[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Analysis / CFG.cpp
blobec25ee161e2cfdcaf103a47a1a2e8f1e78332bf6
1 //===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions performs analyses on basic blocks, and instructions
10 // contained within basic blocks.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/CFG.h"
15 #include "llvm/Analysis/LoopInfo.h"
16 #include "llvm/IR/Dominators.h"
17 #include "llvm/Support/CommandLine.h"
19 using namespace llvm;
21 // The max number of basic blocks explored during reachability analysis between
22 // two basic blocks. This is kept reasonably small to limit compile time when
23 // repeatedly used by clients of this analysis (such as captureTracking).
24 static cl::opt<unsigned> DefaultMaxBBsToExplore(
25 "dom-tree-reachability-max-bbs-to-explore", cl::Hidden,
26 cl::desc("Max number of BBs to explore for reachability analysis"),
27 cl::init(32));
29 /// FindFunctionBackedges - Analyze the specified function to find all of the
30 /// loop backedges in the function and return them. This is a relatively cheap
31 /// (compared to computing dominators and loop info) analysis.
32 ///
33 /// The output is added to Result, as pairs of <from,to> edge info.
34 void llvm::FindFunctionBackedges(const Function &F,
35 SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
36 const BasicBlock *BB = &F.getEntryBlock();
37 if (succ_empty(BB))
38 return;
40 SmallPtrSet<const BasicBlock*, 8> Visited;
41 SmallVector<std::pair<const BasicBlock *, const_succ_iterator>, 8> VisitStack;
42 SmallPtrSet<const BasicBlock*, 8> InStack;
44 Visited.insert(BB);
45 VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
46 InStack.insert(BB);
47 do {
48 std::pair<const BasicBlock *, const_succ_iterator> &Top = VisitStack.back();
49 const BasicBlock *ParentBB = Top.first;
50 const_succ_iterator &I = Top.second;
52 bool FoundNew = false;
53 while (I != succ_end(ParentBB)) {
54 BB = *I++;
55 if (Visited.insert(BB).second) {
56 FoundNew = true;
57 break;
59 // Successor is in VisitStack, it's a back edge.
60 if (InStack.count(BB))
61 Result.push_back(std::make_pair(ParentBB, BB));
64 if (FoundNew) {
65 // Go down one level if there is a unvisited successor.
66 InStack.insert(BB);
67 VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
68 } else {
69 // Go up one level.
70 InStack.erase(VisitStack.pop_back_val().first);
72 } while (!VisitStack.empty());
75 /// GetSuccessorNumber - Search for the specified successor of basic block BB
76 /// and return its position in the terminator instruction's list of
77 /// successors. It is an error to call this with a block that is not a
78 /// successor.
79 unsigned llvm::GetSuccessorNumber(const BasicBlock *BB,
80 const BasicBlock *Succ) {
81 const Instruction *Term = BB->getTerminator();
82 #ifndef NDEBUG
83 unsigned e = Term->getNumSuccessors();
84 #endif
85 for (unsigned i = 0; ; ++i) {
86 assert(i != e && "Didn't find edge?");
87 if (Term->getSuccessor(i) == Succ)
88 return i;
92 /// isCriticalEdge - Return true if the specified edge is a critical edge.
93 /// Critical edges are edges from a block with multiple successors to a block
94 /// with multiple predecessors.
95 bool llvm::isCriticalEdge(const Instruction *TI, unsigned SuccNum,
96 bool AllowIdenticalEdges) {
97 assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
98 return isCriticalEdge(TI, TI->getSuccessor(SuccNum), AllowIdenticalEdges);
101 bool llvm::isCriticalEdge(const Instruction *TI, const BasicBlock *Dest,
102 bool AllowIdenticalEdges) {
103 assert(TI->isTerminator() && "Must be a terminator to have successors!");
104 if (TI->getNumSuccessors() == 1) return false;
106 assert(is_contained(predecessors(Dest), TI->getParent()) &&
107 "No edge between TI's block and Dest.");
109 const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
111 // If there is more than one predecessor, this is a critical edge...
112 assert(I != E && "No preds, but we have an edge to the block?");
113 const BasicBlock *FirstPred = *I;
114 ++I; // Skip one edge due to the incoming arc from TI.
115 if (!AllowIdenticalEdges)
116 return I != E;
118 // If AllowIdenticalEdges is true, then we allow this edge to be considered
119 // non-critical iff all preds come from TI's block.
120 for (; I != E; ++I)
121 if (*I != FirstPred)
122 return true;
123 return false;
126 // LoopInfo contains a mapping from basic block to the innermost loop. Find
127 // the outermost loop in the loop nest that contains BB.
128 static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) {
129 const Loop *L = LI->getLoopFor(BB);
130 if (L) {
131 while (const Loop *Parent = L->getParentLoop())
132 L = Parent;
134 return L;
137 bool llvm::isPotentiallyReachableFromMany(
138 SmallVectorImpl<BasicBlock *> &Worklist, BasicBlock *StopBB,
139 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
140 const LoopInfo *LI) {
141 // When the stop block is unreachable, it's dominated from everywhere,
142 // regardless of whether there's a path between the two blocks.
