1 //===- InputFiles.cpp -----------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "InputFiles.h"
13 #include "InputSection.h"
14 #include "LinkerScript.h"
15 #include "SymbolTable.h"
17 #include "SyntheticSections.h"
19 #include "lld/Common/CommonLinkerContext.h"
20 #include "lld/Common/DWARF.h"
21 #include "llvm/ADT/CachedHashString.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/Object/IRObjectFile.h"
25 #include "llvm/Support/ARMAttributeParser.h"
26 #include "llvm/Support/ARMBuildAttributes.h"
27 #include "llvm/Support/Endian.h"
28 #include "llvm/Support/FileSystem.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/Support/RISCVAttributeParser.h"
31 #include "llvm/Support/TarWriter.h"
32 #include "llvm/Support/raw_ostream.h"
35 using namespace llvm::ELF
;
36 using namespace llvm::object
;
37 using namespace llvm::sys
;
38 using namespace llvm::sys::fs
;
39 using namespace llvm::support::endian
;
41 using namespace lld::elf
;
43 bool InputFile::isInGroup
;
44 uint32_t InputFile::nextGroupId
;
46 std::unique_ptr
<TarWriter
> elf::tar
;
48 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
49 std::string
lld::toString(const InputFile
*f
) {
55 std::lock_guard
<std::mutex
> lock(mu
);
56 if (f
->toStringCache
.empty()) {
57 if (f
->archiveName
.empty())
58 f
->toStringCache
= f
->getName();
60 (f
->archiveName
+ "(" + f
->getName() + ")").toVector(f
->toStringCache
);
63 return std::string(f
->toStringCache
);
66 static ELFKind
getELFKind(MemoryBufferRef mb
, StringRef archiveName
) {
69 std::tie(size
, endian
) = getElfArchType(mb
.getBuffer());
71 auto report
= [&](StringRef msg
) {
72 StringRef filename
= mb
.getBufferIdentifier();
73 if (archiveName
.empty())
74 fatal(filename
+ ": " + msg
);
76 fatal(archiveName
+ "(" + filename
+ "): " + msg
);
79 if (!mb
.getBuffer().startswith(ElfMagic
))
80 report("not an ELF file");
81 if (endian
!= ELFDATA2LSB
&& endian
!= ELFDATA2MSB
)
82 report("corrupted ELF file: invalid data encoding");
83 if (size
!= ELFCLASS32
&& size
!= ELFCLASS64
)
84 report("corrupted ELF file: invalid file class");
86 size_t bufSize
= mb
.getBuffer().size();
87 if ((size
== ELFCLASS32
&& bufSize
< sizeof(Elf32_Ehdr
)) ||
88 (size
== ELFCLASS64
&& bufSize
< sizeof(Elf64_Ehdr
)))
89 report("corrupted ELF file: file is too short");
91 if (size
== ELFCLASS32
)
92 return (endian
== ELFDATA2LSB
) ? ELF32LEKind
: ELF32BEKind
;
93 return (endian
== ELFDATA2LSB
) ? ELF64LEKind
: ELF64BEKind
;
96 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
97 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
98 // the input objects have been compiled.
99 static void updateARMVFPArgs(const ARMAttributeParser
&attributes
,
100 const InputFile
*f
) {
101 Optional
<unsigned> attr
=
102 attributes
.getAttributeValue(ARMBuildAttrs::ABI_VFP_args
);
104 // If an ABI tag isn't present then it is implicitly given the value of 0
105 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
106 // including some in glibc that don't use FP args (and should have value 3)
107 // don't have the attribute so we do not consider an implicit value of 0
111 unsigned vfpArgs
= *attr
;
114 case ARMBuildAttrs::BaseAAPCS
:
115 arg
= ARMVFPArgKind::Base
;
117 case ARMBuildAttrs::HardFPAAPCS
:
118 arg
= ARMVFPArgKind::VFP
;
120 case ARMBuildAttrs::ToolChainFPPCS
:
121 // Tool chain specific convention that conforms to neither AAPCS variant.
122 arg
= ARMVFPArgKind::ToolChain
;
124 case ARMBuildAttrs::CompatibleFPAAPCS
:
125 // Object compatible with all conventions.
128 error(toString(f
) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs
));
131 // Follow ld.bfd and error if there is a mix of calling conventions.
132 if (config
->armVFPArgs
!= arg
&& config
->armVFPArgs
!= ARMVFPArgKind::Default
)
133 error(toString(f
) + ": incompatible Tag_ABI_VFP_args");
135 config
->armVFPArgs
= arg
;
138 // The ARM support in lld makes some use of instructions that are not available
139 // on all ARM architectures. Namely:
140 // - Use of BLX instruction for interworking between ARM and Thumb state.
141 // - Use of the extended Thumb branch encoding in relocation.
142 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
143 // The ARM Attributes section contains information about the architecture chosen
144 // at compile time. We follow the convention that if at least one input object
145 // is compiled with an architecture that supports these features then lld is
146 // permitted to use them.
147 static void updateSupportedARMFeatures(const ARMAttributeParser
&attributes
) {
148 Optional
<unsigned> attr
=
149 attributes
.getAttributeValue(ARMBuildAttrs::CPU_arch
);
152 auto arch
= attr
.value();
154 case ARMBuildAttrs::Pre_v4
:
155 case ARMBuildAttrs::v4
:
156 case ARMBuildAttrs::v4T
:
157 // Architectures prior to v5 do not support BLX instruction
159 case ARMBuildAttrs::v5T
:
160 case ARMBuildAttrs::v5TE
:
161 case ARMBuildAttrs::v5TEJ
:
162 case ARMBuildAttrs::v6
:
163 case ARMBuildAttrs::v6KZ
:
164 case ARMBuildAttrs::v6K
:
165 config
->armHasBlx
= true;
166 // Architectures used in pre-Cortex processors do not support
167 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
168 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
171 // All other Architectures have BLX and extended branch encoding
172 config
->armHasBlx
= true;
173 config
->armJ1J2BranchEncoding
= true;
174 if (arch
!= ARMBuildAttrs::v6_M
&& arch
!= ARMBuildAttrs::v6S_M
)
175 // All Architectures used in Cortex processors with the exception
176 // of v6-M and v6S-M have the MOVT and MOVW instructions.
177 config
->armHasMovtMovw
= true;
182 InputFile::InputFile(Kind k
, MemoryBufferRef m
)
183 : mb(m
), groupId(nextGroupId
), fileKind(k
) {
184 // All files within the same --{start,end}-group get the same group ID.
185 // Otherwise, a new file will get a new group ID.
190 Optional
<MemoryBufferRef
> elf::readFile(StringRef path
) {
191 llvm::TimeTraceScope
timeScope("Load input files", path
);
193 // The --chroot option changes our virtual root directory.
194 // This is useful when you are dealing with files created by --reproduce.
195 if (!config
->chroot
.empty() && path
.startswith("/"))
196 path
= saver().save(config
->chroot
+ path
);
199 config
->dependencyFiles
.insert(llvm::CachedHashString(path
));
201 auto mbOrErr
= MemoryBuffer::getFile(path
, /*IsText=*/false,
202 /*RequiresNullTerminator=*/false);
203 if (auto ec
= mbOrErr
.getError()) {
204 error("cannot open " + path
+ ": " + ec
.message());
208 MemoryBufferRef mbref
= (*mbOrErr
)->getMemBufferRef();
209 ctx
->memoryBuffers
.push_back(std::move(*mbOrErr
)); // take MB ownership
212 tar
->append(relativeToRoot(path
), mbref
.getBuffer());
216 // All input object files must be for the same architecture
217 // (e.g. it does not make sense to link x86 object files with
218 // MIPS object files.) This function checks for that error.
219 static bool isCompatible(InputFile
*file
) {
220 if (!file
->isElf() && !isa
<BitcodeFile
>(file
))
223 if (file
->ekind
== config
->ekind
&& file
->emachine
== config
->emachine
) {
224 if (config
->emachine
!= EM_MIPS
)
226 if (isMipsN32Abi(file
) == config
->mipsN32Abi
)
231 !config
->bfdname
.empty() ? config
->bfdname
: config
->emulation
;
232 if (!target
.empty()) {
233 error(toString(file
) + " is incompatible with " + target
);
237 InputFile
*existing
= nullptr;
238 if (!ctx
->objectFiles
.empty())
239 existing
= ctx
->objectFiles
[0];
240 else if (!ctx
->sharedFiles
.empty())
241 existing
= ctx
->sharedFiles
[0];
242 else if (!ctx
->bitcodeFiles
.empty())
243 existing
= ctx
->bitcodeFiles
[0];
246 with
= " with " + toString(existing
);
247 error(toString(file
) + " is incompatible" + with
);
251 template <class ELFT
> static void doParseFile(InputFile
*file
) {
252 if (!isCompatible(file
))
256 if (auto *f
= dyn_cast
<BinaryFile
>(file
)) {
257 ctx
->binaryFiles
.push_back(f
);
264 if (auto *f
= dyn_cast
<BitcodeFile
>(file
)) {
265 ctx
->lazyBitcodeFiles
.push_back(f
);
268 cast
<ObjFile
<ELFT
>>(file
)->parseLazy();
274 message(toString(file
));
277 if (auto *f
= dyn_cast
<SharedFile
>(file
)) {
283 if (auto *f
= dyn_cast
<BitcodeFile
>(file
)) {
284 ctx
->bitcodeFiles
.push_back(f
);
289 // Regular object file
290 ctx
->objectFiles
.push_back(cast
<ELFFileBase
>(file
));
291 cast
<ObjFile
<ELFT
>>(file
)->parse();
294 // Add symbols in File to the symbol table.
