[Clang][CodeGen] Fix type for atomic float incdec operators (#107075)
[llvm-project.git] / clang / lib / CodeGen / CGCall.cpp
blobd7ebffa8c5e4e02d99b4ee0ac38dab5c55f734b3
1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
12 //===----------------------------------------------------------------------===//
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "ABIInfoImpl.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGCleanup.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/AttributeMask.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/InlineAsm.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <optional>
45 using namespace clang;
46 using namespace CodeGen;
48 /***/
50 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
51 switch (CC) {
52 default: return llvm::CallingConv::C;
53 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
54 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
55 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
56 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
57 case CC_Win64: return llvm::CallingConv::Win64;
58 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
59 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
60 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
61 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
62 // TODO: Add support for __pascal to LLVM.
63 case CC_X86Pascal: return llvm::CallingConv::C;
64 // TODO: Add support for __vectorcall to LLVM.
65 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
66 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
67 case CC_AArch64SVEPCS: return llvm::CallingConv::AArch64_SVE_VectorCall;
68 case CC_AMDGPUKernelCall: return llvm::CallingConv::AMDGPU_KERNEL;
69 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
70 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
71 case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
72 case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
73 case CC_Swift: return llvm::CallingConv::Swift;
74 case CC_SwiftAsync: return llvm::CallingConv::SwiftTail;
75 case CC_M68kRTD: return llvm::CallingConv::M68k_RTD;
76 case CC_PreserveNone: return llvm::CallingConv::PreserveNone;
77 // clang-format off
78 case CC_RISCVVectorCall: return llvm::CallingConv::RISCV_VectorCall;
79 // clang-format on
83 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
84 /// qualification. Either or both of RD and MD may be null. A null RD indicates
85 /// that there is no meaningful 'this' type, and a null MD can occur when
86 /// calling a method pointer.
87 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
88 const CXXMethodDecl *MD) {
89 QualType RecTy;
90 if (RD)
91 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
92 else
93 RecTy = Context.VoidTy;
95 if (MD)
96 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
97 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
100 /// Returns the canonical formal type of the given C++ method.
101 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
102 return MD->getType()->getCanonicalTypeUnqualified()
103 .getAs<FunctionProtoType>();
106 /// Returns the "extra-canonicalized" return type, which discards
107 /// qualifiers on the return type. Codegen doesn't care about them,
108 /// and it makes ABI code a little easier to be able to assume that
109 /// all parameter and return types are top-level unqualified.
110 static CanQualType GetReturnType(QualType RetTy) {
111 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
114 /// Arrange the argument and result information for a value of the given
115 /// unprototyped freestanding function type.
116 const CGFunctionInfo &
117 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
118 // When translating an unprototyped function type, always use a
119 // variadic type.
120 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
121 FnInfoOpts::None, std::nullopt,
122 FTNP->getExtInfo(), {}, RequiredArgs(0));
125 static void addExtParameterInfosForCall(
126 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
127 const FunctionProtoType *proto,
128 unsigned prefixArgs,
129 unsigned totalArgs) {
130 assert(proto->hasExtParameterInfos());
131 assert(paramInfos.size() <= prefixArgs);
132 assert(proto->getNumParams() + prefixArgs <= totalArgs);
134 paramInfos.reserve(totalArgs);
136 // Add default infos for any prefix args that don't already have infos.
137 paramInfos.resize(prefixArgs);
139 // Add infos for the prototype.
140 for (const auto &ParamInfo : proto->getExtParameterInfos()) {
141 paramInfos.push_back(ParamInfo);
142 // pass_object_size params have no parameter info.
143 if (ParamInfo.hasPassObjectSize())
144 paramInfos.emplace_back();
147 assert(paramInfos.size() <= totalArgs &&
148 "Did we forget to insert pass_object_size args?");
149 // Add default infos for the variadic and/or suffix arguments.
150 paramInfos.resize(totalArgs);
153 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
154 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
155 static void appendParameterTypes(const CodeGenTypes &CGT,
156 SmallVectorImpl<CanQualType> &prefix,
157 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
158 CanQual<FunctionProtoType> FPT) {
159 // Fast path: don't touch param info if we don't need to.
160 if (!FPT->hasExtParameterInfos()) {
161 assert(paramInfos.empty() &&
162 "We have paramInfos, but the prototype doesn't?");
163 prefix.append(FPT->param_type_begin(), FPT->param_type_end());
164 return;
167 unsigned PrefixSize = prefix.size();
168 // In the vast majority of cases, we'll have precisely FPT->getNumParams()
169 // parameters; the only thing that can change this is the presence of
170 // pass_object_size. So, we preallocate for the common case.
171 prefix.reserve(prefix.size() + FPT->getNumParams());
173 auto ExtInfos = FPT->getExtParameterInfos();
174 assert(ExtInfos.size() == FPT->getNumParams());
175 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
176 prefix.push_back(FPT->getParamType(I));
177 if (ExtInfos[I].hasPassObjectSize())
178 prefix.push_back(CGT.getContext().getSizeType());
181 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
182 prefix.size());
185 /// Arrange the LLVM function layout for a value of the given function
186 /// type, on top of any implicit parameters already stored.
187 static const CGFunctionInfo &
188 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
189 SmallVectorImpl<CanQualType> &prefix,
190 CanQual<FunctionProtoType> FTP) {
191 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
192 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
193 // FIXME: Kill copy.
194 appendParameterTypes(CGT, prefix, paramInfos, FTP);
195 CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
197 FnInfoOpts opts =
198 instanceMethod ? FnInfoOpts::IsInstanceMethod : FnInfoOpts::None;
199 return CGT.arrangeLLVMFunctionInfo(resultType, opts, prefix,
200 FTP->getExtInfo(), paramInfos, Required);
203 /// Arrange the argument and result information for a value of the
204 /// given freestanding function type.
205 const CGFunctionInfo &
206 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
207 SmallVector<CanQualType, 16> argTypes;
208 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
209 FTP);
212 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D,
213 bool IsWindows) {
214 // Set the appropriate calling convention for the Function.
215 if (D->hasAttr<StdCallAttr>())
216 return CC_X86StdCall;
218 if (D->hasAttr<FastCallAttr>())
219 return CC_X86FastCall;
221 if (D->hasAttr<RegCallAttr>())
222 return CC_X86RegCall;
224 if (D->hasAttr<ThisCallAttr>())
225 return CC_X86ThisCall;
227 if (D->hasAttr<VectorCallAttr>())
228 return CC_X86VectorCall;
230 if (D->hasAttr<PascalAttr>())
231 return CC_X86Pascal;
233 if (PcsAttr *PCS = D->getAttr<PcsAttr>())
234 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
236 if (D->hasAttr<AArch64VectorPcsAttr>())
237 return CC_AArch64VectorCall;
239 if (D->hasAttr<AArch64SVEPcsAttr>())
240 return CC_AArch64SVEPCS;
242 if (D->hasAttr<AMDGPUKernelCallAttr>())
243 return CC_AMDGPUKernelCall;
245 if (D->hasAttr<IntelOclBiccAttr>())
246 return CC_IntelOclBicc;
248 if (D->hasAttr<MSABIAttr>())
249 return IsWindows ? CC_C : CC_Win64;
251 if (D->hasAttr<SysVABIAttr>())
252 return IsWindows ? CC_X86_64SysV : CC_C;
254 if (D->hasAttr<PreserveMostAttr>())
255 return CC_PreserveMost;
257 if (D->hasAttr<PreserveAllAttr>())
258 return CC_PreserveAll;
260 if (D->hasAttr<M68kRTDAttr>())
261 return CC_M68kRTD;
263 if (D->hasAttr<PreserveNoneAttr>())
264 return CC_PreserveNone;
266 if (D->hasAttr<RISCVVectorCCAttr>())
267 return CC_RISCVVectorCall;
269 return CC_C;
272 /// Arrange the argument and result information for a call to an
273 /// unknown C++ non-static member function of the given abstract type.
274 /// (A null RD means we don't have any meaningful "this" argument type,
275 /// so fall back to a generic pointer type).
276 /// The member function must be an ordinary function, i.e. not a
277 /// constructor or destructor.
278 const CGFunctionInfo &
279 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
280 const FunctionProtoType *FTP,
281 const CXXMethodDecl *MD) {
282 SmallVector<CanQualType, 16> argTypes;
284 // Add the 'this' pointer.
285 argTypes.push_back(DeriveThisType(RD, MD));
287 return ::arrangeLLVMFunctionInfo(
288 *this, /*instanceMethod=*/true, argTypes,
289 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
292 /// Set calling convention for CUDA/HIP kernel.
293 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
294 const FunctionDecl *FD) {
295 if (FD->hasAttr<CUDAGlobalAttr>()) {
296 const FunctionType *FT = FTy->getAs<FunctionType>();
297 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
298 FTy = FT->getCanonicalTypeUnqualified();
302 /// Arrange the argument and result information for a declaration or
303 /// definition of the given C++ non-static member function. The
304 /// member function must be an ordinary function, i.e. not a
305 /// constructor or destructor.
306 const CGFunctionInfo &
307 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
308 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
309 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
311 CanQualType FT = GetFormalType(MD).getAs<Type>();
312 setCUDAKernelCallingConvention(FT, CGM, MD);
313 auto prototype = FT.getAs<FunctionProtoType>();
315 if (MD->isImplicitObjectMemberFunction()) {
316 // The abstract case is perfectly fine.
317 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
318 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
321 return arrangeFreeFunctionType(prototype);
324 bool CodeGenTypes::inheritingCtorHasParams(
325 const InheritedConstructor &Inherited, CXXCtorType Type) {
326 // Parameters are unnecessary if we're constructing a base class subobject
327 // and the inherited constructor lives in a virtual base.
328 return Type == Ctor_Complete ||
329 !Inherited.getShadowDecl()->constructsVirtualBase() ||
330 !Target.getCXXABI().hasConstructorVariants();
333 const CGFunctionInfo &
334 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
335 auto *MD = cast<CXXMethodDecl>(GD.getDecl());
337 SmallVector<CanQualType, 16> argTypes;
338 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
340 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(GD);
341 argTypes.push_back(DeriveThisType(ThisType, MD));
343 bool PassParams = true;
345 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
346 // A base class inheriting constructor doesn't get forwarded arguments
347 // needed to construct a virtual base (or base class thereof).
348 if (auto Inherited = CD->getInheritedConstructor())
349 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
352 CanQual<FunctionProtoType> FTP = GetFormalType(MD);
354 // Add the formal parameters.
355 if (PassParams)
356 appendParameterTypes(*this, argTypes, paramInfos, FTP);
358 CGCXXABI::AddedStructorArgCounts AddedArgs =
359 TheCXXABI.buildStructorSignature(GD, argTypes);
360 if (!paramInfos.empty()) {
361 // Note: prefix implies after the first param.
362 if (AddedArgs.Prefix)
363 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
364 FunctionProtoType::ExtParameterInfo{});
365 if (AddedArgs.Suffix)
366 paramInfos.append(AddedArgs.Suffix,
367 FunctionProtoType::ExtParameterInfo{});
370 RequiredArgs required =
371 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
372 : RequiredArgs::All);
374 FunctionType::ExtInfo extInfo = FTP->getExtInfo();
375 CanQualType resultType = TheCXXABI.HasThisReturn(GD)
376 ? argTypes.front()
377 : TheCXXABI.hasMostDerivedReturn(GD)
378 ? CGM.getContext().VoidPtrTy
379 : Context.VoidTy;
380 return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::IsInstanceMethod,
381 argTypes, extInfo, paramInfos, required);
384 static SmallVector<CanQualType, 16>
385 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
386 SmallVector<CanQualType, 16> argTypes;
387 for (auto &arg : args)
388 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
389 return argTypes;
392 static SmallVector<CanQualType, 16>
393 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
394 SmallVector<CanQualType, 16> argTypes;
395 for (auto &arg : args)
396 argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
397 return argTypes;
400 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
401 getExtParameterInfosForCall(const FunctionProtoType *proto,
402 unsigned prefixArgs, unsigned totalArgs) {
403 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
404 if (proto->hasExtParameterInfos()) {
405 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
407 return result;
410 /// Arrange a call to a C++ method, passing the given arguments.
412 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
413 /// parameter.
414 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
415 /// args.
416 /// PassProtoArgs indicates whether `args` has args for the parameters in the
417 /// given CXXConstructorDecl.
418 const CGFunctionInfo &
419 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
420 const CXXConstructorDecl *D,
421 CXXCtorType CtorKind,
422 unsigned ExtraPrefixArgs,
423 unsigned ExtraSuffixArgs,
424 bool PassProtoArgs) {
425 // FIXME: Kill copy.
426 SmallVector<CanQualType, 16> ArgTypes;
427 for (const auto &Arg : args)
428 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
430 // +1 for implicit this, which should always be args[0].
431 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
433 CanQual<FunctionProtoType> FPT = GetFormalType(D);
434 RequiredArgs Required = PassProtoArgs
435 ? RequiredArgs::forPrototypePlus(
436 FPT, TotalPrefixArgs + ExtraSuffixArgs)
437 : RequiredArgs::All;
439 GlobalDecl GD(D, CtorKind);
440 CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
441 ? ArgTypes.front()
442 : TheCXXABI.hasMostDerivedReturn(GD)
443 ? CGM.getContext().VoidPtrTy
444 : Context.VoidTy;
446 FunctionType::ExtInfo Info = FPT->getExtInfo();
447 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
448 // If the prototype args are elided, we should only have ABI-specific args,
449 // which never have param info.
450 if (PassProtoArgs && FPT->hasExtParameterInfos()) {
451 // ABI-specific suffix arguments are treated the same as variadic arguments.
452 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
453 ArgTypes.size());
456 return arrangeLLVMFunctionInfo(ResultType, FnInfoOpts::IsInstanceMethod,
457 ArgTypes, Info, ParamInfos, Required);
460 /// Arrange the argument and result information for the declaration or
461 /// definition of the given function.
462 const CGFunctionInfo &
463 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
464 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
465 if (MD->isImplicitObjectMemberFunction())
466 return arrangeCXXMethodDeclaration(MD);
468 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
470 assert(isa<FunctionType>(FTy));
471 setCUDAKernelCallingConvention(FTy, CGM, FD);
473 // When declaring a function without a prototype, always use a
474 // non-variadic type.
475 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
476 return arrangeLLVMFunctionInfo(noProto->getReturnType(), FnInfoOpts::None,
477 std::nullopt, noProto->getExtInfo(), {},
478 RequiredArgs::All);
481 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
484 /// Arrange the argument and result information for the declaration or
485 /// definition of an Objective-C method.
486 const CGFunctionInfo &
487 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
488 // It happens that this is the same as a call with no optional
489 // arguments, except also using the formal 'self' type.
490 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
493 /// Arrange the argument and result information for the function type
494 /// through which to perform a send to the given Objective-C method,
495 /// using the given receiver type. The receiver type is not always
496 /// the 'self' type of the method or even an Objective-C pointer type.
497 /// This is *not* the right method for actually performing such a
498 /// message send, due to the possibility of optional arguments.
499 const CGFunctionInfo &
500 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
501 QualType receiverType) {
502 SmallVector<CanQualType, 16> argTys;
503 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(
504 MD->isDirectMethod() ? 1 : 2);
505 argTys.push_back(Context.getCanonicalParamType(receiverType));
506 if (!MD->isDirectMethod())
507 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
508 // FIXME: Kill copy?
509 for (const auto *I : MD->parameters()) {
510 argTys.push_back(Context.getCanonicalParamType(I->getType()));
511 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
512 I->hasAttr<NoEscapeAttr>());
513 extParamInfos.push_back(extParamInfo);
516 FunctionType::ExtInfo einfo;
517 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
518 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
520 if (getContext().getLangOpts().ObjCAutoRefCount &&
521 MD->hasAttr<NSReturnsRetainedAttr>())
522 einfo = einfo.withProducesResult(true);
524 RequiredArgs required =
525 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
527 return arrangeLLVMFunctionInfo(GetReturnType(MD->getReturnType()),
528 FnInfoOpts::None, argTys, einfo, extParamInfos,
529 required);
532 const CGFunctionInfo &
533 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
534 const CallArgList &args) {
535 auto argTypes = getArgTypesForCall(Context, args);
536 FunctionType::ExtInfo einfo;
538 return arrangeLLVMFunctionInfo(GetReturnType(returnType), FnInfoOpts::None,
539 argTypes, einfo, {}, RequiredArgs::All);
542 const CGFunctionInfo &
543 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
544 // FIXME: Do we need to handle ObjCMethodDecl?
545 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
547 if (isa<CXXConstructorDecl>(GD.getDecl()) ||
548 isa<CXXDestructorDecl>(GD.getDecl()))
549 return arrangeCXXStructorDeclaration(GD);
551 return arrangeFunctionDeclaration(FD);
554 /// Arrange a thunk that takes 'this' as the first parameter followed by
555 /// varargs. Return a void pointer, regardless of the actual return type.
556 /// The body of the thunk will end in a musttail call to a function of the
557 /// correct type, and the caller will bitcast the function to the correct
558 /// prototype.
559 const CGFunctionInfo &
560 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
561 assert(MD->isVirtual() && "only methods have thunks");
562 CanQual<FunctionProtoType> FTP = GetFormalType(MD);
563 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
564 return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::None, ArgTys,
565 FTP->getExtInfo(), {}, RequiredArgs(1));
568 const CGFunctionInfo &
569 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
570 CXXCtorType CT) {
571 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
573 CanQual<FunctionProtoType> FTP = GetFormalType(CD);
574 SmallVector<CanQualType, 2> ArgTys;
575 const CXXRecordDecl *RD = CD->getParent();
576 ArgTys.push_back(DeriveThisType(RD, CD));
577 if (CT == Ctor_CopyingClosure)
578 ArgTys.push_back(*FTP->param_type_begin());
579 if (RD->getNumVBases() > 0)
580 ArgTys.push_back(Context.IntTy);
581 CallingConv CC = Context.getDefaultCallingConvention(
582 /*IsVariadic=*/false, /*IsCXXMethod=*/true);
583 return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::IsInstanceMethod,
584 ArgTys, FunctionType::ExtInfo(CC), {},
585 RequiredArgs::All);
588 /// Arrange a call as unto a free function, except possibly with an
589 /// additional number of formal parameters considered required.
590 static const CGFunctionInfo &
591 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
592 CodeGenModule &CGM,
593 const CallArgList &args,
594 const FunctionType *fnType,
595 unsigned numExtraRequiredArgs,
596 bool chainCall) {
597 assert(args.size() >= numExtraRequiredArgs);
599 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
601 // In most cases, there are no optional arguments.
602 RequiredArgs required = RequiredArgs::All;
604 // If we have a variadic prototype, the required arguments are the
605 // extra prefix plus the arguments in the prototype.
606 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
607 if (proto->isVariadic())
608 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
610 if (proto->hasExtParameterInfos())
611 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
612 args.size());
614 // If we don't have a prototype at all, but we're supposed to
615 // explicitly use the variadic convention for unprototyped calls,
616 // treat all of the arguments as required but preserve the nominal
617 // possibility of variadics.
618 } else if (CGM.getTargetCodeGenInfo()
619 .isNoProtoCallVariadic(args,
620 cast<FunctionNoProtoType>(fnType))) {
621 required = RequiredArgs(args.size());
624 // FIXME: Kill copy.
625 SmallVector<CanQualType, 16> argTypes;
626 for (const auto &arg : args)
627 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
628 FnInfoOpts opts = chainCall ? FnInfoOpts::IsChainCall : FnInfoOpts::None;
629 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
630 opts, argTypes, fnType->getExtInfo(),
631 paramInfos, required);
634 /// Figure out the rules for calling a function with the given formal
635 /// type using the given arguments. The arguments are necessary
636 /// because the function might be unprototyped, in which case it's
637 /// target-dependent in crazy ways.
638 const CGFunctionInfo &
639 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
640 const FunctionType *fnType,
641 bool chainCall) {
642 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
643 chainCall ? 1 : 0, chainCall);
646 /// A block function is essentially a free function with an
647 /// extra implicit argument.
648 const CGFunctionInfo &
649 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
650 const FunctionType *fnType) {
651 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
652 /*chainCall=*/false);
655 const CGFunctionInfo &
656 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
657 const FunctionArgList &params) {
658 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
659 auto argTypes = getArgTypesForDeclaration(Context, params);
661 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
662 FnInfoOpts::None, argTypes,
663 proto->getExtInfo(), paramInfos,
664 RequiredArgs::forPrototypePlus(proto, 1));
667 const CGFunctionInfo &
668 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
669 const CallArgList &args) {
670 // FIXME: Kill copy.
671 SmallVector<CanQualType, 16> argTypes;
672 for (const auto &Arg : args)
673 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
674 return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None,
675 argTypes, FunctionType::ExtInfo(),
676 /*paramInfos=*/{}, RequiredArgs::All);
679 const CGFunctionInfo &
680 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
681 const FunctionArgList &args) {
682 auto argTypes = getArgTypesForDeclaration(Context, args);
684 return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None,
685 argTypes, FunctionType::ExtInfo(), {},
686 RequiredArgs::All);
689 const CGFunctionInfo &
690 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
691 ArrayRef<CanQualType> argTypes) {
692 return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::None, argTypes,
693 FunctionType::ExtInfo(), {},
694 RequiredArgs::All);
697 /// Arrange a call to a C++ method, passing the given arguments.
699 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
700 /// does not count `this`.
701 const CGFunctionInfo &
702 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
703 const FunctionProtoType *proto,
704 RequiredArgs required,
705 unsigned numPrefixArgs) {
706 assert(numPrefixArgs + 1 <= args.size() &&
707 "Emitting a call with less args than the required prefix?");
708 // Add one to account for `this`. It's a bit awkward here, but we don't count
709 // `this` in similar places elsewhere.
710 auto paramInfos =
711 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
713 // FIXME: Kill copy.
714 auto argTypes = getArgTypesForCall(Context, args);
716 FunctionType::ExtInfo info = proto->getExtInfo();
717 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
718 FnInfoOpts::IsInstanceMethod, argTypes, info,
719 paramInfos, required);
722 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
723 return arrangeLLVMFunctionInfo(getContext().VoidTy, FnInfoOpts::None,
724 std::nullopt, FunctionType::ExtInfo(), {},
725 RequiredArgs::All);
728 const CGFunctionInfo &
729 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
730 const CallArgList &args) {
731 assert(signature.arg_size() <= args.size());
732 if (signature.arg_size() == args.size())
733 return signature;
735 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
736 auto sigParamInfos = signature.getExtParameterInfos();
737 if (!sigParamInfos.empty()) {
738 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
739 paramInfos.resize(args.size());
742 auto argTypes = getArgTypesForCall(Context, args);
744 assert(signature.getRequiredArgs().allowsOptionalArgs());
745 FnInfoOpts opts = FnInfoOpts::None;
746 if (signature.isInstanceMethod())
747 opts |= FnInfoOpts::IsInstanceMethod;
748 if (signature.isChainCall())
749 opts |= FnInfoOpts::IsChainCall;
750 if (signature.isDelegateCall())
751 opts |= FnInfoOpts::IsDelegateCall;
752 return arrangeLLVMFunctionInfo(signature.getReturnType(), opts, argTypes,
753 signature.getExtInfo(), paramInfos,
754 signature.getRequiredArgs());
757 namespace clang {
758 namespace CodeGen {
759 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
763 /// Arrange the argument and result information for an abstract value
764 /// of a given function type. This is the method which all of the
765 /// above functions ultimately defer to.
766 const CGFunctionInfo &CodeGenTypes::arrangeLLVMFunctionInfo(
767 CanQualType resultType, FnInfoOpts opts, ArrayRef<CanQualType> argTypes,
768 FunctionType::ExtInfo info,
769 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
770 RequiredArgs required) {
771 assert(llvm::all_of(argTypes,
772 [](CanQualType T) { return T.isCanonicalAsParam(); }));
774 // Lookup or create unique function info.
775 llvm::FoldingSetNodeID ID;
776 bool isInstanceMethod =
777 (opts & FnInfoOpts::IsInstanceMethod) == FnInfoOpts::IsInstanceMethod;
778 bool isChainCall =
779 (opts & FnInfoOpts::IsChainCall) == FnInfoOpts::IsChainCall;
780 bool isDelegateCall =
781 (opts & FnInfoOpts::IsDelegateCall) == FnInfoOpts::IsDelegateCall;
782 CGFunctionInfo::Profile(ID, isInstanceMethod, isChainCall, isDelegateCall,
783 info, paramInfos, required, resultType, argTypes);
785 void *insertPos = nullptr;
786 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
787 if (FI)
788 return *FI;
790 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
792 // Construct the function info. We co-allocate the ArgInfos.
793 FI = CGFunctionInfo::create(CC, isInstanceMethod, isChainCall, isDelegateCall,
794 info, paramInfos, resultType, argTypes, required);
795 FunctionInfos.InsertNode(FI, insertPos);
797 bool inserted = FunctionsBeingProcessed.insert(FI).second;
798 (void)inserted;
799 assert(inserted && "Recursively being processed?");
801 // Compute ABI information.
802 if (CC == llvm::CallingConv::SPIR_KERNEL) {
803 // Force target independent argument handling for the host visible
804 // kernel functions.
805 computeSPIRKernelABIInfo(CGM, *FI);
806 } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) {
807 swiftcall::computeABIInfo(CGM, *FI);
808 } else {
809 getABIInfo().computeInfo(*FI);
812 // Loop over all of the computed argument and return value info. If any of
813 // them are direct or extend without a specified coerce type, specify the
814 // default now.
