1 //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder ----*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Builder implementation for CGRecordLayout objects.
11 //===----------------------------------------------------------------------===//
13 #include "ABIInfoImpl.h"
15 #include "CGRecordLayout.h"
16 #include "CodeGenTypes.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/Basic/CodeGenOptions.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/raw_ostream.h"
30 using namespace clang
;
31 using namespace CodeGen
;
34 /// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an
35 /// llvm::Type. Some of the lowering is straightforward, some is not. Here we
36 /// detail some of the complexities and weirdnesses here.
37 /// * LLVM does not have unions - Unions can, in theory be represented by any
38 /// llvm::Type with correct size. We choose a field via a specific heuristic
39 /// and add padding if necessary.
40 /// * LLVM does not have bitfields - Bitfields are collected into contiguous
41 /// runs and allocated as a single storage type for the run. ASTRecordLayout
42 /// contains enough information to determine where the runs break. Microsoft
43 /// and Itanium follow different rules and use different codepaths.
44 /// * It is desired that, when possible, bitfields use the appropriate iN type
45 /// when lowered to llvm types. For example unsigned x : 24 gets lowered to
46 /// i24. This isn't always possible because i24 has storage size of 32 bit
47 /// and if it is possible to use that extra byte of padding we must use [i8 x
48 /// 3] instead of i24. This is computed when accumulating bitfields in
49 /// accumulateBitfields.
50 /// C++ examples that require clipping:
51 /// struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3
52 /// struct A { int a : 24; ~A(); }; // a must be clipped because:
53 /// struct B : A { char b; }; // b goes at offset 3
54 /// * The allocation of bitfield access units is described in more detail in
55 /// CGRecordLowering::accumulateBitFields.
56 /// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized
57 /// fields. The existing asserts suggest that LLVM assumes that *every* field
58 /// has an underlying storage type. Therefore empty structures containing
59 /// zero sized subobjects such as empty records or zero sized arrays still get
60 /// a zero sized (empty struct) storage type.
61 /// * Clang reads the complete type rather than the base type when generating
62 /// code to access fields. Bitfields in tail position with tail padding may
63 /// be clipped in the base class but not the complete class (we may discover
64 /// that the tail padding is not used in the complete class.) However,
65 /// because LLVM reads from the complete type it can generate incorrect code
66 /// if we do not clip the tail padding off of the bitfield in the complete
68 /// * Itanium allows nearly empty primary virtual bases. These bases don't get
69 /// get their own storage because they're laid out as part of another base
70 /// or at the beginning of the structure. Determining if a VBase actually
71 /// gets storage awkwardly involves a walk of all bases.
72 /// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable.
73 struct CGRecordLowering
{
74 // MemberInfo is a helper structure that contains information about a record
75 // member. In additional to the standard member types, there exists a
76 // sentinel member type that ensures correct rounding.
79 enum InfoKind
{ VFPtr
, VBPtr
, Field
, Base
, VBase
} Kind
;
83 const CXXRecordDecl
*RD
;
85 MemberInfo(CharUnits Offset
, InfoKind Kind
, llvm::Type
*Data
,
86 const FieldDecl
*FD
= nullptr)
87 : Offset(Offset
), Kind(Kind
), Data(Data
), FD(FD
) {}
88 MemberInfo(CharUnits Offset
, InfoKind Kind
, llvm::Type
*Data
,
89 const CXXRecordDecl
*RD
)
90 : Offset(Offset
), Kind(Kind
), Data(Data
), RD(RD
) {}
91 // MemberInfos are sorted so we define a < operator.
92 bool operator <(const MemberInfo
& a
) const { return Offset
< a
.Offset
; }
95 CGRecordLowering(CodeGenTypes
&Types
, const RecordDecl
*D
, bool Packed
);
96 // Short helper routines.
97 /// Constructs a MemberInfo instance from an offset and llvm::Type *.
98 static MemberInfo
StorageInfo(CharUnits Offset
, llvm::Type
*Data
) {
99 return MemberInfo(Offset
, MemberInfo::Field
, Data
);
102 /// The Microsoft bitfield layout rule allocates discrete storage
103 /// units of the field's formal type and only combines adjacent
104 /// fields of the same formal type. We want to emit a layout with
105 /// these discrete storage units instead of combining them into a
107 bool isDiscreteBitFieldABI() const {
108 return Context
.getTargetInfo().getCXXABI().isMicrosoft() ||
109 D
->isMsStruct(Context
);
112 /// Helper function to check if we are targeting AAPCS.
113 bool isAAPCS() const {
114 return Context
.getTargetInfo().getABI().starts_with("aapcs");
117 /// Helper function to check if the target machine is BigEndian.
118 bool isBE() const { return Context
.getTargetInfo().isBigEndian(); }
120 /// The Itanium base layout rule allows virtual bases to overlap
121 /// other bases, which complicates layout in specific ways.
123 /// Note specifically that the ms_struct attribute doesn't change this.
124 bool isOverlappingVBaseABI() const {
125 return !Context
.getTargetInfo().getCXXABI().isMicrosoft();
128 /// Wraps llvm::Type::getIntNTy with some implicit arguments.
129 llvm::Type
*getIntNType(uint64_t NumBits
) const {
130 unsigned AlignedBits
= llvm::alignTo(NumBits
, Context
.getCharWidth());
131 return llvm::Type::getIntNTy(Types
.getLLVMContext(), AlignedBits
);
133 /// Get the LLVM type sized as one character unit.
134 llvm::Type
*getCharType() const {
135 return llvm::Type::getIntNTy(Types
.getLLVMContext(),
136 Context
.getCharWidth());
138 /// Gets an llvm type of size NumChars and alignment 1.
139 llvm::Type
*getByteArrayType(CharUnits NumChars
) const {
140 assert(!NumChars
.isZero() && "Empty byte arrays aren't allowed.");
141 llvm::Type
*Type
= getCharType();
142 return NumChars
== CharUnits::One() ? Type
:
143 (llvm::Type
*)llvm::ArrayType::get(Type
, NumChars
.getQuantity());
145 /// Gets the storage type for a field decl and handles storage
146 /// for itanium bitfields that are smaller than their declared type.
147 llvm::Type
*getStorageType(const FieldDecl
*FD
) const {
148 llvm::Type
*Type
= Types
.ConvertTypeForMem(FD
->getType());
149 if (!FD
->isBitField()) return Type
;
150 if (isDiscreteBitFieldABI()) return Type
;
151 return getIntNType(std::min(FD
->getBitWidthValue(Context
),
152 (unsigned)Context
.toBits(getSize(Type
))));
154 /// Gets the llvm Basesubobject type from a CXXRecordDecl.
