[cmake] Fix ms-compat version in WinMsvc.cmake
[llvm-project.git] / lld / ELF / InputSection.h
blob2cdba943eb28e7375701218a6d4e99947dd96641
1 //===- InputSection.h -------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLD_ELF_INPUT_SECTION_H
10 #define LLD_ELF_INPUT_SECTION_H
12 #include "Relocations.h"
13 #include "lld/Common/CommonLinkerContext.h"
14 #include "lld/Common/LLVM.h"
15 #include "lld/Common/Memory.h"
16 #include "llvm/ADT/CachedHashString.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/TinyPtrVector.h"
19 #include "llvm/Object/ELF.h"
21 namespace lld {
22 namespace elf {
24 class InputFile;
25 class Symbol;
27 class Defined;
28 struct Partition;
29 class SyntheticSection;
30 template <class ELFT> class ObjFile;
31 class OutputSection;
33 extern std::vector<Partition> partitions;
35 // Returned by InputSectionBase::relsOrRelas. At least one member is empty.
36 template <class ELFT> struct RelsOrRelas {
37 ArrayRef<typename ELFT::Rel> rels;
38 ArrayRef<typename ELFT::Rela> relas;
39 bool areRelocsRel() const { return rels.size(); }
42 // This is the base class of all sections that lld handles. Some are sections in
43 // input files, some are sections in the produced output file and some exist
44 // just as a convenience for implementing special ways of combining some
45 // sections.
46 class SectionBase {
47 public:
48 enum Kind { Regular, Synthetic, EHFrame, Merge, Output };
50 Kind kind() const { return (Kind)sectionKind; }
52 StringRef name;
54 uint8_t sectionKind : 3;
56 // The next two bit fields are only used by InputSectionBase, but we
57 // put them here so the struct packs better.
59 uint8_t bss : 1;
61 // Set for sections that should not be folded by ICF.
62 uint8_t keepUnique : 1;
64 // The 1-indexed partition that this section is assigned to by the garbage
65 // collector, or 0 if this section is dead. Normally there is only one
66 // partition, so this will either be 0 or 1.
67 uint8_t partition = 1;
68 elf::Partition &getPartition() const;
70 // These corresponds to the fields in Elf_Shdr.
71 uint32_t alignment;
72 uint64_t flags;
73 uint32_t entsize;
74 uint32_t type;
75 uint32_t link;
76 uint32_t info;
78 OutputSection *getOutputSection();
79 const OutputSection *getOutputSection() const {
80 return const_cast<SectionBase *>(this)->getOutputSection();
83 // Translate an offset in the input section to an offset in the output
84 // section.
85 uint64_t getOffset(uint64_t offset) const;
87 uint64_t getVA(uint64_t offset = 0) const;
89 bool isLive() const { return partition != 0; }
90 void markLive() { partition = 1; }
91 void markDead() { partition = 0; }
93 protected:
94 constexpr SectionBase(Kind sectionKind, StringRef name, uint64_t flags,
95 uint32_t entsize, uint32_t alignment, uint32_t type,
96 uint32_t info, uint32_t link)
97 : name(name), sectionKind(sectionKind), bss(false), keepUnique(false),
98 alignment(alignment), flags(flags), entsize(entsize), type(type),
99 link(link), info(info) {}
102 struct RISCVRelaxAux;
104 // This corresponds to a section of an input file.
105 class InputSectionBase : public SectionBase {
106 public:
107 template <class ELFT>
108 InputSectionBase(ObjFile<ELFT> &file, const typename ELFT::Shdr &header,
109 StringRef name, Kind sectionKind);
111 InputSectionBase(InputFile *file, uint64_t flags, uint32_t type,
112 uint64_t entsize, uint32_t link, uint32_t info,
113 uint32_t alignment, ArrayRef<uint8_t> data, StringRef name,
114 Kind sectionKind);
116 static bool classof(const SectionBase *s) { return s->kind() != Output; }
118 // The file which contains this section. Its dynamic type is always
119 // ObjFile<ELFT>, but in order to avoid ELFT, we use InputFile as
120 // its static type.