295 void elf::parseFile(InputFile
*file
) { invokeELFT(doParseFile
, file
); }
297 // Concatenates arguments to construct a string representing an error location.
298 static std::string
createFileLineMsg(StringRef path
, unsigned line
) {
299 std::string filename
= std::string(path::filename(path
));
300 std::string lineno
= ":" + std::to_string(line
);
301 if (filename
== path
)
302 return filename
+ lineno
;
303 return filename
+ lineno
+ " (" + path
.str() + lineno
+ ")";
306 template <class ELFT
>
307 static std::string
getSrcMsgAux(ObjFile
<ELFT
> &file
, const Symbol
&sym
,
308 InputSectionBase
&sec
, uint64_t offset
) {
309 // In DWARF, functions and variables are stored to different places.
310 // First, look up a function for a given offset.
311 if (Optional
<DILineInfo
> info
= file
.getDILineInfo(&sec
, offset
))
312 return createFileLineMsg(info
->FileName
, info
->Line
);
314 // If it failed, look up again as a variable.
315 if (Optional
<std::pair
<std::string
, unsigned>> fileLine
=
316 file
.getVariableLoc(sym
.getName()))
317 return createFileLineMsg(fileLine
->first
, fileLine
->second
);
319 // File.sourceFile contains STT_FILE symbol, and that is a last resort.
320 return std::string(file
.sourceFile
);
323 std::string
InputFile::getSrcMsg(const Symbol
&sym
, InputSectionBase
&sec
,
325 if (kind() != ObjKind
)
327 switch (config
->ekind
) {
329 llvm_unreachable("Invalid kind");
331 return getSrcMsgAux(cast
<ObjFile
<ELF32LE
>>(*this), sym
, sec
, offset
);
333 return getSrcMsgAux(cast
<ObjFile
<ELF32BE
>>(*this), sym
, sec
, offset
);
335 return getSrcMsgAux(cast
<ObjFile
<ELF64LE
>>(*this), sym
, sec
, offset
);
337 return getSrcMsgAux(cast
<ObjFile
<ELF64BE
>>(*this), sym
, sec
, offset
);
341 StringRef
InputFile::getNameForScript() const {
342 if (archiveName
.empty())
345 if (nameForScriptCache
.empty())
346 nameForScriptCache
= (archiveName
+ Twine(':') + getName()).str();
348 return nameForScriptCache
;
351 // An ELF object file may contain a `.deplibs` section. If it exists, the
352 // section contains a list of library specifiers such as `m` for libm. This
353 // function resolves a given name by finding the first matching library checking
354 // the various ways that a library can be specified to LLD. This ELF extension
355 // is a form of autolinking and is called `dependent libraries`. It is currently
356 // unique to LLVM and lld.
357 static void addDependentLibrary(StringRef specifier
, const InputFile
*f
) {
358 if (!config
->dependentLibraries
)
360 if (Optional
<std::string
> s
= searchLibraryBaseName(specifier
))
361 driver
->addFile(saver().save(*s
), /*withLOption=*/true);
362 else if (Optional
<std::string
> s
= findFromSearchPaths(specifier
))
363 driver
->addFile(saver().save(*s
), /*withLOption=*/true);
364 else if (fs::exists(specifier
))
365 driver
->addFile(specifier
, /*withLOption=*/false);
368 ": unable to find library from dependent library specifier: " +
372 // Record the membership of a section group so that in the garbage collection
373 // pass, section group members are kept or discarded as a unit.
374 template <class ELFT
>
375 static void handleSectionGroup(ArrayRef
<InputSectionBase
*> sections
,
376 ArrayRef
<typename
ELFT::Word
> entries
) {
377 bool hasAlloc
= false;
378 for (uint32_t index
: entries
.slice(1)) {
379 if (index
>= sections
.size())
381 if (InputSectionBase
*s
= sections
[index
])
382 if (s
!= &InputSection::discarded
&& s
->flags
& SHF_ALLOC
)
386 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage
387 // collection. See the comment in markLive(). This rule retains .debug_types
388 // and .rela.debug_types.
392 // Connect the members in a circular doubly-linked list via
393 // nextInSectionGroup.
394 InputSectionBase
*head
;
395 InputSectionBase
*prev
= nullptr;
396 for (uint32_t index
: entries
.slice(1)) {
397 InputSectionBase
*s
= sections
[index
];
398 if (!s
|| s
== &InputSection::discarded
)
401 prev
->nextInSectionGroup
= s
;
407 prev
->nextInSectionGroup
= head
;
410 template <class ELFT
> DWARFCache
*ObjFile
<ELFT
>::getDwarf() {
411 llvm::call_once(initDwarf
, [this]() {
412 dwarf
= std::make_unique
<DWARFCache
>(std::make_unique
<DWARFContext
>(
413 std::make_unique
<LLDDwarfObj
<ELFT
>>(this), "",
414 [&](Error err
) { warn(getName() + ": " + toString(std::move(err
))); },
416 warn(getName() + ": " + toString(std::move(warning
)));
423 // Returns the pair of file name and line number describing location of data
424 // object (variable, array, etc) definition.
425 template <class ELFT
>
426 Optional
<std::pair
<std::string
, unsigned>>
427 ObjFile
<ELFT
>::getVariableLoc(StringRef name
) {
428 return getDwarf()->getVariableLoc(name
);
431 // Returns source line information for a given offset
432 // using DWARF debug info.
433 template <class ELFT
>
434 Optional
<DILineInfo
> ObjFile
<ELFT
>::getDILineInfo(InputSectionBase
*s
,
436 // Detect SectionIndex for specified section.
437 uint64_t sectionIndex
= object::SectionedAddress::UndefSection
;
438 ArrayRef
<InputSectionBase
*> sections
= s
->file
->getSections();
439 for (uint64_t curIndex
= 0; curIndex
< sections
.size(); ++curIndex
) {
440 if (s
== sections
[curIndex
]) {
441 sectionIndex
= curIndex
;
446 return getDwarf()->getDILineInfo(offset
, sectionIndex
);
449 ELFFileBase::ELFFileBase(Kind k
, MemoryBufferRef mb
) : InputFile(k
, mb
) {
450 ekind
= getELFKind(mb
, "");
466 llvm_unreachable("getELFKind");
470 template <typename Elf_Shdr
>
471 static const Elf_Shdr
*findSection(ArrayRef
<Elf_Shdr
> sections
, uint32_t type
) {
472 for (const Elf_Shdr
&sec
: sections
)
473 if (sec
.sh_type
== type
)
478 template <class ELFT
> void ELFFileBase::init() {
479 using Elf_Shdr
= typename
ELFT::Shdr
;
480 using Elf_Sym
= typename
ELFT::Sym
;
482 // Initialize trivial attributes.
483 const ELFFile
<ELFT
> &obj
= getObj
<ELFT
>();
484 emachine
= obj
.getHeader().e_machine
;
485 osabi
= obj
.getHeader().e_ident
[llvm::ELF::EI_OSABI
];
486 abiVersion
= obj
.getHeader().e_ident
[llvm::ELF::EI_ABIVERSION
];
488 ArrayRef
<Elf_Shdr
> sections
= CHECK(obj
.sections(), this);
489 elfShdrs
= sections
.data();
490 numELFShdrs
= sections
.size();
492 // Find a symbol table.
494 (identify_magic(mb
.getBuffer()) == file_magic::elf_shared_object
);
495 const Elf_Shdr
*symtabSec
=
496 findSection(sections
, isDSO
? SHT_DYNSYM
: SHT_SYMTAB
);
501 // Initialize members corresponding to a symbol table.
502 firstGlobal
= symtabSec
->sh_info
;
504 ArrayRef
<Elf_Sym
> eSyms
= CHECK(obj
.symbols(symtabSec
), this);
505 if (firstGlobal
== 0 || firstGlobal
> eSyms
.size())
506 fatal(toString(this) + ": invalid sh_info in symbol table");
508 elfSyms
= reinterpret_cast<const void *>(eSyms
.data());
509 numELFSyms
= uint32_t(eSyms
.size());
510 stringTable
= CHECK(obj
.getStringTableForSymtab(*symtabSec
, sections
), this);
513 template <class ELFT
>
514 uint32_t ObjFile
<ELFT
>::getSectionIndex(const Elf_Sym
&sym
) const {
516 this->getObj().getSectionIndex(sym
, getELFSyms
<ELFT
>(), shndxTable
),
520 template <class ELFT
> void ObjFile
<ELFT
>::parse(bool ignoreComdats
) {
521 object::ELFFile
<ELFT
> obj
= this->getObj();
522 // Read a section table. justSymbols is usually false.
