1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This simple pass provides alias and mod/ref information for global values
10 // that do not have their address taken, and keeps track of whether functions
11 // read or write memory (are "pure"). For this simple (but very common) case,
12 // we can provide pretty accurate and useful information.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/GlobalsModRef.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/CallGraph.h"
21 #include "llvm/Analysis/MemoryBuiltins.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/InstIterator.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/CommandLine.h"
35 #define DEBUG_TYPE "globalsmodref-aa"
37 STATISTIC(NumNonAddrTakenGlobalVars
,
38 "Number of global vars without address taken");
39 STATISTIC(NumNonAddrTakenFunctions
,"Number of functions without address taken");
40 STATISTIC(NumNoMemFunctions
, "Number of functions that do not access memory");
41 STATISTIC(NumReadMemFunctions
, "Number of functions that only read memory");
42 STATISTIC(NumIndirectGlobalVars
, "Number of indirect global objects");
44 // An option to enable unsafe alias results from the GlobalsModRef analysis.
45 // When enabled, GlobalsModRef will provide no-alias results which in extremely
46 // rare cases may not be conservatively correct. In particular, in the face of
47 // transforms which cause asymmetry between how effective getUnderlyingObject
48 // is for two pointers, it may produce incorrect results.
50 // These unsafe results have been returned by GMR for many years without
51 // causing significant issues in the wild and so we provide a mechanism to
52 // re-enable them for users of LLVM that have a particular performance
53 // sensitivity and no known issues. The option also makes it easy to evaluate
54 // the performance impact of these results.
55 static cl::opt
<bool> EnableUnsafeGlobalsModRefAliasResults(
56 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden
);
58 /// The mod/ref information collected for a particular function.
60 /// We collect information about mod/ref behavior of a function here, both in
61 /// general and as pertains to specific globals. We only have this detailed
62 /// information when we know *something* useful about the behavior. If we
63 /// saturate to fully general mod/ref, we remove the info for the function.
64 class GlobalsAAResult::FunctionInfo
{
65 typedef SmallDenseMap
<const GlobalValue
*, ModRefInfo
, 16> GlobalInfoMapType
;
67 /// Build a wrapper struct that has 8-byte alignment. All heap allocations
68 /// should provide this much alignment at least, but this makes it clear we
69 /// specifically rely on this amount of alignment.
70 struct alignas(8) AlignedMap
{
72 AlignedMap(const AlignedMap
&Arg
) : Map(Arg
.Map
) {}
73 GlobalInfoMapType Map
;
76 /// Pointer traits for our aligned map.
77 struct AlignedMapPointerTraits
{
78 static inline void *getAsVoidPointer(AlignedMap
*P
) { return P
; }
79 static inline AlignedMap
*getFromVoidPointer(void *P
) {
80 return (AlignedMap
*)P
;
82 static constexpr int NumLowBitsAvailable
= 3;
83 static_assert(alignof(AlignedMap
) >= (1 << NumLowBitsAvailable
),
84 "AlignedMap insufficiently aligned to have enough low bits.");
87 /// The bit that flags that this function may read any global. This is
88 /// chosen to mix together with ModRefInfo bits.
89 /// FIXME: This assumes ModRefInfo lattice will remain 4 bits!
90 /// It overlaps with ModRefInfo::Must bit!
91 /// FunctionInfo.getModRefInfo() masks out everything except ModRef so
92 /// this remains correct, but the Must info is lost.
93 enum { MayReadAnyGlobal
= 4 };
95 /// Checks to document the invariants of the bit packing here.