815 ABIArgInfo &retInfo = FI->getReturnInfo();
816 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
817 retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
819 for (auto &I : FI->arguments())
820 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
821 I.info.setCoerceToType(ConvertType(I.type));
823 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
824 assert(erased && "Not in set?");
826 return *FI;
829 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, bool instanceMethod,
830 bool chainCall, bool delegateCall,
831 const FunctionType::ExtInfo &info,
832 ArrayRef<ExtParameterInfo> paramInfos,
833 CanQualType resultType,
834 ArrayRef<CanQualType> argTypes,
835 RequiredArgs required) {
836 assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
837 assert(!required.allowsOptionalArgs() ||
838 required.getNumRequiredArgs() <= argTypes.size());
840 void *buffer =
841 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>(
842 argTypes.size() + 1, paramInfos.size()));
844 CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
845 FI->CallingConvention = llvmCC;
846 FI->EffectiveCallingConvention = llvmCC;
847 FI->ASTCallingConvention = info.getCC();
848 FI->InstanceMethod = instanceMethod;
849 FI->ChainCall = chainCall;
850 FI->DelegateCall = delegateCall;
851 FI->CmseNSCall = info.getCmseNSCall();
852 FI->NoReturn = info.getNoReturn();
853 FI->ReturnsRetained = info.getProducesResult();
854 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
855 FI->NoCfCheck = info.getNoCfCheck();
856 FI->Required = required;
857 FI->HasRegParm = info.getHasRegParm();
858 FI->RegParm = info.getRegParm();
859 FI->ArgStruct = nullptr;
860 FI->ArgStructAlign = 0;
861 FI->NumArgs = argTypes.size();
862 FI->HasExtParameterInfos = !paramInfos.empty();
863 FI->getArgsBuffer()[0].type = resultType;
864 FI->MaxVectorWidth = 0;
865 for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
866 FI->getArgsBuffer()[i + 1].type = argTypes[i];
867 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
868 FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
869 return FI;
872 /***/
874 namespace {
875 // ABIArgInfo::Expand implementation.
877 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
878 struct TypeExpansion {
879 enum TypeExpansionKind {
880 // Elements of constant arrays are expanded recursively.
881 TEK_ConstantArray,
882 // Record fields are expanded recursively (but if record is a union, only
883 // the field with the largest size is expanded).
884 TEK_Record,
885 // For complex types, real and imaginary parts are expanded recursively.
886 TEK_Complex,
887 // All other types are not expandable.
888 TEK_None
891 const TypeExpansionKind Kind;
893 TypeExpansion(TypeExpansionKind K) : Kind(K) {}
894 virtual ~TypeExpansion() {}
897 struct ConstantArrayExpansion : TypeExpansion {
898 QualType EltTy;
899 uint64_t NumElts;
901 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
902 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
903 static bool classof(const TypeExpansion *TE) {
904 return TE->Kind == TEK_ConstantArray;
908 struct RecordExpansion : TypeExpansion {
909 SmallVector<const CXXBaseSpecifier *, 1> Bases;
911 SmallVector<const FieldDecl *, 1> Fields;
913 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
914 SmallVector<const FieldDecl *, 1> &&Fields)
915 : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
916 Fields(std::move(Fields)) {}
917 static bool classof(const TypeExpansion *TE) {
918 return TE->Kind == TEK_Record;
922 struct ComplexExpansion : TypeExpansion {
923 QualType EltTy;
925 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
926 static bool classof(const TypeExpansion *TE) {
927 return TE->Kind == TEK_Complex;
931 struct NoExpansion : TypeExpansion {
932 NoExpansion() : TypeExpansion(TEK_None) {}
933 static bool classof(const TypeExpansion *TE) {
934 return TE->Kind == TEK_None;
937 } // namespace
939 static std::unique_ptr<TypeExpansion>
940 getTypeExpansion(QualType Ty, const ASTContext &Context) {
941 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
942 return std::make_unique<ConstantArrayExpansion>(AT->getElementType(),
943 AT->getZExtSize());
945 if (const RecordType *RT = Ty->getAs<RecordType>()) {
946 SmallVector<const CXXBaseSpecifier *, 1> Bases;
947 SmallVector<const FieldDecl *, 1> Fields;
948 const RecordDecl *RD = RT->getDecl();
949 assert(!RD->hasFlexibleArrayMember() &&
950 "Cannot expand structure with flexible array.");
951 if (RD->isUnion()) {
952 // Unions can be here only in degenerative cases - all the fields are same
953 // after flattening. Thus we have to use the "largest" field.
954 const FieldDecl *LargestFD = nullptr;
955 CharUnits UnionSize = CharUnits::Zero();
957 for (const auto *FD : RD->fields()) {
958 if (FD->isZeroLengthBitField(Context))
959 continue;
960 assert(!FD->isBitField() &&
961 "Cannot expand structure with bit-field members.");
962 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
963 if (UnionSize < FieldSize) {
964 UnionSize = FieldSize;
965 LargestFD = FD;
968 if (LargestFD)
969 Fields.push_back(LargestFD);
970 } else {
971 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
972 assert(!CXXRD->isDynamicClass() &&
973 "cannot expand vtable pointers in dynamic classes");
974 llvm::append_range(Bases, llvm::make_pointer_range(CXXRD->bases()));
977 for (const auto *FD : RD->fields()) {
978 if (FD->isZeroLengthBitField(Context))
979 continue;
980 assert(!FD->isBitField() &&
981 "Cannot expand structure with bit-field members.");
982 Fields.push_back(FD);
985 return std::make_unique<RecordExpansion>(std::move(Bases),
986 std::move(Fields));
988 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
989 return std::make_unique<ComplexExpansion>(CT->getElementType());
991 return std::make_unique<NoExpansion>();
994 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
995 auto Exp = getTypeExpansion(Ty, Context);
996 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
997 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
999 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1000 int Res = 0;
1001 for (auto BS : RExp->Bases)
1002 Res += getExpansionSize(BS->getType(), Context);
1003 for (auto FD : RExp->Fields)
1004 Res += getExpansionSize(FD->getType(), Context);
1005 return Res;
1007 if (isa<ComplexExpansion>(Exp.get()))
1008 return 2;
1009 assert(isa<NoExpansion>(Exp.get()));
1010 return 1;
1013 void
1014 CodeGenTypes::getExpandedTypes(QualType Ty,
1015 SmallVectorImpl<llvm::Type *>::iterator &TI) {
1016 auto Exp = getTypeExpansion(Ty, Context);
1017 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1018 for (int i = 0, n = CAExp->NumElts; i < n; i++) {
1019 getExpandedTypes(CAExp->EltTy, TI);
1021 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1022 for (auto BS : RExp->Bases)
1023 getExpandedTypes(BS->getType(), TI);
1024 for (auto FD : RExp->Fields)
1025 getExpandedTypes(FD->getType(), TI);
1026 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
1027 llvm::Type *EltTy = ConvertType(CExp->EltTy);
1028 *TI++ = EltTy;
1029 *TI++ = EltTy;
1030 } else {
1031 assert(isa<NoExpansion>(Exp.get()));
1032 *TI++ = ConvertType(Ty);
1036 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1037 ConstantArrayExpansion *CAE,
1038 Address BaseAddr,
1039 llvm::function_ref<void(Address)> Fn) {
1040 for (int i = 0, n = CAE->NumElts; i < n; i++) {
1041 Address EltAddr = CGF.Builder.CreateConstGEP2_32(BaseAddr, 0, i);
1042 Fn(EltAddr);
1046 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1047 llvm::Function::arg_iterator &AI) {
1048 assert(LV.isSimple() &&
1049 "Unexpected non-simple lvalue during struct expansion.");
1051 auto Exp = getTypeExpansion(Ty, getContext());
1052 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1053 forConstantArrayExpansion(
1054 *this, CAExp, LV.getAddress(), [&](Address EltAddr) {
1055 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1056 ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1058 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1059 Address This = LV.getAddress();
1060 for (const CXXBaseSpecifier *BS : RExp->Bases) {
1061 // Perform a single step derived-to-base conversion.
1062 Address Base =
1063 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1064 /*NullCheckValue=*/false, SourceLocation());
1065 LValue SubLV = MakeAddrLValue(Base, BS->getType());
1067 // Recurse onto bases.
1068 ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1070 for (auto FD : RExp->Fields) {
1071 // FIXME: What are the right qualifiers here?
1072 LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1073 ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1075 } else if (isa<ComplexExpansion>(Exp.get())) {
1076 auto realValue = &*AI++;
1077 auto imagValue = &*AI++;
1078 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1079 } else {
1080 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1081 // primitive store.
1082 assert(isa<NoExpansion>(Exp.get()));
1083 llvm::Value *Arg = &*AI++;
1084 if (LV.isBitField()) {
1085 EmitStoreThroughLValue(RValue::get(Arg), LV);
1086 } else {
1087 // TODO: currently there are some places are inconsistent in what LLVM
1088 // pointer type they use (see D118744). Once clang uses opaque pointers
1089 // all LLVM pointer types will be the same and we can remove this check.
1090 if (Arg->getType()->isPointerTy()) {
1091 Address Addr = LV.getAddress();
1092 Arg = Builder.CreateBitCast(Arg, Addr.getElementType());
1094 EmitStoreOfScalar(Arg, LV);
1099 void CodeGenFunction::ExpandTypeToArgs(
1100 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1101 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1102 auto Exp = getTypeExpansion(Ty, getContext());
1103 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1104 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1105 : Arg.getKnownRValue().getAggregateAddress();
1106 forConstantArrayExpansion(
1107 *this, CAExp, Addr, [&](Address EltAddr) {
1108 CallArg EltArg = CallArg(
1109 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1110 CAExp->EltTy);
1111 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1112 IRCallArgPos);
1114 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1115 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1116 : Arg.getKnownRValue().getAggregateAddress();
1117 for (const CXXBaseSpecifier *BS : RExp->Bases) {
1118 // Perform a single step derived-to-base conversion.
1119 Address Base =
1120 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1121 /*NullCheckValue=*/false, SourceLocation());
1122 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1124 // Recurse onto bases.
1125 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1126 IRCallArgPos);
1129 LValue LV = MakeAddrLValue(This, Ty);
1130 for (auto FD : RExp->Fields) {
1131 CallArg FldArg =
1132 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1133 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1134 IRCallArgPos);
1136 } else if (isa<ComplexExpansion>(Exp.get())) {
1137 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1138 IRCallArgs[IRCallArgPos++] = CV.first;
1139 IRCallArgs[IRCallArgPos++] = CV.second;
1140 } else {
1141 assert(isa<NoExpansion>(Exp.get()));
1142 auto RV = Arg.getKnownRValue();
1143 assert(RV.isScalar() &&
1144 "Unexpected non-scalar rvalue during struct expansion.");
1146 // Insert a bitcast as needed.
1147 llvm::Value *V = RV.getScalarVal();
1148 if (IRCallArgPos < IRFuncTy->getNumParams() &&
1149 V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1150 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1152 IRCallArgs[IRCallArgPos++] = V;
1156 /// Create a temporary allocation for the purposes of coercion.
1157 static RawAddress CreateTempAllocaForCoercion(CodeGenFunction &CGF,
1158 llvm::Type *Ty,
1159 CharUnits MinAlign,
1160 const Twine &Name = "tmp") {
1161 // Don't use an alignment that's worse than what LLVM would prefer.
1162 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(Ty);
1163 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1165 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1168 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1169 /// accessing some number of bytes out of it, try to gep into the struct to get
1170 /// at its inner goodness. Dive as deep as possible without entering an element
1171 /// with an in-memory size smaller than DstSize.
1172 static Address
1173 EnterStructPointerForCoercedAccess(Address SrcPtr,
1174 llvm::StructType *SrcSTy,
1175 uint64_t DstSize, CodeGenFunction &CGF) {
1176 // We can't dive into a zero-element struct.
1177 if (SrcSTy->getNumElements() == 0) return SrcPtr;
1179 llvm::Type *FirstElt = SrcSTy->getElementType(0);
1181 // If the first elt is at least as large as what we're looking for, or if the
1182 // first element is the same size as the whole struct, we can enter it. The
1183 // comparison must be made on the store size and not the alloca size. Using
1184 // the alloca size may overstate the size of the load.
1185 uint64_t FirstEltSize =
1186 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1187 if (FirstEltSize < DstSize &&
1188 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1189 return SrcPtr;
1191 // GEP into the first element.
1192 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1194 // If the first element is a struct, recurse.
1195 llvm::Type *SrcTy = SrcPtr.getElementType();
1196 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1197 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1199 return SrcPtr;
1202 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1203 /// are either integers or pointers. This does a truncation of the value if it
1204 /// is too large or a zero extension if it is too small.
1206 /// This behaves as if the value were coerced through memory, so on big-endian
1207 /// targets the high bits are preserved in a truncation, while little-endian
1208 /// targets preserve the low bits.
1209 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1210 llvm::Type *Ty,
1211 CodeGenFunction &CGF) {
1212 if (Val->getType() == Ty)
1213 return Val;
1215 if (isa<llvm::PointerType>(Val->getType())) {
1216 // If this is Pointer->Pointer avoid conversion to and from int.
1217 if (isa<llvm::PointerType>(Ty))
1218 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1220 // Convert the pointer to an integer so we can play with its width.
1221 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1224 llvm::Type *DestIntTy = Ty;
1225 if (isa<llvm::PointerType>(DestIntTy))
1226 DestIntTy = CGF.IntPtrTy;
1228 if (Val->getType() != DestIntTy) {
1229 const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1230 if (DL.isBigEndian()) {
1231 // Preserve the high bits on big-endian targets.
1232 // That is what memory coercion does.
1233 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1234 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1236 if (SrcSize > DstSize) {
1237 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1238 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1239 } else {
1240 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1241 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1243 } else {
1244 // Little-endian targets preserve the low bits. No shifts required.
1245 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1249 if (isa<llvm::PointerType>(Ty))
1250 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1251 return Val;
1256 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1257 /// a pointer to an object of type \arg Ty, known to be aligned to
1258 /// \arg SrcAlign bytes.
1260 /// This safely handles the case when the src type is smaller than the
1261 /// destination type; in this situation the values of bits which not
1262 /// present in the src are undefined.
1263 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1264 CodeGenFunction &CGF) {
1265 llvm::Type *SrcTy = Src.getElementType();
1267 // If SrcTy and Ty are the same, just do a load.
1268 if (SrcTy == Ty)
1269 return CGF.Builder.CreateLoad(Src);
1271 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1273 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1274 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1275 DstSize.getFixedValue(), CGF);
1276 SrcTy = Src.getElementType();
1279 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1281 // If the source and destination are integer or pointer types, just do an
1282 // extension or truncation to the desired type.
1283 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1284 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1285 llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1286 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1289 // If load is legal, just bitcast the src pointer.
1290 if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1291 SrcSize.getFixedValue() >= DstSize.getFixedValue()) {
1292 // Generally SrcSize is never greater than DstSize, since this means we are
1293 // losing bits. However, this can happen in cases where the structure has
1294 // additional padding, for example due to a user specified alignment.
1296 // FIXME: Assert that we aren't truncating non-padding bits when have access
1297 // to that information.
1298 Src = Src.withElementType(Ty);
1299 return CGF.Builder.CreateLoad(Src);
1302 // If coercing a fixed vector to a scalable vector for ABI compatibility, and
1303 // the types match, use the llvm.vector.insert intrinsic to perform the
1304 // conversion.
1305 if (auto *ScalableDstTy = dyn_cast<llvm::ScalableVectorType>(Ty)) {
1306 if (auto *FixedSrcTy = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
1307 // If we are casting a fixed i8 vector to a scalable i1 predicate
1308 // vector, use a vector insert and bitcast the result.
1309 if (ScalableDstTy->getElementType()->isIntegerTy(1) &&
1310 ScalableDstTy->getElementCount().isKnownMultipleOf(8) &&
1311 FixedSrcTy->getElementType()->isIntegerTy(8)) {
1312 ScalableDstTy = llvm::ScalableVectorType::get(
1313 FixedSrcTy->getElementType(),
1314 ScalableDstTy->getElementCount().getKnownMinValue() / 8);
1316 if (ScalableDstTy->getElementType() == FixedSrcTy->getElementType()) {
1317 auto *Load = CGF.Builder.CreateLoad(Src);
1318 auto *UndefVec = llvm::UndefValue::get(ScalableDstTy);
1319 auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
1320 llvm::Value *Result = CGF.Builder.CreateInsertVector(
1321 ScalableDstTy, UndefVec, Load, Zero, "cast.scalable");
1322 if (ScalableDstTy != Ty)
1323 Result = CGF.Builder.CreateBitCast(Result, Ty);
1324 return Result;
1329 // Otherwise do coercion through memory. This is stupid, but simple.
1330 RawAddress Tmp =
1331 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1332 CGF.Builder.CreateMemCpy(
1333 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(),
1334 Src.emitRawPointer(CGF), Src.getAlignment().getAsAlign(),
1335 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinValue()));
1336 return CGF.Builder.CreateLoad(Tmp);
1339 void CodeGenFunction::CreateCoercedStore(llvm::Value *Src, Address Dst,
1340 llvm::TypeSize DstSize,
1341 bool DstIsVolatile) {
1342 if (!DstSize)
1343 return;
1345 llvm::Type *SrcTy = Src->getType();
1346 llvm::TypeSize SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
1348 // GEP into structs to try to make types match.
1349 // FIXME: This isn't really that useful with opaque types, but it impacts a
1350 // lot of regression tests.
1351 if (SrcTy != Dst.getElementType()) {
1352 if (llvm::StructType *DstSTy =
1353 dyn_cast<llvm::StructType>(Dst.getElementType())) {
1354 assert(!SrcSize.isScalable());
1355 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1356 SrcSize.getFixedValue(), *this);
1360 if (SrcSize.isScalable() || SrcSize <= DstSize) {
1361 if (SrcTy->isIntegerTy() && Dst.getElementType()->isPointerTy() &&
1362 SrcSize == CGM.getDataLayout().getTypeAllocSize(Dst.getElementType())) {
1363 // If the value is supposed to be a pointer, convert it before storing it.
1364 Src = CoerceIntOrPtrToIntOrPtr(Src, Dst.getElementType(), *this);
1365 Builder.CreateStore(Src, Dst, DstIsVolatile);
1366 } else if (llvm::StructType *STy =
1367 dyn_cast<llvm::StructType>(Src->getType())) {
1368 // Prefer scalar stores to first-class aggregate stores.
1369 Dst = Dst.withElementType(SrcTy);
1370 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1371 Address EltPtr = Builder.CreateStructGEP(Dst, i);
1372 llvm::Value *Elt = Builder.CreateExtractValue(Src, i);
1373 Builder.CreateStore(Elt, EltPtr, DstIsVolatile);
1375 } else {
1376 Builder.CreateStore(Src, Dst.withElementType(SrcTy), DstIsVolatile);
1378 } else if (SrcTy->isIntegerTy()) {
1379 // If the source is a simple integer, coerce it directly.
1380 llvm::Type *DstIntTy = Builder.getIntNTy(DstSize.getFixedValue() * 8);
1381 Src = CoerceIntOrPtrToIntOrPtr(Src, DstIntTy, *this);
1382 Builder.CreateStore(Src, Dst.withElementType(DstIntTy), DstIsVolatile);
1383 } else {
1384 // Otherwise do coercion through memory. This is stupid, but
1385 // simple.
1387 // Generally SrcSize is never greater than DstSize, since this means we are
1388 // losing bits. However, this can happen in cases where the structure has
1389 // additional padding, for example due to a user specified alignment.
1391 // FIXME: Assert that we aren't truncating non-padding bits when have access
1392 // to that information.
1393 RawAddress Tmp =
1394 CreateTempAllocaForCoercion(*this, SrcTy, Dst.getAlignment());
1395 Builder.CreateStore(Src, Tmp);
1396 Builder.CreateMemCpy(Dst.emitRawPointer(*this),
1397 Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1398 Tmp.getAlignment().getAsAlign(),
1399 Builder.CreateTypeSize(IntPtrTy, DstSize));
1403 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1404 const ABIArgInfo &info) {
1405 if (unsigned offset = info.getDirectOffset()) {
1406 addr = addr.withElementType(CGF.Int8Ty);
1407 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1408 CharUnits::fromQuantity(offset));
1409 addr = addr.withElementType(info.getCoerceToType());
1411 return addr;
1414 namespace {
1416 /// Encapsulates information about the way function arguments from
1417 /// CGFunctionInfo should be passed to actual LLVM IR function.
1418 class ClangToLLVMArgMapping {
1419 static const unsigned InvalidIndex = ~0U;
1420 unsigned InallocaArgNo;
1421 unsigned SRetArgNo;
1422 unsigned TotalIRArgs;
1424 /// Arguments of LLVM IR function corresponding to single Clang argument.
1425 struct IRArgs {
1426 unsigned PaddingArgIndex;
1427 // Argument is expanded to IR arguments at positions
1428 // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1429 unsigned FirstArgIndex;
1430 unsigned NumberOfArgs;
1432 IRArgs()
1433 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1434 NumberOfArgs(0) {}
1437 SmallVector<IRArgs, 8> ArgInfo;
1439 public:
1440 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1441 bool OnlyRequiredArgs = false)
1442 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1443 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1444 construct(Context, FI, OnlyRequiredArgs);
1447 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1448 unsigned getInallocaArgNo() const {
1449 assert(hasInallocaArg());
1450 return InallocaArgNo;
1453 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1454 unsigned getSRetArgNo() const {
1455 assert(hasSRetArg());
1456 return SRetArgNo;
1459 unsigned totalIRArgs() const { return TotalIRArgs; }
1461 bool hasPaddingArg(unsigned ArgNo) const {
1462 assert(ArgNo < ArgInfo.size());
1463 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1465 unsigned getPaddingArgNo(unsigned ArgNo) const {
1466 assert(hasPaddingArg(ArgNo));
1467 return ArgInfo[ArgNo].PaddingArgIndex;
1470 /// Returns index of first IR argument corresponding to ArgNo, and their
1471 /// quantity.
1472 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1473 assert(ArgNo < ArgInfo.size());
1474 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1475 ArgInfo[ArgNo].NumberOfArgs);
1478 private:
1479 void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1480 bool OnlyRequiredArgs);
1483 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1484 const CGFunctionInfo &FI,
1485 bool OnlyRequiredArgs) {
1486 unsigned IRArgNo = 0;
1487 bool SwapThisWithSRet = false;
1488 const ABIArgInfo &RetAI = FI.getReturnInfo();
1490 if (RetAI.getKind() == ABIArgInfo::Indirect) {
1491 SwapThisWithSRet = RetAI.isSRetAfterThis();
1492 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1495 unsigned ArgNo = 0;
1496 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1497 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1498 ++I, ++ArgNo) {
1499 assert(I != FI.arg_end());
1500 QualType ArgType = I->type;
1501 const ABIArgInfo &AI = I->info;
1502 // Collect data about IR arguments corresponding to Clang argument ArgNo.
1503 auto &IRArgs = ArgInfo[ArgNo];
1505 if (AI.getPaddingType())
1506 IRArgs.PaddingArgIndex = IRArgNo++;
1508 switch (AI.getKind()) {
1509 case ABIArgInfo::Extend:
1510 case ABIArgInfo::Direct: {
1511 // FIXME: handle sseregparm someday...
1512 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1513 if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1514 IRArgs.NumberOfArgs = STy->getNumElements();
1515 } else {
1516 IRArgs.NumberOfArgs = 1;
1518 break;
1520 case ABIArgInfo::Indirect:
1521 case ABIArgInfo::IndirectAliased:
1522 IRArgs.NumberOfArgs = 1;
1523 break;
1524 case ABIArgInfo::Ignore:
1525 case ABIArgInfo::InAlloca:
1526 // ignore and inalloca doesn't have matching LLVM parameters.
1527 IRArgs.NumberOfArgs = 0;
1528 break;
1529 case ABIArgInfo::CoerceAndExpand:
1530 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1531 break;
1532 case ABIArgInfo::Expand:
1533 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1534 break;
1537 if (IRArgs.NumberOfArgs > 0) {
1538 IRArgs.FirstArgIndex = IRArgNo;
1539 IRArgNo += IRArgs.NumberOfArgs;
1542 // Skip over the sret parameter when it comes second. We already handled it
1543 // above.
1544 if (IRArgNo == 1 && SwapThisWithSRet)
1545 IRArgNo++;
1547 assert(ArgNo == ArgInfo.size());
1549 if (FI.usesInAlloca())
1550 InallocaArgNo = IRArgNo++;
1552 TotalIRArgs = IRArgNo;
1554 } // namespace
1556 /***/
1558 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1559 const auto &RI = FI.getReturnInfo();
1560 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1563 bool CodeGenModule::ReturnTypeHasInReg(const CGFunctionInfo &FI) {
1564 const auto &RI = FI.getReturnInfo();
1565 return RI.getInReg();
1568 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1569 return ReturnTypeUsesSRet(FI) &&
1570 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1573 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1574 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1575 switch (BT->getKind()) {
1576 default:
1577 return false;
1578 case BuiltinType::Float:
1579 return getTarget().useObjCFPRetForRealType(FloatModeKind::Float);
1580 case BuiltinType::Double:
1581 return getTarget().useObjCFPRetForRealType(FloatModeKind::Double);
1582 case BuiltinType::LongDouble:
1583 return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble);
1587 return false;
1590 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1591 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1592 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1593 if (BT->getKind() == BuiltinType::LongDouble)
1594 return getTarget().useObjCFP2RetForComplexLongDouble();
1598 return false;
1601 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1602 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1603 return GetFunctionType(FI);
1606 llvm::FunctionType *
1607 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1609 bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1610 (void)Inserted;
1611 assert(Inserted && "Recursively being processed?");
1613 llvm::Type *resultType = nullptr;
1614 const ABIArgInfo &retAI = FI.getReturnInfo();
1615 switch (retAI.getKind()) {
1616 case ABIArgInfo::Expand:
1617 case ABIArgInfo::IndirectAliased:
1618 llvm_unreachable("Invalid ABI kind for return argument");
1620 case ABIArgInfo::Extend:
1621 case ABIArgInfo::Direct:
1622 resultType = retAI.getCoerceToType();
1623 break;
1625 case ABIArgInfo::InAlloca:
1626 if (retAI.getInAllocaSRet()) {
1627 // sret things on win32 aren't void, they return the sret pointer.
