1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This coordinates the per-function state used while generating code.
11 //===----------------------------------------------------------------------===//
13 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetBuiltins.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/CodeGen/CGFunctionInfo.h"
37 #include "clang/Frontend/FrontendDiagnostic.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/FPEnv.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/Support/CRC.h"
48 #include "llvm/Support/xxhash.h"
49 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
50 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
53 using namespace clang
;
54 using namespace CodeGen
;
57 extern cl::opt
<bool> EnableSingleByteCoverage
;
60 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
62 static bool shouldEmitLifetimeMarkers(const CodeGenOptions
&CGOpts
,
63 const LangOptions
&LangOpts
) {
64 if (CGOpts
.DisableLifetimeMarkers
)
67 // Sanitizers may use markers.
68 if (CGOpts
.SanitizeAddressUseAfterScope
||
69 LangOpts
.Sanitize
.has(SanitizerKind::HWAddress
) ||
70 LangOpts
.Sanitize
.has(SanitizerKind::Memory
))
73 // For now, only in optimized builds.
74 return CGOpts
.OptimizationLevel
!= 0;
77 CodeGenFunction::CodeGenFunction(CodeGenModule
&cgm
, bool suppressNewContext
)
78 : CodeGenTypeCache(cgm
), CGM(cgm
), Target(cgm
.getTarget()),
79 Builder(cgm
, cgm
.getModule().getContext(), llvm::ConstantFolder(),
80 CGBuilderInserterTy(this)),
81 SanOpts(CGM
.getLangOpts().Sanitize
), CurFPFeatures(CGM
.getLangOpts()),
82 DebugInfo(CGM
.getModuleDebugInfo()), PGO(cgm
),
83 ShouldEmitLifetimeMarkers(
84 shouldEmitLifetimeMarkers(CGM
.getCodeGenOpts(), CGM
.getLangOpts())) {
85 if (!suppressNewContext
)
86 CGM
.getCXXABI().getMangleContext().startNewFunction();
89 SetFastMathFlags(CurFPFeatures
);
92 CodeGenFunction::~CodeGenFunction() {
93 assert(LifetimeExtendedCleanupStack
.empty() && "failed to emit a cleanup");
94 assert(DeferredDeactivationCleanupStack
.empty() &&
95 "missed to deactivate a cleanup");
97 if (getLangOpts().OpenMP
&& CurFn
)
98 CGM
.getOpenMPRuntime().functionFinished(*this);
100 // If we have an OpenMPIRBuilder we want to finalize functions (incl.
101 // outlining etc) at some point. Doing it once the function codegen is done
102 // seems to be a reasonable spot. We do it here, as opposed to the deletion
103 // time of the CodeGenModule, because we have to ensure the IR has not yet
104 // been "emitted" to the outside, thus, modifications are still sensible.
105 if (CGM
.getLangOpts().OpenMPIRBuilder
&& CurFn
)
106 CGM
.getOpenMPRuntime().getOMPBuilder().finalize(CurFn
);
109 // Map the LangOption for exception behavior into
110 // the corresponding enum in the IR.
111 llvm::fp::ExceptionBehavior
112 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind
) {
115 case LangOptions::FPE_Ignore
: return llvm::fp::ebIgnore
;
116 case LangOptions::FPE_MayTrap
: return llvm::fp::ebMayTrap
;
117 case LangOptions::FPE_Strict
: return llvm::fp::ebStrict
;
119 llvm_unreachable("Unsupported FP Exception Behavior");
123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures
) {
124 llvm::FastMathFlags FMF
;
125 FMF
.setAllowReassoc(FPFeatures
.getAllowFPReassociate());
126 FMF
.setNoNaNs(FPFeatures
.getNoHonorNaNs());
127 FMF
.setNoInfs(FPFeatures
.getNoHonorInfs());
128 FMF
.setNoSignedZeros(FPFeatures
.getNoSignedZero());
129 FMF
.setAllowReciprocal(FPFeatures
.getAllowReciprocal());
130 FMF
.setApproxFunc(FPFeatures
.getAllowApproxFunc());
131 FMF
.setAllowContract(FPFeatures
.allowFPContractAcrossStatement());
132 Builder
.setFastMathFlags(FMF
);
135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction
&CGF
,
138 ConstructorHelper(E
->getFPFeaturesInEffect(CGF
.getLangOpts()));
141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction
&CGF
,
142 FPOptions FPFeatures
)
144 ConstructorHelper(FPFeatures
);
147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures
) {
148 OldFPFeatures
= CGF
.CurFPFeatures
;
149 CGF
.CurFPFeatures
= FPFeatures
;
151 OldExcept
= CGF
.Builder
.getDefaultConstrainedExcept();
152 OldRounding
= CGF
.Builder
.getDefaultConstrainedRounding();
154 if (OldFPFeatures
== FPFeatures
)
157 FMFGuard
.emplace(CGF
.Builder
);
159 llvm::RoundingMode NewRoundingBehavior
= FPFeatures
.getRoundingMode();
160 CGF
.Builder
.setDefaultConstrainedRounding(NewRoundingBehavior
);
161 auto NewExceptionBehavior
=
162 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind
>(
163 FPFeatures
.getExceptionMode()));
164 CGF
.Builder
.setDefaultConstrainedExcept(NewExceptionBehavior
);
166 CGF
.SetFastMathFlags(FPFeatures
);
168 assert((CGF
.CurFuncDecl
== nullptr || CGF
.Builder
.getIsFPConstrained() ||
169 isa
<CXXConstructorDecl
>(CGF
.CurFuncDecl
) ||
170 isa
<CXXDestructorDecl
>(CGF
.CurFuncDecl
) ||
171 (NewExceptionBehavior
== llvm::fp::ebIgnore
&&
172 NewRoundingBehavior
== llvm::RoundingMode::NearestTiesToEven
)) &&
173 "FPConstrained should be enabled on entire function");
175 auto mergeFnAttrValue
= [&](StringRef Name
, bool Value
) {
177 CGF
.CurFn
->getFnAttribute(Name
).getValueAsBool();
178 auto NewValue
= OldValue
& Value
;
179 if (OldValue
!= NewValue
)
180 CGF
.CurFn
->addFnAttr(Name
, llvm::toStringRef(NewValue
));
182 mergeFnAttrValue("no-infs-fp-math", FPFeatures
.getNoHonorInfs());
183 mergeFnAttrValue("no-nans-fp-math", FPFeatures
.getNoHonorNaNs());
184 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures
.getNoSignedZero());
187 FPFeatures
.getAllowFPReassociate() && FPFeatures
.getAllowReciprocal() &&
188 FPFeatures
.getAllowApproxFunc() && FPFeatures
.getNoSignedZero() &&
189 FPFeatures
.allowFPContractAcrossStatement());
192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
193 CGF
.CurFPFeatures
= OldFPFeatures
;
194 CGF
.Builder
.setDefaultConstrainedExcept(OldExcept
);
195 CGF
.Builder
.setDefaultConstrainedRounding(OldRounding
);
199 makeNaturalAlignAddrLValue(llvm::Value
*V
, QualType T
, bool ForPointeeType
,
200 bool MightBeSigned
, CodeGenFunction
&CGF
,
201 KnownNonNull_t IsKnownNonNull
= NotKnownNonNull
) {
202 LValueBaseInfo BaseInfo
;
203 TBAAAccessInfo TBAAInfo
;
204 CharUnits Alignment
=
205 CGF
.CGM
.getNaturalTypeAlignment(T
, &BaseInfo
, &TBAAInfo
, ForPointeeType
);
208 ? CGF
.makeNaturalAddressForPointer(V
, T
, Alignment
, false, nullptr,
209 nullptr, IsKnownNonNull
)
210 : Address(V
, CGF
.ConvertTypeForMem(T
), Alignment
, IsKnownNonNull
);
211 return CGF
.MakeAddrLValue(Addr
, T
, BaseInfo
, TBAAInfo
);
215 CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value
*V
, QualType T
,
216 KnownNonNull_t IsKnownNonNull
) {
217 return ::makeNaturalAlignAddrLValue(V
, T
, /*ForPointeeType*/ false,
218 /*MightBeSigned*/ true, *this,
223 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value
*V
, QualType T
) {
224 return ::makeNaturalAlignAddrLValue(V
, T
, /*ForPointeeType*/ true,
225 /*MightBeSigned*/ true, *this);
228 LValue
CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value
*V
,
230 return ::makeNaturalAlignAddrLValue(V
, T
, /*ForPointeeType*/ false,
231 /*MightBeSigned*/ false, *this);
234 LValue
CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value
*V
,
236 return ::makeNaturalAlignAddrLValue(V
, T
, /*ForPointeeType*/ true,
237 /*MightBeSigned*/ false, *this);
240 llvm::Type
*CodeGenFunction::ConvertTypeForMem(QualType T
) {
241 return CGM
.getTypes().ConvertTypeForMem(T
);
244 llvm::Type
*CodeGenFunction::ConvertType(QualType T
) {
245 return CGM
.getTypes().ConvertType(T
);
248 llvm::Type
*CodeGenFunction::convertTypeForLoadStore(QualType ASTTy
,
249 llvm::Type
*LLVMTy
) {
250 return CGM
.getTypes().convertTypeForLoadStore(ASTTy
, LLVMTy
);
253 TypeEvaluationKind
CodeGenFunction::getEvaluationKind(QualType type
) {
254 type
= type
.getCanonicalType();
256 switch (type
->getTypeClass()) {
257 #define TYPE(name, parent)
258 #define ABSTRACT_TYPE(name, parent)
259 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
260 #define DEPENDENT_TYPE(name, parent) case Type::name:
261 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
262 #include "clang/AST/TypeNodes.inc"
263 llvm_unreachable("non-canonical or dependent type in IR-generation");
266 case Type::DeducedTemplateSpecialization
:
267 llvm_unreachable("undeduced type in IR-generation");
269 // Various scalar types.
272 case Type::BlockPointer
:
273 case Type::LValueReference
:
274 case Type::RValueReference
:
275 case Type::MemberPointer
:
277 case Type::ExtVector
:
278 case Type::ConstantMatrix
:
279 case Type::FunctionProto
:
280 case Type::FunctionNoProto
:
282 case Type::ObjCObjectPointer
:
291 // Arrays, records, and Objective-C objects.
292 case Type::ConstantArray
:
293 case Type::IncompleteArray
:
294 case Type::VariableArray
:
296 case Type::ObjCObject
:
297 case Type::ObjCInterface
:
298 case Type::ArrayParameter
:
299 return TEK_Aggregate
;
301 // We operate on atomic values according to their underlying type.
303 type
= cast
<AtomicType
>(type
)->getValueType();
306 llvm_unreachable("unknown type kind!");
310 llvm::DebugLoc
CodeGenFunction::EmitReturnBlock() {
311 // For cleanliness, we try to avoid emitting the return block for
313 llvm::BasicBlock
*CurBB
= Builder
.GetInsertBlock();
316 assert(!CurBB
->getTerminator() && "Unexpected terminated block.");
318 // We have a valid insert point, reuse it if it is empty or there are no
319 // explicit jumps to the return block.
320 if (CurBB
->empty() || ReturnBlock
.getBlock()->use_empty()) {
321 ReturnBlock
.getBlock()->replaceAllUsesWith(CurBB
);
322 delete ReturnBlock
.getBlock();
323 ReturnBlock
= JumpDest();
325 EmitBlock(ReturnBlock
.getBlock());
326 return llvm::DebugLoc();
329 // Otherwise, if the return block is the target of a single direct
330 // branch then we can just put the code in that block instead. This
331 // cleans up functions which started with a unified return block.
332 if (ReturnBlock
.getBlock()->hasOneUse()) {
333 llvm::BranchInst
*BI
=
334 dyn_cast
<llvm::BranchInst
>(*ReturnBlock
.getBlock()->user_begin());
335 if (BI
&& BI
->isUnconditional() &&
336 BI
->getSuccessor(0) == ReturnBlock
.getBlock()) {
337 // Record/return the DebugLoc of the simple 'return' expression to be used
338 // later by the actual 'ret' instruction.
339 llvm::DebugLoc Loc
= BI
->getDebugLoc();
340 Builder
.SetInsertPoint(BI
->getParent());
341 BI
->eraseFromParent();
342 delete ReturnBlock
.getBlock();
343 ReturnBlock
= JumpDest();
348 // FIXME: We are at an unreachable point, there is no reason to emit the block
349 // unless it has uses. However, we still need a place to put the debug
350 // region.end for now.
352 EmitBlock(ReturnBlock
.getBlock());
353 return llvm::DebugLoc();
356 static void EmitIfUsed(CodeGenFunction
&CGF
, llvm::BasicBlock
*BB
) {
358 if (!BB
->use_empty()) {
359 CGF
.CurFn
->insert(CGF
.CurFn
->end(), BB
);
365 void CodeGenFunction::FinishFunction(SourceLocation EndLoc
) {
366 assert(BreakContinueStack
.empty() &&
367 "mismatched push/pop in break/continue stack!");
368 assert(LifetimeExtendedCleanupStack
.empty() &&
369 "mismatched push/pop of cleanups in EHStack!");
370 assert(DeferredDeactivationCleanupStack
.empty() &&
371 "mismatched activate/deactivate of cleanups!");
373 if (CGM
.shouldEmitConvergenceTokens()) {
374 ConvergenceTokenStack
.pop_back();
375 assert(ConvergenceTokenStack
.empty() &&
376 "mismatched push/pop in convergence stack!");
379 bool OnlySimpleReturnStmts
= NumSimpleReturnExprs
> 0
380 && NumSimpleReturnExprs
== NumReturnExprs
381 && ReturnBlock
.getBlock()->use_empty();
382 // Usually the return expression is evaluated before the cleanup
383 // code. If the function contains only a simple return statement,
384 // such as a constant, the location before the cleanup code becomes
385 // the last useful breakpoint in the function, because the simple
386 // return expression will be evaluated after the cleanup code. To be
387 // safe, set the debug location for cleanup code to the location of
388 // the return statement. Otherwise the cleanup code should be at the
389 // end of the function's lexical scope.
391 // If there are multiple branches to the return block, the branch
392 // instructions will get the location of the return statements and
394 if (CGDebugInfo
*DI
= getDebugInfo()) {
395 if (OnlySimpleReturnStmts
)
396 DI
->EmitLocation(Builder
, LastStopPoint
);
398 DI
->EmitLocation(Builder
, EndLoc
);
401 // Pop any cleanups that might have been associated with the
402 // parameters. Do this in whatever block we're currently in; it's
403 // important to do this before we enter the return block or return
404 // edges will be *really* confused.
405 bool HasCleanups
= EHStack
.stable_begin() != PrologueCleanupDepth
;
406 bool HasOnlyLifetimeMarkers
=
407 HasCleanups
&& EHStack
.containsOnlyLifetimeMarkers(PrologueCleanupDepth
);
408 bool EmitRetDbgLoc
= !HasCleanups
|| HasOnlyLifetimeMarkers
;
410 std::optional
<ApplyDebugLocation
> OAL
;
412 // Make sure the line table doesn't jump back into the body for
413 // the ret after it's been at EndLoc.
414 if (CGDebugInfo
*DI
= getDebugInfo()) {
415 if (OnlySimpleReturnStmts
)
416 DI
->EmitLocation(Builder
, EndLoc
);
418 // We may not have a valid end location. Try to apply it anyway, and
419 // fall back to an artificial location if needed.
420 OAL
= ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc
);
423 PopCleanupBlocks(PrologueCleanupDepth
);
426 // Emit function epilog (to return).
427 llvm::DebugLoc Loc
= EmitReturnBlock();
429 if (ShouldInstrumentFunction()) {
430 if (CGM
.getCodeGenOpts().InstrumentFunctions
)
431 CurFn
->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
432 if (CGM
.getCodeGenOpts().InstrumentFunctionsAfterInlining
)
433 CurFn
->addFnAttr("instrument-function-exit-inlined",
434 "__cyg_profile_func_exit");
437 // Emit debug descriptor for function end.
438 if (CGDebugInfo
*DI
= getDebugInfo())
439 DI
->EmitFunctionEnd(Builder
, CurFn
);
441 // Reset the debug location to that of the simple 'return' expression, if any
442 // rather than that of the end of the function's scope '}'.
443 ApplyDebugLocation
AL(*this, Loc
);
444 EmitFunctionEpilog(*CurFnInfo
, EmitRetDbgLoc
, EndLoc
);
445 EmitEndEHSpec(CurCodeDecl
);
447 assert(EHStack
.empty() &&
448 "did not remove all scopes from cleanup stack!");
450 // If someone did an indirect goto, emit the indirect goto block at the end of
452 if (IndirectBranch
) {
453 EmitBlock(IndirectBranch
->getParent());
454 Builder
.ClearInsertionPoint();
457 // If some of our locals escaped, insert a call to llvm.localescape in the
459 if (!EscapedLocals
.empty()) {
460 // Invert the map from local to index into a simple vector. There should be
462 SmallVector
<llvm::Value
*, 4> EscapeArgs
;
463 EscapeArgs
.resize(EscapedLocals
.size());
464 for (auto &Pair
: EscapedLocals
)
465 EscapeArgs
[Pair
.second
] = Pair
.first
;
466 llvm::Function
*FrameEscapeFn
= llvm::Intrinsic::getDeclaration(
467 &CGM
.getModule(), llvm::Intrinsic::localescape
);
468 CGBuilderTy(*this, AllocaInsertPt
).CreateCall(FrameEscapeFn
, EscapeArgs
);
471 // Remove the AllocaInsertPt instruction, which is just a convenience for us.