155 llvm::Type
*getStorageType(const CXXRecordDecl
*RD
) const {
156 return Types
.getCGRecordLayout(RD
).getBaseSubobjectLLVMType();
158 CharUnits
bitsToCharUnits(uint64_t BitOffset
) const {
159 return Context
.toCharUnitsFromBits(BitOffset
);
161 CharUnits
getSize(llvm::Type
*Type
) const {
162 return CharUnits::fromQuantity(DataLayout
.getTypeAllocSize(Type
));
164 CharUnits
getAlignment(llvm::Type
*Type
) const {
165 return CharUnits::fromQuantity(DataLayout
.getABITypeAlign(Type
));
167 bool isZeroInitializable(const FieldDecl
*FD
) const {
168 return Types
.isZeroInitializable(FD
->getType());
170 bool isZeroInitializable(const RecordDecl
*RD
) const {
171 return Types
.isZeroInitializable(RD
);
173 void appendPaddingBytes(CharUnits Size
) {
175 FieldTypes
.push_back(getByteArrayType(Size
));
177 uint64_t getFieldBitOffset(const FieldDecl
*FD
) const {
178 return Layout
.getFieldOffset(FD
->getFieldIndex());
181 void setBitFieldInfo(const FieldDecl
*FD
, CharUnits StartOffset
,
182 llvm::Type
*StorageType
);
183 /// Lowers an ASTRecordLayout to a llvm type.
184 void lower(bool NonVirtualBaseType
);
185 void lowerUnion(bool isNoUniqueAddress
);
186 void accumulateFields(bool isNonVirtualBaseType
);
187 RecordDecl::field_iterator
188 accumulateBitFields(bool isNonVirtualBaseType
,
189 RecordDecl::field_iterator Field
,
190 RecordDecl::field_iterator FieldEnd
);
191 void computeVolatileBitfields();
192 void accumulateBases();
193 void accumulateVPtrs();
194 void accumulateVBases();
195 /// Recursively searches all of the bases to find out if a vbase is
196 /// not the primary vbase of some base class.
197 bool hasOwnStorage(const CXXRecordDecl
*Decl
,
198 const CXXRecordDecl
*Query
) const;
199 void calculateZeroInit();
200 CharUnits
calculateTailClippingOffset(bool isNonVirtualBaseType
) const;
201 void checkBitfieldClipping(bool isNonVirtualBaseType
) const;
202 /// Determines if we need a packed llvm struct.
203 void determinePacked(bool NVBaseType
);
204 /// Inserts padding everywhere it's needed.
205 void insertPadding();
206 /// Fills out the structures that are ultimately consumed.
207 void fillOutputFields();
208 // Input memoization fields.
210 const ASTContext
&Context
;
212 const CXXRecordDecl
*RD
;
213 const ASTRecordLayout
&Layout
;
214 const llvm::DataLayout
&DataLayout
;
215 // Helpful intermediate data-structures.
216 std::vector
<MemberInfo
> Members
;
217 // Output fields, consumed by CodeGenTypes::ComputeRecordLayout.
218 SmallVector
<llvm::Type
*, 16> FieldTypes
;
219 llvm::DenseMap
<const FieldDecl
*, unsigned> Fields
;
220 llvm::DenseMap
<const FieldDecl
*, CGBitFieldInfo
> BitFields
;
221 llvm::DenseMap
<const CXXRecordDecl
*, unsigned> NonVirtualBases
;
222 llvm::DenseMap
<const CXXRecordDecl
*, unsigned> VirtualBases
;
223 bool IsZeroInitializable
: 1;
224 bool IsZeroInitializableAsBase
: 1;
227 CGRecordLowering(const CGRecordLowering
&) = delete;
228 void operator =(const CGRecordLowering
&) = delete;
232 CGRecordLowering::CGRecordLowering(CodeGenTypes
&Types
, const RecordDecl
*D
,
234 : Types(Types
), Context(Types
.getContext()), D(D
),
235 RD(dyn_cast
<CXXRecordDecl
>(D
)),
236 Layout(Types
.getContext().getASTRecordLayout(D
)),
237 DataLayout(Types
.getDataLayout()), IsZeroInitializable(true),
238 IsZeroInitializableAsBase(true), Packed(Packed
) {}
240 void CGRecordLowering::setBitFieldInfo(
241 const FieldDecl
*FD
, CharUnits StartOffset
, llvm::Type
*StorageType
) {
242 CGBitFieldInfo
&Info
= BitFields
[FD
->getCanonicalDecl()];
243 Info
.IsSigned
= FD
->getType()->isSignedIntegerOrEnumerationType();
244 Info
.Offset
= (unsigned)(getFieldBitOffset(FD
) - Context
.toBits(StartOffset
));
245 Info
.Size
= FD
->getBitWidthValue(Context
);
246 Info
.StorageSize
= (unsigned)DataLayout
.getTypeAllocSizeInBits(StorageType
);
247 Info
.StorageOffset
= StartOffset
;
248 if (Info
.Size
> Info
.StorageSize
)
249 Info
.Size
= Info
.StorageSize
;
250 // Reverse the bit offsets for big endian machines. Because we represent
251 // a bitfield as a single large integer load, we can imagine the bits
252 // counting from the most-significant-bit instead of the
253 // least-significant-bit.
254 if (DataLayout
.isBigEndian())
255 Info
.Offset
= Info
.StorageSize
- (Info
.Offset
+ Info
.Size
);
257 Info
.VolatileStorageSize
= 0;
258 Info
.VolatileOffset
= 0;
259 Info
.VolatileStorageOffset
= CharUnits::Zero();
262 void CGRecordLowering::lower(bool NVBaseType
) {
263 // The lowering process implemented in this function takes a variety of
264 // carefully ordered phases.
265 // 1) Store all members (fields and bases) in a list and sort them by offset.
266 // 2) Add a 1-byte capstone member at the Size of the structure.
267 // 3) Clip bitfield storages members if their tail padding is or might be
268 // used by another field or base. The clipping process uses the capstone
269 // by treating it as another object that occurs after the record.
270 // 4) Determine if the llvm-struct requires packing. It's important that this
271 // phase occur after clipping, because clipping changes the llvm type.
272 // This phase reads the offset of the capstone when determining packedness
273 // and updates the alignment of the capstone to be equal of the alignment
274 // of the record after doing so.
275 // 5) Insert padding everywhere it is needed. This phase requires 'Packed' to
276 // have been computed and needs to know the alignment of the record in
277 // order to understand if explicit tail padding is needed.
278 // 6) Remove the capstone, we don't need it anymore.
279 // 7) Determine if this record can be zero-initialized. This phase could have
280 // been placed anywhere after phase 1.
281 // 8) Format the complete list of members in a way that can be consumed by
282 // CodeGenTypes::ComputeRecordLayout.
283 CharUnits Size
= NVBaseType
? Layout
.getNonVirtualSize() : Layout
.getSize();
285 lowerUnion(NVBaseType
);
286 computeVolatileBitfields();
289 accumulateFields(NVBaseType
);
294 if (Members
.empty()) {
295 appendPaddingBytes(Size
);
296 computeVolatileBitfields();
302 llvm::stable_sort(Members
);
303 checkBitfieldClipping(NVBaseType
);
304 Members
.push_back(StorageInfo(Size
, getIntNType(8)));
305 determinePacked(NVBaseType
);
310 computeVolatileBitfields();
313 void CGRecordLowering::lowerUnion(bool isNoUniqueAddress
) {
314 CharUnits LayoutSize
=
315 isNoUniqueAddress
? Layout
.getDataSize() : Layout
.getSize();
316 llvm::Type
*StorageType
= nullptr;
317 bool SeenNamedMember
= false;
318 // Iterate through the fields setting bitFieldInfo and the Fields array. Also
319 // locate the "most appropriate" storage type. The heuristic for finding the
320 // storage type isn't necessary, the first (non-0-length-bitfield) field's
321 // type would work fine and be simpler but would be different than what we've
322 // been doing and cause lit tests to change.
