[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Analysis / DependenceAnalysis.cpp
blob9c09894f3a45152376319b3d672e49a260bbdecb
1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
10 // accesses. Currently, it is an (incomplete) implementation of the approach
11 // described in
13 // Practical Dependence Testing
14 // Goff, Kennedy, Tseng
15 // PLDI 1991
17 // There's a single entry point that analyzes the dependence between a pair
18 // of memory references in a function, returning either NULL, for no dependence,
19 // or a more-or-less detailed description of the dependence between them.
21 // Currently, the implementation cannot propagate constraints between
22 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
23 // Both of these are conservative weaknesses;
24 // that is, not a source of correctness problems.
26 // Since Clang linearizes some array subscripts, the dependence
27 // analysis is using SCEV->delinearize to recover the representation of multiple
28 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
29 // delinearization is controlled by the flag -da-delinearize.
31 // We should pay some careful attention to the possibility of integer overflow
32 // in the implementation of the various tests. This could happen with Add,
33 // Subtract, or Multiply, with both APInt's and SCEV's.
35 // Some non-linear subscript pairs can be handled by the GCD test
36 // (and perhaps other tests).
37 // Should explore how often these things occur.
39 // Finally, it seems like certain test cases expose weaknesses in the SCEV
40 // simplification, especially in the handling of sign and zero extensions.
41 // It could be useful to spend time exploring these.
43 // Please note that this is work in progress and the interface is subject to
44 // change.
46 //===----------------------------------------------------------------------===//
47 // //
48 // In memory of Ken Kennedy, 1945 - 2007 //
49 // //
50 //===----------------------------------------------------------------------===//
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/AliasAnalysis.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/ScalarEvolution.h"
58 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/Config/llvm-config.h"
61 #include "llvm/IR/InstIterator.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/raw_ostream.h"
70 using namespace llvm;
72 #define DEBUG_TYPE "da"
74 //===----------------------------------------------------------------------===//
75 // statistics
77 STATISTIC(TotalArrayPairs, "Array pairs tested");
78 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
79 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
80 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
81 STATISTIC(ZIVapplications, "ZIV applications");
82 STATISTIC(ZIVindependence, "ZIV independence");
83 STATISTIC(StrongSIVapplications, "Strong SIV applications");
84 STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
85 STATISTIC(StrongSIVindependence, "Strong SIV independence");
86 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
87 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
88 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
89 STATISTIC(ExactSIVapplications, "Exact SIV applications");
90 STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
91 STATISTIC(ExactSIVindependence, "Exact SIV independence");
92 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
93 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
94 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
95 STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
96 STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
97 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
98 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
99 STATISTIC(DeltaApplications, "Delta applications");
100 STATISTIC(DeltaSuccesses, "Delta successes");
101 STATISTIC(DeltaIndependence, "Delta independence");
102 STATISTIC(DeltaPropagations, "Delta propagations");
103 STATISTIC(GCDapplications, "GCD applications");
104 STATISTIC(GCDsuccesses, "GCD successes");
105 STATISTIC(GCDindependence, "GCD independence");
106 STATISTIC(BanerjeeApplications, "Banerjee applications");
107 STATISTIC(BanerjeeIndependence, "Banerjee independence");
108 STATISTIC(BanerjeeSuccesses, "Banerjee successes");
110 static cl::opt<bool>
111 Delinearize("da-delinearize", cl::init(true), cl::Hidden, cl::ZeroOrMore,
112 cl::desc("Try to delinearize array references."));
113 static cl::opt<bool> DisableDelinearizationChecks(
114 "da-disable-delinearization-checks", cl::init(false), cl::Hidden,
115 cl::ZeroOrMore,
116 cl::desc(
117 "Disable checks that try to statically verify validity of "
118 "delinearized subscripts. Enabling this option may result in incorrect "
119 "dependence vectors for languages that allow the subscript of one "
120 "dimension to underflow or overflow into another dimension."));
122 static cl::opt<unsigned> MIVMaxLevelThreshold(
123 "da-miv-max-level-threshold", cl::init(7), cl::Hidden, cl::ZeroOrMore,
124 cl::desc("Maximum depth allowed for the recursive algorithm used to "
125 "explore MIV direction vectors."));
127 //===----------------------------------------------------------------------===//
128 // basics
130 DependenceAnalysis::Result
131 DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
132 auto &AA = FAM.getResult<AAManager>(F);
133 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
134 auto &LI = FAM.getResult<LoopAnalysis>(F);
135 return DependenceInfo(&F, &AA, &SE, &LI);
138 AnalysisKey DependenceAnalysis::Key;
140 INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
141 "Dependence Analysis", true, true)
142 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
143 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
144 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
145 INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
146 true, true)
148 char DependenceAnalysisWrapperPass::ID = 0;
150 DependenceAnalysisWrapperPass::DependenceAnalysisWrapperPass()
151 : FunctionPass(ID) {
152 initializeDependenceAnalysisWrapperPassPass(*PassRegistry::getPassRegistry());
155 FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
156 return new DependenceAnalysisWrapperPass();
159 bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
160 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
161 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
162 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
163 info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
164 return false;
167 DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }
169 void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }
171 void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
172 AU.setPreservesAll();
173 AU.addRequiredTransitive<AAResultsWrapperPass>();
174 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
175 AU.addRequiredTransitive<LoopInfoWrapperPass>();
178 // Used to test the dependence analyzer.
179 // Looks through the function, noting instructions that may access memory.
180 // Calls depends() on every possible pair and prints out the result.
181 // Ignores all other instructions.
182 static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) {
183 auto *F = DA->getFunction();
184 for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
185 ++SrcI) {
186 if (SrcI->mayReadOrWriteMemory()) {
187 for (inst_iterator DstI = SrcI, DstE = inst_end(F);
188 DstI != DstE; ++DstI) {
189 if (DstI->mayReadOrWriteMemory()) {
190 OS << "Src:" << *SrcI << " --> Dst:" << *DstI << "\n";
191 OS << " da analyze - ";
192 if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
193 D->dump(OS);
194 for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
195 if (D->isSplitable(Level)) {
196 OS << " da analyze - split level = " << Level;
197 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
198 OS << "!\n";
202 else
203 OS << "none!\n";
210 void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
211 const Module *) const {
212 dumpExampleDependence(OS, info.get());
215 PreservedAnalyses
216 DependenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) {
217 OS << "'Dependence Analysis' for function '" << F.getName() << "':\n";
218 dumpExampleDependence(OS, &FAM.getResult<DependenceAnalysis>(F));
219 return PreservedAnalyses::all();
222 //===----------------------------------------------------------------------===//
223 // Dependence methods
225 // Returns true if this is an input dependence.
226 bool Dependence::isInput() const {
227 return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
231 // Returns true if this is an output dependence.
232 bool Dependence::isOutput() const {
233 return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
237 // Returns true if this is an flow (aka true) dependence.
238 bool Dependence::isFlow() const {
239 return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
243 // Returns true if this is an anti dependence.
244 bool Dependence::isAnti() const {
245 return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
249 // Returns true if a particular level is scalar; that is,
250 // if no subscript in the source or destination mention the induction
251 // variable associated with the loop at this level.
252 // Leave this out of line, so it will serve as a virtual method anchor
253 bool Dependence::isScalar(unsigned level) const {
254 return false;
258 //===----------------------------------------------------------------------===//
259 // FullDependence methods
261 FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
262 bool PossiblyLoopIndependent,
263 unsigned CommonLevels)
264 : Dependence(Source, Destination), Levels(CommonLevels),
265 LoopIndependent(PossiblyLoopIndependent) {
266 Consistent = true;
267 if (CommonLevels)
268 DV = std::make_unique<DVEntry[]>(CommonLevels);
271 // The rest are simple getters that hide the implementation.
273 // getDirection - Returns the direction associated with a particular level.
274 unsigned FullDependence::getDirection(unsigned Level) const {
275 assert(0 < Level && Level <= Levels && "Level out of range");
276 return DV[Level - 1].Direction;
280 // Returns the distance (or NULL) associated with a particular level.
281 const SCEV *FullDependence::getDistance(unsigned Level) const {
282 assert(0 < Level && Level <= Levels && "Level out of range");
283 return DV[Level - 1].Distance;
287 // Returns true if a particular level is scalar; that is,
288 // if no subscript in the source or destination mention the induction
289 // variable associated with the loop at this level.
290 bool FullDependence::isScalar(unsigned Level) const {
291 assert(0 < Level && Level <= Levels && "Level out of range");
292 return DV[Level - 1].Scalar;
296 // Returns true if peeling the first iteration from this loop
297 // will break this dependence.
298 bool FullDependence::isPeelFirst(unsigned Level) const {
299 assert(0 < Level && Level <= Levels && "Level out of range");
300 return DV[Level - 1].PeelFirst;
304 // Returns true if peeling the last iteration from this loop
305 // will break this dependence.
306 bool FullDependence::isPeelLast(unsigned Level) const {
307 assert(0 < Level && Level <= Levels && "Level out of range");
308 return DV[Level - 1].PeelLast;
312 // Returns true if splitting this loop will break the dependence.
313 bool FullDependence::isSplitable(unsigned Level) const {
314 assert(0 < Level && Level <= Levels && "Level out of range");
315 return DV[Level - 1].Splitable;
319 //===----------------------------------------------------------------------===//
320 // DependenceInfo::Constraint methods
322 // If constraint is a point <X, Y>, returns X.
323 // Otherwise assert.
324 const SCEV *DependenceInfo::Constraint::getX() const {
325 assert(Kind == Point && "Kind should be Point");
326 return A;
330 // If constraint is a point <X, Y>, returns Y.
331 // Otherwise assert.
332 const SCEV *DependenceInfo::Constraint::getY() const {
333 assert(Kind == Point && "Kind should be Point");
334 return B;
338 // If constraint is a line AX + BY = C, returns A.
339 // Otherwise assert.
340 const SCEV *DependenceInfo::Constraint::getA() const {
341 assert((Kind == Line || Kind == Distance) &&
342 "Kind should be Line (or Distance)");
343 return A;
347 // If constraint is a line AX + BY = C, returns B.
348 // Otherwise assert.
349 const SCEV *DependenceInfo::Constraint::getB() const {
350 assert((Kind == Line || Kind == Distance) &&
351 "Kind should be Line (or Distance)");
352 return B;
356 // If constraint is a line AX + BY = C, returns C.
357 // Otherwise assert.
358 const SCEV *DependenceInfo::Constraint::getC() const {
359 assert((Kind == Line || Kind == Distance) &&
360 "Kind should be Line (or Distance)");
361 return C;
365 // If constraint is a distance, returns D.
366 // Otherwise assert.
367 const SCEV *DependenceInfo::Constraint::getD() const {
368 assert(Kind == Distance && "Kind should be Distance");
369 return SE->getNegativeSCEV(C);
373 // Returns the loop associated with this constraint.
374 const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
375 assert((Kind == Distance || Kind == Line || Kind == Point) &&
376 "Kind should be Distance, Line, or Point");
377 return AssociatedLoop;
380 void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
381 const Loop *CurLoop) {
382 Kind = Point;
383 A = X;
384 B = Y;
385 AssociatedLoop = CurLoop;
388 void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
389 const SCEV *CC, const Loop *CurLoop) {
390 Kind = Line;
391 A = AA;
392 B = BB;
393 C = CC;
394 AssociatedLoop = CurLoop;
397 void DependenceInfo::Constraint::setDistance(const SCEV *D,
398 const Loop *CurLoop) {
399 Kind = Distance;
400 A = SE->getOne(D->getType());
401 B = SE->getNegativeSCEV(A);
402 C = SE->getNegativeSCEV(D);
403 AssociatedLoop = CurLoop;
406 void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }
408 void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
409 SE = NewSE;
410 Kind = Any;
413 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
414 // For debugging purposes. Dumps the constraint out to OS.
415 LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
416 if (isEmpty())
417 OS << " Empty\n";
418 else if (isAny())
419 OS << " Any\n";
420 else if (isPoint())
421 OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
422 else if (isDistance())
423 OS << " Distance is " << *getD() <<
424 " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
425 else if (isLine())
426 OS << " Line is " << *getA() << "*X + " <<
427 *getB() << "*Y = " << *getC() << "\n";
428 else
429 llvm_unreachable("unknown constraint type in Constraint::dump");
431 #endif
434 // Updates X with the intersection
435 // of the Constraints X and Y. Returns true if X has changed.
436 // Corresponds to Figure 4 from the paper
438 // Practical Dependence Testing
439 // Goff, Kennedy, Tseng
440 // PLDI 1991
441 bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
442 ++DeltaApplications;
443 LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
444 LLVM_DEBUG(dbgs() << "\t X ="; X->dump(dbgs()));
445 LLVM_DEBUG(dbgs() << "\t Y ="; Y->dump(dbgs()));
446 assert(!Y->isPoint() && "Y must not be a Point");
447 if (X->isAny()) {
448 if (Y->isAny())
449 return false;
450 *X = *Y;
451 return true;
453 if (X->isEmpty())
454 return false;
455 if (Y->isEmpty()) {
456 X->setEmpty();
457 return true;
460 if (X->isDistance() && Y->isDistance()) {
461 LLVM_DEBUG(dbgs() << "\t intersect 2 distances\n");
462 if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
463 return false;
464 if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
465 X->setEmpty();
466 ++DeltaSuccesses;
467 return true;
469 // Hmmm, interesting situation.
470 // I guess if either is constant, keep it and ignore the other.
471 if (isa<SCEVConstant>(Y->getD())) {
472 *X = *Y;
473 return true;
475 return false;
478 // At this point, the pseudo-code in Figure 4 of the paper
479 // checks if (X->isPoint() && Y->isPoint()).
480 // This case can't occur in our implementation,
481 // since a Point can only arise as the result of intersecting
482 // two Line constraints, and the right-hand value, Y, is never
483 // the result of an intersection.
484 assert(!(X->isPoint() && Y->isPoint()) &&
485 "We shouldn't ever see X->isPoint() && Y->isPoint()");
487 if (X->isLine() && Y->isLine()) {
488 LLVM_DEBUG(dbgs() << "\t intersect 2 lines\n");
489 const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
490 const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
491 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
492 // slopes are equal, so lines are parallel
493 LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
494 Prod1 = SE->getMulExpr(X->getC(), Y->getB());
495 Prod2 = SE->getMulExpr(X->getB(), Y->getC());
496 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
497 return false;
498 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
499 X->setEmpty();
500 ++DeltaSuccesses;
501 return true;
503 return false;
505 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
506 // slopes differ, so lines intersect
507 LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
508 const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
509 const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
510 const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
511 const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
512 const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
513 const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
514 const SCEVConstant *C1A2_C2A1 =
515 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
516 const SCEVConstant *C1B2_C2B1 =
517 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
518 const SCEVConstant *A1B2_A2B1 =
519 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
520 const SCEVConstant *A2B1_A1B2 =
521 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
522 if (!C1B2_C2B1 || !C1A2_C2A1 ||
523 !A1B2_A2B1 || !A2B1_A1B2)
524 return false;
525 APInt Xtop = C1B2_C2B1->getAPInt();
526 APInt Xbot = A1B2_A2B1->getAPInt();
527 APInt Ytop = C1A2_C2A1->getAPInt();
528 APInt Ybot = A2B1_A1B2->getAPInt();
529 LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
530 LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
531 LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
532 LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
533 APInt Xq = Xtop; // these need to be initialized, even
534 APInt Xr = Xtop; // though they're just going to be overwritten
535 APInt::sdivrem(Xtop, Xbot, Xq, Xr);
536 APInt Yq = Ytop;
537 APInt Yr = Ytop;
538 APInt::sdivrem(Ytop, Ybot, Yq, Yr);
539 if (Xr != 0 || Yr != 0) {
540 X->setEmpty();
541 ++DeltaSuccesses;
542 return true;
544 LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
545 if (Xq.slt(0) || Yq.slt(0)) {
546 X->setEmpty();
547 ++DeltaSuccesses;
548 return true;
550 if (const SCEVConstant *CUB =
551 collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
552 const APInt &UpperBound = CUB->getAPInt();
553 LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
554 if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
555 X->setEmpty();
556 ++DeltaSuccesses;
557 return true;
560 X->setPoint(SE->getConstant(Xq),
561 SE->getConstant(Yq),
562 X->getAssociatedLoop());
563 ++DeltaSuccesses;
564 return true;
566 return false;
569 // if (X->isLine() && Y->isPoint()) This case can't occur.
570 assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
572 if (X->isPoint() && Y->isLine()) {
573 LLVM_DEBUG(dbgs() << "\t intersect Point and Line\n");
574 const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
575 const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
576 const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
577 if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
578 return false;
579 if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
580 X->setEmpty();
581 ++DeltaSuccesses;
582 return true;
584 return false;
587 llvm_unreachable("shouldn't reach the end of Constraint intersection");
588 return false;
592 //===----------------------------------------------------------------------===//
593 // DependenceInfo methods
595 // For debugging purposes. Dumps a dependence to OS.