523 if (this->justSymbols
) {
524 initializeJustSymbols();
525 initializeSymbols(obj
);
529 // Handle dependent libraries and selection of section groups as these are not
531 ArrayRef
<Elf_Shdr
> objSections
= getELFShdrs
<ELFT
>();
532 StringRef shstrtab
= CHECK(obj
.getSectionStringTable(objSections
), this);
533 uint64_t size
= objSections
.size();
534 sections
.resize(size
);
535 for (size_t i
= 0; i
!= size
; ++i
) {
536 const Elf_Shdr
&sec
= objSections
[i
];
537 if (sec
.sh_type
== SHT_LLVM_DEPENDENT_LIBRARIES
&& !config
->relocatable
) {
538 StringRef name
= check(obj
.getSectionName(sec
, shstrtab
));
539 ArrayRef
<char> data
= CHECK(
540 this->getObj().template getSectionContentsAsArray
<char>(sec
), this);
541 if (!data
.empty() && data
.back() != '\0') {
544 ": corrupted dependent libraries section (unterminated string): " +
547 for (const char *d
= data
.begin(), *e
= data
.end(); d
< e
;) {
549 addDependentLibrary(s
, this);
553 this->sections
[i
] = &InputSection::discarded
;
557 if (sec
.sh_type
== SHT_ARM_ATTRIBUTES
&& config
->emachine
== EM_ARM
) {
558 ARMAttributeParser attributes
;
559 ArrayRef
<uint8_t> contents
=
560 check(this->getObj().getSectionContents(sec
));
561 StringRef name
= check(obj
.getSectionName(sec
, shstrtab
));
562 this->sections
[i
] = &InputSection::discarded
;
563 if (Error e
= attributes
.parse(contents
, config
->ekind
== ELF32LEKind
566 InputSection
isec(*this, sec
, name
);
567 warn(toString(&isec
) + ": " + llvm::toString(std::move(e
)));
569 updateSupportedARMFeatures(attributes
);
570 updateARMVFPArgs(attributes
, this);
572 // FIXME: Retain the first attribute section we see. The eglibc ARM
573 // dynamic loaders require the presence of an attribute section for
574 // dlopen to work. In a full implementation we would merge all attribute
576 if (in
.attributes
== nullptr) {
577 in
.attributes
= std::make_unique
<InputSection
>(*this, sec
, name
);
578 this->sections
[i
] = in
.attributes
.get();
583 if (sec
.sh_type
== SHT_RISCV_ATTRIBUTES
&& config
->emachine
== EM_RISCV
) {
584 RISCVAttributeParser attributes
;
585 ArrayRef
<uint8_t> contents
=
586 check(this->getObj().getSectionContents(sec
));
587 StringRef name
= check(obj
.getSectionName(sec
, shstrtab
));
588 this->sections
[i
] = &InputSection::discarded
;
589 if (Error e
= attributes
.parse(contents
, support::little
)) {
590 InputSection
isec(*this, sec
, name
);
591 warn(toString(&isec
) + ": " + llvm::toString(std::move(e
)));
593 // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is
596 // FIXME: Retain the first attribute section we see. Tools such as
597 // llvm-objdump make use of the attribute section to determine which
598 // standard extensions to enable. In a full implementation we would
599 // merge all attribute sections.
600 if (in
.attributes
== nullptr) {
601 in
.attributes
= std::make_unique
<InputSection
>(*this, sec
, name
);
602 this->sections
[i
] = in
.attributes
.get();
607 if (sec
.sh_type
!= SHT_GROUP
)
609 StringRef signature
= getShtGroupSignature(objSections
, sec
);
610 ArrayRef
<Elf_Word
> entries
=
611 CHECK(obj
.template getSectionContentsAsArray
<Elf_Word
>(sec
), this);
613 fatal(toString(this) + ": empty SHT_GROUP");
615 Elf_Word flag
= entries
[0];
616 if (flag
&& flag
!= GRP_COMDAT
)
617 fatal(toString(this) + ": unsupported SHT_GROUP format");
620 (flag
& GRP_COMDAT
) == 0 || ignoreComdats
||
621 symtab
->comdatGroups
.try_emplace(CachedHashStringRef(signature
), this)
624 if (config
->relocatable
)
625 this->sections
[i
] = createInputSection(
626 i
, sec
, check(obj
.getSectionName(sec
, shstrtab
)));
630 // Otherwise, discard group members.
631 for (uint32_t secIndex
: entries
.slice(1)) {
632 if (secIndex
>= size
)
633 fatal(toString(this) +
634 ": invalid section index in group: " + Twine(secIndex
));
635 this->sections
[secIndex
] = &InputSection::discarded
;
639 // Read a symbol table.
640 initializeSymbols(obj
);
643 // Sections with SHT_GROUP and comdat bits define comdat section groups.
644 // They are identified and deduplicated by group name. This function
645 // returns a group name.
646 template <class ELFT
>
647 StringRef ObjFile
<ELFT
>::getShtGroupSignature(ArrayRef
<Elf_Shdr
> sections
,
648 const Elf_Shdr
&sec
) {
649 typename
ELFT::SymRange symbols
= this->getELFSyms
<ELFT
>();
650 if (sec
.sh_info
>= symbols
.size())
651 fatal(toString(this) + ": invalid symbol index");
652 const typename
ELFT::Sym
&sym
= symbols
[sec
.sh_info
];
653 return CHECK(sym
.getName(this->stringTable
), this);
656 template <class ELFT
>
657 bool ObjFile
<ELFT
>::shouldMerge(const Elf_Shdr
&sec
, StringRef name
) {
658 // On a regular link we don't merge sections if -O0 (default is -O1). This
659 // sometimes makes the linker significantly faster, although the output will
662 // Doing the same for -r would create a problem as it would combine sections
663 // with different sh_entsize. One option would be to just copy every SHF_MERGE
664 // section as is to the output. While this would produce a valid ELF file with
665 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
666 // they see two .debug_str. We could have separate logic for combining
667 // SHF_MERGE sections based both on their name and sh_entsize, but that seems
668 // to be more trouble than it is worth. Instead, we just use the regular (-O1)
670 if (config
->optimize
== 0 && !config
->relocatable
)
673 // A mergeable section with size 0 is useless because they don't have
674 // any data to merge. A mergeable string section with size 0 can be
675 // argued as invalid because it doesn't end with a null character.
676 // We'll avoid a mess by handling them as if they were non-mergeable.
677 if (sec
.sh_size
== 0)
680 // Check for sh_entsize. The ELF spec is not clear about the zero
681 // sh_entsize. It says that "the member [sh_entsize] contains 0 if
682 // the section does not hold a table of fixed-size entries". We know
683 // that Rust 1.13 produces a string mergeable section with a zero
684 // sh_entsize. Here we just accept it rather than being picky about it.
685 uint64_t entSize
= sec
.sh_entsize
;
688 if (sec
.sh_size
% entSize
)
689 fatal(toString(this) + ":(" + name
+ "): SHF_MERGE section size (" +
690 Twine(sec
.sh_size
) + ") must be a multiple of sh_entsize (" +
691 Twine(entSize
) + ")");
693 if (sec
.sh_flags
& SHF_WRITE
)
694 fatal(toString(this) + ":(" + name
+
695 "): writable SHF_MERGE section is not supported");
700 // This is for --just-symbols.
702 // --just-symbols is a very minor feature that allows you to link your
703 // output against other existing program, so that if you load both your
704 // program and the other program into memory, your output can refer the
705 // other program's symbols.
707 // When the option is given, we link "just symbols". The section table is
708 // initialized with null pointers.
709 template <class ELFT
> void ObjFile
<ELFT
>::initializeJustSymbols() {
710 sections
.resize(numELFShdrs
);
713 template <class ELFT
>
714 void ObjFile
<ELFT
>::initializeSections(bool ignoreComdats
,
715 const llvm::object::ELFFile
<ELFT
> &obj
) {
716 ArrayRef
<Elf_Shdr
> objSections
= getELFShdrs
<ELFT
>();
717 StringRef shstrtab
= CHECK(obj
.getSectionStringTable(objSections
), this);
718 uint64_t size
= objSections
.size();
719 SmallVector
<ArrayRef
<Elf_Word
>, 0> selectedGroups
;
720 for (size_t i
= 0; i
!= size
; ++i
) {
721 if (this->sections
[i
] == &InputSection::discarded
)
723 const Elf_Shdr
&sec
= objSections
[i
];
725 // SHF_EXCLUDE'ed sections are discarded by the linker. However,
726 // if -r is given, we'll let the final link discard such sections.
727 // This is compatible with GNU.
728 if ((sec
.sh_flags
& SHF_EXCLUDE
) && !config
->relocatable
) {
729 if (sec
.sh_type
== SHT_LLVM_CALL_GRAPH_PROFILE
)
730 cgProfileSectionIndex
= i
;
731 if (sec
.sh_type
== SHT_LLVM_ADDRSIG
) {
732 // We ignore the address-significance table if we know that the object
733 // file was created by objcopy or ld -r. This is because these tools
734 // will reorder the symbols in the symbol table, invalidating the data
735 // in the address-significance table, which refers to symbols by index.