472 llvm::Instruction
*Ptr
= AllocaInsertPt
;
473 AllocaInsertPt
= nullptr;
474 Ptr
->eraseFromParent();
476 // PostAllocaInsertPt, if created, was lazily created when it was required,
477 // remove it now since it was just created for our own convenience.
478 if (PostAllocaInsertPt
) {
479 llvm::Instruction
*PostPtr
= PostAllocaInsertPt
;
480 PostAllocaInsertPt
= nullptr;
481 PostPtr
->eraseFromParent();
484 // If someone took the address of a label but never did an indirect goto, we
485 // made a zero entry PHI node, which is illegal, zap it now.
486 if (IndirectBranch
) {
487 llvm::PHINode
*PN
= cast
<llvm::PHINode
>(IndirectBranch
->getAddress());
488 if (PN
->getNumIncomingValues() == 0) {
489 PN
->replaceAllUsesWith(llvm::UndefValue::get(PN
->getType()));
490 PN
->eraseFromParent();
494 EmitIfUsed(*this, EHResumeBlock
);
495 EmitIfUsed(*this, TerminateLandingPad
);
496 EmitIfUsed(*this, TerminateHandler
);
497 EmitIfUsed(*this, UnreachableBlock
);
499 for (const auto &FuncletAndParent
: TerminateFunclets
)
500 EmitIfUsed(*this, FuncletAndParent
.second
);
502 if (CGM
.getCodeGenOpts().EmitDeclMetadata
)
505 for (const auto &R
: DeferredReplacements
) {
506 if (llvm::Value
*Old
= R
.first
) {
507 Old
->replaceAllUsesWith(R
.second
);
508 cast
<llvm::Instruction
>(Old
)->eraseFromParent();
511 DeferredReplacements
.clear();
513 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
514 // PHIs if the current function is a coroutine. We don't do it for all
515 // functions as it may result in slight increase in numbers of instructions
516 // if compiled with no optimizations. We do it for coroutine as the lifetime
517 // of CleanupDestSlot alloca make correct coroutine frame building very
519 if (NormalCleanupDest
.isValid() && isCoroutine()) {
520 llvm::DominatorTree
DT(*CurFn
);
521 llvm::PromoteMemToReg(
522 cast
<llvm::AllocaInst
>(NormalCleanupDest
.getPointer()), DT
);
523 NormalCleanupDest
= Address::invalid();
526 // Scan function arguments for vector width.
527 for (llvm::Argument
&A
: CurFn
->args())
528 if (auto *VT
= dyn_cast
<llvm::VectorType
>(A
.getType()))
530 std::max((uint64_t)LargestVectorWidth
,
531 VT
->getPrimitiveSizeInBits().getKnownMinValue());
533 // Update vector width based on return type.
534 if (auto *VT
= dyn_cast
<llvm::VectorType
>(CurFn
->getReturnType()))
536 std::max((uint64_t)LargestVectorWidth
,
537 VT
->getPrimitiveSizeInBits().getKnownMinValue());
539 if (CurFnInfo
->getMaxVectorWidth() > LargestVectorWidth
)
540 LargestVectorWidth
= CurFnInfo
->getMaxVectorWidth();
542 // Add the min-legal-vector-width attribute. This contains the max width from:
543 // 1. min-vector-width attribute used in the source program.
544 // 2. Any builtins used that have a vector width specified.
545 // 3. Values passed in and out of inline assembly.
546 // 4. Width of vector arguments and return types for this function.
547 // 5. Width of vector arguments and return types for functions called by this
549 if (getContext().getTargetInfo().getTriple().isX86())
550 CurFn
->addFnAttr("min-legal-vector-width",
551 llvm::utostr(LargestVectorWidth
));
553 // Add vscale_range attribute if appropriate.
554 std::optional
<std::pair
<unsigned, unsigned>> VScaleRange
=
555 getContext().getTargetInfo().getVScaleRange(getLangOpts());
557 CurFn
->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
558 getLLVMContext(), VScaleRange
->first
, VScaleRange
->second
));
561 // If we generated an unreachable return block, delete it now.
562 if (ReturnBlock
.isValid() && ReturnBlock
.getBlock()->use_empty()) {
563 Builder
.ClearInsertionPoint();
564 ReturnBlock
.getBlock()->eraseFromParent();
566 if (ReturnValue
.isValid()) {
568 dyn_cast
<llvm::AllocaInst
>(ReturnValue
.emitRawPointer(*this));
569 if (RetAlloca
&& RetAlloca
->use_empty()) {
570 RetAlloca
->eraseFromParent();
571 ReturnValue
= Address::invalid();
576 /// ShouldInstrumentFunction - Return true if the current function should be
577 /// instrumented with __cyg_profile_func_* calls
578 bool CodeGenFunction::ShouldInstrumentFunction() {
579 if (!CGM
.getCodeGenOpts().InstrumentFunctions
&&
580 !CGM
.getCodeGenOpts().InstrumentFunctionsAfterInlining
&&
581 !CGM
.getCodeGenOpts().InstrumentFunctionEntryBare
)
583 if (!CurFuncDecl
|| CurFuncDecl
->hasAttr
<NoInstrumentFunctionAttr
>())
588 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
591 return CurFuncDecl
->hasAttr
<DisableSanitizerInstrumentationAttr
>();
594 /// ShouldXRayInstrument - Return true if the current function should be
595 /// instrumented with XRay nop sleds.
596 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
597 return CGM
.getCodeGenOpts().XRayInstrumentFunctions
;
600 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
601 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
602 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
603 return CGM
.getCodeGenOpts().XRayInstrumentFunctions
&&
604 (CGM
.getCodeGenOpts().XRayAlwaysEmitCustomEvents
||
605 CGM
.getCodeGenOpts().XRayInstrumentationBundle
.Mask
==
606 XRayInstrKind::Custom
);
609 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
610 return CGM
.getCodeGenOpts().XRayInstrumentFunctions
&&
611 (CGM
.getCodeGenOpts().XRayAlwaysEmitTypedEvents
||
612 CGM
.getCodeGenOpts().XRayInstrumentationBundle
.Mask
==
613 XRayInstrKind::Typed
);
617 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty
) const {
618 // Remove any (C++17) exception specifications, to allow calling e.g. a
619 // noexcept function through a non-noexcept pointer.
620 if (!Ty
->isFunctionNoProtoType())
621 Ty
= getContext().getFunctionTypeWithExceptionSpec(Ty
, EST_None
);
623 llvm::raw_string_ostream
Out(Mangled
);
624 CGM
.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty
, Out
, false);
625 return llvm::ConstantInt::get(
626 CGM
.Int32Ty
, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled
)));
629 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl
*FD
,
630 llvm::Function
*Fn
) {
631 if (!FD
->hasAttr
<OpenCLKernelAttr
>() && !FD
->hasAttr
<CUDAGlobalAttr
>())
634 llvm::LLVMContext
&Context
= getLLVMContext();
636 CGM
.GenKernelArgMetadata(Fn
, FD
, this);
638 if (!getLangOpts().OpenCL
)
641 if (const VecTypeHintAttr
*A
= FD
->getAttr
<VecTypeHintAttr
>()) {
642 QualType HintQTy
= A
->getTypeHint();
643 const ExtVectorType
*HintEltQTy
= HintQTy
->getAs
<ExtVectorType
>();
644 bool IsSignedInteger
=
645 HintQTy
->isSignedIntegerType() ||
646 (HintEltQTy
&& HintEltQTy
->getElementType()->isSignedIntegerType());
647 llvm::Metadata
*AttrMDArgs
[] = {
648 llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
649 CGM
.getTypes().ConvertType(A
->getTypeHint()))),
650 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
651 llvm::IntegerType::get(Context
, 32),
652 llvm::APInt(32, (uint64_t)(IsSignedInteger
? 1 : 0))))};
653 Fn
->setMetadata("vec_type_hint", llvm::MDNode::get(Context
, AttrMDArgs
));
656 if (const WorkGroupSizeHintAttr
*A
= FD
->getAttr
<WorkGroupSizeHintAttr
>()) {
657 llvm::Metadata
*AttrMDArgs
[] = {
658 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getXDim())),
659 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getYDim())),
660 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getZDim()))};
661 Fn
->setMetadata("work_group_size_hint", llvm::MDNode::get(Context
, AttrMDArgs
));
664 if (const ReqdWorkGroupSizeAttr
*A
= FD
->getAttr
<ReqdWorkGroupSizeAttr
>()) {
665 llvm::Metadata
*AttrMDArgs
[] = {
666 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getXDim())),
667 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getYDim())),
668 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getZDim()))};
669 Fn
->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context
, AttrMDArgs
));
672 if (const OpenCLIntelReqdSubGroupSizeAttr
*A
=
673 FD
->getAttr
<OpenCLIntelReqdSubGroupSizeAttr
>()) {
674 llvm::Metadata
*AttrMDArgs
[] = {
675 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getSubGroupSize()))};
676 Fn
->setMetadata("intel_reqd_sub_group_size",
677 llvm::MDNode::get(Context
, AttrMDArgs
));
681 /// Determine whether the function F ends with a return stmt.
682 static bool endsWithReturn(const Decl
* F
) {
683 const Stmt
*Body
= nullptr;
684 if (auto *FD
= dyn_cast_or_null
<FunctionDecl
>(F
))
685 Body
= FD
->getBody();
686 else if (auto *OMD
= dyn_cast_or_null
<ObjCMethodDecl
>(F
))
687 Body
= OMD
->getBody();
689 if (auto *CS
= dyn_cast_or_null
<CompoundStmt
>(Body
)) {
690 auto LastStmt
= CS
->body_rbegin();
691 if (LastStmt
!= CS
->body_rend())
692 return isa
<ReturnStmt
>(*LastStmt
);
697 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function
*Fn
) {
698 if (SanOpts
.has(SanitizerKind::Thread
)) {
699 Fn
->addFnAttr("sanitize_thread_no_checking_at_run_time");
700 Fn
->removeFnAttr(llvm::Attribute::SanitizeThread
);
704 /// Check if the return value of this function requires sanitization.
705 bool CodeGenFunction::requiresReturnValueCheck() const {
706 return requiresReturnValueNullabilityCheck() ||
707 (SanOpts
.has(SanitizerKind::ReturnsNonnullAttribute
) && CurCodeDecl
&&
708 CurCodeDecl
->getAttr
<ReturnsNonNullAttr
>());
711 static bool matchesStlAllocatorFn(const Decl
*D
, const ASTContext
&Ctx
) {
712 auto *MD
= dyn_cast_or_null
<CXXMethodDecl
>(D
);
713 if (!MD
|| !MD
->getDeclName().getAsIdentifierInfo() ||
714 !MD
->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
715 (MD
->getNumParams() != 1 && MD
->getNumParams() != 2))
718 if (MD
->parameters()[0]->getType().getCanonicalType() != Ctx
.getSizeType())
721 if (MD
->getNumParams() == 2) {
722 auto *PT
= MD
->parameters()[1]->getType()->getAs
<PointerType
>();
723 if (!PT
|| !PT
->isVoidPointerType() ||
724 !PT
->getPointeeType().isConstQualified())
731 bool CodeGenFunction::isInAllocaArgument(CGCXXABI
&ABI
, QualType Ty
) {
732 const CXXRecordDecl
*RD
= Ty
->getAsCXXRecordDecl();
733 return RD
&& ABI
.getRecordArgABI(RD
) == CGCXXABI::RAA_DirectInMemory
;
736 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl
*MD
) {
737 return getTarget().getTriple().getArch() == llvm::Triple::x86
&&
738 getTarget().getCXXABI().isMicrosoft() &&
739 llvm::any_of(MD
->parameters(), [&](ParmVarDecl
*P
) {
740 return isInAllocaArgument(CGM
.getCXXABI(), P
->getType());
744 /// Return the UBSan prologue signature for \p FD if one is available.
745 static llvm::Constant
*getPrologueSignature(CodeGenModule
&CGM
,
746 const FunctionDecl
*FD
) {
747 if (const auto *MD
= dyn_cast
<CXXMethodDecl
>(FD
))
750 return CGM
.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM
);
753 void CodeGenFunction::StartFunction(GlobalDecl GD
, QualType RetTy
,
755 const CGFunctionInfo
&FnInfo
,
756 const FunctionArgList
&Args
,
758 SourceLocation StartLoc
) {
760 "Do not use a CodeGenFunction object for more than one function");
762 const Decl
*D
= GD
.getDecl();
764 DidCallStackSave
= false;
766 const FunctionDecl
*FD
= dyn_cast_or_null
<FunctionDecl
>(D
);
767 if (FD
&& FD
->usesSEHTry())
769 CurFuncDecl
= (D
? D
->getNonClosureContext() : nullptr);
773 assert(CurFn
->isDeclaration() && "Function already has body?");
775 // If this function is ignored for any of the enabled sanitizers,
776 // disable the sanitizer for the function.
778 #define SANITIZER(NAME, ID) \
779 if (SanOpts.empty()) \
781 if (SanOpts.has(SanitizerKind::ID)) \
782 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \
783 SanOpts.set(SanitizerKind::ID, false);
785 #include "clang/Basic/Sanitizers.def"
790 const bool SanitizeBounds
= SanOpts
.hasOneOf(SanitizerKind::Bounds
);
791 SanitizerMask no_sanitize_mask
;
792 bool NoSanitizeCoverage
= false;
794 for (auto *Attr
: D
->specific_attrs
<NoSanitizeAttr
>()) {
795 no_sanitize_mask
|= Attr
->getMask();
796 // SanitizeCoverage is not handled by SanOpts.
797 if (Attr
->hasCoverage())
798 NoSanitizeCoverage
= true;
801 // Apply the no_sanitize* attributes to SanOpts.
802 SanOpts
.Mask
&= ~no_sanitize_mask
;
803 if (no_sanitize_mask
& SanitizerKind::Address
)
804 SanOpts
.set(SanitizerKind::KernelAddress
, false);
805 if (no_sanitize_mask
& SanitizerKind::KernelAddress
)
806 SanOpts
.set(SanitizerKind::Address
, false);
807 if (no_sanitize_mask
& SanitizerKind::HWAddress
)
808 SanOpts
.set(SanitizerKind::KernelHWAddress
, false);
809 if (no_sanitize_mask
& SanitizerKind::KernelHWAddress
)
810 SanOpts
.set(SanitizerKind::HWAddress
, false);
812 if (SanitizeBounds
&& !SanOpts
.hasOneOf(SanitizerKind::Bounds
))
813 Fn
->addFnAttr(llvm::Attribute::NoSanitizeBounds
);
815 if (NoSanitizeCoverage
&& CGM
.getCodeGenOpts().hasSanitizeCoverage())
816 Fn
->addFnAttr(llvm::Attribute::NoSanitizeCoverage
);
818 // Some passes need the non-negated no_sanitize attribute. Pass them on.
819 if (CGM
.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
820 if (no_sanitize_mask
& SanitizerKind::Thread
)
821 Fn
->addFnAttr("no_sanitize_thread");
825 if (ShouldSkipSanitizerInstrumentation()) {
826 CurFn
->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation
);
828 // Apply sanitizer attributes to the function.
829 if (SanOpts
.hasOneOf(SanitizerKind::Address
| SanitizerKind::KernelAddress
))
830 Fn
->addFnAttr(llvm::Attribute::SanitizeAddress
);
831 if (SanOpts
.hasOneOf(SanitizerKind::HWAddress
|
832 SanitizerKind::KernelHWAddress
))
833 Fn
->addFnAttr(llvm::Attribute::SanitizeHWAddress
);
834 if (SanOpts
.has(SanitizerKind::MemtagStack
))
835 Fn
->addFnAttr(llvm::Attribute::SanitizeMemTag
);
836 if (SanOpts
.has(SanitizerKind::Thread
))
837 Fn
->addFnAttr(llvm::Attribute::SanitizeThread
);
838 if (SanOpts
.has(SanitizerKind::NumericalStability
))
839 Fn
->addFnAttr(llvm::Attribute::SanitizeNumericalStability
);
840 if (SanOpts
.hasOneOf(SanitizerKind::Memory
| SanitizerKind::KernelMemory
))
841 Fn
->addFnAttr(llvm::Attribute::SanitizeMemory
);
843 if (SanOpts
.has(SanitizerKind::SafeStack
))
844 Fn
->addFnAttr(llvm::Attribute::SafeStack
);
845 if (SanOpts
.has(SanitizerKind::ShadowCallStack
))
846 Fn
->addFnAttr(llvm::Attribute::ShadowCallStack
);
848 // Apply fuzzing attribute to the function.
