[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Analysis / GlobalsModRef.cpp
blobd00a7c944f10a0684b6926820461d893b87618b5
1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This simple pass provides alias and mod/ref information for global values
10 // that do not have their address taken, and keeps track of whether functions
11 // read or write memory (are "pure"). For this simple (but very common) case,
12 // we can provide pretty accurate and useful information.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/GlobalsModRef.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/CallGraph.h"
21 #include "llvm/Analysis/MemoryBuiltins.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/InstIterator.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/CommandLine.h"
33 using namespace llvm;
35 #define DEBUG_TYPE "globalsmodref-aa"
37 STATISTIC(NumNonAddrTakenGlobalVars,
38 "Number of global vars without address taken");
39 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
40 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
41 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
42 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
44 // An option to enable unsafe alias results from the GlobalsModRef analysis.
45 // When enabled, GlobalsModRef will provide no-alias results which in extremely
46 // rare cases may not be conservatively correct. In particular, in the face of
47 // transforms which cause asymmetry between how effective getUnderlyingObject
48 // is for two pointers, it may produce incorrect results.
50 // These unsafe results have been returned by GMR for many years without
51 // causing significant issues in the wild and so we provide a mechanism to
52 // re-enable them for users of LLVM that have a particular performance
53 // sensitivity and no known issues. The option also makes it easy to evaluate
54 // the performance impact of these results.
55 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults(
56 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden);
58 /// The mod/ref information collected for a particular function.
59 ///
60 /// We collect information about mod/ref behavior of a function here, both in
61 /// general and as pertains to specific globals. We only have this detailed
62 /// information when we know *something* useful about the behavior. If we
63 /// saturate to fully general mod/ref, we remove the info for the function.
64 class GlobalsAAResult::FunctionInfo {
65 typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType;
67 /// Build a wrapper struct that has 8-byte alignment. All heap allocations
68 /// should provide this much alignment at least, but this makes it clear we
69 /// specifically rely on this amount of alignment.
70 struct alignas(8) AlignedMap {
71 AlignedMap() {}
72 AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {}
73 GlobalInfoMapType Map;
76 /// Pointer traits for our aligned map.
77 struct AlignedMapPointerTraits {
78 static inline void *getAsVoidPointer(AlignedMap *P) { return P; }
79 static inline AlignedMap *getFromVoidPointer(void *P) {
80 return (AlignedMap *)P;
82 static constexpr int NumLowBitsAvailable = 3;
83 static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable),
84 "AlignedMap insufficiently aligned to have enough low bits.");
87 /// The bit that flags that this function may read any global. This is
88 /// chosen to mix together with ModRefInfo bits.
89 /// FIXME: This assumes ModRefInfo lattice will remain 4 bits!
90 /// It overlaps with ModRefInfo::Must bit!
91 /// FunctionInfo.getModRefInfo() masks out everything except ModRef so
92 /// this remains correct, but the Must info is lost.
93 enum { MayReadAnyGlobal = 4 };
95 /// Checks to document the invariants of the bit packing here.
96 static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::MustModRef)) ==
98 "ModRef and the MayReadAnyGlobal flag bits overlap.");
99 static_assert(((MayReadAnyGlobal |
100 static_cast<int>(ModRefInfo::MustModRef)) >>
101 AlignedMapPointerTraits::NumLowBitsAvailable) == 0,
102 "Insufficient low bits to store our flag and ModRef info.");
104 public:
105 FunctionInfo() : Info() {}
106 ~FunctionInfo() {
107 delete Info.getPointer();
109 // Spell out the copy ond move constructors and assignment operators to get
110 // deep copy semantics and correct move semantics in the face of the
111 // pointer-int pair.
112 FunctionInfo(const FunctionInfo &Arg)
113 : Info(nullptr, Arg.Info.getInt()) {
114 if (const auto *ArgPtr = Arg.Info.getPointer())
115 Info.setPointer(new AlignedMap(*ArgPtr));
117 FunctionInfo(FunctionInfo &&Arg)
118 : Info(Arg.Info.getPointer(), Arg.Info.getInt()) {
119 Arg.Info.setPointerAndInt(nullptr, 0);
121 FunctionInfo &operator=(const FunctionInfo &RHS) {
122 delete Info.getPointer();
123 Info.setPointerAndInt(nullptr, RHS.Info.getInt());
124 if (const auto *RHSPtr = RHS.Info.getPointer())
125 Info.setPointer(new AlignedMap(*RHSPtr));
126 return *this;
128 FunctionInfo &operator=(FunctionInfo &&RHS) {
129 delete Info.getPointer();
130 Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt());
131 RHS.Info.setPointerAndInt(nullptr, 0);
132 return *this;
135 /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return
136 /// the corresponding ModRefInfo. It must align in functionality with
137 /// clearMust().
