[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Analysis / CFGPrinter.cpp
blob04ccdc590845a36bf1497aaad844bb0c5f9b3972
1 //===- CFGPrinter.cpp - DOT printer for the control flow graph ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a `-dot-cfg` analysis pass, which emits the
10 // `<prefix>.<fnname>.dot` file for each function in the program, with a graph
11 // of the CFG for that function. The default value for `<prefix>` is `cfg` but
12 // can be customized as needed.
14 // The other main feature of this file is that it implements the
15 // Function::viewCFG method, which is useful for debugging passes which operate
16 // on the CFG.
18 //===----------------------------------------------------------------------===//
20 #include "llvm/Analysis/CFGPrinter.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/InitializePasses.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/FileSystem.h"
26 #include <algorithm>
28 using namespace llvm;
30 static cl::opt<std::string>
31 CFGFuncName("cfg-func-name", cl::Hidden,
32 cl::desc("The name of a function (or its substring)"
33 " whose CFG is viewed/printed."));
35 static cl::opt<std::string> CFGDotFilenamePrefix(
36 "cfg-dot-filename-prefix", cl::Hidden,
37 cl::desc("The prefix used for the CFG dot file names."));
39 static cl::opt<bool> HideUnreachablePaths("cfg-hide-unreachable-paths",
40 cl::init(false));
42 static cl::opt<bool> HideDeoptimizePaths("cfg-hide-deoptimize-paths",
43 cl::init(false));
45 static cl::opt<double> HideColdPaths(
46 "cfg-hide-cold-paths", cl::init(0.0),
47 cl::desc("Hide blocks with relative frequency below the given value"));
49 static cl::opt<bool> ShowHeatColors("cfg-heat-colors", cl::init(true),
50 cl::Hidden,
51 cl::desc("Show heat colors in CFG"));
53 static cl::opt<bool> UseRawEdgeWeight("cfg-raw-weights", cl::init(false),
54 cl::Hidden,
55 cl::desc("Use raw weights for labels. "
56 "Use percentages as default."));
58 static cl::opt<bool>
59 ShowEdgeWeight("cfg-weights", cl::init(false), cl::Hidden,
60 cl::desc("Show edges labeled with weights"));
62 static void writeCFGToDotFile(Function &F, BlockFrequencyInfo *BFI,
63 BranchProbabilityInfo *BPI, uint64_t MaxFreq,
64 bool CFGOnly = false) {
65 std::string Filename =
66 (CFGDotFilenamePrefix + "." + F.getName() + ".dot").str();
67 errs() << "Writing '" << Filename << "'...";
69 std::error_code EC;
70 raw_fd_ostream File(Filename, EC, sys::fs::OF_Text);
72 DOTFuncInfo CFGInfo(&F, BFI, BPI, MaxFreq);
73 CFGInfo.setHeatColors(ShowHeatColors);
74 CFGInfo.setEdgeWeights(ShowEdgeWeight);
75 CFGInfo.setRawEdgeWeights(UseRawEdgeWeight);
77 if (!EC)
78 WriteGraph(File, &CFGInfo, CFGOnly);
79 else
80 errs() << " error opening file for writing!";
81 errs() << "\n";
84 static void viewCFG(Function &F, const BlockFrequencyInfo *BFI,
85 const BranchProbabilityInfo *BPI, uint64_t MaxFreq,
86 bool CFGOnly = false) {
87 DOTFuncInfo CFGInfo(&F, BFI, BPI, MaxFreq);
88 CFGInfo.setHeatColors(ShowHeatColors);
89 CFGInfo.setEdgeWeights(ShowEdgeWeight);
90 CFGInfo.setRawEdgeWeights(UseRawEdgeWeight);
92 ViewGraph(&CFGInfo, "cfg." + F.getName(), CFGOnly);
95 namespace {
96 struct CFGViewerLegacyPass : public FunctionPass {
97 static char ID; // Pass identifcation, replacement for typeid
98 CFGViewerLegacyPass() : FunctionPass(ID) {
99 initializeCFGViewerLegacyPassPass(*PassRegistry::getPassRegistry());
102 bool runOnFunction(Function &F) override {
103 if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
104 return false;
105 auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
106 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
107 viewCFG(F, BFI, BPI, getMaxFreq(F, BFI));
108 return false;
111 void print(raw_ostream &OS, const Module * = nullptr) const override {}
113 void getAnalysisUsage(AnalysisUsage &AU) const override {
114 FunctionPass::getAnalysisUsage(AU);
115 AU.addRequired<BlockFrequencyInfoWrapperPass>();
116 AU.addRequired<BranchProbabilityInfoWrapperPass>();
117 AU.setPreservesAll();
120 } // namespace
122 char CFGViewerLegacyPass::ID = 0;
123 INITIALIZE_PASS(CFGViewerLegacyPass, "view-cfg", "View CFG of function", false,
124 true)
126 PreservedAnalyses CFGViewerPass::run(Function &F, FunctionAnalysisManager &AM) {
127 if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
128 return PreservedAnalyses::all();
129 auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
130 auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F);
131 viewCFG(F, BFI, BPI, getMaxFreq(F, BFI));
132 return PreservedAnalyses::all();
135 namespace {
136 struct CFGOnlyViewerLegacyPass : public FunctionPass {
137 static char ID; // Pass identifcation, replacement for typeid