849 if (SanOpts
.hasOneOf(SanitizerKind::Fuzzer
| SanitizerKind::FuzzerNoLink
))
850 Fn
->addFnAttr(llvm::Attribute::OptForFuzzing
);
852 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
853 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
854 if (SanOpts
.has(SanitizerKind::Thread
)) {
855 if (const auto *OMD
= dyn_cast_or_null
<ObjCMethodDecl
>(D
)) {
856 const IdentifierInfo
*II
= OMD
->getSelector().getIdentifierInfoForSlot(0);
857 if (OMD
->getMethodFamily() == OMF_dealloc
||
858 OMD
->getMethodFamily() == OMF_initialize
||
859 (OMD
->getSelector().isUnarySelector() && II
->isStr(".cxx_destruct"))) {
860 markAsIgnoreThreadCheckingAtRuntime(Fn
);
865 // Ignore unrelated casts in STL allocate() since the allocator must cast
866 // from void* to T* before object initialization completes. Don't match on the
867 // namespace because not all allocators are in std::
868 if (D
&& SanOpts
.has(SanitizerKind::CFIUnrelatedCast
)) {
869 if (matchesStlAllocatorFn(D
, getContext()))
870 SanOpts
.Mask
&= ~SanitizerKind::CFIUnrelatedCast
;
873 // Ignore null checks in coroutine functions since the coroutines passes
874 // are not aware of how to move the extra UBSan instructions across the split
875 // coroutine boundaries.
876 if (D
&& SanOpts
.has(SanitizerKind::Null
))
877 if (FD
&& FD
->getBody() &&
878 FD
->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass
)
879 SanOpts
.Mask
&= ~SanitizerKind::Null
;
881 // Add pointer authentication attributes.
882 const CodeGenOptions
&CodeGenOpts
= CGM
.getCodeGenOpts();
883 if (CodeGenOpts
.PointerAuth
.ReturnAddresses
)
884 Fn
->addFnAttr("ptrauth-returns");
885 if (CodeGenOpts
.PointerAuth
.FunctionPointers
)
886 Fn
->addFnAttr("ptrauth-calls");
887 if (CodeGenOpts
.PointerAuth
.AuthTraps
)
888 Fn
->addFnAttr("ptrauth-auth-traps");
889 if (CodeGenOpts
.PointerAuth
.IndirectGotos
)
890 Fn
->addFnAttr("ptrauth-indirect-gotos");
892 // Apply xray attributes to the function (as a string, for now)
893 bool AlwaysXRayAttr
= false;
894 if (const auto *XRayAttr
= D
? D
->getAttr
<XRayInstrumentAttr
>() : nullptr) {
895 if (CGM
.getCodeGenOpts().XRayInstrumentationBundle
.has(
896 XRayInstrKind::FunctionEntry
) ||
897 CGM
.getCodeGenOpts().XRayInstrumentationBundle
.has(
898 XRayInstrKind::FunctionExit
)) {
899 if (XRayAttr
->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
900 Fn
->addFnAttr("function-instrument", "xray-always");
901 AlwaysXRayAttr
= true;
903 if (XRayAttr
->neverXRayInstrument())
904 Fn
->addFnAttr("function-instrument", "xray-never");
905 if (const auto *LogArgs
= D
->getAttr
<XRayLogArgsAttr
>())
906 if (ShouldXRayInstrumentFunction())
907 Fn
->addFnAttr("xray-log-args",
908 llvm::utostr(LogArgs
->getArgumentCount()));
911 if (ShouldXRayInstrumentFunction() && !CGM
.imbueXRayAttrs(Fn
, Loc
))
913 "xray-instruction-threshold",
914 llvm::itostr(CGM
.getCodeGenOpts().XRayInstructionThreshold
));
917 if (ShouldXRayInstrumentFunction()) {
918 if (CGM
.getCodeGenOpts().XRayIgnoreLoops
)
919 Fn
->addFnAttr("xray-ignore-loops");
921 if (!CGM
.getCodeGenOpts().XRayInstrumentationBundle
.has(
922 XRayInstrKind::FunctionExit
))
923 Fn
->addFnAttr("xray-skip-exit");
925 if (!CGM
.getCodeGenOpts().XRayInstrumentationBundle
.has(
926 XRayInstrKind::FunctionEntry
))
927 Fn
->addFnAttr("xray-skip-entry");
929 auto FuncGroups
= CGM
.getCodeGenOpts().XRayTotalFunctionGroups
;
930 if (FuncGroups
> 1) {
931 auto FuncName
= llvm::ArrayRef
<uint8_t>(CurFn
->getName().bytes_begin(),
932 CurFn
->getName().bytes_end());
933 auto Group
= crc32(FuncName
) % FuncGroups
;
934 if (Group
!= CGM
.getCodeGenOpts().XRaySelectedFunctionGroup
&&
936 Fn
->addFnAttr("function-instrument", "xray-never");
940 if (CGM
.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone
) {
941 switch (CGM
.isFunctionBlockedFromProfileInstr(Fn
, Loc
)) {
942 case ProfileList::Skip
:
943 Fn
->addFnAttr(llvm::Attribute::SkipProfile
);
945 case ProfileList::Forbid
:
946 Fn
->addFnAttr(llvm::Attribute::NoProfile
);
948 case ProfileList::Allow
:
953 unsigned Count
, Offset
;
954 if (const auto *Attr
=
955 D
? D
->getAttr
<PatchableFunctionEntryAttr
>() : nullptr) {
956 Count
= Attr
->getCount();
957 Offset
= Attr
->getOffset();
959 Count
= CGM
.getCodeGenOpts().PatchableFunctionEntryCount
;
960 Offset
= CGM
.getCodeGenOpts().PatchableFunctionEntryOffset
;
962 if (Count
&& Offset
<= Count
) {
963 Fn
->addFnAttr("patchable-function-entry", std::to_string(Count
- Offset
));
965 Fn
->addFnAttr("patchable-function-prefix", std::to_string(Offset
));
967 // Instruct that functions for COFF/CodeView targets should start with a
968 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
969 // backends as they don't need it -- instructions on these architectures are
970 // always atomically patchable at runtime.
971 if (CGM
.getCodeGenOpts().HotPatch
&&
972 getContext().getTargetInfo().getTriple().isX86() &&
973 getContext().getTargetInfo().getTriple().getEnvironment() !=
974 llvm::Triple::CODE16
)
975 Fn
->addFnAttr("patchable-function", "prologue-short-redirect");
977 // Add no-jump-tables value.
978 if (CGM
.getCodeGenOpts().NoUseJumpTables
)
979 Fn
->addFnAttr("no-jump-tables", "true");
981 // Add no-inline-line-tables value.
982 if (CGM
.getCodeGenOpts().NoInlineLineTables
)
983 Fn
->addFnAttr("no-inline-line-tables");
985 // Add profile-sample-accurate value.
986 if (CGM
.getCodeGenOpts().ProfileSampleAccurate
)
987 Fn
->addFnAttr("profile-sample-accurate");
989 if (!CGM
.getCodeGenOpts().SampleProfileFile
.empty())
990 Fn
->addFnAttr("use-sample-profile");
992 if (D
&& D
->hasAttr
<CFICanonicalJumpTableAttr
>())
993 Fn
->addFnAttr("cfi-canonical-jump-table");
995 if (D
&& D
->hasAttr
<NoProfileFunctionAttr
>())
996 Fn
->addFnAttr(llvm::Attribute::NoProfile
);
998 if (D
&& D
->hasAttr
<HybridPatchableAttr
>())
999 Fn
->addFnAttr(llvm::Attribute::HybridPatchable
);
1002 // Function attributes take precedence over command line flags.
1003 if (auto *A
= D
->getAttr
<FunctionReturnThunksAttr
>()) {
1004 switch (A
->getThunkType()) {
1005 case FunctionReturnThunksAttr::Kind::Keep
:
1007 case FunctionReturnThunksAttr::Kind::Extern
:
1008 Fn
->addFnAttr(llvm::Attribute::FnRetThunkExtern
);
1011 } else if (CGM
.getCodeGenOpts().FunctionReturnThunks
)
1012 Fn
->addFnAttr(llvm::Attribute::FnRetThunkExtern
);
1015 if (FD
&& (getLangOpts().OpenCL
||
1016 (getLangOpts().HIP
&& getLangOpts().CUDAIsDevice
))) {
1017 // Add metadata for a kernel function.
1018 EmitKernelMetadata(FD
, Fn
);
1021 if (FD
&& FD
->hasAttr
<ClspvLibclcBuiltinAttr
>()) {
1022 Fn
->setMetadata("clspv_libclc_builtin",
1023 llvm::MDNode::get(getLLVMContext(), {}));
1026 // If we are checking function types, emit a function type signature as
1028 if (FD
&& SanOpts
.has(SanitizerKind::Function
)) {
1029 if (llvm::Constant
*PrologueSig
= getPrologueSignature(CGM
, FD
)) {
1030 llvm::LLVMContext
&Ctx
= Fn
->getContext();
1031 llvm::MDBuilder
MDB(Ctx
);
1033 llvm::LLVMContext::MD_func_sanitize
,
1034 MDB
.createRTTIPointerPrologue(
1035 PrologueSig
, getUBSanFunctionTypeHash(FD
->getType())));
1039 // If we're checking nullability, we need to know whether we can check the
1040 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
1041 if (SanOpts
.has(SanitizerKind::NullabilityReturn
)) {
1042 auto Nullability
= FnRetTy
->getNullability();
1043 if (Nullability
&& *Nullability
== NullabilityKind::NonNull
&&
1044 !FnRetTy
->isRecordType()) {
1045 if (!(SanOpts
.has(SanitizerKind::ReturnsNonnullAttribute
) &&
1046 CurCodeDecl
&& CurCodeDecl
->getAttr
<ReturnsNonNullAttr
>()))
1047 RetValNullabilityPrecondition
=
1048 llvm::ConstantInt::getTrue(getLLVMContext());
1052 // If we're in C++ mode and the function name is "main", it is guaranteed
1053 // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1054 // used within a program").
1056 // OpenCL C 2.0 v2.2-11 s6.9.i:
1057 // Recursion is not supported.
1059 // SYCL v1.2.1 s3.10:
1060 // kernels cannot include RTTI information, exception classes,
1061 // recursive code, virtual functions or make use of C++ libraries that
1062 // are not compiled for the device.
1063 if (FD
&& ((getLangOpts().CPlusPlus
&& FD
->isMain()) ||
1064 getLangOpts().OpenCL
|| getLangOpts().SYCLIsDevice
||
1065 (getLangOpts().CUDA
&& FD
->hasAttr
<CUDAGlobalAttr
>())))
1066 Fn
->addFnAttr(llvm::Attribute::NoRecurse
);
1068 llvm::RoundingMode RM
= getLangOpts().getDefaultRoundingMode();
1069 llvm::fp::ExceptionBehavior FPExceptionBehavior
=
1070 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1071 Builder
.setDefaultConstrainedRounding(RM
);
1072 Builder
.setDefaultConstrainedExcept(FPExceptionBehavior
);
1073 if ((FD
&& (FD
->UsesFPIntrin() || FD
->hasAttr
<StrictFPAttr
>())) ||
1074 (!FD
&& (FPExceptionBehavior
!= llvm::fp::ebIgnore
||
1075 RM
!= llvm::RoundingMode::NearestTiesToEven
))) {
1076 Builder
.setIsFPConstrained(true);
1077 Fn
->addFnAttr(llvm::Attribute::StrictFP
);
1080 // If a custom alignment is used, force realigning to this alignment on
1081 // any main function which certainly will need it.
1082 if (FD
&& ((FD
->isMain() || FD
->isMSVCRTEntryPoint()) &&
1083 CGM
.getCodeGenOpts().StackAlignment
))
1084 Fn
->addFnAttr("stackrealign");
1086 // "main" doesn't need to zero out call-used registers.
1087 if (FD
&& FD
->isMain())
1088 Fn
->removeFnAttr("zero-call-used-regs");
1090 llvm::BasicBlock
*EntryBB
= createBasicBlock("entry", CurFn
);
1092 // Create a marker to make it easy to insert allocas into the entryblock
1093 // later. Don't create this with the builder, because we don't want it
1095 llvm::Value
*Undef
= llvm::UndefValue::get(Int32Ty
);
1096 AllocaInsertPt
= new llvm::BitCastInst(Undef
, Int32Ty
, "allocapt", EntryBB
);
1098 ReturnBlock
= getJumpDestInCurrentScope("return");
1100 Builder
.SetInsertPoint(EntryBB
);
1102 // If we're checking the return value, allocate space for a pointer to a
1103 // precise source location of the checked return statement.
1104 if (requiresReturnValueCheck()) {
1105 ReturnLocation
= CreateDefaultAlignTempAlloca(Int8PtrTy
, "return.sloc.ptr");
1106 Builder
.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy
),
1110 // Emit subprogram debug descriptor.
1111 if (CGDebugInfo
*DI
= getDebugInfo()) {
1112 // Reconstruct the type from the argument list so that implicit parameters,
1113 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1115 DI
->emitFunctionStart(GD
, Loc
, StartLoc
,
1116 DI
->getFunctionType(FD
, RetTy
, Args
), CurFn
,
1120 if (ShouldInstrumentFunction()) {
1121 if (CGM
.getCodeGenOpts().InstrumentFunctions
)
1122 CurFn
->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1123 if (CGM
.getCodeGenOpts().InstrumentFunctionsAfterInlining
)
1124 CurFn
->addFnAttr("instrument-function-entry-inlined",
1125 "__cyg_profile_func_enter");
1126 if (CGM
.getCodeGenOpts().InstrumentFunctionEntryBare
)
1127 CurFn
->addFnAttr("instrument-function-entry-inlined",
1128 "__cyg_profile_func_enter_bare");
1131 // Since emitting the mcount call here impacts optimizations such as function
1132 // inlining, we just add an attribute to insert a mcount call in backend.
1133 // The attribute "counting-function" is set to mcount function name which is
1134 // architecture dependent.
1135 if (CGM
.getCodeGenOpts().InstrumentForProfiling
) {
1136 // Calls to fentry/mcount should not be generated if function has
1137 // the no_instrument_function attribute.
1138 if (!CurFuncDecl
|| !CurFuncDecl
->hasAttr
<NoInstrumentFunctionAttr
>()) {
1139 if (CGM
.getCodeGenOpts().CallFEntry
)
1140 Fn
->addFnAttr("fentry-call", "true");
1142 Fn
->addFnAttr("instrument-function-entry-inlined",
1143 getTarget().getMCountName());
1145 if (CGM
.getCodeGenOpts().MNopMCount
) {
1146 if (!CGM
.getCodeGenOpts().CallFEntry
)
1147 CGM
.getDiags().Report(diag::err_opt_not_valid_without_opt
)
1148 << "-mnop-mcount" << "-mfentry";
1149 Fn
->addFnAttr("mnop-mcount");
1152 if (CGM
.getCodeGenOpts().RecordMCount
) {
1153 if (!CGM
.getCodeGenOpts().CallFEntry
)
1154 CGM
.getDiags().Report(diag::err_opt_not_valid_without_opt
)
1155 << "-mrecord-mcount" << "-mfentry";
1156 Fn
->addFnAttr("mrecord-mcount");
1161 if (CGM
.getCodeGenOpts().PackedStack
) {
1162 if (getContext().getTargetInfo().getTriple().getArch() !=
1163 llvm::Triple::systemz
)
1164 CGM
.getDiags().Report(diag::err_opt_not_valid_on_target
)
1165 << "-mpacked-stack";
1166 Fn
->addFnAttr("packed-stack");
1169 if (CGM
.getCodeGenOpts().WarnStackSize
!= UINT_MAX
&&
1170 !CGM
.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than
, Loc
))
1171 Fn
->addFnAttr("warn-stack-size",
1172 std::to_string(CGM
.getCodeGenOpts().WarnStackSize
));
1174 if (RetTy
->isVoidType()) {
1175 // Void type; nothing to return.
1176 ReturnValue
= Address::invalid();
1178 // Count the implicit return.
1179 if (!endsWithReturn(D
))
1181 } else if (CurFnInfo
->getReturnInfo().getKind() == ABIArgInfo::Indirect
) {
1182 // Indirect return; emit returned value directly into sret slot.
1183 // This reduces code size, and affects correctness in C++.
1184 auto AI
= CurFn
->arg_begin();
1185 if (CurFnInfo
->getReturnInfo().isSRetAfterThis())
1187 ReturnValue
= makeNaturalAddressForPointer(
1188 &*AI
, RetTy
, CurFnInfo
->getReturnInfo().getIndirectAlign(), false,
1189 nullptr, nullptr, KnownNonNull
);
1190 if (!CurFnInfo
->getReturnInfo().getIndirectByVal()) {
1191 ReturnValuePointer
=
1192 CreateDefaultAlignTempAlloca(ReturnValue
.getType(), "result.ptr");
1193 Builder
.CreateStore(ReturnValue
.emitRawPointer(*this),
1194 ReturnValuePointer
);
1196 } else if (CurFnInfo
->getReturnInfo().getKind() == ABIArgInfo::InAlloca
&&
1197 !hasScalarEvaluationKind(CurFnInfo
->getReturnType())) {
1198 // Load the sret pointer from the argument struct and return into that.