138 ModRefInfo globalClearMayReadAnyGlobal(int I) const {
139 return ModRefInfo((I & static_cast<int>(ModRefInfo::ModRef)) |
140 static_cast<int>(ModRefInfo::NoModRef));
143 /// Returns the \c ModRefInfo info for this function.
144 ModRefInfo getModRefInfo() const {
145 return globalClearMayReadAnyGlobal(Info.getInt());
148 /// Adds new \c ModRefInfo for this function to its state.
149 void addModRefInfo(ModRefInfo NewMRI) {
150 Info.setInt(Info.getInt() | static_cast<int>(setMust(NewMRI)));
153 /// Returns whether this function may read any global variable, and we don't
154 /// know which global.
155 bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; }
157 /// Sets this function as potentially reading from any global.
158 void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); }
160 /// Returns the \c ModRefInfo info for this function w.r.t. a particular
161 /// global, which may be more precise than the general information above.
162 ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const {
163 ModRefInfo GlobalMRI =
164 mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef;
165 if (AlignedMap *P = Info.getPointer()) {
166 auto I = P->Map.find(&GV);
167 if (I != P->Map.end())
168 GlobalMRI = unionModRef(GlobalMRI, I->second);
170 return GlobalMRI;
173 /// Add mod/ref info from another function into ours, saturating towards
174 /// ModRef.
175 void addFunctionInfo(const FunctionInfo &FI) {
176 addModRefInfo(FI.getModRefInfo());
178 if (FI.mayReadAnyGlobal())
179 setMayReadAnyGlobal();
181 if (AlignedMap *P = FI.Info.getPointer())
182 for (const auto &G : P->Map)
183 addModRefInfoForGlobal(*G.first, G.second);
186 void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) {
187 AlignedMap *P = Info.getPointer();
188 if (!P) {
189 P = new AlignedMap();
190 Info.setPointer(P);
192 auto &GlobalMRI = P->Map[&GV];
193 GlobalMRI = unionModRef(GlobalMRI, NewMRI);
196 /// Clear a global's ModRef info. Should be used when a global is being
197 /// deleted.
198 void eraseModRefInfoForGlobal(const GlobalValue &GV) {
199 if (AlignedMap *P = Info.getPointer())
200 P->Map.erase(&GV);
203 private:
204 /// All of the information is encoded into a single pointer, with a three bit
205 /// integer in the low three bits. The high bit provides a flag for when this
206 /// function may read any global. The low two bits are the ModRefInfo. And
207 /// the pointer, when non-null, points to a map from GlobalValue to
208 /// ModRefInfo specific to that GlobalValue.
209 PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info;
212 void GlobalsAAResult::DeletionCallbackHandle::deleted() {
213 Value *V = getValPtr();
214 if (auto *F = dyn_cast<Function>(V))
215 GAR->FunctionInfos.erase(F);
217 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
218 if (GAR->NonAddressTakenGlobals.erase(GV)) {
219 // This global might be an indirect global. If so, remove it and
220 // remove any AllocRelatedValues for it.
221 if (GAR->IndirectGlobals.erase(GV)) {
222 // Remove any entries in AllocsForIndirectGlobals for this global.
223 for (auto I = GAR->AllocsForIndirectGlobals.begin(),
224 E = GAR->AllocsForIndirectGlobals.end();
225 I != E; ++I)
226 if (I->second == GV)
227 GAR->AllocsForIndirectGlobals.erase(I);
230 // Scan the function info we have collected and remove this global
231 // from all of them.
232 for (auto &FIPair : GAR->FunctionInfos)
233 FIPair.second.eraseModRefInfoForGlobal(*GV);
237 // If this is an allocation related to an indirect global, remove it.
238 GAR->AllocsForIndirectGlobals.erase(V);
240 // And clear out the handle.
241 setValPtr(nullptr);
242 GAR->Handles.erase(I);
243 // This object is now destroyed!
246 FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) {
247 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
249 if (FunctionInfo *FI = getFunctionInfo(F)) {
250 if (!isModOrRefSet(FI->getModRefInfo()))
251 Min = FMRB_DoesNotAccessMemory;
252 else if (!isModSet(FI->getModRefInfo()))
253 Min = FMRB_OnlyReadsMemory;
256 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
259 FunctionModRefBehavior
260 GlobalsAAResult::getModRefBehavior(const CallBase *Call) {
261 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
263 if (!Call->hasOperandBundles())
264 if (const Function *F = Call->getCalledFunction())
265 if (FunctionInfo *FI = getFunctionInfo(F)) {
266 if (!isModOrRefSet(FI->getModRefInfo()))
267 Min = FMRB_DoesNotAccessMemory;
268 else if (!isModSet(FI->getModRefInfo()))
269 Min = FMRB_OnlyReadsMemory;
272 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call) & Min);
275 /// Returns the function info for the function, or null if we don't have
276 /// anything useful to say about it.
