext::GE_None
&& "Should not codegen an error");
14387 for (unsigned i
= 0, e
= E
->getNumArgs(); i
!= e
; i
++) {
14388 Ops
.push_back(EmitScalarOrConstFoldImmArg(ICEArguments
, i
, E
));
14391 // These exist so that the builtin that takes an immediate can be bounds
14392 // checked by clang to avoid passing bad immediates to the backend. Since
14393 // AVX has a larger immediate than SSE we would need separate builtins to
14394 // do the different bounds checking. Rather than create a clang specific
14395 // SSE only builtin, this implements eight separate builtins to match gcc
14397 auto getCmpIntrinsicCall
= [this, &Ops
](Intrinsic::ID ID
, unsigned Imm
) {
14398 Ops
.push_back(llvm::ConstantInt::get(Int8Ty
, Imm
));
14399 llvm::Function
*F
= CGM
.getIntrinsic(ID
);
14400 return Builder
.CreateCall(F
, Ops
);
14403 // For the vector forms of FP comparisons, translate the builtins directly to
14405 // TODO: The builtins could be removed if the SSE header files used vector
14406 // extension comparisons directly (vector ordered/unordered may need
14407 // additional support via __builtin_isnan()).
14408 auto getVectorFCmpIR
= [this, &Ops
, E
](CmpInst::Predicate Pred
,
14409 bool IsSignaling
) {
14410 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(*this, E
);
14413 Cmp
= Builder
.CreateFCmpS(Pred
, Ops
[0], Ops
[1]);
14415 Cmp
= Builder
.CreateFCmp(Pred
, Ops
[0], Ops
[1]);
14416 llvm::VectorType
*FPVecTy
= cast
<llvm::VectorType
>(Ops
[0]->getType());
14417 llvm::VectorType
*IntVecTy
= llvm::VectorType::getInteger(FPVecTy
);
14418 Value
*Sext
= Builder
.CreateSExt(Cmp
, IntVecTy
);
14419 return Builder
.CreateBitCast(Sext
, FPVecTy
);
14422 switch (BuiltinID
) {
14423 default: return nullptr;
14424 case X86::BI_mm_prefetch
: {
14425 Value
*Address
= Ops
[0];
14426 ConstantInt
*C
= cast
<ConstantInt
>(Ops
[1]);
14427 Value
*RW
= ConstantInt::get(Int32Ty
, (C
->getZExtValue() >> 2) & 0x1);
14428 Value
*Locality
= ConstantInt::get(Int32Ty
, C
->getZExtValue() & 0x3);
14429 Value
*Data
= ConstantInt::get(Int32Ty
, 1);
14430 Function
*F
= CGM
.getIntrinsic(Intrinsic::prefetch
, Address
->getType());
14431 return Builder
.CreateCall(F
, {Address
, RW
, Locality
, Data
});
14433 case X86::BI_mm_clflush
: {
14434 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::x86_sse2_clflush
),
14437 case X86::BI_mm_lfence
: {
14438 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::x86_sse2_lfence
));
14440 case X86::BI_mm_mfence
: {
14441 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::x86_sse2_mfence
));
14443 case X86::BI_mm_sfence
: {
14444 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::x86_sse_sfence
));
14446 case X86::BI_mm_pause
: {
14447 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::x86_sse2_pause
));
14449 case X86::BI__rdtsc
: {
14450 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::x86_rdtsc
));
14452 case X86::BI__builtin_ia32_rdtscp
: {
14453 Value
*Call
= Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::x86_rdtscp
));
14454 Builder
.CreateDefaultAlignedStore(Builder
.CreateExtractValue(Call
, 1),
14456 return Builder
.CreateExtractValue(Call
, 0);
14458 case X86::BI__builtin_ia32_lzcnt_u16
:
14459 case X86::BI__builtin_ia32_lzcnt_u32
:
14460 case X86::BI__builtin_ia32_lzcnt_u64
: {
14461 Function
*F
= CGM
.getIntrinsic(Intrinsic::ctlz
, Ops
[0]->getType());
14462 return Builder
.CreateCall(F
, {Ops
[0], Builder
.getInt1(false)});
14464 case X86::BI__builtin_ia32_tzcnt_u16
:
14465 case X86::BI__builtin_ia32_tzcnt_u32
:
14466 case X86::BI__builtin_ia32_tzcnt_u64
: {
14467 Function
*F
= CGM
.getIntrinsic(Intrinsic::cttz
, Ops
[0]->getType());
14468 return Builder
.CreateCall(F
, {Ops
[0], Builder
.getInt1(false)});
14470 case X86::BI__builtin_ia32_undef128
:
14471 case X86::BI__builtin_ia32_undef256
:
14472 case X86::BI__builtin_ia32_undef512
:
14473 // The x86 definition of "undef" is not the same as the LLVM definition
14474 // (PR32176). We leave optimizing away an unnecessary zero constant to the
14475 // IR optimizer and backend.
14476 // TODO: If we had a "freeze" IR instruction to generate a fixed undef
14477 // value, we should use that here instead of a zero.
14478 return llvm::Constant::getNullValue(ConvertType(E
->getType()));
14479 case X86::BI__builtin_ia32_vec_init_v8qi
:
14480 case X86::BI__builtin_ia32_vec_init_v4hi
:
14481 case X86::BI__builtin_ia32_vec_init_v2si
:
14482 return Builder
.CreateBitCast(BuildVector(Ops
),
14483 llvm::Type::getX86_MMXTy(getLLVMContext()));
14484 case X86::BI__builtin_ia32_vec_ext_v2si
:
14485 case X86::BI__builtin_ia32_vec_ext_v16qi
:
14486 case X86::BI__builtin_ia32_vec_ext_v8hi
:
14487 case X86::BI__builtin_ia32_vec_ext_v4si
:
14488 case X86::BI__builtin_ia32_vec_ext_v4sf
:
14489 case X86::BI__builtin_ia32_vec_ext_v2di
:
14490 case X86::BI__builtin_ia32_vec_ext_v32qi
:
14491 case X86::BI__builtin_ia32_vec_ext_v16hi
:
14492 case X86::BI__builtin_ia32_vec_ext_v8si
:
14493 case X86::BI__builtin_ia32_vec_ext_v4di
: {
14495 cast
<llvm::FixedVectorType
>(Ops
[0]->getType())->getNumElements();
14496 uint64_t Index
= cast
<ConstantInt
>(Ops
[1])->getZExtValue();
14497 Index
&= NumElts
- 1;
14498 // These builtins exist so we can ensure the index is an ICE and in range.
14499 // Otherwise we could just do this in the header file.
14500 return Builder
.CreateExtractElement(Ops
[0], Index
);
14502 case X86::BI__builtin_ia32_vec_set_v16qi
:
14503 case X86::BI__builtin_ia32_vec_set_v8hi
:
14504 case X86::BI__builtin_ia32_vec_set_v4si
:
14505 case X86::BI__builtin_ia32_vec_set_v2di
:
14506 case X86::BI__builtin_ia32_vec_set_v32qi
:
14507 case X86::BI__builtin_ia32_vec_set_v16hi
:
14508 case X86::BI__builtin_ia32_vec_set_v8si
:
14509 case X86::BI__builtin_ia32_vec_set_v4di
: {
14511 cast
<llvm::FixedVectorType
>(Ops
[0]->getType())->getNumElements();
14512 unsigned Index
= cast
<ConstantInt
>(Ops
[2])->getZExtValue();
14513 Index
&= NumElts
- 1;
14514 // These builtins exist so we can ensure the index is an ICE and in range.
14515 // Otherwise we could just do this in the header file.
14516 return Builder
.CreateInsertElement(Ops
[0], Ops
[1], Index
);
14518 case X86::BI_mm_setcsr
:
14519 case X86::BI__builtin_ia32_ldmxcsr
: {
14520 RawAddress Tmp
= CreateMemTemp(E
->getArg(0)->getType());
14521 Builder
.CreateStore(Ops
[0], Tmp
);
14522 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::x86_sse_ldmxcsr
),
14525 case X86::BI_mm_getcsr
:
14526 case X86::BI__builtin_ia32_stmxcsr
: {
14527 RawAddress Tmp
= CreateMemTemp(E
->getType());
14528 Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::x86_sse_stmxcsr
),
14530 return Builder
.CreateLoad(Tmp
, "stmxcsr");
14532 case X86::BI__builtin_ia32_xsave
:
14533 case X86::BI__builtin_ia32_xsave64
:
14534 case X86::BI__builtin_ia32_xrstor
:
14535 case X86::BI__builtin_ia32_xrstor64
:
14536 case X86::BI__builtin_ia32_xsaveopt
:
14537 case X86::BI__builtin_ia32_xsaveopt64
:
14538 case X86::BI__builtin_ia32_xrstors
:
14539 case X86::BI__builtin_ia32_xrstors64
:
14540 case X86::BI__builtin_ia32_xsavec
:
14541 case X86::BI__builtin_ia32_xsavec64
:
14542 case X86::BI__builtin_ia32_xsaves
:
14543 case X86::BI__builtin_ia32_xsaves64
:
14544 case X86::BI__builtin_ia32_xsetbv
:
14545 case X86::BI_xsetbv
: {
14547 #define INTRINSIC_X86_XSAVE_ID(NAME) \
14548 case X86::BI__builtin_ia32_##NAME: \
14549 ID = Intrinsic::x86_##NAME; \
14551 switch (BuiltinID
) {
14552 default: llvm_unreachable("Unsupported intrinsic!");
14553 INTRINSIC_X86_XSAVE_ID(xsave
);
14554 INTRINSIC_X86_XSAVE_ID(xsave64
);
14555 INTRINSIC_X86_XSAVE_ID(xrstor
);
14556 INTRINSIC_X86_XSAVE_ID(xrstor64
);
14557 INTRINSIC_X86_XSAVE_ID(xsaveopt
);
14558 INTRINSIC_X86_XSAVE_ID(xsaveopt64
);
14559 INTRINSIC_X86_XSAVE_ID(xrstors
);
14560 INTRINSIC_X86_XSAVE_ID(xrstors64
);
14561 INTRINSIC_X86_XSAVE_ID(xsavec
);
14562 INTRINSIC_X86_XSAVE_ID(xsavec64
);
14563 INTRINSIC_X86_XSAVE_ID(xsaves
);
14564 INTRINSIC_X86_XSAVE_ID(xsaves64
);
14565 INTRINSIC_X86_XSAVE_ID(xsetbv
);
14566 case X86::BI_xsetbv
:
14567 ID
= Intrinsic::x86_xsetbv
;
14570 #undef INTRINSIC_X86_XSAVE_ID
14571 Value
*Mhi
= Builder
.CreateTrunc(
14572 Builder
.CreateLShr(Ops
[1], ConstantInt::get(Int64Ty
, 32)), Int32Ty
);
14573 Value
*Mlo
= Builder
.CreateTrunc(Ops
[1], Int32Ty
);
14575 Ops
.push_back(Mlo
);
14576 return Builder
.CreateCall(CGM
.getIntrinsic(ID
), Ops
);
14578 case X86::BI__builtin_ia32_xgetbv
:
14579 case X86::BI_xgetbv
:
14580 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::x86_xgetbv
), Ops
);
14581 case X86::BI__builtin_ia32_storedqudi128_mask
:
14582 case X86::BI__builtin_ia32_storedqusi128_mask
:
14583 case X86::BI__builtin_ia32_storedquhi128_mask
:
14584 case X86::BI__builtin_ia32_storedquqi128_mask
:
14585 case X86::BI__builtin_ia32_storeupd128_mask
:
14586 case X86::BI__builtin_ia32_storeups128_mask
:
14587 case X86::BI__builtin_ia32_storedqudi256_mask
:
14588 case X86::BI__builtin_ia32_storedqusi256_mask
:
14589 case X86::BI__builtin_ia32_storedquhi256_mask
:
14590 case X86::BI__builtin_ia32_storedquqi256_mask
:
14591 case X86::BI__builtin_ia32_storeupd256_mask
:
14592 case X86::BI__builtin_ia32_storeups256_mask
:
14593 case X86::BI__builtin_ia32_storedqudi512_mask
:
14594 case X86::BI__builtin_ia32_storedqusi512_mask
:
14595 case X86::BI__builtin_ia32_storedquhi512_mask
:
14596 case X86::BI__builtin_ia32_storedquqi512_mask
:
14597 case X86::BI__builtin_ia32_storeupd512_mask
:
14598 case X86::BI__builtin_ia32_storeups512_mask
:
14599 return EmitX86MaskedStore(*this, Ops
, Align(1));
14601 case X86::BI__builtin_ia32_storesh128_mask
:
14602 case X86::BI__builtin_ia32_storess128_mask
:
14603 case X86::BI__builtin_ia32_storesd128_mask
:
14604 return EmitX86MaskedStore(*this, Ops
, Align(1));
14606 case X86::BI__builtin_ia32_vpopcntb_128
:
14607 case X86::BI__builtin_ia32_vpopcntd_128
:
14608 case X86::BI__builtin_ia32_vpopcntq_128
:
14609 case X86::BI__builtin_ia32_vpopcntw_128
:
14610 case X86::BI__builtin_ia32_vpopcntb_256
:
14611 case X86::BI__builtin_ia32_vpopcntd_256
:
14612 case X86::BI__builtin_ia32_vpopcntq_256
:
14613 case X86::BI__builtin_ia32_vpopcntw_256
:
14614 case X86::BI__builtin_ia32_vpopcntb_512
:
14615 case X86::BI__builtin_ia32_vpopcntd_512
:
14616 case X86::BI__builtin_ia32_vpopcntq_512
:
14617 case X86::BI__builtin_ia32_vpopcntw_512
: {
14618 llvm::Type
*ResultType
= ConvertType(E
->getType());
14619 llvm::Function
*F
= CGM
.getIntrinsic(Intrinsic::ctpop
, ResultType
);
14620 return Builder
.CreateCall(F
, Ops
);
14622 case X86::BI__builtin_ia32_cvtmask2b128
:
14623 case X86::BI__builtin_ia32_cvtmask2b256
:
14624 case X86::BI__builtin_ia32_cvtmask2b512
:
14625 case X86::BI__builtin_ia32_cvtmask2w128
:
14626 case X86::BI__builtin_ia32_cvtmask2w256
:
14627 case X86::BI__builtin_ia32_cvtmask2w512
:
14628 case X86::BI__builtin_ia32_cvtmask2d128
:
14629 case X86::BI__builtin_ia32_cvtmask2d256
:
14630 case X86::BI__builtin_ia32_cvtmask2d512
:
14631 case X86::BI__builtin_ia32_cvtmask2q128
:
14632 case X86::BI__builtin_ia32_cvtmask2q256
:
14633 case X86::BI__builtin_ia32_cvtmask2q512
:
14634 return EmitX86SExtMask(*this, Ops
[0], ConvertType(E
->getType()));
14636 case X86::BI__builtin_ia32_cvtb2mask128
:
14637 case X86::BI__builtin_ia32_cvtb2mask256
:
14638 case X86::BI__builtin_ia32_cvtb2mask512
:
14639 case X86::BI__builtin_ia32_cvtw2mask128
:
14640 case X86::BI__builtin_ia32_cvtw2mask256
:
14641 case X86::BI__builtin_ia32_cvtw2mask512
:
14642 case X86::BI__builtin_ia32_cvtd2mask128
:
14643 case X86::BI__builtin_ia32_cvtd2mask256
:
14644 case X86::BI__builtin_ia32_cvtd2mask512
:
14645 case X86::BI__builtin_ia32_cvtq2mask128
:
14646 case X86::BI__builtin_ia32_cvtq2mask256
:
14647 case X86::BI__builtin_ia32_cvtq2mask512
:
14648 return EmitX86ConvertToMask(*this, Ops
[0]);
14650 case X86::BI__builtin_ia32_cvtdq2ps512_mask
:
14651 case X86::BI__builtin_ia32_cvtqq2ps512_mask
:
14652 case X86::BI__builtin_ia32_cvtqq2pd512_mask
:
14653 case X86::BI__builtin_ia32_vcvtw2ph512_mask
:
14654 case X86::BI__builtin_ia32_vcvtdq2ph512_mask
:
14655 case X86::BI__builtin_ia32_vcvtqq2ph512_mask
:
14656 return EmitX86ConvertIntToFp(*this, E
, Ops
, /*IsSigned*/ true);
14657 case X86::BI__builtin_ia32_cvtudq2ps512_mask
:
14658 case X86::BI__builtin_ia32_cvtuqq2ps512_mask
:
14659 case X86::BI__builtin_ia32_cvtuqq2pd512_mask
:
14660 case X86::BI__builtin_ia32_vcvtuw2ph512_mask
:
14661 case X86::BI__builtin_ia32_vcvtudq2ph512_mask
:
14662 case X86::BI__builtin_ia32_vcvtuqq2ph512_mask
:
14663 return EmitX86ConvertIntToFp(*this, E
, Ops
, /*IsSigned*/ false);
14665 case X86::BI__builtin_ia32_vfmaddss3
:
14666 case X86::BI__builtin_ia32_vfmaddsd3
:
14667 case X86::BI__builtin_ia32_vfmaddsh3_mask
:
14668 case X86::BI__builtin_ia32_vfmaddss3_mask
:
14669 case X86::BI__builtin_ia32_vfmaddsd3_mask
:
14670 return EmitScalarFMAExpr(*this, E
, Ops
, Ops
[0]);
14671 case X86::BI__builtin_ia32_vfmaddss
:
14672 case X86::BI__builtin_ia32_vfmaddsd
:
14673 return EmitScalarFMAExpr(*this, E
, Ops
,
14674 Constant::getNullValue(Ops
[0]->getType()));
14675 case X86::BI__builtin_ia32_vfmaddsh3_maskz
:
14676 case X86::BI__builtin_ia32_vfmaddss3_maskz
:
14677 case X86::BI__builtin_ia32_vfmaddsd3_maskz
:
14678 return EmitScalarFMAExpr(*this, E
, Ops
, Ops
[0], /*ZeroMask*/ true);
14679 case X86::BI__builtin_ia32_vfmaddsh3_mask3
:
14680 case X86::BI__builtin_ia32_vfmaddss3_mask3
:
14681 case X86::BI__builtin_ia32_vfmaddsd3_mask3
:
14682 return EmitScalarFMAExpr(*this, E
, Ops
, Ops
[2], /*ZeroMask*/ false, 2);
14683 case X86::BI__builtin_ia32_vfmsubsh3_mask3
:
14684 case X86::BI__builtin_ia32_vfmsubss3_mask3
:
14685 case X86::BI__builtin_ia32_vfmsubsd3_mask3
:
14686 return EmitScalarFMAExpr(*this, E
, Ops
, Ops
[2], /*ZeroMask*/ false, 2,
14688 case X86::BI__builtin_ia32_vfmaddph
:
14689 case X86::BI__builtin_ia32_vfmaddps
:
14690 case X86::BI__builtin_ia32_vfmaddpd
:
14691 case X86::BI__builtin_ia32_vfmaddph256
:
14692 case X86::BI__builtin_ia32_vfmaddps256
:
14693 case X86::BI__builtin_ia32_vfmaddpd256
:
14694 case X86::BI__builtin_ia32_vfmaddph512_mask
:
14695 case X86::BI__builtin_ia32_vfmaddph512_maskz
:
14696 case X86::BI__builtin_ia32_vfmaddph512_mask3
:
14697 case X86::BI__builtin_ia32_vfmaddps512_mask
:
14698 case X86::BI__builtin_ia32_vfmaddps512_maskz
:
14699 case X86::BI__builtin_ia32_vfmaddps512_mask3
:
14700 case X86::BI__builtin_ia32_vfmsubps512_mask3
:
14701 case X86::BI__builtin_ia32_vfmaddpd512_mask
:
14702 case X86::BI__builtin_ia32_vfmaddpd512_maskz
:
14703 case X86::BI__builtin_ia32_vfmaddpd512_mask3
:
14704 case X86::BI__builtin_ia32_vfmsubpd512_mask3
:
14705 case X86::BI__builtin_ia32_vfmsubph512_mask3
:
14706 return EmitX86FMAExpr(*this, E
, Ops
, BuiltinID
, /*IsAddSub*/ false);
14707 case X86::BI__builtin_ia32_vfmaddsubph512_mask
:
14708 case X86::BI__builtin_ia32_vfmaddsubph512_maskz
:
14709 case X86::BI__builtin_ia32_vfmaddsubph512_mask3
:
14710 case X86::BI__builtin_ia32_vfmsubaddph512_mask3
:
14711 case X86::BI__builtin_ia32_vfmaddsubps512_mask
:
14712 case X86::BI__builtin_ia32_vfmaddsubps512_maskz
:
14713 case X86::BI__builtin_ia32_vfmaddsubps512_mask3
:
14714 case X86::BI__builtin_ia32_vfmsubaddps512_mask3
:
14715 case X86::BI__builtin_ia32_vfmaddsubpd512_mask
:
14716 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz
:
14717 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3
:
14718 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3
:
14719 return EmitX86FMAExpr(*this, E
, Ops
, BuiltinID
, /*IsAddSub*/ true);
14721 case X86::BI__builtin_ia32_movdqa32store128_mask
:
14722 case X86::BI__builtin_ia32_movdqa64store128_mask
:
14723 case X86::BI__builtin_ia32_storeaps128_mask
:
14724 case X86::BI__builtin_ia32_storeapd128_mask
:
14725 case X86::BI__builtin_ia32_movdqa32store256_mask
:
14726 case X86::BI__builtin_ia32_movdqa64store256_mask
:
14727 case X86::BI__builtin_ia32_storeaps256_mask
:
14728 case X86::BI__builtin_ia32_storeapd256_mask
:
14729 case X86::BI__builtin_ia32_movdqa32store512_mask
:
14730 case X86::BI__builtin_ia32_movdqa64store512_mask
:
14731 case X86::BI__builtin_ia32_storeaps512_mask
:
14732 case X86::BI__builtin_ia32_storeapd512_mask
:
14733 return EmitX86MaskedStore(
14735 getContext().getTypeAlignInChars(E
->getArg(1)->getType()).getAsAlign());
14737 case X86::BI__builtin_ia32_loadups128_mask
:
14738 case X86::BI__builtin_ia32_loadups256_mask
:
14739 case X86::BI__builtin_ia32_loadups512_mask
:
14740 case X86::BI__builtin_ia32_loadupd128_mask
:
14741 case X86::BI__builtin_ia32_loadupd256_mask
:
14742 case X86::BI__builtin_ia32_loadupd512_mask
:
14743 case X86::BI__builtin_ia32_loaddquqi128_mask
:
14744 case X86::BI__builtin_ia32_loaddquqi256_mask
:
14745 case X86::BI__builtin_ia32_loaddquqi512_mask
:
14746 case X86::BI__builtin_ia32_loaddquhi128_mask
:
14747 case X86::BI__builtin_ia32_loaddquhi256_mask
:
14748 case X86::BI__builtin_ia32_loaddquhi512_mask
:
14749 case X86::BI__builtin_ia32_loaddqusi128_mask
:
14750 case X86::BI__builtin_ia32_loaddqusi256_mask
:
14751 case X86::BI__builtin_ia32_loaddqusi512_mask
:
14752 case X86::BI__builtin_ia32_loaddqudi128_mask
:
14753 case X86::BI__builtin_ia32_loaddqudi256_mask
:
14754 case X86::BI__builtin_ia32_loaddqudi512_mask
:
14755 return EmitX86MaskedLoad(*this, Ops
, Align(1));
14757 case X86::BI__builtin_ia32_loadsh128_mask
:
14758 case X86::BI__builtin_ia32_loadss128_mask
:
14759 case X86::BI__builtin_ia32_loadsd128_mask
:
14760 return EmitX86MaskedLoad(*this, Ops
, Align(1));
14762 case X86::BI__builtin_ia32_loadaps128_mask
:
14763 case X86::BI__builtin_ia32_loadaps256_mask
:
14764 case X86::BI__builtin_ia32_loadaps512_mask
:
14765 case X86::BI__builtin_ia32_loadapd128_mask
:
14766 case X86::BI__builtin_ia32_loadapd256_mask
:
14767 case X86::BI__builtin_ia32_loadapd512_mask
:
14768 case X86::BI__builtin_ia32_movdqa32load128_mask
:
14769 case X86::BI__builtin_ia32_movdqa32load256_mask
:
14770 case X86::BI__builtin_ia32_movdqa32load512_mask
:
14771 case X86::BI__builtin_ia32_movdqa64load128_mask
:
14772 case X86::BI__builtin_ia32_movdqa64load256_mask
:
14773 case X86::BI__builtin_ia32_movdqa64load512_mask
:
14774 return EmitX86MaskedLoad(
14776 getContext().getTypeAlignInChars(E
->getArg(1)->getType()).getAsAlign());
14778 case X86::BI__builtin_ia32_expandloaddf128_mask
:
14779 case X86::BI__builtin_ia32_expandloaddf256_mask
:
14780 case X86::BI__builtin_ia32_expandloaddf512_mask
:
14781 case X86::BI__builtin_ia32_expandloadsf128_mask
:
14782 case X86::BI__builtin_ia32_expandloadsf256_mask
:
14783 case X86::BI__builtin_ia32_expandloadsf512_mask
:
14784 case X86::BI__builtin_ia32_expandloaddi128_mask
:
14785 case X86::BI__builtin_ia32_expandloaddi256_mask
:
14786 case X86::BI__builtin_ia32_expandloaddi512_mask
:
14787 case X86::BI__builtin_ia32_expandloadsi128_mask
:
14788 case X86::BI__builtin_ia32_expandloadsi256_mask
:
14789 case X86::BI__builtin_ia32_expandloadsi512_mask
:
14790 case X86::BI__builtin_ia32_expandloadhi128_mask
:
14791 case X86::BI__builtin_ia32_expandloadhi256_mask
:
14792 case X86::BI__builtin_ia32_expandloadhi512_mask
:
14793 case X86::BI__builtin_ia32_expandloadqi128_mask
:
14794 case X86::BI__builtin_ia32_expandloadqi256_mask
:
14795 case X86::BI__builtin_ia32_expandloadqi512_mask
:
14796 return EmitX86ExpandLoad(*this, Ops
);
14798 case X86::BI__builtin_ia32_compressstoredf128_mask
:
14799 case X86::BI__builtin_ia32_compressstoredf256_mask
:
14800 case X86::BI__builtin_ia32_compressstoredf512_mask
:
14801 case X86::BI__builtin_ia32_compressstoresf128_mask
:
14802 case X86::BI__builtin_ia32_compressstoresf256_mask
:
14803 case X86::BI__builtin_ia32_compressstoresf512_mask
:
14804 case X86::BI__builtin_ia32_compressstoredi128_mask
:
14805 case X86::BI__builtin_ia32_compressstoredi256_mask
:
14806 case X86::BI__builtin_ia32_compressstoredi512_mask
:
14807 case X86::BI__builtin_ia32_compressstoresi128_mask
:
14808 case X86::BI__builtin_ia32_compressstoresi256_mask
:
14809 case X86::BI__builtin_ia32_compressstoresi512_mask
:
14810 case X86::BI__builtin_ia32_compressstorehi128_mask
:
14811 case X86::BI__builtin_ia32_compressstorehi256_mask
:
14812 case X86::BI__builtin_ia32_compressstorehi512_mask
:
14813 case X86::BI__builtin_ia32_compressstoreqi128_mask
:
14814 case X86::BI__builtin_ia32_compressstoreqi256_mask
:
14815 case X86::BI__builtin_ia32_compressstoreqi512_mask
:
14816 return EmitX86CompressStore(*this, Ops
);
14818 case X86::BI__builtin_ia32_expanddf128_mask
:
14819 case X86::BI__builtin_ia32_expanddf256_mask
:
14820 case X86::BI__builtin_ia32_expanddf512_mask
:
14821 case X86::BI__builtin_ia32_expandsf128_mask
:
14822 case X86::BI__builtin_ia32_expandsf256_mask
:
14823 case X86::BI__builtin_ia32_expandsf512_mask
:
14824 case X86::BI__builtin_ia32_expanddi128_mask
:
14825 case X86::BI__builtin_ia32_expanddi256_mask
:
14826 case X86::BI__builtin_ia32_expanddi512_mask
:
14827 case X86::BI__builtin_ia32_expandsi128_mask
:
14828 case X86::BI__builtin_ia32_expandsi256_mask
:
14829 case X86::BI__builtin_ia32_expandsi512_mask
:
14830 case X86::BI__builtin_ia32_expandhi128_mask
:
14831 case X86::BI__builtin_ia32_expandhi256_mask
:
14832 case X86::BI__builtin_ia32_expandhi512_mask
:
14833 case X86::BI__builtin_ia32_expandqi128_mask
:
14834 case X86::BI__builtin_ia32_expandqi256_mask
:
14835 case X86::BI__builtin_ia32_expandqi512_mask
:
14836 return EmitX86CompressExpand(*this, Ops
, /*IsCompress*/false);
14838 case X86::BI__builtin_ia32_compressdf128_mask
:
14839 case X86::BI__builtin_ia32_compressdf256_mask
:
14840 case X86::BI__builtin_ia32_compressdf512_mask
:
14841 case X86::BI__builtin_ia32_compresssf128_mask
:
14842 case X86::BI__builtin_ia32_compresssf256_mask
:
14843 case X86::BI__builtin_ia32_compresssf512_mask
:
14844 case X86::BI__builtin_ia32_compressdi128_mask
:
14845 case X86::BI__builtin_ia32_compressdi256_mask
:
14846 case X86::BI__builtin_ia32_compressdi512_mask
:
14847 case X86::BI__builtin_ia32_compresssi128_mask
:
14848 case X86::BI__builtin_ia32_compresssi256_mask
:
14849 case X86::BI__builtin_ia32_compresssi512_mask
:
14850 case X86::BI__builtin_ia32_compresshi128_mask
:
14851 case X86::BI__builtin_ia32_compresshi256_mask
:
14852 case X86::BI__builtin_ia32_compresshi512_mask
:
14853 case X86::BI__builtin_ia32_compressqi128_mask
:
14854 case X86::BI__builtin_ia32_compressqi256_mask
:
14855 case X86::BI__builtin_ia32_compressqi512_mask
:
14856 return EmitX86CompressExpand(*this, Ops
, /*IsCompress*/true);
14858 case X86::BI__builtin_ia32_gather3div2df
:
14859 case X86::BI__builtin_ia32_gather3div2di
:
14860 case X86::BI__builtin_ia32_gather3div4df
:
14861 case X86::BI__builtin_ia32_gather3div4di
:
14862 case X86::BI__builtin_ia32_gather3div4sf
:
14863 case X86::BI__builtin_ia32_gather3div4si
:
14864 case X86::BI__builtin_ia32_gather3div8sf
:
14865 case X86::BI__builtin_ia32_gather3div8si
:
14866 case X86::BI__builtin_ia32_gather3siv2df
:
14867 case X86::BI__builtin_ia32_gather3siv2di
:
14868 case X86::BI__builtin_ia32_gather3siv4df
:
14869 case X86::BI__builtin_ia32_gather3siv4di
:
14870 case X86::BI__builtin_ia32_gather3siv4sf
:
14871 case X86::BI__builtin_ia32_gather3siv4si
:
14872 case X86::BI__builtin_ia32_gather3siv8sf
:
14873 case X86::BI__builtin_ia32_gather3siv8si
:
14874 case X86::BI__builtin_ia32_gathersiv8df
:
14875 case X86::BI__builtin_ia32_gathersiv16sf
:
14876 case X86::BI__builtin_ia32_gatherdiv8df
:
14877 case X86::BI__builtin_ia32_gatherdiv16sf
:
14878 case X86::BI__builtin_ia32_gathersiv8di
:
14879 case X86::BI__builtin_ia32_gathersiv16si
:
14880 case X86::BI__builtin_ia32_gatherdiv8di
:
14881 case X86::BI__builtin_ia32_gatherdiv16si
: {
14883 switch (BuiltinID
) {
14884 default: llvm_unreachable("Unexpected builtin");
14885 case X86::BI__builtin_ia32_gather3div2df
:
14886 IID
= Intrinsic::x86_avx512_mask_gather3div2_df
;
14888 case X86::BI__builtin_ia32_gather3div2di
:
14889 IID
= Intrinsic::x86_avx512_mask_gather3div2_di
;
14891 case X86::BI__builtin_ia32_gather3div4df
:
14892 IID
= Intrinsic::x86_avx512_mask_gather3div4_df
;
14894 case X86::BI__builtin_ia32_gather3div4di
:
14895 IID
= Intrinsic::x86_avx512_mask_gather3div4_di
;
14897 case X86::BI__builtin_ia32_gather3div4sf
:
14898 IID
= Intrinsic::x86_avx512_mask_gather3div4_sf
;
14900 case X86::BI__builtin_ia32_gather3div4si
:
14901 IID
= Intrinsic::x86_avx512_mask_gather3div4_si
;
14903 case X86::BI__builtin_ia32_gather3div8sf
:
14904 IID
= Intrinsic::x86_avx512_mask_gather3div8_sf
;
14906 case X86::BI__builtin_ia32_gather3div8si
:
14907 IID
= Intrinsic::x86_avx512_mask_gather3div8_si
;
14909 case X86::BI__builtin_ia32_gather3siv2df
:
14910 IID
= Intrinsic::x86_avx512_mask_gather3siv2_df
;
14912 case X86::BI__builtin_ia32_gather3siv2di
:
14913 IID
= Intrinsic::x86_avx512_mask_gather3siv2_di
;
14915 case X86::BI__builtin_ia32_gather3siv4df
:
14916 IID
= Intrinsic::x86_avx512_mask_gather3siv4_df
;
14918 case X86::BI__builtin_ia32_gather3siv4di
:
14919 IID
= Intrinsic::x86_avx512_mask_gather3siv4_di
;
14921 case X86::BI__builtin_ia32_gather3siv4sf
:
14922 IID
= Intrinsic::x86_avx512_mask_gather3siv4_sf
;
14924 case X86::BI__builtin_ia32_gather3siv4si
:
14925 IID
= Intrinsic::x86_avx512_mask_gather3siv4_si
;
14927 case X86::BI__builtin_ia32_gather3siv8sf
:
14928 IID
= Intrinsic::x86_avx512_mask_gather3siv8_sf
;
14930 case X86::BI__builtin_ia32_gather3siv8si
:
14931 IID
= Intrinsic::x86_avx512_mask_gather3siv8_si
;
14933 case X86::BI__builtin_ia32_gathersiv8df
:
14934 IID
= Intrinsic::x86_avx512_mask_gather_dpd_512
;
14936 case X86::BI__builtin_ia32_gathersiv16sf
:
14937 IID
= Intrinsic::x86_avx512_mask_gather_dps_512
;
14939 case X86::BI__builtin_ia32_gatherdiv8df
:
14940 IID
= Intrinsic::x86_avx512_mask_gather_qpd_512
;
14942 case X86::BI__builtin_ia32_gatherdiv16sf
:
14943 IID
= Intrinsic::x86_avx512_mask_gather_qps_512
;
14945 case X86::BI__builtin_ia32_gathersiv8di
:
14946 IID
= Intrinsic::x86_avx512_mask_gather_dpq_512
;
14948 case X86::BI__builtin_ia32_gathersiv16si
:
14949 IID
= Intrinsic::x86_avx512_mask_gather_dpi_512
;
14951 case X86::BI__builtin_ia32_gatherdiv8di
:
14952 IID
= Intrinsic::x86_avx512_mask_gather_qpq_512
;
14954 case X86::BI__builtin_ia32_gatherdiv16si
:
14955 IID
= Intrinsic::x86_avx512_mask_gather_qpi_512
;
14959 unsigned MinElts
= std::min(
14960 cast
<llvm::FixedVectorType
>(Ops
[0]->getType())->getNumElements(),
14961 cast
<llvm::FixedVectorType
>(Ops
[2]->getType())->getNumElements());
14962 Ops
[3] = getMaskVecValue(*this, Ops
[3], MinElts
);
14963 Function
*Intr
= CGM
.getIntrinsic(IID
);
14964 return Builder
.CreateCall(Intr
, Ops
);
14967 case X86::BI__builtin_ia32_scattersiv8df
:
14968 case X86::BI__builtin_ia32_scattersiv16sf
:
14969 case X86::BI__builtin_ia32_scatterdiv8df
:
14970 case X86::BI__builtin_ia32_scatterdiv16sf
:
14971 case X86::BI__builtin_ia32_scattersiv8di
:
14972 case X86::BI__builtin_ia32_scattersiv16si
:
14973 case X86::BI__builtin_ia32_scatterdiv8di
:
14974 case X86::BI__builtin_ia32_scatterdiv16si
:
14975 case X86::BI__builtin_ia32_scatterdiv2df
:
14976 case X86::BI__builtin_ia32_scatterdiv2di
:
14977 case X86::BI__builtin_ia32_scatterdiv4df
:
14978 case X86::BI__builtin_ia32_scatterdiv4di
:
14979 case X86::BI__builtin_ia32_scatterdiv4sf
:
14980 case X86::BI__builtin_ia32_scatterdiv4si
:
14981 case X86::BI__builtin_ia32_scatterdiv8sf
:
14982 case X86::BI__builtin_ia32_scatterdiv8si
:
14983 case X86::BI__builtin_ia32_scattersiv2df
:
14984 case X86::BI__builtin_ia32_scattersiv2di
:
14985 case X86::BI__builtin_ia32_scattersiv4df
:
14986 case X86::BI__builtin_ia32_scattersiv4di
:
14987 case X86::BI__builtin_ia32_scattersiv4sf
:
14988 case X86::BI__builtin_ia32_scattersiv4si
:
14989 case X86::BI__builtin_ia32_scattersiv8sf
:
14990 case X86::BI__builtin_ia32_scattersiv8si
: {
14992 switch (BuiltinID
) {
14993 default: llvm_unreachable("Unexpected builtin");
14994 case X86::BI__builtin_ia32_scattersiv8df
:
14995 IID
= Intrinsic::x86_avx512_mask_scatter_dpd_512
;
14997 case X86::BI__builtin_ia32_scattersiv16sf
:
14998 IID
= Intrinsic::x86_avx512_mask_scatter_dps_512
;
15000 case X86::BI__builtin_ia32_scatterdiv8df
:
15001 IID
= Intrinsic::x86_avx512_mask_scatter_qpd_512
;
15003 case X86::BI__builtin_ia32_scatterdiv16sf
:
15004 IID
= Intrinsic::x86_avx512_mask_scatter_qps_512
;
15006 case X86::BI__builtin_ia32_scattersiv8di
:
15007 IID
= Intrinsic::x86_avx512_mask_scatter_dpq_512
;
15009 case X86::BI__builtin_ia32_scattersiv16si
:
15010 IID
= Intrinsic::x86_avx512_mask_scatter_dpi_512
;
15012 case X86::BI__builtin_ia32_scatterdiv8di
:
15013 IID
= Intrinsic::x86_avx512_mask_scatter_qpq_512
;
15015 case X86::BI__builtin_ia32_scatterdiv16si
:
15016 IID
= Intrinsic::x86_avx512_mask_scatter_qpi_512
;
15018 case X86::BI__builtin_ia32_scatterdiv2df
:
15019 IID
= Intrinsic::x86_avx512_mask_scatterdiv2_df
;
15021 case X86::BI__builtin_ia32_scatterdiv2di
:
15022 IID
= Intrinsic::x86_avx512_mask_scatterdiv2_di
;
15024 case X86::BI__builtin_ia32_scatterdiv4df
:
15025 IID
= Intrinsic::x86_avx512_mask_scatterdiv4_df
;
15027 case X86::BI__builtin_ia32_scatterdiv4di
:
15028 IID
= Intrinsic::x86_avx512_mask_scatterdiv4_di
;
15030 case X86::BI__builtin_ia32_scatterdiv4sf
:
15031 IID
= Intrinsic::x86_avx512_mask_scatterdiv4_sf
;
15033 case X86::BI__builtin_ia32_scatterdiv4si
:
15034 IID
= Intrinsic::x86_avx512_mask_scatterdiv4_si
;
15036 case X86::BI__builtin_ia32_scatterdiv8sf
:
15037 IID
= Intrinsic::x86_avx512_mask_scatterdiv8_sf
;
15039 case X86::BI__builtin_ia32_scatterdiv8si
:
15040 IID
= Intrinsic::x86_avx512_mask_scatterdiv8_si
;
15042 case X86::BI__builtin_ia32_scattersiv2df
:
15043 IID
= Intrinsic::x86_avx512_mask_scattersiv2_df
;
15045 case X86::BI__builtin_ia32_scattersiv2di
:
15046 IID
= Intrinsic::x86_avx512_mask_scattersiv2_di
;
15048 case X86::BI__builtin_ia32_scattersiv4df
:
15049 IID
= Intrinsic::x86_avx512_mask_scattersiv4_df
;
15051 case X86::BI__builtin_ia32_scattersiv4di
:
15052 IID
= Intrinsic::x86_avx512_mask_scattersiv4_di
;
15054 case X86::BI__builtin_ia32_scattersiv4sf
:
15055 IID
= Intrinsic::x86_avx512_mask_scattersiv4_sf
;
15057 case X86::BI__builtin_ia32_scattersiv4si
:
15058 IID
= Intrinsic::x86_avx512_mask_scattersiv4_si
;
15060 case X86::BI__builtin_ia32_scattersiv8sf
:
15061 IID
= Intrinsic::x86_avx512_mask_scattersiv8_sf
;
15063 case X86::BI__builtin_ia32_scattersiv8si
:
15064 IID
= Intrinsic::x86_avx512_mask_scattersiv8_si
;
15068 unsigned MinElts
= std::min(
15069 cast
<llvm::FixedVectorType
>(Ops
[2]->getType())->getNumElements(),
15070 cast
<llvm::FixedVectorType
>(Ops
[3]->getType())->getNumElements());
15071 Ops
[1] = getMaskVecValue(*this, Ops
[1], MinElts
);
15072 Function
*Intr
= CGM
.getIntrinsic(IID
);
15073 return Builder
.CreateCall(Intr
, Ops
);
15076 case X86::BI__builtin_ia32_vextractf128_pd256
:
15077 case X86::BI__builtin_ia32_vextractf128_ps256
:
15078 case X86::BI__builtin_ia32_vextractf128_si256
:
15079 case X86::BI__builtin_ia32_extract128i256
:
15080 case X86::BI__builtin_ia32_extractf64x4_mask
:
15081 case X86::BI__builtin_ia32_extractf32x4_mask
:
15082 case X86::BI__builtin_ia32_extracti64x4_mask
:
15083 case X86::BI__builtin_ia32_extracti32x4_mask
:
15084 case X86::BI__builtin_ia32_extractf32x8_mask
:
15085 case X86::BI__builtin_ia32_extracti32x8_mask
:
15086 case X86::BI__builtin_ia32_extractf32x4_256_mask
:
15087 case X86::BI__builtin_ia32_extracti32x4_256_mask
:
15088 case X86::BI__builtin_ia32_extractf64x2_256_mask
:
15089 case X86::BI__builtin_ia32_extracti64x2_256_mask
:
15090 case X86::BI__builtin_ia32_extractf64x2_512_mask
:
15091 case X86::BI__builtin_ia32_extracti64x2_512_mask
: {
15092 auto *DstTy
= cast
<llvm::FixedVectorType
>(ConvertType(E
->getType()));
15093 unsigned NumElts
= DstTy
->getNumElements();
15094 unsigned SrcNumElts
=
15095 cast
<llvm::FixedVectorType
>(Ops
[0]->getType())->getNumElements();
15096 unsigned SubVectors
= SrcNumElts
/ NumElts
;
15097 unsigned Index
= cast
<ConstantInt
>(Ops
[1])->getZExtValue();
15098 assert(llvm::isPowerOf2_32(SubVectors
) && "Expected power of 2 subvectors");
15099 Index
&= SubVectors
- 1; // Remove any extra bits.
15103 for (unsigned i
= 0; i
!= NumElts
; ++i
)
15104 Indices
[i
] = i
+ Index
;
15106 Value
*Res
= Builder
.CreateShuffleVector(Ops
[0], ArrayRef(Indices
, NumElts
),
15109 if (Ops
.size() == 4)
15110 Res
= EmitX86Select(*this, Ops
[3], Res
, Ops
[2]);
15114 case X86::BI__builtin_ia32_vinsertf128_pd256
:
15115 case X86::BI__builtin_ia32_vinsertf128_ps256
:
15116 case X86::BI__builtin_ia32_vinsertf128_si256
:
15117 case X86::BI__builtin_ia32_insert128i256
:
15118 case X86::BI__builtin_ia32_insertf64x4
:
15119 case X86::BI__builtin_ia32_insertf32x4
:
15120 case X86::BI__builtin_ia32_inserti64x4
:
15121 case X86::BI__builtin_ia32_inserti32x4
:
15122 case X86::BI__builtin_ia32_insertf32x8
:
15123 case X86::BI__builtin_ia32_inserti32x8
:
15124 case X86::BI__builtin_ia32_insertf32x4_256
:
15125 case X86::BI__builtin_ia32_inserti32x4_256
:
15126 case X86::BI__builtin_ia32_insertf64x2_256
:
15127 case X86::BI__builtin_ia32_inserti64x2_256
:
15128 case X86::BI__builtin_ia32_insertf64x2_512
:
15129 case X86::BI__builtin_ia32_inserti64x2_512
: {
15130 unsigned DstNumElts
=
15131 cast
<llvm::FixedVectorType
>(Ops
[0]->getType())->getNumElements();
15132 unsigned SrcNumElts
=
15133 cast
<llvm::FixedVectorType
>(Ops
[1]->getType())->getNumElements();
15134 unsigned SubVectors
= DstNumElts
/ SrcNumElts
;
15135 unsigned Index
= cast
<ConstantInt
>(Ops
[2])->getZExtValue();
15136 assert(llvm::isPowerOf2_32(SubVectors
) && "Expected power of 2 subvectors");
15137 Index
&= SubVectors
- 1; // Remove any extra bits.
15138 Index
*= SrcNumElts
;
15141 for (unsigned i
= 0; i
!= DstNumElts
; ++i
)
15142 Indices
[i
] = (i
>= SrcNumElts
) ? SrcNumElts
+ (i
% SrcNumElts
) : i
;
15144 Value
*Op1
= Builder
.CreateShuffleVector(
15145 Ops
[1], ArrayRef(Indices
, DstNumElts
), "widen");
15147 for (unsigned i
= 0; i
!= DstNumElts
; ++i
) {
15148 if (i
>= Index
&& i
< (Index
+ SrcNumElts
))
15149 Indices
[i
] = (i
- Index
) + DstNumElts
;
15154 return Builder
.CreateShuffleVector(Ops
[0], Op1
,
15155 ArrayRef(Indices
, DstNumElts
), "insert");
15157 case X86::BI__builtin_ia32_pmovqd512_mask
:
15158 case X86::BI__builtin_ia32_pmovwb512_mask
: {
15159 Value
*Res
= Builder
.CreateTrunc(Ops
[0], Ops
[1]->getType());
15160 return EmitX86Select(*this, Ops
[2], Res
, Ops
[1]);
15162 case X86::BI__builtin_ia32_pmovdb512_mask
:
15163 case X86::BI__builtin_ia32_pmovdw512_mask
:
15164 case X86::BI__builtin_ia32_pmovqw512_mask
: {
15165 if (const auto *C
= dyn_cast
<Constant
>(Ops
[2]))
15166 if (C
->isAllOnesValue())
15167 return Builder
.CreateTrunc(Ops
[0], Ops
[1]->getType());
15170 switch (BuiltinID
) {
15171 default: llvm_unreachable("Unsupported intrinsic!");
15172 case X86::BI__builtin_ia32_pmovdb512_mask
:
15173 IID
= Intrinsic::x86_avx512_mask_pmov_db_512
;
15175 case X86::BI__builtin_ia32_pmovdw512_mask
:
15176 IID
= Intrinsic::x86_avx512_mask_pmov_dw_512
;
15178 case X86::BI__builtin_ia32_pmovqw512_mask
:
15179 IID
= Intrinsic::x86_avx512_mask_pmov_qw_512
;
15183 Function
*Intr
= CGM
.getIntrinsic(IID
);
15184 return Builder
.CreateCall(Intr
, Ops
);
15186 case X86::BI__builtin_ia32_pblendw128
:
15187 case X86::BI__builtin_ia32_blendpd
:
15188 case X86::BI__builtin_ia32_blendps
:
15189 case X86::BI__builtin_ia32_blendpd256
:
15190 case X86::BI__builtin_ia32_blendps256
:
15191 case X86::BI__builtin_ia32_pblendw256
:
15192 case X86::BI__builtin_ia32_pblendd128
:
15193 case X86::BI__builtin_ia32_pblendd256
: {
15195 cast
<llvm::FixedVectorType
>(Ops
[0]->getType())->getNumElements();
15196 unsigned Imm
= cast
<llvm::ConstantInt
>(Ops
[2])->getZExtValue();
15199 // If there are more than 8 elements, the immediate is used twice so make
15200 // sure we handle that.
15201 for (unsigned i
= 0; i
!= NumElts
; ++i
)
15202 Indices
[i
] = ((Imm
>> (i
% 8)) & 0x1) ? NumElts
+ i
: i
;
15204 return Builder
.CreateShuffleVector(Ops
[0], Ops
[1],
15205 ArrayRef(Indices
, NumElts
), "blend");
15207 case X86::BI__builtin_ia32_pshuflw
:
15208 case X86::BI__builtin_ia32_pshuflw256
:
15209 case X86::BI__builtin_ia32_pshuflw512
: {
15210 uint32_t Imm
= cast
<llvm::ConstantInt
>(Ops
[1])->getZExtValue();
15211 auto *Ty
= cast
<llvm::FixedVectorType
>(Ops
[0]->getType());
15212 unsigned NumElts
= Ty
->getNumElements();
15214 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
15215 Imm
= (Imm
& 0xff) * 0x01010101;
15218 for (unsigned l
= 0; l
!= NumElts
; l
+= 8) {
15219 for (unsigned i
= 0; i
!= 4; ++i
) {
15220 Indices
[l
+ i
] = l
+ (Imm
& 3);
15223 for (unsigned i
= 4; i
!= 8; ++i
)
15224 Indices
[l
+ i
] = l
+ i
;
15227 return Builder
.CreateShuffleVector(Ops
[0], ArrayRef(Indices
, NumElts
),
15230 case X86::BI__builtin_ia32_pshufhw
:
15231 case X86::BI__builtin_ia32_pshufhw256
:
15232 case X86::BI__builtin_ia32_pshufhw512
: {
15233 uint32_t Imm
= cast
<llvm::ConstantInt
>(Ops
[1])->getZExtValue();
15234 auto *Ty
= cast
<llvm::FixedVectorType
>(Ops
[0]->getType());
15235 unsigned NumElts
= Ty
->getNumElements();
15237 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
15238 Imm
= (Imm
& 0xff) * 0x01010101;
15241 for (unsigned l
= 0; l
!= NumElts
; l
+= 8) {
15242 for (unsigned i
= 0; i
!= 4; ++i
)
15243 Indices
[l
+ i
] = l
+ i
;
15244 for (unsigned i
= 4; i
!= 8; ++i
) {
15245 Indices
[l
+ i
] = l
+ 4 + (Imm
& 3);
15250 return Builder
.CreateShuffleVector(Ops
[0], ArrayRef(Indices
, NumElts
),
15253 case X86::BI__builtin_ia32_pshufd
:
15254 case X86::BI__builtin_ia32_pshufd256
:
15255 case X86::BI__builtin_ia32_pshufd512
:
15256 case X86::BI__builtin_ia32_vpermilpd
:
15257 case X86::BI__builtin_ia32_vpermilps
:
15258 case X86::BI__builtin_ia32_vpermilpd256
:
15259 case X86::BI__builtin_ia32_vpermilps256
:
15260 case X86::BI__builtin_ia32_vpermilpd512
:
15261 case X86::BI__builtin_ia32_vpermilps512
: {
15262 uint32_t Imm
= cast
<llvm::ConstantInt
>(Ops
[1])->getZExtValue();
15263 auto *Ty
= cast
<llvm::FixedVectorType
>(Ops
[0]->getType());
15264 unsigned NumElts
= Ty
->getNumElements();
15265 unsigned NumLanes
= Ty
->getPrimitiveSizeInBits() / 128;
15266 unsigned NumLaneElts
= NumElts
/ NumLanes
;
15268 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
15269 Imm
= (Imm
& 0xff) * 0x01010101;
15272 for (unsigned l
= 0; l
!= NumElts
; l
+= NumLaneElts
) {
15273 for (unsigned i
= 0; i
!= NumLaneElts
; ++i
) {
15274 Indices
[i
+ l
] = (Imm
% NumLaneElts
) + l
;
15275 Imm
/= NumLaneElts
;
15279 return Builder
.CreateShuffleVector(Ops
[0], ArrayRef(Indices
, NumElts
),
15282 case X86::BI__builtin_ia32_shufpd
:
15283 case X86::BI__builtin_ia32_shufpd256
:
15284 case X86::BI__builtin_ia32_shufpd512
:
15285 case X86::BI__builtin_ia32_shufps
:
15286 case X86::BI__builtin_ia32_shufps256
:
15287 case X86::BI__builtin_ia32_shufps512
: {
15288 uint32_t Imm
= cast
<llvm::ConstantInt
>(Ops
[2])->getZExtValue();
15289 auto *Ty
= cast
<llvm::FixedVectorType
>(Ops
[0]->getType());
15290 unsigned NumElts
= Ty
->getNumElements();
15291 unsigned NumLanes
= Ty
->getPrimitiveSizeInBits() / 128;
15292 unsigned NumLaneElts
= NumElts
/ NumLanes
;
15294 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
15295 Imm
= (Imm
& 0xff) * 0x01010101;
15298 for (unsigned l
= 0; l
!= NumElts
; l
+= NumLaneElts
) {
15299 for (unsigned i
= 0; i
!= NumLaneElts
; ++i
) {
15300 unsigned Index
= Imm
% NumLaneElts
;
15301 Imm
/= NumLaneElts
;
15302 if (i
>= (NumLaneElts
/ 2))
15304 Indices
[l
+ i
] = l
+ Index
;
15308 return Builder
.CreateShuffleVector(Ops
[0], Ops
[1],
15309 ArrayRef(Indices
, NumElts
), "shufp");
15311 case X86::BI__builtin_ia32_permdi256
:
15312 case X86::BI__builtin_ia32_permdf256
:
15313 case X86::BI__builtin_ia32_permdi512
:
15314 case X86::BI__builtin_ia32_permdf512
: {
15315 unsigned Imm
= cast
<llvm::ConstantInt
>(Ops
[1])->getZExtValue();
15316 auto *Ty
= cast
<llvm::FixedVectorType
>(Ops
[0]->getType());
15317 unsigned NumElts
= Ty
->getNumElements();
15319 // These intrinsics operate on 256-bit lanes of four 64-bit elements.