1628 QualType ret = FI.getReturnType();
1629 unsigned addressSpace = CGM.getTypes().getTargetAddressSpace(ret);
1630 resultType = llvm::PointerType::get(getLLVMContext(), addressSpace);
1631 } else {
1632 resultType = llvm::Type::getVoidTy(getLLVMContext());
1634 break;
1636 case ABIArgInfo::Indirect:
1637 case ABIArgInfo::Ignore:
1638 resultType = llvm::Type::getVoidTy(getLLVMContext());
1639 break;
1641 case ABIArgInfo::CoerceAndExpand:
1642 resultType = retAI.getUnpaddedCoerceAndExpandType();
1643 break;
1646 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1647 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1649 // Add type for sret argument.
1650 if (IRFunctionArgs.hasSRetArg()) {
1651 QualType Ret = FI.getReturnType();
1652 unsigned AddressSpace = CGM.getTypes().getTargetAddressSpace(Ret);
1653 ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1654 llvm::PointerType::get(getLLVMContext(), AddressSpace);
1657 // Add type for inalloca argument.
1658 if (IRFunctionArgs.hasInallocaArg())
1659 ArgTypes[IRFunctionArgs.getInallocaArgNo()] =
1660 llvm::PointerType::getUnqual(getLLVMContext());
1662 // Add in all of the required arguments.
1663 unsigned ArgNo = 0;
1664 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1665 ie = it + FI.getNumRequiredArgs();
1666 for (; it != ie; ++it, ++ArgNo) {
1667 const ABIArgInfo &ArgInfo = it->info;
1669 // Insert a padding type to ensure proper alignment.
1670 if (IRFunctionArgs.hasPaddingArg(ArgNo))
1671 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1672 ArgInfo.getPaddingType();
1674 unsigned FirstIRArg, NumIRArgs;
1675 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1677 switch (ArgInfo.getKind()) {
1678 case ABIArgInfo::Ignore:
1679 case ABIArgInfo::InAlloca:
1680 assert(NumIRArgs == 0);
1681 break;
1683 case ABIArgInfo::Indirect:
1684 assert(NumIRArgs == 1);
1685 // indirect arguments are always on the stack, which is alloca addr space.
1686 ArgTypes[FirstIRArg] = llvm::PointerType::get(
1687 getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace());
1688 break;
1689 case ABIArgInfo::IndirectAliased:
1690 assert(NumIRArgs == 1);
1691 ArgTypes[FirstIRArg] = llvm::PointerType::get(
1692 getLLVMContext(), ArgInfo.getIndirectAddrSpace());
1693 break;
1694 case ABIArgInfo::Extend:
1695 case ABIArgInfo::Direct: {
1696 // Fast-isel and the optimizer generally like scalar values better than
1697 // FCAs, so we flatten them if this is safe to do for this argument.
1698 llvm::Type *argType = ArgInfo.getCoerceToType();
1699 llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1700 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1701 assert(NumIRArgs == st->getNumElements());
1702 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1703 ArgTypes[FirstIRArg + i] = st->getElementType(i);
1704 } else {
1705 assert(NumIRArgs == 1);
1706 ArgTypes[FirstIRArg] = argType;
1708 break;
1711 case ABIArgInfo::CoerceAndExpand: {
1712 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1713 for (auto *EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1714 *ArgTypesIter++ = EltTy;
1716 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1717 break;
1720 case ABIArgInfo::Expand:
1721 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1722 getExpandedTypes(it->type, ArgTypesIter);
1723 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1724 break;
1728 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1729 assert(Erased && "Not in set?");
1731 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1734 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1735 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1736 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
1738 if (!isFuncTypeConvertible(FPT))
1739 return llvm::StructType::get(getLLVMContext());
1741 return GetFunctionType(GD);
1744 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1745 llvm::AttrBuilder &FuncAttrs,
1746 const FunctionProtoType *FPT) {
1747 if (!FPT)
1748 return;
1750 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1751 FPT->isNothrow())
1752 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1754 unsigned SMEBits = FPT->getAArch64SMEAttributes();
1755 if (SMEBits & FunctionType::SME_PStateSMEnabledMask)
1756 FuncAttrs.addAttribute("aarch64_pstate_sm_enabled");
1757 if (SMEBits & FunctionType::SME_PStateSMCompatibleMask)
1758 FuncAttrs.addAttribute("aarch64_pstate_sm_compatible");
1760 // ZA
1761 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_Preserves)
1762 FuncAttrs.addAttribute("aarch64_preserves_za");
1763 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_In)
1764 FuncAttrs.addAttribute("aarch64_in_za");
1765 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_Out)
1766 FuncAttrs.addAttribute("aarch64_out_za");
1767 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_InOut)
1768 FuncAttrs.addAttribute("aarch64_inout_za");
1770 // ZT0
1771 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_Preserves)
1772 FuncAttrs.addAttribute("aarch64_preserves_zt0");
1773 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_In)
1774 FuncAttrs.addAttribute("aarch64_in_zt0");
1775 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_Out)
1776 FuncAttrs.addAttribute("aarch64_out_zt0");
1777 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_InOut)
1778 FuncAttrs.addAttribute("aarch64_inout_zt0");
1781 static void AddAttributesFromOMPAssumes(llvm::AttrBuilder &FuncAttrs,
1782 const Decl *Callee) {
1783 if (!Callee)
1784 return;
1786 SmallVector<StringRef, 4> Attrs;
1788 for (const OMPAssumeAttr *AA : Callee->specific_attrs<OMPAssumeAttr>())
1789 AA->getAssumption().split(Attrs, ",");
1791 if (!Attrs.empty())
1792 FuncAttrs.addAttribute(llvm::AssumptionAttrKey,
1793 llvm::join(Attrs.begin(), Attrs.end(), ","));
1796 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context,
1797 QualType ReturnType) const {
1798 // We can't just discard the return value for a record type with a
1799 // complex destructor or a non-trivially copyable type.
1800 if (const RecordType *RT =
1801 ReturnType.getCanonicalType()->getAs<RecordType>()) {
1802 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1803 return ClassDecl->hasTrivialDestructor();
1805 return ReturnType.isTriviallyCopyableType(Context);
1808 static bool HasStrictReturn(const CodeGenModule &Module, QualType RetTy,
1809 const Decl *TargetDecl) {
1810 // As-is msan can not tolerate noundef mismatch between caller and
1811 // implementation. Mismatch is possible for e.g. indirect calls from C-caller
1812 // into C++. Such mismatches lead to confusing false reports. To avoid
1813 // expensive workaround on msan we enforce initialization event in uncommon
1814 // cases where it's allowed.
1815 if (Module.getLangOpts().Sanitize.has(SanitizerKind::Memory))
1816 return true;
1817 // C++ explicitly makes returning undefined values UB. C's rule only applies
1818 // to used values, so we never mark them noundef for now.
1819 if (!Module.getLangOpts().CPlusPlus)
1820 return false;
1821 if (TargetDecl) {
1822 if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl)) {
1823 if (FDecl->isExternC())
1824 return false;
1825 } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl)) {
1826 // Function pointer.
1827 if (VDecl->isExternC())
1828 return false;
1832 // We don't want to be too aggressive with the return checking, unless
1833 // it's explicit in the code opts or we're using an appropriate sanitizer.
1834 // Try to respect what the programmer intended.
1835 return Module.getCodeGenOpts().StrictReturn ||
1836 !Module.MayDropFunctionReturn(Module.getContext(), RetTy) ||
1837 Module.getLangOpts().Sanitize.has(SanitizerKind::Return);
1840 /// Add denormal-fp-math and denormal-fp-math-f32 as appropriate for the
1841 /// requested denormal behavior, accounting for the overriding behavior of the
1842 /// -f32 case.
1843 static void addDenormalModeAttrs(llvm::DenormalMode FPDenormalMode,
1844 llvm::DenormalMode FP32DenormalMode,
1845 llvm::AttrBuilder &FuncAttrs) {
1846 if (FPDenormalMode != llvm::DenormalMode::getDefault())
1847 FuncAttrs.addAttribute("denormal-fp-math", FPDenormalMode.str());
1849 if (FP32DenormalMode != FPDenormalMode && FP32DenormalMode.isValid())
1850 FuncAttrs.addAttribute("denormal-fp-math-f32", FP32DenormalMode.str());
1853 /// Add default attributes to a function, which have merge semantics under
1854 /// -mlink-builtin-bitcode and should not simply overwrite any existing
1855 /// attributes in the linked library.
1856 static void
1857 addMergableDefaultFunctionAttributes(const CodeGenOptions &CodeGenOpts,
1858 llvm::AttrBuilder &FuncAttrs) {
1859 addDenormalModeAttrs(CodeGenOpts.FPDenormalMode, CodeGenOpts.FP32DenormalMode,
1860 FuncAttrs);
1863 static void getTrivialDefaultFunctionAttributes(
1864 StringRef Name, bool HasOptnone, const CodeGenOptions &CodeGenOpts,
1865 const LangOptions &LangOpts, bool AttrOnCallSite,
1866 llvm::AttrBuilder &FuncAttrs) {
1867 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1868 if (!HasOptnone) {
1869 if (CodeGenOpts.OptimizeSize)
1870 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1871 if (CodeGenOpts.OptimizeSize == 2)
1872 FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1875 if (CodeGenOpts.DisableRedZone)
1876 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1877 if (CodeGenOpts.IndirectTlsSegRefs)
1878 FuncAttrs.addAttribute("indirect-tls-seg-refs");
1879 if (CodeGenOpts.NoImplicitFloat)
1880 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1882 if (AttrOnCallSite) {
1883 // Attributes that should go on the call site only.
1884 // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking
1885 // the -fno-builtin-foo list.
1886 if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name))
1887 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1888 if (!CodeGenOpts.TrapFuncName.empty())
1889 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1890 } else {
1891 switch (CodeGenOpts.getFramePointer()) {
1892 case CodeGenOptions::FramePointerKind::None:
1893 // This is the default behavior.
1894 break;
1895 case CodeGenOptions::FramePointerKind::Reserved:
1896 case CodeGenOptions::FramePointerKind::NonLeaf:
1897 case CodeGenOptions::FramePointerKind::All:
1898 FuncAttrs.addAttribute("frame-pointer",
1899 CodeGenOptions::getFramePointerKindName(
1900 CodeGenOpts.getFramePointer()));
1903 if (CodeGenOpts.LessPreciseFPMAD)
1904 FuncAttrs.addAttribute("less-precise-fpmad", "true");
1906 if (CodeGenOpts.NullPointerIsValid)
1907 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1909 if (LangOpts.getDefaultExceptionMode() == LangOptions::FPE_Ignore)
1910 FuncAttrs.addAttribute("no-trapping-math", "true");
1912 // TODO: Are these all needed?
1913 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1914 if (LangOpts.NoHonorInfs)
1915 FuncAttrs.addAttribute("no-infs-fp-math", "true");
1916 if (LangOpts.NoHonorNaNs)
1917 FuncAttrs.addAttribute("no-nans-fp-math", "true");
1918 if (LangOpts.ApproxFunc)
1919 FuncAttrs.addAttribute("approx-func-fp-math", "true");
1920 if (LangOpts.AllowFPReassoc && LangOpts.AllowRecip &&
1921 LangOpts.NoSignedZero && LangOpts.ApproxFunc &&
1922 (LangOpts.getDefaultFPContractMode() ==
1923 LangOptions::FPModeKind::FPM_Fast ||
1924 LangOpts.getDefaultFPContractMode() ==
1925 LangOptions::FPModeKind::FPM_FastHonorPragmas))
1926 FuncAttrs.addAttribute("unsafe-fp-math", "true");
1927 if (CodeGenOpts.SoftFloat)
1928 FuncAttrs.addAttribute("use-soft-float", "true");
1929 FuncAttrs.addAttribute("stack-protector-buffer-size",
1930 llvm::utostr(CodeGenOpts.SSPBufferSize));
1931 if (LangOpts.NoSignedZero)
1932 FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true");
1934 // TODO: Reciprocal estimate codegen options should apply to instructions?
1935 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1936 if (!Recips.empty())
1937 FuncAttrs.addAttribute("reciprocal-estimates",
1938 llvm::join(Recips, ","));
1940 if (!CodeGenOpts.PreferVectorWidth.empty() &&
1941 CodeGenOpts.PreferVectorWidth != "none")
1942 FuncAttrs.addAttribute("prefer-vector-width",
1943 CodeGenOpts.PreferVectorWidth);
1945 if (CodeGenOpts.StackRealignment)
1946 FuncAttrs.addAttribute("stackrealign");
1947 if (CodeGenOpts.Backchain)
1948 FuncAttrs.addAttribute("backchain");
1949 if (CodeGenOpts.EnableSegmentedStacks)
1950 FuncAttrs.addAttribute("split-stack");
1952 if (CodeGenOpts.SpeculativeLoadHardening)
1953 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1955 // Add zero-call-used-regs attribute.
1956 switch (CodeGenOpts.getZeroCallUsedRegs()) {
1957 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip:
1958 FuncAttrs.removeAttribute("zero-call-used-regs");
1959 break;
1960 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg:
1961 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr-arg");
1962 break;
1963 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR:
1964 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr");
1965 break;
1966 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg:
1967 FuncAttrs.addAttribute("zero-call-used-regs", "used-arg");
1968 break;
1969 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used:
1970 FuncAttrs.addAttribute("zero-call-used-regs", "used");
1971 break;
1972 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg:
1973 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr-arg");
1974 break;
1975 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR:
1976 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr");
1977 break;
1978 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg:
1979 FuncAttrs.addAttribute("zero-call-used-regs", "all-arg");
1980 break;
1981 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All:
1982 FuncAttrs.addAttribute("zero-call-used-regs", "all");
1983 break;
1987 if (LangOpts.assumeFunctionsAreConvergent()) {
1988 // Conservatively, mark all functions and calls in CUDA and OpenCL as
1989 // convergent (meaning, they may call an intrinsically convergent op, such
1990 // as __syncthreads() / barrier(), and so can't have certain optimizations
1991 // applied around them). LLVM will remove this attribute where it safely
1992 // can.
1993 FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1996 // TODO: NoUnwind attribute should be added for other GPU modes HIP,
1997 // OpenMP offload. AFAIK, neither of them support exceptions in device code.
1998 if ((LangOpts.CUDA && LangOpts.CUDAIsDevice) || LangOpts.OpenCL ||
1999 LangOpts.SYCLIsDevice) {
2000 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2003 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
2004 StringRef Var, Value;
2005 std::tie(Var, Value) = Attr.split('=');
2006 FuncAttrs.addAttribute(Var, Value);
2009 TargetInfo::BranchProtectionInfo BPI(LangOpts);
2010 TargetCodeGenInfo::initBranchProtectionFnAttributes(BPI, FuncAttrs);
2013 /// Merges `target-features` from \TargetOpts and \F, and sets the result in
2014 /// \FuncAttr
2015 /// * features from \F are always kept
2016 /// * a feature from \TargetOpts is kept if itself and its opposite are absent
2017 /// from \F
2018 static void
2019 overrideFunctionFeaturesWithTargetFeatures(llvm::AttrBuilder &FuncAttr,
2020 const llvm::Function &F,
2021 const TargetOptions &TargetOpts) {
2022 auto FFeatures = F.getFnAttribute("target-features");
2024 llvm::StringSet<> MergedNames;
2025 SmallVector<StringRef> MergedFeatures;
2026 MergedFeatures.reserve(TargetOpts.Features.size());
2028 auto AddUnmergedFeatures = [&](auto &&FeatureRange) {
2029 for (StringRef Feature : FeatureRange) {
2030 if (Feature.empty())
2031 continue;
2032 assert(Feature[0] == '+' || Feature[0] == '-');
2033 StringRef Name = Feature.drop_front(1);
2034 bool Merged = !MergedNames.insert(Name).second;
2035 if (!Merged)
2036 MergedFeatures.push_back(Feature);
2040 if (FFeatures.isValid())
2041 AddUnmergedFeatures(llvm::split(FFeatures.getValueAsString(), ','));
2042 AddUnmergedFeatures(TargetOpts.Features);
2044 if (!MergedFeatures.empty()) {
2045 llvm::sort(MergedFeatures);
2046 FuncAttr.addAttribute("target-features", llvm::join(MergedFeatures, ","));
2050 void CodeGen::mergeDefaultFunctionDefinitionAttributes(
2051 llvm::Function &F, const CodeGenOptions &CodeGenOpts,
2052 const LangOptions &LangOpts, const TargetOptions &TargetOpts,
2053 bool WillInternalize) {
2055 llvm::AttrBuilder FuncAttrs(F.getContext());
2056 // Here we only extract the options that are relevant compared to the version
2057 // from GetCPUAndFeaturesAttributes.
2058 if (!TargetOpts.CPU.empty())
2059 FuncAttrs.addAttribute("target-cpu", TargetOpts.CPU);
2060 if (!TargetOpts.TuneCPU.empty())
2061 FuncAttrs.addAttribute("tune-cpu", TargetOpts.TuneCPU);
2063 ::getTrivialDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
2064 CodeGenOpts, LangOpts,
2065 /*AttrOnCallSite=*/false, FuncAttrs);
2067 if (!WillInternalize && F.isInterposable()) {
2068 // Do not promote "dynamic" denormal-fp-math to this translation unit's
2069 // setting for weak functions that won't be internalized. The user has no
2070 // real control for how builtin bitcode is linked, so we shouldn't assume
2071 // later copies will use a consistent mode.
2072 F.addFnAttrs(FuncAttrs);
2073 return;
2076 llvm::AttributeMask AttrsToRemove;
2078 llvm::DenormalMode DenormModeToMerge = F.getDenormalModeRaw();
2079 llvm::DenormalMode DenormModeToMergeF32 = F.getDenormalModeF32Raw();
2080 llvm::DenormalMode Merged =
2081 CodeGenOpts.FPDenormalMode.mergeCalleeMode(DenormModeToMerge);
2082 llvm::DenormalMode MergedF32 = CodeGenOpts.FP32DenormalMode;
2084 if (DenormModeToMergeF32.isValid()) {
2085 MergedF32 =
2086 CodeGenOpts.FP32DenormalMode.mergeCalleeMode(DenormModeToMergeF32);
2089 if (Merged == llvm::DenormalMode::getDefault()) {
2090 AttrsToRemove.addAttribute("denormal-fp-math");
2091 } else if (Merged != DenormModeToMerge) {
2092 // Overwrite existing attribute
2093 FuncAttrs.addAttribute("denormal-fp-math",
2094 CodeGenOpts.FPDenormalMode.str());
2097 if (MergedF32 == llvm::DenormalMode::getDefault()) {
2098 AttrsToRemove.addAttribute("denormal-fp-math-f32");
2099 } else if (MergedF32 != DenormModeToMergeF32) {
2100 // Overwrite existing attribute
2101 FuncAttrs.addAttribute("denormal-fp-math-f32",
2102 CodeGenOpts.FP32DenormalMode.str());
2105 F.removeFnAttrs(AttrsToRemove);
2106 addDenormalModeAttrs(Merged, MergedF32, FuncAttrs);
2108 overrideFunctionFeaturesWithTargetFeatures(FuncAttrs, F, TargetOpts);
2110 F.addFnAttrs(FuncAttrs);
2113 void CodeGenModule::getTrivialDefaultFunctionAttributes(
2114 StringRef Name, bool HasOptnone, bool AttrOnCallSite,
2115 llvm::AttrBuilder &FuncAttrs) {
2116 ::getTrivialDefaultFunctionAttributes(Name, HasOptnone, getCodeGenOpts(),
2117 getLangOpts(), AttrOnCallSite,
2118 FuncAttrs);
2121 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
2122 bool HasOptnone,
2123 bool AttrOnCallSite,
2124 llvm::AttrBuilder &FuncAttrs) {
2125 getTrivialDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite,
2126 FuncAttrs);
2127 // If we're just getting the default, get the default values for mergeable
2128 // attributes.
2129 if (!AttrOnCallSite)
2130 addMergableDefaultFunctionAttributes(CodeGenOpts, FuncAttrs);
2133 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
2134 llvm::AttrBuilder &attrs) {
2135 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
2136 /*for call*/ false, attrs);
2137 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
2140 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
2141 const LangOptions &LangOpts,
2142 const NoBuiltinAttr *NBA = nullptr) {
2143 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
2144 SmallString<32> AttributeName;
2145 AttributeName += "no-builtin-";
2146 AttributeName += BuiltinName;
2147 FuncAttrs.addAttribute(AttributeName);
2150 // First, handle the language options passed through -fno-builtin.
2151 if (LangOpts.NoBuiltin) {
2152 // -fno-builtin disables them all.
2153 FuncAttrs.addAttribute("no-builtins");
2154 return;
2157 // Then, add attributes for builtins specified through -fno-builtin-<name>.
2158 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
2160 // Now, let's check the __attribute__((no_builtin("...")) attribute added to
2161 // the source.
2162 if (!NBA)
2163 return;
2165 // If there is a wildcard in the builtin names specified through the
2166 // attribute, disable them all.
2167 if (llvm::is_contained(NBA->builtinNames(), "*")) {
2168 FuncAttrs.addAttribute("no-builtins");
2169 return;
2172 // And last, add the rest of the builtin names.
2173 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
2176 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types,
2177 const llvm::DataLayout &DL, const ABIArgInfo &AI,
2178 bool CheckCoerce = true) {
2179 llvm::Type *Ty = Types.ConvertTypeForMem(QTy);
2180 if (AI.getKind() == ABIArgInfo::Indirect ||
2181 AI.getKind() == ABIArgInfo::IndirectAliased)
2182 return true;
2183 if (AI.getKind() == ABIArgInfo::Extend)
2184 return true;
2185 if (!DL.typeSizeEqualsStoreSize(Ty))
2186 // TODO: This will result in a modest amount of values not marked noundef
2187 // when they could be. We care about values that *invisibly* contain undef
2188 // bits from the perspective of LLVM IR.
2189 return false;
2190 if (CheckCoerce && AI.canHaveCoerceToType()) {
2191 llvm::Type *CoerceTy = AI.getCoerceToType();
2192 if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy),
2193 DL.getTypeSizeInBits(Ty)))
2194 // If we're coercing to a type with a greater size than the canonical one,
2195 // we're introducing new undef bits.
2196 // Coercing to a type of smaller or equal size is ok, as we know that
2197 // there's no internal padding (typeSizeEqualsStoreSize).
2198 return false;
2200 if (QTy->isBitIntType())
2201 return true;
2202 if (QTy->isReferenceType())
2203 return true;
2204 if (QTy->isNullPtrType())
2205 return false;
2206 if (QTy->isMemberPointerType())
2207 // TODO: Some member pointers are `noundef`, but it depends on the ABI. For
2208 // now, never mark them.
2209 return false;
2210 if (QTy->isScalarType()) {
2211 if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy))
2212 return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false);
2213 return true;
2215 if (const VectorType *Vector = dyn_cast<VectorType>(QTy))
2216 return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false);
2217 if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy))
2218 return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false);
2219 if (const ArrayType *Array = dyn_cast<ArrayType>(QTy))
2220 return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false);
2222 // TODO: Some structs may be `noundef`, in specific situations.
2223 return false;
2226 /// Check if the argument of a function has maybe_undef attribute.
2227 static bool IsArgumentMaybeUndef(const Decl *TargetDecl,
2228 unsigned NumRequiredArgs, unsigned ArgNo) {
2229 const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
2230 if (!FD)
2231 return false;
2233 // Assume variadic arguments do not have maybe_undef attribute.
2234 if (ArgNo >= NumRequiredArgs)
2235 return false;
2237 // Check if argument has maybe_undef attribute.
2238 if (ArgNo < FD->getNumParams()) {
2239 const ParmVarDecl *Param = FD->getParamDecl(ArgNo);
2240 if (Param && Param->hasAttr<MaybeUndefAttr>())
2241 return true;
2244 return false;
2247 /// Test if it's legal to apply nofpclass for the given parameter type and it's
2248 /// lowered IR type.
2249 static bool canApplyNoFPClass(const ABIArgInfo &AI, QualType ParamType,
2250 bool IsReturn) {
2251 // Should only apply to FP types in the source, not ABI promoted.
2252 if (!ParamType->hasFloatingRepresentation())
2253 return false;
2255 // The promoted-to IR type also needs to support nofpclass.
2256 llvm::Type *IRTy = AI.getCoerceToType();
2257 if (llvm::AttributeFuncs::isNoFPClassCompatibleType(IRTy))
2258 return true;
2260 if (llvm::StructType *ST = dyn_cast<llvm::StructType>(IRTy)) {
2261 return !IsReturn && AI.getCanBeFlattened() &&
2262 llvm::all_of(ST->elements(), [](llvm::Type *Ty) {
2263 return llvm::AttributeFuncs::isNoFPClassCompatibleType(Ty);
2267 return false;
2270 /// Return the nofpclass mask that can be applied to floating-point parameters.
