[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Analysis / CFLSteensAliasAnalysis.cpp
blob9467bb3c9b2dd2235e204a973bcb028ec1127a54
1 //===- CFLSteensAliasAnalysis.cpp - Unification-based Alias Analysis ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a CFL-base, summary-based alias analysis algorithm. It
10 // does not depend on types. The algorithm is a mixture of the one described in
11 // "Demand-driven alias analysis for C" by Xin Zheng and Radu Rugina, and "Fast
12 // algorithms for Dyck-CFL-reachability with applications to Alias Analysis" by
13 // Zhang Q, Lyu M R, Yuan H, and Su Z. -- to summarize the papers, we build a
14 // graph of the uses of a variable, where each node is a memory location, and
15 // each edge is an action that happened on that memory location. The "actions"
16 // can be one of Dereference, Reference, or Assign. The precision of this
17 // analysis is roughly the same as that of an one level context-sensitive
18 // Steensgaard's algorithm.
20 // Two variables are considered as aliasing iff you can reach one value's node
21 // from the other value's node and the language formed by concatenating all of
22 // the edge labels (actions) conforms to a context-free grammar.
24 // Because this algorithm requires a graph search on each query, we execute the
25 // algorithm outlined in "Fast algorithms..." (mentioned above)
26 // in order to transform the graph into sets of variables that may alias in
27 // ~nlogn time (n = number of variables), which makes queries take constant
28 // time.
29 //===----------------------------------------------------------------------===//
31 // N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and
32 // CFLSteensAA is interprocedural. This is *technically* A Bad Thing, because
33 // FunctionPasses are only allowed to inspect the Function that they're being
34 // run on. Realistically, this likely isn't a problem until we allow
35 // FunctionPasses to run concurrently.
37 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
38 #include "AliasAnalysisSummary.h"
39 #include "CFLGraph.h"
40 #include "StratifiedSets.h"
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/Optional.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/Analysis/TargetLibraryInfo.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <limits>
56 #include <memory>
57 #include <utility>
59 using namespace llvm;
60 using namespace llvm::cflaa;
62 #define DEBUG_TYPE "cfl-steens-aa"
64 CFLSteensAAResult::CFLSteensAAResult(
65 std::function<const TargetLibraryInfo &(Function &F)> GetTLI)
66 : AAResultBase(), GetTLI(std::move(GetTLI)) {}
67 CFLSteensAAResult::CFLSteensAAResult(CFLSteensAAResult &&Arg)
68 : AAResultBase(std::move(Arg)), GetTLI(std::move(Arg.GetTLI)) {}
69 CFLSteensAAResult::~CFLSteensAAResult() = default;
71 /// Information we have about a function and would like to keep around.
72 class CFLSteensAAResult::FunctionInfo {
73 StratifiedSets<InstantiatedValue> Sets;
74 AliasSummary Summary;
76 public:
77 FunctionInfo(Function &Fn, const SmallVectorImpl<Value *> &RetVals,
78 StratifiedSets<InstantiatedValue> S);
80 const StratifiedSets<InstantiatedValue> &getStratifiedSets() const {
81 return Sets;
84 const AliasSummary &getAliasSummary() const { return Summary; }
87 const StratifiedIndex StratifiedLink::SetSentinel =
88 std::numeric_limits<StratifiedIndex>::max();
90 //===----------------------------------------------------------------------===//
91 // Function declarations that require types defined in the namespace above
92 //===----------------------------------------------------------------------===//
94 /// Determines whether it would be pointless to add the given Value to our sets.
95 static bool canSkipAddingToSets(Value *Val) {
96 // Constants can share instances, which may falsely unify multiple
97 // sets, e.g. in
98 // store i32* null, i32** %ptr1
99 // store i32* null, i32** %ptr2
100 // clearly ptr1 and ptr2 should not be unified into the same set, so
101 // we should filter out the (potentially shared) instance to
102 // i32* null.
103 if (isa<Constant>(Val)) {
104 // TODO: Because all of these things are constant, we can determine whether
105 // the data is *actually* mutable at graph building time. This will probably
106 // come for free/cheap with offset awareness.
107 bool CanStoreMutableData = isa<GlobalValue>(Val) ||
108 isa<ConstantExpr>(Val) ||
109 isa<ConstantAggregate>(Val);
110 return !CanStoreMutableData;
113 return false;
116 CFLSteensAAResult::FunctionInfo::FunctionInfo(
117 Function &Fn, const SmallVectorImpl<Value *> &RetVals,
118 StratifiedSets<InstantiatedValue> S)
119 : Sets(std::move(S)) {
120 // Historically, an arbitrary upper-bound of 50 args was selected. We may want
121 // to remove this if it doesn't really matter in practice.
122 if (Fn.arg_size() > MaxSupportedArgsInSummary)
123 return;
125 DenseMap<StratifiedIndex, InterfaceValue> InterfaceMap;
127 // Our intention here is to record all InterfaceValues that share the same
128 // StratifiedIndex in RetParamRelations. For each valid InterfaceValue, we
129 // have its StratifiedIndex scanned here and check if the index is presented
130 // in InterfaceMap: if it is not, we add the correspondence to the map;
131 // otherwise, an aliasing relation is found and we add it to
132 // RetParamRelations.