323 for (const auto *Field
: D
->fields()) {
324 if (Field
->isBitField()) {
325 if (Field
->isZeroLengthBitField(Context
))
327 llvm::Type
*FieldType
= getStorageType(Field
);
328 if (LayoutSize
< getSize(FieldType
))
329 FieldType
= getByteArrayType(LayoutSize
);
330 setBitFieldInfo(Field
, CharUnits::Zero(), FieldType
);
332 Fields
[Field
->getCanonicalDecl()] = 0;
333 llvm::Type
*FieldType
= getStorageType(Field
);
334 // Compute zero-initializable status.
335 // This union might not be zero initialized: it may contain a pointer to
336 // data member which might have some exotic initialization sequence.
337 // If this is the case, then we aught not to try and come up with a "better"
338 // type, it might not be very easy to come up with a Constant which
339 // correctly initializes it.
340 if (!SeenNamedMember
) {
341 SeenNamedMember
= Field
->getIdentifier();
342 if (!SeenNamedMember
)
343 if (const auto *FieldRD
= Field
->getType()->getAsRecordDecl())
344 SeenNamedMember
= FieldRD
->findFirstNamedDataMember();
345 if (SeenNamedMember
&& !isZeroInitializable(Field
)) {
346 IsZeroInitializable
= IsZeroInitializableAsBase
= false;
347 StorageType
= FieldType
;
350 // Because our union isn't zero initializable, we won't be getting a better
352 if (!IsZeroInitializable
)
354 // Conditionally update our storage type if we've got a new "better" one.
356 getAlignment(FieldType
) > getAlignment(StorageType
) ||
357 (getAlignment(FieldType
) == getAlignment(StorageType
) &&
358 getSize(FieldType
) > getSize(StorageType
)))
359 StorageType
= FieldType
;
361 // If we have no storage type just pad to the appropriate size and return.
363 return appendPaddingBytes(LayoutSize
);
364 // If our storage size was bigger than our required size (can happen in the
365 // case of packed bitfields on Itanium) then just use an I8 array.
366 if (LayoutSize
< getSize(StorageType
))
367 StorageType
= getByteArrayType(LayoutSize
);
368 FieldTypes
.push_back(StorageType
);
369 appendPaddingBytes(LayoutSize
- getSize(StorageType
));
370 // Set packed if we need it.
371 const auto StorageAlignment
= getAlignment(StorageType
);
372 assert((Layout
.getSize() % StorageAlignment
== 0 ||
373 Layout
.getDataSize() % StorageAlignment
) &&
374 "Union's standard layout and no_unique_address layout must agree on "
376 if (Layout
.getDataSize() % StorageAlignment
)
380 void CGRecordLowering::accumulateFields(bool isNonVirtualBaseType
) {
381 for (RecordDecl::field_iterator Field
= D
->field_begin(),
382 FieldEnd
= D
->field_end();
383 Field
!= FieldEnd
;) {
384 if (Field
->isBitField()) {
385 Field
= accumulateBitFields(isNonVirtualBaseType
, Field
, FieldEnd
);
386 assert((Field
== FieldEnd
|| !Field
->isBitField()) &&
387 "Failed to accumulate all the bitfields");
388 } else if (isEmptyFieldForLayout(Context
, *Field
)) {
389 // Empty fields have no storage.
392 // Use base subobject layout for the potentially-overlapping field,
393 // as it is done in RecordLayoutBuilder
394 Members
.push_back(MemberInfo(
395 bitsToCharUnits(getFieldBitOffset(*Field
)), MemberInfo::Field
,
396 Field
->isPotentiallyOverlapping()
397 ? getStorageType(Field
->getType()->getAsCXXRecordDecl())
398 : getStorageType(*Field
),
405 // Create members for bitfields. Field is a bitfield, and FieldEnd is the end
406 // iterator of the record. Return the first non-bitfield encountered. We need
407 // to know whether this is the base or complete layout, as virtual bases could
408 // affect the upper bound of bitfield access unit allocation.
409 RecordDecl::field_iterator
410 CGRecordLowering::accumulateBitFields(bool isNonVirtualBaseType
,
411 RecordDecl::field_iterator Field
,
412 RecordDecl::field_iterator FieldEnd
) {
413 if (isDiscreteBitFieldABI()) {
414 // Run stores the first element of the current run of bitfields. FieldEnd is
415 // used as a special value to note that we don't have a current run. A
416 // bitfield run is a contiguous collection of bitfields that can be stored
417 // in the same storage block. Zero-sized bitfields and bitfields that would
418 // cross an alignment boundary break a run and start a new one.
419 RecordDecl::field_iterator Run
= FieldEnd
;
420 // Tail is the offset of the first bit off the end of the current run. It's
421 // used to determine if the ASTRecordLayout is treating these two bitfields
422 // as contiguous. StartBitOffset is offset of the beginning of the Run.
423 uint64_t StartBitOffset
, Tail
= 0;
424 for (; Field
!= FieldEnd
&& Field
->isBitField(); ++Field
) {
425 // Zero-width bitfields end runs.
426 if (Field
->isZeroLengthBitField(Context
)) {
430 uint64_t BitOffset
= getFieldBitOffset(*Field
);
431 llvm::Type
*Type
= Types
.ConvertTypeForMem(Field
->getType());
432 // If we don't have a run yet, or don't live within the previous run's
433 // allocated storage then we allocate some storage and start a new run.
434 if (Run
== FieldEnd
|| BitOffset
>= Tail
) {
436 StartBitOffset
= BitOffset
;
437 Tail
= StartBitOffset
+ DataLayout
.getTypeAllocSizeInBits(Type
);
438 // Add the storage member to the record. This must be added to the
439 // record before the bitfield members so that it gets laid out before
440 // the bitfields it contains get laid out.
441 Members
.push_back(StorageInfo(bitsToCharUnits(StartBitOffset
), Type
));
443 // Bitfields get the offset of their storage but come afterward and remain
444 // there after a stable sort.
445 Members
.push_back(MemberInfo(bitsToCharUnits(StartBitOffset
),
446 MemberInfo::Field
, nullptr, *Field
));
451 // The SysV ABI can overlap bitfield storage units with both other bitfield
452 // storage units /and/ other non-bitfield data members. Accessing a sequence
453 // of bitfields mustn't interfere with adjacent non-bitfields -- they're
454 // permitted to be accessed in separate threads for instance.