2271 static llvm::FPClassTest getNoFPClassTestMask(const LangOptions &LangOpts) {
2272 llvm::FPClassTest Mask = llvm::fcNone;
2273 if (LangOpts.NoHonorInfs)
2274 Mask |= llvm::fcInf;
2275 if (LangOpts.NoHonorNaNs)
2276 Mask |= llvm::fcNan;
2277 return Mask;
2280 void CodeGenModule::AdjustMemoryAttribute(StringRef Name,
2281 CGCalleeInfo CalleeInfo,
2282 llvm::AttributeList &Attrs) {
2283 if (Attrs.getMemoryEffects().getModRef() == llvm::ModRefInfo::NoModRef) {
2284 Attrs = Attrs.removeFnAttribute(getLLVMContext(), llvm::Attribute::Memory);
2285 llvm::Attribute MemoryAttr = llvm::Attribute::getWithMemoryEffects(
2286 getLLVMContext(), llvm::MemoryEffects::writeOnly());
2287 Attrs = Attrs.addFnAttribute(getLLVMContext(), MemoryAttr);
2291 /// Construct the IR attribute list of a function or call.
2293 /// When adding an attribute, please consider where it should be handled:
2295 /// - getDefaultFunctionAttributes is for attributes that are essentially
2296 /// part of the global target configuration (but perhaps can be
2297 /// overridden on a per-function basis). Adding attributes there
2298 /// will cause them to also be set in frontends that build on Clang's
2299 /// target-configuration logic, as well as for code defined in library
2300 /// modules such as CUDA's libdevice.
2302 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes
2303 /// and adds declaration-specific, convention-specific, and
2304 /// frontend-specific logic. The last is of particular importance:
2305 /// attributes that restrict how the frontend generates code must be
2306 /// added here rather than getDefaultFunctionAttributes.
2308 void CodeGenModule::ConstructAttributeList(StringRef Name,
2309 const CGFunctionInfo &FI,
2310 CGCalleeInfo CalleeInfo,
2311 llvm::AttributeList &AttrList,
2312 unsigned &CallingConv,
2313 bool AttrOnCallSite, bool IsThunk) {
2314 llvm::AttrBuilder FuncAttrs(getLLVMContext());
2315 llvm::AttrBuilder RetAttrs(getLLVMContext());
2317 // Collect function IR attributes from the CC lowering.
2318 // We'll collect the paramete and result attributes later.
2319 CallingConv = FI.getEffectiveCallingConvention();
2320 if (FI.isNoReturn())
2321 FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2322 if (FI.isCmseNSCall())
2323 FuncAttrs.addAttribute("cmse_nonsecure_call");
2325 // Collect function IR attributes from the callee prototype if we have one.
2326 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
2327 CalleeInfo.getCalleeFunctionProtoType());
2329 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
2331 // Attach assumption attributes to the declaration. If this is a call
2332 // site, attach assumptions from the caller to the call as well.
2333 AddAttributesFromOMPAssumes(FuncAttrs, TargetDecl);
2335 bool HasOptnone = false;
2336 // The NoBuiltinAttr attached to the target FunctionDecl.
2337 const NoBuiltinAttr *NBA = nullptr;
2339 // Some ABIs may result in additional accesses to arguments that may
2340 // otherwise not be present.
2341 auto AddPotentialArgAccess = [&]() {
2342 llvm::Attribute A = FuncAttrs.getAttribute(llvm::Attribute::Memory);
2343 if (A.isValid())
2344 FuncAttrs.addMemoryAttr(A.getMemoryEffects() |
2345 llvm::MemoryEffects::argMemOnly());
2348 // Collect function IR attributes based on declaration-specific
2349 // information.
2350 // FIXME: handle sseregparm someday...
2351 if (TargetDecl) {
2352 if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
2353 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
2354 if (TargetDecl->hasAttr<NoThrowAttr>())
2355 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2356 if (TargetDecl->hasAttr<NoReturnAttr>())
2357 FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2358 if (TargetDecl->hasAttr<ColdAttr>())
2359 FuncAttrs.addAttribute(llvm::Attribute::Cold);
2360 if (TargetDecl->hasAttr<HotAttr>())
2361 FuncAttrs.addAttribute(llvm::Attribute::Hot);
2362 if (TargetDecl->hasAttr<NoDuplicateAttr>())
2363 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
2364 if (TargetDecl->hasAttr<ConvergentAttr>())
2365 FuncAttrs.addAttribute(llvm::Attribute::Convergent);
2367 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2368 AddAttributesFromFunctionProtoType(
2369 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
2370 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
2371 // A sane operator new returns a non-aliasing pointer.
2372 auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
2373 if (getCodeGenOpts().AssumeSaneOperatorNew &&
2374 (Kind == OO_New || Kind == OO_Array_New))
2375 RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2377 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
2378 const bool IsVirtualCall = MD && MD->isVirtual();
2379 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
2380 // virtual function. These attributes are not inherited by overloads.
2381 if (!(AttrOnCallSite && IsVirtualCall)) {
2382 if (Fn->isNoReturn())
2383 FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2384 NBA = Fn->getAttr<NoBuiltinAttr>();
2388 if (isa<FunctionDecl>(TargetDecl) || isa<VarDecl>(TargetDecl)) {
2389 // Only place nomerge attribute on call sites, never functions. This
2390 // allows it to work on indirect virtual function calls.
2391 if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>())
2392 FuncAttrs.addAttribute(llvm::Attribute::NoMerge);
2395 // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
2396 if (TargetDecl->hasAttr<ConstAttr>()) {
2397 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::none());
2398 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2399 // gcc specifies that 'const' functions have greater restrictions than
2400 // 'pure' functions, so they also cannot have infinite loops.
2401 FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2402 } else if (TargetDecl->hasAttr<PureAttr>()) {
2403 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::readOnly());
2404 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2405 // gcc specifies that 'pure' functions cannot have infinite loops.
2406 FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2407 } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
2408 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::inaccessibleOrArgMemOnly());
2409 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2411 if (TargetDecl->hasAttr<RestrictAttr>())
2412 RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2413 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
2414 !CodeGenOpts.NullPointerIsValid)
2415 RetAttrs.addAttribute(llvm::Attribute::NonNull);
2416 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
2417 FuncAttrs.addAttribute("no_caller_saved_registers");
2418 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
2419 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
2420 if (TargetDecl->hasAttr<LeafAttr>())
2421 FuncAttrs.addAttribute(llvm::Attribute::NoCallback);
2423 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
2424 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
2425 std::optional<unsigned> NumElemsParam;
2426 if (AllocSize->getNumElemsParam().isValid())
2427 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
2428 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
2429 NumElemsParam);
2432 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2433 if (getLangOpts().OpenCLVersion <= 120) {
2434 // OpenCL v1.2 Work groups are always uniform
2435 FuncAttrs.addAttribute("uniform-work-group-size", "true");
2436 } else {
2437 // OpenCL v2.0 Work groups may be whether uniform or not.
2438 // '-cl-uniform-work-group-size' compile option gets a hint
2439 // to the compiler that the global work-size be a multiple of
2440 // the work-group size specified to clEnqueueNDRangeKernel
2441 // (i.e. work groups are uniform).
2442 FuncAttrs.addAttribute(
2443 "uniform-work-group-size",
2444 llvm::toStringRef(getLangOpts().OffloadUniformBlock));
2448 if (TargetDecl->hasAttr<CUDAGlobalAttr>() &&
2449 getLangOpts().OffloadUniformBlock)
2450 FuncAttrs.addAttribute("uniform-work-group-size", "true");
2452 if (TargetDecl->hasAttr<ArmLocallyStreamingAttr>())
2453 FuncAttrs.addAttribute("aarch64_pstate_sm_body");
2456 // Attach "no-builtins" attributes to:
2457 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2458 // * definitions: "no-builtins" or "no-builtin-<name>" only.
2459 // The attributes can come from:
2460 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2461 // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2462 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2464 // Collect function IR attributes based on global settiings.
2465 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2467 // Override some default IR attributes based on declaration-specific
2468 // information.
2469 if (TargetDecl) {
2470 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2471 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2472 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2473 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2474 if (TargetDecl->hasAttr<NoSplitStackAttr>())
2475 FuncAttrs.removeAttribute("split-stack");
2476 if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) {
2477 // A function "__attribute__((...))" overrides the command-line flag.
2478 auto Kind =
2479 TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs();
2480 FuncAttrs.removeAttribute("zero-call-used-regs");
2481 FuncAttrs.addAttribute(
2482 "zero-call-used-regs",
2483 ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind));
2486 // Add NonLazyBind attribute to function declarations when -fno-plt
2487 // is used.
2488 // FIXME: what if we just haven't processed the function definition
2489 // yet, or if it's an external definition like C99 inline?
2490 if (CodeGenOpts.NoPLT) {
2491 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2492 if (!Fn->isDefined() && !AttrOnCallSite) {
2493 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2499 // Add "sample-profile-suffix-elision-policy" attribute for internal linkage
2500 // functions with -funique-internal-linkage-names.
2501 if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) {
2502 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2503 if (!FD->isExternallyVisible())
2504 FuncAttrs.addAttribute("sample-profile-suffix-elision-policy",
2505 "selected");
2509 // Collect non-call-site function IR attributes from declaration-specific
2510 // information.
2511 if (!AttrOnCallSite) {
2512 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2513 FuncAttrs.addAttribute("cmse_nonsecure_entry");
2515 // Whether tail calls are enabled.
2516 auto shouldDisableTailCalls = [&] {
2517 // Should this be honored in getDefaultFunctionAttributes?
2518 if (CodeGenOpts.DisableTailCalls)
2519 return true;
2521 if (!TargetDecl)
2522 return false;
2524 if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2525 TargetDecl->hasAttr<AnyX86InterruptAttr>())
2526 return true;
2528 if (CodeGenOpts.NoEscapingBlockTailCalls) {
2529 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2530 if (!BD->doesNotEscape())
2531 return true;
2534 return false;
2536 if (shouldDisableTailCalls())
2537 FuncAttrs.addAttribute("disable-tail-calls", "true");
2539 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes
2540 // handles these separately to set them based on the global defaults.
2541 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2544 // Collect attributes from arguments and return values.
2545 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2547 QualType RetTy = FI.getReturnType();
2548 const ABIArgInfo &RetAI = FI.getReturnInfo();
2549 const llvm::DataLayout &DL = getDataLayout();
2551 // Determine if the return type could be partially undef
2552 if (CodeGenOpts.EnableNoundefAttrs &&
2553 HasStrictReturn(*this, RetTy, TargetDecl)) {
2554 if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect &&
2555 DetermineNoUndef(RetTy, getTypes(), DL, RetAI))
2556 RetAttrs.addAttribute(llvm::Attribute::NoUndef);
2559 switch (RetAI.getKind()) {
2560 case ABIArgInfo::Extend:
2561 if (RetAI.isSignExt())
2562 RetAttrs.addAttribute(llvm::Attribute::SExt);
2563 else
2564 RetAttrs.addAttribute(llvm::Attribute::ZExt);
2565 [[fallthrough]];
2566 case ABIArgInfo::Direct:
2567 if (RetAI.getInReg())
2568 RetAttrs.addAttribute(llvm::Attribute::InReg);
2570 if (canApplyNoFPClass(RetAI, RetTy, true))
2571 RetAttrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts()));
2573 break;
2574 case ABIArgInfo::Ignore:
2575 break;
2577 case ABIArgInfo::InAlloca:
2578 case ABIArgInfo::Indirect: {
2579 // inalloca and sret disable readnone and readonly
2580 AddPotentialArgAccess();
2581 break;
2584 case ABIArgInfo::CoerceAndExpand:
2585 break;
2587 case ABIArgInfo::Expand:
2588 case ABIArgInfo::IndirectAliased:
2589 llvm_unreachable("Invalid ABI kind for return argument");
2592 if (!IsThunk) {
2593 // FIXME: fix this properly, https://reviews.llvm.org/D100388
2594 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2595 QualType PTy = RefTy->getPointeeType();
2596 if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2597 RetAttrs.addDereferenceableAttr(
2598 getMinimumObjectSize(PTy).getQuantity());
2599 if (getTypes().getTargetAddressSpace(PTy) == 0 &&
2600 !CodeGenOpts.NullPointerIsValid)
2601 RetAttrs.addAttribute(llvm::Attribute::NonNull);
2602 if (PTy->isObjectType()) {
2603 llvm::Align Alignment =
2604 getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2605 RetAttrs.addAlignmentAttr(Alignment);
2610 bool hasUsedSRet = false;
2611 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2613 // Attach attributes to sret.
2614 if (IRFunctionArgs.hasSRetArg()) {
2615 llvm::AttrBuilder SRETAttrs(getLLVMContext());
2616 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy));
2617 SRETAttrs.addAttribute(llvm::Attribute::Writable);
2618 SRETAttrs.addAttribute(llvm::Attribute::DeadOnUnwind);
2619 hasUsedSRet = true;
2620 if (RetAI.getInReg())
2621 SRETAttrs.addAttribute(llvm::Attribute::InReg);
2622 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2623 ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2624 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2627 // Attach attributes to inalloca argument.
2628 if (IRFunctionArgs.hasInallocaArg()) {
2629 llvm::AttrBuilder Attrs(getLLVMContext());
2630 Attrs.addInAllocaAttr(FI.getArgStruct());
2631 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2632 llvm::AttributeSet::get(getLLVMContext(), Attrs);
2635 // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument,
2636 // unless this is a thunk function.
2637 // FIXME: fix this properly, https://reviews.llvm.org/D100388
2638 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() &&
2639 !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) {
2640 auto IRArgs = IRFunctionArgs.getIRArgs(0);
2642 assert(IRArgs.second == 1 && "Expected only a single `this` pointer.");
2644 llvm::AttrBuilder Attrs(getLLVMContext());
2646 QualType ThisTy =
2647 FI.arg_begin()->type.getTypePtr()->getPointeeType();
2649 if (!CodeGenOpts.NullPointerIsValid &&
2650 getTypes().getTargetAddressSpace(FI.arg_begin()->type) == 0) {
2651 Attrs.addAttribute(llvm::Attribute::NonNull);
2652 Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity());
2653 } else {
2654 // FIXME dereferenceable should be correct here, regardless of
2655 // NullPointerIsValid. However, dereferenceable currently does not always
2656 // respect NullPointerIsValid and may imply nonnull and break the program.
2657 // See https://reviews.llvm.org/D66618 for discussions.
2658 Attrs.addDereferenceableOrNullAttr(
2659 getMinimumObjectSize(
2660 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2661 .getQuantity());
2664 llvm::Align Alignment =
2665 getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr,
2666 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true)
2667 .getAsAlign();
2668 Attrs.addAlignmentAttr(Alignment);
2670 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs);
2673 unsigned ArgNo = 0;
2674 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2675 E = FI.arg_end();
2676 I != E; ++I, ++ArgNo) {
2677 QualType ParamType = I->type;
2678 const ABIArgInfo &AI = I->info;
2679 llvm::AttrBuilder Attrs(getLLVMContext());
2681 // Add attribute for padding argument, if necessary.
2682 if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2683 if (AI.getPaddingInReg()) {
2684 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2685 llvm::AttributeSet::get(
2686 getLLVMContext(),
2687 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg));
2691 // Decide whether the argument we're handling could be partially undef
2692 if (CodeGenOpts.EnableNoundefAttrs &&
2693 DetermineNoUndef(ParamType, getTypes(), DL, AI)) {
2694 Attrs.addAttribute(llvm::Attribute::NoUndef);
2697 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2698 // have the corresponding parameter variable. It doesn't make
2699 // sense to do it here because parameters are so messed up.
2700 switch (AI.getKind()) {
2701 case ABIArgInfo::Extend:
2702 if (AI.isSignExt())
2703 Attrs.addAttribute(llvm::Attribute::SExt);
2704 else
2705 Attrs.addAttribute(llvm::Attribute::ZExt);
2706 [[fallthrough]];
2707 case ABIArgInfo::Direct:
2708 if (ArgNo == 0 && FI.isChainCall())
2709 Attrs.addAttribute(llvm::Attribute::Nest);
2710 else if (AI.getInReg())
2711 Attrs.addAttribute(llvm::Attribute::InReg);
2712 Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign()));
2714 if (canApplyNoFPClass(AI, ParamType, false))
2715 Attrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts()));
2716 break;
2717 case ABIArgInfo::Indirect: {
2718 if (AI.getInReg())
2719 Attrs.addAttribute(llvm::Attribute::InReg);
2721 if (AI.getIndirectByVal())
2722 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2724 auto *Decl = ParamType->getAsRecordDecl();
2725 if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2726 Decl->getArgPassingRestrictions() ==
2727 RecordArgPassingKind::CanPassInRegs)
2728 // When calling the function, the pointer passed in will be the only
2729 // reference to the underlying object. Mark it accordingly.
2730 Attrs.addAttribute(llvm::Attribute::NoAlias);
2732 // TODO: We could add the byref attribute if not byval, but it would
2733 // require updating many testcases.
2735 CharUnits Align = AI.getIndirectAlign();
2737 // In a byval argument, it is important that the required
2738 // alignment of the type is honored, as LLVM might be creating a
2739 // *new* stack object, and needs to know what alignment to give
2740 // it. (Sometimes it can deduce a sensible alignment on its own,
2741 // but not if clang decides it must emit a packed struct, or the
2742 // user specifies increased alignment requirements.)
2744 // This is different from indirect *not* byval, where the object
2745 // exists already, and the align attribute is purely
2746 // informative.
2747 assert(!Align.isZero());
2749 // For now, only add this when we have a byval argument.
2750 // TODO: be less lazy about updating test cases.
2751 if (AI.getIndirectByVal())
2752 Attrs.addAlignmentAttr(Align.getQuantity());
2754 // byval disables readnone and readonly.
2755 AddPotentialArgAccess();
2756 break;
2758 case ABIArgInfo::IndirectAliased: {
2759 CharUnits Align = AI.getIndirectAlign();
2760 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2761 Attrs.addAlignmentAttr(Align.getQuantity());
2762 break;
2764 case ABIArgInfo::Ignore:
2765 case ABIArgInfo::Expand:
2766 case ABIArgInfo::CoerceAndExpand:
2767 break;
2769 case ABIArgInfo::InAlloca:
2770 // inalloca disables readnone and readonly.
2771 AddPotentialArgAccess();
2772 continue;
2775 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2776 QualType PTy = RefTy->getPointeeType();
2777 if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2778 Attrs.addDereferenceableAttr(
2779 getMinimumObjectSize(PTy).getQuantity());
2780 if (getTypes().getTargetAddressSpace(PTy) == 0 &&
2781 !CodeGenOpts.NullPointerIsValid)
2782 Attrs.addAttribute(llvm::Attribute::NonNull);
2783 if (PTy->isObjectType()) {
2784 llvm::Align Alignment =
2785 getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2786 Attrs.addAlignmentAttr(Alignment);
2790 // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types:
2791 // > For arguments to a __kernel function declared to be a pointer to a
2792 // > data type, the OpenCL compiler can assume that the pointee is always
2793 // > appropriately aligned as required by the data type.
2794 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() &&
2795 ParamType->isPointerType()) {
2796 QualType PTy = ParamType->getPointeeType();
2797 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2798 llvm::Align Alignment =
2799 getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2800 Attrs.addAlignmentAttr(Alignment);
2804 switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2805 case ParameterABI::Ordinary:
2806 break;
2808 case ParameterABI::SwiftIndirectResult: {
2809 // Add 'sret' if we haven't already used it for something, but
2810 // only if the result is void.
2811 if (!hasUsedSRet && RetTy->isVoidType()) {
2812 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType));
2813 hasUsedSRet = true;
2816 // Add 'noalias' in either case.
2817 Attrs.addAttribute(llvm::Attribute::NoAlias);
2819 // Add 'dereferenceable' and 'alignment'.
2820 auto PTy = ParamType->getPointeeType();
2821 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2822 auto info = getContext().getTypeInfoInChars(PTy);
2823 Attrs.addDereferenceableAttr(info.Width.getQuantity());
2824 Attrs.addAlignmentAttr(info.Align.getAsAlign());
2826 break;
2829 case ParameterABI::SwiftErrorResult:
2830 Attrs.addAttribute(llvm::Attribute::SwiftError);
2831 break;
2833 case ParameterABI::SwiftContext:
2834 Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2835 break;
2837 case ParameterABI::SwiftAsyncContext:
2838 Attrs.addAttribute(llvm::Attribute::SwiftAsync);
2839 break;
2842 if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2843 Attrs.addAttribute(llvm::Attribute::NoCapture);
2845 if (Attrs.hasAttributes()) {
2846 unsigned FirstIRArg, NumIRArgs;
2847 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2848 for (unsigned i = 0; i < NumIRArgs; i++)
2849 ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes(
2850 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs));
2853 assert(ArgNo == FI.arg_size());
2855 AttrList = llvm::AttributeList::get(
2856 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2857 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2860 /// An argument came in as a promoted argument; demote it back to its
2861 /// declared type.
2862 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2863 const VarDecl *var,
2864 llvm::Value *value) {
2865 llvm::Type *varType = CGF.ConvertType(var->getType());
2867 // This can happen with promotions that actually don't change the
2868 // underlying type, like the enum promotions.
2869 if (value->getType() == varType) return value;
2871 assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2872 && "unexpected promotion type");
2874 if (isa<llvm::IntegerType>(varType))
2875 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2877 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2880 /// Returns the attribute (either parameter attribute, or function
2881 /// attribute), which declares argument ArgNo to be non-null.
2882 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2883 QualType ArgType, unsigned ArgNo) {
2884 // FIXME: __attribute__((nonnull)) can also be applied to:
2885 // - references to pointers, where the pointee is known to be
2886 // nonnull (apparently a Clang extension)
2887 // - transparent unions containing pointers
2888 // In the former case, LLVM IR cannot represent the constraint. In
2889 // the latter case, we have no guarantee that the transparent union
2890 // is in fact passed as a pointer.
2891 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2892 return nullptr;
2893 // First, check attribute on parameter itself.
2894 if (PVD) {
2895 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2896 return ParmNNAttr;
2898 // Check function attributes.
2899 if (!FD)
2900 return nullptr;
2901 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2902 if (NNAttr->isNonNull(ArgNo))
2903 return NNAttr;
2905 return nullptr;
2908 namespace {
2909 struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2910 Address Temp;
2911 Address Arg;
2912 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2913 void Emit(CodeGenFunction &CGF, Flags flags) override {
2914 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2915 CGF.Builder.CreateStore(errorValue, Arg);
2920 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2921 llvm::Function *Fn,
2922 const FunctionArgList &Args) {
2923 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2924 // Naked functions don't have prologues.
2925 return;
2927 // If this is an implicit-return-zero function, go ahead and
2928 // initialize the return value. TODO: it might be nice to have
2929 // a more general mechanism for this that didn't require synthesized
2930 // return statements.
2931 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2932 if (FD->hasImplicitReturnZero()) {
2933 QualType RetTy = FD->getReturnType().getUnqualifiedType();
2934 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2935 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2936 Builder.CreateStore(Zero, ReturnValue);
2940 // FIXME: We no longer need the types from FunctionArgList; lift up and
2941 // simplify.
2943 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2944 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2946 // If we're using inalloca, all the memory arguments are GEPs off of the last
2947 // parameter, which is a pointer to the complete memory area.
2948 Address ArgStruct = Address::invalid();
2949 if (IRFunctionArgs.hasInallocaArg())
2950 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2951 FI.getArgStruct(), FI.getArgStructAlignment());
2953 // Name the struct return parameter.
2954 if (IRFunctionArgs.hasSRetArg()) {
2955 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2956 AI->setName("agg.result");
2957 AI->addAttr(llvm::Attribute::NoAlias);
2960 // Track if we received the parameter as a pointer (indirect, byval, or
2961 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it
2962 // into a local alloca for us.
2963 SmallVector<ParamValue, 16> ArgVals;
2964 ArgVals.reserve(Args.size());
2966 // Create a pointer value for every parameter declaration. This usually
2967 // entails copying one or more LLVM IR arguments into an alloca. Don't push
2968 // any cleanups or do anything that might unwind. We do that separately, so
2969 // we can push the cleanups in the correct order for the ABI.
2970 assert(FI.arg_size() == Args.size() &&
2971 "Mismatch between function signature & arguments.");
2972 unsigned ArgNo = 0;
2973 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2974 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2975 i != e; ++i, ++info_it, ++ArgNo) {
2976 const VarDecl *Arg = *i;
2977 const ABIArgInfo &ArgI = info_it->info;
2979 bool isPromoted =
2980 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2981 // We are converting from ABIArgInfo type to VarDecl type directly, unless
2982 // the parameter is promoted. In this case we convert to
2983 // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2984 QualType Ty = isPromoted ? info_it->type : Arg->getType();
2985 assert(hasScalarEvaluationKind(Ty) ==
2986 hasScalarEvaluationKind(Arg->getType()));
2988 unsigned FirstIRArg, NumIRArgs;
2989 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2991 switch (ArgI.getKind()) {
2992 case ABIArgInfo::InAlloca: {
2993 assert(NumIRArgs == 0);
2994 auto FieldIndex = ArgI.getInAllocaFieldIndex();
2995 Address V =
2996 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2997 if (ArgI.getInAllocaIndirect())
2998 V = Address(Builder.CreateLoad(V), ConvertTypeForMem(Ty),
2999 getContext().getTypeAlignInChars(Ty));
3000 ArgVals.push_back(ParamValue::forIndirect(V));
3001 break;
3004 case ABIArgInfo::Indirect:
3005 case ABIArgInfo::IndirectAliased: {
3006 assert(NumIRArgs == 1);
3007 Address ParamAddr = makeNaturalAddressForPointer(
3008 Fn->getArg(FirstIRArg), Ty, ArgI.getIndirectAlign(), false, nullptr,
3009 nullptr, KnownNonNull);
3011 if (!hasScalarEvaluationKind(Ty)) {
3012 // Aggregates and complex variables are accessed by reference. All we
3013 // need to do is realign the value, if requested. Also, if the address
3014 // may be aliased, copy it to ensure that the parameter variable is
3015 // mutable and has a unique adress, as C requires.
