1 //===- OutputSections.cpp -------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "OutputSections.h"
11 #include "InputFiles.h"
12 #include "LinkerScript.h"
14 #include "SyntheticSections.h"
16 #include "lld/Common/Arrays.h"
17 #include "lld/Common/Memory.h"
18 #include "llvm/BinaryFormat/Dwarf.h"
19 #include "llvm/Config/llvm-config.h" // LLVM_ENABLE_ZLIB
20 #include "llvm/Support/Parallel.h"
21 #include "llvm/Support/Path.h"
22 #include "llvm/Support/TimeProfiler.h"
28 using namespace llvm::dwarf
;
29 using namespace llvm::object
;
30 using namespace llvm::support::endian
;
31 using namespace llvm::ELF
;
33 using namespace lld::elf
;
35 uint8_t *Out::bufferStart
;
36 PhdrEntry
*Out::tlsPhdr
;
37 OutputSection
*Out::elfHeader
;
38 OutputSection
*Out::programHeaders
;
39 OutputSection
*Out::preinitArray
;
40 OutputSection
*Out::initArray
;
41 OutputSection
*Out::finiArray
;
43 SmallVector
<OutputSection
*, 0> elf::outputSections
;
45 uint32_t OutputSection::getPhdrFlags() const {
47 if (config
->emachine
!= EM_ARM
|| !(flags
& SHF_ARM_PURECODE
))
49 if (flags
& SHF_WRITE
)
51 if (flags
& SHF_EXECINSTR
)
57 void OutputSection::writeHeaderTo(typename
ELFT::Shdr
*shdr
) {
58 shdr
->sh_entsize
= entsize
;
59 shdr
->sh_addralign
= alignment
;
61 shdr
->sh_offset
= offset
;
62 shdr
->sh_flags
= flags
;
67 shdr
->sh_name
= shName
;
70 OutputSection::OutputSection(StringRef name
, uint32_t type
, uint64_t flags
)
71 : SectionBase(Output
, name
, flags
, /*Entsize*/ 0, /*Alignment*/ 1, type
,
72 /*Info*/ 0, /*Link*/ 0) {}
74 // We allow sections of types listed below to merged into a
75 // single progbits section. This is typically done by linker
76 // scripts. Merging nobits and progbits will force disk space
77 // to be allocated for nobits sections. Other ones don't require
78 // any special treatment on top of progbits, so there doesn't
79 // seem to be a harm in merging them.
81 // NOTE: clang since rL252300 emits SHT_X86_64_UNWIND .eh_frame sections. Allow
82 // them to be merged into SHT_PROGBITS .eh_frame (GNU as .cfi_*).
83 static bool canMergeToProgbits(unsigned type
) {
84 return type
== SHT_NOBITS
|| type
== SHT_PROGBITS
|| type
== SHT_INIT_ARRAY
||
85 type
== SHT_PREINIT_ARRAY
|| type
== SHT_FINI_ARRAY
||
87 (type
== SHT_X86_64_UNWIND
&& config
->emachine
== EM_X86_64
);
90 // Record that isec will be placed in the OutputSection. isec does not become
91 // permanent until finalizeInputSections() is called. The function should not be
92 // used after finalizeInputSections() is called. If you need to add an
93 // InputSection post finalizeInputSections(), then you must do the following:
95 // 1. Find or create an InputSectionDescription to hold InputSection.
96 // 2. Add the InputSection to the InputSectionDescription::sections.
97 // 3. Call commitSection(isec).
98 void OutputSection::recordSection(InputSectionBase
*isec
) {
99 partition
= isec
->partition
;
101 if (commands
.empty() || !isa
<InputSectionDescription
>(commands
.back()))
102 commands
.push_back(make
<InputSectionDescription
>(""));
103 auto *isd
= cast
<InputSectionDescription
>(commands
.back());
104 isd
->sectionBases
.push_back(isec
);
107 // Update fields (type, flags, alignment, etc) according to the InputSection
108 // isec. Also check whether the InputSection flags and type are consistent with
109 // other InputSections.