456 // We split runs of bit-fields into a sequence of "access units". When we emit
457 // a load or store of a bit-field, we'll load/store the entire containing
458 // access unit. As mentioned, the standard requires that these loads and
459 // stores must not interfere with accesses to other memory locations, and it
460 // defines the bit-field's memory location as the current run of
461 // non-zero-width bit-fields. So an access unit must never overlap with
462 // non-bit-field storage or cross a zero-width bit-field. Otherwise, we're
463 // free to draw the lines as we see fit.
465 // Drawing these lines well can be complicated. LLVM generally can't modify a
466 // program to access memory that it didn't before, so using very narrow access
467 // units can prevent the compiler from using optimal access patterns. For
468 // example, suppose a run of bit-fields occupies four bytes in a struct. If we
469 // split that into four 1-byte access units, then a sequence of assignments
470 // that doesn't touch all four bytes may have to be emitted with multiple
471 // 8-bit stores instead of a single 32-bit store. On the other hand, if we use
472 // very wide access units, we may find ourselves emitting accesses to
473 // bit-fields we didn't really need to touch, just because LLVM was unable to
474 // clean up after us.
476 // It is desirable to have access units be aligned powers of 2 no larger than
477 // a register. (On non-strict alignment ISAs, the alignment requirement can be
478 // dropped.) A three byte access unit will be accessed using 2-byte and 1-byte
479 // accesses and bit manipulation. If no bitfield straddles across the two
480 // separate accesses, it is better to have separate 2-byte and 1-byte access
481 // units, as then LLVM will not generate unnecessary memory accesses, or bit
482 // manipulation. Similarly, on a strict-alignment architecture, it is better
483 // to keep access-units naturally aligned, to avoid similar bit
484 // manipulation synthesizing larger unaligned accesses.
486 // Bitfields that share parts of a single byte are, of necessity, placed in
487 // the same access unit. That unit will encompass a consecutive run where
488 // adjacent bitfields share parts of a byte. (The first bitfield of such an
489 // access unit will start at the beginning of a byte.)
491 // We then try and accumulate adjacent access units when the combined unit is
492 // naturally sized, no larger than a register, and (on a strict alignment
493 // ISA), naturally aligned. Note that this requires lookahead to one or more
494 // subsequent access units. For instance, consider a 2-byte access-unit
495 // followed by 2 1-byte units. We can merge that into a 4-byte access-unit,
496 // but we would not want to merge a 2-byte followed by a single 1-byte (and no
497 // available tail padding). We keep track of the best access unit seen so far,
498 // and use that when we determine we cannot accumulate any more. Then we start
499 // again at the bitfield following that best one.
501 // The accumulation is also prevented when:
502 // *) it would cross a character-aigned zero-width bitfield, or
503 // *) fine-grained bitfield access option is in effect.
506 bitsToCharUnits(Context
.getTargetInfo().getRegisterWidth());
507 unsigned CharBits
= Context
.getCharWidth();
509 // Limit of useable tail padding at end of the record. Computed lazily and
511 CharUnits ScissorOffset
= CharUnits::Zero();
513 // Data about the start of the span we're accumulating to create an access
514 // unit from. Begin is the first bitfield of the span. If Begin is FieldEnd,
515 // we've not got a current span. The span starts at the BeginOffset character
516 // boundary. BitSizeSinceBegin is the size (in bits) of the span -- this might
517 // include padding when we've advanced to a subsequent bitfield run.
518 RecordDecl::field_iterator Begin
= FieldEnd
;
519 CharUnits BeginOffset
;
520 uint64_t BitSizeSinceBegin
;
522 // The (non-inclusive) end of the largest acceptable access unit we've found
523 // since Begin. If this is Begin, we're gathering the initial set of bitfields
524 // of a new span. BestEndOffset is the end of that acceptable access unit --
525 // it might extend beyond the last character of the bitfield run, using
526 // available padding characters.
527 RecordDecl::field_iterator BestEnd
= Begin
;
528 CharUnits BestEndOffset
;
529 bool BestClipped
; // Whether the representation must be in a byte array.
532 // AtAlignedBoundary is true iff Field is the (potential) start of a new
533 // span (or the end of the bitfields). When true, LimitOffset is the
534 // character offset of that span and Barrier indicates whether the new
535 // span cannot be merged into the current one.
536 bool AtAlignedBoundary
= false;
537 bool Barrier
= false;
539 if (Field
!= FieldEnd
&& Field
->isBitField()) {
540 uint64_t BitOffset
= getFieldBitOffset(*Field
);
541 if (Begin
== FieldEnd
) {
542 // Beginning a new span.
546 assert((BitOffset
% CharBits
) == 0 && "Not at start of char");
547 BeginOffset
= bitsToCharUnits(BitOffset
);
548 BitSizeSinceBegin
= 0;
549 } else if ((BitOffset
% CharBits
) != 0) {
550 // Bitfield occupies the same character as previous bitfield, it must be
551 // part of the same span. This can include zero-length bitfields, should
552 // the target not align them to character boundaries. Such non-alignment
553 // is at variance with the standards, which require zero-length
554 // bitfields be a barrier between access units. But of course we can't
555 // achieve that in the middle of a character.
556 assert(BitOffset
== Context
.toBits(BeginOffset
) + BitSizeSinceBegin
&&
557 "Concatenating non-contiguous bitfields");
559 // Bitfield potentially begins a new span. This includes zero-length
560 // bitfields on non-aligning targets that lie at character boundaries
561 // (those are barriers to merging).
562 if (Field
->isZeroLengthBitField(Context
))
564 AtAlignedBoundary
= true;
567 // We've reached the end of the bitfield run. Either we're done, or this
568 // is a barrier for the current span.
569 if (Begin
== FieldEnd
)
573 AtAlignedBoundary
= true;
576 // InstallBest indicates whether we should create an access unit for the
577 // current best span: fields [Begin, BestEnd) occupying characters
578 // [BeginOffset, BestEndOffset).
579 bool InstallBest
= false;
580 if (AtAlignedBoundary
) {
581 // Field is the start of a new span or the end of the bitfields. The
582 // just-seen span now extends to BitSizeSinceBegin.
584 // Determine if we can accumulate that just-seen span into the current
586 CharUnits AccessSize
= bitsToCharUnits(BitSizeSinceBegin
+ CharBits
- 1);
587 if (BestEnd
== Begin
) {
588 // This is the initial run at the start of a new span. By definition,
589 // this is the best seen so far.
591 BestEndOffset
= BeginOffset
+ AccessSize
;
592 // Assume clipped until proven not below.
594 if (!BitSizeSinceBegin
)
595 // A zero-sized initial span -- this will install nothing and reset
598 } else if (AccessSize
> RegSize
)
599 // Accumulating the just-seen span would create a multi-register access
600 // unit, which would increase register pressure.
604 // Determine if accumulating the just-seen span will create an expensive
605 // access unit or not.
606 llvm::Type
*Type
= getIntNType(Context
.toBits(AccessSize
));
607 if (!Context
.getTargetInfo().hasCheapUnalignedBitFieldAccess()) {
608 // Unaligned accesses are expensive. Only accumulate if the new unit
609 // is naturally aligned. Otherwise install the best we have, which is
610 // either the initial access unit (can't do better), or a naturally
611 // aligned accumulation (since we would have already installed it if
612 // it wasn't naturally aligned).