143 if (DT && !DT->isReachableFromEntry(StopBB))
144 DT = nullptr;
146 // We can't skip directly from a block that dominates the stop block if the
147 // exclusion block is potentially in between.
148 if (ExclusionSet && !ExclusionSet->empty())
149 DT = nullptr;
151 // Normally any block in a loop is reachable from any other block in a loop,
152 // however excluded blocks might partition the body of a loop to make that
153 // untrue.
154 SmallPtrSet<const Loop *, 8> LoopsWithHoles;
155 if (LI && ExclusionSet) {
156 for (auto BB : *ExclusionSet) {
157 if (const Loop *L = getOutermostLoop(LI, BB))
158 LoopsWithHoles.insert(L);
162 const Loop *StopLoop = LI ? getOutermostLoop(LI, StopBB) : nullptr;
164 unsigned Limit = DefaultMaxBBsToExplore;
165 SmallPtrSet<const BasicBlock*, 32> Visited;
166 do {
167 BasicBlock *BB = Worklist.pop_back_val();
168 if (!Visited.insert(BB).second)
169 continue;
170 if (BB == StopBB)
171 return true;
172 if (ExclusionSet && ExclusionSet->count(BB))
173 continue;
174 if (DT && DT->dominates(BB, StopBB))
175 return true;
177 const Loop *Outer = nullptr;
178 if (LI) {
179 Outer = getOutermostLoop(LI, BB);
180 // If we're in a loop with a hole, not all blocks in the loop are
181 // reachable from all other blocks. That implies we can't simply jump to
182 // the loop's exit blocks, as that exit might need to pass through an
183 // excluded block. Clear Outer so we process BB's successors.
184 if (LoopsWithHoles.count(Outer))
185 Outer = nullptr;
186 if (StopLoop && Outer == StopLoop)
187 return true;
190 if (!--Limit) {
191 // We haven't been able to prove it one way or the other. Conservatively
192 // answer true -- that there is potentially a path.
193 return true;
196 if (Outer) {
197 // All blocks in a single loop are reachable from all other blocks. From
198 // any of these blocks, we can skip directly to the exits of the loop,
199 // ignoring any other blocks inside the loop body.
200 Outer->getExitBlocks(Worklist);
201 } else {
202 Worklist.append(succ_begin(BB), succ_end(BB));
204 } while (!Worklist.empty());
206 // We have exhausted all possible paths and are certain that 'To' can not be
207 // reached from 'From'.
208 return false;
211 bool llvm::isPotentiallyReachable(
212 const BasicBlock *A, const BasicBlock *B,
213 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
214 const LoopInfo *LI) {
215 assert(A->getParent() == B->getParent() &&
216 "This analysis is function-local!");
218 if (DT) {
219 if (DT->isReachableFromEntry(A) && !DT->isReachableFromEntry(B))
220 return false;
221 if (!ExclusionSet || ExclusionSet->empty()) {
222 if (A->isEntryBlock() && DT->isReachableFromEntry(B))
223 return true;
224 if (B->isEntryBlock() && DT->isReachableFromEntry(A))
225 return false;
229 SmallVector<BasicBlock*, 32> Worklist;
230 Worklist.push_back(const_cast<BasicBlock*>(A));
232 return isPotentiallyReachableFromMany(Worklist, const_cast<BasicBlock *>(B),
233 ExclusionSet, DT, LI);
236 bool llvm::isPotentiallyReachable(
237 const Instruction *A, const Instruction *B,
238 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
239 const LoopInfo *LI) {
240 assert(A->getParent()->getParent() == B->getParent()->getParent() &&
241 "This analysis is function-local!");
243 if (A->getParent() == B->getParent()) {
244 // The same block case is special because it's the only time we're looking
245 // within a single block to see which instruction comes first. Once we
246 // start looking at multiple blocks, the first instruction of the block is
247 // reachable, so we only need to determine reachability between whole
248 // blocks.
249 BasicBlock *BB = const_cast<BasicBlock *>(A->getParent());
251 // If the block is in a loop then we can reach any instruction in the block
252 // from any other instruction in the block by going around a backedge.
253 if (LI && LI->getLoopFor(BB) != nullptr)
254 return true;
256 // If A comes before B, then B is definitively reachable from A.
257 if (A == B || A->comesBefore(B))
258 return true;
260 // Can't be in a loop if it's the entry block -- the entry block may not
261 // have predecessors.
262 if (BB->isEntryBlock())
263 return false;
265 // Otherwise, continue doing the normal per-BB CFG walk.
266 SmallVector<BasicBlock*, 32> Worklist;
267 Worklist.append(succ_begin(BB), succ_end(BB));
268 if (Worklist.empty()) {
269 // We've proven that there's no path!
270 return false;
273 return isPotentiallyReachableFromMany(
274 Worklist, const_cast<BasicBlock *>(B->getParent()), ExclusionSet,
275 DT, LI);
278 return isPotentiallyReachable(
279 A->getParent(), B->getParent(), ExclusionSet, DT, LI);