121 InputFile *file;
123 // Input sections are part of an output section. Special sections
124 // like .eh_frame and merge sections are first combined into a
125 // synthetic section that is then added to an output section. In all
126 // cases this points one level up.
127 SectionBase *parent = nullptr;
129 // Section index of the relocation section if exists.
130 uint32_t relSecIdx = 0;
132 template <class ELFT> ObjFile<ELFT> *getFile() const {
133 return cast_or_null<ObjFile<ELFT>>(file);
136 // Used by --optimize-bb-jumps and RISC-V linker relaxation temporarily to
137 // indicate the number of bytes which is not counted in the size. This should
138 // be reset to zero after uses.
139 uint16_t bytesDropped = 0;
141 // Whether the section needs to be padded with a NOP filler due to
142 // deleteFallThruJmpInsn.
143 bool nopFiller = false;
145 void drop_back(unsigned num) {
146 assert(bytesDropped + num < 256);
147 bytesDropped += num;
150 void push_back(uint64_t num) {
151 assert(bytesDropped >= num);
152 bytesDropped -= num;
155 mutable ArrayRef<uint8_t> rawData;
157 void trim() {
158 if (bytesDropped) {
159 rawData = rawData.drop_back(bytesDropped);
160 bytesDropped = 0;
164 ArrayRef<uint8_t> data() const {
165 if (uncompressedSize >= 0)
166 uncompress();
167 return rawData;
170 // The next member in the section group if this section is in a group. This is
171 // used by --gc-sections.
172 InputSectionBase *nextInSectionGroup = nullptr;
174 template <class ELFT> RelsOrRelas<ELFT> relsOrRelas() const;
176 // InputSections that are dependent on us (reverse dependency for GC)
177 llvm::TinyPtrVector<InputSection *> dependentSections;
179 // Returns the size of this section (even if this is a common or BSS.)
180 size_t getSize() const;
182 InputSection *getLinkOrderDep() const;
184 // Get the function symbol that encloses this offset from within the
185 // section.
186 Defined *getEnclosingFunction(uint64_t offset);
188 // Returns a source location string. Used to construct an error message.
189 std::string getLocation(uint64_t offset);
190 std::string getSrcMsg(const Symbol &sym, uint64_t offset);
191 std::string getObjMsg(uint64_t offset);
193 // Each section knows how to relocate itself. These functions apply
194 // relocations, assuming that Buf points to this section's copy in
195 // the mmap'ed output buffer.
196 template <class ELFT> void relocate(uint8_t *buf, uint8_t *bufEnd);
197 void relocateAlloc(uint8_t *buf, uint8_t *bufEnd);
198 static uint64_t getRelocTargetVA(const InputFile *File, RelType Type,
199 int64_t A, uint64_t P, const Symbol &Sym,
200 RelExpr Expr);
202 // The native ELF reloc data type is not very convenient to handle.
203 // So we convert ELF reloc records to our own records in Relocations.cpp.
204 // This vector contains such "cooked" relocations.
205 SmallVector<Relocation, 0> relocations;
207 union {
208 // These are modifiers to jump instructions that are necessary when basic
209 // block sections are enabled. Basic block sections creates opportunities
210 // to relax jump instructions at basic block boundaries after reordering the
211 // basic blocks.
212 JumpInstrMod *jumpInstrMod = nullptr;
214 // Auxiliary information for RISC-V linker relaxation. RISC-V does not use
215 // jumpInstrMod.
216 RISCVRelaxAux *relaxAux;
219 // A function compiled with -fsplit-stack calling a function
220 // compiled without -fsplit-stack needs its prologue adjusted. Find
221 // such functions and adjust their prologues. This is very similar
222 // to relocation. See https://gcc.gnu.org/wiki/SplitStacks for more
223 // information.