613 CharUnits Align
= getAlignment(Type
);
614 if (Align
> Layout
.getAlignment())
615 // The alignment required is greater than the containing structure
618 else if (!BeginOffset
.isMultipleOf(Align
))
619 // The access unit is not at a naturally aligned offset within the
623 if (InstallBest
&& BestEnd
== Field
)
624 // We're installing the first span, whose clipping was presumed
625 // above. Compute it correctly.
626 if (getSize(Type
) == AccessSize
)
631 // Find the next used storage offset to determine what the limit of
632 // the current span is. That's either the offset of the next field
633 // with storage (which might be Field itself) or the end of the
634 // non-reusable tail padding.
635 CharUnits LimitOffset
;
636 for (auto Probe
= Field
; Probe
!= FieldEnd
; ++Probe
)
637 if (!isEmptyFieldForLayout(Context
, *Probe
)) {
638 // A member with storage sets the limit.
639 assert((getFieldBitOffset(*Probe
) % CharBits
) == 0 &&
640 "Next storage is not byte-aligned");
641 LimitOffset
= bitsToCharUnits(getFieldBitOffset(*Probe
));
644 // We reached the end of the fields, determine the bounds of useable
645 // tail padding. As this can be complex for C++, we cache the result.
646 if (ScissorOffset
.isZero()) {
647 ScissorOffset
= calculateTailClippingOffset(isNonVirtualBaseType
);
648 assert(!ScissorOffset
.isZero() && "Tail clipping at zero");
651 LimitOffset
= ScissorOffset
;
654 CharUnits TypeSize
= getSize(Type
);
655 if (BeginOffset
+ TypeSize
<= LimitOffset
) {
656 // There is space before LimitOffset to create a naturally-sized
658 BestEndOffset
= BeginOffset
+ TypeSize
;
664 // The next field is a barrier that we cannot merge across.
666 else if (Types
.getCodeGenOpts().FineGrainedBitfieldAccesses
)
667 // Fine-grained access, so no merging of spans.
670 // Otherwise, we're not installing. Update the bit size
671 // of the current span to go all the way to LimitOffset, which is
672 // the (aligned) offset of next bitfield to consider.
673 BitSizeSinceBegin
= Context
.toBits(LimitOffset
- BeginOffset
);
679 assert((Field
== FieldEnd
|| !Field
->isBitField() ||
680 (getFieldBitOffset(*Field
) % CharBits
) == 0) &&
681 "Installing but not at an aligned bitfield or limit");
682 CharUnits AccessSize
= BestEndOffset
- BeginOffset
;
683 if (!AccessSize
.isZero()) {
684 // Add the storage member for the access unit to the record. The
685 // bitfields get the offset of their storage but come afterward and
686 // remain there after a stable sort.
689 assert(getSize(getIntNType(Context
.toBits(AccessSize
))) >
691 "Clipped access need not be clipped");
692 Type
= getByteArrayType(AccessSize
);
694 Type
= getIntNType(Context
.toBits(AccessSize
));
695 assert(getSize(Type
) == AccessSize
&&
696 "Unclipped access must be clipped");
698 Members
.push_back(StorageInfo(BeginOffset
, Type
));
699 for (; Begin
!= BestEnd
; ++Begin
)
700 if (!Begin
->isZeroLengthBitField(Context
))
702 MemberInfo(BeginOffset
, MemberInfo::Field
, nullptr, *Begin
));
704 // Reset to start a new span.
708 assert(Field
!= FieldEnd
&& Field
->isBitField() &&
709 "Accumulating past end of bitfields");
710 assert(!Barrier
&& "Accumulating across barrier");
711 // Accumulate this bitfield into the current (potential) span.
712 BitSizeSinceBegin
+= Field
->getBitWidthValue(Context
);
720 void CGRecordLowering::accumulateBases() {
721 // If we've got a primary virtual base, we need to add it with the bases.
722 if (Layout
.isPrimaryBaseVirtual()) {
723 const CXXRecordDecl
*BaseDecl
= Layout
.getPrimaryBase();
724 Members
.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base
,
725 getStorageType(BaseDecl
), BaseDecl
));
727 // Accumulate the non-virtual bases.
728 for (const auto &Base
: RD
->bases()) {
729 if (Base
.isVirtual())
732 // Bases can be zero-sized even if not technically empty if they
733 // contain only a trailing array member.
734 const CXXRecordDecl
*BaseDecl
= Base
.getType()->getAsCXXRecordDecl();
735 if (!isEmptyRecordForLayout(Context
, Base
.getType()) &&
736 !Context
.getASTRecordLayout(BaseDecl
).getNonVirtualSize().isZero())
737 Members
.push_back(MemberInfo(Layout
.getBaseClassOffset(BaseDecl
),
738 MemberInfo::Base
, getStorageType(BaseDecl
), BaseDecl
));
742 /// The AAPCS that defines that, when possible, bit-fields should
743 /// be accessed using containers of the declared type width:
744 /// When a volatile bit-field is read, and its container does not overlap with
745 /// any non-bit-field member or any zero length bit-field member, its container
746 /// must be read exactly once using the access width appropriate to the type of
747 /// the container. When a volatile bit-field is written, and its container does
748 /// not overlap with any non-bit-field member or any zero-length bit-field
749 /// member, its container must be read exactly once and written exactly once
750 /// using the access width appropriate to the type of the container. The two
751 /// accesses are not atomic.
753 /// Enforcing the width restriction can be disabled using
754 /// -fno-aapcs-bitfield-width.
755 void CGRecordLowering::computeVolatileBitfields() {
756 if (!isAAPCS() || !Types
.getCodeGenOpts().AAPCSBitfieldWidth
)
759 for (auto &I
: BitFields
) {
760 const FieldDecl
*Field
= I
.first
;
761 CGBitFieldInfo
&Info
= I
.second
;
762 llvm::Type
*ResLTy
= Types
.ConvertTypeForMem(Field
->getType());
763 // If the record alignment is less than the type width, we can't enforce a
764 // aligned load, bail out.
765 if ((uint64_t)(Context
.toBits(Layout
.getAlignment())) <
766 ResLTy
->getPrimitiveSizeInBits())
768 // CGRecordLowering::setBitFieldInfo() pre-adjusts the bit-field offsets
769 // for big-endian targets, but it assumes a container of width
770 // Info.StorageSize. Since AAPCS uses a different container size (width
771 // of the type), we first undo that calculation here and redo it once
772 // the bit-field offset within the new container is calculated.
773 const unsigned OldOffset
=
774 isBE() ? Info
.StorageSize
- (Info
.Offset
+ Info
.Size
) : Info
.Offset
;
775 // Offset to the bit-field from the beginning of the struct.
776 const unsigned AbsoluteOffset
=
777 Context
.toBits(Info
.StorageOffset
) + OldOffset
;
779 // Container size is the width of the bit-field type.
780 const unsigned StorageSize
= ResLTy
->getPrimitiveSizeInBits();
781 // Nothing to do if the access uses the desired
782 // container width and is naturally aligned.