15321 for (unsigned l
= 0; l
!= NumElts
; l
+= 4)
15322 for (unsigned i
= 0; i
!= 4; ++i
)
15323 Indices
[l
+ i
] = l
+ ((Imm
>> (2 * i
)) & 0x3);
15325 return Builder
.CreateShuffleVector(Ops
[0], ArrayRef(Indices
, NumElts
),
15328 case X86::BI__builtin_ia32_palignr128
:
15329 case X86::BI__builtin_ia32_palignr256
:
15330 case X86::BI__builtin_ia32_palignr512
: {
15331 unsigned ShiftVal
= cast
<llvm::ConstantInt
>(Ops
[2])->getZExtValue() & 0xff;
15334 cast
<llvm::FixedVectorType
>(Ops
[0]->getType())->getNumElements();
15335 assert(NumElts
% 16 == 0);
15337 // If palignr is shifting the pair of vectors more than the size of two
15338 // lanes, emit zero.
15339 if (ShiftVal
>= 32)
15340 return llvm::Constant::getNullValue(ConvertType(E
->getType()));
15342 // If palignr is shifting the pair of input vectors more than one lane,
15343 // but less than two lanes, convert to shifting in zeroes.
15344 if (ShiftVal
> 16) {
15347 Ops
[0] = llvm::Constant::getNullValue(Ops
[0]->getType());
15351 // 256-bit palignr operates on 128-bit lanes so we need to handle that
15352 for (unsigned l
= 0; l
!= NumElts
; l
+= 16) {
15353 for (unsigned i
= 0; i
!= 16; ++i
) {
15354 unsigned Idx
= ShiftVal
+ i
;
15356 Idx
+= NumElts
- 16; // End of lane, switch operand.
15357 Indices
[l
+ i
] = Idx
+ l
;
15361 return Builder
.CreateShuffleVector(Ops
[1], Ops
[0],
15362 ArrayRef(Indices
, NumElts
), "palignr");
15364 case X86::BI__builtin_ia32_alignd128
:
15365 case X86::BI__builtin_ia32_alignd256
:
15366 case X86::BI__builtin_ia32_alignd512
:
15367 case X86::BI__builtin_ia32_alignq128
:
15368 case X86::BI__builtin_ia32_alignq256
:
15369 case X86::BI__builtin_ia32_alignq512
: {
15371 cast
<llvm::FixedVectorType
>(Ops
[0]->getType())->getNumElements();
15372 unsigned ShiftVal
= cast
<llvm::ConstantInt
>(Ops
[2])->getZExtValue() & 0xff;
15374 // Mask the shift amount to width of a vector.
15375 ShiftVal
&= NumElts
- 1;
15378 for (unsigned i
= 0; i
!= NumElts
; ++i
)
15379 Indices
[i
] = i
+ ShiftVal
;
15381 return Builder
.CreateShuffleVector(Ops
[1], Ops
[0],
15382 ArrayRef(Indices
, NumElts
), "valign");
15384 case X86::BI__builtin_ia32_shuf_f32x4_256
:
15385 case X86::BI__builtin_ia32_shuf_f64x2_256
:
15386 case X86::BI__builtin_ia32_shuf_i32x4_256
:
15387 case X86::BI__builtin_ia32_shuf_i64x2_256
:
15388 case X86::BI__builtin_ia32_shuf_f32x4
:
15389 case X86::BI__builtin_ia32_shuf_f64x2
:
15390 case X86::BI__builtin_ia32_shuf_i32x4
:
15391 case X86::BI__builtin_ia32_shuf_i64x2
: {
15392 unsigned Imm
= cast
<llvm::ConstantInt
>(Ops
[2])->getZExtValue();
15393 auto *Ty
= cast
<llvm::FixedVectorType
>(Ops
[0]->getType());
15394 unsigned NumElts
= Ty
->getNumElements();
15395 unsigned NumLanes
= Ty
->getPrimitiveSizeInBits() == 512 ? 4 : 2;
15396 unsigned NumLaneElts
= NumElts
/ NumLanes
;
15399 for (unsigned l
= 0; l
!= NumElts
; l
+= NumLaneElts
) {
15400 unsigned Index
= (Imm
% NumLanes
) * NumLaneElts
;
15401 Imm
/= NumLanes
; // Discard the bits we just used.
15402 if (l
>= (NumElts
/ 2))
15403 Index
+= NumElts
; // Switch to other source.
15404 for (unsigned i
= 0; i
!= NumLaneElts
; ++i
) {
15405 Indices
[l
+ i
] = Index
+ i
;
15409 return Builder
.CreateShuffleVector(Ops
[0], Ops
[1],
15410 ArrayRef(Indices
, NumElts
), "shuf");
15413 case X86::BI__builtin_ia32_vperm2f128_pd256
:
15414 case X86::BI__builtin_ia32_vperm2f128_ps256
:
15415 case X86::BI__builtin_ia32_vperm2f128_si256
:
15416 case X86::BI__builtin_ia32_permti256
: {
15417 unsigned Imm
= cast
<llvm::ConstantInt
>(Ops
[2])->getZExtValue();
15419 cast
<llvm::FixedVectorType
>(Ops
[0]->getType())->getNumElements();
15421 // This takes a very simple approach since there are two lanes and a
15422 // shuffle can have 2 inputs. So we reserve the first input for the first
15423 // lane and the second input for the second lane. This may result in
15424 // duplicate sources, but this can be dealt with in the backend.
15428 for (unsigned l
= 0; l
!= 2; ++l
) {
15429 // Determine the source for this lane.
15430 if (Imm
& (1 << ((l
* 4) + 3)))
15431 OutOps
[l
] = llvm::ConstantAggregateZero::get(Ops
[0]->getType());
15432 else if (Imm
& (1 << ((l
* 4) + 1)))
15433 OutOps
[l
] = Ops
[1];
15435 OutOps
[l
] = Ops
[0];
15437 for (unsigned i
= 0; i
!= NumElts
/2; ++i
) {
15438 // Start with ith element of the source for this lane.
15439 unsigned Idx
= (l
* NumElts
) + i
;
15440 // If bit 0 of the immediate half is set, switch to the high half of
15442 if (Imm
& (1 << (l
* 4)))
15444 Indices
[(l
* (NumElts
/2)) + i
] = Idx
;
15448 return Builder
.CreateShuffleVector(OutOps
[0], OutOps
[1],
15449 ArrayRef(Indices
, NumElts
), "vperm");
15452 case X86::BI__builtin_ia32_pslldqi128_byteshift
:
15453 case X86::BI__builtin_ia32_pslldqi256_byteshift
:
15454 case X86::BI__builtin_ia32_pslldqi512_byteshift
: {
15455 unsigned ShiftVal
= cast
<llvm::ConstantInt
>(Ops
[1])->getZExtValue() & 0xff;
15456 auto *ResultType
= cast
<llvm::FixedVectorType
>(Ops
[0]->getType());
15457 // Builtin type is vXi64 so multiply by 8 to get bytes.
15458 unsigned NumElts
= ResultType
->getNumElements() * 8;
15460 // If pslldq is shifting the vector more than 15 bytes, emit zero.
15461 if (ShiftVal
>= 16)
15462 return llvm::Constant::getNullValue(ResultType
);
15465 // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
15466 for (unsigned l
= 0; l
!= NumElts
; l
+= 16) {
15467 for (unsigned i
= 0; i
!= 16; ++i
) {
15468 unsigned Idx
= NumElts
+ i
- ShiftVal
;
15469 if (Idx
< NumElts
) Idx
-= NumElts
- 16; // end of lane, switch operand.
15470 Indices
[l
+ i
] = Idx
+ l
;
15474 auto *VecTy
= llvm::FixedVectorType::get(Int8Ty
, NumElts
);
15475 Value
*Cast
= Builder
.CreateBitCast(Ops
[0], VecTy
, "cast");
15476 Value
*Zero
= llvm::Constant::getNullValue(VecTy
);
15477 Value
*SV
= Builder
.CreateShuffleVector(
15478 Zero
, Cast
, ArrayRef(Indices
, NumElts
), "pslldq");
15479 return Builder
.CreateBitCast(SV
, Ops
[0]->getType(), "cast");
15481 case X86::BI__builtin_ia32_psrldqi128_byteshift
:
15482 case X86::BI__builtin_ia32_psrldqi256_byteshift
:
15483 case X86::BI__builtin_ia32_psrldqi512_byteshift
: {
15484 unsigned ShiftVal
= cast
<llvm::ConstantInt
>(Ops
[1])->getZExtValue() & 0xff;
15485 auto *ResultType
= cast
<llvm::FixedVectorType
>(Ops
[0]->getType());
15486 // Builtin type is vXi64 so multiply by 8 to get bytes.
15487 unsigned NumElts
= ResultType
->getNumElements() * 8;
15489 // If psrldq is shifting the vector more than 15 bytes, emit zero.
15490 if (ShiftVal
>= 16)
15491 return llvm::Constant::getNullValue(ResultType
);
15494 // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
15495 for (unsigned l
= 0; l
!= NumElts
; l
+= 16) {
15496 for (unsigned i
= 0; i
!= 16; ++i
) {
15497 unsigned Idx
= i
+ ShiftVal
;
15498 if (Idx
>= 16) Idx
+= NumElts
- 16; // end of lane, switch operand.
15499 Indices
[l
+ i
] = Idx
+ l
;
15503 auto *VecTy
= llvm::FixedVectorType::get(Int8Ty
, NumElts
);
15504 Value
*Cast
= Builder
.CreateBitCast(Ops
[0], VecTy
, "cast");
15505 Value
*Zero
= llvm::Constant::getNullValue(VecTy
);
15506 Value
*SV
= Builder
.CreateShuffleVector(
15507 Cast
, Zero
, ArrayRef(Indices
, NumElts
), "psrldq");
15508 return Builder
.CreateBitCast(SV
, ResultType
, "cast");
15510 case X86::BI__builtin_ia32_kshiftliqi
:
15511 case X86::BI__builtin_ia32_kshiftlihi
:
15512 case X86::BI__builtin_ia32_kshiftlisi
:
15513 case X86::BI__builtin_ia32_kshiftlidi
: {
15514 unsigned ShiftVal
= cast
<llvm::ConstantInt
>(Ops
[1])->getZExtValue() & 0xff;
15515 unsigned NumElts
= Ops
[0]->getType()->getIntegerBitWidth();
15517 if (ShiftVal
>= NumElts
)
15518 return llvm::Constant::getNullValue(Ops
[0]->getType());
15520 Value
*In
= getMaskVecValue(*this, Ops
[0], NumElts
);
15523 for (unsigned i
= 0; i
!= NumElts
; ++i
)
15524 Indices
[i
] = NumElts
+ i
- ShiftVal
;
15526 Value
*Zero
= llvm::Constant::getNullValue(In
->getType());
15527 Value
*SV
= Builder
.CreateShuffleVector(
15528 Zero
, In
, ArrayRef(Indices
, NumElts
), "kshiftl");
15529 return Builder
.CreateBitCast(SV
, Ops
[0]->getType());
15531 case X86::BI__builtin_ia32_kshiftriqi
:
15532 case X86::BI__builtin_ia32_kshiftrihi
:
15533 case X86::BI__builtin_ia32_kshiftrisi
:
15534 case X86::BI__builtin_ia32_kshiftridi
: {
15535 unsigned ShiftVal
= cast
<llvm::ConstantInt
>(Ops
[1])->getZExtValue() & 0xff;
15536 unsigned NumElts
= Ops
[0]->getType()->getIntegerBitWidth();
15538 if (ShiftVal
>= NumElts
)
15539 return llvm::Constant::getNullValue(Ops
[0]->getType());
15541 Value
*In
= getMaskVecValue(*this, Ops
[0], NumElts
);
15544 for (unsigned i
= 0; i
!= NumElts
; ++i
)
15545 Indices
[i
] = i
+ ShiftVal
;
15547 Value
*Zero
= llvm::Constant::getNullValue(In
->getType());
15548 Value
*SV
= Builder
.CreateShuffleVector(
15549 In
, Zero
, ArrayRef(Indices
, NumElts
), "kshiftr");
15550 return Builder
.CreateBitCast(SV
, Ops
[0]->getType());
15552 case X86::BI__builtin_ia32_movnti
:
15553 case X86::BI__builtin_ia32_movnti64
:
15554 case X86::BI__builtin_ia32_movntsd
:
15555 case X86::BI__builtin_ia32_movntss
: {
15556 llvm::MDNode
*Node
= llvm::MDNode::get(
15557 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder
.getInt32(1)));
15559 Value
*Ptr
= Ops
[0];
15560 Value
*Src
= Ops
[1];
15562 // Extract the 0'th element of the source vector.
15563 if (BuiltinID
== X86::BI__builtin_ia32_movntsd
||
15564 BuiltinID
== X86::BI__builtin_ia32_movntss
)
15565 Src
= Builder
.CreateExtractElement(Src
, (uint64_t)0, "extract");
15567 // Unaligned nontemporal store of the scalar value.
15568 StoreInst
*SI
= Builder
.CreateDefaultAlignedStore(Src
, Ptr
);
15569 SI
->setMetadata(llvm::LLVMContext::MD_nontemporal
, Node
);
15570 SI
->setAlignment(llvm::Align(1));
15573 // Rotate is a special case of funnel shift - 1st 2 args are the same.
15574 case X86::BI__builtin_ia32_vprotb
:
15575 case X86::BI__builtin_ia32_vprotw
:
15576 case X86::BI__builtin_ia32_vprotd
:
15577 case X86::BI__builtin_ia32_vprotq
:
15578 case X86::BI__builtin_ia32_vprotbi
:
15579 case X86::BI__builtin_ia32_vprotwi
:
15580 case X86::BI__builtin_ia32_vprotdi
:
15581 case X86::BI__builtin_ia32_vprotqi
:
15582 case X86::BI__builtin_ia32_prold128
:
15583 case X86::BI__builtin_ia32_prold256
:
15584 case X86::BI__builtin_ia32_prold512
:
15585 case X86::BI__builtin_ia32_prolq128
:
15586 case X86::BI__builtin_ia32_prolq256
:
15587 case X86::BI__builtin_ia32_prolq512
:
15588 case X86::BI__builtin_ia32_prolvd128
:
15589 case X86::BI__builtin_ia32_prolvd256
:
15590 case X86::BI__builtin_ia32_prolvd512
:
15591 case X86::BI__builtin_ia32_prolvq128
:
15592 case X86::BI__builtin_ia32_prolvq256
:
15593 case X86::BI__builtin_ia32_prolvq512
:
15594 return EmitX86FunnelShift(*this, Ops
[0], Ops
[0], Ops
[1], false);
15595 case X86::BI__builtin_ia32_prord128
:
15596 case X86::BI__builtin_ia32_prord256
:
15597 case X86::BI__builtin_ia32_prord512
:
15598 case X86::BI__builtin_ia32_prorq128
:
15599 case X86::BI__builtin_ia32_prorq256
:
15600 case X86::BI__builtin_ia32_prorq512
:
15601 case X86::BI__builtin_ia32_prorvd128
:
15602 case X86::BI__builtin_ia32_prorvd256
:
15603 case X86::BI__builtin_ia32_prorvd512
:
15604 case X86::BI__builtin_ia32_prorvq128
:
15605 case X86::BI__builtin_ia32_prorvq256
:
15606 case X86::BI__builtin_ia32_prorvq512
:
15607 return EmitX86FunnelShift(*this, Ops
[0], Ops
[0], Ops
[1], true);
15608 case X86::BI__builtin_ia32_selectb_128
:
15609 case X86::BI__builtin_ia32_selectb_256
:
15610 case X86::BI__builtin_ia32_selectb_512
:
15611 case X86::BI__builtin_ia32_selectw_128
:
15612 case X86::BI__builtin_ia32_selectw_256
:
15613 case X86::BI__builtin_ia32_selectw_512
:
15614 case X86::BI__builtin_ia32_selectd_128
:
15615 case X86::BI__builtin_ia32_selectd_256
:
15616 case X86::BI__builtin_ia32_selectd_512
:
15617 case X86::BI__builtin_ia32_selectq_128
:
15618 case X86::BI__builtin_ia32_selectq_256
:
15619 case X86::BI__builtin_ia32_selectq_512
:
15620 case X86::BI__builtin_ia32_selectph_128
:
15621 case X86::BI__builtin_ia32_selectph_256
:
15622 case X86::BI__builtin_ia32_selectph_512
:
15623 case X86::BI__builtin_ia32_selectpbf_128
:
15624 case X86::BI__builtin_ia32_selectpbf_256
:
15625 case X86::BI__builtin_ia32_selectpbf_512
:
15626 case X86::BI__builtin_ia32_selectps_128
:
15627 case X86::BI__builtin_ia32_selectps_256
:
15628 case X86::BI__builtin_ia32_selectps_512
:
15629 case X86::BI__builtin_ia32_selectpd_128
:
15630 case X86::BI__builtin_ia32_selectpd_256
:
15631 case X86::BI__builtin_ia32_selectpd_512
:
15632 return EmitX86Select(*this, Ops
[0], Ops
[1], Ops
[2]);
15633 case X86::BI__builtin_ia32_selectsh_128
:
15634 case X86::BI__builtin_ia32_selectsbf_128
:
15635 case X86::BI__builtin_ia32_selectss_128
:
15636 case X86::BI__builtin_ia32_selectsd_128
: {
15637 Value
*A
= Builder
.CreateExtractElement(Ops
[1], (uint64_t)0);
15638 Value
*B
= Builder
.CreateExtractElement(Ops
[2], (uint64_t)0);
15639 A
= EmitX86ScalarSelect(*this, Ops
[0], A
, B
);
15640 return Builder
.CreateInsertElement(Ops
[1], A
, (uint64_t)0);
15642 case X86::BI__builtin_ia32_cmpb128_mask
:
15643 case X86::BI__builtin_ia32_cmpb256_mask
:
15644 case X86::BI__builtin_ia32_cmpb512_mask
:
15645 case X86::BI__builtin_ia32_cmpw128_mask
:
15646 case X86::BI__builtin_ia32_cmpw256_mask
:
15647 case X86::BI__builtin_ia32_cmpw512_mask
:
15648 case X86::BI__builtin_ia32_cmpd128_mask
:
15649 case X86::BI__builtin_ia32_cmpd256_mask
:
15650 case X86::BI__builtin_ia32_cmpd512_mask
:
15651 case X86::BI__builtin_ia32_cmpq128_mask
:
15652 case X86::BI__builtin_ia32_cmpq256_mask
:
15653 case X86::BI__builtin_ia32_cmpq512_mask
: {
15654 unsigned CC
= cast
<llvm::ConstantInt
>(Ops
[2])->getZExtValue() & 0x7;
15655 return EmitX86MaskedCompare(*this, CC
, true, Ops
);
15657 case X86::BI__builtin_ia32_ucmpb128_mask
:
15658 case X86::BI__builtin_ia32_ucmpb256_mask
:
15659 case X86::BI__builtin_ia32_ucmpb512_mask
:
15660 case X86::BI__builtin_ia32_ucmpw128_mask
:
15661 case X86::BI__builtin_ia32_ucmpw256_mask
:
15662 case X86::BI__builtin_ia32_ucmpw512_mask
:
15663 case X86::BI__builtin_ia32_ucmpd128_mask
:
15664 case X86::BI__builtin_ia32_ucmpd256_mask
:
15665 case X86::BI__builtin_ia32_ucmpd512_mask
:
15666 case X86::BI__builtin_ia32_ucmpq128_mask
:
15667 case X86::BI__builtin_ia32_ucmpq256_mask
:
15668 case X86::BI__builtin_ia32_ucmpq512_mask
: {
15669 unsigned CC
= cast
<llvm::ConstantInt
>(Ops
[2])->getZExtValue() & 0x7;
15670 return EmitX86MaskedCompare(*this, CC
, false, Ops
);
15672 case X86::BI__builtin_ia32_vpcomb
:
15673 case X86::BI__builtin_ia32_vpcomw
:
15674 case X86::BI__builtin_ia32_vpcomd
:
15675 case X86::BI__builtin_ia32_vpcomq
:
15676 return EmitX86vpcom(*this, Ops
, true);
15677 case X86::BI__builtin_ia32_vpcomub
:
15678 case X86::BI__builtin_ia32_vpcomuw
:
15679 case X86::BI__builtin_ia32_vpcomud
:
15680 case X86::BI__builtin_ia32_vpcomuq
:
15681 return EmitX86vpcom(*this, Ops
, false);
15683 case X86::BI__builtin_ia32_kortestcqi
:
15684 case X86::BI__builtin_ia32_kortestchi
:
15685 case X86::BI__builtin_ia32_kortestcsi
:
15686 case X86::BI__builtin_ia32_kortestcdi
: {
15687 Value
*Or
= EmitX86MaskLogic(*this, Instruction::Or
, Ops
);
15688 Value
*C
= llvm::Constant::getAllOnesValue(Ops
[0]->getType());
15689 Value
*Cmp
= Builder
.CreateICmpEQ(Or
, C
);
15690 return Builder
.CreateZExt(Cmp
, ConvertType(E
->getType()));
15692 case X86::BI__builtin_ia32_kortestzqi
:
15693 case X86::BI__builtin_ia32_kortestzhi
:
15694 case X86::BI__builtin_ia32_kortestzsi
:
15695 case X86::BI__builtin_ia32_kortestzdi
: {
15696 Value
*Or
= EmitX86MaskLogic(*this, Instruction::Or
, Ops
);
15697 Value
*C
= llvm::Constant::getNullValue(Ops
[0]->getType());
15698 Value
*Cmp
= Builder
.CreateICmpEQ(Or
, C
);
15699 return Builder
.CreateZExt(Cmp
, ConvertType(E
->getType()));
15702 case X86::BI__builtin_ia32_ktestcqi
:
15703 case X86::BI__builtin_ia32_ktestzqi
:
15704 case X86::BI__builtin_ia32_ktestchi
:
15705 case X86::BI__builtin_ia32_ktestzhi
:
15706 case X86::BI__builtin_ia32_ktestcsi
:
15707 case X86::BI__builtin_ia32_ktestzsi
:
15708 case X86::BI__builtin_ia32_ktestcdi
:
15709 case X86::BI__builtin_ia32_ktestzdi
: {
15711 switch (BuiltinID
) {
15712 default: llvm_unreachable("Unsupported intrinsic!");
15713 case X86::BI__builtin_ia32_ktestcqi
:
15714 IID
= Intrinsic::x86_avx512_ktestc_b
;
15716 case X86::BI__builtin_ia32_ktestzqi
:
15717 IID
= Intrinsic::x86_avx512_ktestz_b
;
15719 case X86::BI__builtin_ia32_ktestchi
:
15720 IID
= Intrinsic::x86_avx512_ktestc_w
;
15722 case X86::BI__builtin_ia32_ktestzhi
:
15723 IID
= Intrinsic::x86_avx512_ktestz_w
;
15725 case X86::BI__builtin_ia32_ktestcsi
:
15726 IID
= Intrinsic::x86_avx512_ktestc_d
;
15728 case X86::BI__builtin_ia32_ktestzsi
:
15729 IID
= Intrinsic::x86_avx512_ktestz_d
;
15731 case X86::BI__builtin_ia32_ktestcdi
:
15732 IID
= Intrinsic::x86_avx512_ktestc_q
;
15734 case X86::BI__builtin_ia32_ktestzdi
:
15735 IID
= Intrinsic::x86_avx512_ktestz_q
;
15739 unsigned NumElts
= Ops
[0]->getType()->getIntegerBitWidth();
15740 Value
*LHS
= getMaskVecValue(*this, Ops
[0], NumElts
);
15741 Value
*RHS
= getMaskVecValue(*this, Ops
[1], NumElts
);
15742 Function
*Intr
= CGM
.getIntrinsic(IID
);
15743 return Builder
.CreateCall(Intr
, {LHS
, RHS
});
15746 case X86::BI__builtin_ia32_kaddqi
:
15747 case X86::BI__builtin_ia32_kaddhi
:
15748 case X86::BI__builtin_ia32_kaddsi
:
15749 case X86::BI__builtin_ia32_kadddi
: {
15751 switch (BuiltinID
) {
15752 default: llvm_unreachable("Unsupported intrinsic!");
15753 case X86::BI__builtin_ia32_kaddqi
:
15754 IID
= Intrinsic::x86_avx512_kadd_b
;
15756 case X86::BI__builtin_ia32_kaddhi
:
15757 IID
= Intrinsic::x86_avx512_kadd_w
;
15759 case X86::BI__builtin_ia32_kaddsi
:
15760 IID
= Intrinsic::x86_avx512_kadd_d
;
15762 case X86::BI__builtin_ia32_kadddi
:
15763 IID
= Intrinsic::x86_avx512_kadd_q
;
15767 unsigned NumElts
= Ops
[0]->getType()->getIntegerBitWidth();
15768 Value
*LHS
= getMaskVecValue(*this, Ops
[0], NumElts
);
15769 Value
*RHS
= getMaskVecValue(*this, Ops
[1], NumElts
);
15770 Function
*Intr
= CGM
.getIntrinsic(IID
);
15771 Value
*Res
= Builder
.CreateCall(Intr
, {LHS
, RHS
});
15772 return Builder
.CreateBitCast(Res
, Ops
[0]->getType());
15774 case X86::BI__builtin_ia32_kandqi
:
15775 case X86::BI__builtin_ia32_kandhi
:
15776 case X86::BI__builtin_ia32_kandsi
:
15777 case X86::BI__builtin_ia32_kanddi
:
15778 return EmitX86MaskLogic(*this, Instruction::And
, Ops
);
15779 case X86::BI__builtin_ia32_kandnqi
:
15780 case X86::BI__builtin_ia32_kandnhi
:
15781 case X86::BI__builtin_ia32_kandnsi
:
15782 case X86::BI__builtin_ia32_kandndi
:
15783 return EmitX86MaskLogic(*this, Instruction::And
, Ops
, true);
15784 case X86::BI__builtin_ia32_korqi
:
15785 case X86::BI__builtin_ia32_korhi
:
15786 case X86::BI__builtin_ia32_korsi
:
15787 case X86::BI__builtin_ia32_kordi
:
15788 return EmitX86MaskLogic(*this, Instruction::Or
, Ops
);
15789 case X86::BI__builtin_ia32_kxnorqi
:
15790 case X86::BI__builtin_ia32_kxnorhi
:
15791 case X86::BI__builtin_ia32_kxnorsi
:
15792 case X86::BI__builtin_ia32_kxnordi
:
15793 return EmitX86MaskLogic(*this, Instruction::Xor
, Ops
, true);
15794 case X86::BI__builtin_ia32_kxorqi
:
15795 case X86::BI__builtin_ia32_kxorhi
:
15796 case X86::BI__builtin_ia32_kxorsi
:
15797 case X86::BI__builtin_ia32_kxordi
:
15798 return EmitX86MaskLogic(*this, Instruction::Xor
, Ops
);
15799 case X86::BI__builtin_ia32_knotqi
:
15800 case X86::BI__builtin_ia32_knothi
:
15801 case X86::BI__builtin_ia32_knotsi
:
15802 case X86::BI__builtin_ia32_knotdi
: {
15803 unsigned NumElts
= Ops
[0]->getType()->getIntegerBitWidth();
15804 Value
*Res
= getMaskVecValue(*this, Ops
[0], NumElts
);
15805 return Builder
.CreateBitCast(Builder
.CreateNot(Res
),
15806 Ops
[0]->getType());
15808 case X86::BI__builtin_ia32_kmovb
:
15809 case X86::BI__builtin_ia32_kmovw
:
15810 case X86::BI__builtin_ia32_kmovd
:
15811 case X86::BI__builtin_ia32_kmovq
: {
15812 // Bitcast to vXi1 type and then back to integer. This gets the mask
15813 // register type into the IR, but might be optimized out depending on
15814 // what's around it.
15815 unsigned NumElts
= Ops
[0]->getType()->getIntegerBitWidth();
15816 Value
*Res
= getMaskVecValue(*this, Ops
[0], NumElts
);
15817 return Builder
.CreateBitCast(Res
, Ops
[0]->getType());
15820 case X86::BI__builtin_ia32_kunpckdi
:
15821 case X86::BI__builtin_ia32_kunpcksi
:
15822 case X86::BI__builtin_ia32_kunpckhi
: {
15823 unsigned NumElts
= Ops
[0]->getType()->getIntegerBitWidth();
15824 Value
*LHS
= getMaskVecValue(*this, Ops
[0], NumElts
);
15825 Value
*RHS
= getMaskVecValue(*this, Ops
[1], NumElts
);
15827 for (unsigned i
= 0; i
!= NumElts
; ++i
)
15830 // First extract half of each vector. This gives better codegen than
15831 // doing it in a single shuffle.
15832 LHS
= Builder
.CreateShuffleVector(LHS
, LHS
, ArrayRef(Indices
, NumElts
/ 2));
15833 RHS
= Builder
.CreateShuffleVector(RHS
, RHS
, ArrayRef(Indices
, NumElts
/ 2));
15834 // Concat the vectors.
15835 // NOTE: Operands are swapped to match the intrinsic definition.
15837 Builder
.CreateShuffleVector(RHS
, LHS
, ArrayRef(Indices
, NumElts
));
15838 return Builder
.CreateBitCast(Res
, Ops
[0]->getType());
15841 case X86::BI__builtin_ia32_vplzcntd_128
:
15842 case X86::BI__builtin_ia32_vplzcntd_256
:
15843 case X86::BI__builtin_ia32_vplzcntd_512
:
15844 case X86::BI__builtin_ia32_vplzcntq_128
:
15845 case X86::BI__builtin_ia32_vplzcntq_256
:
15846 case X86::BI__builtin_ia32_vplzcntq_512
: {
15847 Function
*F
= CGM
.getIntrinsic(Intrinsic::ctlz
, Ops
[0]->getType());
15848 return Builder
.CreateCall(F
, {Ops
[0],Builder
.getInt1(false)});
15850 case X86::BI__builtin_ia32_sqrtss
:
15851 case X86::BI__builtin_ia32_sqrtsd
: {
15852 Value
*A
= Builder
.CreateExtractElement(Ops
[0], (uint64_t)0);
15854 if (Builder
.getIsFPConstrained()) {
15855 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(*this, E
);
15856 F
= CGM
.getIntrinsic(Intrinsic::experimental_constrained_sqrt
,
15858 A
= Builder
.CreateConstrainedFPCall(F
, {A
});
15860 F
= CGM
.getIntrinsic(Intrinsic::sqrt
, A
->getType());
15861 A
= Builder
.CreateCall(F
, {A
});
15863 return Builder
.CreateInsertElement(Ops
[0], A
, (uint64_t)0);
15865 case X86::BI__builtin_ia32_sqrtsh_round_mask
:
15866 case X86::BI__builtin_ia32_sqrtsd_round_mask
:
15867 case X86::BI__builtin_ia32_sqrtss_round_mask
: {
15868 unsigned CC
= cast
<llvm::ConstantInt
>(Ops
[4])->getZExtValue();
15869 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
15870 // otherwise keep the intrinsic.
15874 switch (BuiltinID
) {
15876 llvm_unreachable("Unsupported intrinsic!");
15877 case X86::BI__builtin_ia32_sqrtsh_round_mask
:
15878 IID
= Intrinsic::x86_avx512fp16_mask_sqrt_sh
;
15880 case X86::BI__builtin_ia32_sqrtsd_round_mask
:
15881 IID
= Intrinsic::x86_avx512_mask_sqrt_sd
;
15883 case X86::BI__builtin_ia32_sqrtss_round_mask
:
15884 IID
= Intrinsic::x86_avx512_mask_sqrt_ss
;
15887 return Builder
.CreateCall(CGM
.getIntrinsic(IID
), Ops
);
15889 Value
*A
= Builder
.CreateExtractElement(Ops
[1], (uint64_t)0);
15891 if (Builder
.getIsFPConstrained()) {
15892 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(*this, E
);
15893 F
= CGM
.getIntrinsic(Intrinsic::experimental_constrained_sqrt
,
15895 A
= Builder
.CreateConstrainedFPCall(F
, A
);
15897 F
= CGM
.getIntrinsic(Intrinsic::sqrt
, A
->getType());
15898 A
= Builder
.CreateCall(F
, A
);
15900 Value
*Src
= Builder
.CreateExtractElement(Ops
[2], (uint64_t)0);
15901 A
= EmitX86ScalarSelect(*this, Ops
[3], A
, Src
);
15902 return Builder
.CreateInsertElement(Ops
[0], A
, (uint64_t)0);
15904 case X86::BI__builtin_ia32_sqrtpd256
:
15905 case X86::BI__builtin_ia32_sqrtpd
:
15906 case X86::BI__builtin_ia32_sqrtps256
:
15907 case X86::BI__builtin_ia32_sqrtps
:
15908 case X86::BI__builtin_ia32_sqrtph256
:
15909 case X86::BI__builtin_ia32_sqrtph
:
15910 case X86::BI__builtin_ia32_sqrtph512
:
15911 case X86::BI__builtin_ia32_sqrtps512
:
15912 case X86::BI__builtin_ia32_sqrtpd512
: {
15913 if (Ops
.size() == 2) {
15914 unsigned CC
= cast
<llvm::ConstantInt
>(Ops
[1])->getZExtValue();
15915 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
15916 // otherwise keep the intrinsic.
15920 switch (BuiltinID
) {
15922 llvm_unreachable("Unsupported intrinsic!");
15923 case X86::BI__builtin_ia32_sqrtph512
:
15924 IID
= Intrinsic::x86_avx512fp16_sqrt_ph_512
;
15926 case X86::BI__builtin_ia32_sqrtps512
:
15927 IID
= Intrinsic::x86_avx512_sqrt_ps_512
;
15929 case X86::BI__builtin_ia32_sqrtpd512
:
15930 IID
= Intrinsic::x86_avx512_sqrt_pd_512
;
15933 return Builder
.CreateCall(CGM
.getIntrinsic(IID
), Ops
);
15936 if (Builder
.getIsFPConstrained()) {
15937 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(*this, E
);
15938 Function
*F
= CGM
.getIntrinsic(Intrinsic::experimental_constrained_sqrt
,
15939 Ops
[0]->getType());
15940 return Builder
.CreateConstrainedFPCall(F
, Ops
[0]);
15942 Function
*F
= CGM
.getIntrinsic(Intrinsic::sqrt
, Ops
[0]->getType());
15943 return Builder
.CreateCall(F
, Ops
[0]);
15947 case X86::BI__builtin_ia32_pmuludq128
:
15948 case X86::BI__builtin_ia32_pmuludq256
:
15949 case X86::BI__builtin_ia32_pmuludq512
:
15950 return EmitX86Muldq(*this, /*IsSigned*/false, Ops
);
15952 case X86::BI__builtin_ia32_pmuldq128
:
15953 case X86::BI__builtin_ia32_pmuldq256
:
15954 case X86::BI__builtin_ia32_pmuldq512
:
15955 return EmitX86Muldq(*this, /*IsSigned*/true, Ops
);
15957 case X86::BI__builtin_ia32_pternlogd512_mask
:
15958 case X86::BI__builtin_ia32_pternlogq512_mask
:
15959 case X86::BI__builtin_ia32_pternlogd128_mask
:
15960 case X86::BI__builtin_ia32_pternlogd256_mask
:
15961 case X86::BI__builtin_ia32_pternlogq128_mask
:
15962 case X86::BI__builtin_ia32_pternlogq256_mask
:
15963 return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops
);
15965 case X86::BI__builtin_ia32_pternlogd512_maskz
:
15966 case X86::BI__builtin_ia32_pternlogq512_maskz
:
15967 case X86::BI__builtin_ia32_pternlogd128_maskz
:
15968 case X86::BI__builtin_ia32_pternlogd256_maskz
:
15969 case X86::BI__builtin_ia32_pternlogq128_maskz
:
15970 case X86::BI__builtin_ia32_pternlogq256_maskz
:
15971 return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops
);
15973 case X86::BI__builtin_ia32_vpshldd128
:
15974 case X86::BI__builtin_ia32_vpshldd256
:
15975 case X86::BI__builtin_ia32_vpshldd512
:
15976 case X86::BI__builtin_ia32_vpshldq128
:
15977 case X86::BI__builtin_ia32_vpshldq256
:
15978 case X86::BI__builtin_ia32_vpshldq512
:
15979 case X86::BI__builtin_ia32_vpshldw128
:
15980 case X86::BI__builtin_ia32_vpshldw256
:
15981 case X86::BI__builtin_ia32_vpshldw512
:
15982 return EmitX86FunnelShift(*this, Ops
[0], Ops
[1], Ops
[2], false);
15984 case X86::BI__builtin_ia32_vpshrdd128
:
15985 case X86::BI__builtin_ia32_vpshrdd256
:
15986 case X86::BI__builtin_ia32_vpshrdd512
:
15987 case X86::BI__builtin_ia32_vpshrdq128
:
15988 case X86::BI__builtin_ia32_vpshrdq256
:
15989 case X86::BI__builtin_ia32_vpshrdq512
:
15990 case X86::BI__builtin_ia32_vpshrdw128
:
15991 case X86::BI__builtin_ia32_vpshrdw256
:
15992 case X86::BI__builtin_ia32_vpshrdw512
:
15993 // Ops 0 and 1 are swapped.
15994 return EmitX86FunnelShift(*this, Ops
[1], Ops
[0], Ops
[2], true);
15996 case X86::BI__builtin_ia32_vpshldvd128
:
15997 case X86::BI__builtin_ia32_vpshldvd256
:
15998 case X86::BI__builtin_ia32_vpshldvd512
:
15999 case X86::BI__builtin_ia32_vpshldvq128
:
16000 case X86::BI__builtin_ia32_vpshldvq256
:
16001 case X86::BI__builtin_ia32_vpshldvq512
:
16002 case X86::BI__builtin_ia32_vpshldvw128
:
16003 case X86::BI__builtin_ia32_vpshldvw256
:
16004 case X86::BI__builtin_ia32_vpshldvw512
:
16005 return EmitX86FunnelShift(*this, Ops
[0], Ops
[1], Ops
[2], false);
16007 case X86::BI__builtin_ia32_vpshrdvd128
:
16008 case X86::BI__builtin_ia32_vpshrdvd256
:
16009 case X86::BI__builtin_ia32_vpshrdvd512
:
16010 case X86::BI__builtin_ia32_vpshrdvq128
:
16011 case X86::BI__builtin_ia32_vpshrdvq256
:
16012 case X86::BI__builtin_ia32_vpshrdvq512
:
16013 case X86::BI__builtin_ia32_vpshrdvw128
:
16014 case X86::BI__builtin_ia32_vpshrdvw256
:
16015 case X86::BI__builtin_ia32_vpshrdvw512
:
16016 // Ops 0 and 1 are swapped.
16017 return EmitX86FunnelShift(*this, Ops
[1], Ops
[0], Ops
[2], true);
16020 case X86::BI__builtin_ia32_reduce_fadd_pd512
:
16021 case X86::BI__builtin_ia32_reduce_fadd_ps512
:
16022 case X86::BI__builtin_ia32_reduce_fadd_ph512
:
16023 case X86::BI__builtin_ia32_reduce_fadd_ph256
:
16024 case X86::BI__builtin_ia32_reduce_fadd_ph128
: {
16026 CGM
.getIntrinsic(Intrinsic::vector_reduce_fadd
, Ops
[1]->getType());
16027 IRBuilder
<>::FastMathFlagGuard
FMFGuard(Builder
);
16028 Builder
.getFastMathFlags().setAllowReassoc();
16029 return Builder
.CreateCall(F
, {Ops
[0], Ops
[1]});
16031 case X86::BI__builtin_ia32_reduce_fmul_pd512
:
16032 case X86::BI__builtin_ia32_reduce_fmul_ps512
:
16033 case X86::BI__builtin_ia32_reduce_fmul_ph512
:
16034 case X86::BI__builtin_ia32_reduce_fmul_ph256
:
16035 case X86::BI__builtin_ia32_reduce_fmul_ph128
: {
16037 CGM
.getIntrinsic(Intrinsic::vector_reduce_fmul
, Ops
[1]->getType());
16038 IRBuilder
<>::FastMathFlagGuard
FMFGuard(Builder
);
16039 Builder
.getFastMathFlags().setAllowReassoc();
16040 return Builder
.CreateCall(F
, {Ops
[0], Ops
[1]});
16042 case X86::BI__builtin_ia32_reduce_fmax_pd512
:
16043 case X86::BI__builtin_ia32_reduce_fmax_ps512
:
16044 case X86::BI__builtin_ia32_reduce_fmax_ph512
:
16045 case X86::BI__builtin_ia32_reduce_fmax_ph256
:
16046 case X86::BI__builtin_ia32_reduce_fmax_ph128
: {
16048 CGM
.getIntrinsic(Intrinsic::vector_reduce_fmax
, Ops
[0]->getType());
16049 IRBuilder
<>::FastMathFlagGuard
FMFGuard(Builder
);
16050 Builder
.getFastMathFlags().setNoNaNs();
16051 return Builder
.CreateCall(F
, {Ops
[0]});
16053 case X86::BI__builtin_ia32_reduce_fmin_pd512
:
16054 case X86::BI__builtin_ia32_reduce_fmin_ps512
:
16055 case X86::BI__builtin_ia32_reduce_fmin_ph512
:
16056 case X86::BI__builtin_ia32_reduce_fmin_ph256
:
16057 case X86::BI__builtin_ia32_reduce_fmin_ph128
: {
16059 CGM
.getIntrinsic(Intrinsic::vector_reduce_fmin
, Ops
[0]->getType());
16060 IRBuilder
<>::FastMathFlagGuard
FMFGuard(Builder
);
16061 Builder
.getFastMathFlags().setNoNaNs();
16062 return Builder
.CreateCall(F
, {Ops
[0]});
16065 case X86::BI__builtin_ia32_rdrand16_step
:
16066 case X86::BI__builtin_ia32_rdrand32_step
:
16067 case X86::BI__builtin_ia32_rdrand64_step
:
16068 case X86::BI__builtin_ia32_rdseed16_step
:
16069 case X86::BI__builtin_ia32_rdseed32_step
:
16070 case X86::BI__builtin_ia32_rdseed64_step
: {
16072 switch (BuiltinID
) {
16073 default: llvm_unreachable("Unsupported intrinsic!");
16074 case X86::BI__builtin_ia32_rdrand16_step
:
16075 ID
= Intrinsic::x86_rdrand_16
;
16077 case X86::BI__builtin_ia32_rdrand32_step
:
16078 ID
= Intrinsic::x86_rdrand_32
;
16080 case X86::BI__builtin_ia32_rdrand64_step
:
16081 ID
= Intrinsic::x86_rdrand_64
;
16083 case X86::BI__builtin_ia32_rdseed16_step
:
16084 ID
= Intrinsic::x86_rdseed_16
;
16086 case X86::BI__builtin_ia32_rdseed32_step
:
16087 ID
= Intrinsic::x86_rdseed_32
;
16089 case X86::BI__builtin_ia32_rdseed64_step
:
16090 ID
= Intrinsic::x86_rdseed_64
;
16094 Value
*Call
= Builder
.CreateCall(CGM
.getIntrinsic(ID
));
16095 Builder
.CreateDefaultAlignedStore(Builder
.CreateExtractValue(Call
, 0),
16097 return Builder
.CreateExtractValue(Call
, 1);
16099 case X86::BI__builtin_ia32_addcarryx_u32
:
16100 case X86::BI__builtin_ia32_addcarryx_u64
:
16101 case X86::BI__builtin_ia32_subborrow_u32
:
16102 case X86::BI__builtin_ia32_subborrow_u64
: {
16104 switch (BuiltinID
) {
16105 default: llvm_unreachable("Unsupported intrinsic!");
16106 case X86::BI__builtin_ia32_addcarryx_u32
:
16107 IID
= Intrinsic::x86_addcarry_32
;
16109 case X86::BI__builtin_ia32_addcarryx_u64
:
16110 IID
= Intrinsic::x86_addcarry_64
;
16112 case X86::BI__builtin_ia32_subborrow_u32
:
16113 IID
= Intrinsic::x86_subborrow_32
;
16115 case X86::BI__builtin_ia32_subborrow_u64
:
16116 IID
= Intrinsic::x86_subborrow_64
;
16120 Value
*Call
= Builder
.CreateCall(CGM
.getIntrinsic(IID
),
16121 { Ops
[0], Ops
[1], Ops
[2] });
16122 Builder
.CreateDefaultAlignedStore(Builder
.CreateExtractValue(Call
, 1),
16124 return Builder
.CreateExtractValue(Call
, 0);
16127 case X86::BI__builtin_ia32_fpclassps128_mask
:
16128 case X86::BI__builtin_ia32_fpclassps256_mask
:
16129 case X86::BI__builtin_ia32_fpclassps512_mask
:
16130 case X86::BI__builtin_ia32_fpclassph128_mask
:
16131 case X86::BI__builtin_ia32_fpclassph256_mask
:
16132 case X86::BI__builtin_ia32_fpclassph512_mask
:
16133 case X86::BI__builtin_ia32_fpclasspd128_mask
:
16134 case X86::BI__builtin_ia32_fpclasspd256_mask
:
16135 case X86::BI__builtin_ia32_fpclasspd512_mask
: {
16137 cast
<llvm::FixedVectorType
>(Ops
[0]->getType())->getNumElements();
16138 Value
*MaskIn
= Ops
[2];
16139 Ops
.erase(&Ops
[2]);
16142 switch (BuiltinID
) {
16143 default: llvm_unreachable("Unsupported intrinsic!");
16144 case X86::BI__builtin_ia32_fpclassph128_mask
:
16145 ID
= Intrinsic::x86_avx512fp16_fpclass_ph_128
;
16147 case X86::BI__builtin_ia32_fpclassph256_mask
:
16148 ID
= Intrinsic::x86_avx512fp16_fpclass_ph_256
;
16150 case X86::BI__builtin_ia32_fpclassph512_mask
:
16151 ID
= Intrinsic::x86_avx512fp16_fpclass_ph_512
;
16153 case X86::BI__builtin_ia32_fpclassps128_mask
:
16154 ID
= Intrinsic::x86_avx512_fpclass_ps_128
;
16156 case X86::BI__builtin_ia32_fpclassps256_mask
:
16157 ID
= Intrinsic::x86_avx512_fpclass_ps_256
;
16159 case X86::BI__builtin_ia32_fpclassps512_mask
:
16160 ID
= Intrinsic::x86_avx512_fpclass_ps_512
;
16162 case X86::BI__builtin_ia32_fpclasspd128_mask
:
16163 ID
= Intrinsic::x86_avx512_fpclass_pd_128
;
16165 case X86::BI__builtin_ia32_fpclasspd256_mask
:
16166 ID
= Intrinsic::x86_avx512_fpclass_pd_256
;
16168 case X86::BI__builtin_ia32_fpclasspd512_mask
:
16169 ID
= Intrinsic::x86_avx512_fpclass_pd_512
;
16173 Value
*Fpclass
= Builder
.CreateCall(CGM
.getIntrinsic(ID
), Ops
);
16174 return EmitX86MaskedCompareResult(*this, Fpclass
, NumElts
, MaskIn
);
16177 case X86::BI__builtin_ia32_vp2intersect_q_512
:
16178 case X86::BI__builtin_ia32_vp2intersect_q_256
:
16179 case X86::BI__builtin_ia32_vp2intersect_q_128
:
16180 case X86::BI__builtin_ia32_vp2intersect_d_512
:
16181 case X86::BI__builtin_ia32_vp2intersect_d_256
:
16182 case X86::BI__builtin_ia32_vp2intersect_d_128
: {
16184 cast
<llvm::FixedVectorType
>(Ops
[0]->getType())->getNumElements();
16187 switch (BuiltinID
) {
16188 default: llvm_unreachable("Unsupported intrinsic!");
16189 case X86::BI__builtin_ia32_vp2intersect_q_512
:
16190 ID
= Intrinsic::x86_avx512_vp2intersect_q_512
;
16192 case X86::BI__builtin_ia32_vp2intersect_q_256
:
16193 ID
= Intrinsic::x86_avx512_vp2intersect_q_256
;
16195 case X86::BI__builtin_ia32_vp2intersect_q_128
:
16196 ID
= Intrinsic::x86_avx512_vp2intersect_q_128
;
16198 case X86::BI__builtin_ia32_vp2intersect_d_512
:
16199 ID
= Intrinsic::x86_avx512_vp2intersect_d_512
;
16201 case X86::BI__builtin_ia32_vp2intersect_d_256
:
16202 ID
= Intrinsic::x86_avx512_vp2intersect_d_256
;
16204 case X86::BI__builtin_ia32_vp2intersect_d_128
:
16205 ID
= Intrinsic::x86_avx512_vp2intersect_d_128
;
16209 Value
*Call
= Builder
.CreateCall(CGM
.getIntrinsic(ID
), {Ops
[0], Ops
[1]});
16210 Value
*Result
= Builder
.CreateExtractValue(Call
, 0);
16211 Result
= EmitX86MaskedCompareResult(*this, Result
, NumElts
, nullptr);
16212 Builder
.CreateDefaultAlignedStore(Result
, Ops
[2]);
16214 Result
= Builder
.CreateExtractValue(Call
, 1);
16215 Result
= EmitX86MaskedCompareResult(*this, Result
, NumElts
, nullptr);
16216 return Builder
.CreateDefaultAlignedStore(Result
, Ops
[3]);
16219 case X86::BI__builtin_ia32_vpmultishiftqb128
:
16220 case X86::BI__builtin_ia32_vpmultishiftqb256
:
16221 case X86::BI__builtin_ia32_vpmultishiftqb512
: {
16223 switch (BuiltinID
) {
16224 default: llvm_unreachable("Unsupported intrinsic!");
16225 case X86::BI__builtin_ia32_vpmultishiftqb128
:
16226 ID
= Intrinsic::x86_avx512_pmultishift_qb_128
;
16228 case X86::BI__builtin_ia32_vpmultishiftqb256
:
16229 ID
= Intrinsic::x86_avx512_pmultishift_qb_256
;
16231 case X86::BI__builtin_ia32_vpmultishiftqb512
:
16232 ID
= Intrinsic::x86_avx512_pmultishift_qb_512
;
16236 return Builder
.CreateCall(CGM
.getIntrinsic(ID
), Ops
);
16239 case X86::BI__builtin_ia32_vpshufbitqmb128_mask
:
16240 case X86::BI__builtin_ia32_vpshufbitqmb256_mask
:
16241 case X86::BI__builtin_ia32_vpshufbitqmb512_mask
: {
16243 cast
<llvm::FixedVectorType
>(Ops
[0]->getType())->getNumElements();
16244 Value
*MaskIn
= Ops
[2];
16245 Ops
.erase(&Ops
[2]);
16248 switch (BuiltinID
) {
16249 default: llvm_unreachable("Unsupported intrinsic!");
16250 case X86::BI__builtin_ia32_vpshufbitqmb128_mask
:
16251 ID
= Intrinsic::x86_avx512_vpshufbitqmb_128
;
16253 case X86::BI__builtin_ia32_vpshufbitqmb256_mask
:
16254 ID
= Intrinsic::x86_avx512_vpshufbitqmb_256
;
16256 case X86::BI__builtin_ia32_vpshufbitqmb512_mask
:
16257 ID
= Intrinsic::x86_avx512_vpshufbitqmb_512
;
16261 Value
*Shufbit
= Builder
.CreateCall(CGM
.getIntrinsic(ID
), Ops
);
16262 return EmitX86MaskedCompareResult(*this, Shufbit
, NumElts
, MaskIn
);
16265 // packed comparison intrinsics
16266 case X86::BI__builtin_ia32_cmpeqps
:
16267 case X86::BI__builtin_ia32_cmpeqpd
:
16268 return getVectorFCmpIR(CmpInst::FCMP_OEQ
, /*IsSignaling*/false);
16269 case X86::BI__builtin_ia32_cmpltps
:
16270 case X86::BI__builtin_ia32_cmpltpd
:
16271 return getVectorFCmpIR(CmpInst::FCMP_OLT
, /*IsSignaling*/true);
16272 case X86::BI__builtin_ia32_cmpleps
:
16273 case X86::BI__builtin_ia32_cmplepd
:
16274 return getVectorFCmpIR(CmpInst::FCMP_OLE
, /*IsSignaling*/true);
16275 case X86::BI__builtin_ia32_cmpunordps
:
16276 case X86::BI__builtin_ia32_cmpunordpd
:
16277 return getVectorFCmpIR(CmpInst::FCMP_UNO
, /*IsSignaling*/false);
16278 case X86::BI__builtin_ia32_cmpneqps
:
16279 case X86::BI__builtin_ia32_cmpneqpd
:
16280 return getVectorFCmpIR(CmpInst::FCMP_UNE
, /*IsSignaling*/false);
16281 case X86::BI__builtin_ia32_cmpnltps
:
16282 case X86::BI__builtin_ia32_cmpnltpd
:
16283 return getVectorFCmpIR(CmpInst::FCMP_UGE
, /*IsSignaling*/true);
16284 case X86::BI__builtin_ia32_cmpnleps
:
16285 case X86::BI__builtin_ia32_cmpnlepd
:
16286 return getVectorFCmpIR(CmpInst::FCMP_UGT
, /*IsSignaling*/true);
16287 case X86::BI__builtin_ia32_cmpordps
:
16288 case X86::BI__builtin_ia32_cmpordpd
:
16289 return getVectorFCmpIR(CmpInst::FCMP_ORD
, /*IsSignaling*/false);
16290 case X86::BI__builtin_ia32_cmpph128_mask
:
16291 case X86::BI__builtin_ia32_cmpph256_mask
:
16292 case X86::BI__builtin_ia32_cmpph512_mask
:
16293 case X86::BI__builtin_ia32_cmpps128_mask
:
16294 case X86::BI__builtin_ia32_cmpps256_mask
:
16295 case X86::BI__builtin_ia32_cmpps512_mask
:
16296 case X86::BI__builtin_ia32_cmppd128_mask
:
16297 case X86::BI__builtin_ia32_cmppd256_mask
:
16298 case X86::BI__builtin_ia32_cmppd512_mask
:
16301 case X86::BI__builtin_ia32_cmpps
:
16302 case X86::BI__builtin_ia32_cmpps256
:
16303 case X86::BI__builtin_ia32_cmppd
:
16304 case X86::BI__builtin_ia32_cmppd256
: {
16305 // Lowering vector comparisons to fcmp instructions, while
16306 // ignoring signalling behaviour requested
16307 // ignoring rounding mode requested
16308 // This is only possible if fp-model is not strict and FENV_ACCESS is off.