3016 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
3017 RawAddress AlignedTemp = CreateMemTemp(Ty, "coerce");
3019 // Copy from the incoming argument pointer to the temporary with the
3020 // appropriate alignment.
3022 // FIXME: We should have a common utility for generating an aggregate
3023 // copy.
3024 CharUnits Size = getContext().getTypeSizeInChars(Ty);
3025 Builder.CreateMemCpy(
3026 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
3027 ParamAddr.emitRawPointer(*this),
3028 ParamAddr.getAlignment().getAsAlign(),
3029 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
3030 ParamAddr = AlignedTemp;
3032 ArgVals.push_back(ParamValue::forIndirect(ParamAddr));
3033 } else {
3034 // Load scalar value from indirect argument.
3035 llvm::Value *V =
3036 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
3038 if (isPromoted)
3039 V = emitArgumentDemotion(*this, Arg, V);
3040 ArgVals.push_back(ParamValue::forDirect(V));
3042 break;
3045 case ABIArgInfo::Extend:
3046 case ABIArgInfo::Direct: {
3047 auto AI = Fn->getArg(FirstIRArg);
3048 llvm::Type *LTy = ConvertType(Arg->getType());
3050 // Prepare parameter attributes. So far, only attributes for pointer
3051 // parameters are prepared. See
3052 // http://llvm.org/docs/LangRef.html#paramattrs.
3053 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
3054 ArgI.getCoerceToType()->isPointerTy()) {
3055 assert(NumIRArgs == 1);
3057 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
3058 // Set `nonnull` attribute if any.
3059 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
3060 PVD->getFunctionScopeIndex()) &&
3061 !CGM.getCodeGenOpts().NullPointerIsValid)
3062 AI->addAttr(llvm::Attribute::NonNull);
3064 QualType OTy = PVD->getOriginalType();
3065 if (const auto *ArrTy =
3066 getContext().getAsConstantArrayType(OTy)) {
3067 // A C99 array parameter declaration with the static keyword also
3068 // indicates dereferenceability, and if the size is constant we can
3069 // use the dereferenceable attribute (which requires the size in
3070 // bytes).
3071 if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) {
3072 QualType ETy = ArrTy->getElementType();
3073 llvm::Align Alignment =
3074 CGM.getNaturalTypeAlignment(ETy).getAsAlign();
3075 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment));
3076 uint64_t ArrSize = ArrTy->getZExtSize();
3077 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
3078 ArrSize) {
3079 llvm::AttrBuilder Attrs(getLLVMContext());
3080 Attrs.addDereferenceableAttr(
3081 getContext().getTypeSizeInChars(ETy).getQuantity() *
3082 ArrSize);
3083 AI->addAttrs(Attrs);
3084 } else if (getContext().getTargetInfo().getNullPointerValue(
3085 ETy.getAddressSpace()) == 0 &&
3086 !CGM.getCodeGenOpts().NullPointerIsValid) {
3087 AI->addAttr(llvm::Attribute::NonNull);
3090 } else if (const auto *ArrTy =
3091 getContext().getAsVariableArrayType(OTy)) {
3092 // For C99 VLAs with the static keyword, we don't know the size so
3093 // we can't use the dereferenceable attribute, but in addrspace(0)
3094 // we know that it must be nonnull.
3095 if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) {
3096 QualType ETy = ArrTy->getElementType();
3097 llvm::Align Alignment =
3098 CGM.getNaturalTypeAlignment(ETy).getAsAlign();
3099 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment));
3100 if (!getTypes().getTargetAddressSpace(ETy) &&
3101 !CGM.getCodeGenOpts().NullPointerIsValid)
3102 AI->addAttr(llvm::Attribute::NonNull);
3106 // Set `align` attribute if any.
3107 const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
3108 if (!AVAttr)
3109 if (const auto *TOTy = OTy->getAs<TypedefType>())
3110 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
3111 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
3112 // If alignment-assumption sanitizer is enabled, we do *not* add
3113 // alignment attribute here, but emit normal alignment assumption,
3114 // so the UBSAN check could function.
3115 llvm::ConstantInt *AlignmentCI =
3116 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
3117 uint64_t AlignmentInt =
3118 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
3119 if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
3120 AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
3121 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(
3122 llvm::Align(AlignmentInt)));
3127 // Set 'noalias' if an argument type has the `restrict` qualifier.
3128 if (Arg->getType().isRestrictQualified())
3129 AI->addAttr(llvm::Attribute::NoAlias);
3132 // Prepare the argument value. If we have the trivial case, handle it
3133 // with no muss and fuss.
3134 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
3135 ArgI.getCoerceToType() == ConvertType(Ty) &&
3136 ArgI.getDirectOffset() == 0) {
3137 assert(NumIRArgs == 1);
3139 // LLVM expects swifterror parameters to be used in very restricted
3140 // ways. Copy the value into a less-restricted temporary.
3141 llvm::Value *V = AI;
3142 if (FI.getExtParameterInfo(ArgNo).getABI()
3143 == ParameterABI::SwiftErrorResult) {
3144 QualType pointeeTy = Ty->getPointeeType();
3145 assert(pointeeTy->isPointerType());
3146 RawAddress temp =
3147 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
3148 Address arg = makeNaturalAddressForPointer(
3149 V, pointeeTy, getContext().getTypeAlignInChars(pointeeTy));
3150 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
3151 Builder.CreateStore(incomingErrorValue, temp);
3152 V = temp.getPointer();
3154 // Push a cleanup to copy the value back at the end of the function.
3155 // The convention does not guarantee that the value will be written
3156 // back if the function exits with an unwind exception.
3157 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
3160 // Ensure the argument is the correct type.
3161 if (V->getType() != ArgI.getCoerceToType())
3162 V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
3164 if (isPromoted)
3165 V = emitArgumentDemotion(*this, Arg, V);
3167 // Because of merging of function types from multiple decls it is
3168 // possible for the type of an argument to not match the corresponding
3169 // type in the function type. Since we are codegening the callee
3170 // in here, add a cast to the argument type.
3171 llvm::Type *LTy = ConvertType(Arg->getType());
3172 if (V->getType() != LTy)
3173 V = Builder.CreateBitCast(V, LTy);
3175 ArgVals.push_back(ParamValue::forDirect(V));
3176 break;
3179 // VLST arguments are coerced to VLATs at the function boundary for
3180 // ABI consistency. If this is a VLST that was coerced to
3181 // a VLAT at the function boundary and the types match up, use
3182 // llvm.vector.extract to convert back to the original VLST.
3183 if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) {
3184 llvm::Value *Coerced = Fn->getArg(FirstIRArg);
3185 if (auto *VecTyFrom =
3186 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) {
3187 // If we are casting a scalable i1 predicate vector to a fixed i8
3188 // vector, bitcast the source and use a vector extract.
3189 if (VecTyFrom->getElementType()->isIntegerTy(1) &&
3190 VecTyFrom->getElementCount().isKnownMultipleOf(8) &&
3191 VecTyTo->getElementType() == Builder.getInt8Ty()) {
3192 VecTyFrom = llvm::ScalableVectorType::get(
3193 VecTyTo->getElementType(),
3194 VecTyFrom->getElementCount().getKnownMinValue() / 8);
3195 Coerced = Builder.CreateBitCast(Coerced, VecTyFrom);
3197 if (VecTyFrom->getElementType() == VecTyTo->getElementType()) {
3198 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
3200 assert(NumIRArgs == 1);
3201 Coerced->setName(Arg->getName() + ".coerce");
3202 ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector(
3203 VecTyTo, Coerced, Zero, "cast.fixed")));
3204 break;
3209 llvm::StructType *STy =
3210 dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
3211 if (ArgI.isDirect() && !ArgI.getCanBeFlattened() && STy &&
3212 STy->getNumElements() > 1) {
3213 [[maybe_unused]] llvm::TypeSize StructSize =
3214 CGM.getDataLayout().getTypeAllocSize(STy);
3215 [[maybe_unused]] llvm::TypeSize PtrElementSize =
3216 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(Ty));
3217 if (STy->containsHomogeneousScalableVectorTypes()) {
3218 assert(StructSize == PtrElementSize &&
3219 "Only allow non-fractional movement of structure with"
3220 "homogeneous scalable vector type");
3222 ArgVals.push_back(ParamValue::forDirect(AI));
3223 break;
3227 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
3228 Arg->getName());
3230 // Pointer to store into.
3231 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
3233 // Fast-isel and the optimizer generally like scalar values better than
3234 // FCAs, so we flatten them if this is safe to do for this argument.
3235 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
3236 STy->getNumElements() > 1) {
3237 llvm::TypeSize StructSize = CGM.getDataLayout().getTypeAllocSize(STy);
3238 llvm::TypeSize PtrElementSize =
3239 CGM.getDataLayout().getTypeAllocSize(Ptr.getElementType());
3240 if (StructSize.isScalable()) {
3241 assert(STy->containsHomogeneousScalableVectorTypes() &&
3242 "ABI only supports structure with homogeneous scalable vector "
3243 "type");
3244 assert(StructSize == PtrElementSize &&
3245 "Only allow non-fractional movement of structure with"
3246 "homogeneous scalable vector type");
3247 assert(STy->getNumElements() == NumIRArgs);
3249 llvm::Value *LoadedStructValue = llvm::PoisonValue::get(STy);
3250 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3251 auto *AI = Fn->getArg(FirstIRArg + i);
3252 AI->setName(Arg->getName() + ".coerce" + Twine(i));
3253 LoadedStructValue =
3254 Builder.CreateInsertValue(LoadedStructValue, AI, i);
3257 Builder.CreateStore(LoadedStructValue, Ptr);
3258 } else {
3259 uint64_t SrcSize = StructSize.getFixedValue();
3260 uint64_t DstSize = PtrElementSize.getFixedValue();
3262 Address AddrToStoreInto = Address::invalid();
3263 if (SrcSize <= DstSize) {
3264 AddrToStoreInto = Ptr.withElementType(STy);
3265 } else {
3266 AddrToStoreInto =
3267 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
3270 assert(STy->getNumElements() == NumIRArgs);
3271 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3272 auto AI = Fn->getArg(FirstIRArg + i);
3273 AI->setName(Arg->getName() + ".coerce" + Twine(i));
3274 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
3275 Builder.CreateStore(AI, EltPtr);
3278 if (SrcSize > DstSize) {
3279 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
3282 } else {
3283 // Simple case, just do a coerced store of the argument into the alloca.
3284 assert(NumIRArgs == 1);
3285 auto AI = Fn->getArg(FirstIRArg);
3286 AI->setName(Arg->getName() + ".coerce");
3287 CreateCoercedStore(
3288 AI, Ptr,
3289 llvm::TypeSize::getFixed(
3290 getContext().getTypeSizeInChars(Ty).getQuantity() -
3291 ArgI.getDirectOffset()),
3292 /*DstIsVolatile=*/false);
3295 // Match to what EmitParmDecl is expecting for this type.
3296 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
3297 llvm::Value *V =
3298 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
3299 if (isPromoted)
3300 V = emitArgumentDemotion(*this, Arg, V);
3301 ArgVals.push_back(ParamValue::forDirect(V));
3302 } else {
3303 ArgVals.push_back(ParamValue::forIndirect(Alloca));
3305 break;
3308 case ABIArgInfo::CoerceAndExpand: {
3309 // Reconstruct into a temporary.
3310 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
3311 ArgVals.push_back(ParamValue::forIndirect(alloca));
3313 auto coercionType = ArgI.getCoerceAndExpandType();
3314 alloca = alloca.withElementType(coercionType);
3316 unsigned argIndex = FirstIRArg;
3317 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3318 llvm::Type *eltType = coercionType->getElementType(i);
3319 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
3320 continue;
3322 auto eltAddr = Builder.CreateStructGEP(alloca, i);
3323 auto elt = Fn->getArg(argIndex++);
3324 Builder.CreateStore(elt, eltAddr);
3326 assert(argIndex == FirstIRArg + NumIRArgs);
3327 break;
3330 case ABIArgInfo::Expand: {
3331 // If this structure was expanded into multiple arguments then
3332 // we need to create a temporary and reconstruct it from the
3333 // arguments.
3334 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
3335 LValue LV = MakeAddrLValue(Alloca, Ty);
3336 ArgVals.push_back(ParamValue::forIndirect(Alloca));
3338 auto FnArgIter = Fn->arg_begin() + FirstIRArg;
3339 ExpandTypeFromArgs(Ty, LV, FnArgIter);
3340 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
3341 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
3342 auto AI = Fn->getArg(FirstIRArg + i);
3343 AI->setName(Arg->getName() + "." + Twine(i));
3345 break;
3348 case ABIArgInfo::Ignore:
3349 assert(NumIRArgs == 0);
3350 // Initialize the local variable appropriately.
3351 if (!hasScalarEvaluationKind(Ty)) {
3352 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
3353 } else {
3354 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
3355 ArgVals.push_back(ParamValue::forDirect(U));
3357 break;
3361 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3362 for (int I = Args.size() - 1; I >= 0; --I)
3363 EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3364 } else {
3365 for (unsigned I = 0, E = Args.size(); I != E; ++I)
3366 EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3370 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
3371 while (insn->use_empty()) {
3372 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
3373 if (!bitcast) return;
3375 // This is "safe" because we would have used a ConstantExpr otherwise.
3376 insn = cast<llvm::Instruction>(bitcast->getOperand(0));
3377 bitcast->eraseFromParent();
3381 /// Try to emit a fused autorelease of a return result.
3382 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
3383 llvm::Value *result) {
3384 // We must be immediately followed the cast.
3385 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
3386 if (BB->empty()) return nullptr;
3387 if (&BB->back() != result) return nullptr;
3389 llvm::Type *resultType = result->getType();
3391 // result is in a BasicBlock and is therefore an Instruction.
3392 llvm::Instruction *generator = cast<llvm::Instruction>(result);
3394 SmallVector<llvm::Instruction *, 4> InstsToKill;
3396 // Look for:
3397 // %generator = bitcast %type1* %generator2 to %type2*
3398 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
3399 // We would have emitted this as a constant if the operand weren't
3400 // an Instruction.
3401 generator = cast<llvm::Instruction>(bitcast->getOperand(0));
3403 // Require the generator to be immediately followed by the cast.
3404 if (generator->getNextNode() != bitcast)
3405 return nullptr;
3407 InstsToKill.push_back(bitcast);
3410 // Look for:
3411 // %generator = call i8* @objc_retain(i8* %originalResult)
3412 // or
3413 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
3414 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
3415 if (!call) return nullptr;
3417 bool doRetainAutorelease;
3419 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
3420 doRetainAutorelease = true;
3421 } else if (call->getCalledOperand() ==
3422 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
3423 doRetainAutorelease = false;
3425 // If we emitted an assembly marker for this call (and the
3426 // ARCEntrypoints field should have been set if so), go looking
3427 // for that call. If we can't find it, we can't do this
3428 // optimization. But it should always be the immediately previous
3429 // instruction, unless we needed bitcasts around the call.
3430 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
3431 llvm::Instruction *prev = call->getPrevNode();
3432 assert(prev);
3433 if (isa<llvm::BitCastInst>(prev)) {
3434 prev = prev->getPrevNode();
3435 assert(prev);
3437 assert(isa<llvm::CallInst>(prev));
3438 assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
3439 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
3440 InstsToKill.push_back(prev);
3442 } else {
3443 return nullptr;
3446 result = call->getArgOperand(0);
3447 InstsToKill.push_back(call);
3449 // Keep killing bitcasts, for sanity. Note that we no longer care
3450 // about precise ordering as long as there's exactly one use.
3451 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
3452 if (!bitcast->hasOneUse()) break;
3453 InstsToKill.push_back(bitcast);
3454 result = bitcast->getOperand(0);
3457 // Delete all the unnecessary instructions, from latest to earliest.
3458 for (auto *I : InstsToKill)
3459 I->eraseFromParent();
3461 // Do the fused retain/autorelease if we were asked to.
3462 if (doRetainAutorelease)
3463 result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
3465 // Cast back to the result type.
3466 return CGF.Builder.CreateBitCast(result, resultType);
3469 /// If this is a +1 of the value of an immutable 'self', remove it.
3470 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
3471 llvm::Value *result) {
3472 // This is only applicable to a method with an immutable 'self'.
3473 const ObjCMethodDecl *method =
3474 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
3475 if (!method) return nullptr;
3476 const VarDecl *self = method->getSelfDecl();
3477 if (!self->getType().isConstQualified()) return nullptr;
3479 // Look for a retain call. Note: stripPointerCasts looks through returned arg
3480 // functions, which would cause us to miss the retain.
3481 llvm::CallInst *retainCall = dyn_cast<llvm::CallInst>(result);
3482 if (!retainCall || retainCall->getCalledOperand() !=
3483 CGF.CGM.getObjCEntrypoints().objc_retain)
3484 return nullptr;
3486 // Look for an ordinary load of 'self'.
3487 llvm::Value *retainedValue = retainCall->getArgOperand(0);
3488 llvm::LoadInst *load =
3489 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
3490 if (!load || load->isAtomic() || load->isVolatile() ||
3491 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getBasePointer())
3492 return nullptr;
3494 // Okay! Burn it all down. This relies for correctness on the
3495 // assumption that the retain is emitted as part of the return and
3496 // that thereafter everything is used "linearly".
3497 llvm::Type *resultType = result->getType();
3498 eraseUnusedBitCasts(cast<llvm::Instruction>(result));
3499 assert(retainCall->use_empty());
3500 retainCall->eraseFromParent();
3501 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
3503 return CGF.Builder.CreateBitCast(load, resultType);
3506 /// Emit an ARC autorelease of the result of a function.
3508 /// \return the value to actually return from the function
3509 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
3510 llvm::Value *result) {
3511 // If we're returning 'self', kill the initial retain. This is a
3512 // heuristic attempt to "encourage correctness" in the really unfortunate
3513 // case where we have a return of self during a dealloc and we desperately
3514 // need to avoid the possible autorelease.
3515 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
3516 return self;
3518 // At -O0, try to emit a fused retain/autorelease.
3519 if (CGF.shouldUseFusedARCCalls())
3520 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
3521 return fused;
3523 return CGF.EmitARCAutoreleaseReturnValue(result);
3526 /// Heuristically search for a dominating store to the return-value slot.
3527 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
3528 llvm::Value *ReturnValuePtr = CGF.ReturnValue.getBasePointer();
3530 // Check if a User is a store which pointerOperand is the ReturnValue.
3531 // We are looking for stores to the ReturnValue, not for stores of the
3532 // ReturnValue to some other location.
3533 auto GetStoreIfValid = [&CGF,
3534 ReturnValuePtr](llvm::User *U) -> llvm::StoreInst * {
3535 auto *SI = dyn_cast<llvm::StoreInst>(U);
3536 if (!SI || SI->getPointerOperand() != ReturnValuePtr ||
3537 SI->getValueOperand()->getType() != CGF.ReturnValue.getElementType())
3538 return nullptr;
3539 // These aren't actually possible for non-coerced returns, and we
3540 // only care about non-coerced returns on this code path.
3541 // All memory instructions inside __try block are volatile.
3542 assert(!SI->isAtomic() &&
3543 (!SI->isVolatile() || CGF.currentFunctionUsesSEHTry()));
3544 return SI;
3546 // If there are multiple uses of the return-value slot, just check
3547 // for something immediately preceding the IP. Sometimes this can
3548 // happen with how we generate implicit-returns; it can also happen
3549 // with noreturn cleanups.
3550 if (!ReturnValuePtr->hasOneUse()) {
3551 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3552 if (IP->empty()) return nullptr;
3554 // Look at directly preceding instruction, skipping bitcasts and lifetime
3555 // markers.
3556 for (llvm::Instruction &I : make_range(IP->rbegin(), IP->rend())) {
3557 if (isa<llvm::BitCastInst>(&I))
3558 continue;
3559 if (auto *II = dyn_cast<llvm::IntrinsicInst>(&I))
3560 if (II->getIntrinsicID() == llvm::Intrinsic::lifetime_end)
3561 continue;
3563 return GetStoreIfValid(&I);
3565 return nullptr;
3568 llvm::StoreInst *store = GetStoreIfValid(ReturnValuePtr->user_back());
3569 if (!store) return nullptr;
3571 // Now do a first-and-dirty dominance check: just walk up the
3572 // single-predecessors chain from the current insertion point.
3573 llvm::BasicBlock *StoreBB = store->getParent();
3574 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3575 llvm::SmallPtrSet<llvm::BasicBlock *, 4> SeenBBs;
3576 while (IP != StoreBB) {
3577 if (!SeenBBs.insert(IP).second || !(IP = IP->getSinglePredecessor()))
3578 return nullptr;
3581 // Okay, the store's basic block dominates the insertion point; we
3582 // can do our thing.
3583 return store;
3586 // Helper functions for EmitCMSEClearRecord
3588 // Set the bits corresponding to a field having width `BitWidth` and located at
3589 // offset `BitOffset` (from the least significant bit) within a storage unit of
3590 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3591 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
3592 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
3593 int BitWidth, int CharWidth) {
3594 assert(CharWidth <= 64);
3595 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
3597 int Pos = 0;
3598 if (BitOffset >= CharWidth) {
3599 Pos += BitOffset / CharWidth;
3600 BitOffset = BitOffset % CharWidth;
3603 const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
3604 if (BitOffset + BitWidth >= CharWidth) {
3605 Bits[Pos++] |= (Used << BitOffset) & Used;
3606 BitWidth -= CharWidth - BitOffset;
3607 BitOffset = 0;
3610 while (BitWidth >= CharWidth) {
3611 Bits[Pos++] = Used;
3612 BitWidth -= CharWidth;
3615 if (BitWidth > 0)
3616 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3619 // Set the bits corresponding to a field having width `BitWidth` and located at
3620 // offset `BitOffset` (from the least significant bit) within a storage unit of
3621 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3622 // `Bits` corresponds to one target byte. Use target endian layout.
3623 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3624 int StorageSize, int BitOffset, int BitWidth,
3625 int CharWidth, bool BigEndian) {
3627 SmallVector<uint64_t, 8> TmpBits(StorageSize);
3628 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3630 if (BigEndian)
3631 std::reverse(TmpBits.begin(), TmpBits.end());
3633 for (uint64_t V : TmpBits)
3634 Bits[StorageOffset++] |= V;
3637 static void setUsedBits(CodeGenModule &, QualType, int,
3638 SmallVectorImpl<uint64_t> &);
3640 // Set the bits in `Bits`, which correspond to the value representations of
3641 // the actual members of the record type `RTy`. Note that this function does
3642 // not handle base classes, virtual tables, etc, since they cannot happen in
3643 // CMSE function arguments or return. The bit mask corresponds to the target
3644 // memory layout, i.e. it's endian dependent.
3645 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3646 SmallVectorImpl<uint64_t> &Bits) {
3647 ASTContext &Context = CGM.getContext();
3648 int CharWidth = Context.getCharWidth();
3649 const RecordDecl *RD = RTy->getDecl()->getDefinition();
3650 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3651 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3653 int Idx = 0;
3654 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3655 const FieldDecl *F = *I;
3657 if (F->isUnnamedBitField() || F->isZeroLengthBitField(Context) ||
3658 F->getType()->isIncompleteArrayType())
3659 continue;
3661 if (F->isBitField()) {
3662 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3663 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3664 BFI.StorageSize / CharWidth, BFI.Offset,
3665 BFI.Size, CharWidth,
3666 CGM.getDataLayout().isBigEndian());
3667 continue;
3670 setUsedBits(CGM, F->getType(),
3671 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3675 // Set the bits in `Bits`, which correspond to the value representations of
3676 // the elements of an array type `ATy`.
3677 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3678 int Offset, SmallVectorImpl<uint64_t> &Bits) {
3679 const ASTContext &Context = CGM.getContext();
3681 QualType ETy = Context.getBaseElementType(ATy);
3682 int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3683 SmallVector<uint64_t, 4> TmpBits(Size);
3684 setUsedBits(CGM, ETy, 0, TmpBits);
3686 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3687 auto Src = TmpBits.begin();
3688 auto Dst = Bits.begin() + Offset + I * Size;
3689 for (int J = 0; J < Size; ++J)
3690 *Dst++ |= *Src++;
3694 // Set the bits in `Bits`, which correspond to the value representations of
3695 // the type `QTy`.
3696 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3697 SmallVectorImpl<uint64_t> &Bits) {
3698 if (const auto *RTy = QTy->getAs<RecordType>())
3699 return setUsedBits(CGM, RTy, Offset, Bits);
3701 ASTContext &Context = CGM.getContext();
3702 if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3703 return setUsedBits(CGM, ATy, Offset, Bits);
3705 int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3706 if (Size <= 0)
3707 return;
3709 std::fill_n(Bits.begin() + Offset, Size,
3710 (uint64_t(1) << Context.getCharWidth()) - 1);
3713 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3714 int Pos, int Size, int CharWidth,
3715 bool BigEndian) {
3716 assert(Size > 0);
3717 uint64_t Mask = 0;
3718 if (BigEndian) {
3719 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3720 ++P)
3721 Mask = (Mask << CharWidth) | *P;
3722 } else {
3723 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3725 Mask = (Mask << CharWidth) | *--P;
3726 while (P != End);
3728 return Mask;
3731 // Emit code to clear the bits in a record, which aren't a part of any user
3732 // declared member, when the record is a function return.
3733 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3734 llvm::IntegerType *ITy,
3735 QualType QTy) {
3736 assert(Src->getType() == ITy);
3737 assert(ITy->getScalarSizeInBits() <= 64);
3739 const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3740 int Size = DataLayout.getTypeStoreSize(ITy);
3741 SmallVector<uint64_t, 4> Bits(Size);
3742 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3744 int CharWidth = CGM.getContext().getCharWidth();
3745 uint64_t Mask =
3746 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3748 return Builder.CreateAnd(Src, Mask, "cmse.clear");
3751 // Emit code to clear the bits in a record, which aren't a part of any user
3752 // declared member, when the record is a function argument.