277 GlobalsAAResult::FunctionInfo *
278 GlobalsAAResult::getFunctionInfo(const Function *F) {
279 auto I = FunctionInfos.find(F);
280 if (I != FunctionInfos.end())
281 return &I->second;
282 return nullptr;
285 /// AnalyzeGlobals - Scan through the users of all of the internal
286 /// GlobalValue's in the program. If none of them have their "address taken"
287 /// (really, their address passed to something nontrivial), record this fact,
288 /// and record the functions that they are used directly in.
289 void GlobalsAAResult::AnalyzeGlobals(Module &M) {
290 SmallPtrSet<Function *, 32> TrackedFunctions;
291 for (Function &F : M)
292 if (F.hasLocalLinkage()) {
293 if (!AnalyzeUsesOfPointer(&F)) {
294 // Remember that we are tracking this global.
295 NonAddressTakenGlobals.insert(&F);
296 TrackedFunctions.insert(&F);
297 Handles.emplace_front(*this, &F);
298 Handles.front().I = Handles.begin();
299 ++NumNonAddrTakenFunctions;
300 } else
301 UnknownFunctionsWithLocalLinkage = true;
304 SmallPtrSet<Function *, 16> Readers, Writers;
305 for (GlobalVariable &GV : M.globals())
306 if (GV.hasLocalLinkage()) {
307 if (!AnalyzeUsesOfPointer(&GV, &Readers,
308 GV.isConstant() ? nullptr : &Writers)) {
309 // Remember that we are tracking this global, and the mod/ref fns
310 NonAddressTakenGlobals.insert(&GV);
311 Handles.emplace_front(*this, &GV);
312 Handles.front().I = Handles.begin();
314 for (Function *Reader : Readers) {
315 if (TrackedFunctions.insert(Reader).second) {
316 Handles.emplace_front(*this, Reader);
317 Handles.front().I = Handles.begin();
319 FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref);
322 if (!GV.isConstant()) // No need to keep track of writers to constants
323 for (Function *Writer : Writers) {
324 if (TrackedFunctions.insert(Writer).second) {
325 Handles.emplace_front(*this, Writer);
326 Handles.front().I = Handles.begin();
328 FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod);
330 ++NumNonAddrTakenGlobalVars;
332 // If this global holds a pointer type, see if it is an indirect global.
333 if (GV.getValueType()->isPointerTy() &&
334 AnalyzeIndirectGlobalMemory(&GV))
335 ++NumIndirectGlobalVars;
337 Readers.clear();
338 Writers.clear();
342 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
343 /// If this is used by anything complex (i.e., the address escapes), return
344 /// true. Also, while we are at it, keep track of those functions that read and
345 /// write to the value.
347 /// If OkayStoreDest is non-null, stores into this global are allowed.
348 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V,
349 SmallPtrSetImpl<Function *> *Readers,
350 SmallPtrSetImpl<Function *> *Writers,
351 GlobalValue *OkayStoreDest) {
352 if (!V->getType()->isPointerTy())
353 return true;
355 for (Use &U : V->uses()) {
356 User *I = U.getUser();
357 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
358 if (Readers)
359 Readers->insert(LI->getParent()->getParent());
360 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
361 if (V == SI->getOperand(1)) {
362 if (Writers)
363 Writers->insert(SI->getParent()->getParent());
364 } else if (SI->getOperand(1) != OkayStoreDest) {
365 return true; // Storing the pointer
367 } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
368 if (AnalyzeUsesOfPointer(I, Readers, Writers))
369 return true;
370 } else if (Operator::getOpcode(I) == Instruction::BitCast ||
371 Operator::getOpcode(I) == Instruction::AddrSpaceCast) {
372 if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
373 return true;
374 } else if (auto *Call = dyn_cast<CallBase>(I)) {
375 // Make sure that this is just the function being called, not that it is
376 // passing into the function.
377 if (Call->isDataOperand(&U)) {
378 // Detect calls to free.
379 if (Call->isArgOperand(&U) &&
380 isFreeCall(I, &GetTLI(*Call->getFunction()))) {
381 if (Writers)
382 Writers->insert(Call->getParent()->getParent());
383 } else {
384 return true; // Argument of an unknown call.
387 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
388 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
389 return true; // Allow comparison against null.
390 } else if (Constant *C = dyn_cast<Constant>(I)) {
391 // Ignore constants which don't have any live uses.
392 if (isa<GlobalValue>(C) || C->isConstantUsed())
393 return true;
394 } else {
395 return true;
399 return false;
402 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
403 /// which holds a pointer type. See if the global always points to non-aliased
404 /// heap memory: that is, all initializers of the globals are allocations, and
405 /// those allocations have no use other than initialization of the global.
406 /// Further, all loads out of GV must directly use the memory, not store the
407 /// pointer somewhere. If this is true, we consider the memory pointed to by
408 /// GV to be owned by GV and can disambiguate other pointers from it.