736 if (sec
.sh_link
!= 0)
737 this->addrsigSec
= &sec
;
738 else if (config
->icf
== ICFLevel::Safe
)
739 warn(toString(this) +
740 ": --icf=safe conservatively ignores "
741 "SHT_LLVM_ADDRSIG [index " +
744 "(likely created using objcopy or ld -r)");
746 this->sections
[i
] = &InputSection::discarded
;
750 switch (sec
.sh_type
) {
752 if (!config
->relocatable
)
753 sections
[i
] = &InputSection::discarded
;
754 StringRef signature
=
755 cantFail(this->getELFSyms
<ELFT
>()[sec
.sh_info
].getName(stringTable
));
756 ArrayRef
<Elf_Word
> entries
=
757 cantFail(obj
.template getSectionContentsAsArray
<Elf_Word
>(sec
));
758 if ((entries
[0] & GRP_COMDAT
) == 0 || ignoreComdats
||
759 symtab
->comdatGroups
.find(CachedHashStringRef(signature
))->second
==
761 selectedGroups
.push_back(entries
);
764 case SHT_SYMTAB_SHNDX
:
765 shndxTable
= CHECK(obj
.getSHNDXTable(sec
, objSections
), this);
773 case SHT_LLVM_SYMPART
:
774 ctx
->hasSympart
.store(true, std::memory_order_relaxed
);
778 createInputSection(i
, sec
, check(obj
.getSectionName(sec
, shstrtab
)));
782 // We have a second loop. It is used to:
783 // 1) handle SHF_LINK_ORDER sections.
784 // 2) create SHT_REL[A] sections. In some cases the section header index of a
785 // relocation section may be smaller than that of the relocated section. In
786 // such cases, the relocation section would attempt to reference a target
787 // section that has not yet been created. For simplicity, delay creation of
788 // relocation sections until now.
789 for (size_t i
= 0; i
!= size
; ++i
) {
790 if (this->sections
[i
] == &InputSection::discarded
)
792 const Elf_Shdr
&sec
= objSections
[i
];
794 if (sec
.sh_type
== SHT_REL
|| sec
.sh_type
== SHT_RELA
) {
795 // Find a relocation target section and associate this section with that.
796 // Target may have been discarded if it is in a different section group
797 // and the group is discarded, even though it's a violation of the spec.
798 // We handle that situation gracefully by discarding dangling relocation
800 const uint32_t info
= sec
.sh_info
;
801 InputSectionBase
*s
= getRelocTarget(i
, sec
, info
);
805 // ELF spec allows mergeable sections with relocations, but they are rare,
806 // and it is in practice hard to merge such sections by contents, because
807 // applying relocations at end of linking changes section contents. So, we
808 // simply handle such sections as non-mergeable ones. Degrading like this
809 // is acceptable because section merging is optional.
810 if (auto *ms
= dyn_cast
<MergeInputSection
>(s
)) {
811 s
= makeThreadLocal
<InputSection
>(ms
->file
, ms
->flags
, ms
->type
,
812 ms
->alignment
, ms
->data(), ms
->name
);
816 if (s
->relSecIdx
!= 0)
819 ": multiple relocation sections to one section are not supported");
822 // Relocation sections are usually removed from the output, so return
823 // `nullptr` for the normal case. However, if -r or --emit-relocs is
824 // specified, we need to copy them to the output. (Some post link analysis
825 // tools specify --emit-relocs to obtain the information.)
826 if (config
->copyRelocs
) {
827 auto *isec
= makeThreadLocal
<InputSection
>(
828 *this, sec
, check(obj
.getSectionName(sec
, shstrtab
)));
829 // If the relocated section is discarded (due to /DISCARD/ or
830 // --gc-sections), the relocation section should be discarded as well.
831 s
->dependentSections
.push_back(isec
);
837 // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have
839 if (!sec
.sh_link
|| !(sec
.sh_flags
& SHF_LINK_ORDER
))
842 InputSectionBase
*linkSec
= nullptr;
843 if (sec
.sh_link
< size
)
844 linkSec
= this->sections
[sec
.sh_link
];
846 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec
.sh_link
));
848 // A SHF_LINK_ORDER section is discarded if its linked-to section is
850 InputSection
*isec
= cast
<InputSection
>(this->sections
[i
]);
851 linkSec
->dependentSections
.push_back(isec
);
852 if (!isa
<InputSection
>(linkSec
))
853 error("a section " + isec
->name
+
854 " with SHF_LINK_ORDER should not refer a non-regular section: " +
858 for (ArrayRef
<Elf_Word
> entries
: selectedGroups
)
859 handleSectionGroup
<ELFT
>(this->sections
, entries
);
862 // If a source file is compiled with x86 hardware-assisted call flow control
863 // enabled, the generated object file contains feature flags indicating that
864 // fact. This function reads the feature flags and returns it.
866 // Essentially we want to read a single 32-bit value in this function, but this
867 // function is rather complicated because the value is buried deep inside a
868 // .note.gnu.property section.
870 // The section consists of one or more NOTE records. Each NOTE record consists
871 // of zero or more type-length-value fields. We want to find a field of a
872 // certain type. It seems a bit too much to just store a 32-bit value, perhaps
873 // the ABI is unnecessarily complicated.
874 template <class ELFT
> static uint32_t readAndFeatures(const InputSection
&sec
) {
875 using Elf_Nhdr
= typename
ELFT::Nhdr
;
876 using Elf_Note
= typename
ELFT::Note
;
878 uint32_t featuresSet
= 0;
879 ArrayRef
<uint8_t> data
= sec
.rawData
;
880 auto reportFatal
= [&](const uint8_t *place
, const char *msg
) {
881 fatal(toString(sec
.file
) + ":(" + sec
.name
+ "+0x" +
882 Twine::utohexstr(place
- sec
.rawData
.data()) + "): " + msg
);
884 while (!data
.empty()) {
885 // Read one NOTE record.
886 auto *nhdr
= reinterpret_cast<const Elf_Nhdr
*>(data
.data());
887 if (data
.size() < sizeof(Elf_Nhdr
) || data
.size() < nhdr
->getSize())
888 reportFatal(data
.data(), "data is too short");
890 Elf_Note
note(*nhdr
);
891 if (nhdr
->n_type
!= NT_GNU_PROPERTY_TYPE_0
|| note
.getName() != "GNU") {
892 data
= data
.slice(nhdr
->getSize());
896 uint32_t featureAndType
= config
->emachine
== EM_AARCH64
897 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
898 : GNU_PROPERTY_X86_FEATURE_1_AND
;
900 // Read a body of a NOTE record, which consists of type-length-value fields.
901 ArrayRef
<uint8_t> desc
= note
.getDesc();
902 while (!desc
.empty()) {
903 const uint8_t *place
= desc
.data();
905 reportFatal(place
, "program property is too short");
906 uint32_t type
= read32
<ELFT::TargetEndianness
>(desc
.data());
907 uint32_t size
= read32
<ELFT::TargetEndianness
>(desc
.data() + 4);
908 desc
= desc
.slice(8);
909 if (desc
.size() < size
)
910 reportFatal(place
, "program property is too short");
912 if (type
== featureAndType
) {
913 // We found a FEATURE_1_AND field. There may be more than one of these
914 // in a .note.gnu.property section, for a relocatable object we
915 // accumulate the bits set.
917 reportFatal(place
, "FEATURE_1_AND entry is too short");
918 featuresSet
|= read32
<ELFT::TargetEndianness
>(desc
.data());
921 // Padding is present in the note descriptor, if necessary.
922 desc
= desc
.slice(alignTo
<(ELFT::Is64Bits
? 8 : 4)>(size
));
925 // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
926 data
= data
.slice(nhdr
->getSize());
932 template <class ELFT
>
933 InputSectionBase
*ObjFile
<ELFT
>::getRelocTarget(uint32_t idx
,
936 if (info
< this->sections
.size()) {
937 InputSectionBase
*target
= this->sections
[info
];
939 // Strictly speaking, a relocation section must be included in the
940 // group of the section it relocates. However, LLVM 3.3 and earlier
941 // would fail to do so, so we gracefully handle that case.
942 if (target
== &InputSection::discarded
)
945 if (target
!= nullptr)
949 error(toString(this) + Twine(": relocation section (index ") + Twine(idx
) +
950 ") has invalid sh_info (" + Twine(info
) + ")");
954 // The function may be called concurrently for different input files. For
955 // allocation, prefer makeThreadLocal which does not require holding a lock.
956 template <class ELFT
>
957 InputSectionBase
*ObjFile
<ELFT
>::createInputSection(uint32_t idx
,
960 if (name
.startswith(".n")) {
961 // The GNU linker uses .note.GNU-stack section as a marker indicating
962 // that the code in the object file does not expect that the stack is
963 // executable (in terms of NX bit). If all input files have the marker,
964 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
965 // make the stack non-executable. Most object files have this section as
968 // But making the stack non-executable is a norm today for security
969 // reasons. Failure to do so may result in a serious security issue.
970 // Therefore, we make LLD always add PT_GNU_STACK unless it is
971 // explicitly told to do otherwise (by -z execstack). Because the stack
972 // executable-ness is controlled solely by command line options,
973 // .note.GNU-stack sections are simply ignored.
974 if (name
== ".note.GNU-stack")
975 return &InputSection::discarded
;
977 // Object files that use processor features such as Intel Control-Flow
978 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
979 // .note.gnu.property section containing a bitfield of feature bits like the
980 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
982 // Since we merge bitmaps from multiple object files to create a new
983 // .note.gnu.property containing a single AND'ed bitmap, we discard an input
984 // file's .note.gnu.property section.