3753 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3754 llvm::ArrayType *ATy,
3755 QualType QTy) {
3756 const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3757 int Size = DataLayout.getTypeStoreSize(ATy);
3758 SmallVector<uint64_t, 16> Bits(Size);
3759 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3761 // Clear each element of the LLVM array.
3762 int CharWidth = CGM.getContext().getCharWidth();
3763 int CharsPerElt =
3764 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3765 int MaskIndex = 0;
3766 llvm::Value *R = llvm::PoisonValue::get(ATy);
3767 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3768 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3769 DataLayout.isBigEndian());
3770 MaskIndex += CharsPerElt;
3771 llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3772 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3773 R = Builder.CreateInsertValue(R, T1, I);
3776 return R;
3779 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3780 bool EmitRetDbgLoc,
3781 SourceLocation EndLoc) {
3782 if (FI.isNoReturn()) {
3783 // Noreturn functions don't return.
3784 EmitUnreachable(EndLoc);
3785 return;
3788 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3789 // Naked functions don't have epilogues.
3790 Builder.CreateUnreachable();
3791 return;
3794 // Functions with no result always return void.
3795 if (!ReturnValue.isValid()) {
3796 Builder.CreateRetVoid();
3797 return;
3800 llvm::DebugLoc RetDbgLoc;
3801 llvm::Value *RV = nullptr;
3802 QualType RetTy = FI.getReturnType();
3803 const ABIArgInfo &RetAI = FI.getReturnInfo();
3805 switch (RetAI.getKind()) {
3806 case ABIArgInfo::InAlloca:
3807 // Aggregates get evaluated directly into the destination. Sometimes we
3808 // need to return the sret value in a register, though.
3809 assert(hasAggregateEvaluationKind(RetTy));
3810 if (RetAI.getInAllocaSRet()) {
3811 llvm::Function::arg_iterator EI = CurFn->arg_end();
3812 --EI;
3813 llvm::Value *ArgStruct = &*EI;
3814 llvm::Value *SRet = Builder.CreateStructGEP(
3815 FI.getArgStruct(), ArgStruct, RetAI.getInAllocaFieldIndex());
3816 llvm::Type *Ty =
3817 cast<llvm::GetElementPtrInst>(SRet)->getResultElementType();
3818 RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret");
3820 break;
3822 case ABIArgInfo::Indirect: {
3823 auto AI = CurFn->arg_begin();
3824 if (RetAI.isSRetAfterThis())
3825 ++AI;
3826 switch (getEvaluationKind(RetTy)) {
3827 case TEK_Complex: {
3828 ComplexPairTy RT =
3829 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3830 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3831 /*isInit*/ true);
3832 break;
3834 case TEK_Aggregate:
3835 // Do nothing; aggregates get evaluated directly into the destination.
3836 break;
3837 case TEK_Scalar: {
3838 LValueBaseInfo BaseInfo;
3839 TBAAAccessInfo TBAAInfo;
3840 CharUnits Alignment =
3841 CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo);
3842 Address ArgAddr(&*AI, ConvertType(RetTy), Alignment);
3843 LValue ArgVal =
3844 LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo);
3845 EmitStoreOfScalar(
3846 EmitLoadOfScalar(MakeAddrLValue(ReturnValue, RetTy), EndLoc), ArgVal,
3847 /*isInit*/ true);
3848 break;
3851 break;
3854 case ABIArgInfo::Extend:
3855 case ABIArgInfo::Direct:
3856 if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3857 RetAI.getDirectOffset() == 0) {
3858 // The internal return value temp always will have pointer-to-return-type
3859 // type, just do a load.
3861 // If there is a dominating store to ReturnValue, we can elide
3862 // the load, zap the store, and usually zap the alloca.
3863 if (llvm::StoreInst *SI =
3864 findDominatingStoreToReturnValue(*this)) {
3865 // Reuse the debug location from the store unless there is
3866 // cleanup code to be emitted between the store and return
3867 // instruction.
3868 if (EmitRetDbgLoc && !AutoreleaseResult)
3869 RetDbgLoc = SI->getDebugLoc();
3870 // Get the stored value and nuke the now-dead store.
3871 RV = SI->getValueOperand();
3872 SI->eraseFromParent();
3874 // Otherwise, we have to do a simple load.
3875 } else {
3876 RV = Builder.CreateLoad(ReturnValue);
3878 } else {
3879 // If the value is offset in memory, apply the offset now.
3880 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3882 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3885 // In ARC, end functions that return a retainable type with a call
3886 // to objc_autoreleaseReturnValue.
3887 if (AutoreleaseResult) {
3888 #ifndef NDEBUG
3889 // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3890 // been stripped of the typedefs, so we cannot use RetTy here. Get the
3891 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3892 // CurCodeDecl or BlockInfo.
3893 QualType RT;
3895 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3896 RT = FD->getReturnType();
3897 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3898 RT = MD->getReturnType();
3899 else if (isa<BlockDecl>(CurCodeDecl))
3900 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3901 else
3902 llvm_unreachable("Unexpected function/method type");
3904 assert(getLangOpts().ObjCAutoRefCount &&
3905 !FI.isReturnsRetained() &&
3906 RT->isObjCRetainableType());
3907 #endif
3908 RV = emitAutoreleaseOfResult(*this, RV);
3911 break;
3913 case ABIArgInfo::Ignore:
3914 break;
3916 case ABIArgInfo::CoerceAndExpand: {
3917 auto coercionType = RetAI.getCoerceAndExpandType();
3919 // Load all of the coerced elements out into results.
3920 llvm::SmallVector<llvm::Value*, 4> results;
3921 Address addr = ReturnValue.withElementType(coercionType);
3922 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3923 auto coercedEltType = coercionType->getElementType(i);
3924 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3925 continue;
3927 auto eltAddr = Builder.CreateStructGEP(addr, i);
3928 auto elt = Builder.CreateLoad(eltAddr);
3929 results.push_back(elt);
3932 // If we have one result, it's the single direct result type.
3933 if (results.size() == 1) {
3934 RV = results[0];
3936 // Otherwise, we need to make a first-class aggregate.
3937 } else {
3938 // Construct a return type that lacks padding elements.
3939 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3941 RV = llvm::PoisonValue::get(returnType);
3942 for (unsigned i = 0, e = results.size(); i != e; ++i) {
3943 RV = Builder.CreateInsertValue(RV, results[i], i);
3946 break;
3948 case ABIArgInfo::Expand:
3949 case ABIArgInfo::IndirectAliased:
3950 llvm_unreachable("Invalid ABI kind for return argument");
3953 llvm::Instruction *Ret;
3954 if (RV) {
3955 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3956 // For certain return types, clear padding bits, as they may reveal
3957 // sensitive information.
3958 // Small struct/union types are passed as integers.
3959 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3960 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3961 RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3963 EmitReturnValueCheck(RV);
3964 Ret = Builder.CreateRet(RV);
3965 } else {
3966 Ret = Builder.CreateRetVoid();
3969 if (RetDbgLoc)
3970 Ret->setDebugLoc(std::move(RetDbgLoc));
3973 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3974 // A current decl may not be available when emitting vtable thunks.
3975 if (!CurCodeDecl)
3976 return;
3978 // If the return block isn't reachable, neither is this check, so don't emit
3979 // it.
3980 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3981 return;
3983 ReturnsNonNullAttr *RetNNAttr = nullptr;
3984 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3985 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3987 if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3988 return;
3990 // Prefer the returns_nonnull attribute if it's present.
3991 SourceLocation AttrLoc;
3992 SanitizerMask CheckKind;
3993 SanitizerHandler Handler;
3994 if (RetNNAttr) {
3995 assert(!requiresReturnValueNullabilityCheck() &&
3996 "Cannot check nullability and the nonnull attribute");
3997 AttrLoc = RetNNAttr->getLocation();
3998 CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3999 Handler = SanitizerHandler::NonnullReturn;
4000 } else {
4001 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
4002 if (auto *TSI = DD->getTypeSourceInfo())
4003 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
4004 AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
4005 CheckKind = SanitizerKind::NullabilityReturn;
4006 Handler = SanitizerHandler::NullabilityReturn;
4009 SanitizerScope SanScope(this);
4011 // Make sure the "return" source location is valid. If we're checking a
4012 // nullability annotation, make sure the preconditions for the check are met.
4013 llvm::BasicBlock *Check = createBasicBlock("nullcheck");
4014 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
4015 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
4016 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
4017 if (requiresReturnValueNullabilityCheck())
4018 CanNullCheck =
4019 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
4020 Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
4021 EmitBlock(Check);
4023 // Now do the null check.
4024 llvm::Value *Cond = Builder.CreateIsNotNull(RV);
4025 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
4026 llvm::Value *DynamicData[] = {SLocPtr};
4027 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
4029 EmitBlock(NoCheck);
4031 #ifndef NDEBUG
4032 // The return location should not be used after the check has been emitted.
4033 ReturnLocation = Address::invalid();
4034 #endif
4037 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
4038 const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
4039 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
4042 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
4043 QualType Ty) {
4044 // FIXME: Generate IR in one pass, rather than going back and fixing up these
4045 // placeholders.
4046 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
4047 llvm::Type *IRPtrTy = llvm::PointerType::getUnqual(CGF.getLLVMContext());
4048 llvm::Value *Placeholder = llvm::PoisonValue::get(IRPtrTy);
4050 // FIXME: When we generate this IR in one pass, we shouldn't need
4051 // this win32-specific alignment hack.
4052 CharUnits Align = CharUnits::fromQuantity(4);
4053 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
4055 return AggValueSlot::forAddr(Address(Placeholder, IRTy, Align),
4056 Ty.getQualifiers(),
4057 AggValueSlot::IsNotDestructed,
4058 AggValueSlot::DoesNotNeedGCBarriers,
4059 AggValueSlot::IsNotAliased,
4060 AggValueSlot::DoesNotOverlap);
4063 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
4064 const VarDecl *param,
4065 SourceLocation loc) {
4066 // StartFunction converted the ABI-lowered parameter(s) into a
4067 // local alloca. We need to turn that into an r-value suitable
4068 // for EmitCall.
4069 Address local = GetAddrOfLocalVar(param);
4071 QualType type = param->getType();
4073 // GetAddrOfLocalVar returns a pointer-to-pointer for references,
4074 // but the argument needs to be the original pointer.
4075 if (type->isReferenceType()) {
4076 args.add(RValue::get(Builder.CreateLoad(local)), type);
4078 // In ARC, move out of consumed arguments so that the release cleanup
4079 // entered by StartFunction doesn't cause an over-release. This isn't
4080 // optimal -O0 code generation, but it should get cleaned up when
4081 // optimization is enabled. This also assumes that delegate calls are
4082 // performed exactly once for a set of arguments, but that should be safe.
4083 } else if (getLangOpts().ObjCAutoRefCount &&
4084 param->hasAttr<NSConsumedAttr>() &&
4085 type->isObjCRetainableType()) {
4086 llvm::Value *ptr = Builder.CreateLoad(local);
4087 auto null =
4088 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
4089 Builder.CreateStore(null, local);
4090 args.add(RValue::get(ptr), type);
4092 // For the most part, we just need to load the alloca, except that
4093 // aggregate r-values are actually pointers to temporaries.
4094 } else {
4095 args.add(convertTempToRValue(local, type, loc), type);
4098 // Deactivate the cleanup for the callee-destructed param that was pushed.
4099 if (type->isRecordType() && !CurFuncIsThunk &&
4100 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
4101 param->needsDestruction(getContext())) {
4102 EHScopeStack::stable_iterator cleanup =
4103 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
4104 assert(cleanup.isValid() &&
4105 "cleanup for callee-destructed param not recorded");
4106 // This unreachable is a temporary marker which will be removed later.
4107 llvm::Instruction *isActive = Builder.CreateUnreachable();
4108 args.addArgCleanupDeactivation(cleanup, isActive);
4112 static bool isProvablyNull(llvm::Value *addr) {
4113 return llvm::isa_and_nonnull<llvm::ConstantPointerNull>(addr);
4116 static bool isProvablyNonNull(Address Addr, CodeGenFunction &CGF) {
4117 return llvm::isKnownNonZero(Addr.getBasePointer(), CGF.CGM.getDataLayout());
4120 /// Emit the actual writing-back of a writeback.
4121 static void emitWriteback(CodeGenFunction &CGF,
4122 const CallArgList::Writeback &writeback) {
4123 const LValue &srcLV = writeback.Source;
4124 Address srcAddr = srcLV.getAddress();
4125 assert(!isProvablyNull(srcAddr.getBasePointer()) &&
4126 "shouldn't have writeback for provably null argument");
4128 llvm::BasicBlock *contBB = nullptr;
4130 // If the argument wasn't provably non-null, we need to null check
4131 // before doing the store.
4132 bool provablyNonNull = isProvablyNonNull(srcAddr, CGF);
4134 if (!provablyNonNull) {
4135 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
4136 contBB = CGF.createBasicBlock("icr.done");
4138 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
4139 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
4140 CGF.EmitBlock(writebackBB);
4143 // Load the value to writeback.
4144 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
4146 // Cast it back, in case we're writing an id to a Foo* or something.
4147 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
4148 "icr.writeback-cast");
4150 // Perform the writeback.
4152 // If we have a "to use" value, it's something we need to emit a use
4153 // of. This has to be carefully threaded in: if it's done after the
4154 // release it's potentially undefined behavior (and the optimizer
4155 // will ignore it), and if it happens before the retain then the
4156 // optimizer could move the release there.
4157 if (writeback.ToUse) {
4158 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
4160 // Retain the new value. No need to block-copy here: the block's
4161 // being passed up the stack.
4162 value = CGF.EmitARCRetainNonBlock(value);
4164 // Emit the intrinsic use here.
4165 CGF.EmitARCIntrinsicUse(writeback.ToUse);
4167 // Load the old value (primitively).
4168 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
4170 // Put the new value in place (primitively).
4171 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
4173 // Release the old value.
4174 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
4176 // Otherwise, we can just do a normal lvalue store.
4177 } else {
4178 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
4181 // Jump to the continuation block.
4182 if (!provablyNonNull)
4183 CGF.EmitBlock(contBB);
4186 static void emitWritebacks(CodeGenFunction &CGF,
4187 const CallArgList &args) {
4188 for (const auto &I : args.writebacks())
4189 emitWriteback(CGF, I);
4192 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
4193 const CallArgList &CallArgs) {
4194 ArrayRef<CallArgList::CallArgCleanup> Cleanups =
4195 CallArgs.getCleanupsToDeactivate();
4196 // Iterate in reverse to increase the likelihood of popping the cleanup.
4197 for (const auto &I : llvm::reverse(Cleanups)) {
4198 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
4199 I.IsActiveIP->eraseFromParent();
4203 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
4204 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
4205 if (uop->getOpcode() == UO_AddrOf)
4206 return uop->getSubExpr();
4207 return nullptr;
4210 /// Emit an argument that's being passed call-by-writeback. That is,
4211 /// we are passing the address of an __autoreleased temporary; it
4212 /// might be copy-initialized with the current value of the given
4213 /// address, but it will definitely be copied out of after the call.
4214 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
4215 const ObjCIndirectCopyRestoreExpr *CRE) {
4216 LValue srcLV;
4218 // Make an optimistic effort to emit the address as an l-value.
4219 // This can fail if the argument expression is more complicated.
4220 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
4221 srcLV = CGF.EmitLValue(lvExpr);
4223 // Otherwise, just emit it as a scalar.
4224 } else {
4225 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
4227 QualType srcAddrType =
4228 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
4229 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
4231 Address srcAddr = srcLV.getAddress();
4233 // The dest and src types don't necessarily match in LLVM terms
4234 // because of the crazy ObjC compatibility rules.
4236 llvm::PointerType *destType =
4237 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
4238 llvm::Type *destElemType =
4239 CGF.ConvertTypeForMem(CRE->getType()->getPointeeType());
4241 // If the address is a constant null, just pass the appropriate null.
4242 if (isProvablyNull(srcAddr.getBasePointer())) {
4243 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
4244 CRE->getType());
4245 return;
4248 // Create the temporary.
4249 Address temp =
4250 CGF.CreateTempAlloca(destElemType, CGF.getPointerAlign(), "icr.temp");
4251 // Loading an l-value can introduce a cleanup if the l-value is __weak,
4252 // and that cleanup will be conditional if we can't prove that the l-value
4253 // isn't null, so we need to register a dominating point so that the cleanups
4254 // system will make valid IR.
4255 CodeGenFunction::ConditionalEvaluation condEval(CGF);
4257 // Zero-initialize it if we're not doing a copy-initialization.
4258 bool shouldCopy = CRE->shouldCopy();
4259 if (!shouldCopy) {
4260 llvm::Value *null =
4261 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(destElemType));
4262 CGF.Builder.CreateStore(null, temp);
4265 llvm::BasicBlock *contBB = nullptr;
4266 llvm::BasicBlock *originBB = nullptr;
4268 // If the address is *not* known to be non-null, we need to switch.
4269 llvm::Value *finalArgument;
4271 bool provablyNonNull = isProvablyNonNull(srcAddr, CGF);
4273 if (provablyNonNull) {
4274 finalArgument = temp.emitRawPointer(CGF);
4275 } else {
4276 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
4278 finalArgument = CGF.Builder.CreateSelect(
4279 isNull, llvm::ConstantPointerNull::get(destType),
4280 temp.emitRawPointer(CGF), "icr.argument");
4282 // If we need to copy, then the load has to be conditional, which
4283 // means we need control flow.
4284 if (shouldCopy) {
4285 originBB = CGF.Builder.GetInsertBlock();
4286 contBB = CGF.createBasicBlock("icr.cont");
4287 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
4288 CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
4289 CGF.EmitBlock(copyBB);
4290 condEval.begin(CGF);
4294 llvm::Value *valueToUse = nullptr;
4296 // Perform a copy if necessary.
4297 if (shouldCopy) {
4298 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
4299 assert(srcRV.isScalar());
4301 llvm::Value *src = srcRV.getScalarVal();
4302 src = CGF.Builder.CreateBitCast(src, destElemType, "icr.cast");
4304 // Use an ordinary store, not a store-to-lvalue.
4305 CGF.Builder.CreateStore(src, temp);
4307 // If optimization is enabled, and the value was held in a
4308 // __strong variable, we need to tell the optimizer that this
4309 // value has to stay alive until we're doing the store back.
4310 // This is because the temporary is effectively unretained,
4311 // and so otherwise we can violate the high-level semantics.
4312 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4313 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
4314 valueToUse = src;
4318 // Finish the control flow if we needed it.
4319 if (shouldCopy && !provablyNonNull) {
4320 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
4321 CGF.EmitBlock(contBB);
4323 // Make a phi for the value to intrinsically use.
4324 if (valueToUse) {
4325 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
4326 "icr.to-use");
4327 phiToUse->addIncoming(valueToUse, copyBB);
4328 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
4329 originBB);
4330 valueToUse = phiToUse;
4333 condEval.end(CGF);
4336 args.addWriteback(srcLV, temp, valueToUse);
4337 args.add(RValue::get(finalArgument), CRE->getType());
4340 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
4341 assert(!StackBase);
4343 // Save the stack.
4344 StackBase = CGF.Builder.CreateStackSave("inalloca.save");
4347 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
4348 if (StackBase) {
4349 // Restore the stack after the call.
4350 CGF.Builder.CreateStackRestore(StackBase);
4354 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
4355 SourceLocation ArgLoc,
4356 AbstractCallee AC,
4357 unsigned ParmNum) {
4358 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
4359 SanOpts.has(SanitizerKind::NullabilityArg)))
4360 return;
4362 // The param decl may be missing in a variadic function.
4363 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
4364 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
4366 // Prefer the nonnull attribute if it's present.
4367 const NonNullAttr *NNAttr = nullptr;
4368 if (SanOpts.has(SanitizerKind::NonnullAttribute))
4369 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
4371 bool CanCheckNullability = false;
4372 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD &&
4373 !PVD->getType()->isRecordType()) {
4374 auto Nullability = PVD->getType()->getNullability();
4375 CanCheckNullability = Nullability &&
4376 *Nullability == NullabilityKind::NonNull &&
4377 PVD->getTypeSourceInfo();
4380 if (!NNAttr && !CanCheckNullability)
4381 return;
4383 SourceLocation AttrLoc;
4384 SanitizerMask CheckKind;
4385 SanitizerHandler Handler;
4386 if (NNAttr) {
4387 AttrLoc = NNAttr->getLocation();
4388 CheckKind = SanitizerKind::NonnullAttribute;
4389 Handler = SanitizerHandler::NonnullArg;
4390 } else {
4391 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
4392 CheckKind = SanitizerKind::NullabilityArg;
4393 Handler = SanitizerHandler::NullabilityArg;
4396 SanitizerScope SanScope(this);
4397 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType);
4398 llvm::Constant *StaticData[] = {
4399 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
4400 llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
4402 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, std::nullopt);
4405 void CodeGenFunction::EmitNonNullArgCheck(Address Addr, QualType ArgType,
4406 SourceLocation ArgLoc,
4407 AbstractCallee AC, unsigned ParmNum) {
4408 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
4409 SanOpts.has(SanitizerKind::NullabilityArg)))
4410 return;
4412 EmitNonNullArgCheck(RValue::get(Addr, *this), ArgType, ArgLoc, AC, ParmNum);
4415 // Check if the call is going to use the inalloca convention. This needs to
4416 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
4417 // later, so we can't check it directly.
4418 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC,
4419 ArrayRef<QualType> ArgTypes) {
4420 // The Swift calling conventions don't go through the target-specific
4421 // argument classification, they never use inalloca.
4422 // TODO: Consider limiting inalloca use to only calling conventions supported
4423 // by MSVC.
4424 if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync)
4425 return false;
4426 if (!CGM.getTarget().getCXXABI().isMicrosoft())
4427 return false;
4428 return llvm::any_of(ArgTypes, [&](QualType Ty) {
4429 return isInAllocaArgument(CGM.getCXXABI(), Ty);
4433 #ifndef NDEBUG
4434 // Determine whether the given argument is an Objective-C method
4435 // that may have type parameters in its signature.
4436 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4437 const DeclContext *dc = method->getDeclContext();
4438 if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) {
4439 return classDecl->getTypeParamListAsWritten();
4442 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4443 return catDecl->getTypeParamList();
4446 return false;
4448 #endif
4450 /// EmitCallArgs - Emit call arguments for a function.
4451 void CodeGenFunction::EmitCallArgs(
4452 CallArgList &Args, PrototypeWrapper Prototype,
4453 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4454 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
4455 SmallVector<QualType, 16> ArgTypes;
4457 assert((ParamsToSkip == 0 || Prototype.P) &&
4458 "Can't skip parameters if type info is not provided");
4460 // This variable only captures *explicitly* written conventions, not those
4461 // applied by default via command line flags or target defaults, such as
4462 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
4463 // require knowing if this is a C++ instance method or being able to see
4464 // unprototyped FunctionTypes.
4465 CallingConv ExplicitCC = CC_C;
4467 // First, if a prototype was provided, use those argument types.
4468 bool IsVariadic = false;
4469 if (Prototype.P) {
4470 const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>();
4471 if (MD) {
4472 IsVariadic = MD->isVariadic();
4473 ExplicitCC = getCallingConventionForDecl(
4474 MD, CGM.getTarget().getTriple().isOSWindows());
4475 ArgTypes.assign(MD->param_type_begin() + ParamsToSkip,
4476 MD->param_type_end());
4477 } else {
4478 const auto *FPT = Prototype.P.get<const FunctionProtoType *>();
4479 IsVariadic = FPT->isVariadic();
4480 ExplicitCC = FPT->getExtInfo().getCC();
4481 ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip,
4482 FPT->param_type_end());
4485 #ifndef NDEBUG
4486 // Check that the prototyped types match the argument expression types.
4487 bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD);
4488 CallExpr::const_arg_iterator Arg = ArgRange.begin();
4489 for (QualType Ty : ArgTypes) {
4490 assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4491 assert(
4492 (isGenericMethod || Ty->isVariablyModifiedType() ||
4493 Ty.getNonReferenceType()->isObjCRetainableType() ||
4494 getContext()
4495 .getCanonicalType(Ty.getNonReferenceType())
4496 .getTypePtr() ==
4497 getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) &&
4498 "type mismatch in call argument!");
4499 ++Arg;
4502 // Either we've emitted all the call args, or we have a call to variadic
4503 // function.
4504 assert((Arg == ArgRange.end() || IsVariadic) &&
4505 "Extra arguments in non-variadic function!");
4506 #endif
4509 // If we still have any arguments, emit them using the type of the argument.
4510 for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size()))
4511 ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType());
4512 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
4514 // We must evaluate arguments from right to left in the MS C++ ABI,
4515 // because arguments are destroyed left to right in the callee. As a special
4516 // case, there are certain language constructs that require left-to-right
4517 // evaluation, and in those cases we consider the evaluation order requirement
4518 // to trump the "destruction order is reverse construction order" guarantee.
4519 bool LeftToRight =
4520 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
4521 ? Order == EvaluationOrder::ForceLeftToRight
4522 : Order != EvaluationOrder::ForceRightToLeft;
4524 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
4525 RValue EmittedArg) {
4526 if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
4527 return;
4528 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
4529 if (PS == nullptr)
4530 return;
4532 const auto &Context = getContext();
4533 auto SizeTy = Context.getSizeType();
4534 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4535 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
4536 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
4537 EmittedArg.getScalarVal(),
4538 PS->isDynamic());
4539 Args.add(RValue::get(V), SizeTy);
4540 // If we're emitting args in reverse, be sure to do so with
4541 // pass_object_size, as well.