110 void OutputSection::commitSection(InputSection
*isec
) {
111 if (LLVM_UNLIKELY(type
!= isec
->type
)) {
112 if (hasInputSections
|| typeIsSet
) {
113 if (typeIsSet
|| !canMergeToProgbits(type
) ||
114 !canMergeToProgbits(isec
->type
)) {
115 // Changing the type of a (NOLOAD) section is fishy, but some projects
116 // (e.g. https://github.com/ClangBuiltLinux/linux/issues/1597)
117 // traditionally rely on the behavior. Issue a warning to not break
118 // them. Other types get an error.
119 auto diagnose
= type
== SHT_NOBITS
? warn
: errorOrWarn
;
120 diagnose("section type mismatch for " + isec
->name
+ "\n>>> " +
121 toString(isec
) + ": " +
122 getELFSectionTypeName(config
->emachine
, isec
->type
) +
123 "\n>>> output section " + name
+ ": " +
124 getELFSectionTypeName(config
->emachine
, type
));
132 if (!hasInputSections
) {
133 // If IS is the first section to be added to this section,
134 // initialize type, entsize and flags from isec.
135 hasInputSections
= true;
136 entsize
= isec
->entsize
;
139 // Otherwise, check if new type or flags are compatible with existing ones.
140 if ((flags
^ isec
->flags
) & SHF_TLS
)
141 error("incompatible section flags for " + name
+ "\n>>> " +
142 toString(isec
) + ": 0x" + utohexstr(isec
->flags
) +
143 "\n>>> output section " + name
+ ": 0x" + utohexstr(flags
));
148 config
->emachine
== EM_ARM
? (uint64_t)SHF_ARM_PURECODE
: 0;
149 uint64_t orMask
= ~andMask
;
150 uint64_t andFlags
= (flags
& isec
->flags
) & andMask
;
151 uint64_t orFlags
= (flags
| isec
->flags
) & orMask
;
152 flags
= andFlags
| orFlags
;
154 flags
&= ~(uint64_t)SHF_ALLOC
;
156 alignment
= std::max(alignment
, isec
->alignment
);
158 // If this section contains a table of fixed-size entries, sh_entsize
159 // holds the element size. If it contains elements of different size we
160 // set sh_entsize to 0.
161 if (entsize
!= isec
->entsize
)
165 static MergeSyntheticSection
*createMergeSynthetic(StringRef name
,
168 uint32_t alignment
) {
169 if ((flags
& SHF_STRINGS
) && config
->optimize
>= 2)
170 return make
<MergeTailSection
>(name
, type
, flags
, alignment
);
171 return make
<MergeNoTailSection
>(name
, type
, flags
, alignment
);
174 // This function scans over the InputSectionBase list sectionBases to create
175 // InputSectionDescription::sections.
177 // It removes MergeInputSections from the input section array and adds
178 // new synthetic sections at the location of the first input section
179 // that it replaces. It then finalizes each synthetic section in order
180 // to compute an output offset for each piece of each input section.
181 void OutputSection::finalizeInputSections() {
182 std::vector
<MergeSyntheticSection
*> mergeSections
;
183 for (SectionCommand
*cmd
: commands
) {
184 auto *isd
= dyn_cast
<InputSectionDescription
>(cmd
);
187 isd
->sections
.reserve(isd
->sectionBases
.size());
188 for (InputSectionBase
*s
: isd
->sectionBases
) {
189 MergeInputSection
*ms
= dyn_cast
<MergeInputSection
>(s
);
191 isd
->sections
.push_back(cast
<InputSection
>(s
));
195 // We do not want to handle sections that are not alive, so just remove
196 // them instead of trying to merge.
200 auto i
= llvm::find_if(mergeSections
, [=](MergeSyntheticSection
*sec
) {
201 // While we could create a single synthetic section for two different
202 // values of Entsize, it is better to take Entsize into consideration.
204 // With a single synthetic section no two pieces with different Entsize
205 // could be equal, so we may as well have two sections.
207 // Using Entsize in here also allows us to propagate it to the synthetic
210 // SHF_STRINGS section with different alignments should not be merged.