1199 unsigned Idx
= CurFnInfo
->getReturnInfo().getInAllocaFieldIndex();
1200 llvm::Function::arg_iterator EI
= CurFn
->arg_end();
1202 llvm::Value
*Addr
= Builder
.CreateStructGEP(
1203 CurFnInfo
->getArgStruct(), &*EI
, Idx
);
1205 cast
<llvm::GetElementPtrInst
>(Addr
)->getResultElementType();
1206 ReturnValuePointer
= Address(Addr
, Ty
, getPointerAlign());
1207 Addr
= Builder
.CreateAlignedLoad(Ty
, Addr
, getPointerAlign(), "agg.result");
1208 ReturnValue
= Address(Addr
, ConvertType(RetTy
),
1209 CGM
.getNaturalTypeAlignment(RetTy
), KnownNonNull
);
1211 ReturnValue
= CreateIRTemp(RetTy
, "retval");
1213 // Tell the epilog emitter to autorelease the result. We do this
1214 // now so that various specialized functions can suppress it
1215 // during their IR-generation.
1216 if (getLangOpts().ObjCAutoRefCount
&&
1217 !CurFnInfo
->isReturnsRetained() &&
1218 RetTy
->isObjCRetainableType())
1219 AutoreleaseResult
= true;
1222 EmitStartEHSpec(CurCodeDecl
);
1224 PrologueCleanupDepth
= EHStack
.stable_begin();
1226 // Emit OpenMP specific initialization of the device functions.
1227 if (getLangOpts().OpenMP
&& CurCodeDecl
)
1228 CGM
.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl
);
1230 // Handle emitting HLSL entry functions.
1231 if (D
&& D
->hasAttr
<HLSLShaderAttr
>())
1232 CGM
.getHLSLRuntime().emitEntryFunction(FD
, Fn
);
1234 EmitFunctionProlog(*CurFnInfo
, CurFn
, Args
);
1236 if (const CXXMethodDecl
*MD
= dyn_cast_if_present
<CXXMethodDecl
>(D
);
1237 MD
&& !MD
->isStatic()) {
1239 MD
->getParent()->isLambda() && MD
->getOverloadedOperator() == OO_Call
;
1240 if (MD
->isImplicitObjectMemberFunction())
1241 CGM
.getCXXABI().EmitInstanceFunctionProlog(*this);
1243 // We're in a lambda; figure out the captures.
1244 MD
->getParent()->getCaptureFields(LambdaCaptureFields
,
1245 LambdaThisCaptureField
);
1246 if (LambdaThisCaptureField
) {
1247 // If the lambda captures the object referred to by '*this' - either by
1248 // value or by reference, make sure CXXThisValue points to the correct
1251 // Get the lvalue for the field (which is a copy of the enclosing object
1252 // or contains the address of the enclosing object).
1253 LValue ThisFieldLValue
= EmitLValueForLambdaField(LambdaThisCaptureField
);
1254 if (!LambdaThisCaptureField
->getType()->isPointerType()) {
1255 // If the enclosing object was captured by value, just use its
1256 // address. Sign this pointer.
1257 CXXThisValue
= ThisFieldLValue
.getPointer(*this);
1259 // Load the lvalue pointed to by the field, since '*this' was captured
1262 EmitLoadOfLValue(ThisFieldLValue
, SourceLocation()).getScalarVal();
1265 for (auto *FD
: MD
->getParent()->fields()) {
1266 if (FD
->hasCapturedVLAType()) {
1267 auto *ExprArg
= EmitLoadOfLValue(EmitLValueForLambdaField(FD
),
1268 SourceLocation()).getScalarVal();
1269 auto VAT
= FD
->getCapturedVLAType();
1270 VLASizeMap
[VAT
->getSizeExpr()] = ExprArg
;
1273 } else if (MD
->isImplicitObjectMemberFunction()) {
1274 // Not in a lambda; just use 'this' from the method.
1275 // FIXME: Should we generate a new load for each use of 'this'? The
1276 // fast register allocator would be happier...
1277 CXXThisValue
= CXXABIThisValue
;
1280 // Check the 'this' pointer once per function, if it's available.
1281 if (CXXABIThisValue
) {
1282 SanitizerSet SkippedChecks
;
1283 SkippedChecks
.set(SanitizerKind::ObjectSize
, true);
1284 QualType ThisTy
= MD
->getThisType();
1286 // If this is the call operator of a lambda with no captures, it
1287 // may have a static invoker function, which may call this operator with
1288 // a null 'this' pointer.
1289 if (isLambdaCallOperator(MD
) && MD
->getParent()->isCapturelessLambda())
1290 SkippedChecks
.set(SanitizerKind::Null
, true);
1293 isa
<CXXConstructorDecl
>(MD
) ? TCK_ConstructorCall
: TCK_MemberCall
,
1294 Loc
, CXXABIThisValue
, ThisTy
, CXXABIThisAlignment
, SkippedChecks
);
1298 // If any of the arguments have a variably modified type, make sure to
1299 // emit the type size, but only if the function is not naked. Naked functions
1300 // have no prolog to run this evaluation.
1301 if (!FD
|| !FD
->hasAttr
<NakedAttr
>()) {
1302 for (const VarDecl
*VD
: Args
) {
1303 // Dig out the type as written from ParmVarDecls; it's unclear whether
1304 // the standard (C99 6.9.1p10) requires this, but we're following the
1305 // precedent set by gcc.
1307 if (const ParmVarDecl
*PVD
= dyn_cast
<ParmVarDecl
>(VD
))
1308 Ty
= PVD
->getOriginalType();
1312 if (Ty
->isVariablyModifiedType())
1313 EmitVariablyModifiedType(Ty
);
1316 // Emit a location at the end of the prologue.
1317 if (CGDebugInfo
*DI
= getDebugInfo())
1318 DI
->EmitLocation(Builder
, StartLoc
);
1319 // TODO: Do we need to handle this in two places like we do with
1320 // target-features/target-cpu?
1322 if (const auto *VecWidth
= CurFuncDecl
->getAttr
<MinVectorWidthAttr
>())
1323 LargestVectorWidth
= VecWidth
->getVectorWidth();
1325 if (CGM
.shouldEmitConvergenceTokens())
1326 ConvergenceTokenStack
.push_back(getOrEmitConvergenceEntryToken(CurFn
));
1329 void CodeGenFunction::EmitFunctionBody(const Stmt
*Body
) {
1330 incrementProfileCounter(Body
);
1331 maybeCreateMCDCCondBitmap();
1332 if (const CompoundStmt
*S
= dyn_cast
<CompoundStmt
>(Body
))
1333 EmitCompoundStmtWithoutScope(*S
);
1338 /// When instrumenting to collect profile data, the counts for some blocks
1339 /// such as switch cases need to not include the fall-through counts, so
1340 /// emit a branch around the instrumentation code. When not instrumenting,
1341 /// this just calls EmitBlock().
1342 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock
*BB
,
1344 llvm::BasicBlock
*SkipCountBB
= nullptr;
1345 // Do not skip over the instrumentation when single byte coverage mode is
1347 if (HaveInsertPoint() && CGM
.getCodeGenOpts().hasProfileClangInstr() &&
1348 !llvm::EnableSingleByteCoverage
) {
1349 // When instrumenting for profiling, the fallthrough to certain
1350 // statements needs to skip over the instrumentation code so that we
1351 // get an accurate count.
1352 SkipCountBB
= createBasicBlock("skipcount");
1353 EmitBranch(SkipCountBB
);
1356 uint64_t CurrentCount
= getCurrentProfileCount();
1357 incrementProfileCounter(S
);
1358 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount
);
1360 EmitBlock(SkipCountBB
);
1363 /// Tries to mark the given function nounwind based on the
1364 /// non-existence of any throwing calls within it. We believe this is
1365 /// lightweight enough to do at -O0.
1366 static void TryMarkNoThrow(llvm::Function
*F
) {
1367 // LLVM treats 'nounwind' on a function as part of the type, so we
1368 // can't do this on functions that can be overwritten.
1369 if (F
->isInterposable()) return;
1371 for (llvm::BasicBlock
&BB
: *F
)
1372 for (llvm::Instruction
&I
: BB
)
1376 F
->setDoesNotThrow();
1379 QualType
CodeGenFunction::BuildFunctionArgList(GlobalDecl GD
,
1380 FunctionArgList
&Args
) {
1381 const FunctionDecl
*FD
= cast
<FunctionDecl
>(GD
.getDecl());
1382 QualType ResTy
= FD
->getReturnType();
1384 const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
);
1385 if (MD
&& MD
->isImplicitObjectMemberFunction()) {
1386 if (CGM
.getCXXABI().HasThisReturn(GD
))
1387 ResTy
= MD
->getThisType();
1388 else if (CGM
.getCXXABI().hasMostDerivedReturn(GD
))
1389 ResTy
= CGM
.getContext().VoidPtrTy
;
1390 CGM
.getCXXABI().buildThisParam(*this, Args
);
1393 // The base version of an inheriting constructor whose constructed base is a
1394 // virtual base is not passed any arguments (because it doesn't actually call
1395 // the inherited constructor).
1396 bool PassedParams
= true;
1397 if (const CXXConstructorDecl
*CD
= dyn_cast
<CXXConstructorDecl
>(FD
))
1398 if (auto Inherited
= CD
->getInheritedConstructor())
1400 getTypes().inheritingCtorHasParams(Inherited
, GD
.getCtorType());
1403 for (auto *Param
: FD
->parameters()) {
1404 Args
.push_back(Param
);
1405 if (!Param
->hasAttr
<PassObjectSizeAttr
>())
1408 auto *Implicit
= ImplicitParamDecl::Create(
1409 getContext(), Param
->getDeclContext(), Param
->getLocation(),
1410 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other
);
1411 SizeArguments
[Param
] = Implicit
;
1412 Args
.push_back(Implicit
);
1416 if (MD
&& (isa
<CXXConstructorDecl
>(MD
) || isa
<CXXDestructorDecl
>(MD
)))
1417 CGM
.getCXXABI().addImplicitStructorParams(*this, ResTy
, Args
);
1422 void CodeGenFunction::GenerateCode(GlobalDecl GD
, llvm::Function
*Fn
,
1423 const CGFunctionInfo
&FnInfo
) {
1424 assert(Fn
&& "generating code for null Function");
1425 const FunctionDecl
*FD
= cast
<FunctionDecl
>(GD
.getDecl());
1428 FunctionArgList Args
;
1429 QualType ResTy
= BuildFunctionArgList(GD
, Args
);
1431 CGM
.getTargetCodeGenInfo().checkFunctionABI(CGM
, FD
);
1433 if (FD
->isInlineBuiltinDeclaration()) {
1434 // When generating code for a builtin with an inline declaration, use a
1435 // mangled name to hold the actual body, while keeping an external
1436 // definition in case the function pointer is referenced somewhere.
1437 std::string FDInlineName
= (Fn
->getName() + ".inline").str();
1438 llvm::Module
*M
= Fn
->getParent();
1439 llvm::Function
*Clone
= M
->getFunction(FDInlineName
);
1441 Clone
= llvm::Function::Create(Fn
->getFunctionType(),
1442 llvm::GlobalValue::InternalLinkage
,
1443 Fn
->getAddressSpace(), FDInlineName
, M
);
1444 Clone
->addFnAttr(llvm::Attribute::AlwaysInline
);
1446 Fn
->setLinkage(llvm::GlobalValue::ExternalLinkage
);
1449 // Detect the unusual situation where an inline version is shadowed by a
1450 // non-inline version. In that case we should pick the external one
1451 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1452 // to detect that situation before we reach codegen, so do some late
1454 for (const FunctionDecl
*PD
= FD
->getPreviousDecl(); PD
;
1455 PD
= PD
->getPreviousDecl()) {
1456 if (LLVM_UNLIKELY(PD
->isInlineBuiltinDeclaration())) {
1457 std::string FDInlineName
= (Fn
->getName() + ".inline").str();
1458 llvm::Module
*M
= Fn
->getParent();
1459 if (llvm::Function
*Clone
= M
->getFunction(FDInlineName
)) {
1460 Clone
->replaceAllUsesWith(Fn
);
1461 Clone
->eraseFromParent();
1468 // Check if we should generate debug info for this function.
1469 if (FD
->hasAttr
<NoDebugAttr
>()) {
1470 // Clear non-distinct debug info that was possibly attached to the function
1471 // due to an earlier declaration without the nodebug attribute
1472 Fn
->setSubprogram(nullptr);
1473 // Disable debug info indefinitely for this function
1474 DebugInfo
= nullptr;
1477 // The function might not have a body if we're generating thunks for a
1478 // function declaration.
1479 SourceRange BodyRange
;
1480 if (Stmt
*Body
= FD
->getBody())
1481 BodyRange
= Body
->getSourceRange();
1483 BodyRange
= FD
->getLocation();
1484 CurEHLocation
= BodyRange
.getEnd();
1486 // Use the location of the start of the function to determine where
1487 // the function definition is located. By default use the location
1488 // of the declaration as the location for the subprogram. A function
1489 // may lack a declaration in the source code if it is created by code
1490 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1491 SourceLocation Loc
= FD
->getLocation();
1493 // If this is a function specialization then use the pattern body
1494 // as the location for the function.
1495 if (const FunctionDecl
*SpecDecl
= FD
->getTemplateInstantiationPattern())
1496 if (SpecDecl
->hasBody(SpecDecl
))
1497 Loc
= SpecDecl
->getLocation();
1499 Stmt
*Body
= FD
->getBody();
1502 // Coroutines always emit lifetime markers.
1503 if (isa
<CoroutineBodyStmt
>(Body
))
1504 ShouldEmitLifetimeMarkers
= true;
1506 // Initialize helper which will detect jumps which can cause invalid
1507 // lifetime markers.
1508 if (ShouldEmitLifetimeMarkers
)
1509 Bypasses
.Init(Body
);
1512 // Emit the standard function prologue.
1513 StartFunction(GD
, ResTy
, Fn
, FnInfo
, Args
, Loc
, BodyRange
.getBegin());
1515 // Save parameters for coroutine function.
1516 if (Body
&& isa_and_nonnull
<CoroutineBodyStmt
>(Body
))
1517 llvm::append_range(FnArgs
, FD
->parameters());
1519 // Ensure that the function adheres to the forward progress guarantee, which
1520 // is required by certain optimizations.
1521 // In C++11 and up, the attribute will be removed if the body contains a
1522 // trivial empty loop.
1523 if (checkIfFunctionMustProgress())
1524 CurFn
->addFnAttr(llvm::Attribute::MustProgress
);
1526 // Generate the body of the function.
1527 PGO
.assignRegionCounters(GD
, CurFn
);
1528 if (isa
<CXXDestructorDecl
>(FD
))
1529 EmitDestructorBody(Args
);
1530 else if (isa
<CXXConstructorDecl
>(FD
))
1531 EmitConstructorBody(Args
);
1532 else if (getLangOpts().CUDA
&&
1533 !getLangOpts().CUDAIsDevice
&&
1534 FD
->hasAttr
<CUDAGlobalAttr
>())
1535 CGM
.getCUDARuntime().emitDeviceStub(*this, Args
);
1536 else if (isa
<CXXMethodDecl
>(FD
) &&
1537 cast
<CXXMethodDecl
>(FD
)->isLambdaStaticInvoker()) {
1538 // The lambda static invoker function is special, because it forwards or
1539 // clones the body of the function call operator (but is actually static).
1540 EmitLambdaStaticInvokeBody(cast
<CXXMethodDecl
>(FD
));
1541 } else if (isa
<CXXMethodDecl
>(FD
) &&
1542 isLambdaCallOperator(cast
<CXXMethodDecl
>(FD
)) &&
1543 !FnInfo
.isDelegateCall() &&
1544 cast
<CXXMethodDecl
>(FD
)->getParent()->getLambdaStaticInvoker() &&
1545 hasInAllocaArg(cast
<CXXMethodDecl
>(FD
))) {
1546 // If emitting a lambda with static invoker on X86 Windows, change
1547 // the call operator body.
1548 // Make sure that this is a call operator with an inalloca arg and check
1549 // for delegate call to make sure this is the original call op and not the
1550 // new forwarding function for the static invoker.
1551 EmitLambdaInAllocaCallOpBody(cast
<CXXMethodDecl
>(FD
));
1552 } else if (FD
->isDefaulted() && isa
<CXXMethodDecl
>(FD
) &&
1553 (cast
<CXXMethodDecl
>(FD
)->isCopyAssignmentOperator() ||
1554 cast
<CXXMethodDecl
>(FD
)->isMoveAssignmentOperator())) {
1555 // Implicit copy-assignment gets the same special treatment as implicit
1556 // copy-constructors.
1557 emitImplicitAssignmentOperatorBody(Args
);
1559 EmitFunctionBody(Body
);
1561 llvm_unreachable("no definition for emitted function");
1563 // C++11 [stmt.return]p2:
1564 // Flowing off the end of a function [...] results in undefined behavior in
1565 // a value-returning function.