4542 if (!LeftToRight)
4543 std::swap(Args.back(), *(&Args.back() - 1));
4546 // Insert a stack save if we're going to need any inalloca args.
4547 if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) {
4548 assert(getTarget().getTriple().getArch() == llvm::Triple::x86 &&
4549 "inalloca only supported on x86");
4550 Args.allocateArgumentMemory(*this);
4553 // Evaluate each argument in the appropriate order.
4554 size_t CallArgsStart = Args.size();
4555 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
4556 unsigned Idx = LeftToRight ? I : E - I - 1;
4557 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
4558 unsigned InitialArgSize = Args.size();
4559 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
4560 // the argument and parameter match or the objc method is parameterized.
4561 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
4562 getContext().hasSameUnqualifiedType((*Arg)->getType(),
4563 ArgTypes[Idx]) ||
4564 (isa<ObjCMethodDecl>(AC.getDecl()) &&
4565 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
4566 "Argument and parameter types don't match");
4567 EmitCallArg(Args, *Arg, ArgTypes[Idx]);
4568 // In particular, we depend on it being the last arg in Args, and the
4569 // objectsize bits depend on there only being one arg if !LeftToRight.
4570 assert(InitialArgSize + 1 == Args.size() &&
4571 "The code below depends on only adding one arg per EmitCallArg");
4572 (void)InitialArgSize;
4573 // Since pointer argument are never emitted as LValue, it is safe to emit
4574 // non-null argument check for r-value only.
4575 if (!Args.back().hasLValue()) {
4576 RValue RVArg = Args.back().getKnownRValue();
4577 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
4578 ParamsToSkip + Idx);
4579 // @llvm.objectsize should never have side-effects and shouldn't need
4580 // destruction/cleanups, so we can safely "emit" it after its arg,
4581 // regardless of right-to-leftness
4582 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
4586 if (!LeftToRight) {
4587 // Un-reverse the arguments we just evaluated so they match up with the LLVM
4588 // IR function.
4589 std::reverse(Args.begin() + CallArgsStart, Args.end());
4593 namespace {
4595 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
4596 DestroyUnpassedArg(Address Addr, QualType Ty)
4597 : Addr(Addr), Ty(Ty) {}
4599 Address Addr;
4600 QualType Ty;
4602 void Emit(CodeGenFunction &CGF, Flags flags) override {
4603 QualType::DestructionKind DtorKind = Ty.isDestructedType();
4604 if (DtorKind == QualType::DK_cxx_destructor) {
4605 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
4606 assert(!Dtor->isTrivial());
4607 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
4608 /*Delegating=*/false, Addr, Ty);
4609 } else {
4610 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
4615 struct DisableDebugLocationUpdates {
4616 CodeGenFunction &CGF;
4617 bool disabledDebugInfo;
4618 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
4619 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
4620 CGF.disableDebugInfo();
4622 ~DisableDebugLocationUpdates() {
4623 if (disabledDebugInfo)
4624 CGF.enableDebugInfo();
4628 } // end anonymous namespace
4630 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
4631 if (!HasLV)
4632 return RV;
4633 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
4634 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
4635 LV.isVolatile());
4636 IsUsed = true;
4637 return RValue::getAggregate(Copy.getAddress());
4640 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
4641 LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
4642 if (!HasLV && RV.isScalar())
4643 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
4644 else if (!HasLV && RV.isComplex())
4645 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
4646 else {
4647 auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress();
4648 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
4649 // We assume that call args are never copied into subobjects.
4650 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
4651 HasLV ? LV.isVolatileQualified()
4652 : RV.isVolatileQualified());
4654 IsUsed = true;
4657 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
4658 QualType type) {
4659 DisableDebugLocationUpdates Dis(*this, E);
4660 if (const ObjCIndirectCopyRestoreExpr *CRE
4661 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
4662 assert(getLangOpts().ObjCAutoRefCount);
4663 return emitWritebackArg(*this, args, CRE);
4666 assert(type->isReferenceType() == E->isGLValue() &&
4667 "reference binding to unmaterialized r-value!");
4669 if (E->isGLValue()) {
4670 assert(E->getObjectKind() == OK_Ordinary);
4671 return args.add(EmitReferenceBindingToExpr(E), type);
4674 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
4676 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
4677 // However, we still have to push an EH-only cleanup in case we unwind before
4678 // we make it to the call.
4679 if (type->isRecordType() &&
4680 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
4681 // If we're using inalloca, use the argument memory. Otherwise, use a
4682 // temporary.
4683 AggValueSlot Slot = args.isUsingInAlloca()
4684 ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp");
4686 bool DestroyedInCallee = true, NeedsCleanup = true;
4687 if (const auto *RD = type->getAsCXXRecordDecl())
4688 DestroyedInCallee = RD->hasNonTrivialDestructor();
4689 else
4690 NeedsCleanup = type.isDestructedType();
4692 if (DestroyedInCallee)
4693 Slot.setExternallyDestructed();
4695 EmitAggExpr(E, Slot);
4696 RValue RV = Slot.asRValue();
4697 args.add(RV, type);
4699 if (DestroyedInCallee && NeedsCleanup) {
4700 // Create a no-op GEP between the placeholder and the cleanup so we can
4701 // RAUW it successfully. It also serves as a marker of the first
4702 // instruction where the cleanup is active.
4703 pushFullExprCleanup<DestroyUnpassedArg>(NormalAndEHCleanup,
4704 Slot.getAddress(), type);
4705 // This unreachable is a temporary marker which will be removed later.
4706 llvm::Instruction *IsActive =
4707 Builder.CreateFlagLoad(llvm::Constant::getNullValue(Int8PtrTy));
4708 args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive);
4710 return;
4713 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4714 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue &&
4715 !type->isArrayParameterType()) {
4716 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4717 assert(L.isSimple());
4718 args.addUncopiedAggregate(L, type);
4719 return;
4722 args.add(EmitAnyExprToTemp(E), type);
4725 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4726 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4727 // implicitly widens null pointer constants that are arguments to varargs
4728 // functions to pointer-sized ints.
4729 if (!getTarget().getTriple().isOSWindows())
4730 return Arg->getType();
4732 if (Arg->getType()->isIntegerType() &&
4733 getContext().getTypeSize(Arg->getType()) <
4734 getContext().getTargetInfo().getPointerWidth(LangAS::Default) &&
4735 Arg->isNullPointerConstant(getContext(),
4736 Expr::NPC_ValueDependentIsNotNull)) {
4737 return getContext().getIntPtrType();
4740 return Arg->getType();
4743 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4744 // optimizer it can aggressively ignore unwind edges.
4745 void
4746 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4747 if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4748 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4749 Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4750 CGM.getNoObjCARCExceptionsMetadata());
4753 /// Emits a call to the given no-arguments nounwind runtime function.
4754 llvm::CallInst *
4755 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4756 const llvm::Twine &name) {
4757 return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value *>(), name);
4760 /// Emits a call to the given nounwind runtime function.
4761 llvm::CallInst *
4762 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4763 ArrayRef<Address> args,
4764 const llvm::Twine &name) {
4765 SmallVector<llvm::Value *, 3> values;
4766 for (auto arg : args)
4767 values.push_back(arg.emitRawPointer(*this));
4768 return EmitNounwindRuntimeCall(callee, values, name);
4771 llvm::CallInst *
4772 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4773 ArrayRef<llvm::Value *> args,
4774 const llvm::Twine &name) {
4775 llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4776 call->setDoesNotThrow();
4777 return call;
4780 /// Emits a simple call (never an invoke) to the given no-arguments
4781 /// runtime function.
4782 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4783 const llvm::Twine &name) {
4784 return EmitRuntimeCall(callee, std::nullopt, name);
4787 // Calls which may throw must have operand bundles indicating which funclet
4788 // they are nested within.
4789 SmallVector<llvm::OperandBundleDef, 1>
4790 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4791 // There is no need for a funclet operand bundle if we aren't inside a
4792 // funclet.
4793 if (!CurrentFuncletPad)
4794 return (SmallVector<llvm::OperandBundleDef, 1>());
4796 // Skip intrinsics which cannot throw (as long as they don't lower into
4797 // regular function calls in the course of IR transformations).
4798 if (auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts())) {
4799 if (CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) {
4800 auto IID = CalleeFn->getIntrinsicID();
4801 if (!llvm::IntrinsicInst::mayLowerToFunctionCall(IID))
4802 return (SmallVector<llvm::OperandBundleDef, 1>());
4806 SmallVector<llvm::OperandBundleDef, 1> BundleList;
4807 BundleList.emplace_back("funclet", CurrentFuncletPad);
4808 return BundleList;
4811 /// Emits a simple call (never an invoke) to the given runtime function.
4812 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4813 ArrayRef<llvm::Value *> args,
4814 const llvm::Twine &name) {
4815 llvm::CallInst *call = Builder.CreateCall(
4816 callee, args, getBundlesForFunclet(callee.getCallee()), name);
4817 call->setCallingConv(getRuntimeCC());
4819 if (CGM.shouldEmitConvergenceTokens() && call->isConvergent())
4820 return addControlledConvergenceToken(call);
4821 return call;
4824 /// Emits a call or invoke to the given noreturn runtime function.
4825 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4826 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4827 SmallVector<llvm::OperandBundleDef, 1> BundleList =
4828 getBundlesForFunclet(callee.getCallee());
4830 if (getInvokeDest()) {
4831 llvm::InvokeInst *invoke =
4832 Builder.CreateInvoke(callee,
4833 getUnreachableBlock(),
4834 getInvokeDest(),
4835 args,
4836 BundleList);
4837 invoke->setDoesNotReturn();
4838 invoke->setCallingConv(getRuntimeCC());
4839 } else {
4840 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4841 call->setDoesNotReturn();
4842 call->setCallingConv(getRuntimeCC());
4843 Builder.CreateUnreachable();
4847 /// Emits a call or invoke instruction to the given nullary runtime function.
4848 llvm::CallBase *
4849 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4850 const Twine &name) {
4851 return EmitRuntimeCallOrInvoke(callee, std::nullopt, name);
4854 /// Emits a call or invoke instruction to the given runtime function.
4855 llvm::CallBase *
4856 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4857 ArrayRef<llvm::Value *> args,
4858 const Twine &name) {
4859 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4860 call->setCallingConv(getRuntimeCC());
4861 return call;
4864 /// Emits a call or invoke instruction to the given function, depending
4865 /// on the current state of the EH stack.
4866 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4867 ArrayRef<llvm::Value *> Args,
4868 const Twine &Name) {
4869 llvm::BasicBlock *InvokeDest = getInvokeDest();
4870 SmallVector<llvm::OperandBundleDef, 1> BundleList =
4871 getBundlesForFunclet(Callee.getCallee());
4873 llvm::CallBase *Inst;
4874 if (!InvokeDest)
4875 Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4876 else {
4877 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4878 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4879 Name);
4880 EmitBlock(ContBB);
4883 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4884 // optimizer it can aggressively ignore unwind edges.
4885 if (CGM.getLangOpts().ObjCAutoRefCount)
4886 AddObjCARCExceptionMetadata(Inst);
4888 return Inst;
4891 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4892 llvm::Value *New) {
4893 DeferredReplacements.push_back(
4894 std::make_pair(llvm::WeakTrackingVH(Old), New));
4897 namespace {
4899 /// Specify given \p NewAlign as the alignment of return value attribute. If
4900 /// such attribute already exists, re-set it to the maximal one of two options.
4901 [[nodiscard]] llvm::AttributeList
4902 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4903 const llvm::AttributeList &Attrs,
4904 llvm::Align NewAlign) {
4905 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4906 if (CurAlign >= NewAlign)
4907 return Attrs;
4908 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4909 return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment)
4910 .addRetAttribute(Ctx, AlignAttr);
4913 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4914 protected:
4915 CodeGenFunction &CGF;
4917 /// We do nothing if this is, or becomes, nullptr.
4918 const AlignedAttrTy *AA = nullptr;
4920 llvm::Value *Alignment = nullptr; // May or may not be a constant.
4921 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4923 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4924 : CGF(CGF_) {
4925 if (!FuncDecl)
4926 return;
4927 AA = FuncDecl->getAttr<AlignedAttrTy>();
4930 public:
4931 /// If we can, materialize the alignment as an attribute on return value.
4932 [[nodiscard]] llvm::AttributeList
4933 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4934 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4935 return Attrs;
4936 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4937 if (!AlignmentCI)
4938 return Attrs;
4939 // We may legitimately have non-power-of-2 alignment here.
4940 // If so, this is UB land, emit it via `@llvm.assume` instead.
4941 if (!AlignmentCI->getValue().isPowerOf2())
4942 return Attrs;
4943 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4944 CGF.getLLVMContext(), Attrs,
4945 llvm::Align(
4946 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4947 AA = nullptr; // We're done. Disallow doing anything else.
4948 return NewAttrs;
4951 /// Emit alignment assumption.
4952 /// This is a general fallback that we take if either there is an offset,
4953 /// or the alignment is variable or we are sanitizing for alignment.
4954 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4955 if (!AA)
4956 return;
4957 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4958 AA->getLocation(), Alignment, OffsetCI);
4959 AA = nullptr; // We're done. Disallow doing anything else.
4963 /// Helper data structure to emit `AssumeAlignedAttr`.
4964 class AssumeAlignedAttrEmitter final
4965 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4966 public:
4967 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4968 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4969 if (!AA)
4970 return;
4971 // It is guaranteed that the alignment/offset are constants.
4972 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4973 if (Expr *Offset = AA->getOffset()) {
4974 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4975 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4976 OffsetCI = nullptr;
4981 /// Helper data structure to emit `AllocAlignAttr`.
4982 class AllocAlignAttrEmitter final
4983 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4984 public:
4985 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4986 const CallArgList &CallArgs)
4987 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4988 if (!AA)
4989 return;
4990 // Alignment may or may not be a constant, and that is okay.
4991 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4992 .getRValue(CGF)
4993 .getScalarVal();
4997 } // namespace
4999 static unsigned getMaxVectorWidth(const llvm::Type *Ty) {
5000 if (auto *VT = dyn_cast<llvm::VectorType>(Ty))
5001 return VT->getPrimitiveSizeInBits().getKnownMinValue();
5002 if (auto *AT = dyn_cast<llvm::ArrayType>(Ty))
5003 return getMaxVectorWidth(AT->getElementType());
5005 unsigned MaxVectorWidth = 0;
5006 if (auto *ST = dyn_cast<llvm::StructType>(Ty))
5007 for (auto *I : ST->elements())
5008 MaxVectorWidth = std::max(MaxVectorWidth, getMaxVectorWidth(I));
5009 return MaxVectorWidth;
5012 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
5013 const CGCallee &Callee,
5014 ReturnValueSlot ReturnValue,
5015 const CallArgList &CallArgs,
5016 llvm::CallBase **callOrInvoke, bool IsMustTail,
5017 SourceLocation Loc,
5018 bool IsVirtualFunctionPointerThunk) {
5019 // FIXME: We no longer need the types from CallArgs; lift up and simplify.
5021 assert(Callee.isOrdinary() || Callee.isVirtual());
5023 // Handle struct-return functions by passing a pointer to the
5024 // location that we would like to return into.
5025 QualType RetTy = CallInfo.getReturnType();
5026 const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
5028 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
5030 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
5031 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
5032 // We can only guarantee that a function is called from the correct
5033 // context/function based on the appropriate target attributes,
5034 // so only check in the case where we have both always_inline and target
5035 // since otherwise we could be making a conditional call after a check for
5036 // the proper cpu features (and it won't cause code generation issues due to
5037 // function based code generation).
5038 if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
5039 (TargetDecl->hasAttr<TargetAttr>() ||
5040 (CurFuncDecl && CurFuncDecl->hasAttr<TargetAttr>())))
5041 checkTargetFeatures(Loc, FD);
5044 // Some architectures (such as x86-64) have the ABI changed based on
5045 // attribute-target/features. Give them a chance to diagnose.
5046 CGM.getTargetCodeGenInfo().checkFunctionCallABI(
5047 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl),
5048 dyn_cast_or_null<FunctionDecl>(TargetDecl), CallArgs, RetTy);
5050 // 1. Set up the arguments.
5052 // If we're using inalloca, insert the allocation after the stack save.
5053 // FIXME: Do this earlier rather than hacking it in here!
5054 RawAddress ArgMemory = RawAddress::invalid();
5055 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
5056 const llvm::DataLayout &DL = CGM.getDataLayout();
5057 llvm::Instruction *IP = CallArgs.getStackBase();
5058 llvm::AllocaInst *AI;
5059 if (IP) {
5060 IP = IP->getNextNode();
5061 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
5062 "argmem", IP);
5063 } else {
5064 AI = CreateTempAlloca(ArgStruct, "argmem");
5066 auto Align = CallInfo.getArgStructAlignment();
5067 AI->setAlignment(Align.getAsAlign());
5068 AI->setUsedWithInAlloca(true);
5069 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
5070 ArgMemory = RawAddress(AI, ArgStruct, Align);
5073 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
5074 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
5076 // If the call returns a temporary with struct return, create a temporary
5077 // alloca to hold the result, unless one is given to us.
5078 Address SRetPtr = Address::invalid();
5079 RawAddress SRetAlloca = RawAddress::invalid();
5080 llvm::Value *UnusedReturnSizePtr = nullptr;
5081 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
5082 if (IsVirtualFunctionPointerThunk && RetAI.isIndirect()) {
5083 SRetPtr = makeNaturalAddressForPointer(CurFn->arg_begin() +
5084 IRFunctionArgs.getSRetArgNo(),
5085 RetTy, CharUnits::fromQuantity(1));
5086 } else if (!ReturnValue.isNull()) {
5087 SRetPtr = ReturnValue.getAddress();
5088 } else {
5089 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
5090 if (HaveInsertPoint() && ReturnValue.isUnused()) {
5091 llvm::TypeSize size =
5092 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
5093 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
5096 if (IRFunctionArgs.hasSRetArg()) {
5097 IRCallArgs[IRFunctionArgs.getSRetArgNo()] =
5098 getAsNaturalPointerTo(SRetPtr, RetTy);
5099 } else if (RetAI.isInAlloca()) {
5100 Address Addr =
5101 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
5102 Builder.CreateStore(getAsNaturalPointerTo(SRetPtr, RetTy), Addr);
5106 RawAddress swiftErrorTemp = RawAddress::invalid();
5107 Address swiftErrorArg = Address::invalid();
5109 // When passing arguments using temporary allocas, we need to add the
5110 // appropriate lifetime markers. This vector keeps track of all the lifetime
5111 // markers that need to be ended right after the call.
5112 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
5114 // Translate all of the arguments as necessary to match the IR lowering.
5115 assert(CallInfo.arg_size() == CallArgs.size() &&
5116 "Mismatch between function signature & arguments.");
5117 unsigned ArgNo = 0;
5118 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
5119 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
5120 I != E; ++I, ++info_it, ++ArgNo) {
5121 const ABIArgInfo &ArgInfo = info_it->info;
5123 // Insert a padding argument to ensure proper alignment.
5124 if (IRFunctionArgs.hasPaddingArg(ArgNo))
5125 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
5126 llvm::UndefValue::get(ArgInfo.getPaddingType());
5128 unsigned FirstIRArg, NumIRArgs;
5129 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
5131 bool ArgHasMaybeUndefAttr =
5132 IsArgumentMaybeUndef(TargetDecl, CallInfo.getNumRequiredArgs(), ArgNo);
5134 switch (ArgInfo.getKind()) {
5135 case ABIArgInfo::InAlloca: {
5136 assert(NumIRArgs == 0);
5137 assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
5138 if (I->isAggregate()) {
5139 RawAddress Addr = I->hasLValue()
5140 ? I->getKnownLValue().getAddress()
5141 : I->getKnownRValue().getAggregateAddress();
5142 llvm::Instruction *Placeholder =
5143 cast<llvm::Instruction>(Addr.getPointer());
5145 if (!ArgInfo.getInAllocaIndirect()) {
5146 // Replace the placeholder with the appropriate argument slot GEP.
5147 CGBuilderTy::InsertPoint IP = Builder.saveIP();
5148 Builder.SetInsertPoint(Placeholder);
5149 Addr = Builder.CreateStructGEP(ArgMemory,
5150 ArgInfo.getInAllocaFieldIndex());
5151 Builder.restoreIP(IP);
5152 } else {
5153 // For indirect things such as overaligned structs, replace the
5154 // placeholder with a regular aggregate temporary alloca. Store the
5155 // address of this alloca into the struct.
5156 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
5157 Address ArgSlot = Builder.CreateStructGEP(
5158 ArgMemory, ArgInfo.getInAllocaFieldIndex());
5159 Builder.CreateStore(Addr.getPointer(), ArgSlot);
5161 deferPlaceholderReplacement(Placeholder, Addr.getPointer());
5162 } else if (ArgInfo.getInAllocaIndirect()) {
5163 // Make a temporary alloca and store the address of it into the argument
5164 // struct.
5165 RawAddress Addr = CreateMemTempWithoutCast(
5166 I->Ty, getContext().getTypeAlignInChars(I->Ty),
5167 "indirect-arg-temp");
5168 I->copyInto(*this, Addr);
5169 Address ArgSlot =
5170 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
5171 Builder.CreateStore(Addr.getPointer(), ArgSlot);
5172 } else {
5173 // Store the RValue into the argument struct.
5174 Address Addr =
5175 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
5176 Addr = Addr.withElementType(ConvertTypeForMem(I->Ty));
5177 I->copyInto(*this, Addr);
5179 break;
5182 case ABIArgInfo::Indirect:
5183 case ABIArgInfo::IndirectAliased: {
5184 assert(NumIRArgs == 1);
5185 if (I->isAggregate()) {
5186 // We want to avoid creating an unnecessary temporary+copy here;
5187 // however, we need one in three cases:
5188 // 1. If the argument is not byval, and we are required to copy the
5189 // source. (This case doesn't occur on any common architecture.)
5190 // 2. If the argument is byval, RV is not sufficiently aligned, and
5191 // we cannot force it to be sufficiently aligned.
5192 // 3. If the argument is byval, but RV is not located in default
5193 // or alloca address space.
5194 Address Addr = I->hasLValue()
5195 ? I->getKnownLValue().getAddress()
5196 : I->getKnownRValue().getAggregateAddress();
5197 CharUnits Align = ArgInfo.getIndirectAlign();
5198 const llvm::DataLayout *TD = &CGM.getDataLayout();
5200 assert((FirstIRArg >= IRFuncTy->getNumParams() ||
5201 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
5202 TD->getAllocaAddrSpace()) &&
5203 "indirect argument must be in alloca address space");
5205 bool NeedCopy = false;
5206 if (Addr.getAlignment() < Align &&
5207 llvm::getOrEnforceKnownAlignment(Addr.emitRawPointer(*this),
5208 Align.getAsAlign(),
5209 *TD) < Align.getAsAlign()) {
5210 NeedCopy = true;
5211 } else if (I->hasLValue()) {
5212 auto LV = I->getKnownLValue();
5213 auto AS = LV.getAddressSpace();
5215 bool isByValOrRef =
5216 ArgInfo.isIndirectAliased() || ArgInfo.getIndirectByVal();
5218 if (!isByValOrRef ||
5219 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
5220 NeedCopy = true;
5222 if (!getLangOpts().OpenCL) {
5223 if ((isByValOrRef &&
5224 (AS != LangAS::Default &&
5225 AS != CGM.getASTAllocaAddressSpace()))) {
5226 NeedCopy = true;
5229 // For OpenCL even if RV is located in default or alloca address space
5230 // we don't want to perform address space cast for it.
5231 else if ((isByValOrRef &&
5232 Addr.getType()->getAddressSpace() != IRFuncTy->
5233 getParamType(FirstIRArg)->getPointerAddressSpace())) {
5234 NeedCopy = true;
5238 if (!NeedCopy) {
5239 // Skip the extra memcpy call.
5240 llvm::Value *V = getAsNaturalPointerTo(Addr, I->Ty);
5241 auto *T = llvm::PointerType::get(
5242 CGM.getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace());
5244 llvm::Value *Val = getTargetHooks().performAddrSpaceCast(
5245 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
5246 true);
5247 if (ArgHasMaybeUndefAttr)
5248 Val = Builder.CreateFreeze(Val);
5249 IRCallArgs[FirstIRArg] = Val;
5250 break;
5254 // For non-aggregate args and aggregate args meeting conditions above
5255 // we need to create an aligned temporary, and copy to it.
5256 RawAddress AI = CreateMemTempWithoutCast(
5257 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
5258 llvm::Value *Val = getAsNaturalPointerTo(AI, I->Ty);
5259 if (ArgHasMaybeUndefAttr)
5260 Val = Builder.CreateFreeze(Val);
5261 IRCallArgs[FirstIRArg] = Val;
5263 // Emit lifetime markers for the temporary alloca.
5264 llvm::TypeSize ByvalTempElementSize =
5265 CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
5266 llvm::Value *LifetimeSize =
5267 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
5269 // Add cleanup code to emit the end lifetime marker after the call.
5270 if (LifetimeSize) // In case we disabled lifetime markers.
5271 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
5273 // Generate the copy.
5274 I->copyInto(*this, AI);
5275 break;
5278 case ABIArgInfo::Ignore:
5279 assert(NumIRArgs == 0);
5280 break;
5282 case ABIArgInfo::Extend:
5283 case ABIArgInfo::Direct: {
5284 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
5285 ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
5286 ArgInfo.getDirectOffset() == 0) {
5287 assert(NumIRArgs == 1);
5288 llvm::Value *V;
5289 if (!I->isAggregate())
5290 V = I->getKnownRValue().getScalarVal();
5291 else
5292 V = Builder.CreateLoad(
5293 I->hasLValue() ? I->getKnownLValue().getAddress()
5294 : I->getKnownRValue().getAggregateAddress());
5296 // Implement swifterror by copying into a new swifterror argument.