596 void Dependence::dump(raw_ostream &OS) const {
597 bool Splitable = false;
598 if (isConfused())
599 OS << "confused";
600 else {
601 if (isConsistent())
602 OS << "consistent ";
603 if (isFlow())
604 OS << "flow";
605 else if (isOutput())
606 OS << "output";
607 else if (isAnti())
608 OS << "anti";
609 else if (isInput())
610 OS << "input";
611 unsigned Levels = getLevels();
612 OS << " [";
613 for (unsigned II = 1; II <= Levels; ++II) {
614 if (isSplitable(II))
615 Splitable = true;
616 if (isPeelFirst(II))
617 OS << 'p';
618 const SCEV *Distance = getDistance(II);
619 if (Distance)
620 OS << *Distance;
621 else if (isScalar(II))
622 OS << "S";
623 else {
624 unsigned Direction = getDirection(II);
625 if (Direction == DVEntry::ALL)
626 OS << "*";
627 else {
628 if (Direction & DVEntry::LT)
629 OS << "<";
630 if (Direction & DVEntry::EQ)
631 OS << "=";
632 if (Direction & DVEntry::GT)
633 OS << ">";
636 if (isPeelLast(II))
637 OS << 'p';
638 if (II < Levels)
639 OS << " ";
641 if (isLoopIndependent())
642 OS << "|<";
643 OS << "]";
644 if (Splitable)
645 OS << " splitable";
647 OS << "!\n";
650 // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
651 // underlaying objects. If LocA and LocB are known to not alias (for any reason:
652 // tbaa, non-overlapping regions etc), then it is known there is no dependecy.
653 // Otherwise the underlying objects are checked to see if they point to
654 // different identifiable objects.
655 static AliasResult underlyingObjectsAlias(AAResults *AA,
656 const DataLayout &DL,
657 const MemoryLocation &LocA,
658 const MemoryLocation &LocB) {
659 // Check the original locations (minus size) for noalias, which can happen for
660 // tbaa, incompatible underlying object locations, etc.
661 MemoryLocation LocAS =
662 MemoryLocation::getBeforeOrAfter(LocA.Ptr, LocA.AATags);
663 MemoryLocation LocBS =
664 MemoryLocation::getBeforeOrAfter(LocB.Ptr, LocB.AATags);
665 if (AA->isNoAlias(LocAS, LocBS))
666 return AliasResult::NoAlias;
668 // Check the underlying objects are the same
669 const Value *AObj = getUnderlyingObject(LocA.Ptr);
670 const Value *BObj = getUnderlyingObject(LocB.Ptr);
672 // If the underlying objects are the same, they must alias
673 if (AObj == BObj)
674 return AliasResult::MustAlias;
676 // We may have hit the recursion limit for underlying objects, or have
677 // underlying objects where we don't know they will alias.
678 if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj))
679 return AliasResult::MayAlias;
681 // Otherwise we know the objects are different and both identified objects so
682 // must not alias.
683 return AliasResult::NoAlias;
687 // Returns true if the load or store can be analyzed. Atomic and volatile
688 // operations have properties which this analysis does not understand.
689 static
690 bool isLoadOrStore(const Instruction *I) {
691 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
692 return LI->isUnordered();
693 else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
694 return SI->isUnordered();
695 return false;
699 // Examines the loop nesting of the Src and Dst
700 // instructions and establishes their shared loops. Sets the variables
701 // CommonLevels, SrcLevels, and MaxLevels.
702 // The source and destination instructions needn't be contained in the same
703 // loop. The routine establishNestingLevels finds the level of most deeply
704 // nested loop that contains them both, CommonLevels. An instruction that's
705 // not contained in a loop is at level = 0. MaxLevels is equal to the level
706 // of the source plus the level of the destination, minus CommonLevels.
707 // This lets us allocate vectors MaxLevels in length, with room for every
708 // distinct loop referenced in both the source and destination subscripts.
709 // The variable SrcLevels is the nesting depth of the source instruction.
710 // It's used to help calculate distinct loops referenced by the destination.
711 // Here's the map from loops to levels:
712 // 0 - unused
713 // 1 - outermost common loop
714 // ... - other common loops
715 // CommonLevels - innermost common loop
716 // ... - loops containing Src but not Dst
717 // SrcLevels - innermost loop containing Src but not Dst
718 // ... - loops containing Dst but not Src
719 // MaxLevels - innermost loops containing Dst but not Src
720 // Consider the follow code fragment:
721 // for (a = ...) {
722 // for (b = ...) {
723 // for (c = ...) {
724 // for (d = ...) {
725 // A[] = ...;
726 // }
727 // }
728 // for (e = ...) {
729 // for (f = ...) {
730 // for (g = ...) {
731 // ... = A[];
732 // }
733 // }
734 // }
735 // }
736 // }
737 // If we're looking at the possibility of a dependence between the store
738 // to A (the Src) and the load from A (the Dst), we'll note that they
739 // have 2 loops in common, so CommonLevels will equal 2 and the direction
740 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
741 // A map from loop names to loop numbers would look like
742 // a - 1
743 // b - 2 = CommonLevels
744 // c - 3
745 // d - 4 = SrcLevels
746 // e - 5
747 // f - 6
748 // g - 7 = MaxLevels
749 void DependenceInfo::establishNestingLevels(const Instruction *Src,
750 const Instruction *Dst) {
751 const BasicBlock *SrcBlock = Src->getParent();
752 const BasicBlock *DstBlock = Dst->getParent();
753 unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
754 unsigned DstLevel = LI->getLoopDepth(DstBlock);
755 const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
756 const Loop *DstLoop = LI->getLoopFor(DstBlock);
757 SrcLevels = SrcLevel;
758 MaxLevels = SrcLevel + DstLevel;
759 while (SrcLevel > DstLevel) {
760 SrcLoop = SrcLoop->getParentLoop();
761 SrcLevel--;
763 while (DstLevel > SrcLevel) {
764 DstLoop = DstLoop->getParentLoop();
765 DstLevel--;
767 while (SrcLoop != DstLoop) {
768 SrcLoop = SrcLoop->getParentLoop();
769 DstLoop = DstLoop->getParentLoop();
770 SrcLevel--;
772 CommonLevels = SrcLevel;
773 MaxLevels -= CommonLevels;
777 // Given one of the loops containing the source, return
778 // its level index in our numbering scheme.
779 unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
780 return SrcLoop->getLoopDepth();
784 // Given one of the loops containing the destination,
785 // return its level index in our numbering scheme.
786 unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
787 unsigned D = DstLoop->getLoopDepth();
788 if (D > CommonLevels)
789 return D - CommonLevels + SrcLevels;
790 else
791 return D;
795 // Returns true if Expression is loop invariant in LoopNest.
796 bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
797 const Loop *LoopNest) const {
798 if (!LoopNest)
799 return true;
800 return SE->isLoopInvariant(Expression, LoopNest) &&
801 isLoopInvariant(Expression, LoopNest->getParentLoop());
806 // Finds the set of loops from the LoopNest that
807 // have a level <= CommonLevels and are referred to by the SCEV Expression.
808 void DependenceInfo::collectCommonLoops(const SCEV *Expression,
809 const Loop *LoopNest,
810 SmallBitVector &Loops) const {
811 while (LoopNest) {
812 unsigned Level = LoopNest->getLoopDepth();
813 if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
814 Loops.set(Level);
815 LoopNest = LoopNest->getParentLoop();
819 void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
821 unsigned widestWidthSeen = 0;
822 Type *widestType;
824 // Go through each pair and find the widest bit to which we need
825 // to extend all of them.
826 for (Subscript *Pair : Pairs) {
827 const SCEV *Src = Pair->Src;
828 const SCEV *Dst = Pair->Dst;
829 IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
830 IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
831 if (SrcTy == nullptr || DstTy == nullptr) {
832 assert(SrcTy == DstTy && "This function only unify integer types and "
833 "expect Src and Dst share the same type "
834 "otherwise.");
835 continue;
837 if (SrcTy->getBitWidth() > widestWidthSeen) {
838 widestWidthSeen = SrcTy->getBitWidth();
839 widestType = SrcTy;
841 if (DstTy->getBitWidth() > widestWidthSeen) {
842 widestWidthSeen = DstTy->getBitWidth();
843 widestType = DstTy;
848 assert(widestWidthSeen > 0);
850 // Now extend each pair to the widest seen.
851 for (Subscript *Pair : Pairs) {
852 const SCEV *Src = Pair->Src;
853 const SCEV *Dst = Pair->Dst;
854 IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
855 IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
856 if (SrcTy == nullptr || DstTy == nullptr) {
857 assert(SrcTy == DstTy && "This function only unify integer types and "
858 "expect Src and Dst share the same type "
859 "otherwise.");
860 continue;
862 if (SrcTy->getBitWidth() < widestWidthSeen)
863 // Sign-extend Src to widestType
864 Pair->Src = SE->getSignExtendExpr(Src, widestType);
865 if (DstTy->getBitWidth() < widestWidthSeen) {
866 // Sign-extend Dst to widestType
867 Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
872 // removeMatchingExtensions - Examines a subscript pair.
873 // If the source and destination are identically sign (or zero)
874 // extended, it strips off the extension in an effect to simplify
875 // the actual analysis.
876 void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
877 const SCEV *Src = Pair->Src;
878 const SCEV *Dst = Pair->Dst;
879 if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
880 (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
881 const SCEVIntegralCastExpr *SrcCast = cast<SCEVIntegralCastExpr>(Src);
882 const SCEVIntegralCastExpr *DstCast = cast<SCEVIntegralCastExpr>(Dst);
883 const SCEV *SrcCastOp = SrcCast->getOperand();
884 const SCEV *DstCastOp = DstCast->getOperand();
885 if (SrcCastOp->getType() == DstCastOp->getType()) {
886 Pair->Src = SrcCastOp;
887 Pair->Dst = DstCastOp;
892 // Examine the scev and return true iff it's linear.
893 // Collect any loops mentioned in the set of "Loops".
894 bool DependenceInfo::checkSubscript(const SCEV *Expr, const Loop *LoopNest,
895 SmallBitVector &Loops, bool IsSrc) {
896 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
897 if (!AddRec)
898 return isLoopInvariant(Expr, LoopNest);
899 const SCEV *Start = AddRec->getStart();
900 const SCEV *Step = AddRec->getStepRecurrence(*SE);
901 const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
902 if (!isa<SCEVCouldNotCompute>(UB)) {
903 if (SE->getTypeSizeInBits(Start->getType()) <
904 SE->getTypeSizeInBits(UB->getType())) {
905 if (!AddRec->getNoWrapFlags())
906 return false;
909 if (!isLoopInvariant(Step, LoopNest))
910 return false;
911 if (IsSrc)
912 Loops.set(mapSrcLoop(AddRec->getLoop()));
913 else
914 Loops.set(mapDstLoop(AddRec->getLoop()));
915 return checkSubscript(Start, LoopNest, Loops, IsSrc);
918 // Examine the scev and return true iff it's linear.
919 // Collect any loops mentioned in the set of "Loops".
920 bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
921 SmallBitVector &Loops) {
922 return checkSubscript(Src, LoopNest, Loops, true);
925 // Examine the scev and return true iff it's linear.
926 // Collect any loops mentioned in the set of "Loops".
927 bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
928 SmallBitVector &Loops) {
929 return checkSubscript(Dst, LoopNest, Loops, false);
933 // Examines the subscript pair (the Src and Dst SCEVs)
934 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
935 // Collects the associated loops in a set.
936 DependenceInfo::Subscript::ClassificationKind
937 DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
938 const SCEV *Dst, const Loop *DstLoopNest,
939 SmallBitVector &Loops) {
940 SmallBitVector SrcLoops(MaxLevels + 1);
941 SmallBitVector DstLoops(MaxLevels + 1);
942 if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
943 return Subscript::NonLinear;
944 if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
945 return Subscript::NonLinear;
946 Loops = SrcLoops;
947 Loops |= DstLoops;
948 unsigned N = Loops.count();
949 if (N == 0)
950 return Subscript::ZIV;
951 if (N == 1)
952 return Subscript::SIV;
953 if (N == 2 && (SrcLoops.count() == 0 ||
954 DstLoops.count() == 0 ||
955 (SrcLoops.count() == 1 && DstLoops.count() == 1)))
956 return Subscript::RDIV;
957 return Subscript::MIV;
961 // A wrapper around SCEV::isKnownPredicate.
962 // Looks for cases where we're interested in comparing for equality.
963 // If both X and Y have been identically sign or zero extended,
964 // it strips off the (confusing) extensions before invoking
965 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
966 // will be similarly updated.
968 // If SCEV::isKnownPredicate can't prove the predicate,
969 // we try simple subtraction, which seems to help in some cases
970 // involving symbolics.
971 bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
972 const SCEV *Y) const {
973 if (Pred == CmpInst::ICMP_EQ ||
974 Pred == CmpInst::ICMP_NE) {
975 if ((isa<SCEVSignExtendExpr>(X) &&
976 isa<SCEVSignExtendExpr>(Y)) ||
977 (isa<SCEVZeroExtendExpr>(X) &&
978 isa<SCEVZeroExtendExpr>(Y))) {
979 const SCEVIntegralCastExpr *CX = cast<SCEVIntegralCastExpr>(X);
980 const SCEVIntegralCastExpr *CY = cast<SCEVIntegralCastExpr>(Y);
981 const SCEV *Xop = CX->getOperand();
982 const SCEV *Yop = CY->getOperand();
983 if (Xop->getType() == Yop->getType()) {
984 X = Xop;
985 Y = Yop;
989 if (SE->isKnownPredicate(Pred, X, Y))
990 return true;
991 // If SE->isKnownPredicate can't prove the condition,
992 // we try the brute-force approach of subtracting
993 // and testing the difference.
994 // By testing with SE->isKnownPredicate first, we avoid
995 // the possibility of overflow when the arguments are constants.
996 const SCEV *Delta = SE->getMinusSCEV(X, Y);
997 switch (Pred) {
998 case CmpInst::ICMP_EQ:
999 return Delta->isZero();
1000 case CmpInst::ICMP_NE:
1001 return SE->isKnownNonZero(Delta);
1002 case CmpInst::ICMP_SGE:
1003 return SE->isKnownNonNegative(Delta);
1004 case CmpInst::ICMP_SLE:
1005 return SE->isKnownNonPositive(Delta);
1006 case CmpInst::ICMP_SGT:
1007 return SE->isKnownPositive(Delta);
1008 case CmpInst::ICMP_SLT:
1009 return SE->isKnownNegative(Delta);
1010 default:
1011 llvm_unreachable("unexpected predicate in isKnownPredicate");
1015 /// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
1016 /// with some extra checking if S is an AddRec and we can prove less-than using
1017 /// the loop bounds.
1018 bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const {
1019 // First unify to the same type
1020 auto *SType = dyn_cast<IntegerType>(S->getType());
1021 auto *SizeType = dyn_cast<IntegerType>(Size->getType());
1022 if (!SType || !SizeType)
1023 return false;
1024 Type *MaxType =
1025 (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType;
1026 S = SE->getTruncateOrZeroExtend(S, MaxType);
1027 Size = SE->getTruncateOrZeroExtend(Size, MaxType);
1029 // Special check for addrecs using BE taken count
1030 const SCEV *Bound = SE->getMinusSCEV(S, Size);
1031 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) {
1032 if (AddRec->isAffine()) {
1033 const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop());
1034 if (!isa<SCEVCouldNotCompute>(BECount)) {
1035 const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE);
1036 if (SE->isKnownNegative(Limit))
1037 return true;
1042 // Check using normal isKnownNegative
1043 const SCEV *LimitedBound =
1044 SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType())));
1045 return SE->isKnownNegative(LimitedBound);
1048 bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const {
1049 bool Inbounds = false;
1050 if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr))
1051 Inbounds = SrcGEP->isInBounds();
1052 if (Inbounds) {
1053 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
1054 if (AddRec->isAffine()) {
1055 // We know S is for Ptr, the operand on a load/store, so doesn't wrap.
1056 // If both parts are NonNegative, the end result will be NonNegative
1057 if (SE->isKnownNonNegative(AddRec->getStart()) &&
1058 SE->isKnownNonNegative(AddRec->getOperand(1)))
1059 return true;
1064 return SE->isKnownNonNegative(S);
1067 // All subscripts are all the same type.
1068 // Loop bound may be smaller (e.g., a char).
1069 // Should zero extend loop bound, since it's always >= 0.
1070 // This routine collects upper bound and extends or truncates if needed.
1071 // Truncating is safe when subscripts are known not to wrap. Cases without
1072 // nowrap flags should have been rejected earlier.
1073 // Return null if no bound available.
1074 const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
1075 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
1076 const SCEV *UB = SE->getBackedgeTakenCount(L);
1077 return SE->getTruncateOrZeroExtend(UB, T);
1079 return nullptr;
1083 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
1084 // If the cast fails, returns NULL.
