1 //===- ICF.cpp ------------------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // ICF is short for Identical Code Folding. That is a size optimization to
10 // identify and merge two or more read-only sections (typically functions)
11 // that happened to have the same contents. It usually reduces output size
14 // On Windows, ICF is enabled by default.
16 // See ELF/ICF.cpp for the details about the algorithm.
18 //===----------------------------------------------------------------------===//
23 #include "lld/Common/ErrorHandler.h"
24 #include "lld/Common/Timer.h"
25 #include "llvm/ADT/Hashing.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/Parallel.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Support/xxhash.h"
39 static Timer
icfTimer("ICF", Timer::root());
43 ICF(ICFLevel icfLevel
) : icfLevel(icfLevel
){};
44 void run(ArrayRef
<Chunk
*> v
);
47 void segregate(size_t begin
, size_t end
, bool constant
);
49 bool assocEquals(const SectionChunk
*a
, const SectionChunk
*b
);
51 bool equalsConstant(const SectionChunk
*a
, const SectionChunk
*b
);
52 bool equalsVariable(const SectionChunk
*a
, const SectionChunk
*b
);
54 bool isEligible(SectionChunk
*c
);
56 size_t findBoundary(size_t begin
, size_t end
);
58 void forEachClassRange(size_t begin
, size_t end
,
59 std::function
<void(size_t, size_t)> fn
);
61 void forEachClass(std::function
<void(size_t, size_t)> fn
);
63 std::vector
<SectionChunk
*> chunks
;
65 std::atomic
<bool> repeat
= {false};
66 ICFLevel icfLevel
= ICFLevel::All
;
69 // Returns true if section S is subject of ICF.
71 // Microsoft's documentation
72 // (https://msdn.microsoft.com/en-us/library/bxwfs976.aspx; visited April
73 // 2017) says that /opt:icf folds both functions and read-only data.
74 // Despite that, the MSVC linker folds only functions. We found
75 // a few instances of programs that are not safe for data merging.
76 // Therefore, we merge only functions just like the MSVC tool. However, we also
77 // merge read-only sections in a couple of cases where the address of the
78 // section is insignificant to the user program and the behaviour matches that
79 // of the Visual C++ linker.
80 bool ICF::isEligible(SectionChunk
*c
) {
81 // Non-comdat chunks, dead chunks, and writable chunks are not eligible.
82 bool writable
= c
->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_WRITE
;
83 if (!c
->isCOMDAT() || !c
->live
|| writable
)
86 // Under regular (not safe) ICF, all code sections are eligible.
87 if ((icfLevel
== ICFLevel::All
) &&
88 c
->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_EXECUTE
)
91 // .pdata and .xdata unwind info sections are eligible.
92 StringRef outSecName
= c
->getSectionName().split('$').first
;
93 if (outSecName
== ".pdata" || outSecName
== ".xdata")
97 if (c
->sym
&& c
->sym
->getName().startswith("??_7"))
100 // Anything else not in an address-significance table is eligible.
101 return !c
->keepUnique
;
104 // Split an equivalence class into smaller classes.
105 void ICF::segregate(size_t begin
, size_t end
, bool constant
) {
106 while (begin
< end
) {
107 // Divide [Begin, End) into two. Let Mid be the start index of the
109 auto bound
= std::stable_partition(
110 chunks
.begin() + begin
+ 1, chunks
.begin() + end
, [&](SectionChunk
*s
) {
112 return equalsConstant(chunks
[begin
], s
);
113 return equalsVariable(chunks
[begin
], s
);
115 size_t mid
= bound
- chunks
.begin();
117 // Split [Begin, End) into [Begin, Mid) and [Mid, End). We use Mid as an
118 // equivalence class ID because every group ends with a unique index.
119 for (size_t i
= begin
; i
< mid
; ++i
)
120 chunks
[i
]->eqClass
[(cnt
+ 1) % 2] = mid
;
122 // If we created a group, we need to iterate the main loop again.
130 // Returns true if two sections' associative children are equal.