211 return sec
->flags
== ms
->flags
&& sec
->entsize
== ms
->entsize
&&
212 (sec
->alignment
== ms
->alignment
|| !(sec
->flags
& SHF_STRINGS
));
214 if (i
== mergeSections
.end()) {
215 MergeSyntheticSection
*syn
=
216 createMergeSynthetic(name
, ms
->type
, ms
->flags
, ms
->alignment
);
217 mergeSections
.push_back(syn
);
218 i
= std::prev(mergeSections
.end());
219 syn
->entsize
= ms
->entsize
;
220 isd
->sections
.push_back(syn
);
222 (*i
)->addSection(ms
);
225 // sectionBases should not be used from this point onwards. Clear it to
227 isd
->sectionBases
.clear();
229 // Some input sections may be removed from the list after ICF.
230 for (InputSection
*s
: isd
->sections
)
233 for (auto *ms
: mergeSections
)
234 ms
->finalizeContents();
237 static void sortByOrder(MutableArrayRef
<InputSection
*> in
,
238 llvm::function_ref
<int(InputSectionBase
*s
)> order
) {
239 std::vector
<std::pair
<int, InputSection
*>> v
;
240 for (InputSection
*s
: in
)
241 v
.push_back({order(s
), s
});
242 llvm::stable_sort(v
, less_first());
244 for (size_t i
= 0; i
< v
.size(); ++i
)
248 uint64_t elf::getHeaderSize() {
249 if (config
->oFormatBinary
)
251 return Out::elfHeader
->size
+ Out::programHeaders
->size
;
254 void OutputSection::sort(llvm::function_ref
<int(InputSectionBase
*s
)> order
) {
256 for (SectionCommand
*b
: commands
)
257 if (auto *isd
= dyn_cast
<InputSectionDescription
>(b
))
258 sortByOrder(isd
->sections
, order
);
261 static void nopInstrFill(uint8_t *buf
, size_t size
) {
267 std::vector
<std::vector
<uint8_t>> nopFiller
= *target
->nopInstrs
;
268 unsigned num
= size
/ nopFiller
.back().size();
269 for (unsigned c
= 0; c
< num
; ++c
) {
270 memcpy(buf
+ i
, nopFiller
.back().data(), nopFiller
.back().size());
271 i
+= nopFiller
.back().size();
273 unsigned remaining
= size
- i
;
276 assert(nopFiller
[remaining
- 1].size() == remaining
);
277 memcpy(buf
+ i
, nopFiller
[remaining
- 1].data(), remaining
);
280 // Fill [Buf, Buf + Size) with Filler.
281 // This is used for linker script "=fillexp" command.
282 static void fill(uint8_t *buf
, size_t size
,
283 const std::array
<uint8_t, 4> &filler
) {
285 for (; i
+ 4 < size
; i
+= 4)
286 memcpy(buf
+ i
, filler
.data(), 4);
287 memcpy(buf
+ i
, filler
.data(), size
- i
);
291 static SmallVector
<uint8_t, 0> deflateShard(ArrayRef
<uint8_t> in
, int level
,
293 // 15 and 8 are default. windowBits=-15 is negative to generate raw deflate
294 // data with no zlib header or trailer.
296 deflateInit2(&s
, level
, Z_DEFLATED
, -15, 8, Z_DEFAULT_STRATEGY
);
297 s
.next_in
= const_cast<uint8_t *>(in
.data());
298 s
.avail_in
= in
.size();
300 // Allocate a buffer of half of the input size, and grow it by 1.5x if
302 SmallVector
<uint8_t, 0> out
;
304 out
.resize_for_overwrite(std::max
<size_t>(in
.size() / 2, 64));
306 if (pos
== out
.size())
307 out
.resize_for_overwrite(out
.size() * 3 / 2);
308 s
.next_out
= out
.data() + pos
;
309 s
.avail_out
= out
.size() - pos
;
310 (void)deflate(&s
, flush
);
311 pos
= s
.next_out
- out
.data();
312 } while (s
.avail_out
== 0);
313 assert(s
.avail_in
== 0);
321 // Compress section contents if this section contains debug info.