16310 // The third argument is the comparison condition, and integer in the
16312 unsigned CC
= cast
<llvm::ConstantInt
>(Ops
[2])->getZExtValue() & 0x1f;
16314 // Lowering to IR fcmp instruction.
16315 // Ignoring requested signaling behaviour,
16316 // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
16317 FCmpInst::Predicate Pred
;
16319 // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling
16320 // behavior is inverted. We'll handle that after the switch.
16321 switch (CC
& 0xf) {
16322 case 0x00: Pred
= FCmpInst::FCMP_OEQ
; IsSignaling
= false; break;
16323 case 0x01: Pred
= FCmpInst::FCMP_OLT
; IsSignaling
= true; break;
16324 case 0x02: Pred
= FCmpInst::FCMP_OLE
; IsSignaling
= true; break;
16325 case 0x03: Pred
= FCmpInst::FCMP_UNO
; IsSignaling
= false; break;
16326 case 0x04: Pred
= FCmpInst::FCMP_UNE
; IsSignaling
= false; break;
16327 case 0x05: Pred
= FCmpInst::FCMP_UGE
; IsSignaling
= true; break;
16328 case 0x06: Pred
= FCmpInst::FCMP_UGT
; IsSignaling
= true; break;
16329 case 0x07: Pred
= FCmpInst::FCMP_ORD
; IsSignaling
= false; break;
16330 case 0x08: Pred
= FCmpInst::FCMP_UEQ
; IsSignaling
= false; break;
16331 case 0x09: Pred
= FCmpInst::FCMP_ULT
; IsSignaling
= true; break;
16332 case 0x0a: Pred
= FCmpInst::FCMP_ULE
; IsSignaling
= true; break;
16333 case 0x0b: Pred
= FCmpInst::FCMP_FALSE
; IsSignaling
= false; break;
16334 case 0x0c: Pred
= FCmpInst::FCMP_ONE
; IsSignaling
= false; break;
16335 case 0x0d: Pred
= FCmpInst::FCMP_OGE
; IsSignaling
= true; break;
16336 case 0x0e: Pred
= FCmpInst::FCMP_OGT
; IsSignaling
= true; break;
16337 case 0x0f: Pred
= FCmpInst::FCMP_TRUE
; IsSignaling
= false; break;
16338 default: llvm_unreachable("Unhandled CC");
16341 // Invert the signalling behavior for 16-31.
16343 IsSignaling
= !IsSignaling
;
16345 // If the predicate is true or false and we're using constrained intrinsics,
16346 // we don't have a compare intrinsic we can use. Just use the legacy X86
16347 // specific intrinsic.
16348 // If the intrinsic is mask enabled and we're using constrained intrinsics,
16349 // use the legacy X86 specific intrinsic.
16350 if (Builder
.getIsFPConstrained() &&
16351 (Pred
== FCmpInst::FCMP_TRUE
|| Pred
== FCmpInst::FCMP_FALSE
||
16355 switch (BuiltinID
) {
16356 default: llvm_unreachable("Unexpected builtin");
16357 case X86::BI__builtin_ia32_cmpps
:
16358 IID
= Intrinsic::x86_sse_cmp_ps
;
16360 case X86::BI__builtin_ia32_cmpps256
:
16361 IID
= Intrinsic::x86_avx_cmp_ps_256
;
16363 case X86::BI__builtin_ia32_cmppd
:
16364 IID
= Intrinsic::x86_sse2_cmp_pd
;
16366 case X86::BI__builtin_ia32_cmppd256
:
16367 IID
= Intrinsic::x86_avx_cmp_pd_256
;
16369 case X86::BI__builtin_ia32_cmpph128_mask
:
16370 IID
= Intrinsic::x86_avx512fp16_mask_cmp_ph_128
;
16372 case X86::BI__builtin_ia32_cmpph256_mask
:
16373 IID
= Intrinsic::x86_avx512fp16_mask_cmp_ph_256
;
16375 case X86::BI__builtin_ia32_cmpph512_mask
:
16376 IID
= Intrinsic::x86_avx512fp16_mask_cmp_ph_512
;
16378 case X86::BI__builtin_ia32_cmpps512_mask
:
16379 IID
= Intrinsic::x86_avx512_mask_cmp_ps_512
;
16381 case X86::BI__builtin_ia32_cmppd512_mask
:
16382 IID
= Intrinsic::x86_avx512_mask_cmp_pd_512
;
16384 case X86::BI__builtin_ia32_cmpps128_mask
:
16385 IID
= Intrinsic::x86_avx512_mask_cmp_ps_128
;
16387 case X86::BI__builtin_ia32_cmpps256_mask
:
16388 IID
= Intrinsic::x86_avx512_mask_cmp_ps_256
;
16390 case X86::BI__builtin_ia32_cmppd128_mask
:
16391 IID
= Intrinsic::x86_avx512_mask_cmp_pd_128
;
16393 case X86::BI__builtin_ia32_cmppd256_mask
:
16394 IID
= Intrinsic::x86_avx512_mask_cmp_pd_256
;
16398 Function
*Intr
= CGM
.getIntrinsic(IID
);
16401 cast
<llvm::FixedVectorType
>(Ops
[0]->getType())->getNumElements();
16402 Ops
[3] = getMaskVecValue(*this, Ops
[3], NumElts
);
16403 Value
*Cmp
= Builder
.CreateCall(Intr
, Ops
);
16404 return EmitX86MaskedCompareResult(*this, Cmp
, NumElts
, nullptr);
16407 return Builder
.CreateCall(Intr
, Ops
);
16410 // Builtins without the _mask suffix return a vector of integers
16411 // of the same width as the input vectors
16413 // We ignore SAE if strict FP is disabled. We only keep precise
16414 // exception behavior under strict FP.
16415 // NOTE: If strict FP does ever go through here a CGFPOptionsRAII
16416 // object will be required.
16418 cast
<llvm::FixedVectorType
>(Ops
[0]->getType())->getNumElements();
16421 Cmp
= Builder
.CreateFCmpS(Pred
, Ops
[0], Ops
[1]);
16423 Cmp
= Builder
.CreateFCmp(Pred
, Ops
[0], Ops
[1]);
16424 return EmitX86MaskedCompareResult(*this, Cmp
, NumElts
, Ops
[3]);
16427 return getVectorFCmpIR(Pred
, IsSignaling
);
16430 // SSE scalar comparison intrinsics
16431 case X86::BI__builtin_ia32_cmpeqss
:
16432 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss
, 0);
16433 case X86::BI__builtin_ia32_cmpltss
:
16434 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss
, 1);
16435 case X86::BI__builtin_ia32_cmpless
:
16436 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss
, 2);
16437 case X86::BI__builtin_ia32_cmpunordss
:
16438 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss
, 3);
16439 case X86::BI__builtin_ia32_cmpneqss
:
16440 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss
, 4);
16441 case X86::BI__builtin_ia32_cmpnltss
:
16442 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss
, 5);
16443 case X86::BI__builtin_ia32_cmpnless
:
16444 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss
, 6);
16445 case X86::BI__builtin_ia32_cmpordss
:
16446 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss
, 7);
16447 case X86::BI__builtin_ia32_cmpeqsd
:
16448 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd
, 0);
16449 case X86::BI__builtin_ia32_cmpltsd
:
16450 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd
, 1);
16451 case X86::BI__builtin_ia32_cmplesd
:
16452 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd
, 2);
16453 case X86::BI__builtin_ia32_cmpunordsd
:
16454 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd
, 3);
16455 case X86::BI__builtin_ia32_cmpneqsd
:
16456 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd
, 4);
16457 case X86::BI__builtin_ia32_cmpnltsd
:
16458 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd
, 5);
16459 case X86::BI__builtin_ia32_cmpnlesd
:
16460 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd
, 6);
16461 case X86::BI__builtin_ia32_cmpordsd
:
16462 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd
, 7);
16464 // f16c half2float intrinsics
16465 case X86::BI__builtin_ia32_vcvtph2ps
:
16466 case X86::BI__builtin_ia32_vcvtph2ps256
:
16467 case X86::BI__builtin_ia32_vcvtph2ps_mask
:
16468 case X86::BI__builtin_ia32_vcvtph2ps256_mask
:
16469 case X86::BI__builtin_ia32_vcvtph2ps512_mask
: {
16470 CodeGenFunction::CGFPOptionsRAII
FPOptsRAII(*this, E
);
16471 return EmitX86CvtF16ToFloatExpr(*this, Ops
, ConvertType(E
->getType()));
16474 // AVX512 bf16 intrinsics
16475 case X86::BI__builtin_ia32_cvtneps2bf16_128_mask
: {
16476 Ops
[2] = getMaskVecValue(
16478 cast
<llvm::FixedVectorType
>(Ops
[0]->getType())->getNumElements());
16479 Intrinsic::ID IID
= Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128
;
16480 return Builder
.CreateCall(CGM
.getIntrinsic(IID
), Ops
);
16482 case X86::BI__builtin_ia32_cvtsbf162ss_32
:
16483 return Builder
.CreateFPExt(Ops
[0], Builder
.getFloatTy());
16485 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask
:
16486 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask
: {
16488 switch (BuiltinID
) {
16489 default: llvm_unreachable("Unsupported intrinsic!");
16490 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask
:
16491 IID
= Intrinsic::x86_avx512bf16_cvtneps2bf16_256
;
16493 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask
:
16494 IID
= Intrinsic::x86_avx512bf16_cvtneps2bf16_512
;
16497 Value
*Res
= Builder
.CreateCall(CGM
.getIntrinsic(IID
), Ops
[0]);
16498 return EmitX86Select(*this, Ops
[2], Res
, Ops
[1]);
16501 case X86::BI__cpuid
:
16502 case X86::BI__cpuidex
: {
16503 Value
*FuncId
= EmitScalarExpr(E
->getArg(1));
16504 Value
*SubFuncId
= BuiltinID
== X86::BI__cpuidex
16505 ? EmitScalarExpr(E
->getArg(2))
16506 : llvm::ConstantInt::get(Int32Ty
, 0);
16508 llvm::StructType
*CpuidRetTy
=
16509 llvm::StructType::get(Int32Ty
, Int32Ty
, Int32Ty
, Int32Ty
);
16510 llvm::FunctionType
*FTy
=
16511 llvm::FunctionType::get(CpuidRetTy
, {Int32Ty
, Int32Ty
}, false);
16513 StringRef Asm
, Constraints
;
16514 if (getTarget().getTriple().getArch() == llvm::Triple::x86
) {
16516 Constraints
= "={ax},={bx},={cx},={dx},{ax},{cx}";
16518 // x86-64 uses %rbx as the base register, so preserve it.
16519 Asm
= "xchgq %rbx, ${1:q}\n"
16521 "xchgq %rbx, ${1:q}";
16522 Constraints
= "={ax},=r,={cx},={dx},0,2";
16525 llvm::InlineAsm
*IA
= llvm::InlineAsm::get(FTy
, Asm
, Constraints
,
16526 /*hasSideEffects=*/false);
16527 Value
*IACall
= Builder
.CreateCall(IA
, {FuncId
, SubFuncId
});
16528 Value
*BasePtr
= EmitScalarExpr(E
->getArg(0));
16529 Value
*Store
= nullptr;
16530 for (unsigned i
= 0; i
< 4; i
++) {
16531 Value
*Extracted
= Builder
.CreateExtractValue(IACall
, i
);
16532 Value
*StorePtr
= Builder
.CreateConstInBoundsGEP1_32(Int32Ty
, BasePtr
, i
);
16533 Store
= Builder
.CreateAlignedStore(Extracted
, StorePtr
, getIntAlign());
16536 // Return the last store instruction to signal that we have emitted the
16541 case X86::BI__emul
:
16542 case X86::BI__emulu
: {
16543 llvm::Type
*Int64Ty
= llvm::IntegerType::get(getLLVMContext(), 64);
16544 bool isSigned
= (BuiltinID
== X86::BI__emul
);
16545 Value
*LHS
= Builder
.CreateIntCast(Ops
[0], Int64Ty
, isSigned
);
16546 Value
*RHS
= Builder
.CreateIntCast(Ops
[1], Int64Ty
, isSigned
);
16547 return Builder
.CreateMul(LHS
, RHS
, "", !isSigned
, isSigned
);
16549 case X86::BI__mulh
:
16550 case X86::BI__umulh
:
16551 case X86::BI_mul128
:
16552 case X86::BI_umul128
: {
16553 llvm::Type
*ResType
= ConvertType(E
->getType());
16554 llvm::Type
*Int128Ty
= llvm::IntegerType::get(getLLVMContext(), 128);
16556 bool IsSigned
= (BuiltinID
== X86::BI__mulh
|| BuiltinID
== X86::BI_mul128
);
16557 Value
*LHS
= Builder
.CreateIntCast(Ops
[0], Int128Ty
, IsSigned
);
16558 Value
*RHS
= Builder
.CreateIntCast(Ops
[1], Int128Ty
, IsSigned
);
16560 Value
*MulResult
, *HigherBits
;
16562 MulResult
= Builder
.CreateNSWMul(LHS
, RHS
);
16563 HigherBits
= Builder
.CreateAShr(MulResult
, 64);
16565 MulResult
= Builder
.CreateNUWMul(LHS
, RHS
);
16566 HigherBits
= Builder
.CreateLShr(MulResult
, 64);
16568 HigherBits
= Builder
.CreateIntCast(HigherBits
, ResType
, IsSigned
);
16570 if (BuiltinID
== X86::BI__mulh
|| BuiltinID
== X86::BI__umulh
)
16573 Address HighBitsAddress
= EmitPointerWithAlignment(E
->getArg(2));
16574 Builder
.CreateStore(HigherBits
, HighBitsAddress
);
16575 return Builder
.CreateIntCast(MulResult
, ResType
, IsSigned
);
16578 case X86::BI__faststorefence
: {
16579 return Builder
.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent
,
16580 llvm::SyncScope::System
);
16582 case X86::BI__shiftleft128
:
16583 case X86::BI__shiftright128
: {
16584 llvm::Function
*F
= CGM
.getIntrinsic(
16585 BuiltinID
== X86::BI__shiftleft128
? Intrinsic::fshl
: Intrinsic::fshr
,
16587 // Flip low/high ops and zero-extend amount to matching type.
16588 // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt)
16589 // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt)
16590 std::swap(Ops
[0], Ops
[1]);
16591 Ops
[2] = Builder
.CreateZExt(Ops
[2], Int64Ty
);
16592 return Builder
.CreateCall(F
, Ops
);
16594 case X86::BI_ReadWriteBarrier
:
16595 case X86::BI_ReadBarrier
:
16596 case X86::BI_WriteBarrier
: {
16597 return Builder
.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent
,
16598 llvm::SyncScope::SingleThread
);
16601 case X86::BI_AddressOfReturnAddress
: {
16603 CGM
.getIntrinsic(Intrinsic::addressofreturnaddress
, AllocaInt8PtrTy
);
16604 return Builder
.CreateCall(F
);
16606 case X86::BI__stosb
: {
16607 // We treat __stosb as a volatile memset - it may not generate "rep stosb"
16608 // instruction, but it will create a memset that won't be optimized away.
16609 return Builder
.CreateMemSet(Ops
[0], Ops
[1], Ops
[2], Align(1), true);
16612 // llvm.trap makes a ud2a instruction on x86.
16613 return EmitTrapCall(Intrinsic::trap
);
16614 case X86::BI__int2c
: {
16615 // This syscall signals a driver assertion failure in x86 NT kernels.
16616 llvm::FunctionType
*FTy
= llvm::FunctionType::get(VoidTy
, false);
16617 llvm::InlineAsm
*IA
=
16618 llvm::InlineAsm::get(FTy
, "int $$0x2c", "", /*hasSideEffects=*/true);
16619 llvm::AttributeList NoReturnAttr
= llvm::AttributeList::get(
16620 getLLVMContext(), llvm::AttributeList::FunctionIndex
,
16621 llvm::Attribute::NoReturn
);
16622 llvm::CallInst
*CI
= Builder
.CreateCall(IA
);
16623 CI
->setAttributes(NoReturnAttr
);
16626 case X86::BI__readfsbyte
:
16627 case X86::BI__readfsword
:
16628 case X86::BI__readfsdword
:
16629 case X86::BI__readfsqword
: {
16630 llvm::Type
*IntTy
= ConvertType(E
->getType());
16631 Value
*Ptr
= Builder
.CreateIntToPtr(
16632 Ops
[0], llvm::PointerType::get(getLLVMContext(), 257));
16633 LoadInst
*Load
= Builder
.CreateAlignedLoad(
16634 IntTy
, Ptr
, getContext().getTypeAlignInChars(E
->getType()));
16635 Load
->setVolatile(true);
16638 case X86::BI__readgsbyte
:
16639 case X86::BI__readgsword
:
16640 case X86::BI__readgsdword
:
16641 case X86::BI__readgsqword
: {
16642 llvm::Type
*IntTy
= ConvertType(E
->getType());
16643 Value
*Ptr
= Builder
.CreateIntToPtr(
16644 Ops
[0], llvm::PointerType::get(getLLVMContext(), 256));
16645 LoadInst
*Load
= Builder
.CreateAlignedLoad(
16646 IntTy
, Ptr
, getContext().getTypeAlignInChars(E
->getType()));
16647 Load
->setVolatile(true);
16650 case X86::BI__builtin_ia32_encodekey128_u32
: {
16651 Intrinsic::ID IID
= Intrinsic::x86_encodekey128
;
16653 Value
*Call
= Builder
.CreateCall(CGM
.getIntrinsic(IID
), {Ops
[0], Ops
[1]});
16655 for (int i
= 0; i
< 3; ++i
) {
16656 Value
*Extract
= Builder
.CreateExtractValue(Call
, i
+ 1);
16657 Value
*Ptr
= Builder
.CreateConstGEP1_32(Int8Ty
, Ops
[2], i
* 16);
16658 Builder
.CreateAlignedStore(Extract
, Ptr
, Align(1));
16661 return Builder
.CreateExtractValue(Call
, 0);
16663 case X86::BI__builtin_ia32_encodekey256_u32
: {
16664 Intrinsic::ID IID
= Intrinsic::x86_encodekey256
;
16667 Builder
.CreateCall(CGM
.getIntrinsic(IID
), {Ops
[0], Ops
[1], Ops
[2]});
16669 for (int i
= 0; i
< 4; ++i
) {
16670 Value
*Extract
= Builder
.CreateExtractValue(Call
, i
+ 1);
16671 Value
*Ptr
= Builder
.CreateConstGEP1_32(Int8Ty
, Ops
[3], i
* 16);
16672 Builder
.CreateAlignedStore(Extract
, Ptr
, Align(1));
16675 return Builder
.CreateExtractValue(Call
, 0);
16677 case X86::BI__builtin_ia32_aesenc128kl_u8
:
16678 case X86::BI__builtin_ia32_aesdec128kl_u8
:
16679 case X86::BI__builtin_ia32_aesenc256kl_u8
:
16680 case X86::BI__builtin_ia32_aesdec256kl_u8
: {
16682 StringRef BlockName
;
16683 switch (BuiltinID
) {
16685 llvm_unreachable("Unexpected builtin");
16686 case X86::BI__builtin_ia32_aesenc128kl_u8
:
16687 IID
= Intrinsic::x86_aesenc128kl
;
16688 BlockName
= "aesenc128kl";
16690 case X86::BI__builtin_ia32_aesdec128kl_u8
:
16691 IID
= Intrinsic::x86_aesdec128kl
;
16692 BlockName
= "aesdec128kl";
16694 case X86::BI__builtin_ia32_aesenc256kl_u8
:
16695 IID
= Intrinsic::x86_aesenc256kl
;
16696 BlockName
= "aesenc256kl";
16698 case X86::BI__builtin_ia32_aesdec256kl_u8
:
16699 IID
= Intrinsic::x86_aesdec256kl
;
16700 BlockName
= "aesdec256kl";
16704 Value
*Call
= Builder
.CreateCall(CGM
.getIntrinsic(IID
), {Ops
[1], Ops
[2]});
16706 BasicBlock
*NoError
=
16707 createBasicBlock(BlockName
+ "_no_error", this->CurFn
);
16708 BasicBlock
*Error
= createBasicBlock(BlockName
+ "_error", this->CurFn
);
16709 BasicBlock
*End
= createBasicBlock(BlockName
+ "_end", this->CurFn
);
16711 Value
*Ret
= Builder
.CreateExtractValue(Call
, 0);
16712 Value
*Succ
= Builder
.CreateTrunc(Ret
, Builder
.getInt1Ty());
16713 Value
*Out
= Builder
.CreateExtractValue(Call
, 1);
16714 Builder
.CreateCondBr(Succ
, NoError
, Error
);
16716 Builder
.SetInsertPoint(NoError
);
16717 Builder
.CreateDefaultAlignedStore(Out
, Ops
[0]);
16718 Builder
.CreateBr(End
);
16720 Builder
.SetInsertPoint(Error
);
16721 Constant
*Zero
= llvm::Constant::getNullValue(Out
->getType());
16722 Builder
.CreateDefaultAlignedStore(Zero
, Ops
[0]);
16723 Builder
.CreateBr(End
);
16725 Builder
.SetInsertPoint(End
);
16726 return Builder
.CreateExtractValue(Call
, 0);
16728 case X86::BI__builtin_ia32_aesencwide128kl_u8
:
16729 case X86::BI__builtin_ia32_aesdecwide128kl_u8
:
16730 case X86::BI__builtin_ia32_aesencwide256kl_u8
:
16731 case X86::BI__builtin_ia32_aesdecwide256kl_u8
: {
16733 StringRef BlockName
;
16734 switch (BuiltinID
) {
16735 case X86::BI__builtin_ia32_aesencwide128kl_u8
:
16736 IID
= Intrinsic::x86_aesencwide128kl
;
16737 BlockName
= "aesencwide128kl";
16739 case X86::BI__builtin_ia32_aesdecwide128kl_u8
:
16740 IID
= Intrinsic::x86_aesdecwide128kl
;
16741 BlockName
= "aesdecwide128kl";
16743 case X86::BI__builtin_ia32_aesencwide256kl_u8
:
16744 IID
= Intrinsic::x86_aesencwide256kl
;
16745 BlockName
= "aesencwide256kl";
16747 case X86::BI__builtin_ia32_aesdecwide256kl_u8
:
16748 IID
= Intrinsic::x86_aesdecwide256kl
;
16749 BlockName
= "aesdecwide256kl";
16753 llvm::Type
*Ty
= FixedVectorType::get(Builder
.getInt64Ty(), 2);
16756 for (int i
= 0; i
!= 8; ++i
) {
16757 Value
*Ptr
= Builder
.CreateConstGEP1_32(Ty
, Ops
[1], i
);
16758 InOps
[i
+ 1] = Builder
.CreateAlignedLoad(Ty
, Ptr
, Align(16));
16761 Value
*Call
= Builder
.CreateCall(CGM
.getIntrinsic(IID
), InOps
);
16763 BasicBlock
*NoError
=
16764 createBasicBlock(BlockName
+ "_no_error", this->CurFn
);
16765 BasicBlock
*Error
= createBasicBlock(BlockName
+ "_error", this->CurFn
);
16766 BasicBlock
*End
= createBasicBlock(BlockName
+ "_end", this->CurFn
);
16768 Value
*Ret
= Builder
.CreateExtractValue(Call
, 0);
16769 Value
*Succ
= Builder
.CreateTrunc(Ret
, Builder
.getInt1Ty());
16770 Builder
.CreateCondBr(Succ
, NoError
, Error
);
16772 Builder
.SetInsertPoint(NoError
);
16773 for (int i
= 0; i
!= 8; ++i
) {
16774 Value
*Extract
= Builder
.CreateExtractValue(Call
, i
+ 1);
16775 Value
*Ptr
= Builder
.CreateConstGEP1_32(Extract
->getType(), Ops
[0], i
);
16776 Builder
.CreateAlignedStore(Extract
, Ptr
, Align(16));
16778 Builder
.CreateBr(End
);
16780 Builder
.SetInsertPoint(Error
);
16781 for (int i
= 0; i
!= 8; ++i
) {
16782 Value
*Out
= Builder
.CreateExtractValue(Call
, i
+ 1);
16783 Constant
*Zero
= llvm::Constant::getNullValue(Out
->getType());
16784 Value
*Ptr
= Builder
.CreateConstGEP1_32(Out
->getType(), Ops
[0], i
);
16785 Builder
.CreateAlignedStore(Zero
, Ptr
, Align(16));
16787 Builder
.CreateBr(End
);
16789 Builder
.SetInsertPoint(End
);
16790 return Builder
.CreateExtractValue(Call
, 0);
16792 case X86::BI__builtin_ia32_vfcmaddcph512_mask
:
16795 case X86::BI__builtin_ia32_vfmaddcph512_mask
: {
16796 Intrinsic::ID IID
= IsConjFMA
16797 ? Intrinsic::x86_avx512fp16_mask_vfcmadd_cph_512
16798 : Intrinsic::x86_avx512fp16_mask_vfmadd_cph_512
;
16799 Value
*Call
= Builder
.CreateCall(CGM
.getIntrinsic(IID
), Ops
);
16800 return EmitX86Select(*this, Ops
[3], Call
, Ops
[0]);
16802 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask
:
16805 case X86::BI__builtin_ia32_vfmaddcsh_round_mask
: {
16806 Intrinsic::ID IID
= IsConjFMA
? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
16807 : Intrinsic::x86_avx512fp16_mask_vfmadd_csh
;
16808 Value
*Call
= Builder
.CreateCall(CGM
.getIntrinsic(IID
), Ops
);
16809 Value
*And
= Builder
.CreateAnd(Ops
[3], llvm::ConstantInt::get(Int8Ty
, 1));
16810 return EmitX86Select(*this, And
, Call
, Ops
[0]);
16812 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3
:
16815 case X86::BI__builtin_ia32_vfmaddcsh_round_mask3
: {
16816 Intrinsic::ID IID
= IsConjFMA
? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
16817 : Intrinsic::x86_avx512fp16_mask_vfmadd_csh
;
16818 Value
*Call
= Builder
.CreateCall(CGM
.getIntrinsic(IID
), Ops
);
16819 static constexpr int Mask
[] = {0, 5, 6, 7};
16820 return Builder
.CreateShuffleVector(Call
, Ops
[2], Mask
);
16822 case X86::BI__builtin_ia32_prefetchi
:
16823 return Builder
.CreateCall(
16824 CGM
.getIntrinsic(Intrinsic::prefetch
, Ops
[0]->getType()),
16825 {Ops
[0], llvm::ConstantInt::get(Int32Ty
, 0), Ops
[1],
16826 llvm::ConstantInt::get(Int32Ty
, 0)});
16830 Value
*CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID
,
16831 const CallExpr
*E
) {
16832 // Do not emit the builtin arguments in the arguments of a function call,
16833 // because the evaluation order of function arguments is not specified in C++.
16834 // This is important when testing to ensure the arguments are emitted in the
16835 // same order every time. Eg:
16837 // return Builder.CreateFDiv(EmitScalarExpr(E->getArg(0)),
16838 // EmitScalarExpr(E->getArg(1)), "swdiv");
16840 // Value *Op0 = EmitScalarExpr(E->getArg(0));
16841 // Value *Op1 = EmitScalarExpr(E->getArg(1));
16842 // return Builder.CreateFDiv(Op0, Op1, "swdiv")
16844 Intrinsic::ID ID
= Intrinsic::not_intrinsic
;
16846 #include "llvm/TargetParser/PPCTargetParser.def"
16847 auto GenAIXPPCBuiltinCpuExpr
= [&](unsigned SupportMethod
, unsigned FieldIdx
,
16848 unsigned Mask
, CmpInst::Predicate CompOp
,
16849 unsigned OpValue
) -> Value
* {
16850 if (SupportMethod
== BUILTIN_PPC_FALSE
)
16851 return llvm::ConstantInt::getFalse(ConvertType(E
->getType()));
16853 if (SupportMethod
== BUILTIN_PPC_TRUE
)
16854 return llvm::ConstantInt::getTrue(ConvertType(E
->getType()));
16856 assert(SupportMethod
<= SYS_CALL
&& "Invalid value for SupportMethod.");
16858 llvm::Value
*FieldValue
= nullptr;
16859 if (SupportMethod
== USE_SYS_CONF
) {
16860 llvm::Type
*STy
= llvm::StructType::get(PPC_SYSTEMCONFIG_TYPE
);
16861 llvm::Constant
*SysConf
=
16862 CGM
.CreateRuntimeVariable(STy
, "_system_configuration");
16864 // Grab the appropriate field from _system_configuration.
16865 llvm::Value
*Idxs
[] = {ConstantInt::get(Int32Ty
, 0),
16866 ConstantInt::get(Int32Ty
, FieldIdx
)};
16868 FieldValue
= Builder
.CreateInBoundsGEP(STy
, SysConf
, Idxs
);
16869 FieldValue
= Builder
.CreateAlignedLoad(Int32Ty
, FieldValue
,
16870 CharUnits::fromQuantity(4));
16871 } else if (SupportMethod
== SYS_CALL
) {
16872 llvm::FunctionType
*FTy
=
16873 llvm::FunctionType::get(Int64Ty
, Int32Ty
, false);
16874 llvm::FunctionCallee Func
=
16875 CGM
.CreateRuntimeFunction(FTy
, "getsystemcfg");
16878 Builder
.CreateCall(Func
, {ConstantInt::get(Int32Ty
, FieldIdx
)});
16880 assert(FieldValue
&&
16881 "SupportMethod value is not defined in PPCTargetParser.def.");
16884 FieldValue
= Builder
.CreateAnd(FieldValue
, Mask
);
16886 llvm::Type
*ValueType
= FieldValue
->getType();
16887 bool IsValueType64Bit
= ValueType
->isIntegerTy(64);
16889 (IsValueType64Bit
|| ValueType
->isIntegerTy(32)) &&
16890 "Only 32/64-bit integers are supported in GenAIXPPCBuiltinCpuExpr().");
16892 return Builder
.CreateICmp(
16893 CompOp
, FieldValue
,
16894 ConstantInt::get(IsValueType64Bit
? Int64Ty
: Int32Ty
, OpValue
));
16897 switch (BuiltinID
) {
16898 default: return nullptr;
16900 case Builtin::BI__builtin_cpu_is
: {
16901 const Expr
*CPUExpr
= E
->getArg(0)->IgnoreParenCasts();
16902 StringRef CPUStr
= cast
<clang::StringLiteral
>(CPUExpr
)->getString();
16903 llvm::Triple Triple
= getTarget().getTriple();
16905 unsigned LinuxSupportMethod
, LinuxIDValue
, AIXSupportMethod
, AIXIDValue
;
16906 typedef std::tuple
<unsigned, unsigned, unsigned, unsigned> CPUInfo
;
16908 std::tie(LinuxSupportMethod
, LinuxIDValue
, AIXSupportMethod
, AIXIDValue
) =
16909 static_cast<CPUInfo
>(StringSwitch
<CPUInfo
>(CPUStr
)
16910 #define PPC_CPU(NAME, Linux_SUPPORT_METHOD, LinuxID, AIX_SUPPORT_METHOD, \
16912 .Case(NAME, {Linux_SUPPORT_METHOD, LinuxID, AIX_SUPPORT_METHOD, AIXID})
16913 #include "llvm/TargetParser/PPCTargetParser.def"
16914 .Default({BUILTIN_PPC_UNSUPPORTED
, 0,
16915 BUILTIN_PPC_UNSUPPORTED
, 0}));
16917 if (Triple
.isOSAIX()) {
16918 assert((AIXSupportMethod
!= BUILTIN_PPC_UNSUPPORTED
) &&
16919 "Invalid CPU name. Missed by SemaChecking?");
16920 return GenAIXPPCBuiltinCpuExpr(AIXSupportMethod
, AIX_SYSCON_IMPL_IDX
, 0,
16921 ICmpInst::ICMP_EQ
, AIXIDValue
);
16924 assert(Triple
.isOSLinux() &&
16925 "__builtin_cpu_is() is only supported for AIX and Linux.");
16927 assert((LinuxSupportMethod
!= BUILTIN_PPC_UNSUPPORTED
) &&
16928 "Invalid CPU name. Missed by SemaChecking?");
16930 if (LinuxSupportMethod
== BUILTIN_PPC_FALSE
)
16931 return llvm::ConstantInt::getFalse(ConvertType(E
->getType()));
16933 Value
*Op0
= llvm::ConstantInt::get(Int32Ty
, PPC_FAWORD_CPUID
);
16934 llvm::Function
*F
= CGM
.getIntrinsic(Intrinsic::ppc_fixed_addr_ld
);
16935 Value
*TheCall
= Builder
.CreateCall(F
, {Op0
}, "cpu_is");
16936 return Builder
.CreateICmpEQ(TheCall
,
16937 llvm::ConstantInt::get(Int32Ty
, LinuxIDValue
));
16939 case Builtin::BI__builtin_cpu_supports
: {
16940 llvm::Triple Triple
= getTarget().getTriple();
16941 const Expr
*CPUExpr
= E
->getArg(0)->IgnoreParenCasts();
16942 StringRef CPUStr
= cast
<clang::StringLiteral
>(CPUExpr
)->getString();
16943 if (Triple
.isOSAIX()) {
16944 unsigned SupportMethod
, FieldIdx
, Mask
, Value
;
16945 CmpInst::Predicate CompOp
;
16946 typedef std::tuple
<unsigned, unsigned, unsigned, CmpInst::Predicate
,
16949 std::tie(SupportMethod
, FieldIdx
, Mask
, CompOp
, Value
) =
16950 static_cast<CPUSupportType
>(StringSwitch
<CPUSupportType
>(CPUStr
)
16951 #define PPC_AIX_FEATURE(NAME, DESC, SUPPORT_METHOD, INDEX, MASK, COMP_OP, \
16953 .Case(NAME, {SUPPORT_METHOD, INDEX, MASK, COMP_OP, VALUE})
16954 #include "llvm/TargetParser/PPCTargetParser.def"
16955 .Default({BUILTIN_PPC_FALSE
, 0, 0,
16956 CmpInst::Predicate(), 0}));
16957 return GenAIXPPCBuiltinCpuExpr(SupportMethod
, FieldIdx
, Mask
, CompOp
,
16961 assert(Triple
.isOSLinux() &&
16962 "__builtin_cpu_supports() is only supported for AIX and Linux.");
16963 unsigned FeatureWord
;
16965 std::tie(FeatureWord
, BitMask
) =
16966 StringSwitch
<std::pair
<unsigned, unsigned>>(CPUStr
)
16967 #define PPC_LNX_FEATURE(Name, Description, EnumName, Bitmask, FA_WORD) \
16968 .Case(Name, {FA_WORD, Bitmask})
16969 #include "llvm/TargetParser/PPCTargetParser.def"
16972 return Builder
.getFalse();
16973 Value
*Op0
= llvm::ConstantInt::get(Int32Ty
, FeatureWord
);
16974 llvm::Function
*F
= CGM
.getIntrinsic(Intrinsic::ppc_fixed_addr_ld
);
16975 Value
*TheCall
= Builder
.CreateCall(F
, {Op0
}, "cpu_supports");
16977 Builder
.CreateAnd(TheCall
, llvm::ConstantInt::get(Int32Ty
, BitMask
));
16978 return Builder
.CreateICmpNE(Mask
, llvm::Constant::getNullValue(Int32Ty
));
16979 #undef PPC_FAWORD_HWCAP
16980 #undef PPC_FAWORD_HWCAP2
16981 #undef PPC_FAWORD_CPUID
16984 // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
16985 // call __builtin_readcyclecounter.
16986 case PPC::BI__builtin_ppc_get_timebase
:
16987 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::readcyclecounter
));
16989 // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
16990 case PPC::BI__builtin_altivec_lvx
:
16991 case PPC::BI__builtin_altivec_lvxl
:
16992 case PPC::BI__builtin_altivec_lvebx
:
16993 case PPC::BI__builtin_altivec_lvehx
:
16994 case PPC::BI__builtin_altivec_lvewx
:
16995 case PPC::BI__builtin_altivec_lvsl
:
16996 case PPC::BI__builtin_altivec_lvsr
:
16997 case PPC::BI__builtin_vsx_lxvd2x
:
16998 case PPC::BI__builtin_vsx_lxvw4x
:
16999 case PPC::BI__builtin_vsx_lxvd2x_be
:
17000 case PPC::BI__builtin_vsx_lxvw4x_be
:
17001 case PPC::BI__builtin_vsx_lxvl
:
17002 case PPC::BI__builtin_vsx_lxvll
:
17004 SmallVector
<Value
*, 2> Ops
;
17005 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
17006 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
17007 if (!(BuiltinID
== PPC::BI__builtin_vsx_lxvl
||
17008 BuiltinID
== PPC::BI__builtin_vsx_lxvll
)) {
17009 Ops
[0] = Builder
.CreateGEP(Int8Ty
, Ops
[1], Ops
[0]);
17013 switch (BuiltinID
) {
17014 default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
17015 case PPC::BI__builtin_altivec_lvx
:
17016 ID
= Intrinsic::ppc_altivec_lvx
;
17018 case PPC::BI__builtin_altivec_lvxl
:
17019 ID
= Intrinsic::ppc_altivec_lvxl
;
17021 case PPC::BI__builtin_altivec_lvebx
:
17022 ID
= Intrinsic::ppc_altivec_lvebx
;
17024 case PPC::BI__builtin_altivec_lvehx
:
17025 ID
= Intrinsic::ppc_altivec_lvehx
;
17027 case PPC::BI__builtin_altivec_lvewx
:
17028 ID
= Intrinsic::ppc_altivec_lvewx
;
17030 case PPC::BI__builtin_altivec_lvsl
:
17031 ID
= Intrinsic::ppc_altivec_lvsl
;
17033 case PPC::BI__builtin_altivec_lvsr
:
17034 ID
= Intrinsic::ppc_altivec_lvsr
;
17036 case PPC::BI__builtin_vsx_lxvd2x
:
17037 ID
= Intrinsic::ppc_vsx_lxvd2x
;
17039 case PPC::BI__builtin_vsx_lxvw4x
:
17040 ID
= Intrinsic::ppc_vsx_lxvw4x
;
17042 case PPC::BI__builtin_vsx_lxvd2x_be
:
17043 ID
= Intrinsic::ppc_vsx_lxvd2x_be
;
17045 case PPC::BI__builtin_vsx_lxvw4x_be
:
17046 ID
= Intrinsic::ppc_vsx_lxvw4x_be
;
17048 case PPC::BI__builtin_vsx_lxvl
:
17049 ID
= Intrinsic::ppc_vsx_lxvl
;
17051 case PPC::BI__builtin_vsx_lxvll
:
17052 ID
= Intrinsic::ppc_vsx_lxvll
;
17055 llvm::Function
*F
= CGM
.getIntrinsic(ID
);
17056 return Builder
.CreateCall(F
, Ops
, "");
17059 // vec_st, vec_xst_be
17060 case PPC::BI__builtin_altivec_stvx
:
17061 case PPC::BI__builtin_altivec_stvxl
:
17062 case PPC::BI__builtin_altivec_stvebx
:
17063 case PPC::BI__builtin_altivec_stvehx
:
17064 case PPC::BI__builtin_altivec_stvewx
:
17065 case PPC::BI__builtin_vsx_stxvd2x
:
17066 case PPC::BI__builtin_vsx_stxvw4x
:
17067 case PPC::BI__builtin_vsx_stxvd2x_be
:
17068 case PPC::BI__builtin_vsx_stxvw4x_be
:
17069 case PPC::BI__builtin_vsx_stxvl
:
17070 case PPC::BI__builtin_vsx_stxvll
:
17072 SmallVector
<Value
*, 3> Ops
;
17073 Ops
.push_back(EmitScalarExpr(E
->getArg(0)));
17074 Ops
.push_back(EmitScalarExpr(E
->getArg(1)));
17075 Ops
.push_back(EmitScalarExpr(E
->getArg(2)));
17076 if (!(BuiltinID
== PPC::BI__builtin_vsx_stxvl
||
17077 BuiltinID
== PPC::BI__builtin_vsx_stxvll
)) {
17078 Ops
[1] = Builder
.CreateGEP(Int8Ty
, Ops
[2], Ops
[1]);
17082 switch (BuiltinID
) {
17083 default: llvm_unreachable("Unsupported st intrinsic!");
17084 case PPC::BI__builtin_altivec_stvx
:
17085 ID
= Intrinsic::ppc_altivec_stvx
;
17087 case PPC::BI__builtin_altivec_stvxl
:
17088 ID
= Intrinsic::ppc_altivec_stvxl
;
17090 case PPC::BI__builtin_altivec_stvebx
:
17091 ID
= Intrinsic::ppc_altivec_stvebx
;
17093 case PPC::BI__builtin_altivec_stvehx
:
17094 ID
= Intrinsic::ppc_altivec_stvehx
;
17096 case PPC::BI__builtin_altivec_stvewx
:
17097 ID
= Intrinsic::ppc_altivec_stvewx
;
17099 case PPC::BI__builtin_vsx_stxvd2x
:
17100 ID
= Intrinsic::ppc_vsx_stxvd2x
;
17102 case PPC::BI__builtin_vsx_stxvw4x
:
17103 ID
= Intrinsic::ppc_vsx_stxvw4x
;
17105 case PPC::BI__builtin_vsx_stxvd2x_be
:
17106 ID
= Intrinsic::ppc_vsx_stxvd2x_be
;
17108 case PPC::BI__builtin_vsx_stxvw4x_be
:
17109 ID
= Intrinsic::ppc_vsx_stxvw4x_be
;
17111 case PPC::BI__builtin_vsx_stxvl
:
17112 ID
= Intrinsic::ppc_vsx_stxvl
;
17114 case PPC::BI__builtin_vsx_stxvll
:
17115 ID
= Intrinsic::ppc_vsx_stxvll
;
17118 llvm::Function
*F
= CGM
.getIntrinsic(ID
);
17119 return Builder
.CreateCall(F
, Ops
, "");
17121 case PPC::BI__builtin_vsx_ldrmb
: {
17122 // Essentially boils down to performing an unaligned VMX load sequence so
17123 // as to avoid crossing a page boundary and then shuffling the elements
17124 // into the right side of the vector register.
17125 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
17126 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
17127 int64_t NumBytes
= cast
<ConstantInt
>(Op1
)->getZExtValue();
17128 llvm::Type
*ResTy
= ConvertType(E
->getType());
17129 bool IsLE
= getTarget().isLittleEndian();
17131 // If the user wants the entire vector, just load the entire vector.
17132 if (NumBytes
== 16) {
17134 Builder
.CreateLoad(Address(Op0
, ResTy
, CharUnits::fromQuantity(1)));
17138 // Reverse the bytes on LE.