131 bool ICF::assocEquals(const SectionChunk
*a
, const SectionChunk
*b
) {
132 // Ignore associated metadata sections that don't participate in ICF, such as
133 // debug info and CFGuard metadata.
134 auto considerForICF
= [](const SectionChunk
&assoc
) {
135 StringRef Name
= assoc
.getSectionName();
136 return !(Name
.startswith(".debug") || Name
== ".gfids$y" ||
137 Name
== ".giats$y" || Name
== ".gljmp$y");
139 auto ra
= make_filter_range(a
->children(), considerForICF
);
140 auto rb
= make_filter_range(b
->children(), considerForICF
);
141 return std::equal(ra
.begin(), ra
.end(), rb
.begin(), rb
.end(),
142 [&](const SectionChunk
&ia
, const SectionChunk
&ib
) {
143 return ia
.eqClass
[cnt
% 2] == ib
.eqClass
[cnt
% 2];
147 // Compare "non-moving" part of two sections, namely everything
148 // except relocation targets.
149 bool ICF::equalsConstant(const SectionChunk
*a
, const SectionChunk
*b
) {
150 if (a
->relocsSize
!= b
->relocsSize
)
153 // Compare relocations.
154 auto eq
= [&](const coff_relocation
&r1
, const coff_relocation
&r2
) {
155 if (r1
.Type
!= r2
.Type
||
156 r1
.VirtualAddress
!= r2
.VirtualAddress
) {
159 Symbol
*b1
= a
->file
->getSymbol(r1
.SymbolTableIndex
);
160 Symbol
*b2
= b
->file
->getSymbol(r2
.SymbolTableIndex
);
163 if (auto *d1
= dyn_cast
<DefinedRegular
>(b1
))
164 if (auto *d2
= dyn_cast
<DefinedRegular
>(b2
))
165 return d1
->getValue() == d2
->getValue() &&
166 d1
->getChunk()->eqClass
[cnt
% 2] == d2
->getChunk()->eqClass
[cnt
% 2];
169 if (!std::equal(a
->getRelocs().begin(), a
->getRelocs().end(),
170 b
->getRelocs().begin(), eq
))
173 // Compare section attributes and contents.
174 return a
->getOutputCharacteristics() == b
->getOutputCharacteristics() &&
175 a
->getSectionName() == b
->getSectionName() &&
176 a
->header
->SizeOfRawData
== b
->header
->SizeOfRawData
&&
177 a
->checksum
== b
->checksum
&& a
->getContents() == b
->getContents() &&
181 // Compare "moving" part of two sections, namely relocation targets.
182 bool ICF::equalsVariable(const SectionChunk
*a
, const SectionChunk
*b
) {
183 // Compare relocations.
184 auto eq
= [&](const coff_relocation
&r1
, const coff_relocation
&r2
) {
185 Symbol
*b1
= a
->file
->getSymbol(r1
.SymbolTableIndex
);
186 Symbol
*b2
= b
->file
->getSymbol(r2
.SymbolTableIndex
);
189 if (auto *d1
= dyn_cast
<DefinedRegular
>(b1
))
190 if (auto *d2
= dyn_cast
<DefinedRegular
>(b2
))
191 return d1
->getChunk()->eqClass
[cnt
% 2] == d2
->getChunk()->eqClass
[cnt
% 2];
194 return std::equal(a
->getRelocs().begin(), a
->getRelocs().end(),
195 b
->getRelocs().begin(), eq
) &&
199 // Find the first Chunk after Begin that has a different class from Begin.
200 size_t ICF::findBoundary(size_t begin
, size_t end
) {
201 for (size_t i
= begin
+ 1; i
< end
; ++i
)
202 if (chunks
[begin
]->eqClass
[cnt
% 2] != chunks
[i
]->eqClass
[cnt
% 2])
207 void ICF::forEachClassRange(size_t begin
, size_t end
,
208 std::function
<void(size_t, size_t)> fn
) {
209 while (begin
< end
) {
210 size_t mid
= findBoundary(begin
, end
);
216 // Call Fn on each class group.