322 template <class ELFT
> void OutputSection::maybeCompress() {
324 using Elf_Chdr
= typename
ELFT::Chdr
;
326 // Compress only DWARF debug sections.
327 if (!config
->compressDebugSections
|| (flags
& SHF_ALLOC
) ||
328 !name
.startswith(".debug_") || size
== 0)
331 llvm::TimeTraceScope
timeScope("Compress debug sections");
333 // Write uncompressed data to a temporary zero-initialized buffer.
334 auto buf
= std::make_unique
<uint8_t[]>(size
);
335 writeTo
<ELFT
>(buf
.get());
336 // We chose 1 (Z_BEST_SPEED) as the default compression level because it is
337 // the fastest. If -O2 is given, we use level 6 to compress debug info more by
338 // ~15%. We found that level 7 to 9 doesn't make much difference (~1% more
339 // compression) while they take significant amount of time (~2x), so level 6
341 const int level
= config
->optimize
>= 2 ? 6 : Z_BEST_SPEED
;
343 // Split input into 1-MiB shards.
344 constexpr size_t shardSize
= 1 << 20;
345 auto shardsIn
= split(makeArrayRef
<uint8_t>(buf
.get(), size
), shardSize
);
346 const size_t numShards
= shardsIn
.size();
348 // Compress shards and compute Alder-32 checksums. Use Z_SYNC_FLUSH for all
349 // shards but the last to flush the output to a byte boundary to be
350 // concatenated with the next shard.
351 auto shardsOut
= std::make_unique
<SmallVector
<uint8_t, 0>[]>(numShards
);
352 auto shardsAdler
= std::make_unique
<uint32_t[]>(numShards
);
353 parallelFor(0, numShards
, [&](size_t i
) {
354 shardsOut
[i
] = deflateShard(shardsIn
[i
], level
,
355 i
!= numShards
- 1 ? Z_SYNC_FLUSH
: Z_FINISH
);
356 shardsAdler
[i
] = adler32(1, shardsIn
[i
].data(), shardsIn
[i
].size());
359 // Update section size and combine Alder-32 checksums.
360 uint32_t checksum
= 1; // Initial Adler-32 value
361 compressed
.uncompressedSize
= size
;
362 size
= sizeof(Elf_Chdr
) + 2; // Elf_Chdir and zlib header
363 for (size_t i
= 0; i
!= numShards
; ++i
) {
364 size
+= shardsOut
[i
].size();
365 checksum
= adler32_combine(checksum
, shardsAdler
[i
], shardsIn
[i
].size());
367 size
+= 4; // checksum
369 compressed
.shards
= std::move(shardsOut
);
370 compressed
.numShards
= numShards
;
371 compressed
.checksum
= checksum
;
372 flags
|= SHF_COMPRESSED
;
376 static void writeInt(uint8_t *buf
, uint64_t data
, uint64_t size
) {
386 llvm_unreachable("unsupported Size argument");
389 template <class ELFT
> void OutputSection::writeTo(uint8_t *buf
) {
390 llvm::TimeTraceScope
timeScope("Write sections", name
);
391 if (type
== SHT_NOBITS
)
394 // If --compress-debug-section is specified and if this is a debug section,
395 // we've already compressed section contents. If that's the case,
396 // just write it down.
397 if (compressed
.shards
) {
398 auto *chdr
= reinterpret_cast<typename
ELFT::Chdr
*>(buf
);
399 chdr
->ch_type
= ELFCOMPRESS_ZLIB
;
400 chdr
->ch_size
= compressed
.uncompressedSize
;
401 chdr
->ch_addralign
= alignment
;
402 buf
+= sizeof(*chdr
);
404 // Compute shard offsets.
405 auto offsets
= std::make_unique
<size_t[]>(compressed
.numShards
);
406 offsets
[0] = 2; // zlib header
407 for (size_t i
= 1; i
!= compressed
.numShards
; ++i
)
408 offsets
[i
] = offsets
[i
- 1] + compressed
.shards
[i
- 1].size();
410 buf
[0] = 0x78; // CMF
411 buf
[1] = 0x01; // FLG: best speed
412 parallelFor(0, compressed
.numShards
, [&](size_t i
) {
413 memcpy(buf
+ offsets
[i
], compressed
.shards
[i
].data(),
414 compressed
.shards
[i
].size());
417 write32be(buf
+ (size
- sizeof(*chdr
) - 4), compressed
.checksum
);
421 // Write leading padding.