1567 // If the '}' that terminates a function is reached, and the value of the
1568 // function call is used by the caller, the behavior is undefined.
1569 if (getLangOpts().CPlusPlus
&& !FD
->hasImplicitReturnZero() && !SawAsmBlock
&&
1570 !FD
->getReturnType()->isVoidType() && Builder
.GetInsertBlock()) {
1571 bool ShouldEmitUnreachable
=
1572 CGM
.getCodeGenOpts().StrictReturn
||
1573 !CGM
.MayDropFunctionReturn(FD
->getASTContext(), FD
->getReturnType());
1574 if (SanOpts
.has(SanitizerKind::Return
)) {
1575 SanitizerScope
SanScope(this);
1576 llvm::Value
*IsFalse
= Builder
.getFalse();
1577 EmitCheck(std::make_pair(IsFalse
, SanitizerKind::Return
),
1578 SanitizerHandler::MissingReturn
,
1579 EmitCheckSourceLocation(FD
->getLocation()), std::nullopt
);
1580 } else if (ShouldEmitUnreachable
) {
1581 if (CGM
.getCodeGenOpts().OptimizationLevel
== 0)
1582 EmitTrapCall(llvm::Intrinsic::trap
);
1584 if (SanOpts
.has(SanitizerKind::Return
) || ShouldEmitUnreachable
) {
1585 Builder
.CreateUnreachable();
1586 Builder
.ClearInsertionPoint();
1590 // Emit the standard function epilogue.
1591 FinishFunction(BodyRange
.getEnd());
1593 // If we haven't marked the function nothrow through other means, do
1594 // a quick pass now to see if we can.
1595 if (!CurFn
->doesNotThrow())
1596 TryMarkNoThrow(CurFn
);
1599 /// ContainsLabel - Return true if the statement contains a label in it. If
1600 /// this statement is not executed normally, it not containing a label means
1601 /// that we can just remove the code.
1602 bool CodeGenFunction::ContainsLabel(const Stmt
*S
, bool IgnoreCaseStmts
) {
1603 // Null statement, not a label!
1604 if (!S
) return false;
1606 // If this is a label, we have to emit the code, consider something like:
1607 // if (0) { ... foo: bar(); } goto foo;
1609 // TODO: If anyone cared, we could track __label__'s, since we know that you
1610 // can't jump to one from outside their declared region.
1611 if (isa
<LabelStmt
>(S
))
1614 // If this is a case/default statement, and we haven't seen a switch, we have
1615 // to emit the code.
1616 if (isa
<SwitchCase
>(S
) && !IgnoreCaseStmts
)
1619 // If this is a switch statement, we want to ignore cases below it.
1620 if (isa
<SwitchStmt
>(S
))
1621 IgnoreCaseStmts
= true;
1623 // Scan subexpressions for verboten labels.
1624 for (const Stmt
*SubStmt
: S
->children())
1625 if (ContainsLabel(SubStmt
, IgnoreCaseStmts
))
1631 /// containsBreak - Return true if the statement contains a break out of it.
1632 /// If the statement (recursively) contains a switch or loop with a break
1633 /// inside of it, this is fine.
1634 bool CodeGenFunction::containsBreak(const Stmt
*S
) {
1635 // Null statement, not a label!
1636 if (!S
) return false;
1638 // If this is a switch or loop that defines its own break scope, then we can
1639 // include it and anything inside of it.
1640 if (isa
<SwitchStmt
>(S
) || isa
<WhileStmt
>(S
) || isa
<DoStmt
>(S
) ||
1644 if (isa
<BreakStmt
>(S
))
1647 // Scan subexpressions for verboten breaks.
1648 for (const Stmt
*SubStmt
: S
->children())
1649 if (containsBreak(SubStmt
))
1655 bool CodeGenFunction::mightAddDeclToScope(const Stmt
*S
) {
1656 if (!S
) return false;
1658 // Some statement kinds add a scope and thus never add a decl to the current
1659 // scope. Note, this list is longer than the list of statements that might
1660 // have an unscoped decl nested within them, but this way is conservatively
1661 // correct even if more statement kinds are added.
1662 if (isa
<IfStmt
>(S
) || isa
<SwitchStmt
>(S
) || isa
<WhileStmt
>(S
) ||
1663 isa
<DoStmt
>(S
) || isa
<ForStmt
>(S
) || isa
<CompoundStmt
>(S
) ||
1664 isa
<CXXForRangeStmt
>(S
) || isa
<CXXTryStmt
>(S
) ||
1665 isa
<ObjCForCollectionStmt
>(S
) || isa
<ObjCAtTryStmt
>(S
))
1668 if (isa
<DeclStmt
>(S
))
1671 for (const Stmt
*SubStmt
: S
->children())
1672 if (mightAddDeclToScope(SubStmt
))
1678 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1679 /// to a constant, or if it does but contains a label, return false. If it
1680 /// constant folds return true and set the boolean result in Result.
1681 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr
*Cond
,
1684 // If MC/DC is enabled, disable folding so that we can instrument all
1685 // conditions to yield complete test vectors. We still keep track of
1686 // folded conditions during region mapping and visualization.
1687 if (!AllowLabels
&& CGM
.getCodeGenOpts().hasProfileClangInstr() &&
1688 CGM
.getCodeGenOpts().MCDCCoverage
)
1691 llvm::APSInt ResultInt
;
1692 if (!ConstantFoldsToSimpleInteger(Cond
, ResultInt
, AllowLabels
))
1695 ResultBool
= ResultInt
.getBoolValue();
1699 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1700 /// to a constant, or if it does but contains a label, return false. If it
1701 /// constant folds return true and set the folded value.
1702 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr
*Cond
,
1703 llvm::APSInt
&ResultInt
,
1705 // FIXME: Rename and handle conversion of other evaluatable things
1707 Expr::EvalResult Result
;
1708 if (!Cond
->EvaluateAsInt(Result
, getContext()))
1709 return false; // Not foldable, not integer or not fully evaluatable.
1711 llvm::APSInt Int
= Result
.Val
.getInt();
1712 if (!AllowLabels
&& CodeGenFunction::ContainsLabel(Cond
))
1713 return false; // Contains a label.
1719 /// Strip parentheses and simplistic logical-NOT operators.
1720 const Expr
*CodeGenFunction::stripCond(const Expr
*C
) {
1721 while (const UnaryOperator
*Op
= dyn_cast
<UnaryOperator
>(C
->IgnoreParens())) {
1722 if (Op
->getOpcode() != UO_LNot
)
1724 C
= Op
->getSubExpr();
1726 return C
->IgnoreParens();
1729 /// Determine whether the given condition is an instrumentable condition
1730 /// (i.e. no "&&" or "||").
1731 bool CodeGenFunction::isInstrumentedCondition(const Expr
*C
) {
1732 const BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(stripCond(C
));
1733 return (!BOp
|| !BOp
->isLogicalOp());
1736 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1737 /// increments a profile counter based on the semantics of the given logical
1738 /// operator opcode. This is used to instrument branch condition coverage for
1739 /// logical operators.
1740 void CodeGenFunction::EmitBranchToCounterBlock(
1741 const Expr
*Cond
, BinaryOperator::Opcode LOp
, llvm::BasicBlock
*TrueBlock
,
1742 llvm::BasicBlock
*FalseBlock
, uint64_t TrueCount
/* = 0 */,
1743 Stmt::Likelihood LH
/* =None */, const Expr
*CntrIdx
/* = nullptr */) {
1744 // If not instrumenting, just emit a branch.
1745 bool InstrumentRegions
= CGM
.getCodeGenOpts().hasProfileClangInstr();
1746 if (!InstrumentRegions
|| !isInstrumentedCondition(Cond
))
1747 return EmitBranchOnBoolExpr(Cond
, TrueBlock
, FalseBlock
, TrueCount
, LH
);
1749 llvm::BasicBlock
*ThenBlock
= nullptr;
1750 llvm::BasicBlock
*ElseBlock
= nullptr;
1751 llvm::BasicBlock
*NextBlock
= nullptr;
1753 // Create the block we'll use to increment the appropriate counter.
1754 llvm::BasicBlock
*CounterIncrBlock
= createBasicBlock("lop.rhscnt");
1756 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1757 // means we need to evaluate the condition and increment the counter on TRUE:
1760 // goto CounterIncrBlock;
1764 // CounterIncrBlock:
1768 if (LOp
== BO_LAnd
) {
1769 ThenBlock
= CounterIncrBlock
;
1770 ElseBlock
= FalseBlock
;
1771 NextBlock
= TrueBlock
;
1774 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1775 // we need to evaluate the condition and increment the counter on FALSE:
1780 // goto CounterIncrBlock;
1782 // CounterIncrBlock:
1786 else if (LOp
== BO_LOr
) {
1787 ThenBlock
= TrueBlock
;
1788 ElseBlock
= CounterIncrBlock
;
1789 NextBlock
= FalseBlock
;
1791 llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1794 // Emit Branch based on condition.
1795 EmitBranchOnBoolExpr(Cond
, ThenBlock
, ElseBlock
, TrueCount
, LH
);
1797 // Emit the block containing the counter increment(s).
1798 EmitBlock(CounterIncrBlock
);
1800 // Increment corresponding counter; if index not provided, use Cond as index.
1801 incrementProfileCounter(CntrIdx
? CntrIdx
: Cond
);
1803 // Go to the next block.
1804 EmitBranch(NextBlock
);
1807 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1808 /// statement) to the specified blocks. Based on the condition, this might try
1809 /// to simplify the codegen of the conditional based on the branch.
1810 /// \param LH The value of the likelihood attribute on the True branch.
1811 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1812 /// ConditionalOperator (ternary) through a recursive call for the operator's
1813 /// LHS and RHS nodes.
1814 void CodeGenFunction::EmitBranchOnBoolExpr(
1815 const Expr
*Cond
, llvm::BasicBlock
*TrueBlock
, llvm::BasicBlock
*FalseBlock
,
1816 uint64_t TrueCount
, Stmt::Likelihood LH
, const Expr
*ConditionalOp
) {
1817 Cond
= Cond
->IgnoreParens();
1819 if (const BinaryOperator
*CondBOp
= dyn_cast
<BinaryOperator
>(Cond
)) {
1820 // Handle X && Y in a condition.
1821 if (CondBOp
->getOpcode() == BO_LAnd
) {
1822 MCDCLogOpStack
.push_back(CondBOp
);
1824 // If we have "1 && X", simplify the code. "0 && X" would have constant
1825 // folded if the case was simple enough.
1826 bool ConstantBool
= false;
1827 if (ConstantFoldsToSimpleInteger(CondBOp
->getLHS(), ConstantBool
) &&
1829 // br(1 && X) -> br(X).
1830 incrementProfileCounter(CondBOp
);
1831 EmitBranchToCounterBlock(CondBOp
->getRHS(), BO_LAnd
, TrueBlock
,
1832 FalseBlock
, TrueCount
, LH
);
1833 MCDCLogOpStack
.pop_back();
1837 // If we have "X && 1", simplify the code to use an uncond branch.
1838 // "X && 0" would have been constant folded to 0.
1839 if (ConstantFoldsToSimpleInteger(CondBOp
->getRHS(), ConstantBool
) &&
1841 // br(X && 1) -> br(X).
1842 EmitBranchToCounterBlock(CondBOp
->getLHS(), BO_LAnd
, TrueBlock
,
1843 FalseBlock
, TrueCount
, LH
, CondBOp
);
1844 MCDCLogOpStack
.pop_back();
1848 // Emit the LHS as a conditional. If the LHS conditional is false, we
1849 // want to jump to the FalseBlock.
1850 llvm::BasicBlock
*LHSTrue
= createBasicBlock("land.lhs.true");
1851 // The counter tells us how often we evaluate RHS, and all of TrueCount
1852 // can be propagated to that branch.
1853 uint64_t RHSCount
= getProfileCount(CondBOp
->getRHS());
1855 ConditionalEvaluation
eval(*this);
1857 ApplyDebugLocation
DL(*this, Cond
);
1858 // Propagate the likelihood attribute like __builtin_expect
1859 // __builtin_expect(X && Y, 1) -> X and Y are likely
1860 // __builtin_expect(X && Y, 0) -> only Y is unlikely
1861 EmitBranchOnBoolExpr(CondBOp
->getLHS(), LHSTrue
, FalseBlock
, RHSCount
,
1862 LH
== Stmt::LH_Unlikely
? Stmt::LH_None
: LH
);
1866 incrementProfileCounter(CondBOp
);
1867 setCurrentProfileCount(getProfileCount(CondBOp
->getRHS()));
1869 // Any temporaries created here are conditional.
1871 EmitBranchToCounterBlock(CondBOp
->getRHS(), BO_LAnd
, TrueBlock
,
1872 FalseBlock
, TrueCount
, LH
);
1874 MCDCLogOpStack
.pop_back();
1878 if (CondBOp
->getOpcode() == BO_LOr
) {
1879 MCDCLogOpStack
.push_back(CondBOp
);
1881 // If we have "0 || X", simplify the code. "1 || X" would have constant
1882 // folded if the case was simple enough.
1883 bool ConstantBool
= false;
1884 if (ConstantFoldsToSimpleInteger(CondBOp
->getLHS(), ConstantBool
) &&
1886 // br(0 || X) -> br(X).
1887 incrementProfileCounter(CondBOp
);
1888 EmitBranchToCounterBlock(CondBOp
->getRHS(), BO_LOr
, TrueBlock
,
1889 FalseBlock
, TrueCount
, LH
);
1890 MCDCLogOpStack
.pop_back();
1894 // If we have "X || 0", simplify the code to use an uncond branch.
1895 // "X || 1" would have been constant folded to 1.
1896 if (ConstantFoldsToSimpleInteger(CondBOp
->getRHS(), ConstantBool
) &&
1898 // br(X || 0) -> br(X).
1899 EmitBranchToCounterBlock(CondBOp
->getLHS(), BO_LOr
, TrueBlock
,
1900 FalseBlock
, TrueCount
, LH
, CondBOp
);
1901 MCDCLogOpStack
.pop_back();
1904 // Emit the LHS as a conditional. If the LHS conditional is true, we
1905 // want to jump to the TrueBlock.
1906 llvm::BasicBlock
*LHSFalse
= createBasicBlock("lor.lhs.false");
1907 // We have the count for entry to the RHS and for the whole expression
1908 // being true, so we can divy up True count between the short circuit and
1911 getCurrentProfileCount() - getProfileCount(CondBOp
->getRHS());
1912 uint64_t RHSCount
= TrueCount
- LHSCount
;
1914 ConditionalEvaluation
eval(*this);
1916 // Propagate the likelihood attribute like __builtin_expect
1917 // __builtin_expect(X || Y, 1) -> only Y is likely
1918 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1919 ApplyDebugLocation
DL(*this, Cond
);
1920 EmitBranchOnBoolExpr(CondBOp
->getLHS(), TrueBlock
, LHSFalse
, LHSCount
,
1921 LH
== Stmt::LH_Likely
? Stmt::LH_None
: LH
);
1922 EmitBlock(LHSFalse
);
1925 incrementProfileCounter(CondBOp
);
1926 setCurrentProfileCount(getProfileCount(CondBOp
->getRHS()));
1928 // Any temporaries created here are conditional.
1930 EmitBranchToCounterBlock(CondBOp
->getRHS(), BO_LOr
, TrueBlock
, FalseBlock
,
1934 MCDCLogOpStack
.pop_back();
1939 if (const UnaryOperator
*CondUOp
= dyn_cast
<UnaryOperator
>(Cond
)) {
1940 // br(!x, t, f) -> br(x, f, t)
1941 // Avoid doing this optimization when instrumenting a condition for MC/DC.
1942 // LNot is taken as part of the condition for simplicity, and changing its
1943 // sense negatively impacts test vector tracking.
1944 bool MCDCCondition
= CGM
.getCodeGenOpts().hasProfileClangInstr() &&
1945 CGM
.getCodeGenOpts().MCDCCoverage
&&
1946 isInstrumentedCondition(Cond
);
1947 if (CondUOp
->getOpcode() == UO_LNot
&& !MCDCCondition
) {
1948 // Negate the count.
1949 uint64_t FalseCount
= getCurrentProfileCount() - TrueCount
;
1950 // The values of the enum are chosen to make this negation possible.
1951 LH
= static_cast<Stmt::Likelihood
>(-LH
);
1952 // Negate the condition and swap the destination blocks.
1953 return EmitBranchOnBoolExpr(CondUOp
->getSubExpr(), FalseBlock
, TrueBlock
,
1958 if (const ConditionalOperator
*CondOp
= dyn_cast
<ConditionalOperator
>(Cond
)) {
1959 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1960 llvm::BasicBlock
*LHSBlock
= createBasicBlock("cond.true");
1961 llvm::BasicBlock
*RHSBlock
= createBasicBlock("cond.false");
1963 // The ConditionalOperator itself has no likelihood information for its
1964 // true and false branches. This matches the behavior of __builtin_expect.