985 if (name
== ".note.gnu.property") {
986 this->andFeatures
= readAndFeatures
<ELFT
>(InputSection(*this, sec
, name
));
987 return &InputSection::discarded
;
990 // Split stacks is a feature to support a discontiguous stack,
991 // commonly used in the programming language Go. For the details,
992 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
993 // for split stack will include a .note.GNU-split-stack section.
994 if (name
== ".note.GNU-split-stack") {
995 if (config
->relocatable
) {
997 "cannot mix split-stack and non-split-stack in a relocatable link");
998 return &InputSection::discarded
;
1000 this->splitStack
= true;
1001 return &InputSection::discarded
;
1004 // An object file compiled for split stack, but where some of the
1005 // functions were compiled with the no_split_stack_attribute will
1006 // include a .note.GNU-no-split-stack section.
1007 if (name
== ".note.GNU-no-split-stack") {
1008 this->someNoSplitStack
= true;
1009 return &InputSection::discarded
;
1012 // Strip existing .note.gnu.build-id sections so that the output won't have
1013 // more than one build-id. This is not usually a problem because input
1014 // object files normally don't have .build-id sections, but you can create
1015 // such files by "ld.{bfd,gold,lld} -r --build-id", and we want to guard
1017 if (name
== ".note.gnu.build-id")
1018 return &InputSection::discarded
;
1021 // The linker merges EH (exception handling) frames and creates a
1022 // .eh_frame_hdr section for runtime. So we handle them with a special
1023 // class. For relocatable outputs, they are just passed through.
1024 if (name
== ".eh_frame" && !config
->relocatable
)
1025 return makeThreadLocal
<EhInputSection
>(*this, sec
, name
);
1027 if ((sec
.sh_flags
& SHF_MERGE
) && shouldMerge(sec
, name
))
1028 return makeThreadLocal
<MergeInputSection
>(*this, sec
, name
);
1029 return makeThreadLocal
<InputSection
>(*this, sec
, name
);
1032 // Initialize this->Symbols. this->Symbols is a parallel array as
1033 // its corresponding ELF symbol table.
1034 template <class ELFT
>
1035 void ObjFile
<ELFT
>::initializeSymbols(const object::ELFFile
<ELFT
> &obj
) {
1036 SymbolTable
&symtab
= *elf::symtab
;
1038 ArrayRef
<Elf_Sym
> eSyms
= this->getELFSyms
<ELFT
>();
1039 symbols
.resize(eSyms
.size());
1041 // Some entries have been filled by LazyObjFile.
1042 for (size_t i
= firstGlobal
, end
= eSyms
.size(); i
!= end
; ++i
)
1044 symbols
[i
] = symtab
.insert(CHECK(eSyms
[i
].getName(stringTable
), this));
1046 // Perform symbol resolution on non-local symbols.
1047 SmallVector
<unsigned, 32> undefineds
;
1048 for (size_t i
= firstGlobal
, end
= eSyms
.size(); i
!= end
; ++i
) {
1049 const Elf_Sym
&eSym
= eSyms
[i
];
1050 uint32_t secIdx
= eSym
.st_shndx
;
1051 if (secIdx
== SHN_UNDEF
) {
1052 undefineds
.push_back(i
);
1056 uint8_t binding
= eSym
.getBinding();
1057 uint8_t stOther
= eSym
.st_other
;
1058 uint8_t type
= eSym
.getType();
1059 uint64_t value
= eSym
.st_value
;
1060 uint64_t size
= eSym
.st_size
;
1062 Symbol
*sym
= symbols
[i
];
1063 sym
->isUsedInRegularObj
= true;
1064 if (LLVM_UNLIKELY(eSym
.st_shndx
== SHN_COMMON
)) {
1065 if (value
== 0 || value
>= UINT32_MAX
)
1066 fatal(toString(this) + ": common symbol '" + sym
->getName() +
1067 "' has invalid alignment: " + Twine(value
));
1068 hasCommonSyms
= true;
1070 CommonSymbol
{this, StringRef(), binding
, stOther
, type
, value
, size
});
1074 // Handle global defined symbols. Defined::section will be set in postParse.
1075 sym
->resolve(Defined
{this, StringRef(), binding
, stOther
, type
, value
, size
,
1079 // Undefined symbols (excluding those defined relative to non-prevailing
1080 // sections) can trigger recursive extract. Process defined symbols first so
1081 // that the relative order between a defined symbol and an undefined symbol
1082 // does not change the symbol resolution behavior. In addition, a set of
1083 // interconnected symbols will all be resolved to the same file, instead of
1084 // being resolved to different files.
1085 for (unsigned i
: undefineds
) {
1086 const Elf_Sym
&eSym
= eSyms
[i
];
1087 Symbol
*sym
= symbols
[i
];
1088 sym
->resolve(Undefined
{this, StringRef(), eSym
.getBinding(), eSym
.st_other
,
1090 sym
->isUsedInRegularObj
= true;
1091 sym
->referenced
= true;
1095 template <class ELFT
>
1096 void ObjFile
<ELFT
>::initSectionsAndLocalSyms(bool ignoreComdats
) {
1098 initializeSections(ignoreComdats
, getObj());
1102 SymbolUnion
*locals
= makeThreadLocalN
<SymbolUnion
>(firstGlobal
);
1104 ArrayRef
<Elf_Sym
> eSyms
= this->getELFSyms
<ELFT
>();
1105 for (size_t i
= 0, end
= firstGlobal
; i
!= end
; ++i
) {
1106 const Elf_Sym
&eSym
= eSyms
[i
];
1107 uint32_t secIdx
= eSym
.st_shndx
;
1108 if (LLVM_UNLIKELY(secIdx
== SHN_XINDEX
))
1109 secIdx
= check(getExtendedSymbolTableIndex
<ELFT
>(eSym
, i
, shndxTable
));
1110 else if (secIdx
>= SHN_LORESERVE
)
1112 if (LLVM_UNLIKELY(secIdx
>= sections
.size()))
1113 fatal(toString(this) + ": invalid section index: " + Twine(secIdx
));
1114 if (LLVM_UNLIKELY(eSym
.getBinding() != STB_LOCAL
))
1115 error(toString(this) + ": non-local symbol (" + Twine(i
) +
1116 ") found at index < .symtab's sh_info (" + Twine(end
) + ")");
1118 InputSectionBase
*sec
= sections
[secIdx
];
1119 uint8_t type
= eSym
.getType();
1120 if (type
== STT_FILE
)
1121 sourceFile
= CHECK(eSym
.getName(stringTable
), this);
1122 if (LLVM_UNLIKELY(stringTable
.size() <= eSym
.st_name
))
1123 fatal(toString(this) + ": invalid symbol name offset");
1124 StringRef
name(stringTable
.data() + eSym
.st_name
);
1126 symbols
[i
] = reinterpret_cast<Symbol
*>(locals
+ i
);
1127 if (eSym
.st_shndx
== SHN_UNDEF
|| sec
== &InputSection::discarded
)
1128 new (symbols
[i
]) Undefined(this, name
, STB_LOCAL
, eSym
.st_other
, type
,
1129 /*discardedSecIdx=*/secIdx
);
1131 new (symbols
[i
]) Defined(this, name
, STB_LOCAL
, eSym
.st_other
, type
,
1132 eSym
.st_value
, eSym
.st_size
, sec
);
1133 symbols
[i
]->isUsedInRegularObj
= true;
1137 // Called after all ObjFile::parse is called for all ObjFiles. This checks
1138 // duplicate symbols and may do symbol property merge in the future.
1139 template <class ELFT
> void ObjFile
<ELFT
>::postParse() {
1140 static std::mutex mu
;
1141 ArrayRef
<Elf_Sym
> eSyms
= this->getELFSyms
<ELFT
>();
1142 for (size_t i
= firstGlobal
, end
= eSyms
.size(); i
!= end
; ++i
) {
1143 const Elf_Sym
&eSym
= eSyms
[i
];
1144 Symbol
&sym
= *symbols
[i
];
1145 uint32_t secIdx
= eSym
.st_shndx
;
1146 uint8_t binding
= eSym
.getBinding();
1147 if (LLVM_UNLIKELY(binding
!= STB_GLOBAL
&& binding
!= STB_WEAK
&&
1148 binding
!= STB_GNU_UNIQUE
))
1149 errorOrWarn(toString(this) + ": symbol (" + Twine(i
) +
1150 ") has invalid binding: " + Twine((int)binding
));
1152 // st_value of STT_TLS represents the assigned offset, not the actual
1153 // address which is used by STT_FUNC and STT_OBJECT. STT_TLS symbols can
1154 // only be referenced by special TLS relocations. It is usually an error if
1155 // a STT_TLS symbol is replaced by a non-STT_TLS symbol, vice versa.
1156 if (LLVM_UNLIKELY(sym
.isTls()) && eSym
.getType() != STT_TLS
&&
1157 eSym
.getType() != STT_NOTYPE
)
1158 errorOrWarn("TLS attribute mismatch: " + toString(sym
) + "\n>>> in " +
1159 toString(sym
.file
) + "\n>>> in " + toString(this));
1161 // Handle non-COMMON defined symbol below. !sym.file allows a symbol
1162 // assignment to redefine a symbol without an error.