422 SmallVector
<InputSection
*, 0> storage
;
423 ArrayRef
<InputSection
*> sections
= getInputSections(*this, storage
);
424 std::array
<uint8_t, 4> filler
= getFiller();
425 bool nonZeroFiller
= read32(filler
.data()) != 0;
427 fill(buf
, sections
.empty() ? size
: sections
[0]->outSecOff
, filler
);
429 parallelFor(0, sections
.size(), [&](size_t i
) {
430 InputSection
*isec
= sections
[i
];
431 if (auto *s
= dyn_cast
<SyntheticSection
>(isec
))
432 s
->writeTo(buf
+ isec
->outSecOff
);
434 isec
->writeTo
<ELFT
>(buf
+ isec
->outSecOff
);
436 // Fill gaps between sections.
438 uint8_t *start
= buf
+ isec
->outSecOff
+ isec
->getSize();
440 if (i
+ 1 == sections
.size())
443 end
= buf
+ sections
[i
+ 1]->outSecOff
;
444 if (isec
->nopFiller
) {
445 assert(target
->nopInstrs
);
446 nopInstrFill(start
, end
- start
);
448 fill(start
, end
- start
, filler
);
452 // Linker scripts may have BYTE()-family commands with which you
453 // can write arbitrary bytes to the output. Process them if any.
454 for (SectionCommand
*cmd
: commands
)
455 if (auto *data
= dyn_cast
<ByteCommand
>(cmd
))
456 writeInt(buf
+ data
->offset
, data
->expression().getValue(), data
->size
);
459 static void finalizeShtGroup(OutputSection
*os
, InputSection
*section
) {
460 // sh_link field for SHT_GROUP sections should contain the section index of
462 os
->link
= in
.symTab
->getParent()->sectionIndex
;
467 // sh_info then contain index of an entry in symbol table section which
468 // provides signature of the section group.
469 ArrayRef
<Symbol
*> symbols
= section
->file
->getSymbols();
470 os
->info
= in
.symTab
->getSymbolIndex(symbols
[section
->info
]);
472 // Some group members may be combined or discarded, so we need to compute the
473 // new size. The content will be rewritten in InputSection::copyShtGroup.
474 DenseSet
<uint32_t> seen
;
475 ArrayRef
<InputSectionBase
*> sections
= section
->file
->getSections();
476 for (const uint32_t &idx
: section
->getDataAs
<uint32_t>().slice(1))
477 if (OutputSection
*osec
= sections
[read32(&idx
)]->getOutputSection())
478 seen
.insert(osec
->sectionIndex
);
479 os
->size
= (1 + seen
.size()) * sizeof(uint32_t);
482 void OutputSection::finalize() {
483 InputSection
*first
= getFirstInputSection(this);
485 if (flags
& SHF_LINK_ORDER
) {
486 // We must preserve the link order dependency of sections with the
487 // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We
488 // need to translate the InputSection sh_link to the OutputSection sh_link,
489 // all InputSections in the OutputSection have the same dependency.
490 if (auto *ex
= dyn_cast
<ARMExidxSyntheticSection
>(first
))
491 link
= ex
->getLinkOrderDep()->getParent()->sectionIndex
;
492 else if (first
->flags
& SHF_LINK_ORDER
)
493 if (auto *d
= first
->getLinkOrderDep())
494 link
= d
->getParent()->sectionIndex
;
497 if (type
== SHT_GROUP
) {
498 finalizeShtGroup(this, first
);
502 if (!config
->copyRelocs
|| (type
!= SHT_RELA
&& type
!= SHT_REL
))
505 // Skip if 'first' is synthetic, i.e. not a section created by --emit-relocs.
506 // Normally 'type' was changed by 'first' so 'first' should be non-null.