1965 ConditionalEvaluation
cond(*this);
1966 EmitBranchOnBoolExpr(CondOp
->getCond(), LHSBlock
, RHSBlock
,
1967 getProfileCount(CondOp
), Stmt::LH_None
);
1969 // When computing PGO branch weights, we only know the overall count for
1970 // the true block. This code is essentially doing tail duplication of the
1971 // naive code-gen, introducing new edges for which counts are not
1972 // available. Divide the counts proportionally between the LHS and RHS of
1973 // the conditional operator.
1974 uint64_t LHSScaledTrueCount
= 0;
1977 getProfileCount(CondOp
) / (double)getCurrentProfileCount();
1978 LHSScaledTrueCount
= TrueCount
* LHSRatio
;
1982 EmitBlock(LHSBlock
);
1983 incrementProfileCounter(CondOp
);
1985 ApplyDebugLocation
DL(*this, Cond
);
1986 EmitBranchOnBoolExpr(CondOp
->getLHS(), TrueBlock
, FalseBlock
,
1987 LHSScaledTrueCount
, LH
, CondOp
);
1992 EmitBlock(RHSBlock
);
1993 EmitBranchOnBoolExpr(CondOp
->getRHS(), TrueBlock
, FalseBlock
,
1994 TrueCount
- LHSScaledTrueCount
, LH
, CondOp
);
2000 if (const CXXThrowExpr
*Throw
= dyn_cast
<CXXThrowExpr
>(Cond
)) {
2001 // Conditional operator handling can give us a throw expression as a
2002 // condition for a case like:
2003 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
2005 // br(c, throw x, br(y, t, f))
2006 EmitCXXThrowExpr(Throw
, /*KeepInsertionPoint*/false);
2010 // Emit the code with the fully general case.
2013 ApplyDebugLocation
DL(*this, Cond
);
2014 CondV
= EvaluateExprAsBool(Cond
);
2017 // If not at the top of the logical operator nest, update MCDC temp with the
2018 // boolean result of the evaluated condition.
2019 if (!MCDCLogOpStack
.empty()) {
2020 const Expr
*MCDCBaseExpr
= Cond
;
2021 // When a nested ConditionalOperator (ternary) is encountered in a boolean
2022 // expression, MC/DC tracks the result of the ternary, and this is tied to
2023 // the ConditionalOperator expression and not the ternary's LHS or RHS. If
2024 // this is the case, the ConditionalOperator expression is passed through
2025 // the ConditionalOp parameter and then used as the MCDC base expression.
2027 MCDCBaseExpr
= ConditionalOp
;
2029 maybeUpdateMCDCCondBitmap(MCDCBaseExpr
, CondV
);
2032 llvm::MDNode
*Weights
= nullptr;
2033 llvm::MDNode
*Unpredictable
= nullptr;
2035 // If the branch has a condition wrapped by __builtin_unpredictable,
2036 // create metadata that specifies that the branch is unpredictable.
2037 // Don't bother if not optimizing because that metadata would not be used.
2038 auto *Call
= dyn_cast
<CallExpr
>(Cond
->IgnoreImpCasts());
2039 if (Call
&& CGM
.getCodeGenOpts().OptimizationLevel
!= 0) {
2040 auto *FD
= dyn_cast_or_null
<FunctionDecl
>(Call
->getCalleeDecl());
2041 if (FD
&& FD
->getBuiltinID() == Builtin::BI__builtin_unpredictable
) {
2042 llvm::MDBuilder
MDHelper(getLLVMContext());
2043 Unpredictable
= MDHelper
.createUnpredictable();
2047 // If there is a Likelihood knowledge for the cond, lower it.
2048 // Note that if not optimizing this won't emit anything.
2049 llvm::Value
*NewCondV
= emitCondLikelihoodViaExpectIntrinsic(CondV
, LH
);
2050 if (CondV
!= NewCondV
)
2053 // Otherwise, lower profile counts. Note that we do this even at -O0.
2054 uint64_t CurrentCount
= std::max(getCurrentProfileCount(), TrueCount
);
2055 Weights
= createProfileWeights(TrueCount
, CurrentCount
- TrueCount
);
2058 Builder
.CreateCondBr(CondV
, TrueBlock
, FalseBlock
, Weights
, Unpredictable
);
2061 /// ErrorUnsupported - Print out an error that codegen doesn't support the
2062 /// specified stmt yet.
2063 void CodeGenFunction::ErrorUnsupported(const Stmt
*S
, const char *Type
) {
2064 CGM
.ErrorUnsupported(S
, Type
);
2067 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
2068 /// variable-length array whose elements have a non-zero bit-pattern.
2070 /// \param baseType the inner-most element type of the array
2071 /// \param src - a char* pointing to the bit-pattern for a single
2072 /// base element of the array
2073 /// \param sizeInChars - the total size of the VLA, in chars
2074 static void emitNonZeroVLAInit(CodeGenFunction
&CGF
, QualType baseType
,
2075 Address dest
, Address src
,
2076 llvm::Value
*sizeInChars
) {
2077 CGBuilderTy
&Builder
= CGF
.Builder
;
2079 CharUnits baseSize
= CGF
.getContext().getTypeSizeInChars(baseType
);
2080 llvm::Value
*baseSizeInChars
2081 = llvm::ConstantInt::get(CGF
.IntPtrTy
, baseSize
.getQuantity());
2083 Address begin
= dest
.withElementType(CGF
.Int8Ty
);
2084 llvm::Value
*end
= Builder
.CreateInBoundsGEP(begin
.getElementType(),
2085 begin
.emitRawPointer(CGF
),
2086 sizeInChars
, "vla.end");
2088 llvm::BasicBlock
*originBB
= CGF
.Builder
.GetInsertBlock();
2089 llvm::BasicBlock
*loopBB
= CGF
.createBasicBlock("vla-init.loop");
2090 llvm::BasicBlock
*contBB
= CGF
.createBasicBlock("vla-init.cont");
2092 // Make a loop over the VLA. C99 guarantees that the VLA element
2093 // count must be nonzero.
2094 CGF
.EmitBlock(loopBB
);
2096 llvm::PHINode
*cur
= Builder
.CreatePHI(begin
.getType(), 2, "vla.cur");
2097 cur
->addIncoming(begin
.emitRawPointer(CGF
), originBB
);
2099 CharUnits curAlign
=
2100 dest
.getAlignment().alignmentOfArrayElement(baseSize
);
2102 // memcpy the individual element bit-pattern.
2103 Builder
.CreateMemCpy(Address(cur
, CGF
.Int8Ty
, curAlign
), src
, baseSizeInChars
,
2104 /*volatile*/ false);
2106 // Go to the next element.
2108 Builder
.CreateInBoundsGEP(CGF
.Int8Ty
, cur
, baseSizeInChars
, "vla.next");
2110 // Leave if that's the end of the VLA.
2111 llvm::Value
*done
= Builder
.CreateICmpEQ(next
, end
, "vla-init.isdone");
2112 Builder
.CreateCondBr(done
, contBB
, loopBB
);
2113 cur
->addIncoming(next
, loopBB
);
2115 CGF
.EmitBlock(contBB
);
2119 CodeGenFunction::EmitNullInitialization(Address DestPtr
, QualType Ty
) {
2120 // Ignore empty classes in C++.
2121 if (getLangOpts().CPlusPlus
) {
2122 if (const RecordType
*RT
= Ty
->getAs
<RecordType
>()) {
2123 if (cast
<CXXRecordDecl
>(RT
->getDecl())->isEmpty())
2128 if (DestPtr
.getElementType() != Int8Ty
)
2129 DestPtr
= DestPtr
.withElementType(Int8Ty
);
2131 // Get size and alignment info for this aggregate.
2132 CharUnits size
= getContext().getTypeSizeInChars(Ty
);
2134 llvm::Value
*SizeVal
;
2135 const VariableArrayType
*vla
;
2137 // Don't bother emitting a zero-byte memset.
2138 if (size
.isZero()) {
2139 // But note that getTypeInfo returns 0 for a VLA.
2140 if (const VariableArrayType
*vlaType
=
2141 dyn_cast_or_null
<VariableArrayType
>(
2142 getContext().getAsArrayType(Ty
))) {
2143 auto VlaSize
= getVLASize(vlaType
);
2144 SizeVal
= VlaSize
.NumElts
;
2145 CharUnits eltSize
= getContext().getTypeSizeInChars(VlaSize
.Type
);
2146 if (!eltSize
.isOne())
2147 SizeVal
= Builder
.CreateNUWMul(SizeVal
, CGM
.getSize(eltSize
));
2153 SizeVal
= CGM
.getSize(size
);
2157 // If the type contains a pointer to data member we can't memset it to zero.
2158 // Instead, create a null constant and copy it to the destination.
2159 // TODO: there are other patterns besides zero that we can usefully memset,
2160 // like -1, which happens to be the pattern used by member-pointers.
2161 if (!CGM
.getTypes().isZeroInitializable(Ty
)) {
2162 // For a VLA, emit a single element, then splat that over the VLA.
2163 if (vla
) Ty
= getContext().getBaseElementType(vla
);
2165 llvm::Constant
*NullConstant
= CGM
.EmitNullConstant(Ty
);
2167 llvm::GlobalVariable
*NullVariable
=
2168 new llvm::GlobalVariable(CGM
.getModule(), NullConstant
->getType(),
2169 /*isConstant=*/true,
2170 llvm::GlobalVariable::PrivateLinkage
,
2171 NullConstant
, Twine());
2172 CharUnits NullAlign
= DestPtr
.getAlignment();
2173 NullVariable
->setAlignment(NullAlign
.getAsAlign());
2174 Address
SrcPtr(NullVariable
, Builder
.getInt8Ty(), NullAlign
);
2176 if (vla
) return emitNonZeroVLAInit(*this, Ty
, DestPtr
, SrcPtr
, SizeVal
);
2178 // Get and call the appropriate llvm.memcpy overload.
2179 Builder
.CreateMemCpy(DestPtr
, SrcPtr
, SizeVal
, false);
2183 // Otherwise, just memset the whole thing to zero. This is legal
2184 // because in LLVM, all default initializers (other than the ones we just
2185 // handled above) are guaranteed to have a bit pattern of all zeros.
2186 Builder
.CreateMemSet(DestPtr
, Builder
.getInt8(0), SizeVal
, false);
2189 llvm::BlockAddress
*CodeGenFunction::GetAddrOfLabel(const LabelDecl
*L
) {
2190 // Make sure that there is a block for the indirect goto.
2191 if (!IndirectBranch
)
2192 GetIndirectGotoBlock();
2194 llvm::BasicBlock
*BB
= getJumpDestForLabel(L
).getBlock();
2196 // Make sure the indirect branch includes all of the address-taken blocks.
2197 IndirectBranch
->addDestination(BB
);
2198 return llvm::BlockAddress::get(CurFn
, BB
);
2201 llvm::BasicBlock
*CodeGenFunction::GetIndirectGotoBlock() {
2202 // If we already made the indirect branch for indirect goto, return its block.
2203 if (IndirectBranch
) return IndirectBranch
->getParent();
2205 CGBuilderTy
TmpBuilder(*this, createBasicBlock("indirectgoto"));
2207 // Create the PHI node that indirect gotos will add entries to.
2208 llvm::Value
*DestVal
= TmpBuilder
.CreatePHI(Int8PtrTy
, 0,
2209 "indirect.goto.dest");
2211 // Create the indirect branch instruction.
2212 IndirectBranch
= TmpBuilder
.CreateIndirectBr(DestVal
);
2213 return IndirectBranch
->getParent();
2216 /// Computes the length of an array in elements, as well as the base
2217 /// element type and a properly-typed first element pointer.
2218 llvm::Value
*CodeGenFunction::emitArrayLength(const ArrayType
*origArrayType
,
2221 const ArrayType
*arrayType
= origArrayType
;
2223 // If it's a VLA, we have to load the stored size. Note that
2224 // this is the size of the VLA in bytes, not its size in elements.
2225 llvm::Value
*numVLAElements
= nullptr;
2226 if (isa
<VariableArrayType
>(arrayType
)) {
2227 numVLAElements
= getVLASize(cast
<VariableArrayType
>(arrayType
)).NumElts
;
2229 // Walk into all VLAs. This doesn't require changes to addr,
2230 // which has type T* where T is the first non-VLA element type.
2232 QualType elementType
= arrayType
->getElementType();
2233 arrayType
= getContext().getAsArrayType(elementType
);
2235 // If we only have VLA components, 'addr' requires no adjustment.
2237 baseType
= elementType
;
2238 return numVLAElements
;
2240 } while (isa
<VariableArrayType
>(arrayType
));
2242 // We get out here only if we find a constant array type
2246 // We have some number of constant-length arrays, so addr should
2247 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks
2248 // down to the first element of addr.
2249 SmallVector
<llvm::Value
*, 8> gepIndices
;
2251 // GEP down to the array type.
2252 llvm::ConstantInt
*zero
= Builder
.getInt32(0);
2253 gepIndices
.push_back(zero
);
2255 uint64_t countFromCLAs
= 1;
2258 llvm::ArrayType
*llvmArrayType
=
2259 dyn_cast
<llvm::ArrayType
>(addr
.getElementType());
2260 while (llvmArrayType
) {
2261 assert(isa
<ConstantArrayType
>(arrayType
));
2262 assert(cast
<ConstantArrayType
>(arrayType
)->getZExtSize() ==
2263 llvmArrayType
->getNumElements());
2265 gepIndices
.push_back(zero
);
2266 countFromCLAs
*= llvmArrayType
->getNumElements();
2267 eltType
= arrayType
->getElementType();
2270 dyn_cast
<llvm::ArrayType
>(llvmArrayType
->getElementType());
2271 arrayType
= getContext().getAsArrayType(arrayType
->getElementType());
2272 assert((!llvmArrayType
|| arrayType
) &&
2273 "LLVM and Clang types are out-of-synch");
2277 // From this point onwards, the Clang array type has been emitted
2278 // as some other type (probably a packed struct). Compute the array
2279 // size, and just emit the 'begin' expression as a bitcast.
2281 countFromCLAs
*= cast
<ConstantArrayType
>(arrayType
)->getZExtSize();
2282 eltType
= arrayType
->getElementType();
2283 arrayType
= getContext().getAsArrayType(eltType
);
2286 llvm::Type
*baseType
= ConvertType(eltType
);
2287 addr
= addr
.withElementType(baseType
);
2289 // Create the actual GEP.
2290 addr
= Address(Builder
.CreateInBoundsGEP(addr
.getElementType(),
2291 addr
.emitRawPointer(*this),
2292 gepIndices
, "array.begin"),
2293 ConvertTypeForMem(eltType
), addr
.getAlignment());
2298 llvm::Value
*numElements
2299 = llvm::ConstantInt::get(SizeTy
, countFromCLAs
);
2301 // If we had any VLA dimensions, factor them in.
2303 numElements
= Builder
.CreateNUWMul(numVLAElements
, numElements
);
2308 CodeGenFunction::VlaSizePair
CodeGenFunction::getVLASize(QualType type
) {
2309 const VariableArrayType
*vla
= getContext().getAsVariableArrayType(type
);
2310 assert(vla
&& "type was not a variable array type!");
2311 return getVLASize(vla
);
2314 CodeGenFunction::VlaSizePair
2315 CodeGenFunction::getVLASize(const VariableArrayType
*type
) {
2316 // The number of elements so far; always size_t.
2317 llvm::Value
*numElements
= nullptr;
2319 QualType elementType
;
2321 elementType
= type
->getElementType();
2322 llvm::Value
*vlaSize
= VLASizeMap
[type
->getSizeExpr()];
2323 assert(vlaSize
&& "no size for VLA!");
2324 assert(vlaSize
->getType() == SizeTy
);
2327 numElements
= vlaSize
;
2329 // It's undefined behavior if this wraps around, so mark it that way.
2330 // FIXME: Teach -fsanitize=undefined to trap this.
2331 numElements
= Builder
.CreateNUWMul(numElements
, vlaSize
);
2333 } while ((type
= getContext().getAsVariableArrayType(elementType
)));
2335 return { numElements
, elementType
};
2338 CodeGenFunction::VlaSizePair
2339 CodeGenFunction::getVLAElements1D(QualType type
) {
2340 const VariableArrayType
*vla
= getContext().getAsVariableArrayType(type
);
2341 assert(vla
&& "type was not a variable array type!");
2342 return getVLAElements1D(vla
);
2345 CodeGenFunction::VlaSizePair
2346 CodeGenFunction::getVLAElements1D(const VariableArrayType
*Vla
) {
2347 llvm::Value
*VlaSize
= VLASizeMap
[Vla
->getSizeExpr()];
2348 assert(VlaSize
&& "no size for VLA!");
2349 assert(VlaSize
->getType() == SizeTy
);
2350 return { VlaSize
, Vla
->getElementType() };
2353 void CodeGenFunction::EmitVariablyModifiedType(QualType type
) {
2354 assert(type
->isVariablyModifiedType() &&
2355 "Must pass variably modified type to EmitVLASizes!");
2357 EnsureInsertPoint();
2359 // We're going to walk down into the type and look for VLA
2362 assert(type
->isVariablyModifiedType());
2364 const Type
*ty
= type
.getTypePtr();
2365 switch (ty
->getTypeClass()) {
2367 #define TYPE(Class, Base)
2368 #define ABSTRACT_TYPE(Class, Base)
2369 #define NON_CANONICAL_TYPE(Class, Base)
2370 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2371 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2372 #include "clang/AST/TypeNodes.inc"
2373 llvm_unreachable("unexpected dependent type!");
2375 // These types are never variably-modified.