783 if (Info
.StorageSize
== StorageSize
&& (OldOffset
% StorageSize
== 0))
786 // Offset within the container.
787 unsigned Offset
= AbsoluteOffset
& (StorageSize
- 1);
788 // Bail out if an aligned load of the container cannot cover the entire
789 // bit-field. This can happen for example, if the bit-field is part of a
790 // packed struct. AAPCS does not define access rules for such cases, we let
791 // clang to follow its own rules.
792 if (Offset
+ Info
.Size
> StorageSize
)
795 // Re-adjust offsets for big-endian targets.
797 Offset
= StorageSize
- (Offset
+ Info
.Size
);
799 const CharUnits StorageOffset
=
800 Context
.toCharUnitsFromBits(AbsoluteOffset
& ~(StorageSize
- 1));
801 const CharUnits End
= StorageOffset
+
802 Context
.toCharUnitsFromBits(StorageSize
) -
805 const ASTRecordLayout
&Layout
=
806 Context
.getASTRecordLayout(Field
->getParent());
807 // If we access outside memory outside the record, than bail out.
808 const CharUnits RecordSize
= Layout
.getSize();
809 if (End
>= RecordSize
)
812 // Bail out if performing this load would access non-bit-fields members.
813 bool Conflict
= false;
814 for (const auto *F
: D
->fields()) {
815 // Allow sized bit-fields overlaps.
816 if (F
->isBitField() && !F
->isZeroLengthBitField(Context
))
819 const CharUnits FOffset
= Context
.toCharUnitsFromBits(
820 Layout
.getFieldOffset(F
->getFieldIndex()));
822 // As C11 defines, a zero sized bit-field defines a barrier, so
823 // fields after and before it should be race condition free.
824 // The AAPCS acknowledges it and imposes no restritions when the
825 // natural container overlaps a zero-length bit-field.
826 if (F
->isZeroLengthBitField(Context
)) {
827 if (End
> FOffset
&& StorageOffset
< FOffset
) {
833 const CharUnits FEnd
=
835 Context
.toCharUnitsFromBits(
836 Types
.ConvertTypeForMem(F
->getType())->getPrimitiveSizeInBits()) -
838 // If no overlap, continue.
839 if (End
< FOffset
|| FEnd
< StorageOffset
)
842 // The desired load overlaps a non-bit-field member, bail out.
849 // Write the new bit-field access parameters.
850 // As the storage offset now is defined as the number of elements from the
851 // start of the structure, we should divide the Offset by the element size.
852 Info
.VolatileStorageOffset
=
853 StorageOffset
/ Context
.toCharUnitsFromBits(StorageSize
).getQuantity();
854 Info
.VolatileStorageSize
= StorageSize
;
855 Info
.VolatileOffset
= Offset
;
859 void CGRecordLowering::accumulateVPtrs() {
860 if (Layout
.hasOwnVFPtr())
862 MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr
,
863 llvm::PointerType::getUnqual(Types
.getLLVMContext())));
864 if (Layout
.hasOwnVBPtr())
866 MemberInfo(Layout
.getVBPtrOffset(), MemberInfo::VBPtr
,
867 llvm::PointerType::getUnqual(Types
.getLLVMContext())));
871 CGRecordLowering::calculateTailClippingOffset(bool isNonVirtualBaseType
) const {
873 return Layout
.getDataSize();
875 CharUnits ScissorOffset
= Layout
.getNonVirtualSize();
876 // In the itanium ABI, it's possible to place a vbase at a dsize that is
877 // smaller than the nvsize. Here we check to see if such a base is placed
878 // before the nvsize and set the scissor offset to that, instead of the
880 if (!isNonVirtualBaseType
&& isOverlappingVBaseABI())
881 for (const auto &Base
: RD
->vbases()) {
882 const CXXRecordDecl
*BaseDecl
= Base
.getType()->getAsCXXRecordDecl();
883 if (isEmptyRecordForLayout(Context
, Base
.getType()))
885 // If the vbase is a primary virtual base of some base, then it doesn't
886 // get its own storage location but instead lives inside of that base.
887 if (Context
.isNearlyEmpty(BaseDecl
) && !hasOwnStorage(RD
, BaseDecl
))
889 ScissorOffset
= std::min(ScissorOffset
,
890 Layout
.getVBaseClassOffset(BaseDecl
));
893 return ScissorOffset
;
896 void CGRecordLowering::accumulateVBases() {
897 for (const auto &Base
: RD
->vbases()) {
898 const CXXRecordDecl
*BaseDecl
= Base
.getType()->getAsCXXRecordDecl();
899 if (isEmptyRecordForLayout(Context
, Base
.getType()))
901 CharUnits Offset
= Layout
.getVBaseClassOffset(BaseDecl
);
902 // If the vbase is a primary virtual base of some base, then it doesn't
903 // get its own storage location but instead lives inside of that base.
904 if (isOverlappingVBaseABI() &&
905 Context
.isNearlyEmpty(BaseDecl
) &&
906 !hasOwnStorage(RD
, BaseDecl
)) {
907 Members
.push_back(MemberInfo(Offset
, MemberInfo::VBase
, nullptr,
911 // If we've got a vtordisp, add it as a storage type.
912 if (Layout
.getVBaseOffsetsMap().find(BaseDecl
)->second
.hasVtorDisp())
913 Members
.push_back(StorageInfo(Offset
- CharUnits::fromQuantity(4),
915 Members
.push_back(MemberInfo(Offset
, MemberInfo::VBase
,
916 getStorageType(BaseDecl
), BaseDecl
));
920 bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl
*Decl
,
921 const CXXRecordDecl
*Query
) const {
922 const ASTRecordLayout
&DeclLayout
= Context
.getASTRecordLayout(Decl
);
923 if (DeclLayout
.isPrimaryBaseVirtual() && DeclLayout
.getPrimaryBase() == Query
)
925 for (const auto &Base
: Decl
->bases())
926 if (!hasOwnStorage(Base
.getType()->getAsCXXRecordDecl(), Query
))
931 void CGRecordLowering::calculateZeroInit() {
932 for (std::vector
<MemberInfo
>::const_iterator Member
= Members
.begin(),
933 MemberEnd
= Members
.end();
934 IsZeroInitializableAsBase
&& Member
!= MemberEnd
; ++Member
) {
935 if (Member
->Kind
== MemberInfo::Field
) {
936 if (!Member
->FD
|| isZeroInitializable(Member
->FD
))
938 IsZeroInitializable
= IsZeroInitializableAsBase
= false;
939 } else if (Member
->Kind
== MemberInfo::Base
||
940 Member
->Kind
== MemberInfo::VBase
) {
941 if (isZeroInitializable(Member
->RD
))
943 IsZeroInitializable
= false;
944 if (Member
->Kind
== MemberInfo::Base
)
945 IsZeroInitializableAsBase
= false;
950 // Verify accumulateBitfields computed the correct storage representations.