1163 if (!sym
.file
|| !sym
.isDefined() || secIdx
== SHN_UNDEF
||
1164 secIdx
== SHN_COMMON
)
1167 if (LLVM_UNLIKELY(secIdx
== SHN_XINDEX
))
1168 secIdx
= check(getExtendedSymbolTableIndex
<ELFT
>(eSym
, i
, shndxTable
));
1169 else if (secIdx
>= SHN_LORESERVE
)
1171 if (LLVM_UNLIKELY(secIdx
>= sections
.size()))
1172 fatal(toString(this) + ": invalid section index: " + Twine(secIdx
));
1173 InputSectionBase
*sec
= sections
[secIdx
];
1174 if (sec
== &InputSection::discarded
) {
1176 printTraceSymbol(Undefined
{this, sym
.getName(), sym
.binding
,
1177 sym
.stOther
, sym
.type
, secIdx
},
1180 if (sym
.file
== this) {
1181 std::lock_guard
<std::mutex
> lock(mu
);
1182 ctx
->nonPrevailingSyms
.emplace_back(&sym
, secIdx
);
1187 if (sym
.file
== this) {
1188 cast
<Defined
>(sym
).section
= sec
;
1192 if (binding
== STB_WEAK
)
1194 std::lock_guard
<std::mutex
> lock(mu
);
1195 ctx
->duplicates
.push_back({&sym
, this, sec
, eSym
.st_value
});
1199 // The handling of tentative definitions (COMMON symbols) in archives is murky.
1200 // A tentative definition will be promoted to a global definition if there are
1201 // no non-tentative definitions to dominate it. When we hold a tentative
1202 // definition to a symbol and are inspecting archive members for inclusion
1203 // there are 2 ways we can proceed:
1205 // 1) Consider the tentative definition a 'real' definition (ie promotion from
1206 // tentative to real definition has already happened) and not inspect
1207 // archive members for Global/Weak definitions to replace the tentative
1208 // definition. An archive member would only be included if it satisfies some
1209 // other undefined symbol. This is the behavior Gold uses.
1211 // 2) Consider the tentative definition as still undefined (ie the promotion to
1212 // a real definition happens only after all symbol resolution is done).
1213 // The linker searches archive members for STB_GLOBAL definitions to
1214 // replace the tentative definition with. This is the behavior used by
1217 // The second behavior is inherited from SysVR4, which based it on the FORTRAN
1218 // COMMON BLOCK model. This behavior is needed for proper initialization in old
1219 // (pre F90) FORTRAN code that is packaged into an archive.
1221 // The following functions search archive members for definitions to replace
1222 // tentative definitions (implementing behavior 2).
1223 static bool isBitcodeNonCommonDef(MemoryBufferRef mb
, StringRef symName
,
1224 StringRef archiveName
) {
1225 IRSymtabFile symtabFile
= check(readIRSymtab(mb
));
1226 for (const irsymtab::Reader::SymbolRef
&sym
:
1227 symtabFile
.TheReader
.symbols()) {
1228 if (sym
.isGlobal() && sym
.getName() == symName
)
1229 return !sym
.isUndefined() && !sym
.isWeak() && !sym
.isCommon();
1234 template <class ELFT
>
1235 static bool isNonCommonDef(MemoryBufferRef mb
, StringRef symName
,
1236 StringRef archiveName
) {
1237 ObjFile
<ELFT
> *obj
= make
<ObjFile
<ELFT
>>(mb
, archiveName
);
1238 StringRef stringtable
= obj
->getStringTable();
1240 for (auto sym
: obj
->template getGlobalELFSyms
<ELFT
>()) {
1241 Expected
<StringRef
> name
= sym
.getName(stringtable
);
1242 if (name
&& name
.get() == symName
)
1243 return sym
.isDefined() && sym
.getBinding() == STB_GLOBAL
&&
1249 static bool isNonCommonDef(MemoryBufferRef mb
, StringRef symName
,
1250 StringRef archiveName
) {
1251 switch (getELFKind(mb
, archiveName
)) {
1253 return isNonCommonDef
<ELF32LE
>(mb
, symName
, archiveName
);
1255 return isNonCommonDef
<ELF32BE
>(mb
, symName
, archiveName
);
1257 return isNonCommonDef
<ELF64LE
>(mb
, symName
, archiveName
);
1259 return isNonCommonDef
<ELF64BE
>(mb
, symName
, archiveName
);
1261 llvm_unreachable("getELFKind");
1265 unsigned SharedFile::vernauxNum
;
1267 // Parse the version definitions in the object file if present, and return a
1268 // vector whose nth element contains a pointer to the Elf_Verdef for version
1269 // identifier n. Version identifiers that are not definitions map to nullptr.
1270 template <typename ELFT
>
1271 static SmallVector
<const void *, 0>
1272 parseVerdefs(const uint8_t *base
, const typename
ELFT::Shdr
*sec
) {
1276 // Build the Verdefs array by following the chain of Elf_Verdef objects
1277 // from the start of the .gnu.version_d section.
1278 SmallVector
<const void *, 0> verdefs
;
1279 const uint8_t *verdef
= base
+ sec
->sh_offset
;
1280 for (unsigned i
= 0, e
= sec
->sh_info
; i
!= e
; ++i
) {
1281 auto *curVerdef
= reinterpret_cast<const typename
ELFT::Verdef
*>(verdef
);
1282 verdef
+= curVerdef
->vd_next
;
1283 unsigned verdefIndex
= curVerdef
->vd_ndx
;
1284 if (verdefIndex
>= verdefs
.size())
1285 verdefs
.resize(verdefIndex
+ 1);
1286 verdefs
[verdefIndex
] = curVerdef
;
1291 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined
1292 // symbol. We detect fatal issues which would cause vulnerabilities, but do not
1293 // implement sophisticated error checking like in llvm-readobj because the value
1294 // of such diagnostics is low.
1295 template <typename ELFT
>
1296 std::vector
<uint32_t> SharedFile::parseVerneed(const ELFFile
<ELFT
> &obj
,
1297 const typename
ELFT::Shdr
*sec
) {
1300 std::vector
<uint32_t> verneeds
;
1301 ArrayRef
<uint8_t> data
= CHECK(obj
.getSectionContents(*sec
), this);
1302 const uint8_t *verneedBuf
= data
.begin();
1303 for (unsigned i
= 0; i
!= sec
->sh_info
; ++i
) {
1304 if (verneedBuf
+ sizeof(typename
ELFT::Verneed
) > data
.end())
1305 fatal(toString(this) + " has an invalid Verneed");
1306 auto *vn
= reinterpret_cast<const typename
ELFT::Verneed
*>(verneedBuf
);
1307 const uint8_t *vernauxBuf
= verneedBuf
+ vn
->vn_aux
;
1308 for (unsigned j
= 0; j
!= vn
->vn_cnt
; ++j
) {
1309 if (vernauxBuf
+ sizeof(typename
ELFT::Vernaux
) > data
.end())
1310 fatal(toString(this) + " has an invalid Vernaux");
1311 auto *aux
= reinterpret_cast<const typename
ELFT::Vernaux
*>(vernauxBuf
);
1312 if (aux
->vna_name
>= this->stringTable
.size())
1313 fatal(toString(this) + " has a Vernaux with an invalid vna_name");
1314 uint16_t version
= aux
->vna_other
& VERSYM_VERSION
;
1315 if (version
>= verneeds
.size())
1316 verneeds
.resize(version
+ 1);
1317 verneeds
[version
] = aux
->vna_name
;
1318 vernauxBuf
+= aux
->vna_next
;
1320 verneedBuf
+= vn
->vn_next
;
1325 // We do not usually care about alignments of data in shared object
1326 // files because the loader takes care of it. However, if we promote a
1327 // DSO symbol to point to .bss due to copy relocation, we need to keep
1328 // the original alignment requirements. We infer it in this function.
1329 template <typename ELFT
>
1330 static uint64_t getAlignment(ArrayRef
<typename
ELFT::Shdr
> sections
,
1331 const typename
ELFT::Sym
&sym
) {
1332 uint64_t ret
= UINT64_MAX
;
1334 ret
= 1ULL << countTrailingZeros((uint64_t)sym
.st_value
);
1335 if (0 < sym
.st_shndx
&& sym
.st_shndx
< sections
.size())
1336 ret
= std::min
<uint64_t>(ret
, sections
[sym
.st_shndx
].sh_addralign
);
1337 return (ret
> UINT32_MAX
) ? 0 : ret
;
1340 // Fully parse the shared object file.
1342 // This function parses symbol versions. If a DSO has version information,
1343 // the file has a ".gnu.version_d" section which contains symbol version
1344 // definitions. Each symbol is associated to one version through a table in
1345 // ".gnu.version" section. That table is a parallel array for the symbol
1346 // table, and each table entry contains an index in ".gnu.version_d".
1348 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
1349 // VER_NDX_GLOBAL. There's no table entry for these special versions in
1350 // ".gnu.version_d".
1352 // The file format for symbol versioning is perhaps a bit more complicated
1353 // than necessary, but you can easily understand the code if you wrap your
1354 // head around the data structure described above.