17139 SmallVector
<int, 16> RevMask
;
17140 for (int Idx
= 0; Idx
< 16; Idx
++)
17141 RevMask
.push_back(15 - Idx
);
17142 return Builder
.CreateShuffleVector(LD
, LD
, RevMask
);
17145 llvm::Function
*Lvx
= CGM
.getIntrinsic(Intrinsic::ppc_altivec_lvx
);
17146 llvm::Function
*Lvs
= CGM
.getIntrinsic(IsLE
? Intrinsic::ppc_altivec_lvsr
17147 : Intrinsic::ppc_altivec_lvsl
);
17148 llvm::Function
*Vperm
= CGM
.getIntrinsic(Intrinsic::ppc_altivec_vperm
);
17149 Value
*HiMem
= Builder
.CreateGEP(
17150 Int8Ty
, Op0
, ConstantInt::get(Op1
->getType(), NumBytes
- 1));
17151 Value
*LoLd
= Builder
.CreateCall(Lvx
, Op0
, "ld.lo");
17152 Value
*HiLd
= Builder
.CreateCall(Lvx
, HiMem
, "ld.hi");
17153 Value
*Mask1
= Builder
.CreateCall(Lvs
, Op0
, "mask1");
17155 Op0
= IsLE
? HiLd
: LoLd
;
17156 Op1
= IsLE
? LoLd
: HiLd
;
17157 Value
*AllElts
= Builder
.CreateCall(Vperm
, {Op0
, Op1
, Mask1
}, "shuffle1");
17158 Constant
*Zero
= llvm::Constant::getNullValue(IsLE
? ResTy
: AllElts
->getType());
17161 SmallVector
<int, 16> Consts
;
17162 for (int Idx
= 0; Idx
< 16; Idx
++) {
17163 int Val
= (NumBytes
- Idx
- 1 >= 0) ? (NumBytes
- Idx
- 1)
17164 : 16 - (NumBytes
- Idx
);
17165 Consts
.push_back(Val
);
17167 return Builder
.CreateShuffleVector(Builder
.CreateBitCast(AllElts
, ResTy
),
17170 SmallVector
<Constant
*, 16> Consts
;
17171 for (int Idx
= 0; Idx
< 16; Idx
++)
17172 Consts
.push_back(Builder
.getInt8(NumBytes
+ Idx
));
17173 Value
*Mask2
= ConstantVector::get(Consts
);
17174 return Builder
.CreateBitCast(
17175 Builder
.CreateCall(Vperm
, {Zero
, AllElts
, Mask2
}, "shuffle2"), ResTy
);
17177 case PPC::BI__builtin_vsx_strmb
: {
17178 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
17179 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
17180 Value
*Op2
= EmitScalarExpr(E
->getArg(2));
17181 int64_t NumBytes
= cast
<ConstantInt
>(Op1
)->getZExtValue();
17182 bool IsLE
= getTarget().isLittleEndian();
17183 auto StoreSubVec
= [&](unsigned Width
, unsigned Offset
, unsigned EltNo
) {
17184 // Storing the whole vector, simply store it on BE and reverse bytes and
17187 Value
*StVec
= Op2
;
17189 SmallVector
<int, 16> RevMask
;
17190 for (int Idx
= 0; Idx
< 16; Idx
++)
17191 RevMask
.push_back(15 - Idx
);
17192 StVec
= Builder
.CreateShuffleVector(Op2
, Op2
, RevMask
);
17194 return Builder
.CreateStore(
17195 StVec
, Address(Op0
, Op2
->getType(), CharUnits::fromQuantity(1)));
17197 auto *ConvTy
= Int64Ty
;
17198 unsigned NumElts
= 0;
17201 llvm_unreachable("width for stores must be a power of 2");
17219 Value
*Vec
= Builder
.CreateBitCast(
17220 Op2
, llvm::FixedVectorType::get(ConvTy
, NumElts
));
17222 Builder
.CreateGEP(Int8Ty
, Op0
, ConstantInt::get(Int64Ty
, Offset
));
17223 Value
*Elt
= Builder
.CreateExtractElement(Vec
, EltNo
);
17224 if (IsLE
&& Width
> 1) {
17225 Function
*F
= CGM
.getIntrinsic(Intrinsic::bswap
, ConvTy
);
17226 Elt
= Builder
.CreateCall(F
, Elt
);
17228 return Builder
.CreateStore(
17229 Elt
, Address(Ptr
, ConvTy
, CharUnits::fromQuantity(1)));
17231 unsigned Stored
= 0;
17232 unsigned RemainingBytes
= NumBytes
;
17234 if (NumBytes
== 16)
17235 return StoreSubVec(16, 0, 0);
17236 if (NumBytes
>= 8) {
17237 Result
= StoreSubVec(8, NumBytes
- 8, IsLE
? 0 : 1);
17238 RemainingBytes
-= 8;
17241 if (RemainingBytes
>= 4) {
17242 Result
= StoreSubVec(4, NumBytes
- Stored
- 4,
17243 IsLE
? (Stored
>> 2) : 3 - (Stored
>> 2));
17244 RemainingBytes
-= 4;
17247 if (RemainingBytes
>= 2) {
17248 Result
= StoreSubVec(2, NumBytes
- Stored
- 2,
17249 IsLE
? (Stored
>> 1) : 7 - (Stored
>> 1));
17250 RemainingBytes
-= 2;
17253 if (RemainingBytes
)
17255 StoreSubVec(1, NumBytes
- Stored
- 1, IsLE
? Stored
: 15 - Stored
);
17259 case PPC::BI__builtin_vsx_xvsqrtsp
:
17260 case PPC::BI__builtin_vsx_xvsqrtdp
: {
17261 llvm::Type
*ResultType
= ConvertType(E
->getType());
17262 Value
*X
= EmitScalarExpr(E
->getArg(0));
17263 if (Builder
.getIsFPConstrained()) {
17264 llvm::Function
*F
= CGM
.getIntrinsic(
17265 Intrinsic::experimental_constrained_sqrt
, ResultType
);
17266 return Builder
.CreateConstrainedFPCall(F
, X
);
17268 llvm::Function
*F
= CGM
.getIntrinsic(Intrinsic::sqrt
, ResultType
);
17269 return Builder
.CreateCall(F
, X
);
17272 // Count leading zeros
17273 case PPC::BI__builtin_altivec_vclzb
:
17274 case PPC::BI__builtin_altivec_vclzh
:
17275 case PPC::BI__builtin_altivec_vclzw
:
17276 case PPC::BI__builtin_altivec_vclzd
: {
17277 llvm::Type
*ResultType
= ConvertType(E
->getType());
17278 Value
*X
= EmitScalarExpr(E
->getArg(0));
17279 Value
*Undef
= ConstantInt::get(Builder
.getInt1Ty(), false);
17280 Function
*F
= CGM
.getIntrinsic(Intrinsic::ctlz
, ResultType
);
17281 return Builder
.CreateCall(F
, {X
, Undef
});
17283 case PPC::BI__builtin_altivec_vctzb
:
17284 case PPC::BI__builtin_altivec_vctzh
:
17285 case PPC::BI__builtin_altivec_vctzw
:
17286 case PPC::BI__builtin_altivec_vctzd
: {
17287 llvm::Type
*ResultType
= ConvertType(E
->getType());
17288 Value
*X
= EmitScalarExpr(E
->getArg(0));
17289 Value
*Undef
= ConstantInt::get(Builder
.getInt1Ty(), false);
17290 Function
*F
= CGM
.getIntrinsic(Intrinsic::cttz
, ResultType
);
17291 return Builder
.CreateCall(F
, {X
, Undef
});
17293 case PPC::BI__builtin_altivec_vinsd
:
17294 case PPC::BI__builtin_altivec_vinsw
:
17295 case PPC::BI__builtin_altivec_vinsd_elt
:
17296 case PPC::BI__builtin_altivec_vinsw_elt
: {
17297 llvm::Type
*ResultType
= ConvertType(E
->getType());
17298 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
17299 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
17300 Value
*Op2
= EmitScalarExpr(E
->getArg(2));
17302 bool IsUnaligned
= (BuiltinID
== PPC::BI__builtin_altivec_vinsw
||
17303 BuiltinID
== PPC::BI__builtin_altivec_vinsd
);
17305 bool Is32bit
= (BuiltinID
== PPC::BI__builtin_altivec_vinsw
||
17306 BuiltinID
== PPC::BI__builtin_altivec_vinsw_elt
);
17308 // The third argument must be a compile time constant.
17309 ConstantInt
*ArgCI
= dyn_cast
<ConstantInt
>(Op2
);
17311 "Third Arg to vinsw/vinsd intrinsic must be a constant integer!");
17313 // Valid value for the third argument is dependent on the input type and
17315 int ValidMaxValue
= 0;
17317 ValidMaxValue
= (Is32bit
) ? 12 : 8;
17319 ValidMaxValue
= (Is32bit
) ? 3 : 1;
17321 // Get value of third argument.
17322 int64_t ConstArg
= ArgCI
->getSExtValue();
17324 // Compose range checking error message.
17325 std::string RangeErrMsg
= IsUnaligned
? "byte" : "element";
17326 RangeErrMsg
+= " number " + llvm::to_string(ConstArg
);
17327 RangeErrMsg
+= " is outside of the valid range [0, ";
17328 RangeErrMsg
+= llvm::to_string(ValidMaxValue
) + "]";
17330 // Issue error if third argument is not within the valid range.
17331 if (ConstArg
< 0 || ConstArg
> ValidMaxValue
)
17332 CGM
.Error(E
->getExprLoc(), RangeErrMsg
);
17334 // Input to vec_replace_elt is an element index, convert to byte index.
17335 if (!IsUnaligned
) {
17336 ConstArg
*= Is32bit
? 4 : 8;
17337 // Fix the constant according to endianess.
17338 if (getTarget().isLittleEndian())
17339 ConstArg
= (Is32bit
? 12 : 8) - ConstArg
;
17342 ID
= Is32bit
? Intrinsic::ppc_altivec_vinsw
: Intrinsic::ppc_altivec_vinsd
;
17343 Op2
= ConstantInt::getSigned(Int32Ty
, ConstArg
);
17344 // Casting input to vector int as per intrinsic definition.
17347 ? Builder
.CreateBitCast(Op0
, llvm::FixedVectorType::get(Int32Ty
, 4))
17348 : Builder
.CreateBitCast(Op0
,
17349 llvm::FixedVectorType::get(Int64Ty
, 2));
17350 return Builder
.CreateBitCast(
17351 Builder
.CreateCall(CGM
.getIntrinsic(ID
), {Op0
, Op1
, Op2
}), ResultType
);
17353 case PPC::BI__builtin_altivec_vpopcntb
:
17354 case PPC::BI__builtin_altivec_vpopcnth
:
17355 case PPC::BI__builtin_altivec_vpopcntw
:
17356 case PPC::BI__builtin_altivec_vpopcntd
: {
17357 llvm::Type
*ResultType
= ConvertType(E
->getType());
17358 Value
*X
= EmitScalarExpr(E
->getArg(0));
17359 llvm::Function
*F
= CGM
.getIntrinsic(Intrinsic::ctpop
, ResultType
);
17360 return Builder
.CreateCall(F
, X
);
17362 case PPC::BI__builtin_altivec_vadduqm
:
17363 case PPC::BI__builtin_altivec_vsubuqm
: {
17364 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
17365 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
17366 llvm::Type
*Int128Ty
= llvm::IntegerType::get(getLLVMContext(), 128);
17367 Op0
= Builder
.CreateBitCast(Op0
, llvm::FixedVectorType::get(Int128Ty
, 1));
17368 Op1
= Builder
.CreateBitCast(Op1
, llvm::FixedVectorType::get(Int128Ty
, 1));
17369 if (BuiltinID
== PPC::BI__builtin_altivec_vadduqm
)
17370 return Builder
.CreateAdd(Op0
, Op1
, "vadduqm");
17372 return Builder
.CreateSub(Op0
, Op1
, "vsubuqm");
17374 case PPC::BI__builtin_altivec_vaddcuq_c
:
17375 case PPC::BI__builtin_altivec_vsubcuq_c
: {
17376 SmallVector
<Value
*, 2> Ops
;
17377 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
17378 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
17379 llvm::Type
*V1I128Ty
= llvm::FixedVectorType::get(
17380 llvm::IntegerType::get(getLLVMContext(), 128), 1);
17381 Ops
.push_back(Builder
.CreateBitCast(Op0
, V1I128Ty
));
17382 Ops
.push_back(Builder
.CreateBitCast(Op1
, V1I128Ty
));
17383 ID
= (BuiltinID
== PPC::BI__builtin_altivec_vaddcuq_c
)
17384 ? Intrinsic::ppc_altivec_vaddcuq
17385 : Intrinsic::ppc_altivec_vsubcuq
;
17386 return Builder
.CreateCall(CGM
.getIntrinsic(ID
), Ops
, "");
17388 case PPC::BI__builtin_altivec_vaddeuqm_c
:
17389 case PPC::BI__builtin_altivec_vaddecuq_c
:
17390 case PPC::BI__builtin_altivec_vsubeuqm_c
:
17391 case PPC::BI__builtin_altivec_vsubecuq_c
: {
17392 SmallVector
<Value
*, 3> Ops
;
17393 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
17394 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
17395 Value
*Op2
= EmitScalarExpr(E
->getArg(2));
17396 llvm::Type
*V1I128Ty
= llvm::FixedVectorType::get(
17397 llvm::IntegerType::get(getLLVMContext(), 128), 1);
17398 Ops
.push_back(Builder
.CreateBitCast(Op0
, V1I128Ty
));
17399 Ops
.push_back(Builder
.CreateBitCast(Op1
, V1I128Ty
));
17400 Ops
.push_back(Builder
.CreateBitCast(Op2
, V1I128Ty
));
17401 switch (BuiltinID
) {
17403 llvm_unreachable("Unsupported intrinsic!");
17404 case PPC::BI__builtin_altivec_vaddeuqm_c
:
17405 ID
= Intrinsic::ppc_altivec_vaddeuqm
;
17407 case PPC::BI__builtin_altivec_vaddecuq_c
:
17408 ID
= Intrinsic::ppc_altivec_vaddecuq
;
17410 case PPC::BI__builtin_altivec_vsubeuqm_c
:
17411 ID
= Intrinsic::ppc_altivec_vsubeuqm
;
17413 case PPC::BI__builtin_altivec_vsubecuq_c
:
17414 ID
= Intrinsic::ppc_altivec_vsubecuq
;
17417 return Builder
.CreateCall(CGM
.getIntrinsic(ID
), Ops
, "");
17419 case PPC::BI__builtin_ppc_rldimi
:
17420 case PPC::BI__builtin_ppc_rlwimi
: {
17421 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
17422 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
17423 Value
*Op2
= EmitScalarExpr(E
->getArg(2));
17424 Value
*Op3
= EmitScalarExpr(E
->getArg(3));
17425 // rldimi is 64-bit instruction, expand the intrinsic before isel to
17426 // leverage peephole and avoid legalization efforts.
17427 if (BuiltinID
== PPC::BI__builtin_ppc_rldimi
&&
17428 !getTarget().getTriple().isPPC64()) {
17429 Function
*F
= CGM
.getIntrinsic(Intrinsic::fshl
, Op0
->getType());
17430 Op2
= Builder
.CreateZExt(Op2
, Int64Ty
);
17431 Value
*Shift
= Builder
.CreateCall(F
, {Op0
, Op0
, Op2
});
17432 return Builder
.CreateOr(Builder
.CreateAnd(Shift
, Op3
),
17433 Builder
.CreateAnd(Op1
, Builder
.CreateNot(Op3
)));
17435 return Builder
.CreateCall(
17436 CGM
.getIntrinsic(BuiltinID
== PPC::BI__builtin_ppc_rldimi
17437 ? Intrinsic::ppc_rldimi
17438 : Intrinsic::ppc_rlwimi
),
17439 {Op0
, Op1
, Op2
, Op3
});
17441 case PPC::BI__builtin_ppc_rlwnm
: {
17442 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
17443 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
17444 Value
*Op2
= EmitScalarExpr(E
->getArg(2));
17445 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::ppc_rlwnm
),
17448 case PPC::BI__builtin_ppc_poppar4
:
17449 case PPC::BI__builtin_ppc_poppar8
: {
17450 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
17451 llvm::Type
*ArgType
= Op0
->getType();
17452 Function
*F
= CGM
.getIntrinsic(Intrinsic::ctpop
, ArgType
);
17453 Value
*Tmp
= Builder
.CreateCall(F
, Op0
);
17455 llvm::Type
*ResultType
= ConvertType(E
->getType());
17456 Value
*Result
= Builder
.CreateAnd(Tmp
, llvm::ConstantInt::get(ArgType
, 1));
17457 if (Result
->getType() != ResultType
)
17458 Result
= Builder
.CreateIntCast(Result
, ResultType
, /*isSigned*/true,
17462 case PPC::BI__builtin_ppc_cmpb
: {
17463 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
17464 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
17465 if (getTarget().getTriple().isPPC64()) {
17467 CGM
.getIntrinsic(Intrinsic::ppc_cmpb
, {Int64Ty
, Int64Ty
, Int64Ty
});
17468 return Builder
.CreateCall(F
, {Op0
, Op1
}, "cmpb");
17470 // For 32 bit, emit the code as below:
17471 // %conv = trunc i64 %a to i32
17472 // %conv1 = trunc i64 %b to i32
17473 // %shr = lshr i64 %a, 32
17474 // %conv2 = trunc i64 %shr to i32
17475 // %shr3 = lshr i64 %b, 32
17476 // %conv4 = trunc i64 %shr3 to i32
17477 // %0 = tail call i32 @llvm.ppc.cmpb32(i32 %conv, i32 %conv1)
17478 // %conv5 = zext i32 %0 to i64
17479 // %1 = tail call i32 @llvm.ppc.cmpb32(i32 %conv2, i32 %conv4)
17480 // %conv614 = zext i32 %1 to i64
17481 // %shl = shl nuw i64 %conv614, 32
17482 // %or = or i64 %shl, %conv5
17485 CGM
.getIntrinsic(Intrinsic::ppc_cmpb
, {Int32Ty
, Int32Ty
, Int32Ty
});
17486 Value
*ArgOneLo
= Builder
.CreateTrunc(Op0
, Int32Ty
);
17487 Value
*ArgTwoLo
= Builder
.CreateTrunc(Op1
, Int32Ty
);
17488 Constant
*ShiftAmt
= ConstantInt::get(Int64Ty
, 32);
17490 Builder
.CreateTrunc(Builder
.CreateLShr(Op0
, ShiftAmt
), Int32Ty
);
17492 Builder
.CreateTrunc(Builder
.CreateLShr(Op1
, ShiftAmt
), Int32Ty
);
17493 Value
*ResLo
= Builder
.CreateZExt(
17494 Builder
.CreateCall(F
, {ArgOneLo
, ArgTwoLo
}, "cmpb"), Int64Ty
);
17495 Value
*ResHiShift
= Builder
.CreateZExt(
17496 Builder
.CreateCall(F
, {ArgOneHi
, ArgTwoHi
}, "cmpb"), Int64Ty
);
17497 Value
*ResHi
= Builder
.CreateShl(ResHiShift
, ShiftAmt
);
17498 return Builder
.CreateOr(ResLo
, ResHi
);
17501 case PPC::BI__builtin_vsx_xvcpsgnsp
:
17502 case PPC::BI__builtin_vsx_xvcpsgndp
: {
17503 llvm::Type
*ResultType
= ConvertType(E
->getType());
17504 Value
*X
= EmitScalarExpr(E
->getArg(0));
17505 Value
*Y
= EmitScalarExpr(E
->getArg(1));
17506 ID
= Intrinsic::copysign
;
17507 llvm::Function
*F
= CGM
.getIntrinsic(ID
, ResultType
);
17508 return Builder
.CreateCall(F
, {X
, Y
});
17510 // Rounding/truncation
17511 case PPC::BI__builtin_vsx_xvrspip
:
17512 case PPC::BI__builtin_vsx_xvrdpip
:
17513 case PPC::BI__builtin_vsx_xvrdpim
:
17514 case PPC::BI__builtin_vsx_xvrspim
:
17515 case PPC::BI__builtin_vsx_xvrdpi
:
17516 case PPC::BI__builtin_vsx_xvrspi
:
17517 case PPC::BI__builtin_vsx_xvrdpic
:
17518 case PPC::BI__builtin_vsx_xvrspic
:
17519 case PPC::BI__builtin_vsx_xvrdpiz
:
17520 case PPC::BI__builtin_vsx_xvrspiz
: {
17521 llvm::Type
*ResultType
= ConvertType(E
->getType());
17522 Value
*X
= EmitScalarExpr(E
->getArg(0));
17523 if (BuiltinID
== PPC::BI__builtin_vsx_xvrdpim
||
17524 BuiltinID
== PPC::BI__builtin_vsx_xvrspim
)
17525 ID
= Builder
.getIsFPConstrained()
17526 ? Intrinsic::experimental_constrained_floor
17527 : Intrinsic::floor
;
17528 else if (BuiltinID
== PPC::BI__builtin_vsx_xvrdpi
||
17529 BuiltinID
== PPC::BI__builtin_vsx_xvrspi
)
17530 ID
= Builder
.getIsFPConstrained()
17531 ? Intrinsic::experimental_constrained_round
17532 : Intrinsic::round
;
17533 else if (BuiltinID
== PPC::BI__builtin_vsx_xvrdpic
||
17534 BuiltinID
== PPC::BI__builtin_vsx_xvrspic
)
17535 ID
= Builder
.getIsFPConstrained()
17536 ? Intrinsic::experimental_constrained_rint
17538 else if (BuiltinID
== PPC::BI__builtin_vsx_xvrdpip
||
17539 BuiltinID
== PPC::BI__builtin_vsx_xvrspip
)
17540 ID
= Builder
.getIsFPConstrained()
17541 ? Intrinsic::experimental_constrained_ceil
17543 else if (BuiltinID
== PPC::BI__builtin_vsx_xvrdpiz
||
17544 BuiltinID
== PPC::BI__builtin_vsx_xvrspiz
)
17545 ID
= Builder
.getIsFPConstrained()
17546 ? Intrinsic::experimental_constrained_trunc
17547 : Intrinsic::trunc
;
17548 llvm::Function
*F
= CGM
.getIntrinsic(ID
, ResultType
);
17549 return Builder
.getIsFPConstrained() ? Builder
.CreateConstrainedFPCall(F
, X
)
17550 : Builder
.CreateCall(F
, X
);
17554 case PPC::BI__builtin_vsx_xvabsdp
:
17555 case PPC::BI__builtin_vsx_xvabssp
: {
17556 llvm::Type
*ResultType
= ConvertType(E
->getType());
17557 Value
*X
= EmitScalarExpr(E
->getArg(0));
17558 llvm::Function
*F
= CGM
.getIntrinsic(Intrinsic::fabs
, ResultType
);
17559 return Builder
.CreateCall(F
, X
);
17562 // Fastmath by default
17563 case PPC::BI__builtin_ppc_recipdivf
:
17564 case PPC::BI__builtin_ppc_recipdivd
:
17565 case PPC::BI__builtin_ppc_rsqrtf
:
17566 case PPC::BI__builtin_ppc_rsqrtd
: {
17567 FastMathFlags FMF
= Builder
.getFastMathFlags();
17568 Builder
.getFastMathFlags().setFast();
17569 llvm::Type
*ResultType
= ConvertType(E
->getType());
17570 Value
*X
= EmitScalarExpr(E
->getArg(0));
17572 if (BuiltinID
== PPC::BI__builtin_ppc_recipdivf
||
17573 BuiltinID
== PPC::BI__builtin_ppc_recipdivd
) {
17574 Value
*Y
= EmitScalarExpr(E
->getArg(1));
17575 Value
*FDiv
= Builder
.CreateFDiv(X
, Y
, "recipdiv");
17576 Builder
.getFastMathFlags() &= (FMF
);
17579 auto *One
= ConstantFP::get(ResultType
, 1.0);
17580 llvm::Function
*F
= CGM
.getIntrinsic(Intrinsic::sqrt
, ResultType
);
17581 Value
*FDiv
= Builder
.CreateFDiv(One
, Builder
.CreateCall(F
, X
), "rsqrt");
17582 Builder
.getFastMathFlags() &= (FMF
);
17585 case PPC::BI__builtin_ppc_alignx
: {
17586 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
17587 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
17588 ConstantInt
*AlignmentCI
= cast
<ConstantInt
>(Op0
);
17589 if (AlignmentCI
->getValue().ugt(llvm::Value::MaximumAlignment
))
17590 AlignmentCI
= ConstantInt::get(AlignmentCI
->getIntegerType(),
17591 llvm::Value::MaximumAlignment
);
17593 emitAlignmentAssumption(Op1
, E
->getArg(1),
17594 /*The expr loc is sufficient.*/ SourceLocation(),
17595 AlignmentCI
, nullptr);
17598 case PPC::BI__builtin_ppc_rdlam
: {
17599 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
17600 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
17601 Value
*Op2
= EmitScalarExpr(E
->getArg(2));
17602 llvm::Type
*Ty
= Op0
->getType();
17603 Value
*ShiftAmt
= Builder
.CreateIntCast(Op1
, Ty
, false);
17604 Function
*F
= CGM
.getIntrinsic(Intrinsic::fshl
, Ty
);
17605 Value
*Rotate
= Builder
.CreateCall(F
, {Op0
, Op0
, ShiftAmt
});
17606 return Builder
.CreateAnd(Rotate
, Op2
);
17608 case PPC::BI__builtin_ppc_load2r
: {
17609 Function
*F
= CGM
.getIntrinsic(Intrinsic::ppc_load2r
);
17610 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
17611 Value
*LoadIntrinsic
= Builder
.CreateCall(F
, {Op0
});
17612 return Builder
.CreateTrunc(LoadIntrinsic
, Int16Ty
);
17615 case PPC::BI__builtin_ppc_fnmsub
:
17616 case PPC::BI__builtin_ppc_fnmsubs
:
17617 case PPC::BI__builtin_vsx_xvmaddadp
:
17618 case PPC::BI__builtin_vsx_xvmaddasp
:
17619 case PPC::BI__builtin_vsx_xvnmaddadp
:
17620 case PPC::BI__builtin_vsx_xvnmaddasp
:
17621 case PPC::BI__builtin_vsx_xvmsubadp
:
17622 case PPC::BI__builtin_vsx_xvmsubasp
:
17623 case PPC::BI__builtin_vsx_xvnmsubadp
:
17624 case PPC::BI__builtin_vsx_xvnmsubasp
: {
17625 llvm::Type
*ResultType
= ConvertType(E
->getType());
17626 Value
*X
= EmitScalarExpr(E
->getArg(0));
17627 Value
*Y
= EmitScalarExpr(E
->getArg(1));
17628 Value
*Z
= EmitScalarExpr(E
->getArg(2));
17630 if (Builder
.getIsFPConstrained())
17631 F
= CGM
.getIntrinsic(Intrinsic::experimental_constrained_fma
, ResultType
);
17633 F
= CGM
.getIntrinsic(Intrinsic::fma
, ResultType
);
17634 switch (BuiltinID
) {
17635 case PPC::BI__builtin_vsx_xvmaddadp
:
17636 case PPC::BI__builtin_vsx_xvmaddasp
:
17637 if (Builder
.getIsFPConstrained())
17638 return Builder
.CreateConstrainedFPCall(F
, {X
, Y
, Z
});
17640 return Builder
.CreateCall(F
, {X
, Y
, Z
});
17641 case PPC::BI__builtin_vsx_xvnmaddadp
:
17642 case PPC::BI__builtin_vsx_xvnmaddasp
:
17643 if (Builder
.getIsFPConstrained())
17644 return Builder
.CreateFNeg(
17645 Builder
.CreateConstrainedFPCall(F
, {X
, Y
, Z
}), "neg");
17647 return Builder
.CreateFNeg(Builder
.CreateCall(F
, {X
, Y
, Z
}), "neg");
17648 case PPC::BI__builtin_vsx_xvmsubadp
:
17649 case PPC::BI__builtin_vsx_xvmsubasp
:
17650 if (Builder
.getIsFPConstrained())
17651 return Builder
.CreateConstrainedFPCall(
17652 F
, {X
, Y
, Builder
.CreateFNeg(Z
, "neg")});
17654 return Builder
.CreateCall(F
, {X
, Y
, Builder
.CreateFNeg(Z
, "neg")});
17655 case PPC::BI__builtin_ppc_fnmsub
:
17656 case PPC::BI__builtin_ppc_fnmsubs
:
17657 case PPC::BI__builtin_vsx_xvnmsubadp
:
17658 case PPC::BI__builtin_vsx_xvnmsubasp
:
17659 if (Builder
.getIsFPConstrained())
17660 return Builder
.CreateFNeg(
17661 Builder
.CreateConstrainedFPCall(
17662 F
, {X
, Y
, Builder
.CreateFNeg(Z
, "neg")}),
17665 return Builder
.CreateCall(
17666 CGM
.getIntrinsic(Intrinsic::ppc_fnmsub
, ResultType
), {X
, Y
, Z
});
17668 llvm_unreachable("Unknown FMA operation");
17669 return nullptr; // Suppress no-return warning
17672 case PPC::BI__builtin_vsx_insertword
: {
17673 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
17674 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
17675 Value
*Op2
= EmitScalarExpr(E
->getArg(2));
17676 llvm::Function
*F
= CGM
.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw
);
17678 // Third argument is a compile time constant int. It must be clamped to
17679 // to the range [0, 12].
17680 ConstantInt
*ArgCI
= dyn_cast
<ConstantInt
>(Op2
);
17682 "Third arg to xxinsertw intrinsic must be constant integer");
17683 const int64_t MaxIndex
= 12;
17684 int64_t Index
= std::clamp(ArgCI
->getSExtValue(), (int64_t)0, MaxIndex
);
17686 // The builtin semantics don't exactly match the xxinsertw instructions
17687 // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
17688 // word from the first argument, and inserts it in the second argument. The
17689 // instruction extracts the word from its second input register and inserts
17690 // it into its first input register, so swap the first and second arguments.
17691 std::swap(Op0
, Op1
);
17693 // Need to cast the second argument from a vector of unsigned int to a
17694 // vector of long long.
17695 Op1
= Builder
.CreateBitCast(Op1
, llvm::FixedVectorType::get(Int64Ty
, 2));
17697 if (getTarget().isLittleEndian()) {
17698 // Reverse the double words in the vector we will extract from.
17699 Op0
= Builder
.CreateBitCast(Op0
, llvm::FixedVectorType::get(Int64Ty
, 2));
17700 Op0
= Builder
.CreateShuffleVector(Op0
, Op0
, ArrayRef
<int>{1, 0});
17702 // Reverse the index.
17703 Index
= MaxIndex
- Index
;
17706 // Intrinsic expects the first arg to be a vector of int.
17707 Op0
= Builder
.CreateBitCast(Op0
, llvm::FixedVectorType::get(Int32Ty
, 4));
17708 Op2
= ConstantInt::getSigned(Int32Ty
, Index
);
17709 return Builder
.CreateCall(F
, {Op0
, Op1
, Op2
});
17712 case PPC::BI__builtin_vsx_extractuword
: {
17713 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
17714 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
17715 llvm::Function
*F
= CGM
.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw
);
17717 // Intrinsic expects the first argument to be a vector of doublewords.
17718 Op0
= Builder
.CreateBitCast(Op0
, llvm::FixedVectorType::get(Int64Ty
, 2));
17720 // The second argument is a compile time constant int that needs to
17721 // be clamped to the range [0, 12].
17722 ConstantInt
*ArgCI
= dyn_cast
<ConstantInt
>(Op1
);
17724 "Second Arg to xxextractuw intrinsic must be a constant integer!");
17725 const int64_t MaxIndex
= 12;
17726 int64_t Index
= std::clamp(ArgCI
->getSExtValue(), (int64_t)0, MaxIndex
);
17728 if (getTarget().isLittleEndian()) {
17729 // Reverse the index.
17730 Index
= MaxIndex
- Index
;
17731 Op1
= ConstantInt::getSigned(Int32Ty
, Index
);
17733 // Emit the call, then reverse the double words of the results vector.
17734 Value
*Call
= Builder
.CreateCall(F
, {Op0
, Op1
});
17736 Value
*ShuffleCall
=
17737 Builder
.CreateShuffleVector(Call
, Call
, ArrayRef
<int>{1, 0});
17738 return ShuffleCall
;
17740 Op1
= ConstantInt::getSigned(Int32Ty
, Index
);
17741 return Builder
.CreateCall(F
, {Op0
, Op1
});
17745 case PPC::BI__builtin_vsx_xxpermdi
: {
17746 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
17747 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
17748 Value
*Op2
= EmitScalarExpr(E
->getArg(2));
17749 ConstantInt
*ArgCI
= dyn_cast
<ConstantInt
>(Op2
);
17750 assert(ArgCI
&& "Third arg must be constant integer!");
17752 unsigned Index
= ArgCI
->getZExtValue();
17753 Op0
= Builder
.CreateBitCast(Op0
, llvm::FixedVectorType::get(Int64Ty
, 2));
17754 Op1
= Builder
.CreateBitCast(Op1
, llvm::FixedVectorType::get(Int64Ty
, 2));
17756 // Account for endianness by treating this as just a shuffle. So we use the
17757 // same indices for both LE and BE in order to produce expected results in
17759 int ElemIdx0
= (Index
& 2) >> 1;
17760 int ElemIdx1
= 2 + (Index
& 1);
17762 int ShuffleElts
[2] = {ElemIdx0
, ElemIdx1
};
17763 Value
*ShuffleCall
= Builder
.CreateShuffleVector(Op0
, Op1
, ShuffleElts
);
17764 QualType BIRetType
= E
->getType();
17765 auto RetTy
= ConvertType(BIRetType
);
17766 return Builder
.CreateBitCast(ShuffleCall
, RetTy
);
17769 case PPC::BI__builtin_vsx_xxsldwi
: {
17770 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
17771 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
17772 Value
*Op2
= EmitScalarExpr(E
->getArg(2));
17773 ConstantInt
*ArgCI
= dyn_cast
<ConstantInt
>(Op2
);
17774 assert(ArgCI
&& "Third argument must be a compile time constant");
17775 unsigned Index
= ArgCI
->getZExtValue() & 0x3;
17776 Op0
= Builder
.CreateBitCast(Op0
, llvm::FixedVectorType::get(Int32Ty
, 4));
17777 Op1
= Builder
.CreateBitCast(Op1
, llvm::FixedVectorType::get(Int32Ty
, 4));
17779 // Create a shuffle mask
17784 if (getTarget().isLittleEndian()) {
17785 // Little endian element N comes from element 8+N-Index of the
17786 // concatenated wide vector (of course, using modulo arithmetic on
17787 // the total number of elements).
17788 ElemIdx0
= (8 - Index
) % 8;
17789 ElemIdx1
= (9 - Index
) % 8;
17790 ElemIdx2
= (10 - Index
) % 8;
17791 ElemIdx3
= (11 - Index
) % 8;
17793 // Big endian ElemIdx<N> = Index + N
17795 ElemIdx1
= Index
+ 1;
17796 ElemIdx2
= Index
+ 2;
17797 ElemIdx3
= Index
+ 3;
17800 int ShuffleElts
[4] = {ElemIdx0
, ElemIdx1
, ElemIdx2
, ElemIdx3
};
17801 Value
*ShuffleCall
= Builder
.CreateShuffleVector(Op0
, Op1
, ShuffleElts
);
17802 QualType BIRetType
= E
->getType();
17803 auto RetTy
= ConvertType(BIRetType
);
17804 return Builder
.CreateBitCast(ShuffleCall
, RetTy
);
17807 case PPC::BI__builtin_pack_vector_int128
: {
17808 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
17809 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
17810 bool isLittleEndian
= getTarget().isLittleEndian();
17811 Value
*PoisonValue
=
17812 llvm::PoisonValue::get(llvm::FixedVectorType::get(Op0
->getType(), 2));
17813 Value
*Res
= Builder
.CreateInsertElement(
17814 PoisonValue
, Op0
, (uint64_t)(isLittleEndian
? 1 : 0));
17815 Res
= Builder
.CreateInsertElement(Res
, Op1
,
17816 (uint64_t)(isLittleEndian
? 0 : 1));
17817 return Builder
.CreateBitCast(Res
, ConvertType(E
->getType()));
17820 case PPC::BI__builtin_unpack_vector_int128
: {
17821 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
17822 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
17823 ConstantInt
*Index
= cast
<ConstantInt
>(Op1
);
17824 Value
*Unpacked
= Builder
.CreateBitCast(
17825 Op0
, llvm::FixedVectorType::get(ConvertType(E
->getType()), 2));
17827 if (getTarget().isLittleEndian())
17829 ConstantInt::get(Index
->getIntegerType(), 1 - Index
->getZExtValue());
17831 return Builder
.CreateExtractElement(Unpacked
, Index
);
17834 case PPC::BI__builtin_ppc_sthcx
: {
17835 llvm::Function
*F
= CGM
.getIntrinsic(Intrinsic::ppc_sthcx
);
17836 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
17837 Value
*Op1
= Builder
.CreateSExt(EmitScalarExpr(E
->getArg(1)), Int32Ty
);
17838 return Builder
.CreateCall(F
, {Op0
, Op1
});
17841 // The PPC MMA builtins take a pointer to a __vector_quad as an argument.
17842 // Some of the MMA instructions accumulate their result into an existing
17843 // accumulator whereas the others generate a new accumulator. So we need to
17844 // use custom code generation to expand a builtin call with a pointer to a
17845 // load (if the corresponding instruction accumulates its result) followed by
17846 // the call to the intrinsic and a store of the result.
17847 #define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate, Feature) \
17848 case PPC::BI__builtin_##Name:
17849 #include "clang/Basic/BuiltinsPPC.def"
17851 SmallVector
<Value
*, 4> Ops
;
17852 for (unsigned i
= 0, e
= E
->getNumArgs(); i
!= e
; i
++)
17853 if (E
->getArg(i
)->getType()->isArrayType())
17855 EmitArrayToPointerDecay(E
->getArg(i
)).emitRawPointer(*this));
17857 Ops
.push_back(EmitScalarExpr(E
->getArg(i
)));
17858 // The first argument of these two builtins is a pointer used to store their
17859 // result. However, the llvm intrinsics return their result in multiple
17860 // return values. So, here we emit code extracting these values from the
17861 // intrinsic results and storing them using that pointer.
17862 if (BuiltinID
== PPC::BI__builtin_mma_disassemble_acc
||
17863 BuiltinID
== PPC::BI__builtin_vsx_disassemble_pair
||
17864 BuiltinID
== PPC::BI__builtin_mma_disassemble_pair
) {
17865 unsigned NumVecs
= 2;
17866 auto Intrinsic
= Intrinsic::ppc_vsx_disassemble_pair
;
17867 if (BuiltinID
== PPC::BI__builtin_mma_disassemble_acc
) {
17869 Intrinsic
= Intrinsic::ppc_mma_disassemble_acc
;
17871 llvm::Function
*F
= CGM
.getIntrinsic(Intrinsic
);
17872 Address Addr
= EmitPointerWithAlignment(E
->getArg(1));
17873 Value
*Vec
= Builder
.CreateLoad(Addr
);
17874 Value
*Call
= Builder
.CreateCall(F
, {Vec
});
17875 llvm::Type
*VTy
= llvm::FixedVectorType::get(Int8Ty
, 16);
17876 Value
*Ptr
= Ops
[0];
17877 for (unsigned i
=0; i
<NumVecs
; i
++) {
17878 Value
*Vec
= Builder
.CreateExtractValue(Call
, i
);
17879 llvm::ConstantInt
* Index
= llvm::ConstantInt::get(IntTy
, i
);
17880 Value
*GEP
= Builder
.CreateInBoundsGEP(VTy
, Ptr
, Index
);
17881 Builder
.CreateAlignedStore(Vec
, GEP
, MaybeAlign(16));
17885 if (BuiltinID
== PPC::BI__builtin_vsx_build_pair
||
17886 BuiltinID
== PPC::BI__builtin_mma_build_acc
) {
17887 // Reverse the order of the operands for LE, so the
17888 // same builtin call can be used on both LE and BE
17889 // without the need for the programmer to swap operands.
17890 // The operands are reversed starting from the second argument,
17891 // the first operand is the pointer to the pair/accumulator
17892 // that is being built.
17893 if (getTarget().isLittleEndian())
17894 std::reverse(Ops
.begin() + 1, Ops
.end());
17897 switch (BuiltinID
) {
17898 #define CUSTOM_BUILTIN(Name, Intr, Types, Acc, Feature) \
17899 case PPC::BI__builtin_##Name: \
17900 ID = Intrinsic::ppc_##Intr; \
17901 Accumulate = Acc; \
17903 #include "clang/Basic/BuiltinsPPC.def"
17905 if (BuiltinID
== PPC::BI__builtin_vsx_lxvp
||
17906 BuiltinID
== PPC::BI__builtin_vsx_stxvp
||
17907 BuiltinID
== PPC::BI__builtin_mma_lxvp
||
17908 BuiltinID
== PPC::BI__builtin_mma_stxvp
) {
17909 if (BuiltinID
== PPC::BI__builtin_vsx_lxvp
||
17910 BuiltinID
== PPC::BI__builtin_mma_lxvp
) {
17911 Ops
[0] = Builder
.CreateGEP(Int8Ty
, Ops
[1], Ops
[0]);
17913 Ops
[1] = Builder
.CreateGEP(Int8Ty
, Ops
[2], Ops
[1]);
17916 llvm::Function
*F
= CGM
.getIntrinsic(ID
);
17917 return Builder
.CreateCall(F
, Ops
, "");
17919 SmallVector
<Value
*, 4> CallOps
;
17921 Address Addr
= EmitPointerWithAlignment(E
->getArg(0));
17922 Value
*Acc
= Builder
.CreateLoad(Addr
);
17923 CallOps
.push_back(Acc
);
17925 for (unsigned i
=1; i
<Ops
.size(); i
++)
17926 CallOps
.push_back(Ops
[i
]);
17927 llvm::Function
*F
= CGM
.getIntrinsic(ID
);
17928 Value
*Call
= Builder
.CreateCall(F
, CallOps
);
17929 return Builder
.CreateAlignedStore(Call
, Ops
[0], MaybeAlign(64));
17932 case PPC::BI__builtin_ppc_compare_and_swap
:
17933 case PPC::BI__builtin_ppc_compare_and_swaplp
: {
17934 Address Addr
= EmitPointerWithAlignment(E
->getArg(0));
17935 Address OldValAddr
= EmitPointerWithAlignment(E
->getArg(1));
17936 Value
*OldVal
= Builder
.CreateLoad(OldValAddr
);
17937 QualType AtomicTy
= E
->getArg(0)->getType()->getPointeeType();
17938 LValue LV
= MakeAddrLValue(Addr
, AtomicTy
);
17939 Value
*Op2
= EmitScalarExpr(E
->getArg(2));
17940 auto Pair
= EmitAtomicCompareExchange(
17941 LV
, RValue::get(OldVal
), RValue::get(Op2
), E
->getExprLoc(),
17942 llvm::AtomicOrdering::Monotonic
, llvm::AtomicOrdering::Monotonic
, true);
17943 // Unlike c11's atomic_compare_exchange, according to
17944 // https://www.ibm.com/docs/en/xl-c-and-cpp-aix/16.1?topic=functions-compare-swap-compare-swaplp
17945 // > In either case, the contents of the memory location specified by addr
17946 // > are copied into the memory location specified by old_val_addr.
17947 // But it hasn't specified storing to OldValAddr is atomic or not and
17948 // which order to use. Now following XL's codegen, treat it as a normal
17950 Value
*LoadedVal
= Pair
.first
.getScalarVal();
17951 Builder
.CreateStore(LoadedVal
, OldValAddr
);
17952 return Builder
.CreateZExt(Pair
.second
, Builder
.getInt32Ty());
17954 case PPC::BI__builtin_ppc_fetch_and_add
:
17955 case PPC::BI__builtin_ppc_fetch_and_addlp
: {
17956 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add
, E
,
17957 llvm::AtomicOrdering::Monotonic
);
17959 case PPC::BI__builtin_ppc_fetch_and_and
:
17960 case PPC::BI__builtin_ppc_fetch_and_andlp
: {
17961 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And
, E
,
17962 llvm::AtomicOrdering::Monotonic
);
17965 case PPC::BI__builtin_ppc_fetch_and_or
:
17966 case PPC::BI__builtin_ppc_fetch_and_orlp
: {
17967 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or
, E
,
17968 llvm::AtomicOrdering::Monotonic
);
17970 case PPC::BI__builtin_ppc_fetch_and_swap
:
17971 case PPC::BI__builtin_ppc_fetch_and_swaplp
: {
17972 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg
, E
,
17973 llvm::AtomicOrdering::Monotonic
);
17975 case PPC::BI__builtin_ppc_ldarx
:
17976 case PPC::BI__builtin_ppc_lwarx
:
17977 case PPC::BI__builtin_ppc_lharx
:
17978 case PPC::BI__builtin_ppc_lbarx
:
17979 return emitPPCLoadReserveIntrinsic(*this, BuiltinID
, E
);
17980 case PPC::BI__builtin_ppc_mfspr
: {
17981 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
17982 llvm::Type
*RetType
= CGM
.getDataLayout().getTypeSizeInBits(VoidPtrTy
) == 32
17985 Function
*F
= CGM
.getIntrinsic(Intrinsic::ppc_mfspr
, RetType
);
17986 return Builder
.CreateCall(F
, {Op0
});
17988 case PPC::BI__builtin_ppc_mtspr
: {
17989 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
17990 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
17991 llvm::Type
*RetType
= CGM
.getDataLayout().getTypeSizeInBits(VoidPtrTy
) == 32
17994 Function
*F
= CGM
.getIntrinsic(Intrinsic::ppc_mtspr
, RetType
);
17995 return Builder
.CreateCall(F
, {Op0
, Op1
});
17997 case PPC::BI__builtin_ppc_popcntb
: {
17998 Value
*ArgValue
= EmitScalarExpr(E
->getArg(0));
17999 llvm::Type
*ArgType
= ArgValue
->getType();
18000 Function
*F
= CGM
.getIntrinsic(Intrinsic::ppc_popcntb
, {ArgType
, ArgType
});
18001 return Builder
.CreateCall(F
, {ArgValue
}, "popcntb");
18003 case PPC::BI__builtin_ppc_mtfsf
: {
18004 // The builtin takes a uint32 that needs to be cast to an
18005 // f64 to be passed to the intrinsic.
18006 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
18007 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
18008 Value
*Cast
= Builder
.CreateUIToFP(Op1
, DoubleTy
);
18009 llvm::Function
*F
= CGM
.getIntrinsic(Intrinsic::ppc_mtfsf
);
18010 return Builder
.CreateCall(F
, {Op0
, Cast
}, "");
18013 case PPC::BI__builtin_ppc_swdiv_nochk
:
18014 case PPC::BI__builtin_ppc_swdivs_nochk
: {
18015 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
18016 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
18017 FastMathFlags FMF
= Builder
.getFastMathFlags();
18018 Builder
.getFastMathFlags().setFast();
18019 Value
*FDiv
= Builder
.CreateFDiv(Op0
, Op1
, "swdiv_nochk");
18020 Builder
.getFastMathFlags() &= (FMF
);
18023 case PPC::BI__builtin_ppc_fric
:
18024 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18025 *this, E
, Intrinsic::rint
,
18026 Intrinsic::experimental_constrained_rint
))
18028 case PPC::BI__builtin_ppc_frim
:
18029 case PPC::BI__builtin_ppc_frims
:
18030 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18031 *this, E
, Intrinsic::floor
,
18032 Intrinsic::experimental_constrained_floor
))
18034 case PPC::BI__builtin_ppc_frin
:
18035 case PPC::BI__builtin_ppc_frins
:
18036 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18037 *this, E
, Intrinsic::round
,
18038 Intrinsic::experimental_constrained_round
))
18040 case PPC::BI__builtin_ppc_frip
:
18041 case PPC::BI__builtin_ppc_frips
:
18042 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18043 *this, E
, Intrinsic::ceil
,
18044 Intrinsic::experimental_constrained_ceil
))
18046 case PPC::BI__builtin_ppc_friz
:
18047 case PPC::BI__builtin_ppc_frizs
:
18048 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18049 *this, E
, Intrinsic::trunc
,
18050 Intrinsic::experimental_constrained_trunc
))
18052 case PPC::BI__builtin_ppc_fsqrt
:
18053 case PPC::BI__builtin_ppc_fsqrts
:
18054 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18055 *this, E
, Intrinsic::sqrt
,
18056 Intrinsic::experimental_constrained_sqrt
))
18058 case PPC::BI__builtin_ppc_test_data_class
: {
18059 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
18060 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
18061 return Builder
.CreateCall(
18062 CGM
.getIntrinsic(Intrinsic::ppc_test_data_class
, Op0
->getType()),
18063 {Op0
, Op1
}, "test_data_class");
18065 case PPC::BI__builtin_ppc_maxfe
: {
18066 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
18067 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
18068 Value
*Op2
= EmitScalarExpr(E
->getArg(2));
18069 Value
*Op3
= EmitScalarExpr(E
->getArg(3));
18070 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::ppc_maxfe
),
18071 {Op0
, Op1
, Op2
, Op3
});
18073 case PPC::BI__builtin_ppc_maxfl
: {
18074 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
18075 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
18076 Value
*Op2
= EmitScalarExpr(E
->getArg(2));
18077 Value
*Op3
= EmitScalarExpr(E
->getArg(3));
18078 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::ppc_maxfl
),
18079 {Op0
, Op1
, Op2
, Op3
});
18081 case PPC::BI__builtin_ppc_maxfs
: {
18082 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
18083 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
18084 Value
*Op2
= EmitScalarExpr(E
->getArg(2));
18085 Value
*Op3
= EmitScalarExpr(E
->getArg(3));
18086 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::ppc_maxfs
),
18087 {Op0
, Op1
, Op2
, Op3
});
18089 case PPC::BI__builtin_ppc_minfe
: {
18090 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
18091 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
18092 Value
*Op2
= EmitScalarExpr(E
->getArg(2));
18093 Value
*Op3
= EmitScalarExpr(E
->getArg(3));
18094 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::ppc_minfe
),
18095 {Op0
, Op1
, Op2
, Op3
});
18097 case PPC::BI__builtin_ppc_minfl
: {
18098 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
18099 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
18100 Value
*Op2
= EmitScalarExpr(E
->getArg(2));
18101 Value
*Op3
= EmitScalarExpr(E
->getArg(3));
18102 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::ppc_minfl
),
18103 {Op0
, Op1
, Op2
, Op3
});
18105 case PPC::BI__builtin_ppc_minfs
: {
18106 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
18107 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
18108 Value
*Op2
= EmitScalarExpr(E
->getArg(2));
18109 Value
*Op3
= EmitScalarExpr(E
->getArg(3));
18110 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::ppc_minfs
),
18111 {Op0
, Op1
, Op2
, Op3
});
18113 case PPC::BI__builtin_ppc_swdiv
:
18114 case PPC::BI__builtin_ppc_swdivs
: {
18115 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
18116 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
18117 return Builder
.CreateFDiv(Op0
, Op1
, "swdiv");
18119 case PPC::BI__builtin_ppc_set_fpscr_rn
:
18120 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::ppc_setrnd
),
18121 {EmitScalarExpr(E
->getArg(0))});
18122 case PPC::BI__builtin_ppc_mffs
:
18123 return Builder
.CreateCall(CGM
.getIntrinsic(Intrinsic::ppc_readflm
));
18128 // If \p E is not null pointer, insert address space cast to match return
18129 // type of \p E if necessary.
18130 Value
*EmitAMDGPUDispatchPtr(CodeGenFunction
&CGF
,
18131 const CallExpr
*E
= nullptr) {
18132 auto *F
= CGF
.CGM
.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr
);
18133 auto *Call
= CGF
.Builder
.CreateCall(F
);
18135 Attribute::getWithDereferenceableBytes(Call
->getContext(), 64));
18136 Call
->addRetAttr(Attribute::getWithAlignment(Call
->getContext(), Align(4)));
18139 QualType BuiltinRetType
= E
->getType();
18140 auto *RetTy
= cast
<llvm::PointerType
>(CGF
.ConvertType(BuiltinRetType
));
18141 if (RetTy
== Call
->getType())
18143 return CGF
.Builder
.CreateAddrSpaceCast(Call
, RetTy
);
18146 Value
*EmitAMDGPUImplicitArgPtr(CodeGenFunction
&CGF
) {
18147 auto *F
= CGF
.CGM
.getIntrinsic(Intrinsic::amdgcn_implicitarg_ptr
);
18148 auto *Call
= CGF
.Builder
.CreateCall(F
);
18150 Attribute::getWithDereferenceableBytes(Call
->getContext(), 256));
18151 Call
->addRetAttr(Attribute::getWithAlignment(Call
->getContext(), Align(8)));
18155 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
18156 /// Emit code based on Code Object ABI version.
18157 /// COV_4 : Emit code to use dispatch ptr
18158 /// COV_5+ : Emit code to use implicitarg ptr
18159 /// COV_NONE : Emit code to load a global variable "__oclc_ABI_version"
18160 /// and use its value for COV_4 or COV_5+ approach. It is used for
18161 /// compiling device libraries in an ABI-agnostic way.
18163 /// Note: "__oclc_ABI_version" is supposed to be emitted and intialized by
18164 /// clang during compilation of user code.
18165 Value
*EmitAMDGPUWorkGroupSize(CodeGenFunction
&CGF
, unsigned Index
) {
18166 llvm::LoadInst
*LD
;
18168 auto Cov
= CGF
.getTarget().getTargetOpts().CodeObjectVersion
;
18170 if (Cov
== CodeObjectVersionKind::COV_None
) {
18171 StringRef Name
= "__oclc_ABI_version";
18172 auto *ABIVersionC
= CGF
.CGM
.getModule().getNamedGlobal(Name
);
18174 ABIVersionC
= new llvm::GlobalVariable(
18175 CGF
.CGM
.getModule(), CGF
.Int32Ty
, false,
18176 llvm::GlobalValue::ExternalLinkage
, nullptr, Name
, nullptr,
18177 llvm::GlobalVariable::NotThreadLocal
,
18178 CGF
.CGM
.getContext().getTargetAddressSpace(LangAS::opencl_constant
));
18180 // This load will be eliminated by the IPSCCP because it is constant
18181 // weak_odr without externally_initialized. Either changing it to weak or
18182 // adding externally_initialized will keep the load.
18183 Value
*ABIVersion
= CGF
.Builder
.CreateAlignedLoad(CGF
.Int32Ty
, ABIVersionC
,
18184 CGF
.CGM
.getIntAlign());
18186 Value
*IsCOV5
= CGF
.Builder
.CreateICmpSGE(
18188 llvm::ConstantInt::get(CGF
.Int32Ty
, CodeObjectVersionKind::COV_5
));
18190 // Indexing the implicit kernarg segment.
18191 Value
*ImplicitGEP
= CGF
.Builder
.CreateConstGEP1_32(
18192 CGF
.Int8Ty
, EmitAMDGPUImplicitArgPtr(CGF
), 12 + Index
* 2);
18194 // Indexing the HSA kernel_dispatch_packet struct.
18195 Value
*DispatchGEP
= CGF
.Builder
.CreateConstGEP1_32(
18196 CGF
.Int8Ty
, EmitAMDGPUDispatchPtr(CGF
), 4 + Index
* 2);
18198 auto Result
= CGF
.Builder
.CreateSelect(IsCOV5
, ImplicitGEP
, DispatchGEP
);
18199 LD
= CGF
.Builder
.CreateLoad(
18200 Address(Result
, CGF
.Int16Ty
, CharUnits::fromQuantity(2)));
18202 Value
*GEP
= nullptr;
18203 if (Cov
>= CodeObjectVersionKind::COV_5
) {
18204 // Indexing the implicit kernarg segment.