951 void CGRecordLowering::checkBitfieldClipping(bool IsNonVirtualBaseType
) const {
953 auto ScissorOffset
= calculateTailClippingOffset(IsNonVirtualBaseType
);
954 auto Tail
= CharUnits::Zero();
955 for (const auto &M
: Members
) {
956 // Only members with data could possibly overlap.
960 assert(M
.Offset
>= Tail
&& "Bitfield access unit is not clipped");
961 Tail
= M
.Offset
+ getSize(M
.Data
);
962 assert((Tail
<= ScissorOffset
|| M
.Offset
>= ScissorOffset
) &&
963 "Bitfield straddles scissor offset");
968 void CGRecordLowering::determinePacked(bool NVBaseType
) {
971 CharUnits Alignment
= CharUnits::One();
972 CharUnits NVAlignment
= CharUnits::One();
974 !NVBaseType
&& RD
? Layout
.getNonVirtualSize() : CharUnits::Zero();
975 for (std::vector
<MemberInfo
>::const_iterator Member
= Members
.begin(),
976 MemberEnd
= Members
.end();
977 Member
!= MemberEnd
; ++Member
) {
980 // If any member falls at an offset that it not a multiple of its alignment,
981 // then the entire record must be packed.
982 if (Member
->Offset
% getAlignment(Member
->Data
))
984 if (Member
->Offset
< NVSize
)
985 NVAlignment
= std::max(NVAlignment
, getAlignment(Member
->Data
));
986 Alignment
= std::max(Alignment
, getAlignment(Member
->Data
));
988 // If the size of the record (the capstone's offset) is not a multiple of the
989 // record's alignment, it must be packed.
990 if (Members
.back().Offset
% Alignment
)
992 // If the non-virtual sub-object is not a multiple of the non-virtual
993 // sub-object's alignment, it must be packed. We cannot have a packed
994 // non-virtual sub-object and an unpacked complete object or vise versa.
995 if (NVSize
% NVAlignment
)
997 // Update the alignment of the sentinel.
999 Members
.back().Data
= getIntNType(Context
.toBits(Alignment
));
1002 void CGRecordLowering::insertPadding() {
1003 std::vector
<std::pair
<CharUnits
, CharUnits
> > Padding
;
1004 CharUnits Size
= CharUnits::Zero();
1005 for (std::vector
<MemberInfo
>::const_iterator Member
= Members
.begin(),
1006 MemberEnd
= Members
.end();
1007 Member
!= MemberEnd
; ++Member
) {
1010 CharUnits Offset
= Member
->Offset
;
1011 assert(Offset
>= Size
);
1012 // Insert padding if we need to.
1014 Size
.alignTo(Packed
? CharUnits::One() : getAlignment(Member
->Data
)))
1015 Padding
.push_back(std::make_pair(Size
, Offset
- Size
));
1016 Size
= Offset
+ getSize(Member
->Data
);
1018 if (Padding
.empty())
1020 // Add the padding to the Members list and sort it.
1021 for (std::vector
<std::pair
<CharUnits
, CharUnits
> >::const_iterator
1022 Pad
= Padding
.begin(), PadEnd
= Padding
.end();
1023 Pad
!= PadEnd
; ++Pad
)
1024 Members
.push_back(StorageInfo(Pad
->first
, getByteArrayType(Pad
->second
)));
1025 llvm::stable_sort(Members
);
1028 void CGRecordLowering::fillOutputFields() {
1029 for (std::vector
<MemberInfo
>::const_iterator Member
= Members
.begin(),
1030 MemberEnd
= Members
.end();
1031 Member
!= MemberEnd
; ++Member
) {
1033 FieldTypes
.push_back(Member
->Data
);
1034 if (Member
->Kind
== MemberInfo::Field
) {
1036 Fields
[Member
->FD
->getCanonicalDecl()] = FieldTypes
.size() - 1;
1037 // A field without storage must be a bitfield.
1039 setBitFieldInfo(Member
->FD
, Member
->Offset
, FieldTypes
.back());
1040 } else if (Member
->Kind
== MemberInfo::Base
)
1041 NonVirtualBases
[Member
->RD
] = FieldTypes
.size() - 1;
1042 else if (Member
->Kind
== MemberInfo::VBase
)
1043 VirtualBases
[Member
->RD
] = FieldTypes
.size() - 1;
1047 CGBitFieldInfo
CGBitFieldInfo::MakeInfo(CodeGenTypes
&Types
,
1048 const FieldDecl
*FD
,
1049 uint64_t Offset
, uint64_t Size
,
1050 uint64_t StorageSize
,
1051 CharUnits StorageOffset
) {
1052 // This function is vestigial from CGRecordLayoutBuilder days but is still
1053 // used in GCObjCRuntime.cpp. That usage has a "fixme" attached to it that
1054 // when addressed will allow for the removal of this function.
1055 llvm::Type
*Ty
= Types
.ConvertTypeForMem(FD
->getType());
1056 CharUnits TypeSizeInBytes
=
1057 CharUnits::fromQuantity(Types
.getDataLayout().getTypeAllocSize(Ty
));
1058 uint64_t TypeSizeInBits
= Types
.getContext().toBits(TypeSizeInBytes
);
1060 bool IsSigned
= FD
->getType()->isSignedIntegerOrEnumerationType();
1062 if (Size
> TypeSizeInBits
) {
1063 // We have a wide bit-field. The extra bits are only used for padding, so
1064 // if we have a bitfield of type T, with size N:
1068 // We can just assume that it's:
1072 Size
= TypeSizeInBits
;
1075 // Reverse the bit offsets for big endian machines. Because we represent
1076 // a bitfield as a single large integer load, we can imagine the bits
1077 // counting from the most-significant-bit instead of the
1078 // least-significant-bit.
1079 if (Types
.getDataLayout().isBigEndian()) {
1080 Offset
= StorageSize
- (Offset
+ Size
);
1083 return CGBitFieldInfo(Offset
, Size
, IsSigned
, StorageSize
, StorageOffset
);
1086 std::unique_ptr
<CGRecordLayout
>
1087 CodeGenTypes::ComputeRecordLayout(const RecordDecl
*D
, llvm::StructType
*Ty
) {
1088 CGRecordLowering
Builder(*this, D
, /*Packed=*/false);
1090 Builder
.lower(/*NonVirtualBaseType=*/false);
1092 // If we're in C++, compute the base subobject type.
1093 llvm::StructType
*BaseTy
= nullptr;
1094 if (isa
<CXXRecordDecl
>(D
)) {
1096 if (Builder
.Layout
.getNonVirtualSize() != Builder
.Layout
.getSize()) {
1097 CGRecordLowering
BaseBuilder(*this, D
, /*Packed=*/Builder
.Packed
);
1098 BaseBuilder
.lower(/*NonVirtualBaseType=*/true);
1099 BaseTy
= llvm::StructType::create(
1100 getLLVMContext(), BaseBuilder
.FieldTypes
, "", BaseBuilder
.Packed
);
1101 addRecordTypeName(D
, BaseTy
, ".base");
1102 // BaseTy and Ty must agree on their packedness for getLLVMFieldNo to work
1103 // on both of them with the same index.