1085 const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
1086 Type *T) const {
1087 if (const SCEV *UB = collectUpperBound(L, T))
1088 return dyn_cast<SCEVConstant>(UB);
1089 return nullptr;
1093 // testZIV -
1094 // When we have a pair of subscripts of the form [c1] and [c2],
1095 // where c1 and c2 are both loop invariant, we attack it using
1096 // the ZIV test. Basically, we test by comparing the two values,
1097 // but there are actually three possible results:
1098 // 1) the values are equal, so there's a dependence
1099 // 2) the values are different, so there's no dependence
1100 // 3) the values might be equal, so we have to assume a dependence.
1102 // Return true if dependence disproved.
1103 bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
1104 FullDependence &Result) const {
1105 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
1106 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
1107 ++ZIVapplications;
1108 if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
1109 LLVM_DEBUG(dbgs() << " provably dependent\n");
1110 return false; // provably dependent
1112 if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
1113 LLVM_DEBUG(dbgs() << " provably independent\n");
1114 ++ZIVindependence;
1115 return true; // provably independent
1117 LLVM_DEBUG(dbgs() << " possibly dependent\n");
1118 Result.Consistent = false;
1119 return false; // possibly dependent
1123 // strongSIVtest -
1124 // From the paper, Practical Dependence Testing, Section 4.2.1
1126 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1127 // where i is an induction variable, c1 and c2 are loop invariant,
1128 // and a is a constant, we can solve it exactly using the Strong SIV test.
1130 // Can prove independence. Failing that, can compute distance (and direction).
1131 // In the presence of symbolic terms, we can sometimes make progress.
1133 // If there's a dependence,
1135 // c1 + a*i = c2 + a*i'
1137 // The dependence distance is
1139 // d = i' - i = (c1 - c2)/a
1141 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
1142 // loop's upper bound. If a dependence exists, the dependence direction is
1143 // defined as
1145 // { < if d > 0
1146 // direction = { = if d = 0
1147 // { > if d < 0
1149 // Return true if dependence disproved.
1150 bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
1151 const SCEV *DstConst, const Loop *CurLoop,
1152 unsigned Level, FullDependence &Result,
1153 Constraint &NewConstraint) const {
1154 LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
1155 LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff);
1156 LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1157 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst);
1158 LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1159 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst);
1160 LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1161 ++StrongSIVapplications;
1162 assert(0 < Level && Level <= CommonLevels && "level out of range");
1163 Level--;
1165 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1166 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta);
1167 LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1169 // check that |Delta| < iteration count
1170 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1171 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound);
1172 LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1173 const SCEV *AbsDelta =
1174 SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1175 const SCEV *AbsCoeff =
1176 SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1177 const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1178 if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1179 // Distance greater than trip count - no dependence
1180 ++StrongSIVindependence;
1181 ++StrongSIVsuccesses;
1182 return true;
1186 // Can we compute distance?
1187 if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1188 APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
1189 APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
1190 APInt Distance = ConstDelta; // these need to be initialized
1191 APInt Remainder = ConstDelta;
1192 APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1193 LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1194 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1195 // Make sure Coeff divides Delta exactly
1196 if (Remainder != 0) {
1197 // Coeff doesn't divide Distance, no dependence
1198 ++StrongSIVindependence;
1199 ++StrongSIVsuccesses;
1200 return true;
1202 Result.DV[Level].Distance = SE->getConstant(Distance);
1203 NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1204 if (Distance.sgt(0))
1205 Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1206 else if (Distance.slt(0))
1207 Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1208 else
1209 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1210 ++StrongSIVsuccesses;
1212 else if (Delta->isZero()) {
1213 // since 0/X == 0
1214 Result.DV[Level].Distance = Delta;
1215 NewConstraint.setDistance(Delta, CurLoop);
1216 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1217 ++StrongSIVsuccesses;
1219 else {
1220 if (Coeff->isOne()) {
1221 LLVM_DEBUG(dbgs() << "\t Distance = " << *Delta << "\n");
1222 Result.DV[Level].Distance = Delta; // since X/1 == X
1223 NewConstraint.setDistance(Delta, CurLoop);
1225 else {
1226 Result.Consistent = false;
1227 NewConstraint.setLine(Coeff,
1228 SE->getNegativeSCEV(Coeff),
1229 SE->getNegativeSCEV(Delta), CurLoop);
1232 // maybe we can get a useful direction
1233 bool DeltaMaybeZero = !SE->isKnownNonZero(Delta);
1234 bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1235 bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1236 bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1237 bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1238 // The double negatives above are confusing.
1239 // It helps to read !SE->isKnownNonZero(Delta)
1240 // as "Delta might be Zero"
1241 unsigned NewDirection = Dependence::DVEntry::NONE;
1242 if ((DeltaMaybePositive && CoeffMaybePositive) ||
1243 (DeltaMaybeNegative && CoeffMaybeNegative))
1244 NewDirection = Dependence::DVEntry::LT;
1245 if (DeltaMaybeZero)
1246 NewDirection |= Dependence::DVEntry::EQ;
1247 if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1248 (DeltaMaybePositive && CoeffMaybeNegative))
1249 NewDirection |= Dependence::DVEntry::GT;
1250 if (NewDirection < Result.DV[Level].Direction)
1251 ++StrongSIVsuccesses;
1252 Result.DV[Level].Direction &= NewDirection;
1254 return false;
1258 // weakCrossingSIVtest -
1259 // From the paper, Practical Dependence Testing, Section 4.2.2
1261 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1262 // where i is an induction variable, c1 and c2 are loop invariant,
1263 // and a is a constant, we can solve it exactly using the
1264 // Weak-Crossing SIV test.
1266 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
1267 // the two lines, where i = i', yielding
1269 // c1 + a*i = c2 - a*i
1270 // 2a*i = c2 - c1
1271 // i = (c2 - c1)/2a
1273 // If i < 0, there is no dependence.
1274 // If i > upperbound, there is no dependence.
1275 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1276 // If i = upperbound, there's a dependence with distance = 0.
1277 // If i is integral, there's a dependence (all directions).
1278 // If the non-integer part = 1/2, there's a dependence (<> directions).
1279 // Otherwise, there's no dependence.
1281 // Can prove independence. Failing that,
1282 // can sometimes refine the directions.
1283 // Can determine iteration for splitting.
1285 // Return true if dependence disproved.
1286 bool DependenceInfo::weakCrossingSIVtest(
1287 const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
1288 const Loop *CurLoop, unsigned Level, FullDependence &Result,
1289 Constraint &NewConstraint, const SCEV *&SplitIter) const {
1290 LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1291 LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n");
1292 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1293 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1294 ++WeakCrossingSIVapplications;
1295 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1296 Level--;
1297 Result.Consistent = false;
1298 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1299 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1300 NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1301 if (Delta->isZero()) {
1302 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1303 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1304 ++WeakCrossingSIVsuccesses;
1305 if (!Result.DV[Level].Direction) {
1306 ++WeakCrossingSIVindependence;
1307 return true;
1309 Result.DV[Level].Distance = Delta; // = 0
1310 return false;
1312 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1313 if (!ConstCoeff)
1314 return false;
1316 Result.DV[Level].Splitable = true;
1317 if (SE->isKnownNegative(ConstCoeff)) {
1318 ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1319 assert(ConstCoeff &&
1320 "dynamic cast of negative of ConstCoeff should yield constant");
1321 Delta = SE->getNegativeSCEV(Delta);
1323 assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1325 // compute SplitIter for use by DependenceInfo::getSplitIteration()
1326 SplitIter = SE->getUDivExpr(
1327 SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
1328 SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
1329 LLVM_DEBUG(dbgs() << "\t Split iter = " << *SplitIter << "\n");
1331 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1332 if (!ConstDelta)
1333 return false;
1335 // We're certain that ConstCoeff > 0; therefore,
1336 // if Delta < 0, then no dependence.
1337 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1338 LLVM_DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n");
1339 if (SE->isKnownNegative(Delta)) {
1340 // No dependence, Delta < 0
1341 ++WeakCrossingSIVindependence;
1342 ++WeakCrossingSIVsuccesses;
1343 return true;
1346 // We're certain that Delta > 0 and ConstCoeff > 0.
1347 // Check Delta/(2*ConstCoeff) against upper loop bound
1348 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1349 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1350 const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1351 const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1352 ConstantTwo);
1353 LLVM_DEBUG(dbgs() << "\t ML = " << *ML << "\n");
1354 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1355 // Delta too big, no dependence
1356 ++WeakCrossingSIVindependence;
1357 ++WeakCrossingSIVsuccesses;
1358 return true;
1360 if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1361 // i = i' = UB
1362 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1363 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1364 ++WeakCrossingSIVsuccesses;
1365 if (!Result.DV[Level].Direction) {
1366 ++WeakCrossingSIVindependence;
1367 return true;
1369 Result.DV[Level].Splitable = false;
1370 Result.DV[Level].Distance = SE->getZero(Delta->getType());
1371 return false;
1375 // check that Coeff divides Delta
1376 APInt APDelta = ConstDelta->getAPInt();
1377 APInt APCoeff = ConstCoeff->getAPInt();
1378 APInt Distance = APDelta; // these need to be initialzed
1379 APInt Remainder = APDelta;
1380 APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1381 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1382 if (Remainder != 0) {
1383 // Coeff doesn't divide Delta, no dependence
1384 ++WeakCrossingSIVindependence;
1385 ++WeakCrossingSIVsuccesses;
1386 return true;
1388 LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1390 // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1391 APInt Two = APInt(Distance.getBitWidth(), 2, true);
1392 Remainder = Distance.srem(Two);
1393 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1394 if (Remainder != 0) {
1395 // Equal direction isn't possible
1396 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
1397 ++WeakCrossingSIVsuccesses;
1399 return false;
1403 // Kirch's algorithm, from
1405 // Optimizing Supercompilers for Supercomputers
1406 // Michael Wolfe
1407 // MIT Press, 1989
1409 // Program 2.1, page 29.
1410 // Computes the GCD of AM and BM.
1411 // Also finds a solution to the equation ax - by = gcd(a, b).
1412 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
1413 static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
1414 const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
1415 APInt A0(Bits, 1, true), A1(Bits, 0, true);
1416 APInt B0(Bits, 0, true), B1(Bits, 1, true);
1417 APInt G0 = AM.abs();
1418 APInt G1 = BM.abs();
1419 APInt Q = G0; // these need to be initialized
1420 APInt R = G0;
1421 APInt::sdivrem(G0, G1, Q, R);
1422 while (R != 0) {
1423 APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1424 APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1425 G0 = G1; G1 = R;
1426 APInt::sdivrem(G0, G1, Q, R);
1428 G = G1;
1429 LLVM_DEBUG(dbgs() << "\t GCD = " << G << "\n");
1430 X = AM.slt(0) ? -A1 : A1;
1431 Y = BM.slt(0) ? B1 : -B1;
1433 // make sure gcd divides Delta
1434 R = Delta.srem(G);
1435 if (R != 0)
1436 return true; // gcd doesn't divide Delta, no dependence
1437 Q = Delta.sdiv(G);
1438 return false;
1441 static APInt floorOfQuotient(const APInt &A, const APInt &B) {
1442 APInt Q = A; // these need to be initialized
1443 APInt R = A;
1444 APInt::sdivrem(A, B, Q, R);
1445 if (R == 0)
1446 return Q;
1447 if ((A.sgt(0) && B.sgt(0)) ||
1448 (A.slt(0) && B.slt(0)))
1449 return Q;
1450 else
1451 return Q - 1;
1454 static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
1455 APInt Q = A; // these need to be initialized
1456 APInt R = A;
1457 APInt::sdivrem(A, B, Q, R);
1458 if (R == 0)
1459 return Q;
1460 if ((A.sgt(0) && B.sgt(0)) ||
1461 (A.slt(0) && B.slt(0)))
1462 return Q + 1;
1463 else
1464 return Q;
1467 // exactSIVtest -
1468 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1469 // where i is an induction variable, c1 and c2 are loop invariant, and a1
1470 // and a2 are constant, we can solve it exactly using an algorithm developed
1471 // by Banerjee and Wolfe. See Algorithm 6.2.1 (case 2.5) in:
1473 // Dependence Analysis for Supercomputing
1474 // Utpal Banerjee
1475 // Kluwer Academic Publishers, 1988
1477 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1478 // so use them if possible. They're also a bit better with symbolics and,
1479 // in the case of the strong SIV test, can compute Distances.
1481 // Return true if dependence disproved.
1483 // This is a modified version of the original Banerjee algorithm. The original
1484 // only tested whether Dst depends on Src. This algorithm extends that and
1485 // returns all the dependencies that exist between Dst and Src.
1486 bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1487 const SCEV *SrcConst, const SCEV *DstConst,
1488 const Loop *CurLoop, unsigned Level,
1489 FullDependence &Result,
1490 Constraint &NewConstraint) const {
1491 LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
1492 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1493 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1494 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1495 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1496 ++ExactSIVapplications;
1497 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1498 Level--;
1499 Result.Consistent = false;
1500 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1501 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1502 NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff), Delta,
1503 CurLoop);
1504 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1505 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1506 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1507 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1508 return false;
1510 // find gcd
1511 APInt G, X, Y;
1512 APInt AM = ConstSrcCoeff->getAPInt();
1513 APInt BM = ConstDstCoeff->getAPInt();
1514 APInt CM = ConstDelta->getAPInt();
1515 unsigned Bits = AM.getBitWidth();
1516 if (findGCD(Bits, AM, BM, CM, G, X, Y)) {
1517 // gcd doesn't divide Delta, no dependence
1518 ++ExactSIVindependence;
1519 ++ExactSIVsuccesses;
1520 return true;
1523 LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1525 // since SCEV construction normalizes, LM = 0
1526 APInt UM(Bits, 1, true);
1527 bool UMValid = false;
1528 // UM is perhaps unavailable, let's check
1529 if (const SCEVConstant *CUB =
1530 collectConstantUpperBound(CurLoop, Delta->getType())) {
1531 UM = CUB->getAPInt();
1532 LLVM_DEBUG(dbgs() << "\t UM = " << UM << "\n");
1533 UMValid = true;
1536 APInt TU(APInt::getSignedMaxValue(Bits));
1537 APInt TL(APInt::getSignedMinValue(Bits));
1538 APInt TC = CM.sdiv(G);
1539 APInt TX = X * TC;
1540 APInt TY = Y * TC;
1541 LLVM_DEBUG(dbgs() << "\t TC = " << TC << "\n");
1542 LLVM_DEBUG(dbgs() << "\t TX = " << TX << "\n");
1543 LLVM_DEBUG(dbgs() << "\t TY = " << TY << "\n");
1545 SmallVector<APInt, 2> TLVec, TUVec;
1546 APInt TB = BM.sdiv(G);
1547 if (TB.sgt(0)) {
1548 TLVec.push_back(ceilingOfQuotient(-TX, TB));
1549 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
1550 // New bound check - modification to Banerjee's e3 check
1551 if (UMValid) {
1552 TUVec.push_back(floorOfQuotient(UM - TX, TB));
1553 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
1555 } else {
1556 TUVec.push_back(floorOfQuotient(-TX, TB));
1557 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
1558 // New bound check - modification to Banerjee's e3 check
1559 if (UMValid) {
1560 TLVec.push_back(ceilingOfQuotient(UM - TX, TB));
1561 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
1565 APInt TA = AM.sdiv(G);
1566 if (TA.sgt(0)) {
1567 if (UMValid) {
1568 TUVec.push_back(floorOfQuotient(UM - TY, TA));
1569 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
1571 // New bound check - modification to Banerjee's e3 check
1572 TLVec.push_back(ceilingOfQuotient(-TY, TA));
1573 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
1574 } else {
1575 if (UMValid) {
1576 TLVec.push_back(ceilingOfQuotient(UM - TY, TA));
1577 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
1579 // New bound check - modification to Banerjee's e3 check
1580 TUVec.push_back(floorOfQuotient(-TY, TA));
1581 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
1584 LLVM_DEBUG(dbgs() << "\t TA = " << TA << "\n");
1585 LLVM_DEBUG(dbgs() << "\t TB = " << TB << "\n");
1587 if (TLVec.empty() || TUVec.empty())
1588 return false;
1589 TL = APIntOps::smax(TLVec.front(), TLVec.back());
1590 TU = APIntOps::smin(TUVec.front(), TUVec.back());
1591 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1592 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1594 if (TL.sgt(TU)) {
1595 ++ExactSIVindependence;
1596 ++ExactSIVsuccesses;
1597 return true;
1600 // explore directions
1601 unsigned NewDirection = Dependence::DVEntry::NONE;
1602 APInt LowerDistance, UpperDistance;
1603 if (TA.sgt(TB)) {
1604 LowerDistance = (TY - TX) + (TA - TB) * TL;
1605 UpperDistance = (TY - TX) + (TA - TB) * TU;
1606 } else {
1607 LowerDistance = (TY - TX) + (TA - TB) * TU;
1608 UpperDistance = (TY - TX) + (TA - TB) * TL;
1611 LLVM_DEBUG(dbgs() << "\t LowerDistance = " << LowerDistance << "\n");
1612 LLVM_DEBUG(dbgs() << "\t UpperDistance = " << UpperDistance << "\n");
1614 APInt Zero(Bits, 0, true);
1615 if (LowerDistance.sle(Zero) && UpperDistance.sge(Zero)) {
1616 NewDirection |= Dependence::DVEntry::EQ;
1617 ++ExactSIVsuccesses;
1619 if (LowerDistance.slt(0)) {
1620 NewDirection |= Dependence::DVEntry::GT;
1621 ++ExactSIVsuccesses;
1623 if (UpperDistance.sgt(0)) {
1624 NewDirection |= Dependence::DVEntry::LT;
1625 ++ExactSIVsuccesses;
1628 // finished
1629 Result.DV[Level].Direction &= NewDirection;
1630 if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1631 ++ExactSIVindependence;
1632 LLVM_DEBUG(dbgs() << "\t Result = ");
1633 LLVM_DEBUG(Result.dump(dbgs()));
1634 return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1638 // Return true if the divisor evenly divides the dividend.