18205 GEP
= CGF
.Builder
.CreateConstGEP1_32(
18206 CGF
.Int8Ty
, EmitAMDGPUImplicitArgPtr(CGF
), 12 + Index
* 2);
18208 // Indexing the HSA kernel_dispatch_packet struct.
18209 GEP
= CGF
.Builder
.CreateConstGEP1_32(
18210 CGF
.Int8Ty
, EmitAMDGPUDispatchPtr(CGF
), 4 + Index
* 2);
18212 LD
= CGF
.Builder
.CreateLoad(
18213 Address(GEP
, CGF
.Int16Ty
, CharUnits::fromQuantity(2)));
18216 llvm::MDBuilder
MDHelper(CGF
.getLLVMContext());
18217 llvm::MDNode
*RNode
= MDHelper
.createRange(APInt(16, 1),
18218 APInt(16, CGF
.getTarget().getMaxOpenCLWorkGroupSize() + 1));
18219 LD
->setMetadata(llvm::LLVMContext::MD_range
, RNode
);
18220 LD
->setMetadata(llvm::LLVMContext::MD_noundef
,
18221 llvm::MDNode::get(CGF
.getLLVMContext(), std::nullopt
));
18222 LD
->setMetadata(llvm::LLVMContext::MD_invariant_load
,
18223 llvm::MDNode::get(CGF
.getLLVMContext(), std::nullopt
));
18227 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
18228 Value
*EmitAMDGPUGridSize(CodeGenFunction
&CGF
, unsigned Index
) {
18229 const unsigned XOffset
= 12;
18230 auto *DP
= EmitAMDGPUDispatchPtr(CGF
);
18231 // Indexing the HSA kernel_dispatch_packet struct.
18232 auto *Offset
= llvm::ConstantInt::get(CGF
.Int32Ty
, XOffset
+ Index
* 4);
18233 auto *GEP
= CGF
.Builder
.CreateGEP(CGF
.Int8Ty
, DP
, Offset
);
18234 auto *LD
= CGF
.Builder
.CreateLoad(
18235 Address(GEP
, CGF
.Int32Ty
, CharUnits::fromQuantity(4)));
18236 LD
->setMetadata(llvm::LLVMContext::MD_invariant_load
,
18237 llvm::MDNode::get(CGF
.getLLVMContext(), std::nullopt
));
18242 // For processing memory ordering and memory scope arguments of various
18243 // amdgcn builtins.
18244 // \p Order takes a C++11 comptabile memory-ordering specifier and converts
18245 // it into LLVM's memory ordering specifier using atomic C ABI, and writes
18246 // to \p AO. \p Scope takes a const char * and converts it into AMDGCN
18247 // specific SyncScopeID and writes it to \p SSID.
18248 void CodeGenFunction::ProcessOrderScopeAMDGCN(Value
*Order
, Value
*Scope
,
18249 llvm::AtomicOrdering
&AO
,
18250 llvm::SyncScope::ID
&SSID
) {
18251 int ord
= cast
<llvm::ConstantInt
>(Order
)->getZExtValue();
18253 // Map C11/C++11 memory ordering to LLVM memory ordering
18254 assert(llvm::isValidAtomicOrderingCABI(ord
));
18255 switch (static_cast<llvm::AtomicOrderingCABI
>(ord
)) {
18256 case llvm::AtomicOrderingCABI::acquire
:
18257 case llvm::AtomicOrderingCABI::consume
:
18258 AO
= llvm::AtomicOrdering::Acquire
;
18260 case llvm::AtomicOrderingCABI::release
:
18261 AO
= llvm::AtomicOrdering::Release
;
18263 case llvm::AtomicOrderingCABI::acq_rel
:
18264 AO
= llvm::AtomicOrdering::AcquireRelease
;
18266 case llvm::AtomicOrderingCABI::seq_cst
:
18267 AO
= llvm::AtomicOrdering::SequentiallyConsistent
;
18269 case llvm::AtomicOrderingCABI::relaxed
:
18270 AO
= llvm::AtomicOrdering::Monotonic
;
18274 // Some of the atomic builtins take the scope as a string name.
18276 if (llvm::getConstantStringInfo(Scope
, scp
)) {
18277 SSID
= getLLVMContext().getOrInsertSyncScopeID(scp
);
18281 // Older builtins had an enum argument for the memory scope.
18282 int scope
= cast
<llvm::ConstantInt
>(Scope
)->getZExtValue();
18284 case 0: // __MEMORY_SCOPE_SYSTEM
18285 SSID
= llvm::SyncScope::System
;
18287 case 1: // __MEMORY_SCOPE_DEVICE
18288 SSID
= getLLVMContext().getOrInsertSyncScopeID("agent");
18290 case 2: // __MEMORY_SCOPE_WRKGRP
18291 SSID
= getLLVMContext().getOrInsertSyncScopeID("workgroup");
18293 case 3: // __MEMORY_SCOPE_WVFRNT
18294 SSID
= getLLVMContext().getOrInsertSyncScopeID("wavefront");
18296 case 4: // __MEMORY_SCOPE_SINGLE
18297 SSID
= llvm::SyncScope::SingleThread
;
18300 SSID
= llvm::SyncScope::System
;
18305 llvm::Value
*CodeGenFunction::EmitScalarOrConstFoldImmArg(unsigned ICEArguments
,
18307 const CallExpr
*E
) {
18308 llvm::Value
*Arg
= nullptr;
18309 if ((ICEArguments
& (1 << Idx
)) == 0) {
18310 Arg
= EmitScalarExpr(E
->getArg(Idx
));
18312 // If this is required to be a constant, constant fold it so that we
18313 // know that the generated intrinsic gets a ConstantInt.
18314 std::optional
<llvm::APSInt
> Result
=
18315 E
->getArg(Idx
)->getIntegerConstantExpr(getContext());
18316 assert(Result
&& "Expected argument to be a constant");
18317 Arg
= llvm::ConstantInt::get(getLLVMContext(), *Result
);
18322 Intrinsic::ID
getDotProductIntrinsic(QualType QT
, int elementCount
) {
18323 if (QT
->hasFloatingRepresentation()) {
18324 switch (elementCount
) {
18326 return Intrinsic::dx_dot2
;
18328 return Intrinsic::dx_dot3
;
18330 return Intrinsic::dx_dot4
;
18333 if (QT
->hasSignedIntegerRepresentation())
18334 return Intrinsic::dx_sdot
;
18336 assert(QT
->hasUnsignedIntegerRepresentation());
18337 return Intrinsic::dx_udot
;
18340 Value
*CodeGenFunction::EmitHLSLBuiltinExpr(unsigned BuiltinID
,
18341 const CallExpr
*E
) {
18342 if (!getLangOpts().HLSL
)
18345 switch (BuiltinID
) {
18346 case Builtin::BI__builtin_hlsl_elementwise_all
: {
18347 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
18348 return Builder
.CreateIntrinsic(
18349 /*ReturnType=*/llvm::Type::getInt1Ty(getLLVMContext()),
18350 CGM
.getHLSLRuntime().getAllIntrinsic(), ArrayRef
<Value
*>{Op0
}, nullptr,
18353 case Builtin::BI__builtin_hlsl_elementwise_any
: {
18354 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
18355 return Builder
.CreateIntrinsic(
18356 /*ReturnType=*/llvm::Type::getInt1Ty(getLLVMContext()),
18357 CGM
.getHLSLRuntime().getAnyIntrinsic(), ArrayRef
<Value
*>{Op0
}, nullptr,
18360 case Builtin::BI__builtin_hlsl_elementwise_clamp
: {
18361 Value
*OpX
= EmitScalarExpr(E
->getArg(0));
18362 Value
*OpMin
= EmitScalarExpr(E
->getArg(1));
18363 Value
*OpMax
= EmitScalarExpr(E
->getArg(2));
18365 QualType Ty
= E
->getArg(0)->getType();
18366 bool IsUnsigned
= false;
18367 if (auto *VecTy
= Ty
->getAs
<VectorType
>())
18368 Ty
= VecTy
->getElementType();
18369 IsUnsigned
= Ty
->isUnsignedIntegerType();
18370 return Builder
.CreateIntrinsic(
18371 /*ReturnType=*/OpX
->getType(),
18372 IsUnsigned
? Intrinsic::dx_uclamp
: Intrinsic::dx_clamp
,
18373 ArrayRef
<Value
*>{OpX
, OpMin
, OpMax
}, nullptr, "dx.clamp");
18375 case Builtin::BI__builtin_hlsl_dot
: {
18376 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
18377 Value
*Op1
= EmitScalarExpr(E
->getArg(1));
18378 llvm::Type
*T0
= Op0
->getType();
18379 llvm::Type
*T1
= Op1
->getType();
18380 if (!T0
->isVectorTy() && !T1
->isVectorTy()) {
18381 if (T0
->isFloatingPointTy())
18382 return Builder
.CreateFMul(Op0
, Op1
, "dx.dot");
18384 if (T0
->isIntegerTy())
18385 return Builder
.CreateMul(Op0
, Op1
, "dx.dot");
18387 // Bools should have been promoted
18389 "Scalar dot product is only supported on ints and floats.");
18391 // A VectorSplat should have happened
18392 assert(T0
->isVectorTy() && T1
->isVectorTy() &&
18393 "Dot product of vector and scalar is not supported.");
18395 // A vector sext or sitofp should have happened
18396 assert(T0
->getScalarType() == T1
->getScalarType() &&
18397 "Dot product of vectors need the same element types.");
18399 auto *VecTy0
= E
->getArg(0)->getType()->getAs
<VectorType
>();
18400 [[maybe_unused
]] auto *VecTy1
=
18401 E
->getArg(1)->getType()->getAs
<VectorType
>();
18402 // A HLSLVectorTruncation should have happend
18403 assert(VecTy0
->getNumElements() == VecTy1
->getNumElements() &&
18404 "Dot product requires vectors to be of the same size.");
18406 return Builder
.CreateIntrinsic(
18407 /*ReturnType=*/T0
->getScalarType(),
18408 getDotProductIntrinsic(E
->getArg(0)->getType(),
18409 VecTy0
->getNumElements()),
18410 ArrayRef
<Value
*>{Op0
, Op1
}, nullptr, "dx.dot");
18412 case Builtin::BI__builtin_hlsl_lerp
: {
18413 Value
*X
= EmitScalarExpr(E
->getArg(0));
18414 Value
*Y
= EmitScalarExpr(E
->getArg(1));
18415 Value
*S
= EmitScalarExpr(E
->getArg(2));
18416 if (!E
->getArg(0)->getType()->hasFloatingRepresentation())
18417 llvm_unreachable("lerp operand must have a float representation");
18418 return Builder
.CreateIntrinsic(
18419 /*ReturnType=*/X
->getType(), CGM
.getHLSLRuntime().getLerpIntrinsic(),
18420 ArrayRef
<Value
*>{X
, Y
, S
}, nullptr, "hlsl.lerp");
18422 case Builtin::BI__builtin_hlsl_elementwise_frac
: {
18423 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
18424 if (!E
->getArg(0)->getType()->hasFloatingRepresentation())
18425 llvm_unreachable("frac operand must have a float representation");
18426 return Builder
.CreateIntrinsic(
18427 /*ReturnType=*/Op0
->getType(), Intrinsic::dx_frac
,
18428 ArrayRef
<Value
*>{Op0
}, nullptr, "dx.frac");
18430 case Builtin::BI__builtin_hlsl_elementwise_isinf
: {
18431 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
18432 llvm::Type
*Xty
= Op0
->getType();
18433 llvm::Type
*retType
= llvm::Type::getInt1Ty(this->getLLVMContext());
18434 if (Xty
->isVectorTy()) {
18435 auto *XVecTy
= E
->getArg(0)->getType()->getAs
<VectorType
>();
18436 retType
= llvm::VectorType::get(
18437 retType
, ElementCount::getFixed(XVecTy
->getNumElements()));
18439 if (!E
->getArg(0)->getType()->hasFloatingRepresentation())
18440 llvm_unreachable("isinf operand must have a float representation");
18441 return Builder
.CreateIntrinsic(retType
, Intrinsic::dx_isinf
,
18442 ArrayRef
<Value
*>{Op0
}, nullptr, "dx.isinf");
18444 case Builtin::BI__builtin_hlsl_mad
: {
18445 Value
*M
= EmitScalarExpr(E
->getArg(0));
18446 Value
*A
= EmitScalarExpr(E
->getArg(1));
18447 Value
*B
= EmitScalarExpr(E
->getArg(2));
18448 if (E
->getArg(0)->getType()->hasFloatingRepresentation())
18449 return Builder
.CreateIntrinsic(
18450 /*ReturnType*/ M
->getType(), Intrinsic::fmuladd
,
18451 ArrayRef
<Value
*>{M
, A
, B
}, nullptr, "hlsl.fmad");
18453 if (E
->getArg(0)->getType()->hasSignedIntegerRepresentation()) {
18454 if (CGM
.getTarget().getTriple().getArch() == llvm::Triple::dxil
)
18455 return Builder
.CreateIntrinsic(
18456 /*ReturnType*/ M
->getType(), Intrinsic::dx_imad
,
18457 ArrayRef
<Value
*>{M
, A
, B
}, nullptr, "dx.imad");
18459 Value
*Mul
= Builder
.CreateNSWMul(M
, A
);
18460 return Builder
.CreateNSWAdd(Mul
, B
);
18462 assert(E
->getArg(0)->getType()->hasUnsignedIntegerRepresentation());
18463 if (CGM
.getTarget().getTriple().getArch() == llvm::Triple::dxil
)
18464 return Builder
.CreateIntrinsic(
18465 /*ReturnType=*/M
->getType(), Intrinsic::dx_umad
,
18466 ArrayRef
<Value
*>{M
, A
, B
}, nullptr, "dx.umad");
18468 Value
*Mul
= Builder
.CreateNUWMul(M
, A
);
18469 return Builder
.CreateNUWAdd(Mul
, B
);
18471 case Builtin::BI__builtin_hlsl_elementwise_rcp
: {
18472 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
18473 if (!E
->getArg(0)->getType()->hasFloatingRepresentation())
18474 llvm_unreachable("rcp operand must have a float representation");
18475 llvm::Type
*Ty
= Op0
->getType();
18476 llvm::Type
*EltTy
= Ty
->getScalarType();
18477 Constant
*One
= Ty
->isVectorTy()
18478 ? ConstantVector::getSplat(
18479 ElementCount::getFixed(
18480 cast
<FixedVectorType
>(Ty
)->getNumElements()),
18481 ConstantFP::get(EltTy
, 1.0))
18482 : ConstantFP::get(EltTy
, 1.0);
18483 return Builder
.CreateFDiv(One
, Op0
, "hlsl.rcp");
18485 case Builtin::BI__builtin_hlsl_elementwise_rsqrt
: {
18486 Value
*Op0
= EmitScalarExpr(E
->getArg(0));
18487 if (!E
->getArg(0)->getType()->hasFloatingRepresentation())
18488 llvm_unreachable("rsqrt operand must have a float representation");
18489 return Builder
.CreateIntrinsic(
18490 /*ReturnType=*/Op0
->getType(), CGM
.getHLSLRuntime().getRsqrtIntrinsic(),
18491 ArrayRef
<Value
*>{Op0
}, nullptr, "hlsl.rsqrt");
18493 case Builtin::BI__builtin_hlsl_wave_get_lane_index
: {
18494 return EmitRuntimeCall(CGM
.CreateRuntimeFunction(
18495 llvm::FunctionType::get(IntTy
, {}, false), "__hlsl_wave_get_lane_index",
18502 void CodeGenFunction::AddAMDGPUFenceAddressSpaceMMRA(llvm::Instruction
*Inst
,
18503 const CallExpr
*E
) {
18504 constexpr const char *Tag
= "amdgpu-as";
18506 LLVMContext
&Ctx
= Inst
->getContext();
18507 SmallVector
<MMRAMetadata::TagT
, 3> MMRAs
;
18508 for (unsigned K
= 2; K
< E
->getNumArgs(); ++K
) {
18509 llvm::Value
*V
= EmitScalarExpr(E
->getArg(K
));
18511 if (llvm::getConstantStringInfo(V
, AS
)) {
18512 MMRAs
.push_back({Tag
, AS
});
18513 // TODO: Delete the resulting unused constant?
18516 CGM
.Error(E
->getExprLoc(),
18517 "expected an address space name as a string literal");
18521 MMRAs
.erase(llvm::unique(MMRAs
), MMRAs
.end());
18522 Inst
->setMetadata(LLVMContext::MD_mmra
, MMRAMetadata::getMD(Ctx
, MMRAs
));
18525 Value
*CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID
,
18526 const CallExpr
*E
) {
18527 llvm::AtomicOrdering AO
= llvm::AtomicOrdering::SequentiallyConsistent
;
18528 llvm::SyncScope::ID SSID
;
18529 switch (BuiltinID
) {
18530 case AMDGPU::BI__builtin_amdgcn_div_scale
:
18531 case AMDGPU::BI__builtin_amdgcn_div_scalef
: {
18532 // Translate from the intrinsics's struct return to the builtin's out
18535 Address FlagOutPtr
= EmitPointerWithAlignment(E
->getArg(3));
18537 llvm::Value
*X
= EmitScalarExpr(E
->getArg(0));
18538 llvm::Value
*Y
= EmitScalarExpr(E
->getArg(1));
18539 llvm::Value
*Z
= EmitScalarExpr(E
->getArg(2));
18541 llvm::Function
*Callee
= CGM
.getIntrinsic(Intrinsic::amdgcn_div_scale
,
18544 llvm::Value
*Tmp
= Builder
.CreateCall(Callee
, {X
, Y
, Z
});
18546 llvm::Value
*Result
= Builder
.CreateExtractValue(Tmp
, 0);
18547 llvm::Value
*Flag
= Builder
.CreateExtractValue(Tmp
, 1);
18549 llvm::Type
*RealFlagType
= FlagOutPtr
.getElementType();
18551 llvm::Value
*FlagExt
= Builder
.CreateZExt(Flag
, RealFlagType
);
18552 Builder
.CreateStore(FlagExt
, FlagOutPtr
);
18555 case AMDGPU::BI__builtin_amdgcn_div_fmas
:
18556 case AMDGPU::BI__builtin_amdgcn_div_fmasf
: {
18557 llvm::Value
*Src0
= EmitScalarExpr(E
->getArg(0));
18558 llvm::Value
*Src1
= EmitScalarExpr(E
->getArg(1));
18559 llvm::Value
*Src2
= EmitScalarExpr(E
->getArg(2));
18560 llvm::Value
*Src3
= EmitScalarExpr(E
->getArg(3));
18562 llvm::Function
*F
= CGM
.getIntrinsic(Intrinsic::amdgcn_div_fmas
,
18564 llvm::Value
*Src3ToBool
= Builder
.CreateIsNotNull(Src3
);
18565 return Builder
.CreateCall(F
, {Src0
, Src1
, Src2
, Src3ToBool
});
18568 case AMDGPU::BI__builtin_amdgcn_ds_swizzle
:
18569 return emitBuiltinWithOneOverloadedType
<2>(*this, E
,
18570 Intrinsic::amdgcn_ds_swizzle
);
18571 case AMDGPU::BI__builtin_amdgcn_mov_dpp8
:
18572 return emitBuiltinWithOneOverloadedType
<2>(*this, E
,
18573 Intrinsic::amdgcn_mov_dpp8
);
18574 case AMDGPU::BI__builtin_amdgcn_mov_dpp
:
18575 case AMDGPU::BI__builtin_amdgcn_update_dpp
: {
18576 llvm::SmallVector
<llvm::Value
*, 6> Args
;
18577 // Find out if any arguments are required to be integer constant
18579 unsigned ICEArguments
= 0;
18580 ASTContext::GetBuiltinTypeError Error
;
18581 getContext().GetBuiltinType(BuiltinID
, Error
, &ICEArguments
);
18582 assert(Error
== ASTContext::GE_None
&& "Should not codegen an error");
18583 for (unsigned I
= 0; I
!= E
->getNumArgs(); ++I
) {
18584 Args
.push_back(EmitScalarOrConstFoldImmArg(ICEArguments
, I
, E
));
18586 assert(Args
.size() == 5 || Args
.size() == 6);
18587 if (Args
.size() == 5)
18588 Args
.insert(Args
.begin(), llvm::PoisonValue::get(Args
[0]->getType()));
18590 CGM
.getIntrinsic(Intrinsic::amdgcn_update_dpp
, Args
[0]->getType());
18591 return Builder
.CreateCall(F
, Args
);
18593 case AMDGPU::BI__builtin_amdgcn_permlane16
:
18594 case AMDGPU::BI__builtin_amdgcn_permlanex16
:
18595 return emitBuiltinWithOneOverloadedType
<6>(
18597 BuiltinID
== AMDGPU::BI__builtin_amdgcn_permlane16
18598 ? Intrinsic::amdgcn_permlane16
18599 : Intrinsic::amdgcn_permlanex16
);
18600 case AMDGPU::BI__builtin_amdgcn_permlane64
:
18601 return emitBuiltinWithOneOverloadedType
<1>(*this, E
,
18602 Intrinsic::amdgcn_permlane64
);
18603 case AMDGPU::BI__builtin_amdgcn_readlane
:
18604 return emitBuiltinWithOneOverloadedType
<2>(*this, E
,
18605 Intrinsic::amdgcn_readlane
);
18606 case AMDGPU::BI__builtin_amdgcn_readfirstlane
:
18607 return emitBuiltinWithOneOverloadedType
<1>(*this, E
,
18608 Intrinsic::amdgcn_readfirstlane
);
18609 case AMDGPU::BI__builtin_amdgcn_div_fixup
:
18610 case AMDGPU::BI__builtin_amdgcn_div_fixupf
:
18611 case AMDGPU::BI__builtin_amdgcn_div_fixuph
:
18612 return emitBuiltinWithOneOverloadedType
<3>(*this, E
,
18613 Intrinsic::amdgcn_div_fixup
);
18614 case AMDGPU::BI__builtin_amdgcn_trig_preop
:
18615 case AMDGPU::BI__builtin_amdgcn_trig_preopf
:
18616 return emitFPIntBuiltin(*this, E
, Intrinsic::amdgcn_trig_preop
);
18617 case AMDGPU::BI__builtin_amdgcn_rcp
:
18618 case AMDGPU::BI__builtin_amdgcn_rcpf
:
18619 case AMDGPU::BI__builtin_amdgcn_rcph
:
18620 return emitBuiltinWithOneOverloadedType
<1>(*this, E
, Intrinsic::amdgcn_rcp
);
18621 case AMDGPU::BI__builtin_amdgcn_sqrt
:
18622 case AMDGPU::BI__builtin_amdgcn_sqrtf
:
18623 case AMDGPU::BI__builtin_amdgcn_sqrth
:
18624 return emitBuiltinWithOneOverloadedType
<1>(*this, E
,
18625 Intrinsic::amdgcn_sqrt
);
18626 case AMDGPU::BI__builtin_amdgcn_rsq
:
18627 case AMDGPU::BI__builtin_amdgcn_rsqf
:
18628 case AMDGPU::BI__builtin_amdgcn_rsqh
:
18629 return emitBuiltinWithOneOverloadedType
<1>(*this, E
, Intrinsic::amdgcn_rsq
);
18630 case AMDGPU::BI__builtin_amdgcn_rsq_clamp
:
18631 case AMDGPU::BI__builtin_amdgcn_rsq_clampf
:
18632 return emitBuiltinWithOneOverloadedType
<1>(*this, E
,
18633 Intrinsic::amdgcn_rsq_clamp
);
18634 case AMDGPU::BI__builtin_amdgcn_sinf
:
18635 case AMDGPU::BI__builtin_amdgcn_sinh
:
18636 return emitBuiltinWithOneOverloadedType
<1>(*this, E
, Intrinsic::amdgcn_sin
);
18637 case AMDGPU::BI__builtin_amdgcn_cosf
:
18638 case AMDGPU::BI__builtin_amdgcn_cosh
:
18639 return emitBuiltinWithOneOverloadedType
<1>(*this, E
, Intrinsic::amdgcn_cos
);
18640 case AMDGPU::BI__builtin_amdgcn_dispatch_ptr
:
18641 return EmitAMDGPUDispatchPtr(*this, E
);
18642 case AMDGPU::BI__builtin_amdgcn_logf
:
18643 return emitBuiltinWithOneOverloadedType
<1>(*this, E
, Intrinsic::amdgcn_log
);
18644 case AMDGPU::BI__builtin_amdgcn_exp2f
:
18645 return emitBuiltinWithOneOverloadedType
<1>(*this, E
,
18646 Intrinsic::amdgcn_exp2
);
18647 case AMDGPU::BI__builtin_amdgcn_log_clampf
:
18648 return emitBuiltinWithOneOverloadedType
<1>(*this, E
,
18649 Intrinsic::amdgcn_log_clamp
);
18650 case AMDGPU::BI__builtin_amdgcn_ldexp
:
18651 case AMDGPU::BI__builtin_amdgcn_ldexpf
: {
18652 llvm::Value
*Src0
= EmitScalarExpr(E
->getArg(0));
18653 llvm::Value
*Src1
= EmitScalarExpr(E
->getArg(1));
18654 llvm::Function
*F
=
18655 CGM
.getIntrinsic(Intrinsic::ldexp
, {Src0
->getType(), Src1
->getType()});
18656 return Builder
.CreateCall(F
, {Src0
, Src1
});
18658 case AMDGPU::BI__builtin_amdgcn_ldexph
: {
18659 // The raw instruction has a different behavior for out of bounds exponent
18660 // values (implicit truncation instead of saturate to short_min/short_max).
18661 llvm::Value
*Src0
= EmitScalarExpr(E
->getArg(0));
18662 llvm::Value
*Src1
= EmitScalarExpr(E
->getArg(1));
18663 llvm::Function
*F
=
18664 CGM
.getIntrinsic(Intrinsic::ldexp
, {Src0
->getType(), Int16Ty
});
18665 return Builder
.CreateCall(F
, {Src0
, Builder
.CreateTrunc(Src1
, Int16Ty
)});
18667 case AMDGPU::BI__builtin_amdgcn_frexp_mant
:
18668 case AMDGPU::BI__builtin_amdgcn_frexp_mantf
:
18669 case AMDGPU::BI__builtin_amdgcn_frexp_manth
:
18670 return emitBuiltinWithOneOverloadedType
<1>(*this, E
,
18671 Intrinsic::amdgcn_frexp_mant
);
18672 case AMDGPU::BI__builtin_amdgcn_frexp_exp
:
18673 case AMDGPU::BI__builtin_amdgcn_frexp_expf
: {
18674 Value
*Src0
= EmitScalarExpr(E
->getArg(0));
18675 Function
*F
= CGM
.getIntrinsic(Intrinsic::amdgcn_frexp_exp
,
18676 { Builder
.getInt32Ty(), Src0
->getType() });
18677 return Builder
.CreateCall(F
, Src0
);
18679 case AMDGPU::BI__builtin_amdgcn_frexp_exph
: {
18680 Value
*Src0
= EmitScalarExpr(E
->getArg(0));
18681 Function
*F
= CGM
.getIntrinsic(Intrinsic::amdgcn_frexp_exp
,
18682 { Builder
.getInt16Ty(), Src0
->getType() });
18683 return Builder
.CreateCall(F
, Src0
);
18685 case AMDGPU::BI__builtin_amdgcn_fract
:
18686 case AMDGPU::BI__builtin_amdgcn_fractf
:
18687 case AMDGPU::BI__builtin_amdgcn_fracth
:
18688 return emitBuiltinWithOneOverloadedType
<1>(*this, E
,
18689 Intrinsic::amdgcn_fract
);
18690 case AMDGPU::BI__builtin_amdgcn_lerp
:
18691 return emitBuiltinWithOneOverloadedType
<3>(*this, E
,
18692 Intrinsic::amdgcn_lerp
);
18693 case AMDGPU::BI__builtin_amdgcn_ubfe
:
18694 return emitBuiltinWithOneOverloadedType
<3>(*this, E
,
18695 Intrinsic::amdgcn_ubfe
);
18696 case AMDGPU::BI__builtin_amdgcn_sbfe
:
18697 return emitBuiltinWithOneOverloadedType
<3>(*this, E
,
18698 Intrinsic::amdgcn_sbfe
);
18699 case AMDGPU::BI__builtin_amdgcn_ballot_w32
:
18700 case AMDGPU::BI__builtin_amdgcn_ballot_w64
: {
18701 llvm::Type
*ResultType
= ConvertType(E
->getType());
18702 llvm::Value
*Src
= EmitScalarExpr(E
->getArg(0));
18703 Function
*F
= CGM
.getIntrinsic(Intrinsic::amdgcn_ballot
, { ResultType
});
18704 return Builder
.CreateCall(F
, { Src
});
18706 case AMDGPU::BI__builtin_amdgcn_uicmp
:
18707 case AMDGPU::BI__builtin_amdgcn_uicmpl
:
18708 case AMDGPU::BI__builtin_amdgcn_sicmp
:
18709 case AMDGPU::BI__builtin_amdgcn_sicmpl
: {
18710 llvm::Value
*Src0
= EmitScalarExpr(E
->getArg(0));
18711 llvm::Value
*Src1
= EmitScalarExpr(E
->getArg(1));
18712 llvm::Value
*Src2
= EmitScalarExpr(E
->getArg(2));
18714 // FIXME-GFX10: How should 32 bit mask be handled?
18715 Function
*F
= CGM
.getIntrinsic(Intrinsic::amdgcn_icmp
,
18716 { Builder
.getInt64Ty(), Src0
->getType() });
18717 return Builder
.CreateCall(F
, { Src0
, Src1
, Src2
});
18719 case AMDGPU::BI__builtin_amdgcn_fcmp
:
18720 case AMDGPU::BI__builtin_amdgcn_fcmpf
: {
18721 llvm::Value
*Src0
= EmitScalarExpr(E
->getArg(0));
18722 llvm::Value
*Src1
= EmitScalarExpr(E
->getArg(1));
18723 llvm::Value
*Src2
= EmitScalarExpr(E
->getArg(2));
18725 // FIXME-GFX10: How should 32 bit mask be handled?
18726 Function
*F
= CGM
.getIntrinsic(Intrinsic::amdgcn_fcmp
,
18727 { Builder
.getInt64Ty(), Src0
->getType() });
18728 return Builder
.CreateCall(F
, { Src0
, Src1
, Src2
});
18730 case AMDGPU::BI__builtin_amdgcn_class
:
18731 case AMDGPU::BI__builtin_amdgcn_classf
:
18732 case AMDGPU::BI__builtin_amdgcn_classh
:
18733 return emitFPIntBuiltin(*this, E
, Intrinsic::amdgcn_class
);
18734 case AMDGPU::BI__builtin_amdgcn_fmed3f
:
18735 case AMDGPU::BI__builtin_amdgcn_fmed3h
:
18736 return emitBuiltinWithOneOverloadedType
<3>(*this, E
,
18737 Intrinsic::amdgcn_fmed3
);
18738 case AMDGPU::BI__builtin_amdgcn_ds_append
:
18739 case AMDGPU::BI__builtin_amdgcn_ds_consume
: {
18740 Intrinsic::ID Intrin
= BuiltinID
== AMDGPU::BI__builtin_amdgcn_ds_append
?
18741 Intrinsic::amdgcn_ds_append
: Intrinsic::amdgcn_ds_consume
;
18742 Value
*Src0
= EmitScalarExpr(E
->getArg(0));
18743 Function
*F
= CGM
.getIntrinsic(Intrin
, { Src0
->getType() });
18744 return Builder
.CreateCall(F
, { Src0
, Builder
.getFalse() });
18746 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64
:
18747 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32
:
18748 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16
:
18749 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64
:
18750 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64
:
18751 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64
:
18752 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64
:
18753 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64
:
18754 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32
:
18755 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16
: {
18757 llvm::Type
*ArgTy
= llvm::Type::getDoubleTy(getLLVMContext());
18758 switch (BuiltinID
) {
18759 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32
:
18760 ArgTy
= llvm::Type::getFloatTy(getLLVMContext());
18761 IID
= Intrinsic::amdgcn_global_atomic_fadd
;
18763 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16
:
18764 ArgTy
= llvm::FixedVectorType::get(
18765 llvm::Type::getHalfTy(getLLVMContext()), 2);
18766 IID
= Intrinsic::amdgcn_global_atomic_fadd
;
18768 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64
:
18769 IID
= Intrinsic::amdgcn_global_atomic_fadd
;
18771 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64
:
18772 IID
= Intrinsic::amdgcn_global_atomic_fmin
;
18774 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64
:
18775 IID
= Intrinsic::amdgcn_global_atomic_fmax
;
18777 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64
:
18778 IID
= Intrinsic::amdgcn_flat_atomic_fadd
;
18780 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64
:
18781 IID
= Intrinsic::amdgcn_flat_atomic_fmin
;
18783 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64
:
18784 IID
= Intrinsic::amdgcn_flat_atomic_fmax
;
18786 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32
:
18787 ArgTy
= llvm::Type::getFloatTy(getLLVMContext());
18788 IID
= Intrinsic::amdgcn_flat_atomic_fadd
;
18790 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16
:
18791 ArgTy
= llvm::FixedVectorType::get(
18792 llvm::Type::getHalfTy(getLLVMContext()), 2);
18793 IID
= Intrinsic::amdgcn_flat_atomic_fadd
;
18796 llvm::Value
*Addr
= EmitScalarExpr(E
->getArg(0));
18797 llvm::Value
*Val
= EmitScalarExpr(E
->getArg(1));
18798 llvm::Function
*F
=
18799 CGM
.getIntrinsic(IID
, {ArgTy
, Addr
->getType(), Val
->getType()});
18800 return Builder
.CreateCall(F
, {Addr
, Val
});
18802 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16
:
18803 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16
: {
18805 switch (BuiltinID
) {
18806 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16
:
18807 IID
= Intrinsic::amdgcn_global_atomic_fadd_v2bf16
;
18809 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16
:
18810 IID
= Intrinsic::amdgcn_flat_atomic_fadd_v2bf16
;
18813 llvm::Value
*Addr
= EmitScalarExpr(E
->getArg(0));
18814 llvm::Value
*Val
= EmitScalarExpr(E
->getArg(1));
18815 llvm::Function
*F
= CGM
.getIntrinsic(IID
, {Addr
->getType()});
18816 return Builder
.CreateCall(F
, {Addr
, Val
});
18818 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b64_i32
:
18819 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b64_v2i32
:
18820 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4i16
:
18821 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4f16
:
18822 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4bf16
:
18823 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8i16
:
18824 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8f16
:
18825 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8bf16
: {
18828 switch (BuiltinID
) {
18829 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b64_i32
:
18830 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b64_v2i32
:
18831 IID
= Intrinsic::amdgcn_global_load_tr_b64
;
18833 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4i16
:
18834 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4f16
:
18835 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4bf16
:
18836 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8i16
:
18837 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8f16
:
18838 case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8bf16
:
18839 IID
= Intrinsic::amdgcn_global_load_tr_b128
;
18842 llvm::Type
*LoadTy
= ConvertType(E
->getType());
18843 llvm::Value
*Addr
= EmitScalarExpr(E
->getArg(0));
18844 llvm::Function
*F
= CGM
.getIntrinsic(IID
, {LoadTy
});
18845 return Builder
.CreateCall(F
, {Addr
});
18847 case AMDGPU::BI__builtin_amdgcn_get_fpenv
: {
18848 Function
*F
= CGM
.getIntrinsic(Intrinsic::get_fpenv
,
18849 {llvm::Type::getInt64Ty(getLLVMContext())});
18850 return Builder
.CreateCall(F
);
18852 case AMDGPU::BI__builtin_amdgcn_set_fpenv
: {
18853 Function
*F
= CGM
.getIntrinsic(Intrinsic::set_fpenv
,
18854 {llvm::Type::getInt64Ty(getLLVMContext())});
18855 llvm::Value
*Env
= EmitScalarExpr(E
->getArg(0));
18856 return Builder
.CreateCall(F
, {Env
});
18858 case AMDGPU::BI__builtin_amdgcn_read_exec
:
18859 return EmitAMDGCNBallotForExec(*this, E
, Int64Ty
, Int64Ty
, false);
18860 case AMDGPU::BI__builtin_amdgcn_read_exec_lo
:
18861 return EmitAMDGCNBallotForExec(*this, E
, Int32Ty
, Int32Ty
, false);
18862 case AMDGPU::BI__builtin_amdgcn_read_exec_hi
:
18863 return EmitAMDGCNBallotForExec(*this, E
, Int64Ty
, Int64Ty
, true);
18864 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray
:
18865 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_h
:
18866 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_l
:
18867 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_lh
: {
18868 llvm::Value
*NodePtr
= EmitScalarExpr(E
->getArg(0));
18869 llvm::Value
*RayExtent
= EmitScalarExpr(E
->getArg(1));
18870 llvm::Value
*RayOrigin
= EmitScalarExpr(E
->getArg(2));
18871 llvm::Value
*RayDir
= EmitScalarExpr(E
->getArg(3));
18872 llvm::Value
*RayInverseDir
= EmitScalarExpr(E
->getArg(4));
18873 llvm::Value
*TextureDescr
= EmitScalarExpr(E
->getArg(5));
18875 // The builtins take these arguments as vec4 where the last element is
18876 // ignored. The intrinsic takes them as vec3.
18877 RayOrigin
= Builder
.CreateShuffleVector(RayOrigin
, RayOrigin
,
18878 ArrayRef
<int>{0, 1, 2});
18880 Builder
.CreateShuffleVector(RayDir
, RayDir
, ArrayRef
<int>{0, 1, 2});
18881 RayInverseDir
= Builder
.CreateShuffleVector(RayInverseDir
, RayInverseDir
,
18882 ArrayRef
<int>{0, 1, 2});
18884 Function
*F
= CGM
.getIntrinsic(Intrinsic::amdgcn_image_bvh_intersect_ray
,
18885 {NodePtr
->getType(), RayDir
->getType()});
18886 return Builder
.CreateCall(F
, {NodePtr
, RayExtent
, RayOrigin
, RayDir
,
18887 RayInverseDir
, TextureDescr
});
18890 case AMDGPU::BI__builtin_amdgcn_ds_bvh_stack_rtn
: {
18891 SmallVector
<Value
*, 4> Args
;
18892 for (int i
= 0, e
= E
->getNumArgs(); i
!= e
; ++i
)
18893 Args
.push_back(EmitScalarExpr(E
->getArg(i
)));
18895 Function
*F
= CGM
.getIntrinsic(Intrinsic::amdgcn_ds_bvh_stack_rtn
);
18896 Value
*Call
= Builder
.CreateCall(F
, Args
);
18897 Value
*Rtn
= Builder
.CreateExtractValue(Call
, 0);
18898 Value
*A
= Builder
.CreateExtractValue(Call
, 1);
18899 llvm::Type
*RetTy
= ConvertType(E
->getType());
18900 Value
*I0
= Builder
.CreateInsertElement(PoisonValue::get(RetTy
), Rtn
,
18902 return Builder
.CreateInsertElement(I0
, A
, 1);
18905 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32
:
18906 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w32
:
18907 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64
:
18908 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w64
:
18909 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32
:
18910 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w32
:
18911 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64
:
18912 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w64
:
18913 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32
:
18914 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64
:
18915 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32
:
18916 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64
:
18917 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32
:
18918 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64
:
18919 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32
:
18920 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64
:
18921 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32_gfx12
:
18922 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64_gfx12
:
18923 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32_gfx12
:
18924 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64_gfx12
:
18925 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32_gfx12
:
18926 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64_gfx12
:
18927 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32_gfx12
:
18928 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64_gfx12
:
18929 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32_gfx12
:
18930 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64_gfx12
:
18931 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12
:
18932 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64_gfx12
:
18933 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w32_gfx12
:
18934 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w64_gfx12
:
18935 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w32_gfx12
:
18936 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w64_gfx12
:
18937 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w32_gfx12
:
18938 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w64_gfx12
:
18939 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w32_gfx12
:
18940 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w64_gfx12
:
18941 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w32_gfx12
:
18942 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w64_gfx12
:
18943 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w32
:
18944 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w64
:
18945 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w32
:
18946 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w64
:
18947 case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w32
:
18948 case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w64
:
18949 case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w32
:
18950 case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w64
:
18951 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w32
:
18952 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w64
:
18953 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w32
:
18954 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w64
:
18955 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w32
:
18956 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w64
:
18957 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w32
:
18958 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w64
:
18959 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w32
:
18960 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w64
:
18961 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w32
:
18962 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w64
:
18963 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w32
:
18964 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w64
: {
18966 // These operations perform a matrix multiplication and accumulation of
18969 // We need to specify one type for matrices AB and one for matrices CD.
18970 // Sparse matrix operations can have different types for A and B as well as
18971 // an additional type for sparsity index.
18972 // Destination type should be put before types used for source operands.
18973 SmallVector
<unsigned, 2> ArgsForMatchingMatrixTypes
;
18974 // On GFX12, the intrinsics with 16-bit accumulator use a packed layout.
18975 // There is no need for the variable opsel argument, so always set it to
18977 bool AppendFalseForOpselArg
= false;
18978 unsigned BuiltinWMMAOp
;
18980 switch (BuiltinID
) {
18981 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32
:
18982 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64
:
18983 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32_gfx12
:
18984 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64_gfx12
:
18985 ArgsForMatchingMatrixTypes
= {2, 0}; // CD, AB
18986 BuiltinWMMAOp
= Intrinsic::amdgcn_wmma_f32_16x16x16_f16
;
18988 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32
:
18989 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64
:
18990 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32_gfx12
:
18991 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64_gfx12
:
18992 ArgsForMatchingMatrixTypes
= {2, 0}; // CD, AB
18993 BuiltinWMMAOp
= Intrinsic::amdgcn_wmma_f32_16x16x16_bf16
;
18995 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32_gfx12
:
18996 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64_gfx12
:
18997 AppendFalseForOpselArg
= true;
18999 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32
:
19000 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64
:
19001 ArgsForMatchingMatrixTypes
= {2, 0}; // CD, AB
19002 BuiltinWMMAOp
= Intrinsic::amdgcn_wmma_f16_16x16x16_f16
;
19004 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32_gfx12
:
19005 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64_gfx12
:
19006 AppendFalseForOpselArg
= true;
19008 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32
:
19009 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64
:
19010 ArgsForMatchingMatrixTypes
= {2, 0}; // CD, AB
19011 BuiltinWMMAOp
= Intrinsic::amdgcn_wmma_bf16_16x16x16_bf16
;
19013 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w32
:
19014 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w64
:
19015 ArgsForMatchingMatrixTypes
= {2, 0}; // CD, AB
19016 BuiltinWMMAOp
= Intrinsic::amdgcn_wmma_f16_16x16x16_f16_tied
;
19018 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w32
:
19019 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w64
:
19020 ArgsForMatchingMatrixTypes
= {2, 0}; // CD, AB
19021 BuiltinWMMAOp
= Intrinsic::amdgcn_wmma_bf16_16x16x16_bf16_tied
;
19023 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32
:
19024 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64
:
19025 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12
:
19026 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64_gfx12
:
19027 ArgsForMatchingMatrixTypes
= {4, 1}; // CD, AB
19028 BuiltinWMMAOp
= Intrinsic::amdgcn_wmma_i32_16x16x16_iu8
;
19030 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32
:
19031 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64
:
19032 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32_gfx12
:
19033 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64_gfx12
:
19034 ArgsForMatchingMatrixTypes
= {4, 1}; // CD, AB
19035 BuiltinWMMAOp
= Intrinsic::amdgcn_wmma_i32_16x16x16_iu4
;
19037 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w32_gfx12
:
19038 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w64_gfx12
:
19039 ArgsForMatchingMatrixTypes
= {2, 0}; // CD, AB
19040 BuiltinWMMAOp
= Intrinsic::amdgcn_wmma_f32_16x16x16_fp8_fp8
;
19042 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w32_gfx12
:
19043 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w64_gfx12
:
19044 ArgsForMatchingMatrixTypes
= {2, 0}; // CD, AB
19045 BuiltinWMMAOp
= Intrinsic::amdgcn_wmma_f32_16x16x16_fp8_bf8
;
19047 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w32_gfx12
:
19048 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w64_gfx12
:
19049 ArgsForMatchingMatrixTypes
= {2, 0}; // CD, AB
19050 BuiltinWMMAOp
= Intrinsic::amdgcn_wmma_f32_16x16x16_bf8_fp8
;
19052 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w32_gfx12
:
19053 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w64_gfx12
:
19054 ArgsForMatchingMatrixTypes
= {2, 0}; // CD, AB
19055 BuiltinWMMAOp
= Intrinsic::amdgcn_wmma_f32_16x16x16_bf8_bf8
;
19057 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w32_gfx12
:
19058 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w64_gfx12
:
19059 ArgsForMatchingMatrixTypes
= {4, 1}; // CD, AB
19060 BuiltinWMMAOp
= Intrinsic::amdgcn_wmma_i32_16x16x32_iu4
;
19062 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w32
:
19063 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w64
:
19064 ArgsForMatchingMatrixTypes
= {2, 0, 1, 3}; // CD, A, B, Index
19065 BuiltinWMMAOp
= Intrinsic::amdgcn_swmmac_f32_16x16x32_f16
;
19067 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w32
:
19068 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w64
:
19069 ArgsForMatchingMatrixTypes
= {2, 0, 1, 3}; // CD, A, B, Index
19070 BuiltinWMMAOp
= Intrinsic::amdgcn_swmmac_f32_16x16x32_bf16
;
19072 case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w32
:
19073 case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w64
:
19074 ArgsForMatchingMatrixTypes
= {2, 0, 1, 3}; // CD, A, B, Index
19075 BuiltinWMMAOp
= Intrinsic::amdgcn_swmmac_f16_16x16x32_f16
;
19077 case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w32
:
19078 case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w64
:
19079 ArgsForMatchingMatrixTypes
= {2, 0, 1, 3}; // CD, A, B, Index
19080 BuiltinWMMAOp
= Intrinsic::amdgcn_swmmac_bf16_16x16x32_bf16
;
19082 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w32
:
19083 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w64
:
19084 ArgsForMatchingMatrixTypes
= {4, 1, 3, 5}; // CD, A, B, Index
19085 BuiltinWMMAOp
= Intrinsic::amdgcn_swmmac_i32_16x16x32_iu8
;
19087 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w32
:
19088 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w64
:
19089 ArgsForMatchingMatrixTypes
= {4, 1, 3, 5}; // CD, A, B, Index
19090 BuiltinWMMAOp
= Intrinsic::amdgcn_swmmac_i32_16x16x32_iu4
;
19092 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w32
:
19093 case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w64
:
19094 ArgsForMatchingMatrixTypes
= {4, 1, 3, 5}; // CD, A, B, Index
19095 BuiltinWMMAOp
= Intrinsic::amdgcn_swmmac_i32_16x16x64_iu4
;
19097 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w32
:
19098 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w64
:
19099 ArgsForMatchingMatrixTypes
= {2, 0, 1, 3}; // CD, A, B, Index
19100 BuiltinWMMAOp
= Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_fp8
;
19102 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w32
:
19103 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w64
:
19104 ArgsForMatchingMatrixTypes
= {2, 0, 1, 3}; // CD, A, B, Index
19105 BuiltinWMMAOp
= Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_bf8
;
19107 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w32
:
19108 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w64
:
19109 ArgsForMatchingMatrixTypes
= {2, 0, 1, 3}; // CD, A, B, Index
19110 BuiltinWMMAOp
= Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_fp8
;
19112 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w32
:
19113 case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w64
:
19114 ArgsForMatchingMatrixTypes
= {2, 0, 1, 3}; // CD, A, B, Index
19115 BuiltinWMMAOp
= Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_bf8
;
19119 SmallVector
<Value
*, 6> Args
;
19120 for (int i
= 0, e
= E
->getNumArgs(); i
!= e
; ++i
)
19121 Args
.push_back(EmitScalarExpr(E
->getArg(i
)));
19122 if (AppendFalseForOpselArg
)
19123 Args
.push_back(Builder
.getFalse());
19125 SmallVector
<llvm::Type
*, 6> ArgTypes
;
19126 for (auto ArgIdx
: ArgsForMatchingMatrixTypes
)
19127 ArgTypes
.push_back(Args
[ArgIdx
]->getType());
19129 Function
*F
= CGM
.getIntrinsic(BuiltinWMMAOp
, ArgTypes
);
19130 return Builder
.CreateCall(F
, Args
);
19134 case AMDGPU::BI__builtin_amdgcn_workitem_id_x
:
19135 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x
, 0, 1024);
19136 case AMDGPU::BI__builtin_amdgcn_workitem_id_y
:
19137 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y
, 0, 1024);
19138 case AMDGPU::BI__builtin_amdgcn_workitem_id_z
:
19139 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z
, 0, 1024);
19141 // amdgcn workgroup size
19142 case AMDGPU::BI__builtin_amdgcn_workgroup_size_x
:
19143 return EmitAMDGPUWorkGroupSize(*this, 0);
19144 case AMDGPU::BI__builtin_amdgcn_workgroup_size_y
:
19145 return EmitAMDGPUWorkGroupSize(*this, 1);
19146 case AMDGPU::BI__builtin_amdgcn_workgroup_size_z
:
19147 return EmitAMDGPUWorkGroupSize(*this, 2);
19149 // amdgcn grid size
19150 case AMDGPU::BI__builtin_amdgcn_grid_size_x
:
19151 return EmitAMDGPUGridSize(*this, 0);
19152 case AMDGPU::BI__builtin_amdgcn_grid_size_y
:
19153 return EmitAMDGPUGridSize(*this, 1);
19154 case AMDGPU::BI__builtin_amdgcn_grid_size_z
:
19155 return EmitAMDGPUGridSize(*this, 2);
19158 case AMDGPU::BI__builtin_r600_recipsqrt_ieee
:
19159 case AMDGPU::BI__builtin_r600_recipsqrt_ieeef
:
19160 return emitBuiltinWithOneOverloadedType
<1>(*this, E
,
19161 Intrinsic::r600_recipsqrt_ieee
);
19162 case AMDGPU::BI__builtin_r600_read_tidig_x
:
19163 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x
, 0, 1024);
19164 case AMDGPU::BI__builtin_r600_read_tidig_y
:
19165 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y
, 0, 1024);
19166 case AMDGPU::BI__builtin_r600_read_tidig_z
:
19167 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z
, 0, 1024);
19168 case AMDGPU::BI__builtin_amdgcn_alignbit
: {
19169 llvm::Value
*Src0
= EmitScalarExpr(E
->getArg(0));
19170 llvm::Value
*Src1
= EmitScalarExpr(E
->getArg(1));
19171 llvm::Value
*Src2
= EmitScalarExpr(E
->getArg(2));
19172 Function
*F
= CGM
.getIntrinsic(Intrinsic::fshr
, Src0
->getType());
19173 return Builder
.CreateCall(F
, { Src0
, Src1
, Src2
});
19175 case AMDGPU::BI__builtin_amdgcn_fence
: {
19176 ProcessOrderScopeAMDGCN(EmitScalarExpr(E
->getArg(0)),
19177 EmitScalarExpr(E
->getArg(1)), AO
, SSID
);
19178 FenceInst
*Fence
= Builder
.CreateFence(AO
, SSID
);
19179 if (E
->getNumArgs() > 2)
19180 AddAMDGPUFenceAddressSpaceMMRA(Fence
, E
);
19183 case AMDGPU::BI__builtin_amdgcn_atomic_inc32
:
19184 case AMDGPU::BI__builtin_amdgcn_atomic_inc64
:
19185 case AMDGPU::BI__builtin_amdgcn_atomic_dec32
:
19186 case AMDGPU::BI__builtin_amdgcn_atomic_dec64
:
19187 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64
:
19188 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32
:
19189 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2f16
:
19190 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2bf16
:
19191 case AMDGPU::BI__builtin_amdgcn_ds_faddf
:
19192 case AMDGPU::BI__builtin_amdgcn_ds_fminf
:
19193 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf
: {
19194 llvm::AtomicRMWInst::BinOp BinOp
;
19195 switch (BuiltinID
) {
19196 case AMDGPU::BI__builtin_amdgcn_atomic_inc32
:
19197 case AMDGPU::BI__builtin_amdgcn_atomic_inc64
:
19198 BinOp
= llvm::AtomicRMWInst::UIncWrap
;
19200 case AMDGPU::BI__builtin_amdgcn_atomic_dec32
:
19201 case AMDGPU::BI__builtin_amdgcn_atomic_dec64
:
19202 BinOp
= llvm::AtomicRMWInst::UDecWrap
;
19204 case AMDGPU::BI__builtin_amdgcn_ds_faddf
:
19205 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64
:
19206 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32
:
19207 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2f16
:
19208 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2bf16
:
19209 BinOp
= llvm::AtomicRMWInst::FAdd
;
19211 case AMDGPU::BI__builtin_amdgcn_ds_fminf
:
19212 BinOp
= llvm::AtomicRMWInst::FMin
;
19214 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf
:
19215 BinOp
= llvm::AtomicRMWInst::FMax
;
19219 Address Ptr
= CheckAtomicAlignment(*this, E
);
19220 Value
*Val
= EmitScalarExpr(E
->getArg(1));
19221 llvm::Type
*OrigTy
= Val
->getType();
19222 QualType PtrTy
= E
->getArg(0)->IgnoreImpCasts()->getType();
19226 if (BuiltinID
== AMDGPU::BI__builtin_amdgcn_ds_faddf
||
19227 BuiltinID
== AMDGPU::BI__builtin_amdgcn_ds_fminf
||
19228 BuiltinID
== AMDGPU::BI__builtin_amdgcn_ds_fmaxf
) {
19229 // __builtin_amdgcn_ds_faddf/fminf/fmaxf has an explicit volatile argument
19231 cast
<ConstantInt
>(EmitScalarExpr(E
->getArg(4)))->getZExtValue();
19233 // Infer volatile from the passed type.