409 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) {
410 // Keep track of values related to the allocation of the memory, f.e. the
411 // value produced by the malloc call and any casts.
412 std::vector<Value *> AllocRelatedValues;
414 // If the initializer is a valid pointer, bail.
415 if (Constant *C = GV->getInitializer())
416 if (!C->isNullValue())
417 return false;
419 // Walk the user list of the global. If we find anything other than a direct
420 // load or store, bail out.
421 for (User *U : GV->users()) {
422 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
423 // The pointer loaded from the global can only be used in simple ways:
424 // we allow addressing of it and loading storing to it. We do *not* allow
425 // storing the loaded pointer somewhere else or passing to a function.
426 if (AnalyzeUsesOfPointer(LI))
427 return false; // Loaded pointer escapes.
428 // TODO: Could try some IP mod/ref of the loaded pointer.
429 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
430 // Storing the global itself.
431 if (SI->getOperand(0) == GV)
432 return false;
434 // If storing the null pointer, ignore it.
435 if (isa<ConstantPointerNull>(SI->getOperand(0)))
436 continue;
438 // Check the value being stored.
439 Value *Ptr = getUnderlyingObject(SI->getOperand(0));
441 if (!isAllocLikeFn(Ptr, &GetTLI(*SI->getFunction())))
442 return false; // Too hard to analyze.
444 // Analyze all uses of the allocation. If any of them are used in a
445 // non-simple way (e.g. stored to another global) bail out.
446 if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr,
447 GV))
448 return false; // Loaded pointer escapes.
450 // Remember that this allocation is related to the indirect global.
451 AllocRelatedValues.push_back(Ptr);
452 } else {
453 // Something complex, bail out.
454 return false;
458 // Okay, this is an indirect global. Remember all of the allocations for
459 // this global in AllocsForIndirectGlobals.
460 while (!AllocRelatedValues.empty()) {
461 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
462 Handles.emplace_front(*this, AllocRelatedValues.back());
463 Handles.front().I = Handles.begin();
464 AllocRelatedValues.pop_back();
466 IndirectGlobals.insert(GV);
467 Handles.emplace_front(*this, GV);
468 Handles.front().I = Handles.begin();
469 return true;
472 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) {
473 // We do a bottom-up SCC traversal of the call graph. In other words, we
474 // visit all callees before callers (leaf-first).
475 unsigned SCCID = 0;
476 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
477 const std::vector<CallGraphNode *> &SCC = *I;
478 assert(!SCC.empty() && "SCC with no functions?");
480 for (auto *CGN : SCC)
481 if (Function *F = CGN->getFunction())
482 FunctionToSCCMap[F] = SCCID;
483 ++SCCID;
487 /// AnalyzeCallGraph - At this point, we know the functions where globals are
488 /// immediately stored to and read from. Propagate this information up the call
489 /// graph to all callers and compute the mod/ref info for all memory for each
490 /// function.
491 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) {
492 // We do a bottom-up SCC traversal of the call graph. In other words, we
493 // visit all callees before callers (leaf-first).
494 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
495 const std::vector<CallGraphNode *> &SCC = *I;
496 assert(!SCC.empty() && "SCC with no functions?");
498 Function *F = SCC[0]->getFunction();
500 if (!F || !F->isDefinitionExact()) {
501 // Calls externally or not exact - can't say anything useful. Remove any
502 // existing function records (may have been created when scanning
503 // globals).
504 for (auto *Node : SCC)
505 FunctionInfos.erase(Node->getFunction());
506 continue;
509 FunctionInfo &FI = FunctionInfos[F];
510 Handles.emplace_front(*this, F);
511 Handles.front().I = Handles.begin();
512 bool KnowNothing = false;
514 // Collect the mod/ref properties due to called functions. We only compute
515 // one mod-ref set.
516 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
517 if (!F) {
518 KnowNothing = true;
519 break;
522 if (F->isDeclaration() || F->hasOptNone()) {
523 // Try to get mod/ref behaviour from function attributes.
524 if (F->doesNotAccessMemory()) {
525 // Can't do better than that!
526 } else if (F->onlyReadsMemory()) {
527 FI.addModRefInfo(ModRefInfo::Ref);
528 if (!F->isIntrinsic() && !F->onlyAccessesArgMemory())
529 // This function might call back into the module and read a global -
530 // consider every global as possibly being read by this function.
531 FI.setMayReadAnyGlobal();
532 } else {
533 FI.addModRefInfo(ModRefInfo::ModRef);
534 if (!F->onlyAccessesArgMemory())
535 FI.setMayReadAnyGlobal();
536 if (!F->isIntrinsic()) {
537 KnowNothing = true;
538 break;
541 continue;
544 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
545 CI != E && !KnowNothing; ++CI)
546 if (Function *Callee = CI->second->getFunction()) {
547 if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) {
548 // Propagate function effect up.