224 template <typename ELFT>
225 void adjustSplitStackFunctionPrologues(uint8_t *buf, uint8_t *end);
228 template <typename T> llvm::ArrayRef<T> getDataAs() const {
229 size_t s = rawData.size();
230 assert(s % sizeof(T) == 0);
231 return llvm::makeArrayRef<T>((const T *)rawData.data(), s / sizeof(T));
234 protected:
235 template <typename ELFT>
236 void parseCompressedHeader();
237 void uncompress() const;
239 // This field stores the uncompressed size of the compressed data in rawData,
240 // or -1 if rawData is not compressed (either because the section wasn't
241 // compressed in the first place, or because we ended up uncompressing it).
242 // Since the feature is not used often, this is usually -1.
243 mutable int64_t uncompressedSize = -1;
246 // SectionPiece represents a piece of splittable section contents.
247 // We allocate a lot of these and binary search on them. This means that they
248 // have to be as compact as possible, which is why we don't store the size (can
249 // be found by looking at the next one).
250 struct SectionPiece {
251 SectionPiece() = default;
252 SectionPiece(size_t off, uint32_t hash, bool live)
253 : inputOff(off), live(live), hash(hash >> 1) {}
255 uint32_t inputOff;
256 uint32_t live : 1;
257 uint32_t hash : 31;
258 uint64_t outputOff = 0;
261 static_assert(sizeof(SectionPiece) == 16, "SectionPiece is too big");
263 // This corresponds to a SHF_MERGE section of an input file.
264 class MergeInputSection : public InputSectionBase {
265 public:
266 template <class ELFT>
267 MergeInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
268 StringRef name);
269 MergeInputSection(uint64_t flags, uint32_t type, uint64_t entsize,
270 ArrayRef<uint8_t> data, StringRef name);
272 static bool classof(const SectionBase *s) { return s->kind() == Merge; }
273 void splitIntoPieces();
275 // Translate an offset in the input section to an offset in the parent
276 // MergeSyntheticSection.
277 uint64_t getParentOffset(uint64_t offset) const;
279 // Splittable sections are handled as a sequence of data
280 // rather than a single large blob of data.
281 SmallVector<SectionPiece, 0> pieces;
283 // Returns I'th piece's data. This function is very hot when
284 // string merging is enabled, so we want to inline.
285 LLVM_ATTRIBUTE_ALWAYS_INLINE
286 llvm::CachedHashStringRef getData(size_t i) const {
287 size_t begin = pieces[i].inputOff;
288 size_t end =
289 (pieces.size() - 1 == i) ? rawData.size() : pieces[i + 1].inputOff;
290 return {toStringRef(rawData.slice(begin, end - begin)), pieces[i].hash};
293 // Returns the SectionPiece at a given input section offset.
294 SectionPiece &getSectionPiece(uint64_t offset);
295 const SectionPiece &getSectionPiece(uint64_t offset) const {
296 return const_cast<MergeInputSection *>(this)->getSectionPiece(offset);
299 SyntheticSection *getParent() const {
300 return cast_or_null<SyntheticSection>(parent);
303 private:
304 void splitStrings(StringRef s, size_t size);
305 void splitNonStrings(ArrayRef<uint8_t> a, size_t size);
308 struct EhSectionPiece {
309 EhSectionPiece(size_t off, InputSectionBase *sec, uint32_t size,
310 unsigned firstRelocation)
311 : inputOff(off), sec(sec), size(size), firstRelocation(firstRelocation) {}
313 ArrayRef<uint8_t> data() const {
314 return {sec->rawData.data() + this->inputOff, size};
317 size_t inputOff;
318 ssize_t outputOff = -1;
319 InputSectionBase *sec;
320 uint32_t size;
321 unsigned firstRelocation;
324 // This corresponds to a .eh_frame section of an input file.
325 class EhInputSection : public InputSectionBase {
326 public:
327 template <class ELFT>
328 EhInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
329 StringRef name);
330 static bool classof(const SectionBase *s) { return s->kind() == EHFrame; }
331 template <class ELFT> void split();
332 template <class ELFT, class RelTy> void split(ArrayRef<RelTy> rels);
334 // Splittable sections are handled as a sequence of data
335 // rather than a single large blob of data.