19235 PtrTy
->castAs
<PointerType
>()->getPointeeType().isVolatileQualified();
19238 if (E
->getNumArgs() >= 4) {
19239 // Some of the builtins have explicit ordering and scope arguments.
19240 ProcessOrderScopeAMDGCN(EmitScalarExpr(E
->getArg(2)),
19241 EmitScalarExpr(E
->getArg(3)), AO
, SSID
);
19243 // The ds_atomic_fadd_* builtins do not have syncscope/order arguments.
19244 SSID
= llvm::SyncScope::System
;
19245 AO
= AtomicOrdering::SequentiallyConsistent
;
19247 // The v2bf16 builtin uses i16 instead of a natural bfloat type.
19248 if (BuiltinID
== AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2bf16
) {
19249 llvm::Type
*V2BF16Ty
= FixedVectorType::get(
19250 llvm::Type::getBFloatTy(Builder
.getContext()), 2);
19251 Val
= Builder
.CreateBitCast(Val
, V2BF16Ty
);
19255 llvm::AtomicRMWInst
*RMW
=
19256 Builder
.CreateAtomicRMW(BinOp
, Ptr
, Val
, AO
, SSID
);
19258 RMW
->setVolatile(true);
19259 return Builder
.CreateBitCast(RMW
, OrigTy
);
19261 case AMDGPU::BI__builtin_amdgcn_s_sendmsg_rtn
:
19262 case AMDGPU::BI__builtin_amdgcn_s_sendmsg_rtnl
: {
19263 llvm::Value
*Arg
= EmitScalarExpr(E
->getArg(0));
19264 llvm::Type
*ResultType
= ConvertType(E
->getType());
19265 // s_sendmsg_rtn is mangled using return type only.
19267 CGM
.getIntrinsic(Intrinsic::amdgcn_s_sendmsg_rtn
, {ResultType
});
19268 return Builder
.CreateCall(F
, {Arg
});
19270 case AMDGPU::BI__builtin_amdgcn_make_buffer_rsrc
:
19271 return emitBuiltinWithOneOverloadedType
<4>(
19272 *this, E
, Intrinsic::amdgcn_make_buffer_rsrc
);
19273 case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b8
:
19274 case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b16
:
19275 case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b32
:
19276 case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b64
:
19277 case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b96
:
19278 case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b128
:
19279 return emitBuiltinWithOneOverloadedType
<5>(
19280 *this, E
, Intrinsic::amdgcn_raw_ptr_buffer_store
);
19281 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b8
:
19282 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b16
:
19283 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b32
:
19284 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b64
:
19285 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b96
:
19286 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b128
: {
19287 llvm::Type
*RetTy
= nullptr;
19288 switch (BuiltinID
) {
19289 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b8
:
19292 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b16
:
19295 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b32
:
19298 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b64
:
19299 RetTy
= llvm::FixedVectorType::get(Int32Ty
, /*NumElements=*/2);
19301 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b96
:
19302 RetTy
= llvm::FixedVectorType::get(Int32Ty
, /*NumElements=*/3);
19304 case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b128
:
19305 RetTy
= llvm::FixedVectorType::get(Int32Ty
, /*NumElements=*/4);
19309 CGM
.getIntrinsic(Intrinsic::amdgcn_raw_ptr_buffer_load
, RetTy
);
19310 return Builder
.CreateCall(
19311 F
, {EmitScalarExpr(E
->getArg(0)), EmitScalarExpr(E
->getArg(1)),
19312 EmitScalarExpr(E
->getArg(2)), EmitScalarExpr(E
->getArg(3))});
19319 /// Handle a SystemZ function in which the final argument is a pointer
19320 /// to an int that receives the post-instruction CC value. At the LLVM level
19321 /// this is represented as a function that returns a {result, cc} pair.
19322 static Value
*EmitSystemZIntrinsicWithCC(CodeGenFunction
&CGF
,
19323 unsigned IntrinsicID
,
19324 const CallExpr
*E
) {
19325 unsigned NumArgs
= E
->getNumArgs() - 1;
19326 SmallVector
<Value
*, 8> Args(NumArgs
);
19327 for (unsigned I
= 0; I
< NumArgs
; ++I
)
19328 Args
[I
] = CGF
.EmitScalarExpr(E
->getArg(I
));
19329 Address CCPtr
= CGF
.EmitPointerWithAlignment(E
->getArg(NumArgs
));
19330 Function
*F
= CGF
.CGM
.getIntrinsic(IntrinsicID
);
19331 Value
*Call
= CGF
.Builder
.CreateCall(F
, Args
);
19332 Value
*CC
= CGF
.Builder
.CreateExtractValue(Call
, 1);
19333 CGF
.Builder
.CreateStore(CC
, CCPtr
);
19334 return CGF
.Builder
.CreateExtractValue(Call
, 0);
19337 Value
*CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID
,
19338 const CallExpr
*E
) {
19339 switch (BuiltinID
) {
19340 case SystemZ::BI__builtin_tbegin
: {
19341 Value
*TDB
= EmitScalarExpr(E
->getArg(0));
19342 Value
*Control
= llvm::ConstantInt::get(Int32Ty
, 0xff0c);
19343 Function
*F
= CGM
.getIntrinsic(Intrinsic::s390_tbegin
);
19344 return Builder
.CreateCall(F
, {TDB
, Control
});
19346 case SystemZ::BI__builtin_tbegin_nofloat
: {
19347 Value
*TDB
= EmitScalarExpr(E
->getArg(0));
19348 Value
*Control
= llvm::ConstantInt::get(Int32Ty
, 0xff0c);
19349 Function
*F
= CGM
.getIntrinsic(Intrinsic::s390_tbegin_nofloat
);
19350 return Builder
.CreateCall(F
, {TDB
, Control
});
19352 case SystemZ::BI__builtin_tbeginc
: {
19353 Value
*TDB
= llvm::ConstantPointerNull::get(Int8PtrTy
);
19354 Value
*Control
= llvm::ConstantInt::get(Int32Ty
, 0xff08);
19355 Function
*F
= CGM
.getIntrinsic(Intrinsic::s390_tbeginc
);
19356 return Builder
.CreateCall(F
, {TDB
, Control
});
19358 case SystemZ::BI__builtin_tabort
: {
19359 Value
*Data
= EmitScalarExpr(E
->getArg(0));
19360 Function
*F
= CGM
.getIntrinsic(Intrinsic::s390_tabort
);
19361 return Builder
.CreateCall(F
, Builder
.CreateSExt(Data
, Int64Ty
, "tabort"));
19363 case SystemZ::BI__builtin_non_tx_store
: {
19364 Value
*Address
= EmitScalarExpr(E
->getArg(0));
19365 Value
*Data
= EmitScalarExpr(E
->getArg(1));
19366 Function
*F
= CGM
.getIntrinsic(Intrinsic::s390_ntstg
);
19367 return Builder
.CreateCall(F
, {Data
, Address
});
19370 // Vector builtins. Note that most vector builtins are mapped automatically
19371 // to target-specific LLVM intrinsics. The ones handled specially here can
19372 // be represented via standard LLVM IR, which is preferable to enable common
19373 // LLVM optimizations.
19375 case SystemZ::BI__builtin_s390_vpopctb
:
19376 case SystemZ::BI__builtin_s390_vpopcth
:
19377 case SystemZ::BI__builtin_s390_vpopctf
:
19378 case SystemZ::BI__builtin_s390_vpopctg
: {
19379 llvm::Type
*ResultType
= ConvertType(E
->getType());
19380 Value
*X
= EmitScalarExpr(E
->getArg(0));
19381 Function
*F
= CGM
.getIntrinsic(Intrinsic::ctpop
, ResultType
);
19382 return Builder
.CreateCall(F
, X
);
19385 case SystemZ::BI__builtin_s390_vclzb
:
19386 case SystemZ::BI__builtin_s390_vclzh
:
19387 case SystemZ::BI__builtin_s390_vclzf
:
19388 case SystemZ::BI__builtin_s390_vclzg
: {
19389 llvm::Type
*ResultType
= ConvertType(E
->getType());
19390 Value
*X
= EmitScalarExpr(E
->getArg(0));
19391 Value
*Undef
= ConstantInt::get(Builder
.getInt1Ty(), false);
19392 Function
*F
= CGM
.getIntrinsic(Intrinsic::ctlz
, ResultType
);
19393 return Builder
.CreateCall(F
, {X
, Undef
});
19396 case SystemZ::BI__builtin_s390_vctzb
:
19397 case SystemZ::BI__builtin_s390_vctzh
:
19398 case SystemZ::BI__builtin_s390_vctzf
:
19399 case SystemZ::BI__builtin_s390_vctzg
: {
19400 llvm::Type
*ResultType
= ConvertType(E
->getType());
19401 Value
*X
= EmitScalarExpr(E
->getArg(0));
19402 Value
*Undef
= ConstantInt::get(Builder
.getInt1Ty(), false);
19403 Function
*F
= CGM
.getIntrinsic(Intrinsic::cttz
, ResultType
);
19404 return Builder
.CreateCall(F
, {X
, Undef
});
19407 case SystemZ::BI__builtin_s390_verllb
:
19408 case SystemZ::BI__builtin_s390_verllh
:
19409 case SystemZ::BI__builtin_s390_verllf
:
19410 case SystemZ::BI__builtin_s390_verllg
: {
19411 llvm::Type
*ResultType
= ConvertType(E
->getType());
19412 llvm::Value
*Src
= EmitScalarExpr(E
->getArg(0));
19413 llvm::Value
*Amt
= EmitScalarExpr(E
->getArg(1));
19414 // Splat scalar rotate amount to vector type.
19415 unsigned NumElts
= cast
<llvm::FixedVectorType
>(ResultType
)->getNumElements();
19416 Amt
= Builder
.CreateIntCast(Amt
, ResultType
->getScalarType(), false);
19417 Amt
= Builder
.CreateVectorSplat(NumElts
, Amt
);
19418 Function
*F
= CGM
.getIntrinsic(Intrinsic::fshl
, ResultType
);
19419 return Builder
.CreateCall(F
, { Src
, Src
, Amt
});
19422 case SystemZ::BI__builtin_s390_verllvb
:
19423 case SystemZ::BI__builtin_s390_verllvh
:
19424 case SystemZ::BI__builtin_s390_verllvf
:
19425 case SystemZ::BI__builtin_s390_verllvg
: {
19426 llvm::Type
*ResultType
= ConvertType(E
->getType());
19427 llvm::Value
*Src
= EmitScalarExpr(E
->getArg(0));
19428 llvm::Value
*Amt
= EmitScalarExpr(E
->getArg(1));
19429 Function
*F
= CGM
.getIntrinsic(Intrinsic::fshl
, ResultType
);
19430 return Builder
.CreateCall(F
, { Src
, Src
, Amt
});
19433 case SystemZ::BI__builtin_s390_vfsqsb
:
19434 case SystemZ::BI__builtin_s390_vfsqdb
: {
19435 llvm::Type
*ResultType
= ConvertType(E
->getType());
19436 Value
*X
= EmitScalarExpr(E
->getArg(0));
19437 if (Builder
.getIsFPConstrained()) {
19438 Function
*F
= CGM
.getIntrinsic(Intrinsic::experimental_constrained_sqrt
, ResultType
);
19439 return Builder
.CreateConstrainedFPCall(F
, { X
});
19441 Function
*F
= CGM
.getIntrinsic(Intrinsic::sqrt
, ResultType
);
19442 return Builder
.CreateCall(F
, X
);
19445 case SystemZ::BI__builtin_s390_vfmasb
:
19446 case SystemZ::BI__builtin_s390_vfmadb
: {
19447 llvm::Type
*ResultType
= ConvertType(E
->getType());
19448 Value
*X
= EmitScalarExpr(E
->getArg(0));
19449 Value
*Y
= EmitScalarExpr(E
->getArg(1));
19450 Value
*Z
= EmitScalarExpr(E
->getArg(2));
19451 if (Builder
.getIsFPConstrained()) {
19452 Function
*F
= CGM
.getIntrinsic(Intrinsic::experimental_constrained_fma
, ResultType
);
19453 return Builder
.CreateConstrainedFPCall(F
, {X
, Y
, Z
});
19455 Function
*F
= CGM
.getIntrinsic(Intrinsic::fma
, ResultType
);
19456 return Builder
.CreateCall(F
, {X
, Y
, Z
});
19459 case SystemZ::BI__builtin_s390_vfmssb
:
19460 case SystemZ::BI__builtin_s390_vfmsdb
: {
19461 llvm::Type
*ResultType
= ConvertType(E
->getType());
19462 Value
*X
= EmitScalarExpr(E
->getArg(0));
19463 Value
*Y
= EmitScalarExpr(E
->getArg(1));
19464 Value
*Z
= EmitScalarExpr(E
->getArg(2));
19465 if (Builder
.getIsFPConstrained()) {
19466 Function
*F
= CGM
.getIntrinsic(Intrinsic::experimental_constrained_fma
, ResultType
);
19467 return Builder
.CreateConstrainedFPCall(F
, {X
, Y
, Builder
.CreateFNeg(Z
, "neg")});
19469 Function
*F
= CGM
.getIntrinsic(Intrinsic::fma
, ResultType
);
19470 return Builder
.CreateCall(F
, {X
, Y
, Builder
.CreateFNeg(Z
, "neg")});
19473 case SystemZ::BI__builtin_s390_vfnmasb
:
19474 case SystemZ::BI__builtin_s390_vfnmadb
: {
19475 llvm::Type
*ResultType
= ConvertType(E
->getType());
19476 Value
*X
= EmitScalarExpr(E
->getArg(0));
19477 Value
*Y
= EmitScalarExpr(E
->getArg(1));
19478 Value
*Z
= EmitScalarExpr(E
->getArg(2));
19479 if (Builder
.getIsFPConstrained()) {
19480 Function
*F
= CGM
.getIntrinsic(Intrinsic::experimental_constrained_fma
, ResultType
);
19481 return Builder
.CreateFNeg(Builder
.CreateConstrainedFPCall(F
, {X
, Y
, Z
}), "neg");
19483 Function
*F
= CGM
.getIntrinsic(Intrinsic::fma
, ResultType
);
19484 return Builder
.CreateFNeg(Builder
.CreateCall(F
, {X
, Y
, Z
}), "neg");
19487 case SystemZ::BI__builtin_s390_vfnmssb
:
19488 case SystemZ::BI__builtin_s390_vfnmsdb
: {
19489 llvm::Type
*ResultType
= ConvertType(E
->getType());
19490 Value
*X
= EmitScalarExpr(E
->getArg(0));
19491 Value
*Y
= EmitScalarExpr(E
->getArg(1));
19492 Value
*Z
= EmitScalarExpr(E
->getArg(2));
19493 if (Builder
.getIsFPConstrained()) {
19494 Function
*F
= CGM
.getIntrinsic(Intrinsic::experimental_constrained_fma
, ResultType
);
19495 Value
*NegZ
= Builder
.CreateFNeg(Z
, "sub");
19496 return Builder
.CreateFNeg(Builder
.CreateConstrainedFPCall(F
, {X
, Y
, NegZ
}));
19498 Function
*F
= CGM
.getIntrinsic(Intrinsic::fma
, ResultType
);
19499 Value
*NegZ
= Builder
.CreateFNeg(Z
, "neg");
19500 return Builder
.CreateFNeg(Builder
.CreateCall(F
, {X
, Y
, NegZ
}));
19503 case SystemZ::BI__builtin_s390_vflpsb
:
19504 case SystemZ::BI__builtin_s390_vflpdb
: {
19505 llvm::Type
*ResultType
= ConvertType(E
->getType());
19506 Value
*X
= EmitScalarExpr(E
->getArg(0));
19507 Function
*F
= CGM
.getIntrinsic(Intrinsic::fabs
, ResultType
);
19508 return Builder
.CreateCall(F
, X
);
19510 case SystemZ::BI__builtin_s390_vflnsb
:
19511 case SystemZ::BI__builtin_s390_vflndb
: {
19512 llvm::Type
*ResultType
= ConvertType(E
->getType());
19513 Value
*X
= EmitScalarExpr(E
->getArg(0));
19514 Function
*F
= CGM
.getIntrinsic(Intrinsic::fabs
, ResultType
);
19515 return Builder
.CreateFNeg(Builder
.CreateCall(F
, X
), "neg");
19517 case SystemZ::BI__builtin_s390_vfisb
:
19518 case SystemZ::BI__builtin_s390_vfidb
: {
19519 llvm::Type
*ResultType
= ConvertType(E
->getType());
19520 Value
*X
= EmitScalarExpr(E
->getArg(0));
19521 // Constant-fold the M4 and M5 mask arguments.
19522 llvm::APSInt M4
= *E
->getArg(1)->getIntegerConstantExpr(getContext());
19523 llvm::APSInt M5
= *E
->getArg(2)->getIntegerConstantExpr(getContext());
19524 // Check whether this instance can be represented via a LLVM standard
19525 // intrinsic. We only support some combinations of M4 and M5.
19526 Intrinsic::ID ID
= Intrinsic::not_intrinsic
;
19528 switch (M4
.getZExtValue()) {
19530 case 0: // IEEE-inexact exception allowed
19531 switch (M5
.getZExtValue()) {
19533 case 0: ID
= Intrinsic::rint
;
19534 CI
= Intrinsic::experimental_constrained_rint
; break;
19537 case 4: // IEEE-inexact exception suppressed
19538 switch (M5
.getZExtValue()) {
19540 case 0: ID
= Intrinsic::nearbyint
;
19541 CI
= Intrinsic::experimental_constrained_nearbyint
; break;
19542 case 1: ID
= Intrinsic::round
;
19543 CI
= Intrinsic::experimental_constrained_round
; break;
19544 case 5: ID
= Intrinsic::trunc
;
19545 CI
= Intrinsic::experimental_constrained_trunc
; break;
19546 case 6: ID
= Intrinsic::ceil
;
19547 CI
= Intrinsic::experimental_constrained_ceil
; break;
19548 case 7: ID
= Intrinsic::floor
;
19549 CI
= Intrinsic::experimental_constrained_floor
; break;
19553 if (ID
!= Intrinsic::not_intrinsic
) {
19554 if (Builder
.getIsFPConstrained()) {
19555 Function
*F
= CGM
.getIntrinsic(CI
, ResultType
);
19556 return Builder
.CreateConstrainedFPCall(F
, X
);
19558 Function
*F
= CGM
.getIntrinsic(ID
, ResultType
);
19559 return Builder
.CreateCall(F
, X
);
19562 switch (BuiltinID
) { // FIXME: constrained version?
19563 case SystemZ::BI__builtin_s390_vfisb
: ID
= Intrinsic::s390_vfisb
; break;
19564 case SystemZ::BI__builtin_s390_vfidb
: ID
= Intrinsic::s390_vfidb
; break;
19565 default: llvm_unreachable("Unknown BuiltinID");
19567 Function
*F
= CGM
.getIntrinsic(ID
);
19568 Value
*M4Value
= llvm::ConstantInt::get(getLLVMContext(), M4
);
19569 Value
*M5Value
= llvm::ConstantInt::get(getLLVMContext(), M5
);
19570 return Builder
.CreateCall(F
, {X
, M4Value
, M5Value
});
19572 case SystemZ::BI__builtin_s390_vfmaxsb
:
19573 case SystemZ::BI__builtin_s390_vfmaxdb
: {
19574 llvm::Type
*ResultType
= ConvertType(E
->getType());
19575 Value
*X
= EmitScalarExpr(E
->getArg(0));
19576 Value
*Y
= EmitScalarExpr(E
->getArg(1));
19577 // Constant-fold the M4 mask argument.
19578 llvm::APSInt M4
= *E
->getArg(2)->getIntegerConstantExpr(getContext());
19579 // Check whether this instance can be represented via a LLVM standard
19580 // intrinsic. We only support some values of M4.
19581 Intrinsic::ID ID
= Intrinsic::not_intrinsic
;
19583 switch (M4
.getZExtValue()) {
19585 case 4: ID
= Intrinsic::maxnum
;
19586 CI
= Intrinsic::experimental_constrained_maxnum
; break;
19588 if (ID
!= Intrinsic::not_intrinsic
) {
19589 if (Builder
.getIsFPConstrained()) {
19590 Function
*F
= CGM
.getIntrinsic(CI
, ResultType
);
19591 return Builder
.CreateConstrainedFPCall(F
, {X
, Y
});
19593 Function
*F
= CGM
.getIntrinsic(ID
, ResultType
);
19594 return Builder
.CreateCall(F
, {X
, Y
});
19597 switch (BuiltinID
) {
19598 case SystemZ::BI__builtin_s390_vfmaxsb
: ID
= Intrinsic::s390_vfmaxsb
; break;
19599 case SystemZ::BI__builtin_s390_vfmaxdb
: ID
= Intrinsic::s390_vfmaxdb
; break;
19600 default: llvm_unreachable("Unknown BuiltinID");
19602 Function
*F
= CGM
.getIntrinsic(ID
);
19603 Value
*M4Value
= llvm::ConstantInt::get(getLLVMContext(), M4
);
19604 return Builder
.CreateCall(F
, {X
, Y
, M4Value
});
19606 case SystemZ::BI__builtin_s390_vfminsb
:
19607 case SystemZ::BI__builtin_s390_vfmindb
: {
19608 llvm::Type
*ResultType
= ConvertType(E
->getType());
19609 Value
*X
= EmitScalarExpr(E
->getArg(0));
19610 Value
*Y
= EmitScalarExpr(E
->getArg(1));
19611 // Constant-fold the M4 mask argument.
19612 llvm::APSInt M4
= *E
->getArg(2)->getIntegerConstantExpr(getContext());
19613 // Check whether this instance can be represented via a LLVM standard
19614 // intrinsic. We only support some values of M4.
19615 Intrinsic::ID ID
= Intrinsic::not_intrinsic
;
19617 switch (M4
.getZExtValue()) {
19619 case 4: ID
= Intrinsic::minnum
;
19620 CI
= Intrinsic::experimental_constrained_minnum
; break;
19622 if (ID
!= Intrinsic::not_intrinsic
) {
19623 if (Builder
.getIsFPConstrained()) {
19624 Function
*F
= CGM
.getIntrinsic(CI
, ResultType
);
19625 return Builder
.CreateConstrainedFPCall(F
, {X
, Y
});
19627 Function
*F
= CGM
.getIntrinsic(ID
, ResultType
);
19628 return Builder
.CreateCall(F
, {X
, Y
});
19631 switch (BuiltinID
) {
19632 case SystemZ::BI__builtin_s390_vfminsb
: ID
= Intrinsic::s390_vfminsb
; break;
19633 case SystemZ::BI__builtin_s390_vfmindb
: ID
= Intrinsic::s390_vfmindb
; break;
19634 default: llvm_unreachable("Unknown BuiltinID");
19636 Function
*F
= CGM
.getIntrinsic(ID
);
19637 Value
*M4Value
= llvm::ConstantInt::get(getLLVMContext(), M4
);
19638 return Builder
.CreateCall(F
, {X
, Y
, M4Value
});
19641 case SystemZ::BI__builtin_s390_vlbrh
:
19642 case SystemZ::BI__builtin_s390_vlbrf
:
19643 case SystemZ::BI__builtin_s390_vlbrg
: {
19644 llvm::Type
*ResultType
= ConvertType(E
->getType());
19645 Value
*X
= EmitScalarExpr(E
->getArg(0));
19646 Function
*F
= CGM
.getIntrinsic(Intrinsic::bswap
, ResultType
);
19647 return Builder
.CreateCall(F
, X
);
19650 // Vector intrinsics that output the post-instruction CC value.
19652 #define INTRINSIC_WITH_CC(NAME) \
19653 case SystemZ::BI__builtin_##NAME: \
19654 return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
19656 INTRINSIC_WITH_CC(s390_vpkshs
);
19657 INTRINSIC_WITH_CC(s390_vpksfs
);
19658 INTRINSIC_WITH_CC(s390_vpksgs
);
19660 INTRINSIC_WITH_CC(s390_vpklshs
);
19661 INTRINSIC_WITH_CC(s390_vpklsfs
);
19662 INTRINSIC_WITH_CC(s390_vpklsgs
);
19664 INTRINSIC_WITH_CC(s390_vceqbs
);
19665 INTRINSIC_WITH_CC(s390_vceqhs
);
19666 INTRINSIC_WITH_CC(s390_vceqfs
);
19667 INTRINSIC_WITH_CC(s390_vceqgs
);
19669 INTRINSIC_WITH_CC(s390_vchbs
);
19670 INTRINSIC_WITH_CC(s390_vchhs
);
19671 INTRINSIC_WITH_CC(s390_vchfs
);
19672 INTRINSIC_WITH_CC(s390_vchgs
);
19674 INTRINSIC_WITH_CC(s390_vchlbs
);
19675 INTRINSIC_WITH_CC(s390_vchlhs
);
19676 INTRINSIC_WITH_CC(s390_vchlfs
);
19677 INTRINSIC_WITH_CC(s390_vchlgs
);
19679 INTRINSIC_WITH_CC(s390_vfaebs
);
19680 INTRINSIC_WITH_CC(s390_vfaehs
);
19681 INTRINSIC_WITH_CC(s390_vfaefs
);
19683 INTRINSIC_WITH_CC(s390_vfaezbs
);
19684 INTRINSIC_WITH_CC(s390_vfaezhs
);
19685 INTRINSIC_WITH_CC(s390_vfaezfs
);
19687 INTRINSIC_WITH_CC(s390_vfeebs
);
19688 INTRINSIC_WITH_CC(s390_vfeehs
);
19689 INTRINSIC_WITH_CC(s390_vfeefs
);
19691 INTRINSIC_WITH_CC(s390_vfeezbs
);
19692 INTRINSIC_WITH_CC(s390_vfeezhs
);
19693 INTRINSIC_WITH_CC(s390_vfeezfs
);
19695 INTRINSIC_WITH_CC(s390_vfenebs
);
19696 INTRINSIC_WITH_CC(s390_vfenehs
);
19697 INTRINSIC_WITH_CC(s390_vfenefs
);
19699 INTRINSIC_WITH_CC(s390_vfenezbs
);
19700 INTRINSIC_WITH_CC(s390_vfenezhs
);
19701 INTRINSIC_WITH_CC(s390_vfenezfs
);
19703 INTRINSIC_WITH_CC(s390_vistrbs
);
19704 INTRINSIC_WITH_CC(s390_vistrhs
);
19705 INTRINSIC_WITH_CC(s390_vistrfs
);
19707 INTRINSIC_WITH_CC(s390_vstrcbs
);
19708 INTRINSIC_WITH_CC(s390_vstrchs
);
19709 INTRINSIC_WITH_CC(s390_vstrcfs
);
19711 INTRINSIC_WITH_CC(s390_vstrczbs
);
19712 INTRINSIC_WITH_CC(s390_vstrczhs
);
19713 INTRINSIC_WITH_CC(s390_vstrczfs
);
19715 INTRINSIC_WITH_CC(s390_vfcesbs
);
19716 INTRINSIC_WITH_CC(s390_vfcedbs
);
19717 INTRINSIC_WITH_CC(s390_vfchsbs
);
19718 INTRINSIC_WITH_CC(s390_vfchdbs
);
19719 INTRINSIC_WITH_CC(s390_vfchesbs
);
19720 INTRINSIC_WITH_CC(s390_vfchedbs
);
19722 INTRINSIC_WITH_CC(s390_vftcisb
);
19723 INTRINSIC_WITH_CC(s390_vftcidb
);
19725 INTRINSIC_WITH_CC(s390_vstrsb
);
19726 INTRINSIC_WITH_CC(s390_vstrsh
);
19727 INTRINSIC_WITH_CC(s390_vstrsf
);
19729 INTRINSIC_WITH_CC(s390_vstrszb
);
19730 INTRINSIC_WITH_CC(s390_vstrszh
);
19731 INTRINSIC_WITH_CC(s390_vstrszf
);
19733 #undef INTRINSIC_WITH_CC
19741 // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
19742 struct NVPTXMmaLdstInfo
{
19743 unsigned NumResults
; // Number of elements to load/store
19744 // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
19749 #define MMA_INTR(geom_op_type, layout) \
19750 Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
19751 #define MMA_LDST(n, geom_op_type) \
19752 { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
19754 static NVPTXMmaLdstInfo
getNVPTXMmaLdstInfo(unsigned BuiltinID
) {
19755 switch (BuiltinID
) {
19757 case NVPTX::BI__hmma_m16n16k16_ld_a
:
19758 return MMA_LDST(8, m16n16k16_load_a_f16
);
19759 case NVPTX::BI__hmma_m16n16k16_ld_b
:
19760 return MMA_LDST(8, m16n16k16_load_b_f16
);
19761 case NVPTX::BI__hmma_m16n16k16_ld_c_f16
:
19762 return MMA_LDST(4, m16n16k16_load_c_f16
);
19763 case NVPTX::BI__hmma_m16n16k16_ld_c_f32
:
19764 return MMA_LDST(8, m16n16k16_load_c_f32
);
19765 case NVPTX::BI__hmma_m32n8k16_ld_a
:
19766 return MMA_LDST(8, m32n8k16_load_a_f16
);
19767 case NVPTX::BI__hmma_m32n8k16_ld_b
:
19768 return MMA_LDST(8, m32n8k16_load_b_f16
);
19769 case NVPTX::BI__hmma_m32n8k16_ld_c_f16
:
19770 return MMA_LDST(4, m32n8k16_load_c_f16
);
19771 case NVPTX::BI__hmma_m32n8k16_ld_c_f32
:
19772 return MMA_LDST(8, m32n8k16_load_c_f32
);
19773 case NVPTX::BI__hmma_m8n32k16_ld_a
:
19774 return MMA_LDST(8, m8n32k16_load_a_f16
);
19775 case NVPTX::BI__hmma_m8n32k16_ld_b
:
19776 return MMA_LDST(8, m8n32k16_load_b_f16
);
19777 case NVPTX::BI__hmma_m8n32k16_ld_c_f16
:
19778 return MMA_LDST(4, m8n32k16_load_c_f16
);
19779 case NVPTX::BI__hmma_m8n32k16_ld_c_f32
:
19780 return MMA_LDST(8, m8n32k16_load_c_f32
);
19782 // Integer MMA loads
19783 case NVPTX::BI__imma_m16n16k16_ld_a_s8
:
19784 return MMA_LDST(2, m16n16k16_load_a_s8
);
19785 case NVPTX::BI__imma_m16n16k16_ld_a_u8
:
19786 return MMA_LDST(2, m16n16k16_load_a_u8
);
19787 case NVPTX::BI__imma_m16n16k16_ld_b_s8
:
19788 return MMA_LDST(2, m16n16k16_load_b_s8
);
19789 case NVPTX::BI__imma_m16n16k16_ld_b_u8
:
19790 return MMA_LDST(2, m16n16k16_load_b_u8
);
19791 case NVPTX::BI__imma_m16n16k16_ld_c
:
19792 return MMA_LDST(8, m16n16k16_load_c_s32
);
19793 case NVPTX::BI__imma_m32n8k16_ld_a_s8
:
19794 return MMA_LDST(4, m32n8k16_load_a_s8
);
19795 case NVPTX::BI__imma_m32n8k16_ld_a_u8
:
19796 return MMA_LDST(4, m32n8k16_load_a_u8
);
19797 case NVPTX::BI__imma_m32n8k16_ld_b_s8
:
19798 return MMA_LDST(1, m32n8k16_load_b_s8
);
19799 case NVPTX::BI__imma_m32n8k16_ld_b_u8
:
19800 return MMA_LDST(1, m32n8k16_load_b_u8
);
19801 case NVPTX::BI__imma_m32n8k16_ld_c
:
19802 return MMA_LDST(8, m32n8k16_load_c_s32
);
19803 case NVPTX::BI__imma_m8n32k16_ld_a_s8
:
19804 return MMA_LDST(1, m8n32k16_load_a_s8
);
19805 case NVPTX::BI__imma_m8n32k16_ld_a_u8
:
19806 return MMA_LDST(1, m8n32k16_load_a_u8
);
19807 case NVPTX::BI__imma_m8n32k16_ld_b_s8
:
19808 return MMA_LDST(4, m8n32k16_load_b_s8
);
19809 case NVPTX::BI__imma_m8n32k16_ld_b_u8
:
19810 return MMA_LDST(4, m8n32k16_load_b_u8
);
19811 case NVPTX::BI__imma_m8n32k16_ld_c
:
19812 return MMA_LDST(8, m8n32k16_load_c_s32
);
19814 // Sub-integer MMA loads.
19815 // Only row/col layout is supported by A/B fragments.
19816 case NVPTX::BI__imma_m8n8k32_ld_a_s4
:
19817 return {1, 0, MMA_INTR(m8n8k32_load_a_s4
, row
)};
19818 case NVPTX::BI__imma_m8n8k32_ld_a_u4
:
19819 return {1, 0, MMA_INTR(m8n8k32_load_a_u4
, row
)};
19820 case NVPTX::BI__imma_m8n8k32_ld_b_s4
:
19821 return {1, MMA_INTR(m8n8k32_load_b_s4
, col
), 0};
19822 case NVPTX::BI__imma_m8n8k32_ld_b_u4
:
19823 return {1, MMA_INTR(m8n8k32_load_b_u4
, col
), 0};
19824 case NVPTX::BI__imma_m8n8k32_ld_c
:
19825 return MMA_LDST(2, m8n8k32_load_c_s32
);
19826 case NVPTX::BI__bmma_m8n8k128_ld_a_b1
:
19827 return {1, 0, MMA_INTR(m8n8k128_load_a_b1
, row
)};
19828 case NVPTX::BI__bmma_m8n8k128_ld_b_b1
:
19829 return {1, MMA_INTR(m8n8k128_load_b_b1
, col
), 0};
19830 case NVPTX::BI__bmma_m8n8k128_ld_c
:
19831 return MMA_LDST(2, m8n8k128_load_c_s32
);
19833 // Double MMA loads
19834 case NVPTX::BI__dmma_m8n8k4_ld_a
:
19835 return MMA_LDST(1, m8n8k4_load_a_f64
);
19836 case NVPTX::BI__dmma_m8n8k4_ld_b
:
19837 return MMA_LDST(1, m8n8k4_load_b_f64
);
19838 case NVPTX::BI__dmma_m8n8k4_ld_c
:
19839 return MMA_LDST(2, m8n8k4_load_c_f64
);
19841 // Alternate float MMA loads
19842 case NVPTX::BI__mma_bf16_m16n16k16_ld_a
:
19843 return MMA_LDST(4, m16n16k16_load_a_bf16
);
19844 case NVPTX::BI__mma_bf16_m16n16k16_ld_b
:
19845 return MMA_LDST(4, m16n16k16_load_b_bf16
);
19846 case NVPTX::BI__mma_bf16_m8n32k16_ld_a
:
19847 return MMA_LDST(2, m8n32k16_load_a_bf16
);
19848 case NVPTX::BI__mma_bf16_m8n32k16_ld_b
:
19849 return MMA_LDST(8, m8n32k16_load_b_bf16
);
19850 case NVPTX::BI__mma_bf16_m32n8k16_ld_a
:
19851 return MMA_LDST(8, m32n8k16_load_a_bf16
);
19852 case NVPTX::BI__mma_bf16_m32n8k16_ld_b
:
19853 return MMA_LDST(2, m32n8k16_load_b_bf16
);
19854 case NVPTX::BI__mma_tf32_m16n16k8_ld_a
:
19855 return MMA_LDST(4, m16n16k8_load_a_tf32
);
19856 case NVPTX::BI__mma_tf32_m16n16k8_ld_b
:
19857 return MMA_LDST(4, m16n16k8_load_b_tf32
);
19858 case NVPTX::BI__mma_tf32_m16n16k8_ld_c
:
19859 return MMA_LDST(8, m16n16k8_load_c_f32
);
19861 // NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike
19862 // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
19863 // use fragment C for both loads and stores.
19865 case NVPTX::BI__hmma_m16n16k16_st_c_f16
:
19866 return MMA_LDST(4, m16n16k16_store_d_f16
);
19867 case NVPTX::BI__hmma_m16n16k16_st_c_f32
:
19868 return MMA_LDST(8, m16n16k16_store_d_f32
);
19869 case NVPTX::BI__hmma_m32n8k16_st_c_f16
:
19870 return MMA_LDST(4, m32n8k16_store_d_f16
);
19871 case NVPTX::BI__hmma_m32n8k16_st_c_f32
:
19872 return MMA_LDST(8, m32n8k16_store_d_f32
);
19873 case NVPTX::BI__hmma_m8n32k16_st_c_f16
:
19874 return MMA_LDST(4, m8n32k16_store_d_f16
);
19875 case NVPTX::BI__hmma_m8n32k16_st_c_f32
:
19876 return MMA_LDST(8, m8n32k16_store_d_f32
);
19878 // Integer and sub-integer MMA stores.
19879 // Another naming quirk. Unlike other MMA builtins that use PTX types in the
19880 // name, integer loads/stores use LLVM's i32.
19881 case NVPTX::BI__imma_m16n16k16_st_c_i32
:
19882 return MMA_LDST(8, m16n16k16_store_d_s32
);
19883 case NVPTX::BI__imma_m32n8k16_st_c_i32
:
19884 return MMA_LDST(8, m32n8k16_store_d_s32
);
19885 case NVPTX::BI__imma_m8n32k16_st_c_i32
:
19886 return MMA_LDST(8, m8n32k16_store_d_s32
);
19887 case NVPTX::BI__imma_m8n8k32_st_c_i32
:
19888 return MMA_LDST(2, m8n8k32_store_d_s32
);
19889 case NVPTX::BI__bmma_m8n8k128_st_c_i32
:
19890 return MMA_LDST(2, m8n8k128_store_d_s32
);
19892 // Double MMA store
19893 case NVPTX::BI__dmma_m8n8k4_st_c_f64
:
19894 return MMA_LDST(2, m8n8k4_store_d_f64
);
19896 // Alternate float MMA store
19897 case NVPTX::BI__mma_m16n16k8_st_c_f32
:
19898 return MMA_LDST(8, m16n16k8_store_d_f32
);
19901 llvm_unreachable("Unknown MMA builtin");
19908 struct NVPTXMmaInfo
{
19914 // Variants are ordered by layout-A/layout-B/satf, where 'row' has priority
19915 // over 'col' for layout. The index of non-satf variants is expected to match
19916 // the undocumented layout constants used by CUDA's mma.hpp.
19917 std::array
<unsigned, 8> Variants
;
19919 unsigned getMMAIntrinsic(int Layout
, bool Satf
) {
19920 unsigned Index
= Layout
+ 4 * Satf
;
19921 if (Index
>= Variants
.size())
19923 return Variants
[Index
];
19927 // Returns an intrinsic that matches Layout and Satf for valid combinations of
19928 // Layout and Satf, 0 otherwise.
19929 static NVPTXMmaInfo
getNVPTXMmaInfo(unsigned BuiltinID
) {
19930 // clang-format off
19931 #define MMA_VARIANTS(geom, type) \
19932 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \
19933 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
19934 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \
19935 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type
19936 #define MMA_SATF_VARIANTS(geom, type) \
19937 MMA_VARIANTS(geom, type), \
19938 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
19939 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
19940 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
19941 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite
19942 // Sub-integer MMA only supports row.col layout.
19943 #define MMA_VARIANTS_I4(geom, type) \
19945 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
19949 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
19952 // b1 MMA does not support .satfinite.
19953 #define MMA_VARIANTS_B1_XOR(geom, type) \
19955 Intrinsic::nvvm_wmma_##geom##_mma_xor_popc_row_col_##type, \
19962 #define MMA_VARIANTS_B1_AND(geom, type) \
19964 Intrinsic::nvvm_wmma_##geom##_mma_and_popc_row_col_##type, \
19972 switch (BuiltinID
) {
19974 // Note that 'type' argument of MMA_SATF_VARIANTS uses D_C notation, while
19975 // NumEltsN of return value are ordered as A,B,C,D.
19976 case NVPTX::BI__hmma_m16n16k16_mma_f16f16
:
19977 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m16n16k16
, f16_f16
)}}};
19978 case NVPTX::BI__hmma_m16n16k16_mma_f32f16
:
19979 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m16n16k16
, f32_f16
)}}};
19980 case NVPTX::BI__hmma_m16n16k16_mma_f16f32
:
19981 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m16n16k16
, f16_f32
)}}};
19982 case NVPTX::BI__hmma_m16n16k16_mma_f32f32
:
19983 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16
, f32_f32
)}}};
19984 case NVPTX::BI__hmma_m32n8k16_mma_f16f16
:
19985 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m32n8k16
, f16_f16
)}}};
19986 case NVPTX::BI__hmma_m32n8k16_mma_f32f16
:
19987 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m32n8k16
, f32_f16
)}}};
19988 case NVPTX::BI__hmma_m32n8k16_mma_f16f32
:
19989 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m32n8k16
, f16_f32
)}}};
19990 case NVPTX::BI__hmma_m32n8k16_mma_f32f32
:
19991 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16
, f32_f32
)}}};
19992 case NVPTX::BI__hmma_m8n32k16_mma_f16f16
:
19993 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m8n32k16
, f16_f16
)}}};
19994 case NVPTX::BI__hmma_m8n32k16_mma_f32f16
:
19995 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m8n32k16
, f32_f16
)}}};
19996 case NVPTX::BI__hmma_m8n32k16_mma_f16f32
:
19997 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m8n32k16
, f16_f32
)}}};
19998 case NVPTX::BI__hmma_m8n32k16_mma_f32f32
:
19999 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16
, f32_f32
)}}};
20002 case NVPTX::BI__imma_m16n16k16_mma_s8
:
20003 return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16
, s8
)}}};
20004 case NVPTX::BI__imma_m16n16k16_mma_u8
:
20005 return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16
, u8
)}}};
20006 case NVPTX::BI__imma_m32n8k16_mma_s8
:
20007 return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16
, s8
)}}};
20008 case NVPTX::BI__imma_m32n8k16_mma_u8
:
20009 return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16
, u8
)}}};
20010 case NVPTX::BI__imma_m8n32k16_mma_s8
:
20011 return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16
, s8
)}}};
20012 case NVPTX::BI__imma_m8n32k16_mma_u8
:
20013 return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16
, u8
)}}};
20016 case NVPTX::BI__imma_m8n8k32_mma_s4
:
20017 return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32
, s4
)}}};
20018 case NVPTX::BI__imma_m8n8k32_mma_u4
:
20019 return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32
, u4
)}}};
20020 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1
:
20021 return {1, 1, 2, 2, {{MMA_VARIANTS_B1_XOR(m8n8k128
, b1
)}}};
20022 case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1
:
20023 return {1, 1, 2, 2, {{MMA_VARIANTS_B1_AND(m8n8k128
, b1
)}}};
20026 case NVPTX::BI__dmma_m8n8k4_mma_f64
:
20027 return {1, 1, 2, 2, {{MMA_VARIANTS(m8n8k4
, f64
)}}};
20029 // Alternate FP MMA
20030 case NVPTX::BI__mma_bf16_m16n16k16_mma_f32
:
20031 return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k16
, bf16
)}}};
20032 case NVPTX::BI__mma_bf16_m8n32k16_mma_f32
:
20033 return {2, 8, 8, 8, {{MMA_VARIANTS(m8n32k16
, bf16
)}}};
20034 case NVPTX::BI__mma_bf16_m32n8k16_mma_f32
:
20035 return {8, 2, 8, 8, {{MMA_VARIANTS(m32n8k16
, bf16
)}}};
20036 case NVPTX::BI__mma_tf32_m16n16k8_mma_f32
:
20037 return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k8
, tf32
)}}};
20039 llvm_unreachable("Unexpected builtin ID.");
20041 #undef MMA_VARIANTS
20042 #undef MMA_SATF_VARIANTS
20043 #undef MMA_VARIANTS_I4
20044 #undef MMA_VARIANTS_B1_AND
20045 #undef MMA_VARIANTS_B1_XOR
20048 static Value
*MakeLdgLdu(unsigned IntrinsicID
, CodeGenFunction
&CGF
,
20049 const CallExpr
*E
) {
20050 Value
*Ptr
= CGF
.EmitScalarExpr(E
->getArg(0));
20051 QualType ArgType
= E
->getArg(0)->getType();
20052 clang::CharUnits Align
= CGF
.CGM
.getNaturalPointeeTypeAlignment(ArgType
);
20053 llvm::Type
*ElemTy
= CGF
.ConvertTypeForMem(ArgType
->getPointeeType());
20054 return CGF
.Builder
.CreateCall(
20055 CGF
.CGM
.getIntrinsic(IntrinsicID
, {ElemTy
, Ptr
->getType()}),
20056 {Ptr
, ConstantInt::get(CGF
.Builder
.getInt32Ty(), Align
.getQuantity())});
20059 static Value
*MakeScopedAtomic(unsigned IntrinsicID
, CodeGenFunction
&CGF
,
20060 const CallExpr
*E
) {
20061 Value
*Ptr
= CGF
.EmitScalarExpr(E
->getArg(0));
20062 llvm::Type
*ElemTy
=
20063 CGF
.ConvertTypeForMem(E
->getArg(0)->getType()->getPointeeType());
20064 return CGF
.Builder
.CreateCall(
20065 CGF
.CGM
.getIntrinsic(IntrinsicID
, {ElemTy
, Ptr
->getType()}),
20066 {Ptr
, CGF
.EmitScalarExpr(E
->getArg(1))});
20069 static Value
*MakeCpAsync(unsigned IntrinsicID
, unsigned IntrinsicIDS
,
20070 CodeGenFunction
&CGF
, const CallExpr
*E
,
20072 return E
->getNumArgs() == 3
20073 ? CGF
.Builder
.CreateCall(CGF
.CGM
.getIntrinsic(IntrinsicIDS
),
20074 {CGF
.EmitScalarExpr(E
->getArg(0)),
20075 CGF
.EmitScalarExpr(E
->getArg(1)),
20076 CGF
.EmitScalarExpr(E
->getArg(2))})
20077 : CGF
.Builder
.CreateCall(CGF
.CGM
.getIntrinsic(IntrinsicID
),
20078 {CGF
.EmitScalarExpr(E
->getArg(0)),
20079 CGF
.EmitScalarExpr(E
->getArg(1))});
20082 static Value
*MakeHalfType(unsigned IntrinsicID
, unsigned BuiltinID
,
20083 const CallExpr
*E
, CodeGenFunction
&CGF
) {
20084 auto &C
= CGF
.CGM
.getContext();
20085 if (!(C
.getLangOpts().NativeHalfType
||
20086 !C
.getTargetInfo().useFP16ConversionIntrinsics())) {
20087 CGF
.CGM
.Error(E
->getExprLoc(), C
.BuiltinInfo
.getName(BuiltinID
).str() +
20088 " requires native half type support.");
20092 if (IntrinsicID
== Intrinsic::nvvm_ldg_global_f
||
20093 IntrinsicID
== Intrinsic::nvvm_ldu_global_f
)
20094 return MakeLdgLdu(IntrinsicID
, CGF
, E
);
20096 SmallVector
<Value
*, 16> Args
;
20097 auto *F
= CGF
.CGM
.getIntrinsic(IntrinsicID
);
20098 auto *FTy
= F
->getFunctionType();
20099 unsigned ICEArguments
= 0;
20100 ASTContext::GetBuiltinTypeError Error
;
20101 C
.GetBuiltinType(BuiltinID
, Error
, &ICEArguments
);
20102 assert(Error
== ASTContext::GE_None
&& "Should not codegen an error");
20103 for (unsigned i
= 0, e
= E
->getNumArgs(); i
!= e
; ++i
) {
20104 assert((ICEArguments
& (1 << i
)) == 0);
20105 auto *ArgValue
= CGF
.EmitScalarExpr(E
->getArg(i
));
20106 auto *PTy
= FTy
->getParamType(i
);
20107 if (PTy
!= ArgValue
->getType())
20108 ArgValue
= CGF
.Builder
.CreateBitCast(ArgValue
, PTy
);
20109 Args
.push_back(ArgValue
);
20112 return CGF
.Builder
.CreateCall(F
, Args
);
20116 Value
*CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID
,
20117 const CallExpr
*E
) {
20118 switch (BuiltinID
) {
20119 case NVPTX::BI__nvvm_atom_add_gen_i
:
20120 case NVPTX::BI__nvvm_atom_add_gen_l
:
20121 case NVPTX::BI__nvvm_atom_add_gen_ll
:
20122 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add
, E
);
20124 case NVPTX::BI__nvvm_atom_sub_gen_i
:
20125 case NVPTX::BI__nvvm_atom_sub_gen_l
:
20126 case NVPTX::BI__nvvm_atom_sub_gen_ll
:
20127 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub
, E
);
20129 case NVPTX::BI__nvvm_atom_and_gen_i
:
20130 case NVPTX::BI__nvvm_atom_and_gen_l
:
20131 case NVPTX::BI__nvvm_atom_and_gen_ll
:
20132 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And
, E
);
20134 case NVPTX::BI__nvvm_atom_or_gen_i
:
20135 case NVPTX::BI__nvvm_atom_or_gen_l
:
20136 case NVPTX::BI__nvvm_atom_or_gen_ll
:
20137 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or
, E
);
20139 case NVPTX::BI__nvvm_atom_xor_gen_i
:
20140 case NVPTX::BI__nvvm_atom_xor_gen_l
:
20141 case NVPTX::BI__nvvm_atom_xor_gen_ll
:
20142 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor
, E
);
20144 case NVPTX::BI__nvvm_atom_xchg_gen_i
:
20145 case NVPTX::BI__nvvm_atom_xchg_gen_l
:
20146 case NVPTX::BI__nvvm_atom_xchg_gen_ll
:
20147 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg
, E
);
20149 case NVPTX::BI__nvvm_atom_max_gen_i
:
20150 case NVPTX::BI__nvvm_atom_max_gen_l
:
20151 case NVPTX::BI__nvvm_atom_max_gen_ll
:
20152 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max
, E
);
20154 case NVPTX::BI__nvvm_atom_max_gen_ui
:
20155 case NVPTX::BI__nvvm_atom_max_gen_ul
:
20156 case NVPTX::BI__nvvm_atom_max_gen_ull
:
20157 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax
, E
);
20159 case NVPTX::BI__nvvm_atom_min_gen_i
:
20160 case NVPTX::BI__nvvm_atom_min_gen_l
:
20161 case NVPTX::BI__nvvm_atom_min_gen_ll
:
20162 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min
, E
);
20164 case NVPTX::BI__nvvm_atom_min_gen_ui
:
20165 case NVPTX::BI__nvvm_atom_min_gen_ul
:
20166 case NVPTX::BI__nvvm_atom_min_gen_ull
:
20167 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin
, E
);
20169 case NVPTX::BI__nvvm_atom_cas_gen_i
:
20170 case NVPTX::BI__nvvm_atom_cas_gen_l
:
20171 case NVPTX::BI__nvvm_atom_cas_gen_ll
:
20172 // __nvvm_atom_cas_gen_* should return the old value rather than the
20174 return MakeAtomicCmpXchgValue(*this, E
, /*ReturnBool=*/false);
20176 case NVPTX::BI__nvvm_atom_add_gen_f
:
20177 case NVPTX::BI__nvvm_atom_add_gen_d
: {
20178 Address DestAddr
= EmitPointerWithAlignment(E
->getArg(0));
20179 Value
*Val
= EmitScalarExpr(E
->getArg(1));
20181 return Builder
.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd
, DestAddr
, Val
,
20182 AtomicOrdering::SequentiallyConsistent
);
20185 case NVPTX::BI__nvvm_atom_inc_gen_ui
: {
20186 Value
*Ptr
= EmitScalarExpr(E
->getArg(0));
20187 Value
*Val
= EmitScalarExpr(E
->getArg(1));
20188 Function
*FnALI32
=
20189 CGM
.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32
, Ptr
->getType());
20190 return Builder
.CreateCall(FnALI32
, {Ptr
, Val
});
20193 case NVPTX::BI__nvvm_atom_dec_gen_ui
: {
20194 Value
*Ptr
= EmitScalarExpr(E
->getArg(0));
20195 Value
*Val
= EmitScalarExpr(E
->getArg(1));
20196 Function
*FnALD32
=
20197 CGM
.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32
, Ptr
->getType());
20198 return Builder
.CreateCall(FnALD32
, {Ptr
, Val
});
20201 case NVPTX::BI__nvvm_ldg_c
:
20202 case NVPTX::BI__nvvm_ldg_sc
:
20203 case NVPTX::BI__nvvm_ldg_c2
:
20204 case NVPTX::BI__nvvm_ldg_sc2
:
20205 case NVPTX::BI__nvvm_ldg_c4
:
20206 case NVPTX::BI__nvvm_ldg_sc4
:
20207 case NVPTX::BI__nvvm_ldg_s
:
20208 case NVPTX::BI__nvvm_ldg_s2
:
20209 case NVPTX::BI__nvvm_ldg_s4
:
20210 case NVPTX::BI__nvvm_ldg_i
:
20211 case NVPTX::BI__nvvm_ldg_i2
:
20212 case NVPTX::BI__nvvm_ldg_i4
:
20213 case NVPTX::BI__nvvm_ldg_l
:
20214 case NVPTX::BI__nvvm_ldg_l2
:
20215 case NVPTX::BI__nvvm_ldg_ll
:
20216 case NVPTX::BI__nvvm_ldg_ll2
:
20217 case NVPTX::BI__nvvm_ldg_uc
:
20218 case NVPTX::BI__nvvm_ldg_uc2
:
20219 case NVPTX::BI__nvvm_ldg_uc4
:
20220 case NVPTX::BI__nvvm_ldg_us
:
20221 case NVPTX::BI__nvvm_ldg_us2
:
20222 case NVPTX::BI__nvvm_ldg_us4
:
20223 case NVPTX::BI__nvvm_ldg_ui
:
20224 case NVPTX::BI__nvvm_ldg_ui2
:
20225 case NVPTX::BI__nvvm_ldg_ui4
:
20226 case NVPTX::BI__nvvm_ldg_ul
:
20227 case NVPTX::BI__nvvm_ldg_ul2
:
20228 case NVPTX::BI__nvvm_ldg_ull
:
20229 case NVPTX::BI__nvvm_ldg_ull2
:
20230 // PTX Interoperability section 2.2: "For a vector with an even number of
20231 // elements, its alignment is set to number of elements times the alignment
20232 // of its member: n*alignof(t)."