2379 case Type::ExtVector
:
2380 case Type::ConstantMatrix
:
2384 case Type::TemplateSpecialization
:
2385 case Type::ObjCTypeParam
:
2386 case Type::ObjCObject
:
2387 case Type::ObjCInterface
:
2388 case Type::ObjCObjectPointer
:
2390 llvm_unreachable("type class is never variably-modified!");
2392 case Type::Elaborated
:
2393 type
= cast
<ElaboratedType
>(ty
)->getNamedType();
2396 case Type::Adjusted
:
2397 type
= cast
<AdjustedType
>(ty
)->getAdjustedType();
2401 type
= cast
<DecayedType
>(ty
)->getPointeeType();
2405 type
= cast
<PointerType
>(ty
)->getPointeeType();
2408 case Type::BlockPointer
:
2409 type
= cast
<BlockPointerType
>(ty
)->getPointeeType();
2412 case Type::LValueReference
:
2413 case Type::RValueReference
:
2414 type
= cast
<ReferenceType
>(ty
)->getPointeeType();
2417 case Type::MemberPointer
:
2418 type
= cast
<MemberPointerType
>(ty
)->getPointeeType();
2421 case Type::ArrayParameter
:
2422 case Type::ConstantArray
:
2423 case Type::IncompleteArray
:
2424 // Losing element qualification here is fine.
2425 type
= cast
<ArrayType
>(ty
)->getElementType();
2428 case Type::VariableArray
: {
2429 // Losing element qualification here is fine.
2430 const VariableArrayType
*vat
= cast
<VariableArrayType
>(ty
);
2432 // Unknown size indication requires no size computation.
2433 // Otherwise, evaluate and record it.
2434 if (const Expr
*sizeExpr
= vat
->getSizeExpr()) {
2435 // It's possible that we might have emitted this already,
2436 // e.g. with a typedef and a pointer to it.
2437 llvm::Value
*&entry
= VLASizeMap
[sizeExpr
];
2439 llvm::Value
*size
= EmitScalarExpr(sizeExpr
);
2442 // If the size is an expression that is not an integer constant
2443 // expression [...] each time it is evaluated it shall have a value
2444 // greater than zero.
2445 if (SanOpts
.has(SanitizerKind::VLABound
)) {
2446 SanitizerScope
SanScope(this);
2447 llvm::Value
*Zero
= llvm::Constant::getNullValue(size
->getType());
2448 clang::QualType SEType
= sizeExpr
->getType();
2449 llvm::Value
*CheckCondition
=
2450 SEType
->isSignedIntegerType()
2451 ? Builder
.CreateICmpSGT(size
, Zero
)
2452 : Builder
.CreateICmpUGT(size
, Zero
);
2453 llvm::Constant
*StaticArgs
[] = {
2454 EmitCheckSourceLocation(sizeExpr
->getBeginLoc()),
2455 EmitCheckTypeDescriptor(SEType
)};
2456 EmitCheck(std::make_pair(CheckCondition
, SanitizerKind::VLABound
),
2457 SanitizerHandler::VLABoundNotPositive
, StaticArgs
, size
);
2460 // Always zexting here would be wrong if it weren't
2461 // undefined behavior to have a negative bound.
2462 // FIXME: What about when size's type is larger than size_t?
2463 entry
= Builder
.CreateIntCast(size
, SizeTy
, /*signed*/ false);
2466 type
= vat
->getElementType();
2470 case Type::FunctionProto
:
2471 case Type::FunctionNoProto
:
2472 type
= cast
<FunctionType
>(ty
)->getReturnType();
2477 case Type::UnaryTransform
:
2478 case Type::Attributed
:
2479 case Type::BTFTagAttributed
:
2480 case Type::SubstTemplateTypeParm
:
2481 case Type::MacroQualified
:
2482 case Type::CountAttributed
:
2483 // Keep walking after single level desugaring.
2484 type
= type
.getSingleStepDesugaredType(getContext());
2488 case Type::Decltype
:
2490 case Type::DeducedTemplateSpecialization
:
2491 case Type::PackIndexing
:
2492 // Stop walking: nothing to do.
2495 case Type::TypeOfExpr
:
2496 // Stop walking: emit typeof expression.
2497 EmitIgnoredExpr(cast
<TypeOfExprType
>(ty
)->getUnderlyingExpr());
2501 type
= cast
<AtomicType
>(ty
)->getValueType();
2505 type
= cast
<PipeType
>(ty
)->getElementType();
2508 } while (type
->isVariablyModifiedType());
2511 Address
CodeGenFunction::EmitVAListRef(const Expr
* E
) {
2512 if (getContext().getBuiltinVaListType()->isArrayType())
2513 return EmitPointerWithAlignment(E
);
2514 return EmitLValue(E
).getAddress();
2517 Address
CodeGenFunction::EmitMSVAListRef(const Expr
*E
) {
2518 return EmitLValue(E
).getAddress();
2521 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr
*E
,
2522 const APValue
&Init
) {
2523 assert(Init
.hasValue() && "Invalid DeclRefExpr initializer!");
2524 if (CGDebugInfo
*Dbg
= getDebugInfo())
2525 if (CGM
.getCodeGenOpts().hasReducedDebugInfo())
2526 Dbg
->EmitGlobalVariable(E
->getDecl(), Init
);
2529 CodeGenFunction::PeepholeProtection
2530 CodeGenFunction::protectFromPeepholes(RValue rvalue
) {
2531 // At the moment, the only aggressive peephole we do in IR gen
2532 // is trunc(zext) folding, but if we add more, we can easily
2533 // extend this protection.
2535 if (!rvalue
.isScalar()) return PeepholeProtection();
2536 llvm::Value
*value
= rvalue
.getScalarVal();
2537 if (!isa
<llvm::ZExtInst
>(value
)) return PeepholeProtection();
2539 // Just make an extra bitcast.
2540 assert(HaveInsertPoint());
2541 llvm::Instruction
*inst
= new llvm::BitCastInst(value
, value
->getType(), "",
2542 Builder
.GetInsertBlock());
2544 PeepholeProtection protection
;
2545 protection
.Inst
= inst
;
2549 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection
) {
2550 if (!protection
.Inst
) return;
2552 // In theory, we could try to duplicate the peepholes now, but whatever.
2553 protection
.Inst
->eraseFromParent();
2556 void CodeGenFunction::emitAlignmentAssumption(llvm::Value
*PtrValue
,
2557 QualType Ty
, SourceLocation Loc
,
2558 SourceLocation AssumptionLoc
,
2559 llvm::Value
*Alignment
,
2560 llvm::Value
*OffsetValue
) {
2561 if (Alignment
->getType() != IntPtrTy
)
2563 Builder
.CreateIntCast(Alignment
, IntPtrTy
, false, "casted.align");
2564 if (OffsetValue
&& OffsetValue
->getType() != IntPtrTy
)
2566 Builder
.CreateIntCast(OffsetValue
, IntPtrTy
, true, "casted.offset");
2567 llvm::Value
*TheCheck
= nullptr;
2568 if (SanOpts
.has(SanitizerKind::Alignment
)) {
2569 llvm::Value
*PtrIntValue
=
2570 Builder
.CreatePtrToInt(PtrValue
, IntPtrTy
, "ptrint");
2573 bool IsOffsetZero
= false;
2574 if (const auto *CI
= dyn_cast
<llvm::ConstantInt
>(OffsetValue
))
2575 IsOffsetZero
= CI
->isZero();
2578 PtrIntValue
= Builder
.CreateSub(PtrIntValue
, OffsetValue
, "offsetptr");
2581 llvm::Value
*Zero
= llvm::ConstantInt::get(IntPtrTy
, 0);
2583 Builder
.CreateSub(Alignment
, llvm::ConstantInt::get(IntPtrTy
, 1));
2584 llvm::Value
*MaskedPtr
= Builder
.CreateAnd(PtrIntValue
, Mask
, "maskedptr");
2585 TheCheck
= Builder
.CreateICmpEQ(MaskedPtr
, Zero
, "maskcond");
2587 llvm::Instruction
*Assumption
= Builder
.CreateAlignmentAssumption(
2588 CGM
.getDataLayout(), PtrValue
, Alignment
, OffsetValue
);
2590 if (!SanOpts
.has(SanitizerKind::Alignment
))
2592 emitAlignmentAssumptionCheck(PtrValue
, Ty
, Loc
, AssumptionLoc
, Alignment
,
2593 OffsetValue
, TheCheck
, Assumption
);
2596 void CodeGenFunction::emitAlignmentAssumption(llvm::Value
*PtrValue
,
2598 SourceLocation AssumptionLoc
,
2599 llvm::Value
*Alignment
,
2600 llvm::Value
*OffsetValue
) {
2601 QualType Ty
= E
->getType();
2602 SourceLocation Loc
= E
->getExprLoc();
2604 emitAlignmentAssumption(PtrValue
, Ty
, Loc
, AssumptionLoc
, Alignment
,
2608 llvm::Value
*CodeGenFunction::EmitAnnotationCall(llvm::Function
*AnnotationFn
,
2609 llvm::Value
*AnnotatedVal
,
2610 StringRef AnnotationStr
,
2611 SourceLocation Location
,
2612 const AnnotateAttr
*Attr
) {
2613 SmallVector
<llvm::Value
*, 5> Args
= {
2615 CGM
.EmitAnnotationString(AnnotationStr
),
2616 CGM
.EmitAnnotationUnit(Location
),
2617 CGM
.EmitAnnotationLineNo(Location
),
2620 Args
.push_back(CGM
.EmitAnnotationArgs(Attr
));
2621 return Builder
.CreateCall(AnnotationFn
, Args
);
2624 void CodeGenFunction::EmitVarAnnotations(const VarDecl
*D
, llvm::Value
*V
) {
2625 assert(D
->hasAttr
<AnnotateAttr
>() && "no annotate attribute");
2626 for (const auto *I
: D
->specific_attrs
<AnnotateAttr
>())
2627 EmitAnnotationCall(CGM
.getIntrinsic(llvm::Intrinsic::var_annotation
,
2628 {V
->getType(), CGM
.ConstGlobalsPtrTy
}),
2629 V
, I
->getAnnotation(), D
->getLocation(), I
);
2632 Address
CodeGenFunction::EmitFieldAnnotations(const FieldDecl
*D
,
2634 assert(D
->hasAttr
<AnnotateAttr
>() && "no annotate attribute");
2635 llvm::Value
*V
= Addr
.emitRawPointer(*this);
2636 llvm::Type
*VTy
= V
->getType();
2637 auto *PTy
= dyn_cast
<llvm::PointerType
>(VTy
);
2638 unsigned AS
= PTy
? PTy
->getAddressSpace() : 0;
2639 llvm::PointerType
*IntrinTy
=
2640 llvm::PointerType::get(CGM
.getLLVMContext(), AS
);
2641 llvm::Function
*F
= CGM
.getIntrinsic(llvm::Intrinsic::ptr_annotation
,
2642 {IntrinTy
, CGM
.ConstGlobalsPtrTy
});
2644 for (const auto *I
: D
->specific_attrs
<AnnotateAttr
>()) {
2645 // FIXME Always emit the cast inst so we can differentiate between
2646 // annotation on the first field of a struct and annotation on the struct
2648 if (VTy
!= IntrinTy
)
2649 V
= Builder
.CreateBitCast(V
, IntrinTy
);
2650 V
= EmitAnnotationCall(F
, V
, I
->getAnnotation(), D
->getLocation(), I
);
2651 V
= Builder
.CreateBitCast(V
, VTy
);
2654 return Address(V
, Addr
.getElementType(), Addr
.getAlignment());
2657 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2659 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction
*CGF
)
2661 assert(!CGF
->IsSanitizerScope
);
2662 CGF
->IsSanitizerScope
= true;
2665 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2666 CGF
->IsSanitizerScope
= false;
2669 void CodeGenFunction::InsertHelper(llvm::Instruction
*I
,
2670 const llvm::Twine
&Name
,
2671 llvm::BasicBlock::iterator InsertPt
) const {
2672 LoopStack
.InsertHelper(I
);
2673 if (IsSanitizerScope
)
2674 I
->setNoSanitizeMetadata();
2677 void CGBuilderInserter::InsertHelper(
2678 llvm::Instruction
*I
, const llvm::Twine
&Name
,
2679 llvm::BasicBlock::iterator InsertPt
) const {
2680 llvm::IRBuilderDefaultInserter::InsertHelper(I
, Name
, InsertPt
);
2682 CGF
->InsertHelper(I
, Name
, InsertPt
);
2685 // Emits an error if we don't have a valid set of target features for the
2687 void CodeGenFunction::checkTargetFeatures(const CallExpr
*E
,
2688 const FunctionDecl
*TargetDecl
) {
2689 // SemaChecking cannot handle below x86 builtins because they have different
2690 // parameter ranges with different TargetAttribute of caller.
2691 if (CGM
.getContext().getTargetInfo().getTriple().isX86()) {
2692 unsigned BuiltinID
= TargetDecl
->getBuiltinID();
2693 if (BuiltinID
== X86::BI__builtin_ia32_cmpps
||
2694 BuiltinID
== X86::BI__builtin_ia32_cmpss
||
2695 BuiltinID
== X86::BI__builtin_ia32_cmppd
||
2696 BuiltinID
== X86::BI__builtin_ia32_cmpsd
) {
2697 const FunctionDecl
*FD
= dyn_cast_or_null
<FunctionDecl
>(CurCodeDecl
);
2698 llvm::StringMap
<bool> TargetFetureMap
;
2699 CGM
.getContext().getFunctionFeatureMap(TargetFetureMap
, FD
);
2700 llvm::APSInt Result
=
2701 *(E
->getArg(2)->getIntegerConstantExpr(CGM
.getContext()));
2702 if (Result
.getSExtValue() > 7 && !TargetFetureMap
.lookup("avx"))
2703 CGM
.getDiags().Report(E
->getBeginLoc(), diag::err_builtin_needs_feature
)
2704 << TargetDecl
->getDeclName() << "avx";
2707 return checkTargetFeatures(E
->getBeginLoc(), TargetDecl
);
2710 // Emits an error if we don't have a valid set of target features for the
2712 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc
,
2713 const FunctionDecl
*TargetDecl
) {
2714 // Early exit if this is an indirect call.
2718 // Get the current enclosing function if it exists. If it doesn't
2719 // we can't check the target features anyhow.
2720 const FunctionDecl
*FD
= dyn_cast_or_null
<FunctionDecl
>(CurCodeDecl
);
2724 // Grab the required features for the call. For a builtin this is listed in
2725 // the td file with the default cpu, for an always_inline function this is any
2726 // listed cpu and any listed features.
2727 unsigned BuiltinID
= TargetDecl
->getBuiltinID();
2728 std::string MissingFeature
;
2729 llvm::StringMap
<bool> CallerFeatureMap
;
2730 CGM
.getContext().getFunctionFeatureMap(CallerFeatureMap
, FD
);
2731 // When compiling in HipStdPar mode we have to be conservative in rejecting
2732 // target specific features in the FE, and defer the possible error to the
2733 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2734 // referenced by an accelerator executable function, we emit an error.
2735 bool IsHipStdPar
= getLangOpts().HIPStdPar
&& getLangOpts().CUDAIsDevice
;
2737 StringRef
FeatureList(CGM
.getContext().BuiltinInfo
.getRequiredFeatures(BuiltinID
));
2738 if (!Builtin::evaluateRequiredTargetFeatures(
2739 FeatureList
, CallerFeatureMap
) && !IsHipStdPar
) {
2740 CGM
.getDiags().Report(Loc
, diag::err_builtin_needs_feature
)
2741 << TargetDecl
->getDeclName()
2744 } else if (!TargetDecl
->isMultiVersion() &&
2745 TargetDecl
->hasAttr
<TargetAttr
>()) {
2746 // Get the required features for the callee.
2748 const TargetAttr
*TD
= TargetDecl
->getAttr
<TargetAttr
>();
2749 ParsedTargetAttr ParsedAttr
=
2750 CGM
.getContext().filterFunctionTargetAttrs(TD
);
2752 SmallVector
<StringRef
, 1> ReqFeatures
;
2753 llvm::StringMap
<bool> CalleeFeatureMap
;
2754 CGM
.getContext().getFunctionFeatureMap(CalleeFeatureMap
, TargetDecl
);
2756 for (const auto &F
: ParsedAttr
.Features
) {
2757 if (F
[0] == '+' && CalleeFeatureMap
.lookup(F
.substr(1)))
2758 ReqFeatures
.push_back(StringRef(F
).substr(1));
2761 for (const auto &F
: CalleeFeatureMap
) {
2762 // Only positive features are "required".
