[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / examples / OrcV2Examples / LLJITWithOptimizingIRTransform / LLJITWithOptimizingIRTransform.cpp
blob7ebf3e8e9a0772b322dd1f3660ac189ad83e1c7d
1 //===-- LLJITWithOptimizingIRTransform.cpp -- LLJIT with IR optimization --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // In this example we will use an IR transform to optimize a module as it
10 // passes through LLJIT's IRTransformLayer.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ExecutionEngine/Orc/LLJIT.h"
15 #include "llvm/IR/LegacyPassManager.h"
16 #include "llvm/Support/InitLLVM.h"
17 #include "llvm/Support/TargetSelect.h"
18 #include "llvm/Support/raw_ostream.h"
19 #include "llvm/Transforms/IPO.h"
20 #include "llvm/Transforms/Scalar.h"
22 #include "../ExampleModules.h"
24 using namespace llvm;
25 using namespace llvm::orc;
27 ExitOnError ExitOnErr;
29 // Example IR module.
31 // This IR contains a recursive definition of the factorial function:
33 // fac(n) | n == 0 = 1
34 // | otherwise = n * fac(n - 1)
36 // It also contains an entry function which calls the factorial function with
37 // an input value of 5.
39 // We expect the IR optimization transform that we build below to transform
40 // this into a non-recursive factorial function and an entry function that
41 // returns a constant value of 5!, or 120.
43 const llvm::StringRef MainMod =
44 R"(
46 define i32 @fac(i32 %n) {
47 entry:
48 %tobool = icmp eq i32 %n, 0
49 br i1 %tobool, label %return, label %if.then
51 if.then: ; preds = %entry
52 %arg = add nsw i32 %n, -1
53 %call_result = call i32 @fac(i32 %arg)
54 %result = mul nsw i32 %n, %call_result
55 br label %return
57 return: ; preds = %entry, %if.then
58 %final_result = phi i32 [ %result, %if.then ], [ 1, %entry ]
59 ret i32 %final_result
62 define i32 @entry() {
63 entry:
64 %result = call i32 @fac(i32 5)
65 ret i32 %result
68 )";
70 // A function object that creates a simple pass pipeline to apply to each
71 // module as it passes through the IRTransformLayer.
72 class MyOptimizationTransform {
73 public:
74 MyOptimizationTransform() : PM(std::make_unique<legacy::PassManager>()) {
75 PM->add(createTailCallEliminationPass());
76 PM->add(createFunctionInliningPass());
77 PM->add(createIndVarSimplifyPass());
78 PM->add(createCFGSimplificationPass());
81 Expected<ThreadSafeModule> operator()(ThreadSafeModule TSM,
82 MaterializationResponsibility &R) {
83 TSM.withModuleDo([this](Module &M) {
84 dbgs() << "--- BEFORE OPTIMIZATION ---\n" << M << "\n";
85 PM->run(M);
86 dbgs() << "--- AFTER OPTIMIZATION ---\n" << M << "\n";
87 });
88 return std::move(TSM);
91 private:
92 std::unique_ptr<legacy::PassManager> PM;
95 int main(int argc, char *argv[]) {
96 // Initialize LLVM.
97 InitLLVM X(argc, argv);
99 InitializeNativeTarget();
100 InitializeNativeTargetAsmPrinter();
102 ExitOnErr.setBanner(std::string(argv[0]) + ": ");
104 // (1) Create LLJIT instance.
105 auto J = ExitOnErr(LLJITBuilder().create());
107 // (2) Install transform to optimize modules when they're materialized.
108 J->getIRTransformLayer().setTransform(MyOptimizationTransform());
110 // (3) Add modules.
111 ExitOnErr(J->addIRModule(ExitOnErr(parseExampleModule(MainMod, "MainMod"))));
113 // (4) Look up the JIT'd function and call it.
114 auto EntrySym = ExitOnErr(J->lookup("entry"));
115 auto *Entry = (int (*)())EntrySym.getAddress();
117 int Result = Entry();
118 outs() << "--- Result ---\n"
119 << "entry() = " << Result << "\n";
121 return 0;