507 // However, if the output section is .rela.dyn, 'type' can be set by the empty
508 // synthetic .rela.plt and first can be null.
509 if (!first
|| isa
<SyntheticSection
>(first
))
512 link
= in
.symTab
->getParent()->sectionIndex
;
513 // sh_info for SHT_REL[A] sections should contain the section header index of
514 // the section to which the relocation applies.
515 InputSectionBase
*s
= first
->getRelocatedSection();
516 info
= s
->getOutputSection()->sectionIndex
;
517 flags
|= SHF_INFO_LINK
;
520 // Returns true if S is in one of the many forms the compiler driver may pass
523 // Gcc uses any of crtbegin[<empty>|S|T].o.
524 // Clang uses Gcc's plus clang_rt.crtbegin[-<arch>|<empty>].o.
526 static bool isCrt(StringRef s
, StringRef beginEnd
) {
527 s
= sys::path::filename(s
);
528 if (!s
.consume_back(".o"))
530 if (s
.consume_front("clang_rt."))
531 return s
.consume_front(beginEnd
);
532 return s
.consume_front(beginEnd
) && s
.size() <= 1;
535 // .ctors and .dtors are sorted by this order:
537 // 1. .ctors/.dtors in crtbegin (which contains a sentinel value -1).
538 // 2. The section is named ".ctors" or ".dtors" (priority: 65536).
539 // 3. The section has an optional priority value in the form of ".ctors.N" or
540 // ".dtors.N" where N is a number in the form of %05u (priority: 65535-N).
541 // 4. .ctors/.dtors in crtend (which contains a sentinel value 0).
543 // For 2 and 3, the sections are sorted by priority from high to low, e.g.
544 // .ctors (65536), .ctors.00100 (65436), .ctors.00200 (65336). In GNU ld's
545 // internal linker scripts, the sorting is by string comparison which can
546 // achieve the same goal given the optional priority values are of the same
549 // In an ideal world, we don't need this function because .init_array and
550 // .ctors are duplicate features (and .init_array is newer.) However, there
551 // are too many real-world use cases of .ctors, so we had no choice to
552 // support that with this rather ad-hoc semantics.
553 static bool compCtors(const InputSection
*a
, const InputSection
*b
) {
554 bool beginA
= isCrt(a
->file
->getName(), "crtbegin");
555 bool beginB
= isCrt(b
->file
->getName(), "crtbegin");
556 if (beginA
!= beginB
)
558 bool endA
= isCrt(a
->file
->getName(), "crtend");
559 bool endB
= isCrt(b
->file
->getName(), "crtend");
562 return getPriority(a
->name
) > getPriority(b
->name
);
565 // Sorts input sections by the special rules for .ctors and .dtors.
566 // Unfortunately, the rules are different from the one for .{init,fini}_array.
567 // Read the comment above.
568 void OutputSection::sortCtorsDtors() {
569 assert(commands
.size() == 1);
570 auto *isd
= cast
<InputSectionDescription
>(commands
[0]);
571 llvm::stable_sort(isd
->sections
, compCtors
);
574 // If an input string is in the form of "foo.N" where N is a number, return N
575 // (65535-N if .ctors.N or .dtors.N). Otherwise, returns 65536, which is one
576 // greater than the lowest priority.
577 int elf::getPriority(StringRef s
) {
578 size_t pos
= s
.rfind('.');
579 if (pos
== StringRef::npos
)
582 if (to_integer(s
.substr(pos
+ 1), v
, 10) &&
583 (pos
== 6 && (s
.startswith(".ctors") || s
.startswith(".dtors"))))
588 InputSection
*elf::getFirstInputSection(const OutputSection
*os
) {
589 for (SectionCommand
*cmd
: os
->commands
)
590 if (auto *isd
= dyn_cast
<InputSectionDescription
>(cmd
))
591 if (!isd
->sections
.empty())
592 return isd
->sections
[0];
596 ArrayRef
<InputSection
*>
597 elf::getInputSections(const OutputSection
&os
,
598 SmallVector
<InputSection
*, 0> &storage
) {
599 ArrayRef
<InputSection
*> ret
;
601 for (SectionCommand
*cmd
: os
.commands
) {
602 auto *isd
= dyn_cast
<InputSectionDescription
>(cmd
);
609 storage
.assign(ret
.begin(), ret
.end());
610 storage
.insert(storage
.end(), isd
->sections
.begin(), isd
->sections
.end());
613 return storage
.empty() ? ret
: makeArrayRef(storage
);
616 // Sorts input sections by section name suffixes, so that .foo.N comes
617 // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections.