134 auto AddToRetParamRelations = [&](unsigned InterfaceIndex,
135 StratifiedIndex SetIndex) {
136 unsigned Level = 0;
137 while (true) {
138 InterfaceValue CurrValue{InterfaceIndex, Level};
140 auto Itr = InterfaceMap.find(SetIndex);
141 if (Itr != InterfaceMap.end()) {
142 if (CurrValue != Itr->second)
143 Summary.RetParamRelations.push_back(
144 ExternalRelation{CurrValue, Itr->second, UnknownOffset});
145 break;
148 auto &Link = Sets.getLink(SetIndex);
149 InterfaceMap.insert(std::make_pair(SetIndex, CurrValue));
150 auto ExternalAttrs = getExternallyVisibleAttrs(Link.Attrs);
151 if (ExternalAttrs.any())
152 Summary.RetParamAttributes.push_back(
153 ExternalAttribute{CurrValue, ExternalAttrs});
155 if (!Link.hasBelow())
156 break;
158 ++Level;
159 SetIndex = Link.Below;
163 // Populate RetParamRelations for return values
164 for (auto *RetVal : RetVals) {
165 assert(RetVal != nullptr);
166 assert(RetVal->getType()->isPointerTy());
167 auto RetInfo = Sets.find(InstantiatedValue{RetVal, 0});
168 if (RetInfo.hasValue())
169 AddToRetParamRelations(0, RetInfo->Index);
172 // Populate RetParamRelations for parameters
173 unsigned I = 0;
174 for (auto &Param : Fn.args()) {
175 if (Param.getType()->isPointerTy()) {
176 auto ParamInfo = Sets.find(InstantiatedValue{&Param, 0});
177 if (ParamInfo.hasValue())
178 AddToRetParamRelations(I + 1, ParamInfo->Index);
180 ++I;
184 // Builds the graph + StratifiedSets for a function.
185 CFLSteensAAResult::FunctionInfo CFLSteensAAResult::buildSetsFrom(Function *Fn) {
186 CFLGraphBuilder<CFLSteensAAResult> GraphBuilder(*this, GetTLI(*Fn), *Fn);
187 StratifiedSetsBuilder<InstantiatedValue> SetBuilder;
189 // Add all CFLGraph nodes and all Dereference edges to StratifiedSets
190 auto &Graph = GraphBuilder.getCFLGraph();
191 for (const auto &Mapping : Graph.value_mappings()) {
192 auto Val = Mapping.first;
193 if (canSkipAddingToSets(Val))
194 continue;
195 auto &ValueInfo = Mapping.second;
197 assert(ValueInfo.getNumLevels() > 0);
198 SetBuilder.add(InstantiatedValue{Val, 0});
199 SetBuilder.noteAttributes(InstantiatedValue{Val, 0},
200 ValueInfo.getNodeInfoAtLevel(0).Attr);
201 for (unsigned I = 0, E = ValueInfo.getNumLevels() - 1; I < E; ++I) {
202 SetBuilder.add(InstantiatedValue{Val, I + 1});
203 SetBuilder.noteAttributes(InstantiatedValue{Val, I + 1},
204 ValueInfo.getNodeInfoAtLevel(I + 1).Attr);
205 SetBuilder.addBelow(InstantiatedValue{Val, I},
206 InstantiatedValue{Val, I + 1});
210 // Add all assign edges to StratifiedSets
211 for (const auto &Mapping : Graph.value_mappings()) {
212 auto Val = Mapping.first;
213 if (canSkipAddingToSets(Val))
214 continue;
215 auto &ValueInfo = Mapping.second;
217 for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) {
218 auto Src = InstantiatedValue{Val, I};
219 for (auto &Edge : ValueInfo.getNodeInfoAtLevel(I).Edges)
220 SetBuilder.addWith(Src, Edge.Other);
224 return FunctionInfo(*Fn, GraphBuilder.getReturnValues(), SetBuilder.build());
227 void CFLSteensAAResult::scan(Function *Fn) {
228 auto InsertPair = Cache.insert(std::make_pair(Fn, Optional<FunctionInfo>()));
229 (void)InsertPair;
230 assert(InsertPair.second &&
231 "Trying to scan a function that has already been cached");
233 // Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call
234 // may get evaluated after operator[], potentially triggering a DenseMap
235 // resize and invalidating the reference returned by operator[]
236 auto FunInfo = buildSetsFrom(Fn);
237 Cache[Fn] = std::move(FunInfo);
239 Handles.emplace_front(Fn, this);
242 void CFLSteensAAResult::evict(Function *Fn) { Cache.erase(Fn); }
244 /// Ensures that the given function is available in the cache, and returns the
245 /// entry.