20233 return MakeLdgLdu(Intrinsic::nvvm_ldg_global_i
, *this, E
);
20234 case NVPTX::BI__nvvm_ldg_f
:
20235 case NVPTX::BI__nvvm_ldg_f2
:
20236 case NVPTX::BI__nvvm_ldg_f4
:
20237 case NVPTX::BI__nvvm_ldg_d
:
20238 case NVPTX::BI__nvvm_ldg_d2
:
20239 return MakeLdgLdu(Intrinsic::nvvm_ldg_global_f
, *this, E
);
20241 case NVPTX::BI__nvvm_ldu_c
:
20242 case NVPTX::BI__nvvm_ldu_sc
:
20243 case NVPTX::BI__nvvm_ldu_c2
:
20244 case NVPTX::BI__nvvm_ldu_sc2
:
20245 case NVPTX::BI__nvvm_ldu_c4
:
20246 case NVPTX::BI__nvvm_ldu_sc4
:
20247 case NVPTX::BI__nvvm_ldu_s
:
20248 case NVPTX::BI__nvvm_ldu_s2
:
20249 case NVPTX::BI__nvvm_ldu_s4
:
20250 case NVPTX::BI__nvvm_ldu_i
:
20251 case NVPTX::BI__nvvm_ldu_i2
:
20252 case NVPTX::BI__nvvm_ldu_i4
:
20253 case NVPTX::BI__nvvm_ldu_l
:
20254 case NVPTX::BI__nvvm_ldu_l2
:
20255 case NVPTX::BI__nvvm_ldu_ll
:
20256 case NVPTX::BI__nvvm_ldu_ll2
:
20257 case NVPTX::BI__nvvm_ldu_uc
:
20258 case NVPTX::BI__nvvm_ldu_uc2
:
20259 case NVPTX::BI__nvvm_ldu_uc4
:
20260 case NVPTX::BI__nvvm_ldu_us
:
20261 case NVPTX::BI__nvvm_ldu_us2
:
20262 case NVPTX::BI__nvvm_ldu_us4
:
20263 case NVPTX::BI__nvvm_ldu_ui
:
20264 case NVPTX::BI__nvvm_ldu_ui2
:
20265 case NVPTX::BI__nvvm_ldu_ui4
:
20266 case NVPTX::BI__nvvm_ldu_ul
:
20267 case NVPTX::BI__nvvm_ldu_ul2
:
20268 case NVPTX::BI__nvvm_ldu_ull
:
20269 case NVPTX::BI__nvvm_ldu_ull2
:
20270 return MakeLdgLdu(Intrinsic::nvvm_ldu_global_i
, *this, E
);
20271 case NVPTX::BI__nvvm_ldu_f
:
20272 case NVPTX::BI__nvvm_ldu_f2
:
20273 case NVPTX::BI__nvvm_ldu_f4
:
20274 case NVPTX::BI__nvvm_ldu_d
:
20275 case NVPTX::BI__nvvm_ldu_d2
:
20276 return MakeLdgLdu(Intrinsic::nvvm_ldu_global_f
, *this, E
);
20278 case NVPTX::BI__nvvm_atom_cta_add_gen_i
:
20279 case NVPTX::BI__nvvm_atom_cta_add_gen_l
:
20280 case NVPTX::BI__nvvm_atom_cta_add_gen_ll
:
20281 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta
, *this, E
);
20282 case NVPTX::BI__nvvm_atom_sys_add_gen_i
:
20283 case NVPTX::BI__nvvm_atom_sys_add_gen_l
:
20284 case NVPTX::BI__nvvm_atom_sys_add_gen_ll
:
20285 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys
, *this, E
);
20286 case NVPTX::BI__nvvm_atom_cta_add_gen_f
:
20287 case NVPTX::BI__nvvm_atom_cta_add_gen_d
:
20288 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta
, *this, E
);
20289 case NVPTX::BI__nvvm_atom_sys_add_gen_f
:
20290 case NVPTX::BI__nvvm_atom_sys_add_gen_d
:
20291 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys
, *this, E
);
20292 case NVPTX::BI__nvvm_atom_cta_xchg_gen_i
:
20293 case NVPTX::BI__nvvm_atom_cta_xchg_gen_l
:
20294 case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll
:
20295 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta
, *this, E
);
20296 case NVPTX::BI__nvvm_atom_sys_xchg_gen_i
:
20297 case NVPTX::BI__nvvm_atom_sys_xchg_gen_l
:
20298 case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll
:
20299 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys
, *this, E
);
20300 case NVPTX::BI__nvvm_atom_cta_max_gen_i
:
20301 case NVPTX::BI__nvvm_atom_cta_max_gen_ui
:
20302 case NVPTX::BI__nvvm_atom_cta_max_gen_l
:
20303 case NVPTX::BI__nvvm_atom_cta_max_gen_ul
:
20304 case NVPTX::BI__nvvm_atom_cta_max_gen_ll
:
20305 case NVPTX::BI__nvvm_atom_cta_max_gen_ull
:
20306 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta
, *this, E
);
20307 case NVPTX::BI__nvvm_atom_sys_max_gen_i
:
20308 case NVPTX::BI__nvvm_atom_sys_max_gen_ui
:
20309 case NVPTX::BI__nvvm_atom_sys_max_gen_l
:
20310 case NVPTX::BI__nvvm_atom_sys_max_gen_ul
:
20311 case NVPTX::BI__nvvm_atom_sys_max_gen_ll
:
20312 case NVPTX::BI__nvvm_atom_sys_max_gen_ull
:
20313 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys
, *this, E
);
20314 case NVPTX::BI__nvvm_atom_cta_min_gen_i
:
20315 case NVPTX::BI__nvvm_atom_cta_min_gen_ui
:
20316 case NVPTX::BI__nvvm_atom_cta_min_gen_l
:
20317 case NVPTX::BI__nvvm_atom_cta_min_gen_ul
:
20318 case NVPTX::BI__nvvm_atom_cta_min_gen_ll
:
20319 case NVPTX::BI__nvvm_atom_cta_min_gen_ull
:
20320 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta
, *this, E
);
20321 case NVPTX::BI__nvvm_atom_sys_min_gen_i
:
20322 case NVPTX::BI__nvvm_atom_sys_min_gen_ui
:
20323 case NVPTX::BI__nvvm_atom_sys_min_gen_l
:
20324 case NVPTX::BI__nvvm_atom_sys_min_gen_ul
:
20325 case NVPTX::BI__nvvm_atom_sys_min_gen_ll
:
20326 case NVPTX::BI__nvvm_atom_sys_min_gen_ull
:
20327 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys
, *this, E
);
20328 case NVPTX::BI__nvvm_atom_cta_inc_gen_ui
:
20329 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta
, *this, E
);
20330 case NVPTX::BI__nvvm_atom_cta_dec_gen_ui
:
20331 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta
, *this, E
);
20332 case NVPTX::BI__nvvm_atom_sys_inc_gen_ui
:
20333 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys
, *this, E
);
20334 case NVPTX::BI__nvvm_atom_sys_dec_gen_ui
:
20335 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys
, *this, E
);
20336 case NVPTX::BI__nvvm_atom_cta_and_gen_i
:
20337 case NVPTX::BI__nvvm_atom_cta_and_gen_l
:
20338 case NVPTX::BI__nvvm_atom_cta_and_gen_ll
:
20339 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta
, *this, E
);
20340 case NVPTX::BI__nvvm_atom_sys_and_gen_i
:
20341 case NVPTX::BI__nvvm_atom_sys_and_gen_l
:
20342 case NVPTX::BI__nvvm_atom_sys_and_gen_ll
:
20343 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys
, *this, E
);
20344 case NVPTX::BI__nvvm_atom_cta_or_gen_i
:
20345 case NVPTX::BI__nvvm_atom_cta_or_gen_l
:
20346 case NVPTX::BI__nvvm_atom_cta_or_gen_ll
:
20347 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta
, *this, E
);
20348 case NVPTX::BI__nvvm_atom_sys_or_gen_i
:
20349 case NVPTX::BI__nvvm_atom_sys_or_gen_l
:
20350 case NVPTX::BI__nvvm_atom_sys_or_gen_ll
:
20351 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys
, *this, E
);
20352 case NVPTX::BI__nvvm_atom_cta_xor_gen_i
:
20353 case NVPTX::BI__nvvm_atom_cta_xor_gen_l
:
20354 case NVPTX::BI__nvvm_atom_cta_xor_gen_ll
:
20355 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta
, *this, E
);
20356 case NVPTX::BI__nvvm_atom_sys_xor_gen_i
:
20357 case NVPTX::BI__nvvm_atom_sys_xor_gen_l
:
20358 case NVPTX::BI__nvvm_atom_sys_xor_gen_ll
:
20359 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys
, *this, E
);
20360 case NVPTX::BI__nvvm_atom_cta_cas_gen_i
:
20361 case NVPTX::BI__nvvm_atom_cta_cas_gen_l
:
20362 case NVPTX::BI__nvvm_atom_cta_cas_gen_ll
: {
20363 Value
*Ptr
= EmitScalarExpr(E
->getArg(0));
20364 llvm::Type
*ElemTy
=
20365 ConvertTypeForMem(E
->getArg(0)->getType()->getPointeeType());
20366 return Builder
.CreateCall(
20368 Intrinsic::nvvm_atomic_cas_gen_i_cta
, {ElemTy
, Ptr
->getType()}),
20369 {Ptr
, EmitScalarExpr(E
->getArg(1)), EmitScalarExpr(E
->getArg(2))});
20371 case NVPTX::BI__nvvm_atom_sys_cas_gen_i
:
20372 case NVPTX::BI__nvvm_atom_sys_cas_gen_l
:
20373 case NVPTX::BI__nvvm_atom_sys_cas_gen_ll
: {
20374 Value
*Ptr
= EmitScalarExpr(E
->getArg(0));
20375 llvm::Type
*ElemTy
=
20376 ConvertTypeForMem(E
->getArg(0)->getType()->getPointeeType());
20377 return Builder
.CreateCall(
20379 Intrinsic::nvvm_atomic_cas_gen_i_sys
, {ElemTy
, Ptr
->getType()}),
20380 {Ptr
, EmitScalarExpr(E
->getArg(1)), EmitScalarExpr(E
->getArg(2))});
20382 case NVPTX::BI__nvvm_match_all_sync_i32p
:
20383 case NVPTX::BI__nvvm_match_all_sync_i64p
: {
20384 Value
*Mask
= EmitScalarExpr(E
->getArg(0));
20385 Value
*Val
= EmitScalarExpr(E
->getArg(1));
20386 Address PredOutPtr
= EmitPointerWithAlignment(E
->getArg(2));
20387 Value
*ResultPair
= Builder
.CreateCall(
20388 CGM
.getIntrinsic(BuiltinID
== NVPTX::BI__nvvm_match_all_sync_i32p
20389 ? Intrinsic::nvvm_match_all_sync_i32p
20390 : Intrinsic::nvvm_match_all_sync_i64p
),
20392 Value
*Pred
= Builder
.CreateZExt(Builder
.CreateExtractValue(ResultPair
, 1),
20393 PredOutPtr
.getElementType());
20394 Builder
.CreateStore(Pred
, PredOutPtr
);
20395 return Builder
.CreateExtractValue(ResultPair
, 0);
20399 case NVPTX::BI__hmma_m16n16k16_ld_a
:
20400 case NVPTX::BI__hmma_m16n16k16_ld_b
:
20401 case NVPTX::BI__hmma_m16n16k16_ld_c_f16
:
20402 case NVPTX::BI__hmma_m16n16k16_ld_c_f32
:
20403 case NVPTX::BI__hmma_m32n8k16_ld_a
:
20404 case NVPTX::BI__hmma_m32n8k16_ld_b
:
20405 case NVPTX::BI__hmma_m32n8k16_ld_c_f16
:
20406 case NVPTX::BI__hmma_m32n8k16_ld_c_f32
:
20407 case NVPTX::BI__hmma_m8n32k16_ld_a
:
20408 case NVPTX::BI__hmma_m8n32k16_ld_b
:
20409 case NVPTX::BI__hmma_m8n32k16_ld_c_f16
:
20410 case NVPTX::BI__hmma_m8n32k16_ld_c_f32
:
20411 // Integer MMA loads.
20412 case NVPTX::BI__imma_m16n16k16_ld_a_s8
:
20413 case NVPTX::BI__imma_m16n16k16_ld_a_u8
:
20414 case NVPTX::BI__imma_m16n16k16_ld_b_s8
:
20415 case NVPTX::BI__imma_m16n16k16_ld_b_u8
:
20416 case NVPTX::BI__imma_m16n16k16_ld_c
:
20417 case NVPTX::BI__imma_m32n8k16_ld_a_s8
:
20418 case NVPTX::BI__imma_m32n8k16_ld_a_u8
:
20419 case NVPTX::BI__imma_m32n8k16_ld_b_s8
:
20420 case NVPTX::BI__imma_m32n8k16_ld_b_u8
:
20421 case NVPTX::BI__imma_m32n8k16_ld_c
:
20422 case NVPTX::BI__imma_m8n32k16_ld_a_s8
:
20423 case NVPTX::BI__imma_m8n32k16_ld_a_u8
:
20424 case NVPTX::BI__imma_m8n32k16_ld_b_s8
:
20425 case NVPTX::BI__imma_m8n32k16_ld_b_u8
:
20426 case NVPTX::BI__imma_m8n32k16_ld_c
:
20427 // Sub-integer MMA loads.
20428 case NVPTX::BI__imma_m8n8k32_ld_a_s4
:
20429 case NVPTX::BI__imma_m8n8k32_ld_a_u4
:
20430 case NVPTX::BI__imma_m8n8k32_ld_b_s4
:
20431 case NVPTX::BI__imma_m8n8k32_ld_b_u4
:
20432 case NVPTX::BI__imma_m8n8k32_ld_c
:
20433 case NVPTX::BI__bmma_m8n8k128_ld_a_b1
:
20434 case NVPTX::BI__bmma_m8n8k128_ld_b_b1
:
20435 case NVPTX::BI__bmma_m8n8k128_ld_c
:
20436 // Double MMA loads.
20437 case NVPTX::BI__dmma_m8n8k4_ld_a
:
20438 case NVPTX::BI__dmma_m8n8k4_ld_b
:
20439 case NVPTX::BI__dmma_m8n8k4_ld_c
:
20440 // Alternate float MMA loads.
20441 case NVPTX::BI__mma_bf16_m16n16k16_ld_a
:
20442 case NVPTX::BI__mma_bf16_m16n16k16_ld_b
:
20443 case NVPTX::BI__mma_bf16_m8n32k16_ld_a
:
20444 case NVPTX::BI__mma_bf16_m8n32k16_ld_b
:
20445 case NVPTX::BI__mma_bf16_m32n8k16_ld_a
:
20446 case NVPTX::BI__mma_bf16_m32n8k16_ld_b
:
20447 case NVPTX::BI__mma_tf32_m16n16k8_ld_a
:
20448 case NVPTX::BI__mma_tf32_m16n16k8_ld_b
:
20449 case NVPTX::BI__mma_tf32_m16n16k8_ld_c
: {
20450 Address Dst
= EmitPointerWithAlignment(E
->getArg(0));
20451 Value
*Src
= EmitScalarExpr(E
->getArg(1));
20452 Value
*Ldm
= EmitScalarExpr(E
->getArg(2));
20453 std::optional
<llvm::APSInt
> isColMajorArg
=
20454 E
->getArg(3)->getIntegerConstantExpr(getContext());
20455 if (!isColMajorArg
)
20457 bool isColMajor
= isColMajorArg
->getSExtValue();
20458 NVPTXMmaLdstInfo II
= getNVPTXMmaLdstInfo(BuiltinID
);
20459 unsigned IID
= isColMajor
? II
.IID_col
: II
.IID_row
;
20464 Builder
.CreateCall(CGM
.getIntrinsic(IID
, Src
->getType()), {Src
, Ldm
});
20466 // Save returned values.
20467 assert(II
.NumResults
);
20468 if (II
.NumResults
== 1) {
20469 Builder
.CreateAlignedStore(Result
, Dst
.emitRawPointer(*this),
20470 CharUnits::fromQuantity(4));
20472 for (unsigned i
= 0; i
< II
.NumResults
; ++i
) {
20473 Builder
.CreateAlignedStore(
20474 Builder
.CreateBitCast(Builder
.CreateExtractValue(Result
, i
),
20475 Dst
.getElementType()),
20476 Builder
.CreateGEP(Dst
.getElementType(), Dst
.emitRawPointer(*this),
20477 llvm::ConstantInt::get(IntTy
, i
)),
20478 CharUnits::fromQuantity(4));
20484 case NVPTX::BI__hmma_m16n16k16_st_c_f16
:
20485 case NVPTX::BI__hmma_m16n16k16_st_c_f32
:
20486 case NVPTX::BI__hmma_m32n8k16_st_c_f16
:
20487 case NVPTX::BI__hmma_m32n8k16_st_c_f32
:
20488 case NVPTX::BI__hmma_m8n32k16_st_c_f16
:
20489 case NVPTX::BI__hmma_m8n32k16_st_c_f32
:
20490 case NVPTX::BI__imma_m16n16k16_st_c_i32
:
20491 case NVPTX::BI__imma_m32n8k16_st_c_i32
:
20492 case NVPTX::BI__imma_m8n32k16_st_c_i32
:
20493 case NVPTX::BI__imma_m8n8k32_st_c_i32
:
20494 case NVPTX::BI__bmma_m8n8k128_st_c_i32
:
20495 case NVPTX::BI__dmma_m8n8k4_st_c_f64
:
20496 case NVPTX::BI__mma_m16n16k8_st_c_f32
: {
20497 Value
*Dst
= EmitScalarExpr(E
->getArg(0));
20498 Address Src
= EmitPointerWithAlignment(E
->getArg(1));
20499 Value
*Ldm
= EmitScalarExpr(E
->getArg(2));
20500 std::optional
<llvm::APSInt
> isColMajorArg
=
20501 E
->getArg(3)->getIntegerConstantExpr(getContext());
20502 if (!isColMajorArg
)
20504 bool isColMajor
= isColMajorArg
->getSExtValue();
20505 NVPTXMmaLdstInfo II
= getNVPTXMmaLdstInfo(BuiltinID
);
20506 unsigned IID
= isColMajor
? II
.IID_col
: II
.IID_row
;
20509 Function
*Intrinsic
=
20510 CGM
.getIntrinsic(IID
, Dst
->getType());
20511 llvm::Type
*ParamType
= Intrinsic
->getFunctionType()->getParamType(1);
20512 SmallVector
<Value
*, 10> Values
= {Dst
};
20513 for (unsigned i
= 0; i
< II
.NumResults
; ++i
) {
20514 Value
*V
= Builder
.CreateAlignedLoad(
20515 Src
.getElementType(),
20516 Builder
.CreateGEP(Src
.getElementType(), Src
.emitRawPointer(*this),
20517 llvm::ConstantInt::get(IntTy
, i
)),
20518 CharUnits::fromQuantity(4));
20519 Values
.push_back(Builder
.CreateBitCast(V
, ParamType
));
20521 Values
.push_back(Ldm
);
20522 Value
*Result
= Builder
.CreateCall(Intrinsic
, Values
);
20526 // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
20527 // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
20528 case NVPTX::BI__hmma_m16n16k16_mma_f16f16
:
20529 case NVPTX::BI__hmma_m16n16k16_mma_f32f16
:
20530 case NVPTX::BI__hmma_m16n16k16_mma_f32f32
:
20531 case NVPTX::BI__hmma_m16n16k16_mma_f16f32
:
20532 case NVPTX::BI__hmma_m32n8k16_mma_f16f16
:
20533 case NVPTX::BI__hmma_m32n8k16_mma_f32f16
:
20534 case NVPTX::BI__hmma_m32n8k16_mma_f32f32
:
20535 case NVPTX::BI__hmma_m32n8k16_mma_f16f32
:
20536 case NVPTX::BI__hmma_m8n32k16_mma_f16f16
:
20537 case NVPTX::BI__hmma_m8n32k16_mma_f32f16
:
20538 case NVPTX::BI__hmma_m8n32k16_mma_f32f32
:
20539 case NVPTX::BI__hmma_m8n32k16_mma_f16f32
:
20540 case NVPTX::BI__imma_m16n16k16_mma_s8
:
20541 case NVPTX::BI__imma_m16n16k16_mma_u8
:
20542 case NVPTX::BI__imma_m32n8k16_mma_s8
:
20543 case NVPTX::BI__imma_m32n8k16_mma_u8
:
20544 case NVPTX::BI__imma_m8n32k16_mma_s8
:
20545 case NVPTX::BI__imma_m8n32k16_mma_u8
:
20546 case NVPTX::BI__imma_m8n8k32_mma_s4
:
20547 case NVPTX::BI__imma_m8n8k32_mma_u4
:
20548 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1
:
20549 case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1
:
20550 case NVPTX::BI__dmma_m8n8k4_mma_f64
:
20551 case NVPTX::BI__mma_bf16_m16n16k16_mma_f32
:
20552 case NVPTX::BI__mma_bf16_m8n32k16_mma_f32
:
20553 case NVPTX::BI__mma_bf16_m32n8k16_mma_f32
:
20554 case NVPTX::BI__mma_tf32_m16n16k8_mma_f32
: {
20555 Address Dst
= EmitPointerWithAlignment(E
->getArg(0));
20556 Address SrcA
= EmitPointerWithAlignment(E
->getArg(1));
20557 Address SrcB
= EmitPointerWithAlignment(E
->getArg(2));
20558 Address SrcC
= EmitPointerWithAlignment(E
->getArg(3));
20559 std::optional
<llvm::APSInt
> LayoutArg
=
20560 E
->getArg(4)->getIntegerConstantExpr(getContext());
20563 int Layout
= LayoutArg
->getSExtValue();
20564 if (Layout
< 0 || Layout
> 3)
20566 llvm::APSInt SatfArg
;
20567 if (BuiltinID
== NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1
||
20568 BuiltinID
== NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1
)
20569 SatfArg
= 0; // .b1 does not have satf argument.
20570 else if (std::optional
<llvm::APSInt
> OptSatfArg
=
20571 E
->getArg(5)->getIntegerConstantExpr(getContext()))
20572 SatfArg
= *OptSatfArg
;
20575 bool Satf
= SatfArg
.getSExtValue();
20576 NVPTXMmaInfo MI
= getNVPTXMmaInfo(BuiltinID
);
20577 unsigned IID
= MI
.getMMAIntrinsic(Layout
, Satf
);
20578 if (IID
== 0) // Unsupported combination of Layout/Satf.
20581 SmallVector
<Value
*, 24> Values
;
20582 Function
*Intrinsic
= CGM
.getIntrinsic(IID
);
20583 llvm::Type
*AType
= Intrinsic
->getFunctionType()->getParamType(0);
20585 for (unsigned i
= 0; i
< MI
.NumEltsA
; ++i
) {
20586 Value
*V
= Builder
.CreateAlignedLoad(
20587 SrcA
.getElementType(),
20588 Builder
.CreateGEP(SrcA
.getElementType(), SrcA
.emitRawPointer(*this),
20589 llvm::ConstantInt::get(IntTy
, i
)),
20590 CharUnits::fromQuantity(4));
20591 Values
.push_back(Builder
.CreateBitCast(V
, AType
));
20594 llvm::Type
*BType
= Intrinsic
->getFunctionType()->getParamType(MI
.NumEltsA
);
20595 for (unsigned i
= 0; i
< MI
.NumEltsB
; ++i
) {
20596 Value
*V
= Builder
.CreateAlignedLoad(
20597 SrcB
.getElementType(),
20598 Builder
.CreateGEP(SrcB
.getElementType(), SrcB
.emitRawPointer(*this),
20599 llvm::ConstantInt::get(IntTy
, i
)),
20600 CharUnits::fromQuantity(4));
20601 Values
.push_back(Builder
.CreateBitCast(V
, BType
));
20604 llvm::Type
*CType
=
20605 Intrinsic
->getFunctionType()->getParamType(MI
.NumEltsA
+ MI
.NumEltsB
);
20606 for (unsigned i
= 0; i
< MI
.NumEltsC
; ++i
) {
20607 Value
*V
= Builder
.CreateAlignedLoad(
20608 SrcC
.getElementType(),
20609 Builder
.CreateGEP(SrcC
.getElementType(), SrcC
.emitRawPointer(*this),
20610 llvm::ConstantInt::get(IntTy
, i
)),
20611 CharUnits::fromQuantity(4));
20612 Values
.push_back(Builder
.CreateBitCast(V
, CType
));
20614 Value
*Result
= Builder
.CreateCall(Intrinsic
, Values
);
20615 llvm::Type
*DType
= Dst
.getElementType();
20616 for (unsigned i
= 0; i
< MI
.NumEltsD
; ++i
)
20617 Builder
.CreateAlignedStore(
20618 Builder
.CreateBitCast(Builder
.CreateExtractValue(Result
, i
), DType
),
20619 Builder
.CreateGEP(Dst
.getElementType(), Dst
.emitRawPointer(*this),
20620 llvm::ConstantInt::get(IntTy
, i
)),
20621 CharUnits::fromQuantity(4));
20624 // The following builtins require half type support
20625 case NVPTX::BI__nvvm_ex2_approx_f16
:
20626 return MakeHalfType(Intrinsic::nvvm_ex2_approx_f16
, BuiltinID
, E
, *this);
20627 case NVPTX::BI__nvvm_ex2_approx_f16x2
:
20628 return MakeHalfType(Intrinsic::nvvm_ex2_approx_f16x2
, BuiltinID
, E
, *this);
20629 case NVPTX::BI__nvvm_ff2f16x2_rn
:
20630 return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rn
, BuiltinID
, E
, *this);
20631 case NVPTX::BI__nvvm_ff2f16x2_rn_relu
:
20632 return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rn_relu
, BuiltinID
, E
, *this);
20633 case NVPTX::BI__nvvm_ff2f16x2_rz
:
20634 return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rz
, BuiltinID
, E
, *this);
20635 case NVPTX::BI__nvvm_ff2f16x2_rz_relu
:
20636 return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rz_relu
, BuiltinID
, E
, *this);
20637 case NVPTX::BI__nvvm_fma_rn_f16
:
20638 return MakeHalfType(Intrinsic::nvvm_fma_rn_f16
, BuiltinID
, E
, *this);
20639 case NVPTX::BI__nvvm_fma_rn_f16x2
:
20640 return MakeHalfType(Intrinsic::nvvm_fma_rn_f16x2
, BuiltinID
, E
, *this);
20641 case NVPTX::BI__nvvm_fma_rn_ftz_f16
:
20642 return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_f16
, BuiltinID
, E
, *this);
20643 case NVPTX::BI__nvvm_fma_rn_ftz_f16x2
:
20644 return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_f16x2
, BuiltinID
, E
, *this);
20645 case NVPTX::BI__nvvm_fma_rn_ftz_relu_f16
:
20646 return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_relu_f16
, BuiltinID
, E
,
20648 case NVPTX::BI__nvvm_fma_rn_ftz_relu_f16x2
:
20649 return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_relu_f16x2
, BuiltinID
, E
,
20651 case NVPTX::BI__nvvm_fma_rn_ftz_sat_f16
:
20652 return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_sat_f16
, BuiltinID
, E
,
20654 case NVPTX::BI__nvvm_fma_rn_ftz_sat_f16x2
:
20655 return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_sat_f16x2
, BuiltinID
, E
,
20657 case NVPTX::BI__nvvm_fma_rn_relu_f16
:
20658 return MakeHalfType(Intrinsic::nvvm_fma_rn_relu_f16
, BuiltinID
, E
, *this);
20659 case NVPTX::BI__nvvm_fma_rn_relu_f16x2
:
20660 return MakeHalfType(Intrinsic::nvvm_fma_rn_relu_f16x2
, BuiltinID
, E
, *this);
20661 case NVPTX::BI__nvvm_fma_rn_sat_f16
:
20662 return MakeHalfType(Intrinsic::nvvm_fma_rn_sat_f16
, BuiltinID
, E
, *this);
20663 case NVPTX::BI__nvvm_fma_rn_sat_f16x2
:
20664 return MakeHalfType(Intrinsic::nvvm_fma_rn_sat_f16x2
, BuiltinID
, E
, *this);
20665 case NVPTX::BI__nvvm_fmax_f16
:
20666 return MakeHalfType(Intrinsic::nvvm_fmax_f16
, BuiltinID
, E
, *this);
20667 case NVPTX::BI__nvvm_fmax_f16x2
:
20668 return MakeHalfType(Intrinsic::nvvm_fmax_f16x2
, BuiltinID
, E
, *this);
20669 case NVPTX::BI__nvvm_fmax_ftz_f16
:
20670 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_f16
, BuiltinID
, E
, *this);
20671 case NVPTX::BI__nvvm_fmax_ftz_f16x2
:
20672 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_f16x2
, BuiltinID
, E
, *this);
20673 case NVPTX::BI__nvvm_fmax_ftz_nan_f16
:
20674 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_f16
, BuiltinID
, E
, *this);
20675 case NVPTX::BI__nvvm_fmax_ftz_nan_f16x2
:
20676 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_f16x2
, BuiltinID
, E
,
20678 case NVPTX::BI__nvvm_fmax_ftz_nan_xorsign_abs_f16
:
20679 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f16
, BuiltinID
,
20681 case NVPTX::BI__nvvm_fmax_ftz_nan_xorsign_abs_f16x2
:
20682 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f16x2
,
20683 BuiltinID
, E
, *this);
20684 case NVPTX::BI__nvvm_fmax_ftz_xorsign_abs_f16
:
20685 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_xorsign_abs_f16
, BuiltinID
, E
,
20687 case NVPTX::BI__nvvm_fmax_ftz_xorsign_abs_f16x2
:
20688 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_xorsign_abs_f16x2
, BuiltinID
,
20690 case NVPTX::BI__nvvm_fmax_nan_f16
:
20691 return MakeHalfType(Intrinsic::nvvm_fmax_nan_f16
, BuiltinID
, E
, *this);
20692 case NVPTX::BI__nvvm_fmax_nan_f16x2
:
20693 return MakeHalfType(Intrinsic::nvvm_fmax_nan_f16x2
, BuiltinID
, E
, *this);
20694 case NVPTX::BI__nvvm_fmax_nan_xorsign_abs_f16
:
20695 return MakeHalfType(Intrinsic::nvvm_fmax_nan_xorsign_abs_f16
, BuiltinID
, E
,
20697 case NVPTX::BI__nvvm_fmax_nan_xorsign_abs_f16x2
:
20698 return MakeHalfType(Intrinsic::nvvm_fmax_nan_xorsign_abs_f16x2
, BuiltinID
,
20700 case NVPTX::BI__nvvm_fmax_xorsign_abs_f16
:
20701 return MakeHalfType(Intrinsic::nvvm_fmax_xorsign_abs_f16
, BuiltinID
, E
,
20703 case NVPTX::BI__nvvm_fmax_xorsign_abs_f16x2
:
20704 return MakeHalfType(Intrinsic::nvvm_fmax_xorsign_abs_f16x2
, BuiltinID
, E
,
20706 case NVPTX::BI__nvvm_fmin_f16
:
20707 return MakeHalfType(Intrinsic::nvvm_fmin_f16
, BuiltinID
, E
, *this);
20708 case NVPTX::BI__nvvm_fmin_f16x2
:
20709 return MakeHalfType(Intrinsic::nvvm_fmin_f16x2
, BuiltinID
, E
, *this);
20710 case NVPTX::BI__nvvm_fmin_ftz_f16
:
20711 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_f16
, BuiltinID
, E
, *this);
20712 case NVPTX::BI__nvvm_fmin_ftz_f16x2
:
20713 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_f16x2
, BuiltinID
, E
, *this);
20714 case NVPTX::BI__nvvm_fmin_ftz_nan_f16
:
20715 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_f16
, BuiltinID
, E
, *this);
20716 case NVPTX::BI__nvvm_fmin_ftz_nan_f16x2
:
20717 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_f16x2
, BuiltinID
, E
,
20719 case NVPTX::BI__nvvm_fmin_ftz_nan_xorsign_abs_f16
:
20720 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f16
, BuiltinID
,
20722 case NVPTX::BI__nvvm_fmin_ftz_nan_xorsign_abs_f16x2
:
20723 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f16x2
,
20724 BuiltinID
, E
, *this);
20725 case NVPTX::BI__nvvm_fmin_ftz_xorsign_abs_f16
:
20726 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_xorsign_abs_f16
, BuiltinID
, E
,
20728 case NVPTX::BI__nvvm_fmin_ftz_xorsign_abs_f16x2
:
20729 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_xorsign_abs_f16x2
, BuiltinID
,
20731 case NVPTX::BI__nvvm_fmin_nan_f16
:
20732 return MakeHalfType(Intrinsic::nvvm_fmin_nan_f16
, BuiltinID
, E
, *this);
20733 case NVPTX::BI__nvvm_fmin_nan_f16x2
:
20734 return MakeHalfType(Intrinsic::nvvm_fmin_nan_f16x2
, BuiltinID
, E
, *this);
20735 case NVPTX::BI__nvvm_fmin_nan_xorsign_abs_f16
:
20736 return MakeHalfType(Intrinsic::nvvm_fmin_nan_xorsign_abs_f16
, BuiltinID
, E
,
20738 case NVPTX::BI__nvvm_fmin_nan_xorsign_abs_f16x2
:
20739 return MakeHalfType(Intrinsic::nvvm_fmin_nan_xorsign_abs_f16x2
, BuiltinID
,
20741 case NVPTX::BI__nvvm_fmin_xorsign_abs_f16
:
20742 return MakeHalfType(Intrinsic::nvvm_fmin_xorsign_abs_f16
, BuiltinID
, E
,
20744 case NVPTX::BI__nvvm_fmin_xorsign_abs_f16x2
:
20745 return MakeHalfType(Intrinsic::nvvm_fmin_xorsign_abs_f16x2
, BuiltinID
, E
,
20747 case NVPTX::BI__nvvm_ldg_h
:
20748 return MakeHalfType(Intrinsic::nvvm_ldg_global_f
, BuiltinID
, E
, *this);
20749 case NVPTX::BI__nvvm_ldg_h2
:
20750 return MakeHalfType(Intrinsic::nvvm_ldg_global_f
, BuiltinID
, E
, *this);
20751 case NVPTX::BI__nvvm_ldu_h
:
20752 return MakeHalfType(Intrinsic::nvvm_ldu_global_f
, BuiltinID
, E
, *this);
20753 case NVPTX::BI__nvvm_ldu_h2
: {
20754 return MakeHalfType(Intrinsic::nvvm_ldu_global_f
, BuiltinID
, E
, *this);
20756 case NVPTX::BI__nvvm_cp_async_ca_shared_global_4
:
20757 return MakeCpAsync(Intrinsic::nvvm_cp_async_ca_shared_global_4
,
20758 Intrinsic::nvvm_cp_async_ca_shared_global_4_s
, *this, E
,
20760 case NVPTX::BI__nvvm_cp_async_ca_shared_global_8
:
20761 return MakeCpAsync(Intrinsic::nvvm_cp_async_ca_shared_global_8
,
20762 Intrinsic::nvvm_cp_async_ca_shared_global_8_s
, *this, E
,
20764 case NVPTX::BI__nvvm_cp_async_ca_shared_global_16
:
20765 return MakeCpAsync(Intrinsic::nvvm_cp_async_ca_shared_global_16
,
20766 Intrinsic::nvvm_cp_async_ca_shared_global_16_s
, *this, E
,
20768 case NVPTX::BI__nvvm_cp_async_cg_shared_global_16
:
20769 return MakeCpAsync(Intrinsic::nvvm_cp_async_cg_shared_global_16
,
20770 Intrinsic::nvvm_cp_async_cg_shared_global_16_s
, *this, E
,
20772 case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_x
:
20773 return Builder
.CreateCall(
20774 CGM
.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_x
));
20775 case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_y
:
20776 return Builder
.CreateCall(
20777 CGM
.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_y
));
20778 case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_z
:
20779 return Builder
.CreateCall(
20780 CGM
.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_z
));
20781 case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_w
:
20782 return Builder
.CreateCall(
20783 CGM
.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_w
));
20784 case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_x
:
20785 return Builder
.CreateCall(
20786 CGM
.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_x
));
20787 case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_y
:
20788 return Builder
.CreateCall(
20789 CGM
.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_y
));
20790 case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_z
:
20791 return Builder
.CreateCall(
20792 CGM
.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_z
));
20793 case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_w
:
20794 return Builder
.CreateCall(
20795 CGM
.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_w
));
20796 case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_x
:
20797 return Builder
.CreateCall(
20798 CGM
.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_x
));
20799 case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_y
:
20800 return Builder
.CreateCall(
20801 CGM
.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_y
));
20802 case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_z
:
20803 return Builder
.CreateCall(
20804 CGM
.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_z
));
20805 case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_w
:
20806 return Builder
.CreateCall(
20807 CGM
.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_w
));
20808 case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_x
:
20809 return Builder
.CreateCall(
20810 CGM
.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_x
));
20811 case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_y
:
20812 return Builder
.CreateCall(
20813 CGM
.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_y
));
20814 case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_z
:
20815 return Builder
.CreateCall(
20816 CGM
.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_z
));
20817 case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_w
:
20818 return Builder
.CreateCall(
20819 CGM
.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_w
));
20820 case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctarank
:
20821 return Builder
.CreateCall(
20822 CGM
.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctarank
));
20823 case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctarank
:
20824 return Builder
.CreateCall(
20825 CGM
.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctarank
));
20826 case NVPTX::BI__nvvm_is_explicit_cluster
:
20827 return Builder
.CreateCall(
20828 CGM
.getIntrinsic(Intrinsic::nvvm_is_explicit_cluster
));
20829 case NVPTX::BI__nvvm_isspacep_shared_cluster
:
20830 return Builder
.CreateCall(
20831 CGM
.getIntrinsic(Intrinsic::nvvm_isspacep_shared_cluster
),
20832 EmitScalarExpr(E
->getArg(0)));
20833 case NVPTX::BI__nvvm_mapa
:
20834 return Builder
.CreateCall(
20835 CGM
.getIntrinsic(Intrinsic::nvvm_mapa
),
20836 {EmitScalarExpr(E
->getArg(0)), EmitScalarExpr(E
->getArg(1))});
20837 case NVPTX::BI__nvvm_mapa_shared_cluster
:
20838 return Builder
.CreateCall(
20839 CGM
.getIntrinsic(Intrinsic::nvvm_mapa_shared_cluster
),
20840 {EmitScalarExpr(E
->getArg(0)), EmitScalarExpr(E
->getArg(1))});
20841 case NVPTX::BI__nvvm_getctarank
:
20842 return Builder
.CreateCall(
20843 CGM
.getIntrinsic(Intrinsic::nvvm_getctarank
),
20844 EmitScalarExpr(E
->getArg(0)));
20845 case NVPTX::BI__nvvm_getctarank_shared_cluster
:
20846 return Builder
.CreateCall(
20847 CGM
.getIntrinsic(Intrinsic::nvvm_getctarank_shared_cluster
),
20848 EmitScalarExpr(E
->getArg(0)));
20849 case NVPTX::BI__nvvm_barrier_cluster_arrive
:
20850 return Builder
.CreateCall(
20851 CGM
.getIntrinsic(Intrinsic::nvvm_barrier_cluster_arrive
));
20852 case NVPTX::BI__nvvm_barrier_cluster_arrive_relaxed
:
20853 return Builder
.CreateCall(
20854 CGM
.getIntrinsic(Intrinsic::nvvm_barrier_cluster_arrive_relaxed
));
20855 case NVPTX::BI__nvvm_barrier_cluster_wait
:
20856 return Builder
.CreateCall(
20857 CGM
.getIntrinsic(Intrinsic::nvvm_barrier_cluster_wait
));
20858 case NVPTX::BI__nvvm_fence_sc_cluster
:
20859 return Builder
.CreateCall(
20860 CGM
.getIntrinsic(Intrinsic::nvvm_fence_sc_cluster
));
20867 struct BuiltinAlignArgs
{
20868 llvm::Value
*Src
= nullptr;
20869 llvm::Type
*SrcType
= nullptr;
20870 llvm::Value
*Alignment
= nullptr;
20871 llvm::Value
*Mask
= nullptr;
20872 llvm::IntegerType
*IntType
= nullptr;
20874 BuiltinAlignArgs(const CallExpr
*E
, CodeGenFunction
&CGF
) {
20875 QualType AstType
= E
->getArg(0)->getType();
20876 if (AstType
->isArrayType())
20877 Src
= CGF
.EmitArrayToPointerDecay(E
->getArg(0)).emitRawPointer(CGF
);
20879 Src
= CGF
.EmitScalarExpr(E
->getArg(0));
20880 SrcType
= Src
->getType();
20881 if (SrcType
->isPointerTy()) {
20882 IntType
= IntegerType::get(
20883 CGF
.getLLVMContext(),
20884 CGF
.CGM
.getDataLayout().getIndexTypeSizeInBits(SrcType
));
20886 assert(SrcType
->isIntegerTy());
20887 IntType
= cast
<llvm::IntegerType
>(SrcType
);
20889 Alignment
= CGF
.EmitScalarExpr(E
->getArg(1));
20890 Alignment
= CGF
.Builder
.CreateZExtOrTrunc(Alignment
, IntType
, "alignment");
20891 auto *One
= llvm::ConstantInt::get(IntType
, 1);
20892 Mask
= CGF
.Builder
.CreateSub(Alignment
, One
, "mask");
20897 /// Generate (x & (y-1)) == 0.
20898 RValue
CodeGenFunction::EmitBuiltinIsAligned(const CallExpr
*E
) {
20899 BuiltinAlignArgs
Args(E
, *this);
20900 llvm::Value
*SrcAddress
= Args
.Src
;
20901 if (Args
.SrcType
->isPointerTy())
20903 Builder
.CreateBitOrPointerCast(Args
.Src
, Args
.IntType
, "src_addr");
20904 return RValue::get(Builder
.CreateICmpEQ(
20905 Builder
.CreateAnd(SrcAddress
, Args
.Mask
, "set_bits"),
20906 llvm::Constant::getNullValue(Args
.IntType
), "is_aligned"));
20909 /// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up.
20910 /// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the
20911 /// llvm.ptrmask intrinsic (with a GEP before in the align_up case).
20912 RValue
CodeGenFunction::EmitBuiltinAlignTo(const CallExpr
*E
, bool AlignUp
) {
20913 BuiltinAlignArgs
Args(E
, *this);
20914 llvm::Value
*SrcForMask
= Args
.Src
;
20916 // When aligning up we have to first add the mask to ensure we go over the
20917 // next alignment value and then align down to the next valid multiple.
20918 // By adding the mask, we ensure that align_up on an already aligned
20919 // value will not change the value.
20920 if (Args
.Src
->getType()->isPointerTy()) {
20921 if (getLangOpts().isSignedOverflowDefined())
20923 Builder
.CreateGEP(Int8Ty
, SrcForMask
, Args
.Mask
, "over_boundary");
20925 SrcForMask
= EmitCheckedInBoundsGEP(Int8Ty
, SrcForMask
, Args
.Mask
,
20926 /*SignedIndices=*/true,
20927 /*isSubtraction=*/false,
20928 E
->getExprLoc(), "over_boundary");
20930 SrcForMask
= Builder
.CreateAdd(SrcForMask
, Args
.Mask
, "over_boundary");
20933 // Invert the mask to only clear the lower bits.