1639 static
1640 bool isRemainderZero(const SCEVConstant *Dividend,
1641 const SCEVConstant *Divisor) {
1642 const APInt &ConstDividend = Dividend->getAPInt();
1643 const APInt &ConstDivisor = Divisor->getAPInt();
1644 return ConstDividend.srem(ConstDivisor) == 0;
1648 // weakZeroSrcSIVtest -
1649 // From the paper, Practical Dependence Testing, Section 4.2.2
1651 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1652 // where i is an induction variable, c1 and c2 are loop invariant,
1653 // and a is a constant, we can solve it exactly using the
1654 // Weak-Zero SIV test.
1656 // Given
1658 // c1 = c2 + a*i
1660 // we get
1662 // (c1 - c2)/a = i
1664 // If i is not an integer, there's no dependence.
1665 // If i < 0 or > UB, there's no dependence.
1666 // If i = 0, the direction is >= and peeling the
1667 // 1st iteration will break the dependence.
1668 // If i = UB, the direction is <= and peeling the
1669 // last iteration will break the dependence.
1670 // Otherwise, the direction is *.
1672 // Can prove independence. Failing that, we can sometimes refine
1673 // the directions. Can sometimes show that first or last
1674 // iteration carries all the dependences (so worth peeling).
1676 // (see also weakZeroDstSIVtest)
1678 // Return true if dependence disproved.
1679 bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1680 const SCEV *SrcConst,
1681 const SCEV *DstConst,
1682 const Loop *CurLoop, unsigned Level,
1683 FullDependence &Result,
1684 Constraint &NewConstraint) const {
1685 // For the WeakSIV test, it's possible the loop isn't common to
1686 // the Src and Dst loops. If it isn't, then there's no need to
1687 // record a direction.
1688 LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1689 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n");
1690 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1691 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1692 ++WeakZeroSIVapplications;
1693 assert(0 < Level && Level <= MaxLevels && "Level out of range");
1694 Level--;
1695 Result.Consistent = false;
1696 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1697 NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
1698 CurLoop);
1699 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1700 if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1701 if (Level < CommonLevels) {
1702 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1703 Result.DV[Level].PeelFirst = true;
1704 ++WeakZeroSIVsuccesses;
1706 return false; // dependences caused by first iteration
1708 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1709 if (!ConstCoeff)
1710 return false;
1711 const SCEV *AbsCoeff =
1712 SE->isKnownNegative(ConstCoeff) ?
1713 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1714 const SCEV *NewDelta =
1715 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1717 // check that Delta/SrcCoeff < iteration count
1718 // really check NewDelta < count*AbsCoeff
1719 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1720 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1721 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1722 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1723 ++WeakZeroSIVindependence;
1724 ++WeakZeroSIVsuccesses;
1725 return true;
1727 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1728 // dependences caused by last iteration
1729 if (Level < CommonLevels) {
1730 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1731 Result.DV[Level].PeelLast = true;
1732 ++WeakZeroSIVsuccesses;
1734 return false;
1738 // check that Delta/SrcCoeff >= 0
1739 // really check that NewDelta >= 0
1740 if (SE->isKnownNegative(NewDelta)) {
1741 // No dependence, newDelta < 0
1742 ++WeakZeroSIVindependence;
1743 ++WeakZeroSIVsuccesses;
1744 return true;
1747 // if SrcCoeff doesn't divide Delta, then no dependence
1748 if (isa<SCEVConstant>(Delta) &&
1749 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1750 ++WeakZeroSIVindependence;
1751 ++WeakZeroSIVsuccesses;
1752 return true;
1754 return false;
1758 // weakZeroDstSIVtest -
1759 // From the paper, Practical Dependence Testing, Section 4.2.2
1761 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1762 // where i is an induction variable, c1 and c2 are loop invariant,
1763 // and a is a constant, we can solve it exactly using the
1764 // Weak-Zero SIV test.
1766 // Given
1768 // c1 + a*i = c2
1770 // we get
1772 // i = (c2 - c1)/a
1774 // If i is not an integer, there's no dependence.
1775 // If i < 0 or > UB, there's no dependence.
1776 // If i = 0, the direction is <= and peeling the
1777 // 1st iteration will break the dependence.
1778 // If i = UB, the direction is >= and peeling the
1779 // last iteration will break the dependence.
1780 // Otherwise, the direction is *.
1782 // Can prove independence. Failing that, we can sometimes refine
1783 // the directions. Can sometimes show that first or last
1784 // iteration carries all the dependences (so worth peeling).
1786 // (see also weakZeroSrcSIVtest)
1788 // Return true if dependence disproved.
1789 bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1790 const SCEV *SrcConst,
1791 const SCEV *DstConst,
1792 const Loop *CurLoop, unsigned Level,
1793 FullDependence &Result,
1794 Constraint &NewConstraint) const {
1795 // For the WeakSIV test, it's possible the loop isn't common to the
1796 // Src and Dst loops. If it isn't, then there's no need to record a direction.
1797 LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1798 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n");
1799 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1800 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1801 ++WeakZeroSIVapplications;
1802 assert(0 < Level && Level <= SrcLevels && "Level out of range");
1803 Level--;
1804 Result.Consistent = false;
1805 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1806 NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
1807 CurLoop);
1808 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1809 if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1810 if (Level < CommonLevels) {
1811 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1812 Result.DV[Level].PeelFirst = true;
1813 ++WeakZeroSIVsuccesses;
1815 return false; // dependences caused by first iteration
1817 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1818 if (!ConstCoeff)
1819 return false;
1820 const SCEV *AbsCoeff =
1821 SE->isKnownNegative(ConstCoeff) ?
1822 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1823 const SCEV *NewDelta =
1824 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1826 // check that Delta/SrcCoeff < iteration count
1827 // really check NewDelta < count*AbsCoeff
1828 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1829 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1830 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1831 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1832 ++WeakZeroSIVindependence;
1833 ++WeakZeroSIVsuccesses;
1834 return true;
1836 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1837 // dependences caused by last iteration
1838 if (Level < CommonLevels) {
1839 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1840 Result.DV[Level].PeelLast = true;
1841 ++WeakZeroSIVsuccesses;
1843 return false;
1847 // check that Delta/SrcCoeff >= 0
1848 // really check that NewDelta >= 0
1849 if (SE->isKnownNegative(NewDelta)) {
1850 // No dependence, newDelta < 0
1851 ++WeakZeroSIVindependence;
1852 ++WeakZeroSIVsuccesses;
1853 return true;
1856 // if SrcCoeff doesn't divide Delta, then no dependence
1857 if (isa<SCEVConstant>(Delta) &&
1858 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1859 ++WeakZeroSIVindependence;
1860 ++WeakZeroSIVsuccesses;
1861 return true;
1863 return false;
1867 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
1868 // Things of the form [c1 + a*i] and [c2 + b*j],
1869 // where i and j are induction variable, c1 and c2 are loop invariant,
1870 // and a and b are constants.
1871 // Returns true if any possible dependence is disproved.
1872 // Marks the result as inconsistent.
1873 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1874 bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1875 const SCEV *SrcConst, const SCEV *DstConst,
1876 const Loop *SrcLoop, const Loop *DstLoop,
1877 FullDependence &Result) const {
1878 LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
1879 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1880 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1881 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1882 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1883 ++ExactRDIVapplications;
1884 Result.Consistent = false;
1885 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1886 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1887 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1888 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1889 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1890 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1891 return false;
1893 // find gcd
1894 APInt G, X, Y;
1895 APInt AM = ConstSrcCoeff->getAPInt();
1896 APInt BM = ConstDstCoeff->getAPInt();
1897 APInt CM = ConstDelta->getAPInt();
1898 unsigned Bits = AM.getBitWidth();
1899 if (findGCD(Bits, AM, BM, CM, G, X, Y)) {
1900 // gcd doesn't divide Delta, no dependence
1901 ++ExactRDIVindependence;
1902 return true;
1905 LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1907 // since SCEV construction seems to normalize, LM = 0
1908 APInt SrcUM(Bits, 1, true);
1909 bool SrcUMvalid = false;
1910 // SrcUM is perhaps unavailable, let's check
1911 if (const SCEVConstant *UpperBound =
1912 collectConstantUpperBound(SrcLoop, Delta->getType())) {
1913 SrcUM = UpperBound->getAPInt();
1914 LLVM_DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n");
1915 SrcUMvalid = true;
1918 APInt DstUM(Bits, 1, true);
1919 bool DstUMvalid = false;
1920 // UM is perhaps unavailable, let's check
1921 if (const SCEVConstant *UpperBound =
1922 collectConstantUpperBound(DstLoop, Delta->getType())) {
1923 DstUM = UpperBound->getAPInt();
1924 LLVM_DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n");
1925 DstUMvalid = true;
1928 APInt TU(APInt::getSignedMaxValue(Bits));
1929 APInt TL(APInt::getSignedMinValue(Bits));
1930 APInt TC = CM.sdiv(G);
1931 APInt TX = X * TC;
1932 APInt TY = Y * TC;
1933 LLVM_DEBUG(dbgs() << "\t TC = " << TC << "\n");
1934 LLVM_DEBUG(dbgs() << "\t TX = " << TX << "\n");
1935 LLVM_DEBUG(dbgs() << "\t TY = " << TY << "\n");
1937 SmallVector<APInt, 2> TLVec, TUVec;
1938 APInt TB = BM.sdiv(G);
1939 if (TB.sgt(0)) {
1940 TLVec.push_back(ceilingOfQuotient(-TX, TB));
1941 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
1942 if (SrcUMvalid) {
1943 TUVec.push_back(floorOfQuotient(SrcUM - TX, TB));
1944 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
1946 } else {
1947 TUVec.push_back(floorOfQuotient(-TX, TB));
1948 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
1949 if (SrcUMvalid) {
1950 TLVec.push_back(ceilingOfQuotient(SrcUM - TX, TB));
1951 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
1955 APInt TA = AM.sdiv(G);
1956 if (TA.sgt(0)) {
1957 TLVec.push_back(ceilingOfQuotient(-TY, TA));
1958 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
1959 if (DstUMvalid) {
1960 TUVec.push_back(floorOfQuotient(DstUM - TY, TA));
1961 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
1963 } else {
1964 TUVec.push_back(floorOfQuotient(-TY, TA));
1965 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
1966 if (DstUMvalid) {
1967 TLVec.push_back(ceilingOfQuotient(DstUM - TY, TA));
1968 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
1972 if (TLVec.empty() || TUVec.empty())
1973 return false;
1975 LLVM_DEBUG(dbgs() << "\t TA = " << TA << "\n");
1976 LLVM_DEBUG(dbgs() << "\t TB = " << TB << "\n");
1978 TL = APIntOps::smax(TLVec.front(), TLVec.back());
1979 TU = APIntOps::smin(TUVec.front(), TUVec.back());
1980 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1981 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1983 if (TL.sgt(TU))
1984 ++ExactRDIVindependence;
1985 return TL.sgt(TU);
1989 // symbolicRDIVtest -
1990 // In Section 4.5 of the Practical Dependence Testing paper,the authors
1991 // introduce a special case of Banerjee's Inequalities (also called the
1992 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
1993 // particularly cases with symbolics. Since it's only able to disprove
1994 // dependence (not compute distances or directions), we'll use it as a
1995 // fall back for the other tests.
1997 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
1998 // where i and j are induction variables and c1 and c2 are loop invariants,
1999 // we can use the symbolic tests to disprove some dependences, serving as a
2000 // backup for the RDIV test. Note that i and j can be the same variable,
2001 // letting this test serve as a backup for the various SIV tests.
2003 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
2004 // 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
2005 // loop bounds for the i and j loops, respectively. So, ...
2007 // c1 + a1*i = c2 + a2*j
2008 // a1*i - a2*j = c2 - c1
2010 // To test for a dependence, we compute c2 - c1 and make sure it's in the
2011 // range of the maximum and minimum possible values of a1*i - a2*j.
2012 // Considering the signs of a1 and a2, we have 4 possible cases:
2014 // 1) If a1 >= 0 and a2 >= 0, then
2015 // a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
2016 // -a2*N2 <= c2 - c1 <= a1*N1
2018 // 2) If a1 >= 0 and a2 <= 0, then
2019 // a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
2020 // 0 <= c2 - c1 <= a1*N1 - a2*N2
2022 // 3) If a1 <= 0 and a2 >= 0, then
2023 // a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
2024 // a1*N1 - a2*N2 <= c2 - c1 <= 0
2026 // 4) If a1 <= 0 and a2 <= 0, then
2027 // a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2
2028 // a1*N1 <= c2 - c1 <= -a2*N2
2030 // return true if dependence disproved
2031 bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
2032 const SCEV *C1, const SCEV *C2,
2033 const Loop *Loop1,
2034 const Loop *Loop2) const {
2035 ++SymbolicRDIVapplications;
2036 LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
2037 LLVM_DEBUG(dbgs() << "\t A1 = " << *A1);
2038 LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
2039 LLVM_DEBUG(dbgs() << "\t A2 = " << *A2 << "\n");
2040 LLVM_DEBUG(dbgs() << "\t C1 = " << *C1 << "\n");
2041 LLVM_DEBUG(dbgs() << "\t C2 = " << *C2 << "\n");
2042 const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
2043 const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
2044 LLVM_DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n");
2045 LLVM_DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n");
2046 const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
2047 const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
2048 LLVM_DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n");
2049 LLVM_DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n");
2050 if (SE->isKnownNonNegative(A1)) {
2051 if (SE->isKnownNonNegative(A2)) {
2052 // A1 >= 0 && A2 >= 0
2053 if (N1) {
2054 // make sure that c2 - c1 <= a1*N1
2055 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2056 LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2057 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
2058 ++SymbolicRDIVindependence;
2059 return true;
2062 if (N2) {
2063 // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
2064 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2065 LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2066 if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
2067 ++SymbolicRDIVindependence;
2068 return true;
2072 else if (SE->isKnownNonPositive(A2)) {
2073 // a1 >= 0 && a2 <= 0
2074 if (N1 && N2) {
2075 // make sure that c2 - c1 <= a1*N1 - a2*N2
2076 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2077 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2078 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2079 LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2080 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
2081 ++SymbolicRDIVindependence;
2082 return true;
2085 // make sure that 0 <= c2 - c1
2086 if (SE->isKnownNegative(C2_C1)) {
2087 ++SymbolicRDIVindependence;
2088 return true;
2092 else if (SE->isKnownNonPositive(A1)) {
2093 if (SE->isKnownNonNegative(A2)) {
2094 // a1 <= 0 && a2 >= 0
2095 if (N1 && N2) {
2096 // make sure that a1*N1 - a2*N2 <= c2 - c1
2097 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2098 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2099 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2100 LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2101 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
2102 ++SymbolicRDIVindependence;
2103 return true;
2106 // make sure that c2 - c1 <= 0
2107 if (SE->isKnownPositive(C2_C1)) {
2108 ++SymbolicRDIVindependence;
2109 return true;
2112 else if (SE->isKnownNonPositive(A2)) {
2113 // a1 <= 0 && a2 <= 0
2114 if (N1) {
2115 // make sure that a1*N1 <= c2 - c1
2116 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2117 LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2118 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2119 ++SymbolicRDIVindependence;
2120 return true;
2123 if (N2) {
2124 // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2125 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2126 LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2127 if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2128 ++SymbolicRDIVindependence;
2129 return true;
2134 return false;
2138 // testSIV -
2139 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2140 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2141 // a2 are constant, we attack it with an SIV test. While they can all be
2142 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
2143 // they apply; they're cheaper and sometimes more precise.
2145 // Return true if dependence disproved.