1104 assert(Builder
.Packed
== BaseBuilder
.Packed
&&
1105 "Non-virtual and complete types must agree on packedness");
1109 // Fill in the struct *after* computing the base type. Filling in the body
1110 // signifies that the type is no longer opaque and record layout is complete,
1111 // but we may need to recursively layout D while laying D out as a base type.
1112 Ty
->setBody(Builder
.FieldTypes
, Builder
.Packed
);
1114 auto RL
= std::make_unique
<CGRecordLayout
>(
1115 Ty
, BaseTy
, (bool)Builder
.IsZeroInitializable
,
1116 (bool)Builder
.IsZeroInitializableAsBase
);
1118 RL
->NonVirtualBases
.swap(Builder
.NonVirtualBases
);
1119 RL
->CompleteObjectVirtualBases
.swap(Builder
.VirtualBases
);
1121 // Add all the field numbers.
1122 RL
->FieldInfo
.swap(Builder
.Fields
);
1124 // Add bitfield info.
1125 RL
->BitFields
.swap(Builder
.BitFields
);
1127 // Dump the layout, if requested.
1128 if (getContext().getLangOpts().DumpRecordLayouts
) {
1129 llvm::outs() << "\n*** Dumping IRgen Record Layout\n";
1130 llvm::outs() << "Record: ";
1131 D
->dump(llvm::outs());
1132 llvm::outs() << "\nLayout: ";
1133 RL
->print(llvm::outs());
1137 // Verify that the computed LLVM struct size matches the AST layout size.
1138 const ASTRecordLayout
&Layout
= getContext().getASTRecordLayout(D
);
1140 uint64_t TypeSizeInBits
= getContext().toBits(Layout
.getSize());
1141 assert(TypeSizeInBits
== getDataLayout().getTypeAllocSizeInBits(Ty
) &&
1142 "Type size mismatch!");
1145 CharUnits NonVirtualSize
= Layout
.getNonVirtualSize();
1147 uint64_t AlignedNonVirtualTypeSizeInBits
=
1148 getContext().toBits(NonVirtualSize
);
1150 assert(AlignedNonVirtualTypeSizeInBits
==
1151 getDataLayout().getTypeAllocSizeInBits(BaseTy
) &&
1152 "Type size mismatch!");
1155 // Verify that the LLVM and AST field offsets agree.
1156 llvm::StructType
*ST
= RL
->getLLVMType();
1157 const llvm::StructLayout
*SL
= getDataLayout().getStructLayout(ST
);
1159 const ASTRecordLayout
&AST_RL
= getContext().getASTRecordLayout(D
);
1160 RecordDecl::field_iterator it
= D
->field_begin();
1161 for (unsigned i
= 0, e
= AST_RL
.getFieldCount(); i
!= e
; ++i
, ++it
) {
1162 const FieldDecl
*FD
= *it
;
1164 // Ignore zero-sized fields.
1165 if (isEmptyFieldForLayout(getContext(), FD
))
1168 // For non-bit-fields, just check that the LLVM struct offset matches the
1170 if (!FD
->isBitField()) {
1171 unsigned FieldNo
= RL
->getLLVMFieldNo(FD
);
1172 assert(AST_RL
.getFieldOffset(i
) == SL
->getElementOffsetInBits(FieldNo
) &&
1173 "Invalid field offset!");
1177 // Ignore unnamed bit-fields.
1178 if (!FD
->getDeclName())
1181 const CGBitFieldInfo
&Info
= RL
->getBitFieldInfo(FD
);
1182 llvm::Type
*ElementTy
= ST
->getTypeAtIndex(RL
->getLLVMFieldNo(FD
));
1184 // Unions have overlapping elements dictating their layout, but for
1185 // non-unions we can verify that this section of the layout is the exact
1188 // For unions we verify that the start is zero and the size
1189 // is in-bounds. However, on BE systems, the offset may be non-zero, but
1190 // the size + offset should match the storage size in that case as it
1191 // "starts" at the back.
1192 if (getDataLayout().isBigEndian())
1193 assert(static_cast<unsigned>(Info
.Offset
+ Info
.Size
) ==
1195 "Big endian union bitfield does not end at the back");
1197 assert(Info
.Offset
== 0 &&
1198 "Little endian union bitfield with a non-zero offset");
1199 assert(Info
.StorageSize
<= SL
->getSizeInBits() &&
1200 "Union not large enough for bitfield storage");
1202 assert((Info
.StorageSize
==
1203 getDataLayout().getTypeAllocSizeInBits(ElementTy
) ||
1204 Info
.VolatileStorageSize
==
1205 getDataLayout().getTypeAllocSizeInBits(ElementTy
)) &&
1206 "Storage size does not match the element type size");
1208 assert(Info
.Size
> 0 && "Empty bitfield!");
1209 assert(static_cast<unsigned>(Info
.Offset
) + Info
.Size
<= Info
.StorageSize
&&
1210 "Bitfield outside of its allocated storage");
1217 void CGRecordLayout::print(raw_ostream
&OS
) const {
1218 OS
<< "<CGRecordLayout\n";
1219 OS
<< " LLVMType:" << *CompleteObjectType
<< "\n";
1220 if (BaseSubobjectType
)
1221 OS
<< " NonVirtualBaseLLVMType:" << *BaseSubobjectType
<< "\n";
1222 OS
<< " IsZeroInitializable:" << IsZeroInitializable
<< "\n";
1223 OS
<< " BitFields:[\n";
1225 // Print bit-field infos in declaration order.
1226 std::vector
<std::pair
<unsigned, const CGBitFieldInfo
*> > BFIs
;
1227 for (llvm::DenseMap
<const FieldDecl
*, CGBitFieldInfo
>::const_iterator
1228 it
= BitFields
.begin(), ie
= BitFields
.end();
1230 const RecordDecl
*RD
= it
->first
->getParent();
1232 for (RecordDecl::field_iterator
1233 it2
= RD
->field_begin(); *it2
!= it
->first
; ++it2
)
1235 BFIs
.push_back(std::make_pair(Index
, &it
->second
));
1237 llvm::array_pod_sort(BFIs
.begin(), BFIs
.end());
1238 for (unsigned i
= 0, e
= BFIs
.size(); i
!= e
; ++i
) {
1240 BFIs
[i
].second
->print(OS
);
1247 LLVM_DUMP_METHOD
void CGRecordLayout::dump() const {
1248 print(llvm::errs());
1251 void CGBitFieldInfo::print(raw_ostream
&OS
) const {
1252 OS
<< "<CGBitFieldInfo"
1253 << " Offset:" << Offset
<< " Size:" << Size
<< " IsSigned:" << IsSigned
1254 << " StorageSize:" << StorageSize
1255 << " StorageOffset:" << StorageOffset
.getQuantity()
1256 << " VolatileOffset:" << VolatileOffset
1257 << " VolatileStorageSize:" << VolatileStorageSize
1258 << " VolatileStorageOffset:" << VolatileStorageOffset
.getQuantity() << ">";
1261 LLVM_DUMP_METHOD
void CGBitFieldInfo::dump() const {
1262 print(llvm::errs());