20934 llvm::Value
*InvertedMask
= Builder
.CreateNot(Args
.Mask
, "inverted_mask");
20935 llvm::Value
*Result
= nullptr;
20936 if (Args
.Src
->getType()->isPointerTy()) {
20937 Result
= Builder
.CreateIntrinsic(
20938 Intrinsic::ptrmask
, {Args
.SrcType
, Args
.IntType
},
20939 {SrcForMask
, InvertedMask
}, nullptr, "aligned_result");
20941 Result
= Builder
.CreateAnd(SrcForMask
, InvertedMask
, "aligned_result");
20943 assert(Result
->getType() == Args
.SrcType
);
20944 return RValue::get(Result
);
20947 Value
*CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID
,
20948 const CallExpr
*E
) {
20949 switch (BuiltinID
) {
20950 case WebAssembly::BI__builtin_wasm_memory_size
: {
20951 llvm::Type
*ResultType
= ConvertType(E
->getType());
20952 Value
*I
= EmitScalarExpr(E
->getArg(0));
20954 CGM
.getIntrinsic(Intrinsic::wasm_memory_size
, ResultType
);
20955 return Builder
.CreateCall(Callee
, I
);
20957 case WebAssembly::BI__builtin_wasm_memory_grow
: {
20958 llvm::Type
*ResultType
= ConvertType(E
->getType());
20959 Value
*Args
[] = {EmitScalarExpr(E
->getArg(0)),
20960 EmitScalarExpr(E
->getArg(1))};
20962 CGM
.getIntrinsic(Intrinsic::wasm_memory_grow
, ResultType
);
20963 return Builder
.CreateCall(Callee
, Args
);
20965 case WebAssembly::BI__builtin_wasm_tls_size
: {
20966 llvm::Type
*ResultType
= ConvertType(E
->getType());
20967 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_tls_size
, ResultType
);
20968 return Builder
.CreateCall(Callee
);
20970 case WebAssembly::BI__builtin_wasm_tls_align
: {
20971 llvm::Type
*ResultType
= ConvertType(E
->getType());
20972 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_tls_align
, ResultType
);
20973 return Builder
.CreateCall(Callee
);
20975 case WebAssembly::BI__builtin_wasm_tls_base
: {
20976 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_tls_base
);
20977 return Builder
.CreateCall(Callee
);
20979 case WebAssembly::BI__builtin_wasm_throw
: {
20980 Value
*Tag
= EmitScalarExpr(E
->getArg(0));
20981 Value
*Obj
= EmitScalarExpr(E
->getArg(1));
20982 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_throw
);
20983 return Builder
.CreateCall(Callee
, {Tag
, Obj
});
20985 case WebAssembly::BI__builtin_wasm_rethrow
: {
20986 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_rethrow
);
20987 return Builder
.CreateCall(Callee
);
20989 case WebAssembly::BI__builtin_wasm_memory_atomic_wait32
: {
20990 Value
*Addr
= EmitScalarExpr(E
->getArg(0));
20991 Value
*Expected
= EmitScalarExpr(E
->getArg(1));
20992 Value
*Timeout
= EmitScalarExpr(E
->getArg(2));
20993 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32
);
20994 return Builder
.CreateCall(Callee
, {Addr
, Expected
, Timeout
});
20996 case WebAssembly::BI__builtin_wasm_memory_atomic_wait64
: {
20997 Value
*Addr
= EmitScalarExpr(E
->getArg(0));
20998 Value
*Expected
= EmitScalarExpr(E
->getArg(1));
20999 Value
*Timeout
= EmitScalarExpr(E
->getArg(2));
21000 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64
);
21001 return Builder
.CreateCall(Callee
, {Addr
, Expected
, Timeout
});
21003 case WebAssembly::BI__builtin_wasm_memory_atomic_notify
: {
21004 Value
*Addr
= EmitScalarExpr(E
->getArg(0));
21005 Value
*Count
= EmitScalarExpr(E
->getArg(1));
21006 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_memory_atomic_notify
);
21007 return Builder
.CreateCall(Callee
, {Addr
, Count
});
21009 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32
:
21010 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64
:
21011 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32
:
21012 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64
: {
21013 Value
*Src
= EmitScalarExpr(E
->getArg(0));
21014 llvm::Type
*ResT
= ConvertType(E
->getType());
21016 CGM
.getIntrinsic(Intrinsic::wasm_trunc_signed
, {ResT
, Src
->getType()});
21017 return Builder
.CreateCall(Callee
, {Src
});
21019 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32
:
21020 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64
:
21021 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32
:
21022 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64
: {
21023 Value
*Src
= EmitScalarExpr(E
->getArg(0));
21024 llvm::Type
*ResT
= ConvertType(E
->getType());
21025 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_trunc_unsigned
,
21026 {ResT
, Src
->getType()});
21027 return Builder
.CreateCall(Callee
, {Src
});
21029 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32
:
21030 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64
:
21031 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32
:
21032 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64
:
21033 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4
: {
21034 Value
*Src
= EmitScalarExpr(E
->getArg(0));
21035 llvm::Type
*ResT
= ConvertType(E
->getType());
21037 CGM
.getIntrinsic(Intrinsic::fptosi_sat
, {ResT
, Src
->getType()});
21038 return Builder
.CreateCall(Callee
, {Src
});
21040 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32
:
21041 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64
:
21042 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32
:
21043 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64
:
21044 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4
: {
21045 Value
*Src
= EmitScalarExpr(E
->getArg(0));
21046 llvm::Type
*ResT
= ConvertType(E
->getType());
21048 CGM
.getIntrinsic(Intrinsic::fptoui_sat
, {ResT
, Src
->getType()});
21049 return Builder
.CreateCall(Callee
, {Src
});
21051 case WebAssembly::BI__builtin_wasm_min_f32
:
21052 case WebAssembly::BI__builtin_wasm_min_f64
:
21053 case WebAssembly::BI__builtin_wasm_min_f16x8
:
21054 case WebAssembly::BI__builtin_wasm_min_f32x4
:
21055 case WebAssembly::BI__builtin_wasm_min_f64x2
: {
21056 Value
*LHS
= EmitScalarExpr(E
->getArg(0));
21057 Value
*RHS
= EmitScalarExpr(E
->getArg(1));
21059 CGM
.getIntrinsic(Intrinsic::minimum
, ConvertType(E
->getType()));
21060 return Builder
.CreateCall(Callee
, {LHS
, RHS
});
21062 case WebAssembly::BI__builtin_wasm_max_f32
:
21063 case WebAssembly::BI__builtin_wasm_max_f64
:
21064 case WebAssembly::BI__builtin_wasm_max_f16x8
:
21065 case WebAssembly::BI__builtin_wasm_max_f32x4
:
21066 case WebAssembly::BI__builtin_wasm_max_f64x2
: {
21067 Value
*LHS
= EmitScalarExpr(E
->getArg(0));
21068 Value
*RHS
= EmitScalarExpr(E
->getArg(1));
21070 CGM
.getIntrinsic(Intrinsic::maximum
, ConvertType(E
->getType()));
21071 return Builder
.CreateCall(Callee
, {LHS
, RHS
});
21073 case WebAssembly::BI__builtin_wasm_pmin_f16x8
:
21074 case WebAssembly::BI__builtin_wasm_pmin_f32x4
:
21075 case WebAssembly::BI__builtin_wasm_pmin_f64x2
: {
21076 Value
*LHS
= EmitScalarExpr(E
->getArg(0));
21077 Value
*RHS
= EmitScalarExpr(E
->getArg(1));
21079 CGM
.getIntrinsic(Intrinsic::wasm_pmin
, ConvertType(E
->getType()));
21080 return Builder
.CreateCall(Callee
, {LHS
, RHS
});
21082 case WebAssembly::BI__builtin_wasm_pmax_f16x8
:
21083 case WebAssembly::BI__builtin_wasm_pmax_f32x4
:
21084 case WebAssembly::BI__builtin_wasm_pmax_f64x2
: {
21085 Value
*LHS
= EmitScalarExpr(E
->getArg(0));
21086 Value
*RHS
= EmitScalarExpr(E
->getArg(1));
21088 CGM
.getIntrinsic(Intrinsic::wasm_pmax
, ConvertType(E
->getType()));
21089 return Builder
.CreateCall(Callee
, {LHS
, RHS
});
21091 case WebAssembly::BI__builtin_wasm_ceil_f32x4
:
21092 case WebAssembly::BI__builtin_wasm_floor_f32x4
:
21093 case WebAssembly::BI__builtin_wasm_trunc_f32x4
:
21094 case WebAssembly::BI__builtin_wasm_nearest_f32x4
:
21095 case WebAssembly::BI__builtin_wasm_ceil_f64x2
:
21096 case WebAssembly::BI__builtin_wasm_floor_f64x2
:
21097 case WebAssembly::BI__builtin_wasm_trunc_f64x2
:
21098 case WebAssembly::BI__builtin_wasm_nearest_f64x2
: {
21100 switch (BuiltinID
) {
21101 case WebAssembly::BI__builtin_wasm_ceil_f32x4
:
21102 case WebAssembly::BI__builtin_wasm_ceil_f64x2
:
21103 IntNo
= Intrinsic::ceil
;
21105 case WebAssembly::BI__builtin_wasm_floor_f32x4
:
21106 case WebAssembly::BI__builtin_wasm_floor_f64x2
:
21107 IntNo
= Intrinsic::floor
;
21109 case WebAssembly::BI__builtin_wasm_trunc_f32x4
:
21110 case WebAssembly::BI__builtin_wasm_trunc_f64x2
:
21111 IntNo
= Intrinsic::trunc
;
21113 case WebAssembly::BI__builtin_wasm_nearest_f32x4
:
21114 case WebAssembly::BI__builtin_wasm_nearest_f64x2
:
21115 IntNo
= Intrinsic::nearbyint
;
21118 llvm_unreachable("unexpected builtin ID");
21120 Value
*Value
= EmitScalarExpr(E
->getArg(0));
21121 Function
*Callee
= CGM
.getIntrinsic(IntNo
, ConvertType(E
->getType()));
21122 return Builder
.CreateCall(Callee
, Value
);
21124 case WebAssembly::BI__builtin_wasm_ref_null_extern
: {
21125 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_ref_null_extern
);
21126 return Builder
.CreateCall(Callee
);
21128 case WebAssembly::BI__builtin_wasm_ref_null_func
: {
21129 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_ref_null_func
);
21130 return Builder
.CreateCall(Callee
);
21132 case WebAssembly::BI__builtin_wasm_swizzle_i8x16
: {
21133 Value
*Src
= EmitScalarExpr(E
->getArg(0));
21134 Value
*Indices
= EmitScalarExpr(E
->getArg(1));
21135 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_swizzle
);
21136 return Builder
.CreateCall(Callee
, {Src
, Indices
});
21138 case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16
:
21139 case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16
:
21140 case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8
:
21141 case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8
:
21142 case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16
:
21143 case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16
:
21144 case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8
:
21145 case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8
: {
21147 switch (BuiltinID
) {
21148 case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16
:
21149 case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8
:
21150 IntNo
= Intrinsic::sadd_sat
;
21152 case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16
:
21153 case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8
:
21154 IntNo
= Intrinsic::uadd_sat
;
21156 case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16
:
21157 case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8
:
21158 IntNo
= Intrinsic::wasm_sub_sat_signed
;
21160 case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16
:
21161 case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8
:
21162 IntNo
= Intrinsic::wasm_sub_sat_unsigned
;
21165 llvm_unreachable("unexpected builtin ID");
21167 Value
*LHS
= EmitScalarExpr(E
->getArg(0));
21168 Value
*RHS
= EmitScalarExpr(E
->getArg(1));
21169 Function
*Callee
= CGM
.getIntrinsic(IntNo
, ConvertType(E
->getType()));
21170 return Builder
.CreateCall(Callee
, {LHS
, RHS
});
21172 case WebAssembly::BI__builtin_wasm_abs_i8x16
:
21173 case WebAssembly::BI__builtin_wasm_abs_i16x8
:
21174 case WebAssembly::BI__builtin_wasm_abs_i32x4
:
21175 case WebAssembly::BI__builtin_wasm_abs_i64x2
: {
21176 Value
*Vec
= EmitScalarExpr(E
->getArg(0));
21177 Value
*Neg
= Builder
.CreateNeg(Vec
, "neg");
21178 Constant
*Zero
= llvm::Constant::getNullValue(Vec
->getType());
21179 Value
*ICmp
= Builder
.CreateICmpSLT(Vec
, Zero
, "abscond");
21180 return Builder
.CreateSelect(ICmp
, Neg
, Vec
, "abs");
21182 case WebAssembly::BI__builtin_wasm_min_s_i8x16
:
21183 case WebAssembly::BI__builtin_wasm_min_u_i8x16
:
21184 case WebAssembly::BI__builtin_wasm_max_s_i8x16
:
21185 case WebAssembly::BI__builtin_wasm_max_u_i8x16
:
21186 case WebAssembly::BI__builtin_wasm_min_s_i16x8
:
21187 case WebAssembly::BI__builtin_wasm_min_u_i16x8
:
21188 case WebAssembly::BI__builtin_wasm_max_s_i16x8
:
21189 case WebAssembly::BI__builtin_wasm_max_u_i16x8
:
21190 case WebAssembly::BI__builtin_wasm_min_s_i32x4
:
21191 case WebAssembly::BI__builtin_wasm_min_u_i32x4
:
21192 case WebAssembly::BI__builtin_wasm_max_s_i32x4
:
21193 case WebAssembly::BI__builtin_wasm_max_u_i32x4
: {
21194 Value
*LHS
= EmitScalarExpr(E
->getArg(0));
21195 Value
*RHS
= EmitScalarExpr(E
->getArg(1));
21197 switch (BuiltinID
) {
21198 case WebAssembly::BI__builtin_wasm_min_s_i8x16
:
21199 case WebAssembly::BI__builtin_wasm_min_s_i16x8
:
21200 case WebAssembly::BI__builtin_wasm_min_s_i32x4
:
21201 ICmp
= Builder
.CreateICmpSLT(LHS
, RHS
);
21203 case WebAssembly::BI__builtin_wasm_min_u_i8x16
:
21204 case WebAssembly::BI__builtin_wasm_min_u_i16x8
:
21205 case WebAssembly::BI__builtin_wasm_min_u_i32x4
:
21206 ICmp
= Builder
.CreateICmpULT(LHS
, RHS
);
21208 case WebAssembly::BI__builtin_wasm_max_s_i8x16
:
21209 case WebAssembly::BI__builtin_wasm_max_s_i16x8
:
21210 case WebAssembly::BI__builtin_wasm_max_s_i32x4
:
21211 ICmp
= Builder
.CreateICmpSGT(LHS
, RHS
);
21213 case WebAssembly::BI__builtin_wasm_max_u_i8x16
:
21214 case WebAssembly::BI__builtin_wasm_max_u_i16x8
:
21215 case WebAssembly::BI__builtin_wasm_max_u_i32x4
:
21216 ICmp
= Builder
.CreateICmpUGT(LHS
, RHS
);
21219 llvm_unreachable("unexpected builtin ID");
21221 return Builder
.CreateSelect(ICmp
, LHS
, RHS
);
21223 case WebAssembly::BI__builtin_wasm_avgr_u_i8x16
:
21224 case WebAssembly::BI__builtin_wasm_avgr_u_i16x8
: {
21225 Value
*LHS
= EmitScalarExpr(E
->getArg(0));
21226 Value
*RHS
= EmitScalarExpr(E
->getArg(1));
21227 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_avgr_unsigned
,
21228 ConvertType(E
->getType()));
21229 return Builder
.CreateCall(Callee
, {LHS
, RHS
});
21231 case WebAssembly::BI__builtin_wasm_q15mulr_sat_s_i16x8
: {
21232 Value
*LHS
= EmitScalarExpr(E
->getArg(0));
21233 Value
*RHS
= EmitScalarExpr(E
->getArg(1));
21234 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_q15mulr_sat_signed
);
21235 return Builder
.CreateCall(Callee
, {LHS
, RHS
});
21237 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8
:
21238 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8
:
21239 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4
:
21240 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4
: {
21241 Value
*Vec
= EmitScalarExpr(E
->getArg(0));
21243 switch (BuiltinID
) {
21244 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8
:
21245 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4
:
21246 IntNo
= Intrinsic::wasm_extadd_pairwise_signed
;
21248 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8
:
21249 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4
:
21250 IntNo
= Intrinsic::wasm_extadd_pairwise_unsigned
;
21253 llvm_unreachable("unexpected builtin ID");
21256 Function
*Callee
= CGM
.getIntrinsic(IntNo
, ConvertType(E
->getType()));
21257 return Builder
.CreateCall(Callee
, Vec
);
21259 case WebAssembly::BI__builtin_wasm_bitselect
: {
21260 Value
*V1
= EmitScalarExpr(E
->getArg(0));
21261 Value
*V2
= EmitScalarExpr(E
->getArg(1));
21262 Value
*C
= EmitScalarExpr(E
->getArg(2));
21264 CGM
.getIntrinsic(Intrinsic::wasm_bitselect
, ConvertType(E
->getType()));
21265 return Builder
.CreateCall(Callee
, {V1
, V2
, C
});
21267 case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8
: {
21268 Value
*LHS
= EmitScalarExpr(E
->getArg(0));
21269 Value
*RHS
= EmitScalarExpr(E
->getArg(1));
21270 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_dot
);
21271 return Builder
.CreateCall(Callee
, {LHS
, RHS
});
21273 case WebAssembly::BI__builtin_wasm_popcnt_i8x16
: {
21274 Value
*Vec
= EmitScalarExpr(E
->getArg(0));
21276 CGM
.getIntrinsic(Intrinsic::ctpop
, ConvertType(E
->getType()));
21277 return Builder
.CreateCall(Callee
, {Vec
});
21279 case WebAssembly::BI__builtin_wasm_any_true_v128
:
21280 case WebAssembly::BI__builtin_wasm_all_true_i8x16
:
21281 case WebAssembly::BI__builtin_wasm_all_true_i16x8
:
21282 case WebAssembly::BI__builtin_wasm_all_true_i32x4
:
21283 case WebAssembly::BI__builtin_wasm_all_true_i64x2
: {
21285 switch (BuiltinID
) {
21286 case WebAssembly::BI__builtin_wasm_any_true_v128
:
21287 IntNo
= Intrinsic::wasm_anytrue
;
21289 case WebAssembly::BI__builtin_wasm_all_true_i8x16
:
21290 case WebAssembly::BI__builtin_wasm_all_true_i16x8
:
21291 case WebAssembly::BI__builtin_wasm_all_true_i32x4
:
21292 case WebAssembly::BI__builtin_wasm_all_true_i64x2
:
21293 IntNo
= Intrinsic::wasm_alltrue
;
21296 llvm_unreachable("unexpected builtin ID");
21298 Value
*Vec
= EmitScalarExpr(E
->getArg(0));
21299 Function
*Callee
= CGM
.getIntrinsic(IntNo
, Vec
->getType());
21300 return Builder
.CreateCall(Callee
, {Vec
});
21302 case WebAssembly::BI__builtin_wasm_bitmask_i8x16
:
21303 case WebAssembly::BI__builtin_wasm_bitmask_i16x8
:
21304 case WebAssembly::BI__builtin_wasm_bitmask_i32x4
:
21305 case WebAssembly::BI__builtin_wasm_bitmask_i64x2
: {
21306 Value
*Vec
= EmitScalarExpr(E
->getArg(0));
21308 CGM
.getIntrinsic(Intrinsic::wasm_bitmask
, Vec
->getType());
21309 return Builder
.CreateCall(Callee
, {Vec
});
21311 case WebAssembly::BI__builtin_wasm_abs_f32x4
:
21312 case WebAssembly::BI__builtin_wasm_abs_f64x2
: {
21313 Value
*Vec
= EmitScalarExpr(E
->getArg(0));
21314 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::fabs
, Vec
->getType());
21315 return Builder
.CreateCall(Callee
, {Vec
});
21317 case WebAssembly::BI__builtin_wasm_sqrt_f32x4
:
21318 case WebAssembly::BI__builtin_wasm_sqrt_f64x2
: {
21319 Value
*Vec
= EmitScalarExpr(E
->getArg(0));
21320 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::sqrt
, Vec
->getType());
21321 return Builder
.CreateCall(Callee
, {Vec
});
21323 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8
:
21324 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8
:
21325 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4
:
21326 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4
: {
21327 Value
*Low
= EmitScalarExpr(E
->getArg(0));
21328 Value
*High
= EmitScalarExpr(E
->getArg(1));
21330 switch (BuiltinID
) {
21331 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8
:
21332 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4
:
21333 IntNo
= Intrinsic::wasm_narrow_signed
;
21335 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8
:
21336 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4
:
21337 IntNo
= Intrinsic::wasm_narrow_unsigned
;
21340 llvm_unreachable("unexpected builtin ID");
21343 CGM
.getIntrinsic(IntNo
, {ConvertType(E
->getType()), Low
->getType()});
21344 return Builder
.CreateCall(Callee
, {Low
, High
});
21346 case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4
:
21347 case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4
: {
21348 Value
*Vec
= EmitScalarExpr(E
->getArg(0));
21350 switch (BuiltinID
) {
21351 case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4
:
21352 IntNo
= Intrinsic::fptosi_sat
;
21354 case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4
:
21355 IntNo
= Intrinsic::fptoui_sat
;
21358 llvm_unreachable("unexpected builtin ID");
21360 llvm::Type
*SrcT
= Vec
->getType();
21361 llvm::Type
*TruncT
= SrcT
->getWithNewType(Builder
.getInt32Ty());
21362 Function
*Callee
= CGM
.getIntrinsic(IntNo
, {TruncT
, SrcT
});
21363 Value
*Trunc
= Builder
.CreateCall(Callee
, Vec
);
21364 Value
*Splat
= Constant::getNullValue(TruncT
);
21365 return Builder
.CreateShuffleVector(Trunc
, Splat
, ArrayRef
<int>{0, 1, 2, 3});
21367 case WebAssembly::BI__builtin_wasm_shuffle_i8x16
: {
21370 Ops
[OpIdx
++] = EmitScalarExpr(E
->getArg(0));
21371 Ops
[OpIdx
++] = EmitScalarExpr(E
->getArg(1));
21372 while (OpIdx
< 18) {
21373 std::optional
<llvm::APSInt
> LaneConst
=
21374 E
->getArg(OpIdx
)->getIntegerConstantExpr(getContext());
21375 assert(LaneConst
&& "Constant arg isn't actually constant?");
21376 Ops
[OpIdx
++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst
);
21378 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_shuffle
);
21379 return Builder
.CreateCall(Callee
, Ops
);
21381 case WebAssembly::BI__builtin_wasm_relaxed_madd_f16x8
:
21382 case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f16x8
:
21383 case WebAssembly::BI__builtin_wasm_relaxed_madd_f32x4
:
21384 case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f32x4
:
21385 case WebAssembly::BI__builtin_wasm_relaxed_madd_f64x2
:
21386 case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f64x2
: {
21387 Value
*A
= EmitScalarExpr(E
->getArg(0));
21388 Value
*B
= EmitScalarExpr(E
->getArg(1));
21389 Value
*C
= EmitScalarExpr(E
->getArg(2));
21391 switch (BuiltinID
) {
21392 case WebAssembly::BI__builtin_wasm_relaxed_madd_f16x8
:
21393 case WebAssembly::BI__builtin_wasm_relaxed_madd_f32x4
:
21394 case WebAssembly::BI__builtin_wasm_relaxed_madd_f64x2
:
21395 IntNo
= Intrinsic::wasm_relaxed_madd
;
21397 case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f16x8
:
21398 case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f32x4
:
21399 case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f64x2
:
21400 IntNo
= Intrinsic::wasm_relaxed_nmadd
;
21403 llvm_unreachable("unexpected builtin ID");
21405 Function
*Callee
= CGM
.getIntrinsic(IntNo
, A
->getType());
21406 return Builder
.CreateCall(Callee
, {A
, B
, C
});
21408 case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i8x16
:
21409 case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i16x8
:
21410 case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i32x4
:
21411 case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i64x2
: {
21412 Value
*A
= EmitScalarExpr(E
->getArg(0));
21413 Value
*B
= EmitScalarExpr(E
->getArg(1));
21414 Value
*C
= EmitScalarExpr(E
->getArg(2));
21416 CGM
.getIntrinsic(Intrinsic::wasm_relaxed_laneselect
, A
->getType());
21417 return Builder
.CreateCall(Callee
, {A
, B
, C
});
21419 case WebAssembly::BI__builtin_wasm_relaxed_swizzle_i8x16
: {
21420 Value
*Src
= EmitScalarExpr(E
->getArg(0));
21421 Value
*Indices
= EmitScalarExpr(E
->getArg(1));
21422 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_relaxed_swizzle
);
21423 return Builder
.CreateCall(Callee
, {Src
, Indices
});
21425 case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4
:
21426 case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4
:
21427 case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2
:
21428 case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2
: {
21429 Value
*LHS
= EmitScalarExpr(E
->getArg(0));
21430 Value
*RHS
= EmitScalarExpr(E
->getArg(1));
21432 switch (BuiltinID
) {
21433 case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4
:
21434 case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2
:
21435 IntNo
= Intrinsic::wasm_relaxed_min
;
21437 case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4
:
21438 case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2
:
21439 IntNo
= Intrinsic::wasm_relaxed_max
;
21442 llvm_unreachable("unexpected builtin ID");
21444 Function
*Callee
= CGM
.getIntrinsic(IntNo
, LHS
->getType());
21445 return Builder
.CreateCall(Callee
, {LHS
, RHS
});
21447 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4
:
21448 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4
:
21449 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2
:
21450 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2
: {
21451 Value
*Vec
= EmitScalarExpr(E
->getArg(0));
21453 switch (BuiltinID
) {
21454 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4
:
21455 IntNo
= Intrinsic::wasm_relaxed_trunc_signed
;
21457 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4
:
21458 IntNo
= Intrinsic::wasm_relaxed_trunc_unsigned
;
21460 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2
:
21461 IntNo
= Intrinsic::wasm_relaxed_trunc_signed_zero
;
21463 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2
:
21464 IntNo
= Intrinsic::wasm_relaxed_trunc_unsigned_zero
;
21467 llvm_unreachable("unexpected builtin ID");
21469 Function
*Callee
= CGM
.getIntrinsic(IntNo
);
21470 return Builder
.CreateCall(Callee
, {Vec
});
21472 case WebAssembly::BI__builtin_wasm_relaxed_q15mulr_s_i16x8
: {
21473 Value
*LHS
= EmitScalarExpr(E
->getArg(0));
21474 Value
*RHS
= EmitScalarExpr(E
->getArg(1));
21475 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_relaxed_q15mulr_signed
);
21476 return Builder
.CreateCall(Callee
, {LHS
, RHS
});
21478 case WebAssembly::BI__builtin_wasm_relaxed_dot_i8x16_i7x16_s_i16x8
: {
21479 Value
*LHS
= EmitScalarExpr(E
->getArg(0));
21480 Value
*RHS
= EmitScalarExpr(E
->getArg(1));
21482 CGM
.getIntrinsic(Intrinsic::wasm_relaxed_dot_i8x16_i7x16_signed
);
21483 return Builder
.CreateCall(Callee
, {LHS
, RHS
});
21485 case WebAssembly::BI__builtin_wasm_relaxed_dot_i8x16_i7x16_add_s_i32x4
: {
21486 Value
*LHS
= EmitScalarExpr(E
->getArg(0));
21487 Value
*RHS
= EmitScalarExpr(E
->getArg(1));
21488 Value
*Acc
= EmitScalarExpr(E
->getArg(2));
21490 CGM
.getIntrinsic(Intrinsic::wasm_relaxed_dot_i8x16_i7x16_add_signed
);
21491 return Builder
.CreateCall(Callee
, {LHS
, RHS
, Acc
});
21493 case WebAssembly::BI__builtin_wasm_relaxed_dot_bf16x8_add_f32_f32x4
: {
21494 Value
*LHS
= EmitScalarExpr(E
->getArg(0));
21495 Value
*RHS
= EmitScalarExpr(E
->getArg(1));
21496 Value
*Acc
= EmitScalarExpr(E
->getArg(2));
21498 CGM
.getIntrinsic(Intrinsic::wasm_relaxed_dot_bf16x8_add_f32
);
21499 return Builder
.CreateCall(Callee
, {LHS
, RHS
, Acc
});
21501 case WebAssembly::BI__builtin_wasm_loadf16_f32
: {
21502 Value
*Addr
= EmitScalarExpr(E
->getArg(0));
21503 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_loadf16_f32
);
21504 return Builder
.CreateCall(Callee
, {Addr
});
21506 case WebAssembly::BI__builtin_wasm_storef16_f32
: {
21507 Value
*Val
= EmitScalarExpr(E
->getArg(0));
21508 Value
*Addr
= EmitScalarExpr(E
->getArg(1));
21509 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_storef16_f32
);
21510 return Builder
.CreateCall(Callee
, {Val
, Addr
});
21512 case WebAssembly::BI__builtin_wasm_splat_f16x8
: {
21513 Value
*Val
= EmitScalarExpr(E
->getArg(0));
21514 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_splat_f16x8
);
21515 return Builder
.CreateCall(Callee
, {Val
});
21517 case WebAssembly::BI__builtin_wasm_extract_lane_f16x8
: {
21518 Value
*Vector
= EmitScalarExpr(E
->getArg(0));
21519 Value
*Index
= EmitScalarExpr(E
->getArg(1));
21520 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_extract_lane_f16x8
);
21521 return Builder
.CreateCall(Callee
, {Vector
, Index
});
21523 case WebAssembly::BI__builtin_wasm_table_get
: {
21524 assert(E
->getArg(0)->getType()->isArrayType());
21525 Value
*Table
= EmitArrayToPointerDecay(E
->getArg(0)).emitRawPointer(*this);
21526 Value
*Index
= EmitScalarExpr(E
->getArg(1));
21528 if (E
->getType().isWebAssemblyExternrefType())
21529 Callee
= CGM
.getIntrinsic(Intrinsic::wasm_table_get_externref
);
21530 else if (E
->getType().isWebAssemblyFuncrefType())
21531 Callee
= CGM
.getIntrinsic(Intrinsic::wasm_table_get_funcref
);
21534 "Unexpected reference type for __builtin_wasm_table_get");
21535 return Builder
.CreateCall(Callee
, {Table
, Index
});
21537 case WebAssembly::BI__builtin_wasm_table_set
: {
21538 assert(E
->getArg(0)->getType()->isArrayType());
21539 Value
*Table
= EmitArrayToPointerDecay(E
->getArg(0)).emitRawPointer(*this);
21540 Value
*Index
= EmitScalarExpr(E
->getArg(1));
21541 Value
*Val
= EmitScalarExpr(E
->getArg(2));
21543 if (E
->getArg(2)->getType().isWebAssemblyExternrefType())
21544 Callee
= CGM
.getIntrinsic(Intrinsic::wasm_table_set_externref
);
21545 else if (E
->getArg(2)->getType().isWebAssemblyFuncrefType())
21546 Callee
= CGM
.getIntrinsic(Intrinsic::wasm_table_set_funcref
);
21549 "Unexpected reference type for __builtin_wasm_table_set");
21550 return Builder
.CreateCall(Callee
, {Table
, Index
, Val
});
21552 case WebAssembly::BI__builtin_wasm_table_size
: {
21553 assert(E
->getArg(0)->getType()->isArrayType());
21554 Value
*Value
= EmitArrayToPointerDecay(E
->getArg(0)).emitRawPointer(*this);
21555 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_table_size
);
21556 return Builder
.CreateCall(Callee
, Value
);
21558 case WebAssembly::BI__builtin_wasm_table_grow
: {
21559 assert(E
->getArg(0)->getType()->isArrayType());
21560 Value
*Table
= EmitArrayToPointerDecay(E
->getArg(0)).emitRawPointer(*this);
21561 Value
*Val
= EmitScalarExpr(E
->getArg(1));
21562 Value
*NElems
= EmitScalarExpr(E
->getArg(2));
21565 if (E
->getArg(1)->getType().isWebAssemblyExternrefType())
21566 Callee
= CGM
.getIntrinsic(Intrinsic::wasm_table_grow_externref
);
21567 else if (E
->getArg(2)->getType().isWebAssemblyFuncrefType())
21568 Callee
= CGM
.getIntrinsic(Intrinsic::wasm_table_fill_funcref
);
21571 "Unexpected reference type for __builtin_wasm_table_grow");
21573 return Builder
.CreateCall(Callee
, {Table
, Val
, NElems
});
21575 case WebAssembly::BI__builtin_wasm_table_fill
: {
21576 assert(E
->getArg(0)->getType()->isArrayType());
21577 Value
*Table
= EmitArrayToPointerDecay(E
->getArg(0)).emitRawPointer(*this);
21578 Value
*Index
= EmitScalarExpr(E
->getArg(1));
21579 Value
*Val
= EmitScalarExpr(E
->getArg(2));
21580 Value
*NElems
= EmitScalarExpr(E
->getArg(3));
21583 if (E
->getArg(2)->getType().isWebAssemblyExternrefType())
21584 Callee
= CGM
.getIntrinsic(Intrinsic::wasm_table_fill_externref
);
21585 else if (E
->getArg(2)->getType().isWebAssemblyFuncrefType())
21586 Callee
= CGM
.getIntrinsic(Intrinsic::wasm_table_fill_funcref
);
21589 "Unexpected reference type for __builtin_wasm_table_fill");
21591 return Builder
.CreateCall(Callee
, {Table
, Index
, Val
, NElems
});
21593 case WebAssembly::BI__builtin_wasm_table_copy
: {
21594 assert(E
->getArg(0)->getType()->isArrayType());
21595 Value
*TableX
= EmitArrayToPointerDecay(E
->getArg(0)).emitRawPointer(*this);
21596 Value
*TableY
= EmitArrayToPointerDecay(E
->getArg(1)).emitRawPointer(*this);
21597 Value
*DstIdx
= EmitScalarExpr(E
->getArg(2));
21598 Value
*SrcIdx
= EmitScalarExpr(E
->getArg(3));
21599 Value
*NElems
= EmitScalarExpr(E
->getArg(4));
21601 Function
*Callee
= CGM
.getIntrinsic(Intrinsic::wasm_table_copy
);
21603 return Builder
.CreateCall(Callee
, {TableX
, TableY
, SrcIdx
, DstIdx
, NElems
});
21610 static std::pair
<Intrinsic::ID
, unsigned>
21611 getIntrinsicForHexagonNonClangBuiltin(unsigned BuiltinID
) {
21613 unsigned BuiltinID
;
21614 Intrinsic::ID IntrinsicID
;
21617 static Info Infos
[] = {
21618 #define CUSTOM_BUILTIN_MAPPING(x,s) \
21619 { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s },
21620 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci
, 0)
21621 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci
, 0)
21622 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci
, 0)
21623 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci
, 0)
21624 CUSTOM_BUILTIN_MAPPING(L2_loadri_pci
, 0)
21625 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci
, 0)
21626 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr
, 0)
21627 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr
, 0)
21628 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr
, 0)
21629 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr
, 0)
21630 CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr
, 0)
21631 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr
, 0)
21632 CUSTOM_BUILTIN_MAPPING(S2_storerb_pci
, 0)
21633 CUSTOM_BUILTIN_MAPPING(S2_storerh_pci
, 0)
21634 CUSTOM_BUILTIN_MAPPING(S2_storerf_pci
, 0)
21635 CUSTOM_BUILTIN_MAPPING(S2_storeri_pci
, 0)
21636 CUSTOM_BUILTIN_MAPPING(S2_storerd_pci
, 0)
21637 CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr
, 0)
21638 CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr
, 0)
21639 CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr
, 0)
21640 CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr
, 0)
21641 CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr
, 0)
21642 // Legacy builtins that take a vector in place of a vector predicate.
21643 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq
, 64)
21644 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq
, 64)
21645 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq
, 64)
21646 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq
, 64)
21647 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B
, 128)
21648 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B
, 128)
21649 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B
, 128)
21650 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B
, 128)
21651 #include "clang/Basic/BuiltinsHexagonMapCustomDep.def"
21652 #undef CUSTOM_BUILTIN_MAPPING
21655 auto CmpInfo
= [] (Info A
, Info B
) { return A
.BuiltinID
< B
.BuiltinID
; };
21656 static const bool SortOnce
= (llvm::sort(Infos
, CmpInfo
), true);
21659 const Info
*F
= llvm::lower_bound(Infos
, Info
{BuiltinID
, 0, 0}, CmpInfo
);
21660 if (F
== std::end(Infos
) || F
->BuiltinID
!= BuiltinID
)
21661 return {Intrinsic::not_intrinsic
, 0};
21663 return {F
->IntrinsicID
, F
->VecLen
};
21666 Value
*CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID
,
21667 const CallExpr
*E
) {
21670 std::tie(ID
, VecLen
) = getIntrinsicForHexagonNonClangBuiltin(BuiltinID
);
21672 auto MakeCircOp
= [this, E
](unsigned IntID
, bool IsLoad
) {
21673 // The base pointer is passed by address, so it needs to be loaded.
21674 Address A
= EmitPointerWithAlignment(E
->getArg(0));
21675 Address BP
= Address(A
.emitRawPointer(*this), Int8PtrTy
, A
.getAlignment());
21676 llvm::Value
*Base
= Builder
.CreateLoad(BP
);
21677 // The treatment of both loads and stores is the same: the arguments for
21678 // the builtin are the same as the arguments for the intrinsic.
21680 // builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start)
21681 // builtin(Base, Mod, Start) -> intr(Base, Mod, Start)
21683 // builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start)
21684 // builtin(Base, Mod, Val, Start) -> intr(Base, Mod, Val, Start)
21685 SmallVector
<llvm::Value
*,5> Ops
= { Base
};
21686 for (unsigned i
= 1, e
= E
->getNumArgs(); i
!= e
; ++i
)
21687 Ops
.push_back(EmitScalarExpr(E
->getArg(i
)));
21689 llvm::Value
*Result
= Builder
.CreateCall(CGM
.getIntrinsic(IntID
), Ops
);
21690 // The load intrinsics generate two results (Value, NewBase), stores
21691 // generate one (NewBase). The new base address needs to be stored.
21692 llvm::Value
*NewBase
= IsLoad
? Builder
.CreateExtractValue(Result
, 1)
21694 llvm::Value
*LV
= EmitScalarExpr(E
->getArg(0));
21695 Address Dest
= EmitPointerWithAlignment(E
->getArg(0));
21696 llvm::Value
*RetVal
=
21697 Builder
.CreateAlignedStore(NewBase
, LV
, Dest
.getAlignment());
21699 RetVal
= Builder
.CreateExtractValue(Result
, 0);
21703 // Handle the conversion of bit-reverse load intrinsics to bit code.
21704 // The intrinsic call after this function only reads from memory and the
21705 // write to memory is dealt by the store instruction.
21706 auto MakeBrevLd
= [this, E
](unsigned IntID
, llvm::Type
*DestTy
) {
21707 // The intrinsic generates one result, which is the new value for the base
21708 // pointer. It needs to be returned. The result of the load instruction is
21709 // passed to intrinsic by address, so the value needs to be stored.
21710 llvm::Value
*BaseAddress
= EmitScalarExpr(E
->getArg(0));
21712 // Expressions like &(*pt++) will be incremented per evaluation.
21713 // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
21715 Address DestAddr
= EmitPointerWithAlignment(E
->getArg(1));
21716 DestAddr
= DestAddr
.withElementType(Int8Ty
);
21717 llvm::Value
*DestAddress
= DestAddr
.emitRawPointer(*this);
21719 // Operands are Base, Dest, Modifier.
21720 // The intrinsic format in LLVM IR is defined as
21721 // { ValueType, i8* } (i8*, i32).
21722 llvm::Value
*Result
= Builder
.CreateCall(
21723 CGM
.getIntrinsic(IntID
), {BaseAddress
, EmitScalarExpr(E
->getArg(2))});
21725 // The value needs to be stored as the variable is passed by reference.
21726 llvm::Value
*DestVal
= Builder
.CreateExtractValue(Result
, 0);
21728 // The store needs to be truncated to fit the destination type.
21729 // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
21730 // to be handled with stores of respective destination type.
21731 DestVal
= Builder
.CreateTrunc(DestVal
, DestTy
);
21733 Builder
.CreateAlignedStore(DestVal
, DestAddress
, DestAddr
.getAlignment());
21734 // The updated value of the base pointer is returned.
21735 return Builder
.CreateExtractValue(Result
, 1);
21738 auto V2Q
= [this, VecLen
] (llvm::Value
*Vec
) {
21739 Intrinsic::ID ID
= VecLen
== 128 ? Intrinsic::hexagon_V6_vandvrt_128B
21740 : Intrinsic::hexagon_V6_vandvrt
;
21741 return Builder
.CreateCall(CGM
.getIntrinsic(ID
),
21742 {Vec
, Builder
.getInt32(-1)});
21744 auto Q2V
= [this, VecLen
] (llvm::Value
*Pred
) {
21745 Intrinsic::ID ID
= VecLen
== 128 ? Intrinsic::hexagon_V6_vandqrt_128B
21746 : Intrinsic::hexagon_V6_vandqrt
;
21747 return Builder
.CreateCall(CGM
.getIntrinsic(ID
),
21748 {Pred
, Builder
.getInt32(-1)});
21751 switch (BuiltinID
) {
21752 // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR,
21753 // and the corresponding C/C++ builtins use loads/stores to update
21755 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry
:
21756 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B
:
21757 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry
:
21758 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B
: {
21759 // Get the type from the 0-th argument.
21760 llvm::Type
*VecType
= ConvertType(E
->getArg(0)->getType());
21762 EmitPointerWithAlignment(E
->getArg(2)).withElementType(VecType
);
21763 llvm::Value
*PredIn
= V2Q(Builder
.CreateLoad(PredAddr
));
21764 llvm::Value
*Result
= Builder
.CreateCall(CGM
.getIntrinsic(ID
),
21765 {EmitScalarExpr(E
->getArg(0)), EmitScalarExpr(E
->getArg(1)), PredIn
});
21767 llvm::Value
*PredOut
= Builder
.CreateExtractValue(Result
, 1);
21768 Builder
.CreateAlignedStore(Q2V(PredOut
), PredAddr
.emitRawPointer(*this),
21769 PredAddr
.getAlignment());
21770 return Builder
.CreateExtractValue(Result
, 0);
21772 // These are identical to the builtins above, except they don't consume
21773 // input carry, only generate carry-out. Since they still produce two
21774 // outputs, generate the store of the predicate, but no load.
21775 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarryo
:
21776 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarryo_128B
:
21777 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarryo
:
21778 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarryo_128B
: {
21779 // Get the type from the 0-th argument.
21780 llvm::Type
*VecType
= ConvertType(E
->getArg(0)->getType());
21782 EmitPointerWithAlignment(E
->getArg(2)).withElementType(VecType
);
21783 llvm::Value
*Result
= Builder
.CreateCall(CGM
.getIntrinsic(ID
),
21784 {EmitScalarExpr(E
->getArg(0)), EmitScalarExpr(E
->getArg(1))});
21786 llvm::Value
*PredOut
= Builder
.CreateExtractValue(Result
, 1);
21787 Builder
.CreateAlignedStore(Q2V(PredOut
), PredAddr
.emitRawPointer(*this),
21788 PredAddr
.getAlignment());
21789 return Builder
.CreateExtractValue(Result
, 0);
21792 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq
:
21793 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq
:
21794 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq
:
21795 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq
:
21796 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq_128B
:
21797 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq_128B
:
21798 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq_128B
:
21799 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq_128B
: {
21800 SmallVector
<llvm::Value
*,4> Ops
;
21801 const Expr
*PredOp
= E
->getArg(0);
21802 // There will be an implicit cast to a boolean vector. Strip it.
21803 if (auto *Cast
= dyn_cast
<ImplicitCastExpr
>(PredOp
)) {
21804 if (Cast
->getCastKind() == CK_BitCast
)
21805 PredOp
= Cast
->getSubExpr();
21806 Ops
.push_back(V2Q(EmitScalarExpr(PredOp
)));
21808 for (int i
= 1, e
= E
->getNumArgs(); i
!= e
; ++i
)
21809 Ops
.push_back(EmitScalarExpr(E
->getArg(i
)));
21810 return Builder
.CreateCall(CGM
.getIntrinsic(ID
), Ops
);
21813 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci
:
21814 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci
:
21815 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci
:
21816 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci
:
21817 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci
:
21818 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci
:
21819 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr
:
21820 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr
:
21821 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr
:
21822 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr
:
21823 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr
:
21824 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr
:
21825 return MakeCircOp(ID
, /*IsLoad=*/true);
21826 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci
:
21827 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci
:
21828 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci
:
21829 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci
:
21830 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci
:
21831 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr
:
21832 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr
:
21833 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr
:
21834 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr
:
21835 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr
:
21836 return MakeCircOp(ID
, /*IsLoad=*/false);
21837 case Hexagon::BI__builtin_brev_ldub
:
21838 return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr
, Int8Ty
);
21839 case Hexagon::BI__builtin_brev_ldb
:
21840 return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr
, Int8Ty
);
21841 case Hexagon::BI__builtin_brev_lduh
:
21842 return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr
, Int16Ty
);
21843 case Hexagon::BI__builtin_brev_ldh
:
21844 return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr
, Int16Ty
);
21845 case Hexagon::BI__builtin_brev_ldw
:
21846 return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr
, Int32Ty
);
21847 case Hexagon::BI__builtin_brev_ldd
:
21848 return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr
, Int64Ty
);
21854 Value
*CodeGenFunction::EmitRISCVBuiltinExpr(unsigned BuiltinID
,
21856 ReturnValueSlot ReturnValue
) {
21857 SmallVector
<Value
*, 4> Ops
;
21858 llvm::Type
*ResultType
= ConvertType(E
->getType());
21860 // Find out if any arguments are required to be integer constant expressions.
21861 unsigned ICEArguments
= 0;
21862 ASTContext::GetBuiltinTypeError Error
;
21863 getContext().GetBuiltinType(BuiltinID
, Error
, &ICEArguments
);
21864 if (Error
== ASTContext::GE_Missing_type
) {
21865 // Vector intrinsics don't have a type string.
21866 assert(BuiltinID
>= clang::RISCV::FirstRVVBuiltin
&&
21867 BuiltinID
<= clang::RISCV::LastRVVBuiltin
);
21869 if (BuiltinID
== RISCVVector::BI__builtin_rvv_vget_v
||
21870 BuiltinID
== RISCVVector::BI__builtin_rvv_vset_v
)
21871 ICEArguments
= 1 << 1;
21873 assert(Error
== ASTContext::GE_None
&& "Unexpected error");
21876 if (BuiltinID
== RISCV::BI__builtin_riscv_ntl_load
)
21877 ICEArguments
|= (1 << 1);
21878 if (BuiltinID
== RISCV::BI__builtin_riscv_ntl_store
)
21879 ICEArguments
|= (1 << 2);
21881 for (unsigned i
= 0, e
= E
->getNumArgs(); i
!= e
; i
++) {
21882 // Handle aggregate argument, namely RVV tuple types in segment load/store
21883 if (hasAggregateEvaluationKind(E
->getArg(i
)->getType())) {
21884 LValue L
= EmitAggExprToLValue(E
->getArg(i
));
21885 llvm::Value
*AggValue
= Builder
.CreateLoad(L
.getAddress());
21886 Ops
.push_back(AggValue
);
21889 Ops
.push_back(EmitScalarOrConstFoldImmArg(ICEArguments
, i
, E
));
21892 Intrinsic::ID ID
= Intrinsic::not_intrinsic
;
21894 // The 0th bit simulates the `vta` of RVV
21895 // The 1st bit simulates the `vma` of RVV
21896 constexpr unsigned RVV_VTA
= 0x1;
21897 constexpr unsigned RVV_VMA
= 0x2;
21898 int PolicyAttrs
= 0;
21899 bool IsMasked
= false;
21901 // Required for overloaded intrinsics.
21902 llvm::SmallVector
<llvm::Type
*, 2> IntrinsicTypes
;
21903 switch (BuiltinID
) {
21904 default: llvm_unreachable("unexpected builtin ID");
21905 case RISCV::BI__builtin_riscv_orc_b_32
:
21906 case RISCV::BI__builtin_riscv_orc_b_64
:
21907 case RISCV::BI__builtin_riscv_clz_32
:
21908 case RISCV::BI__builtin_riscv_clz_64
:
21909 case RISCV::BI__builtin_riscv_ctz_32
:
21910 case RISCV::BI__builtin_riscv_ctz_64
:
21911 case RISCV::BI__builtin_riscv_clmul_32
:
21912 case RISCV::BI__builtin_riscv_clmul_64
:
21913 case RISCV::BI__builtin_riscv_clmulh_32
:
21914 case RISCV::BI__builtin_riscv_clmulh_64
:
21915 case RISCV::BI__builtin_riscv_clmulr_32
:
21916 case RISCV::BI__builtin_riscv_clmulr_64
:
21917 case RISCV::BI__builtin_riscv_xperm4_32
:
21918 case RISCV::BI__builtin_riscv_xperm4_64
:
21919 case RISCV::BI__builtin_riscv_xperm8_32
:
21920 case RISCV::BI__builtin_riscv_xperm8_64
:
21921 case RISCV::BI__builtin_riscv_brev8_32
:
21922 case RISCV::BI__builtin_riscv_brev8_64
:
21923 case RISCV::BI__builtin_riscv_zip_32
:
21924 case RISCV::BI__builtin_riscv_unzip_32
: {
21925 switch (BuiltinID
) {
21926 default: llvm_unreachable("unexpected builtin ID");
21928 case RISCV::BI__builtin_riscv_orc_b_32
:
21929 case RISCV::BI__builtin_riscv_orc_b_64
:
21930 ID
= Intrinsic::riscv_orc_b
;
21932 case RISCV::BI__builtin_riscv_clz_32
:
21933 case RISCV::BI__builtin_riscv_clz_64
: {
21934 Function
*F
= CGM
.getIntrinsic(Intrinsic::ctlz
, Ops
[0]->getType());
21935 Value
*Result
= Builder
.CreateCall(F
, {Ops
[0], Builder
.getInt1(false)});
21936 if (Result
->getType() != ResultType
)
21937 Result
= Builder
.CreateIntCast(Result
, ResultType
, /*isSigned*/true,
21941 case RISCV::BI__builtin_riscv_ctz_32
:
21942 case RISCV::BI__builtin_riscv_ctz_64
: {
21943 Function
*F
= CGM
.getIntrinsic(Intrinsic::cttz
, Ops
[0]->getType());
21944 Value
*Result
= Builder
.CreateCall(F
, {Ops
[0], Builder
.getInt1(false)});
21945 if (Result
->getType() != ResultType
)
21946 Result
= Builder
.CreateIntCast(Result
, ResultType
, /*isSigned*/true,
21952 case RISCV::BI__builtin_riscv_clmul_32
:
21953 case RISCV::BI__builtin_riscv_clmul_64
:
21954 ID
= Intrinsic::riscv_clmul
;
21956 case RISCV::BI__builtin_riscv_clmulh_32
:
21957 case RISCV::BI__builtin_riscv_clmulh_64
:
21958 ID
= Intrinsic::riscv_clmulh
;
21960 case RISCV::BI__builtin_riscv_clmulr_32
:
21961 case RISCV::BI__builtin_riscv_clmulr_64
:
21962 ID
= Intrinsic::riscv_clmulr
;
21966 case RISCV::BI__builtin_riscv_xperm8_32
:
21967 case RISCV::BI__builtin_riscv_xperm8_64
:
21968 ID
= Intrinsic::riscv_xperm8
;
21970 case RISCV::BI__builtin_riscv_xperm4_32
:
21971 case RISCV::BI__builtin_riscv_xperm4_64
:
21972 ID
= Intrinsic::riscv_xperm4
;
21976 case RISCV::BI__builtin_riscv_brev8_32
:
21977 case RISCV::BI__builtin_riscv_brev8_64
:
21978 ID
= Intrinsic::riscv_brev8
;
21980 case RISCV::BI__builtin_riscv_zip_32
:
21981 ID
= Intrinsic::riscv_zip
;
21983 case RISCV::BI__builtin_riscv_unzip_32
:
21984 ID
= Intrinsic::riscv_unzip
;
21988 IntrinsicTypes
= {ResultType
};
21995 case RISCV::BI__builtin_riscv_sha256sig0
:
21996 ID
= Intrinsic::riscv_sha256sig0
;
21998 case RISCV::BI__builtin_riscv_sha256sig1
:
21999 ID
= Intrinsic::riscv_sha256sig1
;
22001 case RISCV::BI__builtin_riscv_sha256sum0
:
22002 ID
= Intrinsic::riscv_sha256sum0
;
22004 case RISCV::BI__builtin_riscv_sha256sum1
:
22005 ID
= Intrinsic::riscv_sha256sum1
;
22009 case RISCV::BI__builtin_riscv_sm4ks
:
22010 ID
= Intrinsic::riscv_sm4ks
;
22012 case RISCV::BI__builtin_riscv_sm4ed
:
22013 ID
= Intrinsic::riscv_sm4ed
;
22017 case RISCV::BI__builtin_riscv_sm3p0
:
22018 ID
= Intrinsic::riscv_sm3p0
;
22020 case RISCV::BI__builtin_riscv_sm3p1
:
22021 ID
= Intrinsic::riscv_sm3p1
;
22025 case RISCV::BI__builtin_riscv_ntl_load
: {
22026 llvm::Type
*ResTy
= ConvertType(E
->getType());
22027 unsigned DomainVal
= 5; // Default __RISCV_NTLH_ALL
22028 if (Ops
.size() == 2)
22029 DomainVal
= cast
<ConstantInt
>(Ops
[1])->getZExtValue();
22031 llvm::MDNode
*RISCVDomainNode
= llvm::MDNode::get(
22033 llvm::ConstantAsMetadata::get(Builder
.getInt32(DomainVal
)));
22034 llvm::MDNode
*NontemporalNode
= llvm::MDNode::get(
22035 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder
.getInt32(1)));
22038 if(ResTy
->isScalableTy()) {
22039 const ScalableVectorType
*SVTy
= cast
<ScalableVectorType
>(ResTy
);
22040 llvm::Type
*ScalarTy
= ResTy
->getScalarType();
22041 Width
= ScalarTy
->getPrimitiveSizeInBits() *
22042 SVTy
->getElementCount().getKnownMinValue();
22044 Width
= ResTy
->getPrimitiveSizeInBits();
22045 LoadInst
*Load
= Builder
.CreateLoad(
22046 Address(Ops
[0], ResTy
, CharUnits::fromQuantity(Width
/ 8)));
22048 Load
->setMetadata(llvm::LLVMContext::MD_nontemporal
, NontemporalNode
);
22049 Load
->setMetadata(CGM
.getModule().getMDKindID("riscv-nontemporal-domain"),
22054 case RISCV::BI__builtin_riscv_ntl_store
: {
22055 unsigned DomainVal
= 5; // Default __RISCV_NTLH_ALL
22056 if (Ops
.size() == 3)
22057 DomainVal
= cast
<ConstantInt
>(Ops
[2])->getZExtValue();
22059 llvm::MDNode
*RISCVDomainNode
= llvm::MDNode::get(
22061 llvm::ConstantAsMetadata::get(Builder
.getInt32(DomainVal
)));
22062 llvm::MDNode
*NontemporalNode
= llvm::MDNode::get(
22063 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder
.getInt32(1)));
22065 StoreInst
*Store
= Builder
.CreateDefaultAlignedStore(Ops
[1], Ops
[0]);
22066 Store
->setMetadata(llvm::LLVMContext::MD_nontemporal
, NontemporalNode
);
22067 Store
->setMetadata(CGM
.getModule().getMDKindID("riscv-nontemporal-domain"),
22073 // Vector builtins are handled from here.
22074 #include "clang/Basic/riscv_vector_builtin_cg.inc"
22075 // SiFive Vector builtins are handled from here.
22076 #include "clang/Basic/riscv_sifive_vector_builtin_cg.inc"
22079 assert(ID
!= Intrinsic::not_intrinsic
);
22081 llvm::Function
*F
= CGM
.getIntrinsic(ID
, IntrinsicTypes
);
22082 return Builder
.CreateCall(F
, Ops
, "");