138 CFGOnlyViewerLegacyPass() : FunctionPass(ID) {
139 initializeCFGOnlyViewerLegacyPassPass(*PassRegistry::getPassRegistry());
142 bool runOnFunction(Function &F) override {
143 if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
144 return false;
145 auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
146 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
147 viewCFG(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true);
148 return false;
151 void print(raw_ostream &OS, const Module * = nullptr) const override {}
153 void getAnalysisUsage(AnalysisUsage &AU) const override {
154 FunctionPass::getAnalysisUsage(AU);
155 AU.addRequired<BlockFrequencyInfoWrapperPass>();
156 AU.addRequired<BranchProbabilityInfoWrapperPass>();
157 AU.setPreservesAll();
160 } // namespace
162 char CFGOnlyViewerLegacyPass::ID = 0;
163 INITIALIZE_PASS(CFGOnlyViewerLegacyPass, "view-cfg-only",
164 "View CFG of function (with no function bodies)", false, true)
166 PreservedAnalyses CFGOnlyViewerPass::run(Function &F,
167 FunctionAnalysisManager &AM) {
168 if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
169 return PreservedAnalyses::all();
170 auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
171 auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F);
172 viewCFG(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true);
173 return PreservedAnalyses::all();
176 namespace {
177 struct CFGPrinterLegacyPass : public FunctionPass {
178 static char ID; // Pass identification, replacement for typeid
179 CFGPrinterLegacyPass() : FunctionPass(ID) {
180 initializeCFGPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
183 bool runOnFunction(Function &F) override {
184 if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
185 return false;
186 auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
187 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
188 writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI));
189 return false;
192 void print(raw_ostream &OS, const Module * = nullptr) const override {}
194 void getAnalysisUsage(AnalysisUsage &AU) const override {
195 FunctionPass::getAnalysisUsage(AU);
196 AU.addRequired<BlockFrequencyInfoWrapperPass>();
197 AU.addRequired<BranchProbabilityInfoWrapperPass>();
198 AU.setPreservesAll();
201 } // namespace
203 char CFGPrinterLegacyPass::ID = 0;
204 INITIALIZE_PASS(CFGPrinterLegacyPass, "dot-cfg",
205 "Print CFG of function to 'dot' file", false, true)
207 PreservedAnalyses CFGPrinterPass::run(Function &F,
208 FunctionAnalysisManager &AM) {
209 if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
210 return PreservedAnalyses::all();
211 auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
212 auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F);
213 writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI));
214 return PreservedAnalyses::all();
217 namespace {
218 struct CFGOnlyPrinterLegacyPass : public FunctionPass {
219 static char ID; // Pass identification, replacement for typeid
220 CFGOnlyPrinterLegacyPass() : FunctionPass(ID) {
221 initializeCFGOnlyPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
224 bool runOnFunction(Function &F) override {
225 if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
226 return false;
227 auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
228 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
229 writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true);
230 return false;
232 void print(raw_ostream &OS, const Module * = nullptr) const override {}
234 void getAnalysisUsage(AnalysisUsage &AU) const override {
235 FunctionPass::getAnalysisUsage(AU);
236 AU.addRequired<BlockFrequencyInfoWrapperPass>();
237 AU.addRequired<BranchProbabilityInfoWrapperPass>();
238 AU.setPreservesAll();
241 } // namespace
243 char CFGOnlyPrinterLegacyPass::ID = 0;
244 INITIALIZE_PASS(CFGOnlyPrinterLegacyPass, "dot-cfg-only",
245 "Print CFG of function to 'dot' file (with no function bodies)",
246 false, true)
248 PreservedAnalyses CFGOnlyPrinterPass::run(Function &F,
249 FunctionAnalysisManager &AM) {
250 if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
251 return PreservedAnalyses::all();
252 auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
253 auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F);
254 writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true);
255 return PreservedAnalyses::all();
258 /// viewCFG - This function is meant for use from the debugger. You can just
259 /// say 'call F->viewCFG()' and a ghostview window should pop up from the
260 /// program, displaying the CFG of the current function. This depends on there
261 /// being a 'dot' and 'gv' program in your path.