2146 bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
2147 FullDependence &Result, Constraint &NewConstraint,
2148 const SCEV *&SplitIter) const {
2149 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
2150 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
2151 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2152 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2153 if (SrcAddRec && DstAddRec) {
2154 const SCEV *SrcConst = SrcAddRec->getStart();
2155 const SCEV *DstConst = DstAddRec->getStart();
2156 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2157 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2158 const Loop *CurLoop = SrcAddRec->getLoop();
2159 assert(CurLoop == DstAddRec->getLoop() &&
2160 "both loops in SIV should be same");
2161 Level = mapSrcLoop(CurLoop);
2162 bool disproven;
2163 if (SrcCoeff == DstCoeff)
2164 disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2165 Level, Result, NewConstraint);
2166 else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2167 disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2168 Level, Result, NewConstraint, SplitIter);
2169 else
2170 disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2171 Level, Result, NewConstraint);
2172 return disproven ||
2173 gcdMIVtest(Src, Dst, Result) ||
2174 symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2176 if (SrcAddRec) {
2177 const SCEV *SrcConst = SrcAddRec->getStart();
2178 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2179 const SCEV *DstConst = Dst;
2180 const Loop *CurLoop = SrcAddRec->getLoop();
2181 Level = mapSrcLoop(CurLoop);
2182 return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2183 Level, Result, NewConstraint) ||
2184 gcdMIVtest(Src, Dst, Result);
2186 if (DstAddRec) {
2187 const SCEV *DstConst = DstAddRec->getStart();
2188 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2189 const SCEV *SrcConst = Src;
2190 const Loop *CurLoop = DstAddRec->getLoop();
2191 Level = mapDstLoop(CurLoop);
2192 return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2193 CurLoop, Level, Result, NewConstraint) ||
2194 gcdMIVtest(Src, Dst, Result);
2196 llvm_unreachable("SIV test expected at least one AddRec");
2197 return false;
2201 // testRDIV -
2202 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2203 // where i and j are induction variables, c1 and c2 are loop invariant,
2204 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2205 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2206 // It doesn't make sense to talk about distance or direction in this case,
2207 // so there's no point in making special versions of the Strong SIV test or
2208 // the Weak-crossing SIV test.
2210 // With minor algebra, this test can also be used for things like
2211 // [c1 + a1*i + a2*j][c2].
2213 // Return true if dependence disproved.
2214 bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
2215 FullDependence &Result) const {
2216 // we have 3 possible situations here:
2217 // 1) [a*i + b] and [c*j + d]
2218 // 2) [a*i + c*j + b] and [d]
2219 // 3) [b] and [a*i + c*j + d]
2220 // We need to find what we've got and get organized
2222 const SCEV *SrcConst, *DstConst;
2223 const SCEV *SrcCoeff, *DstCoeff;
2224 const Loop *SrcLoop, *DstLoop;
2226 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
2227 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
2228 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2229 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2230 if (SrcAddRec && DstAddRec) {
2231 SrcConst = SrcAddRec->getStart();
2232 SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2233 SrcLoop = SrcAddRec->getLoop();
2234 DstConst = DstAddRec->getStart();
2235 DstCoeff = DstAddRec->getStepRecurrence(*SE);
2236 DstLoop = DstAddRec->getLoop();
2238 else if (SrcAddRec) {
2239 if (const SCEVAddRecExpr *tmpAddRec =
2240 dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2241 SrcConst = tmpAddRec->getStart();
2242 SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2243 SrcLoop = tmpAddRec->getLoop();
2244 DstConst = Dst;
2245 DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2246 DstLoop = SrcAddRec->getLoop();
2248 else
2249 llvm_unreachable("RDIV reached by surprising SCEVs");
2251 else if (DstAddRec) {
2252 if (const SCEVAddRecExpr *tmpAddRec =
2253 dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2254 DstConst = tmpAddRec->getStart();
2255 DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2256 DstLoop = tmpAddRec->getLoop();
2257 SrcConst = Src;
2258 SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2259 SrcLoop = DstAddRec->getLoop();
2261 else
2262 llvm_unreachable("RDIV reached by surprising SCEVs");
2264 else
2265 llvm_unreachable("RDIV expected at least one AddRec");
2266 return exactRDIVtest(SrcCoeff, DstCoeff,
2267 SrcConst, DstConst,
2268 SrcLoop, DstLoop,
2269 Result) ||
2270 gcdMIVtest(Src, Dst, Result) ||
2271 symbolicRDIVtest(SrcCoeff, DstCoeff,
2272 SrcConst, DstConst,
2273 SrcLoop, DstLoop);
2277 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
2278 // Return true if dependence disproved.
2279 // Can sometimes refine direction vectors.
2280 bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
2281 const SmallBitVector &Loops,
2282 FullDependence &Result) const {
2283 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
2284 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
2285 Result.Consistent = false;
2286 return gcdMIVtest(Src, Dst, Result) ||
2287 banerjeeMIVtest(Src, Dst, Loops, Result);
2291 // Given a product, e.g., 10*X*Y, returns the first constant operand,
2292 // in this case 10. If there is no constant part, returns NULL.
2293 static
2294 const SCEVConstant *getConstantPart(const SCEV *Expr) {
2295 if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
2296 return Constant;
2297 else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
2298 if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
2299 return Constant;
2300 return nullptr;
2304 //===----------------------------------------------------------------------===//
2305 // gcdMIVtest -
2306 // Tests an MIV subscript pair for dependence.
2307 // Returns true if any possible dependence is disproved.
2308 // Marks the result as inconsistent.
2309 // Can sometimes disprove the equal direction for 1 or more loops,
2310 // as discussed in Michael Wolfe's book,
2311 // High Performance Compilers for Parallel Computing, page 235.
2313 // We spend some effort (code!) to handle cases like
2314 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2315 // but M and N are just loop-invariant variables.
2316 // This should help us handle linearized subscripts;
2317 // also makes this test a useful backup to the various SIV tests.
2319 // It occurs to me that the presence of loop-invariant variables
2320 // changes the nature of the test from "greatest common divisor"
2321 // to "a common divisor".
2322 bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
2323 FullDependence &Result) const {
2324 LLVM_DEBUG(dbgs() << "starting gcd\n");
2325 ++GCDapplications;
2326 unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
2327 APInt RunningGCD = APInt::getNullValue(BitWidth);
2329 // Examine Src coefficients.
2330 // Compute running GCD and record source constant.
2331 // Because we're looking for the constant at the end of the chain,
2332 // we can't quit the loop just because the GCD == 1.
2333 const SCEV *Coefficients = Src;
2334 while (const SCEVAddRecExpr *AddRec =
2335 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2336 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2337 // If the coefficient is the product of a constant and other stuff,
2338 // we can use the constant in the GCD computation.
2339 const auto *Constant = getConstantPart(Coeff);
2340 if (!Constant)
2341 return false;
2342 APInt ConstCoeff = Constant->getAPInt();
2343 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2344 Coefficients = AddRec->getStart();
2346 const SCEV *SrcConst = Coefficients;
2348 // Examine Dst coefficients.
2349 // Compute running GCD and record destination constant.
2350 // Because we're looking for the constant at the end of the chain,
2351 // we can't quit the loop just because the GCD == 1.
2352 Coefficients = Dst;
2353 while (const SCEVAddRecExpr *AddRec =
2354 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2355 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2356 // If the coefficient is the product of a constant and other stuff,
2357 // we can use the constant in the GCD computation.
2358 const auto *Constant = getConstantPart(Coeff);
2359 if (!Constant)
2360 return false;
2361 APInt ConstCoeff = Constant->getAPInt();
2362 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2363 Coefficients = AddRec->getStart();
2365 const SCEV *DstConst = Coefficients;
2367 APInt ExtraGCD = APInt::getNullValue(BitWidth);
2368 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2369 LLVM_DEBUG(dbgs() << " Delta = " << *Delta << "\n");
2370 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2371 if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2372 // If Delta is a sum of products, we may be able to make further progress.
2373 for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2374 const SCEV *Operand = Sum->getOperand(Op);
2375 if (isa<SCEVConstant>(Operand)) {
2376 assert(!Constant && "Surprised to find multiple constants");
2377 Constant = cast<SCEVConstant>(Operand);
2379 else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
2380 // Search for constant operand to participate in GCD;
2381 // If none found; return false.
2382 const SCEVConstant *ConstOp = getConstantPart(Product);
2383 if (!ConstOp)
2384 return false;
2385 APInt ConstOpValue = ConstOp->getAPInt();
2386 ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2387 ConstOpValue.abs());
2389 else
2390 return false;
2393 if (!Constant)
2394 return false;
2395 APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
2396 LLVM_DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n");
2397 if (ConstDelta == 0)
2398 return false;
2399 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2400 LLVM_DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n");
2401 APInt Remainder = ConstDelta.srem(RunningGCD);
2402 if (Remainder != 0) {
2403 ++GCDindependence;
2404 return true;
2407 // Try to disprove equal directions.
2408 // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2409 // the code above can't disprove the dependence because the GCD = 1.
2410 // So we consider what happen if i = i' and what happens if j = j'.
2411 // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2412 // which is infeasible, so we can disallow the = direction for the i level.
2413 // Setting j = j' doesn't help matters, so we end up with a direction vector
2414 // of [<>, *]
2416 // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2417 // we need to remember that the constant part is 5 and the RunningGCD should
2418 // be initialized to ExtraGCD = 30.
2419 LLVM_DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n');
2421 bool Improved = false;
2422 Coefficients = Src;
2423 while (const SCEVAddRecExpr *AddRec =
2424 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2425 Coefficients = AddRec->getStart();
2426 const Loop *CurLoop = AddRec->getLoop();
2427 RunningGCD = ExtraGCD;
2428 const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2429 const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2430 const SCEV *Inner = Src;
2431 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2432 AddRec = cast<SCEVAddRecExpr>(Inner);
2433 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2434 if (CurLoop == AddRec->getLoop())
2435 ; // SrcCoeff == Coeff
2436 else {
2437 // If the coefficient is the product of a constant and other stuff,
2438 // we can use the constant in the GCD computation.
2439 Constant = getConstantPart(Coeff);
2440 if (!Constant)
2441 return false;
2442 APInt ConstCoeff = Constant->getAPInt();
2443 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2445 Inner = AddRec->getStart();
2447 Inner = Dst;
2448 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2449 AddRec = cast<SCEVAddRecExpr>(Inner);
2450 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2451 if (CurLoop == AddRec->getLoop())
2452 DstCoeff = Coeff;
2453 else {
2454 // If the coefficient is the product of a constant and other stuff,
2455 // we can use the constant in the GCD computation.
2456 Constant = getConstantPart(Coeff);
2457 if (!Constant)
2458 return false;
2459 APInt ConstCoeff = Constant->getAPInt();
2460 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2462 Inner = AddRec->getStart();
2464 Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2465 // If the coefficient is the product of a constant and other stuff,
2466 // we can use the constant in the GCD computation.
2467 Constant = getConstantPart(Delta);
2468 if (!Constant)
2469 // The difference of the two coefficients might not be a product
2470 // or constant, in which case we give up on this direction.
2471 continue;
2472 APInt ConstCoeff = Constant->getAPInt();
2473 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2474 LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2475 if (RunningGCD != 0) {
2476 Remainder = ConstDelta.srem(RunningGCD);
2477 LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2478 if (Remainder != 0) {
2479 unsigned Level = mapSrcLoop(CurLoop);
2480 Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
2481 Improved = true;
2485 if (Improved)
2486 ++GCDsuccesses;
2487 LLVM_DEBUG(dbgs() << "all done\n");
2488 return false;
2492 //===----------------------------------------------------------------------===//
2493 // banerjeeMIVtest -
2494 // Use Banerjee's Inequalities to test an MIV subscript pair.
2495 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2496 // Generally follows the discussion in Section 2.5.2 of
2498 // Optimizing Supercompilers for Supercomputers
2499 // Michael Wolfe
2501 // The inequalities given on page 25 are simplified in that loops are
2502 // normalized so that the lower bound is always 0 and the stride is always 1.
2503 // For example, Wolfe gives
2505 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2507 // where A_k is the coefficient of the kth index in the source subscript,
2508 // B_k is the coefficient of the kth index in the destination subscript,
2509 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2510 // index, and N_k is the stride of the kth index. Since all loops are normalized
2511 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2512 // equation to
2514 // LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2515 // = (A^-_k - B_k)^- (U_k - 1) - B_k
2517 // Similar simplifications are possible for the other equations.
2519 // When we can't determine the number of iterations for a loop,
2520 // we use NULL as an indicator for the worst case, infinity.
2521 // When computing the upper bound, NULL denotes +inf;
2522 // for the lower bound, NULL denotes -inf.
2524 // Return true if dependence disproved.
2525 bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
2526 const SmallBitVector &Loops,
2527 FullDependence &Result) const {
2528 LLVM_DEBUG(dbgs() << "starting Banerjee\n");
2529 ++BanerjeeApplications;
2530 LLVM_DEBUG(dbgs() << " Src = " << *Src << '\n');
2531 const SCEV *A0;
2532 CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2533 LLVM_DEBUG(dbgs() << " Dst = " << *Dst << '\n');
2534 const SCEV *B0;
2535 CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2536 BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2537 const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2538 LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2540 // Compute bounds for all the * directions.
2541 LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
2542 for (unsigned K = 1; K <= MaxLevels; ++K) {
2543 Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2544 Bound[K].Direction = Dependence::DVEntry::ALL;
2545 Bound[K].DirSet = Dependence::DVEntry::NONE;
2546 findBoundsALL(A, B, Bound, K);
2547 #ifndef NDEBUG
2548 LLVM_DEBUG(dbgs() << "\t " << K << '\t');
2549 if (Bound[K].Lower[Dependence::DVEntry::ALL])
2550 LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2551 else
2552 LLVM_DEBUG(dbgs() << "-inf\t");
2553 if (Bound[K].Upper[Dependence::DVEntry::ALL])
2554 LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2555 else
2556 LLVM_DEBUG(dbgs() << "+inf\n");
2557 #endif
2560 // Test the *, *, *, ... case.
2561 bool Disproved = false;
2562 if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2563 // Explore the direction vector hierarchy.
2564 unsigned DepthExpanded = 0;
2565 unsigned NewDeps = exploreDirections(1, A, B, Bound,
2566 Loops, DepthExpanded, Delta);
2567 if (NewDeps > 0) {
2568 bool Improved = false;
2569 for (unsigned K = 1; K <= CommonLevels; ++K) {
2570 if (Loops[K]) {
2571 unsigned Old = Result.DV[K - 1].Direction;
2572 Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2573 Improved |= Old != Result.DV[K - 1].Direction;
2574 if (!Result.DV[K - 1].Direction) {
2575 Improved = false;
2576 Disproved = true;
2577 break;
2581 if (Improved)
2582 ++BanerjeeSuccesses;
2584 else {
2585 ++BanerjeeIndependence;
2586 Disproved = true;
2589 else {
2590 ++BanerjeeIndependence;
2591 Disproved = true;
2593 delete [] Bound;
2594 delete [] A;
2595 delete [] B;
2596 return Disproved;
2600 // Hierarchically expands the direction vector
2601 // search space, combining the directions of discovered dependences
2602 // in the DirSet field of Bound. Returns the number of distinct
2603 // dependences discovered. If the dependence is disproved,
2604 // it will return 0.
2605 unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
2606 CoefficientInfo *B, BoundInfo *Bound,
2607 const SmallBitVector &Loops,
2608 unsigned &DepthExpanded,
2609 const SCEV *Delta) const {
2610 // This algorithm has worst case complexity of O(3^n), where 'n' is the number
2611 // of common loop levels. To avoid excessive compile-time, pessimize all the
2612 // results and immediately return when the number of common levels is beyond
2613 // the given threshold.
2614 if (CommonLevels > MIVMaxLevelThreshold) {
2615 LLVM_DEBUG(dbgs() << "Number of common levels exceeded the threshold. MIV "
2616 "direction exploration is terminated.\n");
2617 for (unsigned K = 1; K <= CommonLevels; ++K)
2618 if (Loops[K])
2619 Bound[K].DirSet = Dependence::DVEntry::ALL;
2620 return 1;
2623 if (Level > CommonLevels) {
2624 // record result
2625 LLVM_DEBUG(dbgs() << "\t[");
2626 for (unsigned K = 1; K <= CommonLevels; ++K) {
2627 if (Loops[K]) {
2628 Bound[K].DirSet |= Bound[K].Direction;
2629 #ifndef NDEBUG
2630 switch (Bound[K].Direction) {
2631 case Dependence::DVEntry::LT:
2632 LLVM_DEBUG(dbgs() << " <");
2633 break;
2634 case Dependence::DVEntry::EQ:
2635 LLVM_DEBUG(dbgs() << " =");
2636 break;
2637 case Dependence::DVEntry::GT:
2638 LLVM_DEBUG(dbgs() << " >");
2639 break;
2640 case Dependence::DVEntry::ALL:
2641 LLVM_DEBUG(dbgs() << " *");
2642 break;
2643 default:
2644 llvm_unreachable("unexpected Bound[K].Direction");
2646 #endif
2649 LLVM_DEBUG(dbgs() << " ]\n");
2650 return 1;
2652 if (Loops[Level]) {
2653 if (Level > DepthExpanded) {
2654 DepthExpanded = Level;
2655 // compute bounds for <, =, > at current level
2656 findBoundsLT(A, B, Bound, Level);
2657 findBoundsGT(A, B, Bound, Level);
2658 findBoundsEQ(A, B, Bound, Level);
2659 #ifndef NDEBUG
2660 LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2661 LLVM_DEBUG(dbgs() << "\t <\t");
2662 if (Bound[Level].Lower[Dependence::DVEntry::LT])
2663 LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT]
2664 << '\t');
2665 else
2666 LLVM_DEBUG(dbgs() << "-inf\t");
2667 if (Bound[Level].Upper[Dependence::DVEntry::LT])
2668 LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT]
2669 << '\n');
2670 else
2671 LLVM_DEBUG(dbgs() << "+inf\n");
2672 LLVM_DEBUG(dbgs() << "\t =\t");
2673 if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2674 LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ]
2675 << '\t');
2676 else
2677 LLVM_DEBUG(dbgs() << "-inf\t");
2678 if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2679 LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ]
2680 << '\n');
2681 else
2682 LLVM_DEBUG(dbgs() << "+inf\n");
2683 LLVM_DEBUG(dbgs() << "\t >\t");
2684 if (Bound[Level].Lower[Dependence::DVEntry::GT])
2685 LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT]
2686 << '\t');
2687 else
2688 LLVM_DEBUG(dbgs() << "-inf\t");
2689 if (Bound[Level].Upper[Dependence::DVEntry::GT])
2690 LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT]
2691 << '\n');
2692 else
2693 LLVM_DEBUG(dbgs() << "+inf\n");
2694 #endif
2697 unsigned NewDeps = 0;
2699 // test bounds for <, *, *, ...