1355 template <class ELFT
> void SharedFile::parse() {
1356 using Elf_Dyn
= typename
ELFT::Dyn
;
1357 using Elf_Shdr
= typename
ELFT::Shdr
;
1358 using Elf_Sym
= typename
ELFT::Sym
;
1359 using Elf_Verdef
= typename
ELFT::Verdef
;
1360 using Elf_Versym
= typename
ELFT::Versym
;
1362 ArrayRef
<Elf_Dyn
> dynamicTags
;
1363 const ELFFile
<ELFT
> obj
= this->getObj
<ELFT
>();
1364 ArrayRef
<Elf_Shdr
> sections
= getELFShdrs
<ELFT
>();
1366 const Elf_Shdr
*versymSec
= nullptr;
1367 const Elf_Shdr
*verdefSec
= nullptr;
1368 const Elf_Shdr
*verneedSec
= nullptr;
1370 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
1371 for (const Elf_Shdr
&sec
: sections
) {
1372 switch (sec
.sh_type
) {
1377 CHECK(obj
.template getSectionContentsAsArray
<Elf_Dyn
>(sec
), this);
1379 case SHT_GNU_versym
:
1382 case SHT_GNU_verdef
:
1385 case SHT_GNU_verneed
:
1391 if (versymSec
&& numELFSyms
== 0) {
1392 error("SHT_GNU_versym should be associated with symbol table");
1396 // Search for a DT_SONAME tag to initialize this->soName.
1397 for (const Elf_Dyn
&dyn
: dynamicTags
) {
1398 if (dyn
.d_tag
== DT_NEEDED
) {
1399 uint64_t val
= dyn
.getVal();
1400 if (val
>= this->stringTable
.size())
1401 fatal(toString(this) + ": invalid DT_NEEDED entry");
1402 dtNeeded
.push_back(this->stringTable
.data() + val
);
1403 } else if (dyn
.d_tag
== DT_SONAME
) {
1404 uint64_t val
= dyn
.getVal();
1405 if (val
>= this->stringTable
.size())
1406 fatal(toString(this) + ": invalid DT_SONAME entry");
1407 soName
= this->stringTable
.data() + val
;
1411 // DSOs are uniquified not by filename but by soname.
1412 DenseMap
<CachedHashStringRef
, SharedFile
*>::iterator it
;
1414 std::tie(it
, wasInserted
) =
1415 symtab
->soNames
.try_emplace(CachedHashStringRef(soName
), this);
1417 // If a DSO appears more than once on the command line with and without
1418 // --as-needed, --no-as-needed takes precedence over --as-needed because a
1419 // user can add an extra DSO with --no-as-needed to force it to be added to
1420 // the dependency list.
1421 it
->second
->isNeeded
|= isNeeded
;
1425 ctx
->sharedFiles
.push_back(this);
1427 verdefs
= parseVerdefs
<ELFT
>(obj
.base(), verdefSec
);
1428 std::vector
<uint32_t> verneeds
= parseVerneed
<ELFT
>(obj
, verneedSec
);
1430 // Parse ".gnu.version" section which is a parallel array for the symbol
1431 // table. If a given file doesn't have a ".gnu.version" section, we use
1433 size_t size
= numELFSyms
- firstGlobal
;
1434 std::vector
<uint16_t> versyms(size
, VER_NDX_GLOBAL
);
1436 ArrayRef
<Elf_Versym
> versym
=
1437 CHECK(obj
.template getSectionContentsAsArray
<Elf_Versym
>(*versymSec
),
1439 .slice(firstGlobal
);
1440 for (size_t i
= 0; i
< size
; ++i
)
1441 versyms
[i
] = versym
[i
].vs_index
;
1444 // System libraries can have a lot of symbols with versions. Using a
1445 // fixed buffer for computing the versions name (foo@ver) can save a
1446 // lot of allocations.
1447 SmallString
<0> versionedNameBuffer
;
1449 // Add symbols to the symbol table.
1450 SymbolTable
&symtab
= *elf::symtab
;
1451 ArrayRef
<Elf_Sym
> syms
= this->getGlobalELFSyms
<ELFT
>();
1452 for (size_t i
= 0, e
= syms
.size(); i
!= e
; ++i
) {
1453 const Elf_Sym
&sym
= syms
[i
];
1455 // ELF spec requires that all local symbols precede weak or global
1456 // symbols in each symbol table, and the index of first non-local symbol
1457 // is stored to sh_info. If a local symbol appears after some non-local
1458 // symbol, that's a violation of the spec.
1459 StringRef name
= CHECK(sym
.getName(stringTable
), this);
1460 if (sym
.getBinding() == STB_LOCAL
) {
1461 warn("found local symbol '" + name
+
1462 "' in global part of symbol table in file " + toString(this));
1466 uint16_t idx
= versyms
[i
] & ~VERSYM_HIDDEN
;
1467 if (sym
.isUndefined()) {
1468 // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but
1469 // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL.
1470 if (idx
!= VER_NDX_LOCAL
&& idx
!= VER_NDX_GLOBAL
) {
1471 if (idx
>= verneeds
.size()) {
1472 error("corrupt input file: version need index " + Twine(idx
) +
1473 " for symbol " + name
+ " is out of bounds\n>>> defined in " +
1477 StringRef verName
= stringTable
.data() + verneeds
[idx
];
1478 versionedNameBuffer
.clear();
1479 name
= saver().save(
1480 (name
+ "@" + verName
).toStringRef(versionedNameBuffer
));
1482 Symbol
*s
= symtab
.addSymbol(
1483 Undefined
{this, name
, sym
.getBinding(), sym
.st_other
, sym
.getType()});
1484 s
->exportDynamic
= true;
1485 if (s
->isUndefined() && sym
.getBinding() != STB_WEAK
&&
1486 config
->unresolvedSymbolsInShlib
!= UnresolvedPolicy::Ignore
)
1487 requiredSymbols
.push_back(s
);
1491 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
1492 // assigns VER_NDX_LOCAL to this section global symbol. Here is a
1493 // workaround for this bug.
1494 if (config
->emachine
== EM_MIPS
&& idx
== VER_NDX_LOCAL
&&
1498 uint32_t alignment
= getAlignment
<ELFT
>(sections
, sym
);
1499 if (!(versyms
[i
] & VERSYM_HIDDEN
)) {
1500 auto *s
= symtab
.addSymbol(
1501 SharedSymbol
{*this, name
, sym
.getBinding(), sym
.st_other
,
1502 sym
.getType(), sym
.st_value
, sym
.st_size
, alignment
});
1503 if (s
->file
== this)
1504 s
->verdefIndex
= idx
;
1507 // Also add the symbol with the versioned name to handle undefined symbols
1508 // with explicit versions.
1509 if (idx
== VER_NDX_GLOBAL
)
1512 if (idx
>= verdefs
.size() || idx
== VER_NDX_LOCAL
) {
1513 error("corrupt input file: version definition index " + Twine(idx
) +
1514 " for symbol " + name
+ " is out of bounds\n>>> defined in " +
1520 stringTable
.data() +
1521 reinterpret_cast<const Elf_Verdef
*>(verdefs
[idx
])->getAux()->vda_name
;
1522 versionedNameBuffer
.clear();
1523 name
= (name
+ "@" + verName
).toStringRef(versionedNameBuffer
);
1524 auto *s
= symtab
.addSymbol(
1525 SharedSymbol
{*this, saver().save(name
), sym
.getBinding(), sym
.st_other
,
1526 sym
.getType(), sym
.st_value
, sym
.st_size
, alignment
});
1527 if (s
->file
== this)
1528 s
->verdefIndex
= idx
;
1532 static ELFKind
getBitcodeELFKind(const Triple
&t
) {
1533 if (t
.isLittleEndian())
1534 return t
.isArch64Bit() ? ELF64LEKind
: ELF32LEKind
;
1535 return t
.isArch64Bit() ? ELF64BEKind
: ELF32BEKind
;
1538 static uint16_t getBitcodeMachineKind(StringRef path
, const Triple
&t
) {
1539 switch (t
.getArch()) {
1540 case Triple::aarch64
:
1541 case Triple::aarch64_be
:
1543 case Triple::amdgcn
:
1551 case Triple::hexagon
:
1554 case Triple::mipsel
:
1555 case Triple::mips64
:
1556 case Triple::mips64el
:
1558 case Triple::msp430
:
1564 case Triple::ppc64le
:
1566 case Triple::riscv32
:
1567 case Triple::riscv64
:
1570 return t
.isOSIAMCU() ? EM_IAMCU
: EM_386
;
1571 case Triple::x86_64
:
1574 error(path
+ ": could not infer e_machine from bitcode target triple " +
1580 static uint8_t getOsAbi(const Triple
&t
) {
1581 switch (t
.getOS()) {
1582 case Triple::AMDHSA
:
1583 return ELF::ELFOSABI_AMDGPU_HSA
;
1584 case Triple::AMDPAL
:
1585 return ELF::ELFOSABI_AMDGPU_PAL
;
1586 case Triple::Mesa3D
:
1587 return ELF::ELFOSABI_AMDGPU_MESA3D
;
1589 return ELF::ELFOSABI_NONE
;
1593 BitcodeFile::BitcodeFile(MemoryBufferRef mb
, StringRef archiveName
,
1594 uint64_t offsetInArchive
, bool lazy
)
1595 : InputFile(BitcodeKind
, mb
) {
1596 this->archiveName
= archiveName
;
1599 std::string path
= mb
.getBufferIdentifier().str();
1600 if (config