263 void Function::viewCFG() const { viewCFG(false, nullptr, nullptr); }
265 void Function::viewCFG(bool ViewCFGOnly, const BlockFrequencyInfo *BFI,
266 const BranchProbabilityInfo *BPI) const {
267 if (!CFGFuncName.empty() && !getName().contains(CFGFuncName))
268 return;
269 DOTFuncInfo CFGInfo(this, BFI, BPI, BFI ? getMaxFreq(*this, BFI) : 0);
270 ViewGraph(&CFGInfo, "cfg" + getName(), ViewCFGOnly);
273 /// viewCFGOnly - This function is meant for use from the debugger. It works
274 /// just like viewCFG, but it does not include the contents of basic blocks
275 /// into the nodes, just the label. If you are only interested in the CFG
276 /// this can make the graph smaller.
278 void Function::viewCFGOnly() const { viewCFGOnly(nullptr, nullptr); }
280 void Function::viewCFGOnly(const BlockFrequencyInfo *BFI,
281 const BranchProbabilityInfo *BPI) const {
282 viewCFG(true, BFI, BPI);
285 FunctionPass *llvm::createCFGPrinterLegacyPassPass() {
286 return new CFGPrinterLegacyPass();
289 FunctionPass *llvm::createCFGOnlyPrinterLegacyPassPass() {
290 return new CFGOnlyPrinterLegacyPass();
293 /// Find all blocks on the paths which terminate with a deoptimize or
294 /// unreachable (i.e. all blocks which are post-dominated by a deoptimize
295 /// or unreachable). These paths are hidden if the corresponding cl::opts
296 /// are enabled.
297 void DOTGraphTraits<DOTFuncInfo *>::computeDeoptOrUnreachablePaths(
298 const Function *F) {
299 auto evaluateBB = [&](const BasicBlock *Node) {
300 if (succ_empty(Node)) {
301 const Instruction *TI = Node->getTerminator();
302 isOnDeoptOrUnreachablePath[Node] =
303 (HideUnreachablePaths && isa<UnreachableInst>(TI)) ||
304 (HideDeoptimizePaths && Node->getTerminatingDeoptimizeCall());
305 return;
307 isOnDeoptOrUnreachablePath[Node] =
308 llvm::all_of(successors(Node), [this](const BasicBlock *BB) {
309 return isOnDeoptOrUnreachablePath[BB];
312 /// The post order traversal iteration is done to know the status of
313 /// isOnDeoptOrUnreachablePath for all the successors on the current BB.
314 llvm::for_each(post_order(&F->getEntryBlock()), evaluateBB);
317 bool DOTGraphTraits<DOTFuncInfo *>::isNodeHidden(const BasicBlock *Node,
318 const DOTFuncInfo *CFGInfo) {
319 if (HideColdPaths.getNumOccurrences() > 0)
320 if (auto *BFI = CFGInfo->getBFI()) {
321 uint64_t NodeFreq = BFI->getBlockFreq(Node).getFrequency();
322 uint64_t EntryFreq = BFI->getEntryFreq();
323 // Hide blocks with relative frequency below HideColdPaths threshold.
324 if ((double)NodeFreq / EntryFreq < HideColdPaths)
325 return true;
327 if (HideUnreachablePaths || HideDeoptimizePaths) {
328 if (isOnDeoptOrUnreachablePath.find(Node) ==
329 isOnDeoptOrUnreachablePath.end())
330 computeDeoptOrUnreachablePaths(Node->getParent());
331 return isOnDeoptOrUnreachablePath[Node];
333 return false;