549 FI.addFunctionInfo(*CalleeFI);
550 } else {
551 // Can't say anything about it. However, if it is inside our SCC,
552 // then nothing needs to be done.
553 CallGraphNode *CalleeNode = CG[Callee];
554 if (!is_contained(SCC, CalleeNode))
555 KnowNothing = true;
557 } else {
558 KnowNothing = true;
562 // If we can't say anything useful about this SCC, remove all SCC functions
563 // from the FunctionInfos map.
564 if (KnowNothing) {
565 for (auto *Node : SCC)
566 FunctionInfos.erase(Node->getFunction());
567 continue;
570 // Scan the function bodies for explicit loads or stores.
571 for (auto *Node : SCC) {
572 if (isModAndRefSet(FI.getModRefInfo()))
573 break; // The mod/ref lattice saturates here.
575 // Don't prove any properties based on the implementation of an optnone
576 // function. Function attributes were already used as a best approximation
577 // above.
578 if (Node->getFunction()->hasOptNone())
579 continue;
581 for (Instruction &I : instructions(Node->getFunction())) {
582 if (isModAndRefSet(FI.getModRefInfo()))
583 break; // The mod/ref lattice saturates here.
585 // We handle calls specially because the graph-relevant aspects are
586 // handled above.
587 if (auto *Call = dyn_cast<CallBase>(&I)) {
588 auto &TLI = GetTLI(*Node->getFunction());
589 if (isAllocationFn(Call, &TLI) || isFreeCall(Call, &TLI)) {
590 // FIXME: It is completely unclear why this is necessary and not
591 // handled by the above graph code.
592 FI.addModRefInfo(ModRefInfo::ModRef);
593 } else if (Function *Callee = Call->getCalledFunction()) {
594 // The callgraph doesn't include intrinsic calls.
595 if (Callee->isIntrinsic()) {
596 if (isa<DbgInfoIntrinsic>(Call))
597 // Don't let dbg intrinsics affect alias info.
598 continue;
600 FunctionModRefBehavior Behaviour =
601 AAResultBase::getModRefBehavior(Callee);
602 FI.addModRefInfo(createModRefInfo(Behaviour));
605 continue;
608 // All non-call instructions we use the primary predicates for whether
609 // they read or write memory.
610 if (I.mayReadFromMemory())
611 FI.addModRefInfo(ModRefInfo::Ref);
612 if (I.mayWriteToMemory())
613 FI.addModRefInfo(ModRefInfo::Mod);
617 if (!isModSet(FI.getModRefInfo()))
618 ++NumReadMemFunctions;
619 if (!isModOrRefSet(FI.getModRefInfo()))
620 ++NumNoMemFunctions;
622 // Finally, now that we know the full effect on this SCC, clone the
623 // information to each function in the SCC.
624 // FI is a reference into FunctionInfos, so copy it now so that it doesn't
625 // get invalidated if DenseMap decides to re-hash.
626 FunctionInfo CachedFI = FI;
627 for (unsigned i = 1, e = SCC.size(); i != e; ++i)
628 FunctionInfos[SCC[i]->getFunction()] = CachedFI;
632 // GV is a non-escaping global. V is a pointer address that has been loaded from.
633 // If we can prove that V must escape, we can conclude that a load from V cannot
634 // alias GV.
635 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV,
636 const Value *V,
637 int &Depth,
638 const DataLayout &DL) {
639 SmallPtrSet<const Value *, 8> Visited;
640 SmallVector<const Value *, 8> Inputs;
641 Visited.insert(V);
642 Inputs.push_back(V);
643 do {
644 const Value *Input = Inputs.pop_back_val();
646 if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) ||
647 isa<InvokeInst>(Input))
648 // Arguments to functions or returns from functions are inherently
649 // escaping, so we can immediately classify those as not aliasing any
650 // non-addr-taken globals.
652 // (Transitive) loads from a global are also safe - if this aliased
653 // another global, its address would escape, so no alias.
654 continue;
656 // Recurse through a limited number of selects, loads and PHIs. This is an
657 // arbitrary depth of 4, lower numbers could be used to fix compile time
658 // issues if needed, but this is generally expected to be only be important
659 // for small depths.
660 if (++Depth > 4)
661 return false;
663 if (auto *LI = dyn_cast<LoadInst>(Input)) {
664 Inputs.push_back(getUnderlyingObject(LI->getPointerOperand()));
665 continue;
667 if (auto *SI = dyn_cast<SelectInst>(Input)) {
668 const Value *LHS = getUnderlyingObject(SI->getTrueValue());
669 const Value *RHS = getUnderlyingObject(SI->getFalseValue());
670 if (Visited.insert(LHS).second)
671 Inputs.push_back(LHS);
672 if (Visited.insert(RHS).second)
673 Inputs.push_back(RHS);
674 continue;
676 if (auto *PN = dyn_cast<PHINode>(Input)) {
677 for (const Value *Op : PN->incoming_values()) {
678 Op = getUnderlyingObject(Op);
679 if (Visited.insert(Op).second)
680 Inputs.push_back(Op);
682 continue;
685 return false;
686 } while (!Inputs.empty());
688 // All inputs were known to be no-alias.