336 SmallVector<EhSectionPiece, 0> cies, fdes;
338 SyntheticSection *getParent() const;
339 uint64_t getParentOffset(uint64_t offset) const;
342 // This is a section that is added directly to an output section
343 // instead of needing special combination via a synthetic section. This
344 // includes all input sections with the exceptions of SHF_MERGE and
345 // .eh_frame. It also includes the synthetic sections themselves.
346 class InputSection : public InputSectionBase {
347 public:
348 InputSection(InputFile *f, uint64_t flags, uint32_t type, uint32_t alignment,
349 ArrayRef<uint8_t> data, StringRef name, Kind k = Regular);
350 template <class ELFT>
351 InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
352 StringRef name);
354 static bool classof(const SectionBase *s) {
355 return s->kind() == SectionBase::Regular ||
356 s->kind() == SectionBase::Synthetic;
359 // Write this section to a mmap'ed file, assuming Buf is pointing to
360 // beginning of the output section.
361 template <class ELFT> void writeTo(uint8_t *buf);
363 OutputSection *getParent() const {
364 return reinterpret_cast<OutputSection *>(parent);
367 // This variable has two usages. Initially, it represents an index in the
368 // OutputSection's InputSection list, and is used when ordering SHF_LINK_ORDER
369 // sections. After assignAddresses is called, it represents the offset from
370 // the beginning of the output section this section was assigned to.
371 uint64_t outSecOff = 0;
373 InputSectionBase *getRelocatedSection() const;
375 template <class ELFT, class RelTy>
376 void relocateNonAlloc(uint8_t *buf, llvm::ArrayRef<RelTy> rels);
378 // Points to the canonical section. If ICF folds two sections, repl pointer of
379 // one section points to the other.
380 InputSection *repl = this;
382 // Used by ICF.
383 uint32_t eqClass[2] = {0, 0};
385 // Called by ICF to merge two input sections.
386 void replace(InputSection *other);
388 static InputSection discarded;
390 private:
391 template <class ELFT, class RelTy>
392 void copyRelocations(uint8_t *buf, llvm::ArrayRef<RelTy> rels);
394 template <class ELFT> void copyShtGroup(uint8_t *buf);
397 static_assert(sizeof(InputSection) <= 160, "InputSection is too big");
399 class SyntheticSection : public InputSection {
400 public:
401 SyntheticSection(uint64_t flags, uint32_t type, uint32_t alignment,
402 StringRef name)
403 : InputSection(nullptr, flags, type, alignment, {}, name,
404 InputSectionBase::Synthetic) {}
406 virtual ~SyntheticSection() = default;
407 virtual size_t getSize() const = 0;
408 virtual bool updateAllocSize() { return false; }
409 // If the section has the SHF_ALLOC flag and the size may be changed if
410 // thunks are added, update the section size.
411 virtual bool isNeeded() const { return true; }
412 virtual void finalizeContents() {}
413 virtual void writeTo(uint8_t *buf) = 0;
415 static bool classof(const SectionBase *sec) {
416 return sec->kind() == InputSectionBase::Synthetic;
420 inline bool isDebugSection(const InputSectionBase &sec) {
421 return (sec.flags & llvm::ELF::SHF_ALLOC) == 0 &&
422 sec.name.startswith(".debug");
425 // The list of all input sections.
426 extern SmallVector<InputSectionBase *, 0> inputSections;
427 extern SmallVector<EhInputSection *, 0> ehInputSections;
429 // The set of TOC entries (.toc + addend) for which we should not apply
430 // toc-indirect to toc-relative relaxation. const Symbol * refers to the
431 // STT_SECTION symbol associated to the .toc input section.
432 extern llvm::DenseSet<std::pair<const Symbol *, uint64_t>> ppc64noTocRelax;
434 } // namespace elf
436 std::string toString(const elf::InputSectionBase *);
437 } // namespace lld
439 #endif