2700 if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2701 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2702 Loops, DepthExpanded, Delta);
2704 // Test bounds for =, *, *, ...
2705 if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2706 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2707 Loops, DepthExpanded, Delta);
2709 // test bounds for >, *, *, ...
2710 if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2711 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2712 Loops, DepthExpanded, Delta);
2714 Bound[Level].Direction = Dependence::DVEntry::ALL;
2715 return NewDeps;
2717 else
2718 return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2722 // Returns true iff the current bounds are plausible.
2723 bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
2724 BoundInfo *Bound, const SCEV *Delta) const {
2725 Bound[Level].Direction = DirKind;
2726 if (const SCEV *LowerBound = getLowerBound(Bound))
2727 if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2728 return false;
2729 if (const SCEV *UpperBound = getUpperBound(Bound))
2730 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2731 return false;
2732 return true;
2736 // Computes the upper and lower bounds for level K
2737 // using the * direction. Records them in Bound.
2738 // Wolfe gives the equations
2740 // LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2741 // UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2743 // Since we normalize loops, we can simplify these equations to
2745 // LB^*_k = (A^-_k - B^+_k)U_k
2746 // UB^*_k = (A^+_k - B^-_k)U_k
2748 // We must be careful to handle the case where the upper bound is unknown.
2749 // Note that the lower bound is always <= 0
2750 // and the upper bound is always >= 0.
2751 void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
2752 BoundInfo *Bound, unsigned K) const {
2753 Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
2754 Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
2755 if (Bound[K].Iterations) {
2756 Bound[K].Lower[Dependence::DVEntry::ALL] =
2757 SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2758 Bound[K].Iterations);
2759 Bound[K].Upper[Dependence::DVEntry::ALL] =
2760 SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2761 Bound[K].Iterations);
2763 else {
2764 // If the difference is 0, we won't need to know the number of iterations.
2765 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2766 Bound[K].Lower[Dependence::DVEntry::ALL] =
2767 SE->getZero(A[K].Coeff->getType());
2768 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2769 Bound[K].Upper[Dependence::DVEntry::ALL] =
2770 SE->getZero(A[K].Coeff->getType());
2775 // Computes the upper and lower bounds for level K
2776 // using the = direction. Records them in Bound.
2777 // Wolfe gives the equations
2779 // LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2780 // UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2782 // Since we normalize loops, we can simplify these equations to
2784 // LB^=_k = (A_k - B_k)^- U_k
2785 // UB^=_k = (A_k - B_k)^+ U_k
2787 // We must be careful to handle the case where the upper bound is unknown.
2788 // Note that the lower bound is always <= 0
2789 // and the upper bound is always >= 0.
2790 void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
2791 BoundInfo *Bound, unsigned K) const {
2792 Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
2793 Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
2794 if (Bound[K].Iterations) {
2795 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2796 const SCEV *NegativePart = getNegativePart(Delta);
2797 Bound[K].Lower[Dependence::DVEntry::EQ] =
2798 SE->getMulExpr(NegativePart, Bound[K].Iterations);
2799 const SCEV *PositivePart = getPositivePart(Delta);
2800 Bound[K].Upper[Dependence::DVEntry::EQ] =
2801 SE->getMulExpr(PositivePart, Bound[K].Iterations);
2803 else {
2804 // If the positive/negative part of the difference is 0,
2805 // we won't need to know the number of iterations.
2806 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2807 const SCEV *NegativePart = getNegativePart(Delta);
2808 if (NegativePart->isZero())
2809 Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2810 const SCEV *PositivePart = getPositivePart(Delta);
2811 if (PositivePart->isZero())
2812 Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2817 // Computes the upper and lower bounds for level K
2818 // using the < direction. Records them in Bound.
2819 // Wolfe gives the equations
2821 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2822 // UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2824 // Since we normalize loops, we can simplify these equations to
2826 // LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2827 // UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2829 // We must be careful to handle the case where the upper bound is unknown.
2830 void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
2831 BoundInfo *Bound, unsigned K) const {
2832 Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
2833 Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
2834 if (Bound[K].Iterations) {
2835 const SCEV *Iter_1 = SE->getMinusSCEV(
2836 Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2837 const SCEV *NegPart =
2838 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2839 Bound[K].Lower[Dependence::DVEntry::LT] =
2840 SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2841 const SCEV *PosPart =
2842 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2843 Bound[K].Upper[Dependence::DVEntry::LT] =
2844 SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2846 else {
2847 // If the positive/negative part of the difference is 0,
2848 // we won't need to know the number of iterations.
2849 const SCEV *NegPart =
2850 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2851 if (NegPart->isZero())
2852 Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2853 const SCEV *PosPart =
2854 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2855 if (PosPart->isZero())
2856 Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2861 // Computes the upper and lower bounds for level K
2862 // using the > direction. Records them in Bound.
2863 // Wolfe gives the equations
2865 // LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2866 // UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2868 // Since we normalize loops, we can simplify these equations to
2870 // LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2871 // UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2873 // We must be careful to handle the case where the upper bound is unknown.
2874 void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
2875 BoundInfo *Bound, unsigned K) const {
2876 Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
2877 Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
2878 if (Bound[K].Iterations) {
2879 const SCEV *Iter_1 = SE->getMinusSCEV(
2880 Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2881 const SCEV *NegPart =
2882 getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2883 Bound[K].Lower[Dependence::DVEntry::GT] =
2884 SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2885 const SCEV *PosPart =
2886 getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2887 Bound[K].Upper[Dependence::DVEntry::GT] =
2888 SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2890 else {
2891 // If the positive/negative part of the difference is 0,
2892 // we won't need to know the number of iterations.
2893 const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2894 if (NegPart->isZero())
2895 Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2896 const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2897 if (PosPart->isZero())
2898 Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2903 // X^+ = max(X, 0)
2904 const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
2905 return SE->getSMaxExpr(X, SE->getZero(X->getType()));
2909 // X^- = min(X, 0)
2910 const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
2911 return SE->getSMinExpr(X, SE->getZero(X->getType()));
2915 // Walks through the subscript,
2916 // collecting each coefficient, the associated loop bounds,
2917 // and recording its positive and negative parts for later use.
2918 DependenceInfo::CoefficientInfo *
2919 DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
2920 const SCEV *&Constant) const {
2921 const SCEV *Zero = SE->getZero(Subscript->getType());
2922 CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
2923 for (unsigned K = 1; K <= MaxLevels; ++K) {
2924 CI[K].Coeff = Zero;
2925 CI[K].PosPart = Zero;
2926 CI[K].NegPart = Zero;
2927 CI[K].Iterations = nullptr;
2929 while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
2930 const Loop *L = AddRec->getLoop();
2931 unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
2932 CI[K].Coeff = AddRec->getStepRecurrence(*SE);
2933 CI[K].PosPart = getPositivePart(CI[K].Coeff);
2934 CI[K].NegPart = getNegativePart(CI[K].Coeff);
2935 CI[K].Iterations = collectUpperBound(L, Subscript->getType());
2936 Subscript = AddRec->getStart();
2938 Constant = Subscript;
2939 #ifndef NDEBUG
2940 LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
2941 for (unsigned K = 1; K <= MaxLevels; ++K) {
2942 LLVM_DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff);
2943 LLVM_DEBUG(dbgs() << "\tPos Part = ");
2944 LLVM_DEBUG(dbgs() << *CI[K].PosPart);
2945 LLVM_DEBUG(dbgs() << "\tNeg Part = ");
2946 LLVM_DEBUG(dbgs() << *CI[K].NegPart);
2947 LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
2948 if (CI[K].Iterations)
2949 LLVM_DEBUG(dbgs() << *CI[K].Iterations);
2950 else
2951 LLVM_DEBUG(dbgs() << "+inf");
2952 LLVM_DEBUG(dbgs() << '\n');
2954 LLVM_DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n');
2955 #endif
2956 return CI;
2960 // Looks through all the bounds info and
2961 // computes the lower bound given the current direction settings
2962 // at each level. If the lower bound for any level is -inf,
2963 // the result is -inf.
2964 const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
2965 const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
2966 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2967 if (Bound[K].Lower[Bound[K].Direction])
2968 Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
2969 else
2970 Sum = nullptr;
2972 return Sum;
2976 // Looks through all the bounds info and
2977 // computes the upper bound given the current direction settings
2978 // at each level. If the upper bound at any level is +inf,
2979 // the result is +inf.
2980 const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
2981 const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
2982 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2983 if (Bound[K].Upper[Bound[K].Direction])
2984 Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
2985 else
2986 Sum = nullptr;
2988 return Sum;
2992 //===----------------------------------------------------------------------===//
2993 // Constraint manipulation for Delta test.
2995 // Given a linear SCEV,
2996 // return the coefficient (the step)
2997 // corresponding to the specified loop.
2998 // If there isn't one, return 0.
2999 // For example, given a*i + b*j + c*k, finding the coefficient
3000 // corresponding to the j loop would yield b.
3001 const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
3002 const Loop *TargetLoop) const {
3003 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3004 if (!AddRec)
3005 return SE->getZero(Expr->getType());
3006 if (AddRec->getLoop() == TargetLoop)
3007 return AddRec->getStepRecurrence(*SE);
3008 return findCoefficient(AddRec->getStart(), TargetLoop);
3012 // Given a linear SCEV,
3013 // return the SCEV given by zeroing out the coefficient
3014 // corresponding to the specified loop.
3015 // For example, given a*i + b*j + c*k, zeroing the coefficient
3016 // corresponding to the j loop would yield a*i + c*k.
3017 const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
3018 const Loop *TargetLoop) const {
3019 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3020 if (!AddRec)
3021 return Expr; // ignore
3022 if (AddRec->getLoop() == TargetLoop)
3023 return AddRec->getStart();
3024 return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
3025 AddRec->getStepRecurrence(*SE),
3026 AddRec->getLoop(),
3027 AddRec->getNoWrapFlags());
3031 // Given a linear SCEV Expr,
3032 // return the SCEV given by adding some Value to the
3033 // coefficient corresponding to the specified TargetLoop.
3034 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
3035 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
3036 const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
3037 const Loop *TargetLoop,
3038 const SCEV *Value) const {
3039 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3040 if (!AddRec) // create a new addRec
3041 return SE->getAddRecExpr(Expr,
3042 Value,
3043 TargetLoop,
3044 SCEV::FlagAnyWrap); // Worst case, with no info.
3045 if (AddRec->getLoop() == TargetLoop) {
3046 const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
3047 if (Sum->isZero())
3048 return AddRec->getStart();
3049 return SE->getAddRecExpr(AddRec->getStart(),
3050 Sum,
3051 AddRec->getLoop(),
3052 AddRec->getNoWrapFlags());
3054 if (SE->isLoopInvariant(AddRec, TargetLoop))
3055 return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
3056 return SE->getAddRecExpr(
3057 addToCoefficient(AddRec->getStart(), TargetLoop, Value),
3058 AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
3059 AddRec->getNoWrapFlags());
3063 // Review the constraints, looking for opportunities
3064 // to simplify a subscript pair (Src and Dst).
3065 // Return true if some simplification occurs.
3066 // If the simplification isn't exact (that is, if it is conservative
3067 // in terms of dependence), set consistent to false.
3068 // Corresponds to Figure 5 from the paper
3070 // Practical Dependence Testing
3071 // Goff, Kennedy, Tseng
3072 // PLDI 1991
3073 bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
3074 SmallBitVector &Loops,
3075 SmallVectorImpl<Constraint> &Constraints,
3076 bool &Consistent) {
3077 bool Result = false;
3078 for (unsigned LI : Loops.set_bits()) {
3079 LLVM_DEBUG(dbgs() << "\t Constraint[" << LI << "] is");
3080 LLVM_DEBUG(Constraints[LI].dump(dbgs()));
3081 if (Constraints[LI].isDistance())
3082 Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
3083 else if (Constraints[LI].isLine())
3084 Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
3085 else if (Constraints[LI].isPoint())
3086 Result |= propagatePoint(Src, Dst, Constraints[LI]);
3088 return Result;
3092 // Attempt to propagate a distance
3093 // constraint into a subscript pair (Src and Dst).
3094 // Return true if some simplification occurs.
3095 // If the simplification isn't exact (that is, if it is conservative
3096 // in terms of dependence), set consistent to false.
3097 bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
3098 Constraint &CurConstraint,
3099 bool &Consistent) {
3100 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3101 LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3102 const SCEV *A_K = findCoefficient(Src, CurLoop);
3103 if (A_K->isZero())
3104 return false;
3105 const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3106 Src = SE->getMinusSCEV(Src, DA_K);
3107 Src = zeroCoefficient(Src, CurLoop);
3108 LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3109 LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3110 Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3111 LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3112 if (!findCoefficient(Dst, CurLoop)->isZero())
3113 Consistent = false;
3114 return true;
3118 // Attempt to propagate a line
3119 // constraint into a subscript pair (Src and Dst).
3120 // Return true if some simplification occurs.
3121 // If the simplification isn't exact (that is, if it is conservative
3122 // in terms of dependence), set consistent to false.
3123 bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
3124 Constraint &CurConstraint,
3125 bool &Consistent) {
3126 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3127 const SCEV *A = CurConstraint.getA();
3128 const SCEV *B = CurConstraint.getB();
3129 const SCEV *C = CurConstraint.getC();
3130 LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C
3131 << "\n");
3132 LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3133 LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3134 if (A->isZero()) {
3135 const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3136 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3137 if (!Bconst || !Cconst) return false;
3138 APInt Beta = Bconst->getAPInt();
3139 APInt Charlie = Cconst->getAPInt();
3140 APInt CdivB = Charlie.sdiv(Beta);
3141 assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3142 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3143 // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3144 Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3145 Dst = zeroCoefficient(Dst, CurLoop);
3146 if (!findCoefficient(Src, CurLoop)->isZero())
3147 Consistent = false;
3149 else if (B->isZero()) {
3150 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3151 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3152 if (!Aconst || !Cconst) return false;
3153 APInt Alpha = Aconst->getAPInt();
3154 APInt Charlie = Cconst->getAPInt();
3155 APInt CdivA = Charlie.sdiv(Alpha);
3156 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3157 const SCEV *A_K = findCoefficient(Src, CurLoop);
3158 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3159 Src = zeroCoefficient(Src, CurLoop);
3160 if (!findCoefficient(Dst, CurLoop)->isZero())
3161 Consistent = false;
3163 else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3164 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3165 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3166 if (!Aconst || !Cconst) return false;
3167 APInt Alpha = Aconst->getAPInt();
3168 APInt Charlie = Cconst->getAPInt();
3169 APInt CdivA = Charlie.sdiv(Alpha);
3170 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3171 const SCEV *A_K = findCoefficient(Src, CurLoop);
3172 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3173 Src = zeroCoefficient(Src, CurLoop);
3174 Dst = addToCoefficient(Dst, CurLoop, A_K);
3175 if (!findCoefficient(Dst, CurLoop)->isZero())
3176 Consistent = false;
3178 else {
3179 // paper is incorrect here, or perhaps just misleading
3180 const SCEV *A_K = findCoefficient(Src, CurLoop);
3181 Src = SE->getMulExpr(Src, A);
3182 Dst = SE->getMulExpr(Dst, A);
3183 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3184 Src = zeroCoefficient(Src, CurLoop);
3185 Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3186 if (!findCoefficient(Dst, CurLoop)->isZero())
3187 Consistent = false;
3189 LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3190 LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3191 return true;
3195 // Attempt to propagate a point
3196 // constraint into a subscript pair (Src and Dst).
3197 // Return true if some simplification occurs.
3198 bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
3199 Constraint &CurConstraint) {
3200 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3201 const SCEV *A_K = findCoefficient(Src, CurLoop);
3202 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3203 const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3204 const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3205 LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3206 Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3207 Src = zeroCoefficient(Src, CurLoop);
3208 LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3209 LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3210 Dst = zeroCoefficient(Dst, CurLoop);
3211 LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3212 return true;
3216 // Update direction vector entry based on the current constraint.