689 return true;
692 // There are particular cases where we can conclude no-alias between
693 // a non-addr-taken global and some other underlying object. Specifically,
694 // a non-addr-taken global is known to not be escaped from any function. It is
695 // also incorrect for a transformation to introduce an escape of a global in
696 // a way that is observable when it was not there previously. One function
697 // being transformed to introduce an escape which could possibly be observed
698 // (via loading from a global or the return value for example) within another
699 // function is never safe. If the observation is made through non-atomic
700 // operations on different threads, it is a data-race and UB. If the
701 // observation is well defined, by being observed the transformation would have
702 // changed program behavior by introducing the observed escape, making it an
703 // invalid transform.
705 // This property does require that transformations which *temporarily* escape
706 // a global that was not previously escaped, prior to restoring it, cannot rely
707 // on the results of GMR::alias. This seems a reasonable restriction, although
708 // currently there is no way to enforce it. There is also no realistic
709 // optimization pass that would make this mistake. The closest example is
710 // a transformation pass which does reg2mem of SSA values but stores them into
711 // global variables temporarily before restoring the global variable's value.
712 // This could be useful to expose "benign" races for example. However, it seems
713 // reasonable to require that a pass which introduces escapes of global
714 // variables in this way to either not trust AA results while the escape is
715 // active, or to be forced to operate as a module pass that cannot co-exist
716 // with an alias analysis such as GMR.
717 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV,
718 const Value *V) {
719 // In order to know that the underlying object cannot alias the
720 // non-addr-taken global, we must know that it would have to be an escape.
721 // Thus if the underlying object is a function argument, a load from
722 // a global, or the return of a function, it cannot alias. We can also
723 // recurse through PHI nodes and select nodes provided all of their inputs
724 // resolve to one of these known-escaping roots.
725 SmallPtrSet<const Value *, 8> Visited;
726 SmallVector<const Value *, 8> Inputs;
727 Visited.insert(V);
728 Inputs.push_back(V);
729 int Depth = 0;
730 do {
731 const Value *Input = Inputs.pop_back_val();
733 if (auto *InputGV = dyn_cast<GlobalValue>(Input)) {
734 // If one input is the very global we're querying against, then we can't
735 // conclude no-alias.
736 if (InputGV == GV)
737 return false;
739 // Distinct GlobalVariables never alias, unless overriden or zero-sized.
740 // FIXME: The condition can be refined, but be conservative for now.
741 auto *GVar = dyn_cast<GlobalVariable>(GV);
742 auto *InputGVar = dyn_cast<GlobalVariable>(InputGV);
743 if (GVar && InputGVar &&
744 !GVar->isDeclaration() && !InputGVar->isDeclaration() &&
745 !GVar->isInterposable() && !InputGVar->isInterposable()) {
746 Type *GVType = GVar->getInitializer()->getType();
747 Type *InputGVType = InputGVar->getInitializer()->getType();
748 if (GVType->isSized() && InputGVType->isSized() &&
749 (DL.getTypeAllocSize(GVType) > 0) &&
750 (DL.getTypeAllocSize(InputGVType) > 0))
751 continue;
754 // Conservatively return false, even though we could be smarter
755 // (e.g. look through GlobalAliases).
756 return false;
759 if (isa<Argument>(Input) || isa<CallInst>(Input) ||
760 isa<InvokeInst>(Input)) {
761 // Arguments to functions or returns from functions are inherently
762 // escaping, so we can immediately classify those as not aliasing any
763 // non-addr-taken globals.
764 continue;
767 // Recurse through a limited number of selects, loads and PHIs. This is an
768 // arbitrary depth of 4, lower numbers could be used to fix compile time
769 // issues if needed, but this is generally expected to be only be important
770 // for small depths.
771 if (++Depth > 4)
772 return false;
774 if (auto *LI = dyn_cast<LoadInst>(Input)) {
775 // A pointer loaded from a global would have been captured, and we know
776 // that the global is non-escaping, so no alias.
777 const Value *Ptr = getUnderlyingObject(LI->getPointerOperand());
778 if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL))
779 // The load does not alias with GV.
780 continue;
781 // Otherwise, a load could come from anywhere, so bail.