5297 // We'll write back in the normal path out of the call.
5298 if (CallInfo.getExtParameterInfo(ArgNo).getABI()
5299 == ParameterABI::SwiftErrorResult) {
5300 assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
5302 QualType pointeeTy = I->Ty->getPointeeType();
5303 swiftErrorArg = makeNaturalAddressForPointer(
5304 V, pointeeTy, getContext().getTypeAlignInChars(pointeeTy));
5306 swiftErrorTemp =
5307 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
5308 V = swiftErrorTemp.getPointer();
5309 cast<llvm::AllocaInst>(V)->setSwiftError(true);
5311 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
5312 Builder.CreateStore(errorValue, swiftErrorTemp);
5315 // We might have to widen integers, but we should never truncate.
5316 if (ArgInfo.getCoerceToType() != V->getType() &&
5317 V->getType()->isIntegerTy())
5318 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
5320 // If the argument doesn't match, perform a bitcast to coerce it. This
5321 // can happen due to trivial type mismatches.
5322 if (FirstIRArg < IRFuncTy->getNumParams() &&
5323 V->getType() != IRFuncTy->getParamType(FirstIRArg))
5324 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
5326 if (ArgHasMaybeUndefAttr)
5327 V = Builder.CreateFreeze(V);
5328 IRCallArgs[FirstIRArg] = V;
5329 break;
5332 llvm::StructType *STy =
5333 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
5334 if (STy && ArgInfo.isDirect() && !ArgInfo.getCanBeFlattened()) {
5335 llvm::Type *SrcTy = ConvertTypeForMem(I->Ty);
5336 [[maybe_unused]] llvm::TypeSize SrcTypeSize =
5337 CGM.getDataLayout().getTypeAllocSize(SrcTy);
5338 [[maybe_unused]] llvm::TypeSize DstTypeSize =
5339 CGM.getDataLayout().getTypeAllocSize(STy);
5340 if (STy->containsHomogeneousScalableVectorTypes()) {
5341 assert(SrcTypeSize == DstTypeSize &&
5342 "Only allow non-fractional movement of structure with "
5343 "homogeneous scalable vector type");
5345 IRCallArgs[FirstIRArg] = I->getKnownRValue().getScalarVal();
5346 break;
5350 // FIXME: Avoid the conversion through memory if possible.
5351 Address Src = Address::invalid();
5352 if (!I->isAggregate()) {
5353 Src = CreateMemTemp(I->Ty, "coerce");
5354 I->copyInto(*this, Src);
5355 } else {
5356 Src = I->hasLValue() ? I->getKnownLValue().getAddress()
5357 : I->getKnownRValue().getAggregateAddress();
5360 // If the value is offset in memory, apply the offset now.
5361 Src = emitAddressAtOffset(*this, Src, ArgInfo);
5363 // Fast-isel and the optimizer generally like scalar values better than
5364 // FCAs, so we flatten them if this is safe to do for this argument.
5365 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
5366 llvm::Type *SrcTy = Src.getElementType();
5367 llvm::TypeSize SrcTypeSize =
5368 CGM.getDataLayout().getTypeAllocSize(SrcTy);
5369 llvm::TypeSize DstTypeSize = CGM.getDataLayout().getTypeAllocSize(STy);
5370 if (SrcTypeSize.isScalable()) {
5371 assert(STy->containsHomogeneousScalableVectorTypes() &&
5372 "ABI only supports structure with homogeneous scalable vector "
5373 "type");
5374 assert(SrcTypeSize == DstTypeSize &&
5375 "Only allow non-fractional movement of structure with "
5376 "homogeneous scalable vector type");
5377 assert(NumIRArgs == STy->getNumElements());
5379 llvm::Value *StoredStructValue =
5380 Builder.CreateLoad(Src, Src.getName() + ".tuple");
5381 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
5382 llvm::Value *Extract = Builder.CreateExtractValue(
5383 StoredStructValue, i, Src.getName() + ".extract" + Twine(i));
5384 IRCallArgs[FirstIRArg + i] = Extract;
5386 } else {
5387 uint64_t SrcSize = SrcTypeSize.getFixedValue();
5388 uint64_t DstSize = DstTypeSize.getFixedValue();
5390 // If the source type is smaller than the destination type of the
5391 // coerce-to logic, copy the source value into a temp alloca the size
5392 // of the destination type to allow loading all of it. The bits past
5393 // the source value are left undef.
5394 if (SrcSize < DstSize) {
5395 Address TempAlloca = CreateTempAlloca(STy, Src.getAlignment(),
5396 Src.getName() + ".coerce");
5397 Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
5398 Src = TempAlloca;
5399 } else {
5400 Src = Src.withElementType(STy);
5403 assert(NumIRArgs == STy->getNumElements());
5404 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
5405 Address EltPtr = Builder.CreateStructGEP(Src, i);
5406 llvm::Value *LI = Builder.CreateLoad(EltPtr);
5407 if (ArgHasMaybeUndefAttr)
5408 LI = Builder.CreateFreeze(LI);
5409 IRCallArgs[FirstIRArg + i] = LI;
5412 } else {
5413 // In the simple case, just pass the coerced loaded value.
5414 assert(NumIRArgs == 1);
5415 llvm::Value *Load =
5416 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
5418 if (CallInfo.isCmseNSCall()) {
5419 // For certain parameter types, clear padding bits, as they may reveal
5420 // sensitive information.
5421 // Small struct/union types are passed as integer arrays.
5422 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
5423 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
5424 Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
5427 if (ArgHasMaybeUndefAttr)
5428 Load = Builder.CreateFreeze(Load);
5429 IRCallArgs[FirstIRArg] = Load;
5432 break;
5435 case ABIArgInfo::CoerceAndExpand: {
5436 auto coercionType = ArgInfo.getCoerceAndExpandType();
5437 auto layout = CGM.getDataLayout().getStructLayout(coercionType);
5439 llvm::Value *tempSize = nullptr;
5440 Address addr = Address::invalid();
5441 RawAddress AllocaAddr = RawAddress::invalid();
5442 if (I->isAggregate()) {
5443 addr = I->hasLValue() ? I->getKnownLValue().getAddress()
5444 : I->getKnownRValue().getAggregateAddress();
5446 } else {
5447 RValue RV = I->getKnownRValue();
5448 assert(RV.isScalar()); // complex should always just be direct
5450 llvm::Type *scalarType = RV.getScalarVal()->getType();
5451 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
5452 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlign(scalarType);
5454 // Materialize to a temporary.
5455 addr = CreateTempAlloca(
5456 RV.getScalarVal()->getType(),
5457 CharUnits::fromQuantity(std::max(layout->getAlignment(), scalarAlign)),
5458 "tmp",
5459 /*ArraySize=*/nullptr, &AllocaAddr);
5460 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
5462 Builder.CreateStore(RV.getScalarVal(), addr);
5465 addr = addr.withElementType(coercionType);
5467 unsigned IRArgPos = FirstIRArg;
5468 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5469 llvm::Type *eltType = coercionType->getElementType(i);
5470 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5471 Address eltAddr = Builder.CreateStructGEP(addr, i);
5472 llvm::Value *elt = Builder.CreateLoad(eltAddr);
5473 if (ArgHasMaybeUndefAttr)
5474 elt = Builder.CreateFreeze(elt);
5475 IRCallArgs[IRArgPos++] = elt;
5477 assert(IRArgPos == FirstIRArg + NumIRArgs);
5479 if (tempSize) {
5480 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
5483 break;
5486 case ABIArgInfo::Expand: {
5487 unsigned IRArgPos = FirstIRArg;
5488 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
5489 assert(IRArgPos == FirstIRArg + NumIRArgs);
5490 break;
5495 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
5496 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
5498 // If we're using inalloca, set up that argument.
5499 if (ArgMemory.isValid()) {
5500 llvm::Value *Arg = ArgMemory.getPointer();
5501 assert(IRFunctionArgs.hasInallocaArg());
5502 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
5505 // 2. Prepare the function pointer.
5507 // If the callee is a bitcast of a non-variadic function to have a
5508 // variadic function pointer type, check to see if we can remove the
5509 // bitcast. This comes up with unprototyped functions.
5511 // This makes the IR nicer, but more importantly it ensures that we
5512 // can inline the function at -O0 if it is marked always_inline.
5513 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
5514 llvm::Value *Ptr) -> llvm::Function * {
5515 if (!CalleeFT->isVarArg())
5516 return nullptr;
5518 // Get underlying value if it's a bitcast
5519 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
5520 if (CE->getOpcode() == llvm::Instruction::BitCast)
5521 Ptr = CE->getOperand(0);
5524 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
5525 if (!OrigFn)
5526 return nullptr;
5528 llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
5530 // If the original type is variadic, or if any of the component types
5531 // disagree, we cannot remove the cast.
5532 if (OrigFT->isVarArg() ||
5533 OrigFT->getNumParams() != CalleeFT->getNumParams() ||
5534 OrigFT->getReturnType() != CalleeFT->getReturnType())
5535 return nullptr;
5537 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
5538 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
5539 return nullptr;
5541 return OrigFn;
5544 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
5545 CalleePtr = OrigFn;
5546 IRFuncTy = OrigFn->getFunctionType();
5549 // 3. Perform the actual call.
5551 // Deactivate any cleanups that we're supposed to do immediately before
5552 // the call.
5553 if (!CallArgs.getCleanupsToDeactivate().empty())
5554 deactivateArgCleanupsBeforeCall(*this, CallArgs);
5556 // Assert that the arguments we computed match up. The IR verifier
5557 // will catch this, but this is a common enough source of problems
5558 // during IRGen changes that it's way better for debugging to catch
5559 // it ourselves here.
5560 #ifndef NDEBUG
5561 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
5562 for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5563 // Inalloca argument can have different type.
5564 if (IRFunctionArgs.hasInallocaArg() &&
5565 i == IRFunctionArgs.getInallocaArgNo())
5566 continue;
5567 if (i < IRFuncTy->getNumParams())
5568 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
5570 #endif
5572 // Update the largest vector width if any arguments have vector types.
5573 for (unsigned i = 0; i < IRCallArgs.size(); ++i)
5574 LargestVectorWidth = std::max(LargestVectorWidth,
5575 getMaxVectorWidth(IRCallArgs[i]->getType()));
5577 // Compute the calling convention and attributes.
5578 unsigned CallingConv;
5579 llvm::AttributeList Attrs;
5580 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
5581 Callee.getAbstractInfo(), Attrs, CallingConv,
5582 /*AttrOnCallSite=*/true,
5583 /*IsThunk=*/false);
5585 if (CallingConv == llvm::CallingConv::X86_VectorCall &&
5586 getTarget().getTriple().isWindowsArm64EC()) {
5587 CGM.Error(Loc, "__vectorcall calling convention is not currently "
5588 "supported");
5591 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5592 if (FD->hasAttr<StrictFPAttr>())
5593 // All calls within a strictfp function are marked strictfp
5594 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5596 // If -ffast-math is enabled and the function is guarded by an
5597 // '__attribute__((optnone)) adjust the memory attribute so the BE emits the
5598 // library call instead of the intrinsic.
5599 if (FD->hasAttr<OptimizeNoneAttr>() && getLangOpts().FastMath)
5600 CGM.AdjustMemoryAttribute(CalleePtr->getName(), Callee.getAbstractInfo(),
5601 Attrs);
5603 // Add call-site nomerge attribute if exists.
5604 if (InNoMergeAttributedStmt)
5605 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge);
5607 // Add call-site noinline attribute if exists.
5608 if (InNoInlineAttributedStmt)
5609 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5611 // Add call-site always_inline attribute if exists.
5612 if (InAlwaysInlineAttributedStmt)
5613 Attrs =
5614 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5616 // Apply some call-site-specific attributes.
5617 // TODO: work this into building the attribute set.
5619 // Apply always_inline to all calls within flatten functions.
5620 // FIXME: should this really take priority over __try, below?
5621 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
5622 !InNoInlineAttributedStmt &&
5623 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
5624 Attrs =
5625 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5628 // Disable inlining inside SEH __try blocks.
5629 if (isSEHTryScope()) {
5630 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5633 // Decide whether to use a call or an invoke.
5634 bool CannotThrow;
5635 if (currentFunctionUsesSEHTry()) {
5636 // SEH cares about asynchronous exceptions, so everything can "throw."
5637 CannotThrow = false;
5638 } else if (isCleanupPadScope() &&
5639 EHPersonality::get(*this).isMSVCXXPersonality()) {
5640 // The MSVC++ personality will implicitly terminate the program if an
5641 // exception is thrown during a cleanup outside of a try/catch.
5642 // We don't need to model anything in IR to get this behavior.
5643 CannotThrow = true;
5644 } else {
5645 // Otherwise, nounwind call sites will never throw.
5646 CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind);
5648 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
5649 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
5650 CannotThrow = true;
5653 // If we made a temporary, be sure to clean up after ourselves. Note that we
5654 // can't depend on being inside of an ExprWithCleanups, so we need to manually
5655 // pop this cleanup later on. Being eager about this is OK, since this
5656 // temporary is 'invisible' outside of the callee.
5657 if (UnusedReturnSizePtr)
5658 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
5659 UnusedReturnSizePtr);
5661 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
5663 SmallVector<llvm::OperandBundleDef, 1> BundleList =
5664 getBundlesForFunclet(CalleePtr);
5666 if (SanOpts.has(SanitizerKind::KCFI) &&
5667 !isa_and_nonnull<FunctionDecl>(TargetDecl))
5668 EmitKCFIOperandBundle(ConcreteCallee, BundleList);
5670 // Add the pointer-authentication bundle.
5671 EmitPointerAuthOperandBundle(ConcreteCallee.getPointerAuthInfo(), BundleList);
5673 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5674 if (FD->hasAttr<StrictFPAttr>())
5675 // All calls within a strictfp function are marked strictfp
5676 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5678 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
5679 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5681 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
5682 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5684 // Emit the actual call/invoke instruction.
5685 llvm::CallBase *CI;
5686 if (!InvokeDest) {
5687 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
5688 } else {
5689 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
5690 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
5691 BundleList);
5692 EmitBlock(Cont);
5694 if (CI->getCalledFunction() && CI->getCalledFunction()->hasName() &&
5695 CI->getCalledFunction()->getName().starts_with("_Z4sqrt")) {
5696 SetSqrtFPAccuracy(CI);
5698 if (callOrInvoke)
5699 *callOrInvoke = CI;
5701 // If this is within a function that has the guard(nocf) attribute and is an
5702 // indirect call, add the "guard_nocf" attribute to this call to indicate that
5703 // Control Flow Guard checks should not be added, even if the call is inlined.
5704 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5705 if (const auto *A = FD->getAttr<CFGuardAttr>()) {
5706 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
5707 Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf");
5711 // Apply the attributes and calling convention.
5712 CI->setAttributes(Attrs);
5713 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
5715 // Apply various metadata.
5717 if (!CI->getType()->isVoidTy())
5718 CI->setName("call");
5720 if (CGM.shouldEmitConvergenceTokens() && CI->isConvergent())
5721 CI = addControlledConvergenceToken(CI);
5723 // Update largest vector width from the return type.
5724 LargestVectorWidth =
5725 std::max(LargestVectorWidth, getMaxVectorWidth(CI->getType()));
5727 // Insert instrumentation or attach profile metadata at indirect call sites.
5728 // For more details, see the comment before the definition of
5729 // IPVK_IndirectCallTarget in InstrProfData.inc.
5730 if (!CI->getCalledFunction())
5731 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
5732 CI, CalleePtr);
5734 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
5735 // optimizer it can aggressively ignore unwind edges.
5736 if (CGM.getLangOpts().ObjCAutoRefCount)
5737 AddObjCARCExceptionMetadata(CI);
5739 // Set tail call kind if necessary.
5740 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
5741 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
5742 Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
5743 else if (IsMustTail) {
5744 if (getTarget().getTriple().isPPC()) {
5745 if (getTarget().getTriple().isOSAIX())
5746 CGM.getDiags().Report(Loc, diag::err_aix_musttail_unsupported);
5747 else if (!getTarget().hasFeature("pcrelative-memops")) {
5748 if (getTarget().hasFeature("longcall"))
5749 CGM.getDiags().Report(Loc, diag::err_ppc_impossible_musttail) << 0;
5750 else if (Call->isIndirectCall())
5751 CGM.getDiags().Report(Loc, diag::err_ppc_impossible_musttail) << 1;
5752 else if (isa_and_nonnull<FunctionDecl>(TargetDecl)) {
5753 if (!cast<FunctionDecl>(TargetDecl)->isDefined())
5754 // The undefined callee may be a forward declaration. Without
5755 // knowning all symbols in the module, we won't know the symbol is
5756 // defined or not. Collect all these symbols for later diagnosing.
5757 CGM.addUndefinedGlobalForTailCall(
5758 {cast<FunctionDecl>(TargetDecl), Loc});
5759 else {
5760 llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage(
5761 GlobalDecl(cast<FunctionDecl>(TargetDecl)));
5762 if (llvm::GlobalValue::isWeakForLinker(Linkage) ||
5763 llvm::GlobalValue::isDiscardableIfUnused(Linkage))
5764 CGM.getDiags().Report(Loc, diag::err_ppc_impossible_musttail)
5765 << 2;
5770 Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
5774 // Add metadata for calls to MSAllocator functions
5775 if (getDebugInfo() && TargetDecl &&
5776 TargetDecl->hasAttr<MSAllocatorAttr>())
5777 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
5779 // Add metadata if calling an __attribute__((error(""))) or warning fn.
5780 if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) {
5781 llvm::ConstantInt *Line =
5782 llvm::ConstantInt::get(Int64Ty, Loc.getRawEncoding());
5783 llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line);
5784 llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD});
5785 CI->setMetadata("srcloc", MDT);
5788 // 4. Finish the call.
5790 // If the call doesn't return, finish the basic block and clear the
5791 // insertion point; this allows the rest of IRGen to discard
5792 // unreachable code.
5793 if (CI->doesNotReturn()) {
5794 if (UnusedReturnSizePtr)
5795 PopCleanupBlock();
5797 // Strip away the noreturn attribute to better diagnose unreachable UB.
5798 if (SanOpts.has(SanitizerKind::Unreachable)) {
5799 // Also remove from function since CallBase::hasFnAttr additionally checks
5800 // attributes of the called function.
5801 if (auto *F = CI->getCalledFunction())
5802 F->removeFnAttr(llvm::Attribute::NoReturn);
5803 CI->removeFnAttr(llvm::Attribute::NoReturn);
5805 // Avoid incompatibility with ASan which relies on the `noreturn`
5806 // attribute to insert handler calls.
5807 if (SanOpts.hasOneOf(SanitizerKind::Address |
5808 SanitizerKind::KernelAddress)) {
5809 SanitizerScope SanScope(this);
5810 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5811 Builder.SetInsertPoint(CI);
5812 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5813 llvm::FunctionCallee Fn =
5814 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5815 EmitNounwindRuntimeCall(Fn);
5819 EmitUnreachable(Loc);
5820 Builder.ClearInsertionPoint();
5822 // FIXME: For now, emit a dummy basic block because expr emitters in
5823 // generally are not ready to handle emitting expressions at unreachable
5824 // points.
5825 EnsureInsertPoint();
5827 // Return a reasonable RValue.
5828 return GetUndefRValue(RetTy);
5831 // If this is a musttail call, return immediately. We do not branch to the
5832 // epilogue in this case.
5833 if (IsMustTail) {
5834 for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end();
5835 ++it) {
5836 EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it);
5837 if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn()))
5838 CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups");
5840 if (CI->getType()->isVoidTy())
5841 Builder.CreateRetVoid();
5842 else
5843 Builder.CreateRet(CI);
5844 Builder.ClearInsertionPoint();
5845 EnsureInsertPoint();
5846 return GetUndefRValue(RetTy);
5849 // Perform the swifterror writeback.
5850 if (swiftErrorTemp.isValid()) {
5851 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5852 Builder.CreateStore(errorResult, swiftErrorArg);
5855 // Emit any call-associated writebacks immediately. Arguably this
5856 // should happen after any return-value munging.
5857 if (CallArgs.hasWritebacks())
5858 emitWritebacks(*this, CallArgs);
5860 // The stack cleanup for inalloca arguments has to run out of the normal
5861 // lexical order, so deactivate it and run it manually here.
5862 CallArgs.freeArgumentMemory(*this);
5864 // Extract the return value.
5865 RValue Ret;
5867 // If the current function is a virtual function pointer thunk, avoid copying
5868 // the return value of the musttail call to a temporary.
5869 if (IsVirtualFunctionPointerThunk) {
5870 Ret = RValue::get(CI);
5871 } else {
5872 Ret = [&] {
5873 switch (RetAI.getKind()) {
5874 case ABIArgInfo::CoerceAndExpand: {
5875 auto coercionType = RetAI.getCoerceAndExpandType();
5877 Address addr = SRetPtr.withElementType(coercionType);
5879 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5880 bool requiresExtract = isa<llvm::StructType>(CI->getType());
5882 unsigned unpaddedIndex = 0;
5883 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5884 llvm::Type *eltType = coercionType->getElementType(i);
5885 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
5886 continue;
5887 Address eltAddr = Builder.CreateStructGEP(addr, i);
5888 llvm::Value *elt = CI;
5889 if (requiresExtract)
5890 elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5891 else
5892 assert(unpaddedIndex == 0);
5893 Builder.CreateStore(elt, eltAddr);
5895 [[fallthrough]];
5898 case ABIArgInfo::InAlloca:
5899 case ABIArgInfo::Indirect: {
5900 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5901 if (UnusedReturnSizePtr)
5902 PopCleanupBlock();
5903 return ret;
5906 case ABIArgInfo::Ignore:
5907 // If we are ignoring an argument that had a result, make sure to
5908 // construct the appropriate return value for our caller.
5909 return GetUndefRValue(RetTy);
5911 case ABIArgInfo::Extend:
5912 case ABIArgInfo::Direct: {
5913 llvm::Type *RetIRTy = ConvertType(RetTy);
5914 if (RetAI.getCoerceToType() == RetIRTy &&
5915 RetAI.getDirectOffset() == 0) {
5916 switch (getEvaluationKind(RetTy)) {
5917 case TEK_Complex: {
5918 llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5919 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5920 return RValue::getComplex(std::make_pair(Real, Imag));
5922 case TEK_Aggregate:
5923 break;
5924 case TEK_Scalar: {
5925 // If the argument doesn't match, perform a bitcast to coerce it.
5926 // This can happen due to trivial type mismatches.
5927 llvm::Value *V = CI;
5928 if (V->getType() != RetIRTy)
5929 V = Builder.CreateBitCast(V, RetIRTy);
5930 return RValue::get(V);
5935 // If coercing a fixed vector from a scalable vector for ABI
5936 // compatibility, and the types match, use the llvm.vector.extract
5937 // intrinsic to perform the conversion.
5938 if (auto *FixedDstTy = dyn_cast<llvm::FixedVectorType>(RetIRTy)) {
5939 llvm::Value *V = CI;
5940 if (auto *ScalableSrcTy =
5941 dyn_cast<llvm::ScalableVectorType>(V->getType())) {
5942 if (FixedDstTy->getElementType() ==
5943 ScalableSrcTy->getElementType()) {
5944 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
5945 V = Builder.CreateExtractVector(FixedDstTy, V, Zero,
5946 "cast.fixed");
5947 return RValue::get(V);
5952 Address DestPtr = ReturnValue.getValue();
5953 bool DestIsVolatile = ReturnValue.isVolatile();
5954 uint64_t DestSize =
5955 getContext().getTypeInfoDataSizeInChars(RetTy).Width.getQuantity();
5957 if (!DestPtr.isValid()) {
5958 DestPtr = CreateMemTemp(RetTy, "coerce");
5959 DestIsVolatile = false;
5960 DestSize = getContext().getTypeSizeInChars(RetTy).getQuantity();
5963 // An empty record can overlap other data (if declared with
5964 // no_unique_address); omit the store for such types - as there is no
5965 // actual data to store.
5966 if (!isEmptyRecord(getContext(), RetTy, true)) {
5967 // If the value is offset in memory, apply the offset now.
5968 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5969 CreateCoercedStore(
5970 CI, StorePtr,
5971 llvm::TypeSize::getFixed(DestSize - RetAI.getDirectOffset()),
5972 DestIsVolatile);
5975 return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5978 case ABIArgInfo::Expand:
5979 case ABIArgInfo::IndirectAliased:
5980 llvm_unreachable("Invalid ABI kind for return argument");
5983 llvm_unreachable("Unhandled ABIArgInfo::Kind");
5984 }();
5987 // Emit the assume_aligned check on the return value.
5988 if (Ret.isScalar() && TargetDecl) {
5989 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5990 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5993 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5994 // we can't use the full cleanup mechanism.
5995 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5996 LifetimeEnd.Emit(*this, /*Flags=*/{});
5998 if (!ReturnValue.isExternallyDestructed() &&
5999 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
6000 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
6001 RetTy);
6003 return Ret;
6006 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
6007 if (isVirtual()) {
6008 const CallExpr *CE = getVirtualCallExpr();
6009 return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
6010 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
6011 CE ? CE->getBeginLoc() : SourceLocation());
6014 return *this;
6017 /* VarArg handling */
6019 RValue CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr,
6020 AggValueSlot Slot) {
6021 VAListAddr = VE->isMicrosoftABI() ? EmitMSVAListRef(VE->getSubExpr())
6022 : EmitVAListRef(VE->getSubExpr());
6023 QualType Ty = VE->getType();
6024 if (VE->isMicrosoftABI())
6025 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty, Slot);
6026 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty, Slot);