3217 void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
3218 const Constraint &CurConstraint) const {
3219 LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
3220 LLVM_DEBUG(CurConstraint.dump(dbgs()));
3221 if (CurConstraint.isAny())
3222 ; // use defaults
3223 else if (CurConstraint.isDistance()) {
3224 // this one is consistent, the others aren't
3225 Level.Scalar = false;
3226 Level.Distance = CurConstraint.getD();
3227 unsigned NewDirection = Dependence::DVEntry::NONE;
3228 if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3229 NewDirection = Dependence::DVEntry::EQ;
3230 if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3231 NewDirection |= Dependence::DVEntry::LT;
3232 if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3233 NewDirection |= Dependence::DVEntry::GT;
3234 Level.Direction &= NewDirection;
3236 else if (CurConstraint.isLine()) {
3237 Level.Scalar = false;
3238 Level.Distance = nullptr;
3239 // direction should be accurate
3241 else if (CurConstraint.isPoint()) {
3242 Level.Scalar = false;
3243 Level.Distance = nullptr;
3244 unsigned NewDirection = Dependence::DVEntry::NONE;
3245 if (!isKnownPredicate(CmpInst::ICMP_NE,
3246 CurConstraint.getY(),
3247 CurConstraint.getX()))
3248 // if X may be = Y
3249 NewDirection |= Dependence::DVEntry::EQ;
3250 if (!isKnownPredicate(CmpInst::ICMP_SLE,
3251 CurConstraint.getY(),
3252 CurConstraint.getX()))
3253 // if Y may be > X
3254 NewDirection |= Dependence::DVEntry::LT;
3255 if (!isKnownPredicate(CmpInst::ICMP_SGE,
3256 CurConstraint.getY(),
3257 CurConstraint.getX()))
3258 // if Y may be < X
3259 NewDirection |= Dependence::DVEntry::GT;
3260 Level.Direction &= NewDirection;
3262 else
3263 llvm_unreachable("constraint has unexpected kind");
3266 /// Check if we can delinearize the subscripts. If the SCEVs representing the
3267 /// source and destination array references are recurrences on a nested loop,
3268 /// this function flattens the nested recurrences into separate recurrences
3269 /// for each loop level.
3270 bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
3271 SmallVectorImpl<Subscript> &Pair) {
3272 assert(isLoadOrStore(Src) && "instruction is not load or store");
3273 assert(isLoadOrStore(Dst) && "instruction is not load or store");
3274 Value *SrcPtr = getLoadStorePointerOperand(Src);
3275 Value *DstPtr = getLoadStorePointerOperand(Dst);
3276 Loop *SrcLoop = LI->getLoopFor(Src->getParent());
3277 Loop *DstLoop = LI->getLoopFor(Dst->getParent());
3278 const SCEV *SrcAccessFn = SE->getSCEVAtScope(SrcPtr, SrcLoop);
3279 const SCEV *DstAccessFn = SE->getSCEVAtScope(DstPtr, DstLoop);
3280 const SCEVUnknown *SrcBase =
3281 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3282 const SCEVUnknown *DstBase =
3283 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3285 if (!SrcBase || !DstBase || SrcBase != DstBase)
3286 return false;
3288 SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
3290 if (!tryDelinearizeFixedSize(Src, Dst, SrcAccessFn, DstAccessFn,
3291 SrcSubscripts, DstSubscripts) &&
3292 !tryDelinearizeParametricSize(Src, Dst, SrcAccessFn, DstAccessFn,
3293 SrcSubscripts, DstSubscripts))
3294 return false;
3296 int Size = SrcSubscripts.size();
3297 LLVM_DEBUG({
3298 dbgs() << "\nSrcSubscripts: ";
3299 for (int I = 0; I < Size; I++)
3300 dbgs() << *SrcSubscripts[I];
3301 dbgs() << "\nDstSubscripts: ";
3302 for (int I = 0; I < Size; I++)
3303 dbgs() << *DstSubscripts[I];
3306 // The delinearization transforms a single-subscript MIV dependence test into
3307 // a multi-subscript SIV dependence test that is easier to compute. So we
3308 // resize Pair to contain as many pairs of subscripts as the delinearization
3309 // has found, and then initialize the pairs following the delinearization.
3310 Pair.resize(Size);
3311 for (int I = 0; I < Size; ++I) {
3312 Pair[I].Src = SrcSubscripts[I];
3313 Pair[I].Dst = DstSubscripts[I];
3314 unifySubscriptType(&Pair[I]);
3317 return true;
3320 bool DependenceInfo::tryDelinearizeFixedSize(
3321 Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
3322 const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
3323 SmallVectorImpl<const SCEV *> &DstSubscripts) {
3325 Value *SrcPtr = getLoadStorePointerOperand(Src);
3326 Value *DstPtr = getLoadStorePointerOperand(Dst);
3327 const SCEVUnknown *SrcBase =
3328 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3329 const SCEVUnknown *DstBase =
3330 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3331 assert(SrcBase && DstBase && SrcBase == DstBase &&
3332 "expected src and dst scev unknowns to be equal");
3334 // Check the simple case where the array dimensions are fixed size.
3335 auto *SrcGEP = dyn_cast<GetElementPtrInst>(SrcPtr);
3336 auto *DstGEP = dyn_cast<GetElementPtrInst>(DstPtr);
3337 if (!SrcGEP || !DstGEP)
3338 return false;
3340 SmallVector<int, 4> SrcSizes, DstSizes;
3341 SE->getIndexExpressionsFromGEP(SrcGEP, SrcSubscripts, SrcSizes);
3342 SE->getIndexExpressionsFromGEP(DstGEP, DstSubscripts, DstSizes);
3344 // Check that the two size arrays are non-empty and equal in length and
3345 // value.
3346 if (SrcSizes.empty() || SrcSubscripts.size() <= 1 ||
3347 SrcSizes.size() != DstSizes.size() ||
3348 !std::equal(SrcSizes.begin(), SrcSizes.end(), DstSizes.begin())) {
3349 SrcSubscripts.clear();
3350 DstSubscripts.clear();
3351 return false;
3354 Value *SrcBasePtr = SrcGEP->getOperand(0);
3355 Value *DstBasePtr = DstGEP->getOperand(0);
3356 while (auto *PCast = dyn_cast<BitCastInst>(SrcBasePtr))
3357 SrcBasePtr = PCast->getOperand(0);
3358 while (auto *PCast = dyn_cast<BitCastInst>(DstBasePtr))
3359 DstBasePtr = PCast->getOperand(0);
3361 // Check that for identical base pointers we do not miss index offsets
3362 // that have been added before this GEP is applied.
3363 if (SrcBasePtr != SrcBase->getValue() || DstBasePtr != DstBase->getValue()) {
3364 SrcSubscripts.clear();
3365 DstSubscripts.clear();
3366 return false;
3369 assert(SrcSubscripts.size() == DstSubscripts.size() &&
3370 SrcSubscripts.size() == SrcSizes.size() + 1 &&
3371 "Expected equal number of entries in the list of sizes and "
3372 "subscripts.");
3374 // In general we cannot safely assume that the subscripts recovered from GEPs
3375 // are in the range of values defined for their corresponding array
3376 // dimensions. For example some C language usage/interpretation make it
3377 // impossible to verify this at compile-time. As such we can only delinearize
3378 // iff the subscripts are positive and are less than the range of the
3379 // dimension.
3380 if (!DisableDelinearizationChecks) {
3381 auto AllIndiciesInRange = [&](SmallVector<int, 4> &DimensionSizes,
3382 SmallVectorImpl<const SCEV *> &Subscripts,
3383 Value *Ptr) {
3384 size_t SSize = Subscripts.size();
3385 for (size_t I = 1; I < SSize; ++I) {
3386 const SCEV *S = Subscripts[I];
3387 if (!isKnownNonNegative(S, Ptr))
3388 return false;
3389 if (auto *SType = dyn_cast<IntegerType>(S->getType())) {
3390 const SCEV *Range = SE->getConstant(
3391 ConstantInt::get(SType, DimensionSizes[I - 1], false));
3392 if (!isKnownLessThan(S, Range))
3393 return false;
3396 return true;
3399 if (!AllIndiciesInRange(SrcSizes, SrcSubscripts, SrcPtr) ||
3400 !AllIndiciesInRange(DstSizes, DstSubscripts, DstPtr)) {
3401 SrcSubscripts.clear();
3402 DstSubscripts.clear();
3403 return false;
3406 LLVM_DEBUG({
3407 dbgs() << "Delinearized subscripts of fixed-size array\n"
3408 << "SrcGEP:" << *SrcGEP << "\n"
3409 << "DstGEP:" << *DstGEP << "\n";
3411 return true;
3414 bool DependenceInfo::tryDelinearizeParametricSize(
3415 Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
3416 const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
3417 SmallVectorImpl<const SCEV *> &DstSubscripts) {
3419 Value *SrcPtr = getLoadStorePointerOperand(Src);
3420 Value *DstPtr = getLoadStorePointerOperand(Dst);
3421 const SCEVUnknown *SrcBase =
3422 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3423 const SCEVUnknown *DstBase =
3424 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3425 assert(SrcBase && DstBase && SrcBase == DstBase &&
3426 "expected src and dst scev unknowns to be equal");
3428 const SCEV *ElementSize = SE->getElementSize(Src);
3429 if (ElementSize != SE->getElementSize(Dst))
3430 return false;
3432 const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
3433 const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
3435 const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3436 const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3437 if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3438 return false;
3440 // First step: collect parametric terms in both array references.
3441 SmallVector<const SCEV *, 4> Terms;
3442 SE->collectParametricTerms(SrcAR, Terms);
3443 SE->collectParametricTerms(DstAR, Terms);
3445 // Second step: find subscript sizes.
3446 SmallVector<const SCEV *, 4> Sizes;
3447 SE->findArrayDimensions(Terms, Sizes, ElementSize);
3449 // Third step: compute the access functions for each subscript.
3450 SE->computeAccessFunctions(SrcAR, SrcSubscripts, Sizes);
3451 SE->computeAccessFunctions(DstAR, DstSubscripts, Sizes);
3453 // Fail when there is only a subscript: that's a linearized access function.
3454 if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
3455 SrcSubscripts.size() != DstSubscripts.size())
3456 return false;
3458 size_t Size = SrcSubscripts.size();
3460 // Statically check that the array bounds are in-range. The first subscript we
3461 // don't have a size for and it cannot overflow into another subscript, so is
3462 // always safe. The others need to be 0 <= subscript[i] < bound, for both src
3463 // and dst.
3464 // FIXME: It may be better to record these sizes and add them as constraints
3465 // to the dependency checks.
3466 if (!DisableDelinearizationChecks)
3467 for (size_t I = 1; I < Size; ++I) {
3468 if (!isKnownNonNegative(SrcSubscripts[I], SrcPtr))
3469 return false;
3471 if (!isKnownLessThan(SrcSubscripts[I], Sizes[I - 1]))
3472 return false;
3474 if (!isKnownNonNegative(DstSubscripts[I], DstPtr))
3475 return false;
3477 if (!isKnownLessThan(DstSubscripts[I], Sizes[I - 1]))
3478 return false;
3481 return true;
3484 //===----------------------------------------------------------------------===//
3486 #ifndef NDEBUG
3487 // For debugging purposes, dump a small bit vector to dbgs().
3488 static void dumpSmallBitVector(SmallBitVector &BV) {
3489 dbgs() << "{";
3490 for (unsigned VI : BV.set_bits()) {
3491 dbgs() << VI;
3492 if (BV.find_next(VI) >= 0)
3493 dbgs() << ' ';
3495 dbgs() << "}\n";
3497 #endif
3499 bool DependenceInfo::invalidate(Function &F, const PreservedAnalyses &PA,
3500 FunctionAnalysisManager::Invalidator &Inv) {
3501 // Check if the analysis itself has been invalidated.
3502 auto PAC = PA.getChecker<DependenceAnalysis>();
3503 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
3504 return true;
3506 // Check transitive dependencies.
3507 return Inv.invalidate<AAManager>(F, PA) ||
3508 Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
3509 Inv.invalidate<LoopAnalysis>(F, PA);
3512 // depends -
3513 // Returns NULL if there is no dependence.
3514 // Otherwise, return a Dependence with as many details as possible.
3515 // Corresponds to Section 3.1 in the paper
3517 // Practical Dependence Testing
3518 // Goff, Kennedy, Tseng
3519 // PLDI 1991
3521 // Care is required to keep the routine below, getSplitIteration(),
3522 // up to date with respect to this routine.
3523 std::unique_ptr<Dependence>
3524 DependenceInfo::depends(Instruction *Src, Instruction *Dst,
3525 bool PossiblyLoopIndependent) {
3526 if (Src == Dst)
3527 PossiblyLoopIndependent = false;
3529 if (!(Src->mayReadOrWriteMemory() && Dst->mayReadOrWriteMemory()))
3530 // if both instructions don't reference memory, there's no dependence
3531 return nullptr;
3533 if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
3534 // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3535 LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
3536 return std::make_unique<Dependence>(Src, Dst);
3539 assert(isLoadOrStore(Src) && "instruction is not load or store");
3540 assert(isLoadOrStore(Dst) && "instruction is not load or store");
3541 Value *SrcPtr = getLoadStorePointerOperand(Src);
3542 Value *DstPtr = getLoadStorePointerOperand(Dst);
3544 switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
3545 MemoryLocation::get(Dst),
3546 MemoryLocation::get(Src))) {
3547 case AliasResult::MayAlias:
3548 case AliasResult::PartialAlias:
3549 // cannot analyse objects if we don't understand their aliasing.
3550 LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
3551 return std::make_unique<Dependence>(Src, Dst);
3552 case AliasResult::NoAlias:
3553 // If the objects noalias, they are distinct, accesses are independent.
3554 LLVM_DEBUG(dbgs() << "no alias\n");
3555 return nullptr;
3556 case AliasResult::MustAlias:
3557 break; // The underlying objects alias; test accesses for dependence.
3560 // establish loop nesting levels
3561 establishNestingLevels(Src, Dst);
3562 LLVM_DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n");
3563 LLVM_DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n");
3565 FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3566 ++TotalArrayPairs;
3568 unsigned Pairs = 1;
3569 SmallVector<Subscript, 2> Pair(Pairs);
3570 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3571 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3572 LLVM_DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV << "\n");
3573 LLVM_DEBUG(dbgs() << " DstSCEV = " << *DstSCEV << "\n");
3574 if (SE->getPointerBase(SrcSCEV) != SE->getPointerBase(DstSCEV)) {
3575 // If two pointers have different bases, trying to analyze indexes won't
3576 // work; we can't compare them to each other. This can happen, for example,
3577 // if one is produced by an LCSSA PHI node.
3579 // We check this upfront so we don't crash in cases where getMinusSCEV()
3580 // returns a SCEVCouldNotCompute.
3581 LLVM_DEBUG(dbgs() << "can't analyze SCEV with different pointer base\n");
3582 return std::make_unique<Dependence>(Src, Dst);
3584 Pair[0].Src = SrcSCEV;
3585 Pair[0].Dst = DstSCEV;
3587 if (Delinearize) {
3588 if (tryDelinearize(Src, Dst, Pair)) {
3589 LLVM_DEBUG(dbgs() << " delinearized\n");
3590 Pairs = Pair.size();
3594 for (unsigned P = 0; P < Pairs; ++P) {
3595 Pair[P].Loops.resize(MaxLevels + 1);
3596 Pair[P].GroupLoops.resize(MaxLevels + 1);
3597 Pair[P].Group.resize(Pairs);
3598 removeMatchingExtensions(&Pair[P]);
3599 Pair[P].Classification =
3600 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3601 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3602 Pair[P].Loops);
3603 Pair[P].GroupLoops = Pair[P].Loops;
3604 Pair[P].Group.set(P);
3605 LLVM_DEBUG(dbgs() << " subscript " << P << "\n");
3606 LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3607 LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3608 LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
3609 LLVM_DEBUG(dbgs() << "\tloops = ");
3610 LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops));
3613 SmallBitVector Separable(Pairs);
3614 SmallBitVector Coupled(Pairs);
3616 // Partition subscripts into separable and minimally-coupled groups
3617 // Algorithm in paper is algorithmically better;
3618 // this may be faster in practice. Check someday.
3620 // Here's an example of how it works. Consider this code:
3622 // for (i = ...) {
3623 // for (j = ...) {
3624 // for (k = ...) {
3625 // for (l = ...) {
3626 // for (m = ...) {
3627 // A[i][j][k][m] = ...;
3628 // ... = A[0][j][l][i + j];
3629 // }
3630 // }
3631 // }
3632 // }
3633 // }
3635 // There are 4 subscripts here:
3636 // 0 [i] and [0]
3637 // 1 [j] and [j]
3638 // 2 [k] and [l]
3639 // 3 [m] and [i + j]
3641 // We've already classified each subscript pair as ZIV, SIV, etc.,
3642 // and collected all the loops mentioned by pair P in Pair[P].Loops.
3643 // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3644 // and set Pair[P].Group = {P}.