782 return false;
784 if (auto *SI = dyn_cast<SelectInst>(Input)) {
785 const Value *LHS = getUnderlyingObject(SI->getTrueValue());
786 const Value *RHS = getUnderlyingObject(SI->getFalseValue());
787 if (Visited.insert(LHS).second)
788 Inputs.push_back(LHS);
789 if (Visited.insert(RHS).second)
790 Inputs.push_back(RHS);
791 continue;
793 if (auto *PN = dyn_cast<PHINode>(Input)) {
794 for (const Value *Op : PN->incoming_values()) {
795 Op = getUnderlyingObject(Op);
796 if (Visited.insert(Op).second)
797 Inputs.push_back(Op);
799 continue;
802 // FIXME: It would be good to handle other obvious no-alias cases here, but
803 // it isn't clear how to do so reasonably without building a small version
804 // of BasicAA into this code. We could recurse into AAResultBase::alias
805 // here but that seems likely to go poorly as we're inside the
806 // implementation of such a query. Until then, just conservatively return
807 // false.
808 return false;
809 } while (!Inputs.empty());
811 // If all the inputs to V were definitively no-alias, then V is no-alias.
812 return true;
815 bool GlobalsAAResult::invalidate(Module &, const PreservedAnalyses &PA,
816 ModuleAnalysisManager::Invalidator &) {
817 // Check whether the analysis has been explicitly invalidated. Otherwise, it's
818 // stateless and remains preserved.
819 auto PAC = PA.getChecker<GlobalsAA>();
820 return !PAC.preservedWhenStateless();
823 /// alias - If one of the pointers is to a global that we are tracking, and the
824 /// other is some random pointer, we know there cannot be an alias, because the
825 /// address of the global isn't taken.
826 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA,
827 const MemoryLocation &LocB,
828 AAQueryInfo &AAQI) {
829 // Get the base object these pointers point to.
830 const Value *UV1 =
831 getUnderlyingObject(LocA.Ptr->stripPointerCastsForAliasAnalysis());
832 const Value *UV2 =
833 getUnderlyingObject(LocB.Ptr->stripPointerCastsForAliasAnalysis());
835 // If either of the underlying values is a global, they may be non-addr-taken
836 // globals, which we can answer queries about.
837 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
838 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
839 if (GV1 || GV2) {
840 // If the global's address is taken, pretend we don't know it's a pointer to
841 // the global.
842 if (GV1 && !NonAddressTakenGlobals.count(GV1))
843 GV1 = nullptr;
844 if (GV2 && !NonAddressTakenGlobals.count(GV2))
845 GV2 = nullptr;
847 // If the two pointers are derived from two different non-addr-taken
848 // globals we know these can't alias.
849 if (GV1 && GV2 && GV1 != GV2)
850 return AliasResult::NoAlias;
852 // If one is and the other isn't, it isn't strictly safe but we can fake
853 // this result if necessary for performance. This does not appear to be
854 // a common problem in practice.
855 if (EnableUnsafeGlobalsModRefAliasResults)
856 if ((GV1 || GV2) && GV1 != GV2)
857 return AliasResult::NoAlias;
859 // Check for a special case where a non-escaping global can be used to
860 // conclude no-alias.
861 if ((GV1 || GV2) && GV1 != GV2) {
862 const GlobalValue *GV = GV1 ? GV1 : GV2;
863 const Value *UV = GV1 ? UV2 : UV1;
864 if (isNonEscapingGlobalNoAlias(GV, UV))
865 return AliasResult::NoAlias;
868 // Otherwise if they are both derived from the same addr-taken global, we
869 // can't know the two accesses don't overlap.
872 // These pointers may be based on the memory owned by an indirect global. If
873 // so, we may be able to handle this. First check to see if the base pointer
874 // is a direct load from an indirect global.
875 GV1 = GV2 = nullptr;
876 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
877 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
878 if (IndirectGlobals.count(GV))
879 GV1 = GV;
880 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
881 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
882 if (IndirectGlobals.count(GV))
883 GV2 = GV;
885 // These pointers may also be from an allocation for the indirect global. If
886 // so, also handle them.
887 if (!GV1)
888 GV1 = AllocsForIndirectGlobals.lookup(UV1);
889 if (!GV2)
890 GV2 = AllocsForIndirectGlobals.lookup(UV2);
892 // Now that we know whether the two pointers are related to indirect globals,
893 // use this to disambiguate the pointers. If the pointers are based on
894 // different indirect globals they cannot alias.
895 if (GV1 && GV2 && GV1 != GV2)
896 return AliasResult::NoAlias;
898 // If one is based on an indirect global and the other isn't, it isn't
899 // strictly safe but we can fake this result if necessary for performance.
900 // This does not appear to be a common problem in practice.
901 if (EnableUnsafeGlobalsModRefAliasResults)
902 if ((GV1 || GV2) && GV1 != GV2)
903 return AliasResult::NoAlias;
905 return AAResultBase::alias(LocA, LocB, AAQI);
908 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(const CallBase *Call,
909 const GlobalValue *GV,
910 AAQueryInfo &AAQI) {
911 if (Call->doesNotAccessMemory())
912 return ModRefInfo::NoModRef;
913 ModRefInfo ConservativeResult =
914 Call->onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef;
916 // Iterate through all the arguments to the called function. If any argument
917 // is based on GV, return the conservative result.