618 // We want to keep the original order if the priorities are the same
619 // because the compiler keeps the original initialization order in a
620 // translation unit and we need to respect that.
621 // For more detail, read the section of the GCC's manual about init_priority.
622 void OutputSection::sortInitFini() {
623 // Sort sections by priority.
624 sort([](InputSectionBase
*s
) { return getPriority(s
->name
); });
627 std::array
<uint8_t, 4> OutputSection::getFiller() {
630 if (flags
& SHF_EXECINSTR
)
631 return target
->trapInstr
;
635 void OutputSection::checkDynRelAddends(const uint8_t *bufStart
) {
636 assert(config
->writeAddends
&& config
->checkDynamicRelocs
);
637 assert(type
== SHT_REL
|| type
== SHT_RELA
);
638 SmallVector
<InputSection
*, 0> storage
;
639 ArrayRef
<InputSection
*> sections
= getInputSections(*this, storage
);
640 parallelFor(0, sections
.size(), [&](size_t i
) {
641 // When linking with -r or --emit-relocs we might also call this function
642 // for input .rel[a].<sec> sections which we simply pass through to the
643 // output. We skip over those and only look at the synthetic relocation
644 // sections created during linking.
645 const auto *sec
= dyn_cast
<RelocationBaseSection
>(sections
[i
]);
648 for (const DynamicReloc
&rel
: sec
->relocs
) {
649 int64_t addend
= rel
.addend
;
650 const OutputSection
*relOsec
= rel
.inputSec
->getOutputSection();
651 assert(relOsec
!= nullptr && "missing output section for relocation");
652 const uint8_t *relocTarget
=
653 bufStart
+ relOsec
->offset
+ rel
.inputSec
->getOffset(rel
.offsetInSec
);
654 // For SHT_NOBITS the written addend is always zero.
655 int64_t writtenAddend
=
656 relOsec
->type
== SHT_NOBITS
658 : target
->getImplicitAddend(relocTarget
, rel
.type
);
659 if (addend
!= writtenAddend
)
661 getErrorLocation(relocTarget
),
662 "wrote incorrect addend value 0x" + utohexstr(writtenAddend
) +
663 " instead of 0x" + utohexstr(addend
) +
664 " for dynamic relocation " + toString(rel
.type
) +
665 " at offset 0x" + utohexstr(rel
.getOffset()) +
666 (rel
.sym
? " against symbol " + toString(*rel
.sym
) : ""));
671 template void OutputSection::writeHeaderTo
<ELF32LE
>(ELF32LE::Shdr
*Shdr
);
672 template void OutputSection::writeHeaderTo
<ELF32BE
>(ELF32BE::Shdr
*Shdr
);
673 template void OutputSection::writeHeaderTo
<ELF64LE
>(ELF64LE::Shdr
*Shdr
);
674 template void OutputSection::writeHeaderTo
<ELF64BE
>(ELF64BE::Shdr
*Shdr
);
676 template void OutputSection::writeTo
<ELF32LE
>(uint8_t *Buf
);
677 template void OutputSection::writeTo
<ELF32BE
>(uint8_t *Buf
);
678 template void OutputSection::writeTo
<ELF64LE
>(uint8_t *Buf
);
679 template void OutputSection::writeTo
<ELF64BE
>(uint8_t *Buf
);
681 template void OutputSection::maybeCompress
<ELF32LE
>();
682 template void OutputSection::maybeCompress
<ELF32BE
>();
683 template void OutputSection::maybeCompress
<ELF64LE
>();
684 template void OutputSection::maybeCompress
<ELF64BE
>();