3646 // Src Dst Classification Loops GroupLoops Group
3647 // 0 [i] [0] SIV {1} {1} {0}
3648 // 1 [j] [j] SIV {2} {2} {1}
3649 // 2 [k] [l] RDIV {3,4} {3,4} {2}
3650 // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3}
3652 // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3653 // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3655 // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3656 // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3657 // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3658 // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3659 // to either Separable or Coupled).
3661 // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3662 // Next, 1 and 3. The intersection of their GroupLoops = {2}, not empty,
3663 // so Pair[3].Group = {0, 1, 3} and Done = false.
3665 // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3666 // Since Done remains true, we add 2 to the set of Separable pairs.
3668 // Finally, we consider 3. There's nothing to compare it with,
3669 // so Done remains true and we add it to the Coupled set.
3670 // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3672 // In the end, we've got 1 separable subscript and 1 coupled group.
3673 for (unsigned SI = 0; SI < Pairs; ++SI) {
3674 if (Pair[SI].Classification == Subscript::NonLinear) {
3675 // ignore these, but collect loops for later
3676 ++NonlinearSubscriptPairs;
3677 collectCommonLoops(Pair[SI].Src,
3678 LI->getLoopFor(Src->getParent()),
3679 Pair[SI].Loops);
3680 collectCommonLoops(Pair[SI].Dst,
3681 LI->getLoopFor(Dst->getParent()),
3682 Pair[SI].Loops);
3683 Result.Consistent = false;
3684 } else if (Pair[SI].Classification == Subscript::ZIV) {
3685 // always separable
3686 Separable.set(SI);
3688 else {
3689 // SIV, RDIV, or MIV, so check for coupled group
3690 bool Done = true;
3691 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3692 SmallBitVector Intersection = Pair[SI].GroupLoops;
3693 Intersection &= Pair[SJ].GroupLoops;
3694 if (Intersection.any()) {
3695 // accumulate set of all the loops in group
3696 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3697 // accumulate set of all subscripts in group
3698 Pair[SJ].Group |= Pair[SI].Group;
3699 Done = false;
3702 if (Done) {
3703 if (Pair[SI].Group.count() == 1) {
3704 Separable.set(SI);
3705 ++SeparableSubscriptPairs;
3707 else {
3708 Coupled.set(SI);
3709 ++CoupledSubscriptPairs;
3715 LLVM_DEBUG(dbgs() << " Separable = ");
3716 LLVM_DEBUG(dumpSmallBitVector(Separable));
3717 LLVM_DEBUG(dbgs() << " Coupled = ");
3718 LLVM_DEBUG(dumpSmallBitVector(Coupled));
3720 Constraint NewConstraint;
3721 NewConstraint.setAny(SE);
3723 // test separable subscripts
3724 for (unsigned SI : Separable.set_bits()) {
3725 LLVM_DEBUG(dbgs() << "testing subscript " << SI);
3726 switch (Pair[SI].Classification) {
3727 case Subscript::ZIV:
3728 LLVM_DEBUG(dbgs() << ", ZIV\n");
3729 if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3730 return nullptr;
3731 break;
3732 case Subscript::SIV: {
3733 LLVM_DEBUG(dbgs() << ", SIV\n");
3734 unsigned Level;
3735 const SCEV *SplitIter = nullptr;
3736 if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
3737 SplitIter))
3738 return nullptr;
3739 break;
3741 case Subscript::RDIV:
3742 LLVM_DEBUG(dbgs() << ", RDIV\n");
3743 if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3744 return nullptr;
3745 break;
3746 case Subscript::MIV:
3747 LLVM_DEBUG(dbgs() << ", MIV\n");
3748 if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3749 return nullptr;
3750 break;
3751 default:
3752 llvm_unreachable("subscript has unexpected classification");
3756 if (Coupled.count()) {
3757 // test coupled subscript groups
3758 LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
3759 LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3760 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3761 for (unsigned II = 0; II <= MaxLevels; ++II)
3762 Constraints[II].setAny(SE);
3763 for (unsigned SI : Coupled.set_bits()) {
3764 LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3765 SmallBitVector Group(Pair[SI].Group);
3766 SmallBitVector Sivs(Pairs);
3767 SmallBitVector Mivs(Pairs);
3768 SmallBitVector ConstrainedLevels(MaxLevels + 1);
3769 SmallVector<Subscript *, 4> PairsInGroup;
3770 for (unsigned SJ : Group.set_bits()) {
3771 LLVM_DEBUG(dbgs() << SJ << " ");
3772 if (Pair[SJ].Classification == Subscript::SIV)
3773 Sivs.set(SJ);
3774 else
3775 Mivs.set(SJ);
3776 PairsInGroup.push_back(&Pair[SJ]);
3778 unifySubscriptType(PairsInGroup);
3779 LLVM_DEBUG(dbgs() << "}\n");
3780 while (Sivs.any()) {
3781 bool Changed = false;
3782 for (unsigned SJ : Sivs.set_bits()) {
3783 LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3784 // SJ is an SIV subscript that's part of the current coupled group
3785 unsigned Level;
3786 const SCEV *SplitIter = nullptr;
3787 LLVM_DEBUG(dbgs() << "SIV\n");
3788 if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
3789 SplitIter))
3790 return nullptr;
3791 ConstrainedLevels.set(Level);
3792 if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3793 if (Constraints[Level].isEmpty()) {
3794 ++DeltaIndependence;
3795 return nullptr;
3797 Changed = true;
3799 Sivs.reset(SJ);
3801 if (Changed) {
3802 // propagate, possibly creating new SIVs and ZIVs
3803 LLVM_DEBUG(dbgs() << " propagating\n");
3804 LLVM_DEBUG(dbgs() << "\tMivs = ");
3805 LLVM_DEBUG(dumpSmallBitVector(Mivs));
3806 for (unsigned SJ : Mivs.set_bits()) {
3807 // SJ is an MIV subscript that's part of the current coupled group
3808 LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3809 if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3810 Constraints, Result.Consistent)) {
3811 LLVM_DEBUG(dbgs() << "\t Changed\n");
3812 ++DeltaPropagations;
3813 Pair[SJ].Classification =
3814 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3815 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3816 Pair[SJ].Loops);
3817 switch (Pair[SJ].Classification) {
3818 case Subscript::ZIV:
3819 LLVM_DEBUG(dbgs() << "ZIV\n");
3820 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3821 return nullptr;
3822 Mivs.reset(SJ);
3823 break;
3824 case Subscript::SIV:
3825 Sivs.set(SJ);
3826 Mivs.reset(SJ);
3827 break;
3828 case Subscript::RDIV:
3829 case Subscript::MIV:
3830 break;
3831 default:
3832 llvm_unreachable("bad subscript classification");
3839 // test & propagate remaining RDIVs
3840 for (unsigned SJ : Mivs.set_bits()) {
3841 if (Pair[SJ].Classification == Subscript::RDIV) {
3842 LLVM_DEBUG(dbgs() << "RDIV test\n");
3843 if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3844 return nullptr;
3845 // I don't yet understand how to propagate RDIV results
3846 Mivs.reset(SJ);
3850 // test remaining MIVs
3851 // This code is temporary.
3852 // Better to somehow test all remaining subscripts simultaneously.
3853 for (unsigned SJ : Mivs.set_bits()) {
3854 if (Pair[SJ].Classification == Subscript::MIV) {
3855 LLVM_DEBUG(dbgs() << "MIV test\n");
3856 if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3857 return nullptr;
3859 else
3860 llvm_unreachable("expected only MIV subscripts at this point");
3863 // update Result.DV from constraint vector
3864 LLVM_DEBUG(dbgs() << " updating\n");
3865 for (unsigned SJ : ConstrainedLevels.set_bits()) {
3866 if (SJ > CommonLevels)
3867 break;
3868 updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3869 if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3870 return nullptr;
3875 // Make sure the Scalar flags are set correctly.
3876 SmallBitVector CompleteLoops(MaxLevels + 1);
3877 for (unsigned SI = 0; SI < Pairs; ++SI)
3878 CompleteLoops |= Pair[SI].Loops;
3879 for (unsigned II = 1; II <= CommonLevels; ++II)
3880 if (CompleteLoops[II])
3881 Result.DV[II - 1].Scalar = false;
3883 if (PossiblyLoopIndependent) {
3884 // Make sure the LoopIndependent flag is set correctly.
3885 // All directions must include equal, otherwise no
3886 // loop-independent dependence is possible.
3887 for (unsigned II = 1; II <= CommonLevels; ++II) {
3888 if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3889 Result.LoopIndependent = false;
3890 break;
3894 else {
3895 // On the other hand, if all directions are equal and there's no
3896 // loop-independent dependence possible, then no dependence exists.
3897 bool AllEqual = true;
3898 for (unsigned II = 1; II <= CommonLevels; ++II) {
3899 if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
3900 AllEqual = false;
3901 break;
3904 if (AllEqual)
3905 return nullptr;
3908 return std::make_unique<FullDependence>(std::move(Result));
3911 //===----------------------------------------------------------------------===//
3912 // getSplitIteration -
3913 // Rather than spend rarely-used space recording the splitting iteration
3914 // during the Weak-Crossing SIV test, we re-compute it on demand.
3915 // The re-computation is basically a repeat of the entire dependence test,
3916 // though simplified since we know that the dependence exists.
3917 // It's tedious, since we must go through all propagations, etc.
3919 // Care is required to keep this code up to date with respect to the routine
3920 // above, depends().
3922 // Generally, the dependence analyzer will be used to build
3923 // a dependence graph for a function (basically a map from instructions
3924 // to dependences). Looking for cycles in the graph shows us loops
3925 // that cannot be trivially vectorized/parallelized.
3927 // We can try to improve the situation by examining all the dependences
3928 // that make up the cycle, looking for ones we can break.
3929 // Sometimes, peeling the first or last iteration of a loop will break
3930 // dependences, and we've got flags for those possibilities.
3931 // Sometimes, splitting a loop at some other iteration will do the trick,
3932 // and we've got a flag for that case. Rather than waste the space to
3933 // record the exact iteration (since we rarely know), we provide
3934 // a method that calculates the iteration. It's a drag that it must work
3935 // from scratch, but wonderful in that it's possible.
3937 // Here's an example:
3939 // for (i = 0; i < 10; i++)
3940 // A[i] = ...
3941 // ... = A[11 - i]
3943 // There's a loop-carried flow dependence from the store to the load,
3944 // found by the weak-crossing SIV test. The dependence will have a flag,
3945 // indicating that the dependence can be broken by splitting the loop.
3946 // Calling getSplitIteration will return 5.
3947 // Splitting the loop breaks the dependence, like so:
3949 // for (i = 0; i <= 5; i++)
3950 // A[i] = ...
3951 // ... = A[11 - i]
3952 // for (i = 6; i < 10; i++)
3953 // A[i] = ...
3954 // ... = A[11 - i]
3956 // breaks the dependence and allows us to vectorize/parallelize
3957 // both loops.
3958 const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
3959 unsigned SplitLevel) {
3960 assert(Dep.isSplitable(SplitLevel) &&
3961 "Dep should be splitable at SplitLevel");
3962 Instruction *Src = Dep.getSrc();
3963 Instruction *Dst = Dep.getDst();
3964 assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
3965 assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
3966 assert(isLoadOrStore(Src));
3967 assert(isLoadOrStore(Dst));
3968 Value *SrcPtr = getLoadStorePointerOperand(Src);
3969 Value *DstPtr = getLoadStorePointerOperand(Dst);
3970 assert(underlyingObjectsAlias(
3971 AA, F->getParent()->getDataLayout(), MemoryLocation::get(Dst),
3972 MemoryLocation::get(Src)) == AliasResult::MustAlias);
3974 // establish loop nesting levels
3975 establishNestingLevels(Src, Dst);
3977 FullDependence Result(Src, Dst, false, CommonLevels);
3979 unsigned Pairs = 1;
3980 SmallVector<Subscript, 2> Pair(Pairs);
3981 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3982 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3983 Pair[0].Src = SrcSCEV;
3984 Pair[0].Dst = DstSCEV;
3986 if (Delinearize) {
3987 if (tryDelinearize(Src, Dst, Pair)) {
3988 LLVM_DEBUG(dbgs() << " delinearized\n");
3989 Pairs = Pair.size();
3993 for (unsigned P = 0; P < Pairs; ++P) {
3994 Pair[P].Loops.resize(MaxLevels + 1);
3995 Pair[P].GroupLoops.resize(MaxLevels + 1);
3996 Pair[P].Group.resize(Pairs);
3997 removeMatchingExtensions(&Pair[P]);
3998 Pair[P].Classification =
3999 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
4000 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
4001 Pair[P].Loops);
4002 Pair[P].GroupLoops = Pair[P].Loops;
4003 Pair[P].Group.set(P);
4006 SmallBitVector Separable(Pairs);
4007 SmallBitVector Coupled(Pairs);
4009 // partition subscripts into separable and minimally-coupled groups
4010 for (unsigned SI = 0; SI < Pairs; ++SI) {
4011 if (Pair[SI].Classification == Subscript::NonLinear) {
4012 // ignore these, but collect loops for later
4013 collectCommonLoops(Pair[SI].Src,
4014 LI->getLoopFor(Src->getParent()),
4015 Pair[SI].Loops);
4016 collectCommonLoops(Pair[SI].Dst,
4017 LI->getLoopFor(Dst->getParent()),
4018 Pair[SI].Loops);
4019 Result.Consistent = false;
4021 else if (Pair[SI].Classification == Subscript::ZIV)
4022 Separable.set(SI);
4023 else {
4024 // SIV, RDIV, or MIV, so check for coupled group
4025 bool Done = true;
4026 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
4027 SmallBitVector Intersection = Pair[SI].GroupLoops;
4028 Intersection &= Pair[SJ].GroupLoops;
4029 if (Intersection.any()) {
4030 // accumulate set of all the loops in group
4031 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
4032 // accumulate set of all subscripts in group
4033 Pair[SJ].Group |= Pair[SI].Group;
4034 Done = false;
4037 if (Done) {
4038 if (Pair[SI].Group.count() == 1)
4039 Separable.set(SI);
4040 else
4041 Coupled.set(SI);
4046 Constraint NewConstraint;
4047 NewConstraint.setAny(SE);
4049 // test separable subscripts
4050 for (unsigned SI : Separable.set_bits()) {
4051 switch (Pair[SI].Classification) {
4052 case Subscript::SIV: {
4053 unsigned Level;
4054 const SCEV *SplitIter = nullptr;
4055 (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
4056 Result, NewConstraint, SplitIter);
4057 if (Level == SplitLevel) {
4058 assert(SplitIter != nullptr);
4059 return SplitIter;
4061 break;
4063 case Subscript::ZIV:
4064 case Subscript::RDIV:
4065 case Subscript::MIV:
4066 break;
4067 default:
4068 llvm_unreachable("subscript has unexpected classification");
4072 if (Coupled.count()) {
4073 // test coupled subscript groups
4074 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
4075 for (unsigned II = 0; II <= MaxLevels; ++II)
4076 Constraints[II].setAny(SE);
4077 for (unsigned SI : Coupled.set_bits()) {
4078 SmallBitVector Group(Pair[SI].Group);
4079 SmallBitVector Sivs(Pairs);
4080 SmallBitVector Mivs(Pairs);
4081 SmallBitVector ConstrainedLevels(MaxLevels + 1);
4082 for (unsigned SJ : Group.set_bits()) {
4083 if (Pair[SJ].Classification == Subscript::SIV)
4084 Sivs.set(SJ);
4085 else
4086 Mivs.set(SJ);
4088 while (Sivs.any()) {
4089 bool Changed = false;
4090 for (unsigned SJ : Sivs.set_bits()) {
4091 // SJ is an SIV subscript that's part of the current coupled group
4092 unsigned Level;
4093 const SCEV *SplitIter = nullptr;
4094 (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
4095 Result, NewConstraint, SplitIter);
4096 if (Level == SplitLevel && SplitIter)
4097 return SplitIter;
4098 ConstrainedLevels.set(Level);
4099 if (intersectConstraints(&Constraints[Level], &NewConstraint))
4100 Changed = true;
4101 Sivs.reset(SJ);
4103 if (Changed) {
4104 // propagate, possibly creating new SIVs and ZIVs
4105 for (unsigned SJ : Mivs.set_bits()) {
4106 // SJ is an MIV subscript that's part of the current coupled group
4107 if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
4108 Pair[SJ].Loops, Constraints, Result.Consistent)) {
4109 Pair[SJ].Classification =
4110 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
4111 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
4112 Pair[SJ].Loops);
4113 switch (Pair[SJ].Classification) {
4114 case Subscript::ZIV:
4115 Mivs.reset(SJ);
4116 break;
4117 case Subscript::SIV:
4118 Sivs.set(SJ);
4119 Mivs.reset(SJ);
4120 break;
4121 case Subscript::RDIV:
4122 case Subscript::MIV:
4123 break;
4124 default:
4125 llvm_unreachable("bad subscript classification");
4133 llvm_unreachable("somehow reached end of routine");
4134 return nullptr;