918 for (auto &A : Call->args()) {
919 SmallVector<const Value*, 4> Objects;
920 getUnderlyingObjects(A, Objects);
922 // All objects must be identified.
923 if (!all_of(Objects, isIdentifiedObject) &&
924 // Try ::alias to see if all objects are known not to alias GV.
925 !all_of(Objects, [&](const Value *V) {
926 return this->alias(MemoryLocation::getBeforeOrAfter(V),
927 MemoryLocation::getBeforeOrAfter(GV),
928 AAQI) == AliasResult::NoAlias;
930 return ConservativeResult;
932 if (is_contained(Objects, GV))
933 return ConservativeResult;
936 // We identified all objects in the argument list, and none of them were GV.
937 return ModRefInfo::NoModRef;
940 ModRefInfo GlobalsAAResult::getModRefInfo(const CallBase *Call,
941 const MemoryLocation &Loc,
942 AAQueryInfo &AAQI) {
943 ModRefInfo Known = ModRefInfo::ModRef;
945 // If we are asking for mod/ref info of a direct call with a pointer to a
946 // global we are tracking, return information if we have it.
947 if (const GlobalValue *GV =
948 dyn_cast<GlobalValue>(getUnderlyingObject(Loc.Ptr)))
949 // If GV is internal to this IR and there is no function with local linkage
950 // that has had their address taken, keep looking for a tighter ModRefInfo.
951 if (GV->hasLocalLinkage() && !UnknownFunctionsWithLocalLinkage)
952 if (const Function *F = Call->getCalledFunction())
953 if (NonAddressTakenGlobals.count(GV))
954 if (const FunctionInfo *FI = getFunctionInfo(F))
955 Known = unionModRef(FI->getModRefInfoForGlobal(*GV),
956 getModRefInfoForArgument(Call, GV, AAQI));
958 if (!isModOrRefSet(Known))
959 return ModRefInfo::NoModRef; // No need to query other mod/ref analyses
960 return intersectModRef(Known, AAResultBase::getModRefInfo(Call, Loc, AAQI));
963 GlobalsAAResult::GlobalsAAResult(
964 const DataLayout &DL,
965 std::function<const TargetLibraryInfo &(Function &F)> GetTLI)
966 : AAResultBase(), DL(DL), GetTLI(std::move(GetTLI)) {}
968 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg)
969 : AAResultBase(std::move(Arg)), DL(Arg.DL), GetTLI(std::move(Arg.GetTLI)),
970 NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)),
971 IndirectGlobals(std::move(Arg.IndirectGlobals)),
972 AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)),
973 FunctionInfos(std::move(Arg.FunctionInfos)),
974 Handles(std::move(Arg.Handles)) {
975 // Update the parent for each DeletionCallbackHandle.
976 for (auto &H : Handles) {
977 assert(H.GAR == &Arg);
978 H.GAR = this;
982 GlobalsAAResult::~GlobalsAAResult() {}
984 /*static*/ GlobalsAAResult GlobalsAAResult::analyzeModule(
985 Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI,
986 CallGraph &CG) {
987 GlobalsAAResult Result(M.getDataLayout(), GetTLI);
989 // Discover which functions aren't recursive, to feed into AnalyzeGlobals.
990 Result.CollectSCCMembership(CG);
992 // Find non-addr taken globals.
993 Result.AnalyzeGlobals(M);
995 // Propagate on CG.
996 Result.AnalyzeCallGraph(CG, M);
998 return Result;
1001 AnalysisKey GlobalsAA::Key;
1003 GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) {
1004 FunctionAnalysisManager &FAM =
1005 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1006 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
1007 return FAM.getResult<TargetLibraryAnalysis>(F);
1009 return GlobalsAAResult::analyzeModule(M, GetTLI,
1010 AM.getResult<CallGraphAnalysis>(M));
1013 char GlobalsAAWrapperPass::ID = 0;
1014 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa",
1015 "Globals Alias Analysis", false, true)
1016 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1017 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1018 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa",
1019 "Globals Alias Analysis", false, true)
1021 ModulePass *llvm::createGlobalsAAWrapperPass() {
1022 return new GlobalsAAWrapperPass();
1025 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) {
1026 initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry());
1029 bool GlobalsAAWrapperPass::runOnModule(Module &M) {
1030 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
1031 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1033 Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule(
1034 M, GetTLI, getAnalysis<CallGraphWrapperPass>().getCallGraph())));
1035 return false;
1038 bool GlobalsAAWrapperPass::doFinalization(Module &M) {
1039 Result.reset();
1040 return false;
1043 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1044 AU.setPreservesAll();
1045 AU.addRequired<CallGraphWrapperPass>();
1046 AU.addRequired<TargetLibraryInfoWrapperPass>();