2764 ReqFeatures
.push_back(F
.getKey());
2766 if (!llvm::all_of(ReqFeatures
, [&](StringRef Feature
) {
2767 if (!CallerFeatureMap
.lookup(Feature
)) {
2768 MissingFeature
= Feature
.str();
2773 CGM
.getDiags().Report(Loc
, diag::err_function_needs_feature
)
2774 << FD
->getDeclName() << TargetDecl
->getDeclName() << MissingFeature
;
2775 } else if (!FD
->isMultiVersion() && FD
->hasAttr
<TargetAttr
>()) {
2776 llvm::StringMap
<bool> CalleeFeatureMap
;
2777 CGM
.getContext().getFunctionFeatureMap(CalleeFeatureMap
, TargetDecl
);
2779 for (const auto &F
: CalleeFeatureMap
) {
2780 if (F
.getValue() && (!CallerFeatureMap
.lookup(F
.getKey()) ||
2781 !CallerFeatureMap
.find(F
.getKey())->getValue()) &&
2783 CGM
.getDiags().Report(Loc
, diag::err_function_needs_feature
)
2784 << FD
->getDeclName() << TargetDecl
->getDeclName() << F
.getKey();
2789 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK
) {
2790 if (!CGM
.getCodeGenOpts().SanitizeStats
)
2793 llvm::IRBuilder
<> IRB(Builder
.GetInsertBlock(), Builder
.GetInsertPoint());
2794 IRB
.SetCurrentDebugLocation(Builder
.getCurrentDebugLocation());
2795 CGM
.getSanStats().create(IRB
, SSK
);
2798 void CodeGenFunction::EmitKCFIOperandBundle(
2799 const CGCallee
&Callee
, SmallVectorImpl
<llvm::OperandBundleDef
> &Bundles
) {
2800 const FunctionProtoType
*FP
=
2801 Callee
.getAbstractInfo().getCalleeFunctionProtoType();
2803 Bundles
.emplace_back("kcfi", CGM
.CreateKCFITypeId(FP
->desugar()));
2806 llvm::Value
*CodeGenFunction::FormAArch64ResolverCondition(
2807 const MultiVersionResolverOption
&RO
) {
2808 llvm::SmallVector
<StringRef
, 8> CondFeatures
;
2809 for (const StringRef
&Feature
: RO
.Conditions
.Features
)
2810 CondFeatures
.push_back(Feature
);
2811 if (!CondFeatures
.empty()) {
2812 return EmitAArch64CpuSupports(CondFeatures
);
2817 llvm::Value
*CodeGenFunction::FormX86ResolverCondition(
2818 const MultiVersionResolverOption
&RO
) {
2819 llvm::Value
*Condition
= nullptr;
2821 if (!RO
.Conditions
.Architecture
.empty()) {
2822 StringRef Arch
= RO
.Conditions
.Architecture
;
2823 // If arch= specifies an x86-64 micro-architecture level, test the feature
2824 // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2825 if (Arch
.starts_with("x86-64"))
2826 Condition
= EmitX86CpuSupports({Arch
});
2828 Condition
= EmitX86CpuIs(Arch
);
2831 if (!RO
.Conditions
.Features
.empty()) {
2832 llvm::Value
*FeatureCond
= EmitX86CpuSupports(RO
.Conditions
.Features
);
2834 Condition
? Builder
.CreateAnd(Condition
, FeatureCond
) : FeatureCond
;
2839 static void CreateMultiVersionResolverReturn(CodeGenModule
&CGM
,
2840 llvm::Function
*Resolver
,
2841 CGBuilderTy
&Builder
,
2842 llvm::Function
*FuncToReturn
,
2843 bool SupportsIFunc
) {
2844 if (SupportsIFunc
) {
2845 Builder
.CreateRet(FuncToReturn
);
2849 llvm::SmallVector
<llvm::Value
*, 10> Args(
2850 llvm::make_pointer_range(Resolver
->args()));
2852 llvm::CallInst
*Result
= Builder
.CreateCall(FuncToReturn
, Args
);
2853 Result
->setTailCallKind(llvm::CallInst::TCK_MustTail
);
2855 if (Resolver
->getReturnType()->isVoidTy())
2856 Builder
.CreateRetVoid();
2858 Builder
.CreateRet(Result
);
2861 void CodeGenFunction::EmitMultiVersionResolver(
2862 llvm::Function
*Resolver
, ArrayRef
<MultiVersionResolverOption
> Options
) {
2864 llvm::Triple::ArchType ArchType
=
2865 getContext().getTargetInfo().getTriple().getArch();
2868 case llvm::Triple::x86
:
2869 case llvm::Triple::x86_64
:
2870 EmitX86MultiVersionResolver(Resolver
, Options
);
2872 case llvm::Triple::aarch64
:
2873 EmitAArch64MultiVersionResolver(Resolver
, Options
);
2877 assert(false && "Only implemented for x86 and AArch64 targets");
2881 void CodeGenFunction::EmitAArch64MultiVersionResolver(
2882 llvm::Function
*Resolver
, ArrayRef
<MultiVersionResolverOption
> Options
) {
2883 assert(!Options
.empty() && "No multiversion resolver options found");
2884 assert(Options
.back().Conditions
.Features
.size() == 0 &&
2885 "Default case must be last");
2886 bool SupportsIFunc
= getContext().getTargetInfo().supportsIFunc();
2887 assert(SupportsIFunc
&&
2888 "Multiversion resolver requires target IFUNC support");
2889 bool AArch64CpuInitialized
= false;
2890 llvm::BasicBlock
*CurBlock
= createBasicBlock("resolver_entry", Resolver
);
2892 for (const MultiVersionResolverOption
&RO
: Options
) {
2893 Builder
.SetInsertPoint(CurBlock
);
2894 llvm::Value
*Condition
= FormAArch64ResolverCondition(RO
);
2896 // The 'default' or 'all features enabled' case.
2898 CreateMultiVersionResolverReturn(CGM
, Resolver
, Builder
, RO
.Function
,
2903 if (!AArch64CpuInitialized
) {
2904 Builder
.SetInsertPoint(CurBlock
, CurBlock
->begin());
2905 EmitAArch64CpuInit();
2906 AArch64CpuInitialized
= true;
2907 Builder
.SetInsertPoint(CurBlock
);
2910 llvm::BasicBlock
*RetBlock
= createBasicBlock("resolver_return", Resolver
);
2911 CGBuilderTy
RetBuilder(*this, RetBlock
);
2912 CreateMultiVersionResolverReturn(CGM
, Resolver
, RetBuilder
, RO
.Function
,
2914 CurBlock
= createBasicBlock("resolver_else", Resolver
);
2915 Builder
.CreateCondBr(Condition
, RetBlock
, CurBlock
);
2918 // If no default, emit an unreachable.
2919 Builder
.SetInsertPoint(CurBlock
);
2920 llvm::CallInst
*TrapCall
= EmitTrapCall(llvm::Intrinsic::trap
);
2921 TrapCall
->setDoesNotReturn();
2922 TrapCall
->setDoesNotThrow();
2923 Builder
.CreateUnreachable();
2924 Builder
.ClearInsertionPoint();
2927 void CodeGenFunction::EmitX86MultiVersionResolver(
2928 llvm::Function
*Resolver
, ArrayRef
<MultiVersionResolverOption
> Options
) {
2930 bool SupportsIFunc
= getContext().getTargetInfo().supportsIFunc();
2932 // Main function's basic block.
2933 llvm::BasicBlock
*CurBlock
= createBasicBlock("resolver_entry", Resolver
);
2934 Builder
.SetInsertPoint(CurBlock
);
2937 for (const MultiVersionResolverOption
&RO
: Options
) {
2938 Builder
.SetInsertPoint(CurBlock
);
2939 llvm::Value
*Condition
= FormX86ResolverCondition(RO
);
2941 // The 'default' or 'generic' case.
2943 assert(&RO
== Options
.end() - 1 &&
2944 "Default or Generic case must be last");
2945 CreateMultiVersionResolverReturn(CGM
, Resolver
, Builder
, RO
.Function
,
2950 llvm::BasicBlock
*RetBlock
= createBasicBlock("resolver_return", Resolver
);
2951 CGBuilderTy
RetBuilder(*this, RetBlock
);
2952 CreateMultiVersionResolverReturn(CGM
, Resolver
, RetBuilder
, RO
.Function
,
2954 CurBlock
= createBasicBlock("resolver_else", Resolver
);
2955 Builder
.CreateCondBr(Condition
, RetBlock
, CurBlock
);
2958 // If no generic/default, emit an unreachable.
2959 Builder
.SetInsertPoint(CurBlock
);
2960 llvm::CallInst
*TrapCall
= EmitTrapCall(llvm::Intrinsic::trap
);
2961 TrapCall
->setDoesNotReturn();
2962 TrapCall
->setDoesNotThrow();
2963 Builder
.CreateUnreachable();
2964 Builder
.ClearInsertionPoint();
2967 // Loc - where the diagnostic will point, where in the source code this
2968 // alignment has failed.
2969 // SecondaryLoc - if present (will be present if sufficiently different from
2970 // Loc), the diagnostic will additionally point a "Note:" to this location.
2971 // It should be the location where the __attribute__((assume_aligned))
2973 void CodeGenFunction::emitAlignmentAssumptionCheck(
2974 llvm::Value
*Ptr
, QualType Ty
, SourceLocation Loc
,
2975 SourceLocation SecondaryLoc
, llvm::Value
*Alignment
,
2976 llvm::Value
*OffsetValue
, llvm::Value
*TheCheck
,
2977 llvm::Instruction
*Assumption
) {
2978 assert(isa_and_nonnull
<llvm::CallInst
>(Assumption
) &&
2979 cast
<llvm::CallInst
>(Assumption
)->getCalledOperand() ==
2980 llvm::Intrinsic::getDeclaration(
2981 Builder
.GetInsertBlock()->getParent()->getParent(),
2982 llvm::Intrinsic::assume
) &&
2983 "Assumption should be a call to llvm.assume().");
2984 assert(&(Builder
.GetInsertBlock()->back()) == Assumption
&&
2985 "Assumption should be the last instruction of the basic block, "
2986 "since the basic block is still being generated.");
2988 if (!SanOpts
.has(SanitizerKind::Alignment
))
2991 // Don't check pointers to volatile data. The behavior here is implementation-
2993 if (Ty
->getPointeeType().isVolatileQualified())
2996 // We need to temorairly remove the assumption so we can insert the
2997 // sanitizer check before it, else the check will be dropped by optimizations.
2998 Assumption
->removeFromParent();
3001 SanitizerScope
SanScope(this);
3004 OffsetValue
= Builder
.getInt1(false); // no offset.
3006 llvm::Constant
*StaticData
[] = {EmitCheckSourceLocation(Loc
),
3007 EmitCheckSourceLocation(SecondaryLoc
),
3008 EmitCheckTypeDescriptor(Ty
)};
3009 llvm::Value
*DynamicData
[] = {EmitCheckValue(Ptr
),
3010 EmitCheckValue(Alignment
),
3011 EmitCheckValue(OffsetValue
)};
3012 EmitCheck({std::make_pair(TheCheck
, SanitizerKind::Alignment
)},
3013 SanitizerHandler::AlignmentAssumption
, StaticData
, DynamicData
);
3016 // We are now in the (new, empty) "cont" basic block.
3017 // Reintroduce the assumption.
3018 Builder
.Insert(Assumption
);
3019 // FIXME: Assumption still has it's original basic block as it's Parent.
3022 llvm::DebugLoc
CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location
) {
3023 if (CGDebugInfo
*DI
= getDebugInfo())
3024 return DI
->SourceLocToDebugLoc(Location
);
3026 return llvm::DebugLoc();
3030 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value
*Cond
,
3031 Stmt::Likelihood LH
) {
3035 case Stmt::LH_Likely
:
3036 case Stmt::LH_Unlikely
:
3037 // Don't generate llvm.expect on -O0 as the backend won't use it for
3039 if (CGM
.getCodeGenOpts().OptimizationLevel
== 0)
3041 llvm::Type
*CondTy
= Cond
->getType();
3042 assert(CondTy
->isIntegerTy(1) && "expecting condition to be a boolean");
3043 llvm::Function
*FnExpect
=
3044 CGM
.getIntrinsic(llvm::Intrinsic::expect
, CondTy
);
3045 llvm::Value
*ExpectedValueOfCond
=
3046 llvm::ConstantInt::getBool(CondTy
, LH
== Stmt::LH_Likely
);
3047 return Builder
.CreateCall(FnExpect
, {Cond
, ExpectedValueOfCond
},
3048 Cond
->getName() + ".expval");
3050 llvm_unreachable("Unknown Likelihood");
3053 llvm::Value
*CodeGenFunction::emitBoolVecConversion(llvm::Value
*SrcVec
,
3054 unsigned NumElementsDst
,
3055 const llvm::Twine
&Name
) {
3056 auto *SrcTy
= cast
<llvm::FixedVectorType
>(SrcVec
->getType());
3057 unsigned NumElementsSrc
= SrcTy
->getNumElements();
3058 if (NumElementsSrc
== NumElementsDst
)
3061 std::vector
<int> ShuffleMask(NumElementsDst
, -1);
3062 for (unsigned MaskIdx
= 0;
3063 MaskIdx
< std::min
<>(NumElementsDst
, NumElementsSrc
); ++MaskIdx
)
3064 ShuffleMask
[MaskIdx
] = MaskIdx
;
3066 return Builder
.CreateShuffleVector(SrcVec
, ShuffleMask
, Name
);
3069 void CodeGenFunction::EmitPointerAuthOperandBundle(
3070 const CGPointerAuthInfo
&PointerAuth
,
3071 SmallVectorImpl
<llvm::OperandBundleDef
> &Bundles
) {
3072 if (!PointerAuth
.isSigned())
3075 auto *Key
= Builder
.getInt32(PointerAuth
.getKey());
3077 llvm::Value
*Discriminator
= PointerAuth
.getDiscriminator();
3079 Discriminator
= Builder
.getSize(0);
3081 llvm::Value
*Args
[] = {Key
, Discriminator
};
3082 Bundles
.emplace_back("ptrauth", Args
);
3085 static llvm::Value
*EmitPointerAuthCommon(CodeGenFunction
&CGF
,
3086 const CGPointerAuthInfo
&PointerAuth
,
3087 llvm::Value
*Pointer
,
3088 unsigned IntrinsicID
) {
3092 auto Key
= CGF
.Builder
.getInt32(PointerAuth
.getKey());
3094 llvm::Value
*Discriminator
= PointerAuth
.getDiscriminator();
3095 if (!Discriminator
) {
3096 Discriminator
= CGF
.Builder
.getSize(0);
3099 // Convert the pointer to intptr_t before signing it.
3100 auto OrigType
= Pointer
->getType();
3101 Pointer
= CGF
.Builder
.CreatePtrToInt(Pointer
, CGF
.IntPtrTy
);
3103 // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator)
3104 auto Intrinsic
= CGF
.CGM
.getIntrinsic(IntrinsicID
);
3105 Pointer
= CGF
.EmitRuntimeCall(Intrinsic
, {Pointer
, Key
, Discriminator
});
3107 // Convert back to the original type.
3108 Pointer
= CGF
.Builder
.CreateIntToPtr(Pointer
, OrigType
);
3113 CodeGenFunction::EmitPointerAuthSign(const CGPointerAuthInfo
&PointerAuth
,
3114 llvm::Value
*Pointer
) {
3115 if (!PointerAuth
.shouldSign())
3117 return EmitPointerAuthCommon(*this, PointerAuth
, Pointer
,
3118 llvm::Intrinsic::ptrauth_sign
);
3121 static llvm::Value
*EmitStrip(CodeGenFunction
&CGF
,
3122 const CGPointerAuthInfo
&PointerAuth
,
3123 llvm::Value
*Pointer
) {
3124 auto StripIntrinsic
= CGF
.CGM
.getIntrinsic(llvm::Intrinsic::ptrauth_strip
);
3126 auto Key
= CGF
.Builder
.getInt32(PointerAuth
.getKey());
3127 // Convert the pointer to intptr_t before signing it.
3128 auto OrigType
= Pointer
->getType();
3129 Pointer
= CGF
.EmitRuntimeCall(
3130 StripIntrinsic
, {CGF
.Builder
.CreatePtrToInt(Pointer
, CGF
.IntPtrTy
), Key
});
3131 return CGF
.Builder
.CreateIntToPtr(Pointer
, OrigType
);
3135 CodeGenFunction::EmitPointerAuthAuth(const CGPointerAuthInfo
&PointerAuth
,
3136 llvm::Value
*Pointer
) {
3137 if (PointerAuth
.shouldStrip()) {
3138 return EmitStrip(*this, PointerAuth
, Pointer
);
3140 if (!PointerAuth
.shouldAuth()) {
3144 return EmitPointerAuthCommon(*this, PointerAuth
, Pointer
,
3145 llvm::Intrinsic::ptrauth_auth
);