217 void ICF::forEachClass(std::function
<void(size_t, size_t)> fn
) {
218 // If the number of sections are too small to use threading,
219 // call Fn sequentially.
220 if (chunks
.size() < 1024) {
221 forEachClassRange(0, chunks
.size(), fn
);
226 // Shard into non-overlapping intervals, and call Fn in parallel.
227 // The sharding must be completed before any calls to Fn are made
228 // so that Fn can modify the Chunks in its shard without causing data
230 const size_t numShards
= 256;
231 size_t step
= chunks
.size() / numShards
;
232 size_t boundaries
[numShards
+ 1];
234 boundaries
[numShards
] = chunks
.size();
235 parallelForEachN(1, numShards
, [&](size_t i
) {
236 boundaries
[i
] = findBoundary((i
- 1) * step
, chunks
.size());
238 parallelForEachN(1, numShards
+ 1, [&](size_t i
) {
239 if (boundaries
[i
- 1] < boundaries
[i
]) {
240 forEachClassRange(boundaries
[i
- 1], boundaries
[i
], fn
);
246 // Merge identical COMDAT sections.
247 // Two sections are considered the same if their section headers,
248 // contents and relocations are all the same.
249 void ICF::run(ArrayRef
<Chunk
*> vec
) {
250 ScopedTimer
t(icfTimer
);
252 // Collect only mergeable sections and group by hash value.
254 for (Chunk
*c
: vec
) {
255 if (auto *sc
= dyn_cast
<SectionChunk
>(c
)) {
257 chunks
.push_back(sc
);
259 sc
->eqClass
[0] = nextId
++;
263 // Make sure that ICF doesn't merge sections that are being handled by string
265 for (MergeChunk
*mc
: MergeChunk::instances
)
267 for (SectionChunk
*sc
: mc
->sections
)
268 sc
->eqClass
[0] = nextId
++;
270 // Initially, we use hash values to partition sections.
271 parallelForEach(chunks
, [&](SectionChunk
*sc
) {
272 sc
->eqClass
[0] = xxHash64(sc
->getContents());
275 // Combine the hashes of the sections referenced by each section into its
277 for (unsigned cnt
= 0; cnt
!= 2; ++cnt
) {
278 parallelForEach(chunks
, [&](SectionChunk
*sc
) {
279 uint32_t hash
= sc
->eqClass
[cnt
% 2];
280 for (Symbol
*b
: sc
->symbols())
281 if (auto *sym
= dyn_cast_or_null
<DefinedRegular
>(b
))
282 hash
+= sym
->getChunk()->eqClass
[cnt
% 2];
283 // Set MSB to 1 to avoid collisions with non-hash classes.
284 sc
->eqClass
[(cnt
+ 1) % 2] = hash
| (1U << 31);
288 // From now on, sections in Chunks are ordered so that sections in
289 // the same group are consecutive in the vector.
290 llvm::stable_sort(chunks
, [](const SectionChunk
*a
, const SectionChunk
*b
) {
291 return a
->eqClass
[0] < b
->eqClass
[0];
294 // Compare static contents and assign unique IDs for each static content.
295 forEachClass([&](size_t begin
, size_t end
) { segregate(begin
, end
, true); });
297 // Split groups by comparing relocations until convergence is obtained.
301 [&](size_t begin
, size_t end
) { segregate(begin
, end
, false); });
304 log("ICF needed " + Twine(cnt
) + " iterations");
306 // Merge sections in the same classes.
307 forEachClass([&](size_t begin
, size_t end
) {
308 if (end
- begin
== 1)
311 log("Selected " + chunks
[begin
]->getDebugName());
312 for (size_t i
= begin
+ 1; i
< end
; ++i
) {
313 log(" Removed " + chunks
[i
]->getDebugName());
314 chunks
[begin
]->replace(chunks
[i
]);
319 // Entry point to ICF.
320 void doICF(ArrayRef
<Chunk
*> chunks
, ICFLevel icfLevel
) {
321 ICF(icfLevel
).run(chunks
);