->thinLTOIndexOnly
)
1601 path
= replaceThinLTOSuffix(mb
.getBufferIdentifier());
1603 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1604 // name. If two archives define two members with the same name, this
1605 // causes a collision which result in only one of the objects being taken
1606 // into consideration at LTO time (which very likely causes undefined
1607 // symbols later in the link stage). So we append file offset to make
1609 StringRef name
= archiveName
.empty()
1610 ? saver().save(path
)
1611 : saver().save(archiveName
+ "(" + path::filename(path
) +
1612 " at " + utostr(offsetInArchive
) + ")");
1613 MemoryBufferRef
mbref(mb
.getBuffer(), name
);
1615 obj
= CHECK(lto::InputFile::create(mbref
), this);
1617 Triple
t(obj
->getTargetTriple());
1618 ekind
= getBitcodeELFKind(t
);
1619 emachine
= getBitcodeMachineKind(mb
.getBufferIdentifier(), t
);
1620 osabi
= getOsAbi(t
);
1623 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility
) {
1624 switch (gvVisibility
) {
1625 case GlobalValue::DefaultVisibility
:
1627 case GlobalValue::HiddenVisibility
:
1629 case GlobalValue::ProtectedVisibility
:
1630 return STV_PROTECTED
;
1632 llvm_unreachable("unknown visibility");
1635 template <class ELFT
>
1637 createBitcodeSymbol(Symbol
*&sym
, const std::vector
<bool> &keptComdats
,
1638 const lto::InputFile::Symbol
&objSym
, BitcodeFile
&f
) {
1639 uint8_t binding
= objSym
.isWeak() ? STB_WEAK
: STB_GLOBAL
;
1640 uint8_t type
= objSym
.isTLS() ? STT_TLS
: STT_NOTYPE
;
1641 uint8_t visibility
= mapVisibility(objSym
.getVisibility());
1644 sym
= symtab
->insert(saver().save(objSym
.getName()));
1646 int c
= objSym
.getComdatIndex();
1647 if (objSym
.isUndefined() || (c
!= -1 && !keptComdats
[c
])) {
1648 Undefined
newSym(&f
, StringRef(), binding
, visibility
, type
);
1649 sym
->resolve(newSym
);
1650 sym
->referenced
= true;
1654 if (objSym
.isCommon()) {
1655 sym
->resolve(CommonSymbol
{&f
, StringRef(), binding
, visibility
, STT_OBJECT
,
1656 objSym
.getCommonAlignment(),
1657 objSym
.getCommonSize()});
1659 Defined
newSym(&f
, StringRef(), binding
, visibility
, type
, 0, 0, nullptr);
1660 if (objSym
.canBeOmittedFromSymbolTable())
1661 newSym
.exportDynamic
= false;
1662 sym
->resolve(newSym
);
1666 template <class ELFT
> void BitcodeFile::parse() {
1667 for (std::pair
<StringRef
, Comdat::SelectionKind
> s
: obj
->getComdatTable()) {
1668 keptComdats
.push_back(
1669 s
.second
== Comdat::NoDeduplicate
||
1670 symtab
->comdatGroups
.try_emplace(CachedHashStringRef(s
.first
), this)
1674 symbols
.resize(obj
->symbols().size());
1675 // Process defined symbols first. See the comment in
1676 // ObjFile<ELFT>::initializeSymbols.
1677 for (auto it
: llvm::enumerate(obj
->symbols()))
1678 if (!it
.value().isUndefined()) {
1679 Symbol
*&sym
= symbols
[it
.index()];
1680 createBitcodeSymbol
<ELFT
>(sym
, keptComdats
, it
.value(), *this);
1682 for (auto it
: llvm::enumerate(obj
->symbols()))
1683 if (it
.value().isUndefined()) {
1684 Symbol
*&sym
= symbols
[it
.index()];
1685 createBitcodeSymbol
<ELFT
>(sym
, keptComdats
, it
.value(), *this);
1688 for (auto l
: obj
->getDependentLibraries())
1689 addDependentLibrary(l
, this);
1692 void BitcodeFile::parseLazy() {
1693 SymbolTable
&symtab
= *elf::symtab
;
1694 symbols
.resize(obj
->symbols().size());
1695 for (auto it
: llvm::enumerate(obj
->symbols()))
1696 if (!it
.value().isUndefined()) {
1697 auto *sym
= symtab
.insert(saver().save(it
.value().getName()));
1698 sym
->resolve(LazyObject
{*this});
1699 symbols
[it
.index()] = sym
;
1703 void BitcodeFile::postParse() {
1704 for (auto it
: llvm::enumerate(obj
->symbols())) {
1705 const Symbol
&sym
= *symbols
[it
.index()];
1706 const auto &objSym
= it
.value();
1707 if (sym
.file
== this || !sym
.isDefined() || objSym
.isUndefined() ||
1708 objSym
.isCommon() || objSym
.isWeak())
1710 int c
= objSym
.getComdatIndex();
1711 if (c
!= -1 && !keptComdats
[c
])
1713 reportDuplicate(sym
, this, nullptr, 0);
1717 void BinaryFile::parse() {
1718 ArrayRef
<uint8_t> data
= arrayRefFromStringRef(mb
.getBuffer());
1719 auto *section
= make
<InputSection
>(this, SHF_ALLOC
| SHF_WRITE
, SHT_PROGBITS
,
1721 sections
.push_back(section
);
1723 // For each input file foo that is embedded to a result as a binary
1724 // blob, we define _binary_foo_{start,end,size} symbols, so that
1725 // user programs can access blobs by name. Non-alphanumeric
1726 // characters in a filename are replaced with underscore.
1727 std::string s
= "_binary_" + mb
.getBufferIdentifier().str();
1728 for (size_t i
= 0; i
< s
.size(); ++i
)
1732 llvm::StringSaver
&saver
= lld::saver();
1734 symtab
->addAndCheckDuplicate(Defined
{nullptr, saver
.save(s
+ "_start"),
1735 STB_GLOBAL
, STV_DEFAULT
, STT_OBJECT
, 0,
1737 symtab
->addAndCheckDuplicate(Defined
{nullptr, saver
.save(s
+ "_end"),
1738 STB_GLOBAL
, STV_DEFAULT
, STT_OBJECT
,
1739 data
.size(), 0, section
});
1740 symtab
->addAndCheckDuplicate(Defined
{nullptr, saver
.save(s
+ "_size"),
1741 STB_GLOBAL
, STV_DEFAULT
, STT_OBJECT
,
1742 data
.size(), 0, nullptr});
1745 ELFFileBase
*elf::createObjFile(MemoryBufferRef mb
, StringRef archiveName
,
1748 switch (getELFKind(mb
, archiveName
)) {
1750 f
= make
<ObjFile
<ELF32LE
>>(mb
, archiveName
);
1753 f
= make
<ObjFile
<ELF32BE
>>(mb
, archiveName
);
1756 f
= make
<ObjFile
<ELF64LE
>>(mb
, archiveName
);
1759 f
= make
<ObjFile
<ELF64BE
>>(mb
, archiveName
);
1762 llvm_unreachable("getELFKind");
1768 template <class ELFT
> void ObjFile
<ELFT
>::parseLazy() {
1769 const ArrayRef
<typename
ELFT::Sym
> eSyms
= this->getELFSyms
<ELFT
>();
1770 SymbolTable
&symtab
= *elf::symtab
;
1772 symbols
.resize(eSyms
.size());
1773 for (size_t i
= firstGlobal
, end
= eSyms
.size(); i
!= end
; ++i
)
1774 if (eSyms
[i
].st_shndx
!= SHN_UNDEF
)
1775 symbols
[i
] = symtab
.insert(CHECK(eSyms
[i
].getName(stringTable
), this));
1777 // Replace existing symbols with LazyObject symbols.
1779 // resolve() may trigger this->extract() if an existing symbol is an undefined
1780 // symbol. If that happens, this function has served its purpose, and we can
1781 // exit from the loop early.
1782 for (Symbol
*sym
: makeArrayRef(symbols
).slice(firstGlobal
))
1784 sym
->resolve(LazyObject
{*this});
1790 bool InputFile::shouldExtractForCommon(StringRef name
) {
1791 if (isa
<BitcodeFile
>(this))
1792 return isBitcodeNonCommonDef(mb
, name
, archiveName
);
1794 return isNonCommonDef(mb
, name
, archiveName
);
1797 std::string
elf::replaceThinLTOSuffix(StringRef path
) {
1798 StringRef suffix
= config
->thinLTOObjectSuffixReplace
.first
;
1799 StringRef repl
= config
->thinLTOObjectSuffixReplace
.second
;
1801 if (path
.consume_back(suffix
))
1802 return (path
+ repl
).str();
1803 return std::string(path
);
1806 template void BitcodeFile::parse
<ELF32LE
>();
1807 template void BitcodeFile::parse
<ELF32BE
>();
1808 template void BitcodeFile::parse
<ELF64LE
>();
1809 template void BitcodeFile::parse
<ELF64BE
>();
1811 template class elf::ObjFile
<ELF32LE
>;
1812 template class elf::ObjFile
<ELF32BE
>;
1813 template class elf::ObjFile
<ELF64LE
>;
1814 template class elf::ObjFile
<ELF64BE
>;
1816 template void SharedFile::parse
<ELF32LE
>();
1817 template void SharedFile::parse
<ELF32BE
>();
1818 template void SharedFile::parse
<ELF64LE
>();
1819 template void SharedFile::parse
<ELF64BE
>();