246 const Optional<CFLSteensAAResult::FunctionInfo> &
247 CFLSteensAAResult::ensureCached(Function *Fn) {
248 auto Iter = Cache.find(Fn);
249 if (Iter == Cache.end()) {
250 scan(Fn);
251 Iter = Cache.find(Fn);
252 assert(Iter != Cache.end());
253 assert(Iter->second.hasValue());
255 return Iter->second;
258 const AliasSummary *CFLSteensAAResult::getAliasSummary(Function &Fn) {
259 auto &FunInfo = ensureCached(&Fn);
260 if (FunInfo.hasValue())
261 return &FunInfo->getAliasSummary();
262 else
263 return nullptr;
266 AliasResult CFLSteensAAResult::query(const MemoryLocation &LocA,
267 const MemoryLocation &LocB) {
268 auto *ValA = const_cast<Value *>(LocA.Ptr);
269 auto *ValB = const_cast<Value *>(LocB.Ptr);
271 if (!ValA->getType()->isPointerTy() || !ValB->getType()->isPointerTy())
272 return AliasResult::NoAlias;
274 Function *Fn = nullptr;
275 Function *MaybeFnA = const_cast<Function *>(parentFunctionOfValue(ValA));
276 Function *MaybeFnB = const_cast<Function *>(parentFunctionOfValue(ValB));
277 if (!MaybeFnA && !MaybeFnB) {
278 // The only times this is known to happen are when globals + InlineAsm are
279 // involved
280 LLVM_DEBUG(
281 dbgs()
282 << "CFLSteensAA: could not extract parent function information.\n");
283 return AliasResult::MayAlias;
286 if (MaybeFnA) {
287 Fn = MaybeFnA;
288 assert((!MaybeFnB || MaybeFnB == MaybeFnA) &&
289 "Interprocedural queries not supported");
290 } else {
291 Fn = MaybeFnB;
294 assert(Fn != nullptr);
295 auto &MaybeInfo = ensureCached(Fn);
296 assert(MaybeInfo.hasValue());
298 auto &Sets = MaybeInfo->getStratifiedSets();
299 auto MaybeA = Sets.find(InstantiatedValue{ValA, 0});
300 if (!MaybeA.hasValue())
301 return AliasResult::MayAlias;
303 auto MaybeB = Sets.find(InstantiatedValue{ValB, 0});
304 if (!MaybeB.hasValue())
305 return AliasResult::MayAlias;
307 auto SetA = *MaybeA;
308 auto SetB = *MaybeB;
309 auto AttrsA = Sets.getLink(SetA.Index).Attrs;
310 auto AttrsB = Sets.getLink(SetB.Index).Attrs;
312 // If both values are local (meaning the corresponding set has attribute
313 // AttrNone or AttrEscaped), then we know that CFLSteensAA fully models them:
314 // they may-alias each other if and only if they are in the same set.
315 // If at least one value is non-local (meaning it either is global/argument or
316 // it comes from unknown sources like integer cast), the situation becomes a
317 // bit more interesting. We follow three general rules described below:
318 // - Non-local values may alias each other
319 // - AttrNone values do not alias any non-local values
320 // - AttrEscaped do not alias globals/arguments, but they may alias
321 // AttrUnknown values
322 if (SetA.Index == SetB.Index)
323 return AliasResult::MayAlias;
324 if (AttrsA.none() || AttrsB.none())
325 return AliasResult::NoAlias;
326 if (hasUnknownOrCallerAttr(AttrsA) || hasUnknownOrCallerAttr(AttrsB))
327 return AliasResult::MayAlias;
328 if (isGlobalOrArgAttr(AttrsA) && isGlobalOrArgAttr(AttrsB))
329 return AliasResult::MayAlias;
330 return AliasResult::NoAlias;
333 AnalysisKey CFLSteensAA::Key;
335 CFLSteensAAResult CFLSteensAA::run(Function &F, FunctionAnalysisManager &AM) {
336 auto GetTLI = [&AM](Function &F) -> const TargetLibraryInfo & {
337 return AM.getResult<TargetLibraryAnalysis>(F);
339 return CFLSteensAAResult(GetTLI);
342 char CFLSteensAAWrapperPass::ID = 0;
343 INITIALIZE_PASS(CFLSteensAAWrapperPass, "cfl-steens-aa",
344 "Unification-Based CFL Alias Analysis", false, true)
346 ImmutablePass *llvm::createCFLSteensAAWrapperPass() {
347 return new CFLSteensAAWrapperPass();
350 CFLSteensAAWrapperPass::CFLSteensAAWrapperPass() : ImmutablePass(ID) {
351 initializeCFLSteensAAWrapperPassPass(*PassRegistry::getPassRegistry());
354 void CFLSteensAAWrapperPass::initializePass() {
355 auto GetTLI = [this](Function &F) -> const TargetLibraryInfo & {
356 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
358 Result.reset(new CFLSteensAAResult(GetTLI));
361 void CFLSteensAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
362 AU.setPreservesAll();
363 AU.addRequired<TargetLibraryInfoWrapperPass>();