96 static_assert((MayReadAnyGlobal
& static_cast<int>(ModRefInfo::MustModRef
)) ==
98 "ModRef and the MayReadAnyGlobal flag bits overlap.");
99 static_assert(((MayReadAnyGlobal
|
100 static_cast<int>(ModRefInfo::MustModRef
)) >>
101 AlignedMapPointerTraits::NumLowBitsAvailable
) == 0,
102 "Insufficient low bits to store our flag and ModRef info.");
105 FunctionInfo() : Info() {}
107 delete Info
.getPointer();
109 // Spell out the copy ond move constructors and assignment operators to get
110 // deep copy semantics and correct move semantics in the face of the
112 FunctionInfo(const FunctionInfo
&Arg
)
113 : Info(nullptr, Arg
.Info
.getInt()) {
114 if (const auto *ArgPtr
= Arg
.Info
.getPointer())
115 Info
.setPointer(new AlignedMap(*ArgPtr
));
117 FunctionInfo(FunctionInfo
&&Arg
)
118 : Info(Arg
.Info
.getPointer(), Arg
.Info
.getInt()) {
119 Arg
.Info
.setPointerAndInt(nullptr, 0);
121 FunctionInfo
&operator=(const FunctionInfo
&RHS
) {
122 delete Info
.getPointer();
123 Info
.setPointerAndInt(nullptr, RHS
.Info
.getInt());
124 if (const auto *RHSPtr
= RHS
.Info
.getPointer())
125 Info
.setPointer(new AlignedMap(*RHSPtr
));
128 FunctionInfo
&operator=(FunctionInfo
&&RHS
) {
129 delete Info
.getPointer();
130 Info
.setPointerAndInt(RHS
.Info
.getPointer(), RHS
.Info
.getInt());
131 RHS
.Info
.setPointerAndInt(nullptr, 0);
135 /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return
136 /// the corresponding ModRefInfo. It must align in functionality with
138 ModRefInfo
globalClearMayReadAnyGlobal(int I
) const {
139 return ModRefInfo((I
& static_cast<int>(ModRefInfo::ModRef
)) |
140 static_cast<int>(ModRefInfo::NoModRef
));
143 /// Returns the \c ModRefInfo info for this function.
144 ModRefInfo
getModRefInfo() const {
145 return globalClearMayReadAnyGlobal(Info
.getInt());
148 /// Adds new \c ModRefInfo for this function to its state.
149 void addModRefInfo(ModRefInfo NewMRI
) {
150 Info
.setInt(Info
.getInt() | static_cast<int>(setMust(NewMRI
)));
153 /// Returns whether this function may read any global variable, and we don't
154 /// know which global.
155 bool mayReadAnyGlobal() const { return Info
.getInt() & MayReadAnyGlobal
; }
157 /// Sets this function as potentially reading from any global.
158 void setMayReadAnyGlobal() { Info
.setInt(Info
.getInt() | MayReadAnyGlobal
); }
160 /// Returns the \c ModRefInfo info for this function w.r.t. a particular
161 /// global, which may be more precise than the general information above.
162 ModRefInfo
getModRefInfoForGlobal(const GlobalValue
&GV
) const {
163 ModRefInfo GlobalMRI
=
164 mayReadAnyGlobal() ? ModRefInfo::Ref
: ModRefInfo::NoModRef
;
165 if (AlignedMap
*P
= Info
.getPointer()) {
166 auto I
= P
->Map
.find(&GV
);
167 if (I
!= P
->Map
.end())
168 GlobalMRI
= unionModRef(GlobalMRI
, I
->second
);
173 /// Add mod/ref info from another function into ours, saturating towards
175 void addFunctionInfo(const FunctionInfo
&FI
) {
176 addModRefInfo(FI
.getModRefInfo());
178 if (FI
.mayReadAnyGlobal())
179 setMayReadAnyGlobal();
181 if (AlignedMap
*P
= FI
.Info
.getPointer())
182 for (const auto &G
: P
->Map
)
183 addModRefInfoForGlobal(*G
.first
, G
.second
);
186 void addModRefInfoForGlobal(const GlobalValue
&GV
, ModRefInfo NewMRI
) {
187 AlignedMap
*P
= Info
.getPointer();
189 P
= new AlignedMap();
192 auto &GlobalMRI
= P
->Map
[&GV
];
193 GlobalMRI
= unionModRef(GlobalMRI
, NewMRI
);
196 /// Clear a global's ModRef info. Should be used when a global is being
198 void eraseModRefInfoForGlobal(const GlobalValue
&GV
) {
199 if (AlignedMap
*P
= Info
.getPointer())
204 /// All of the information is encoded into a single pointer, with a three bit
205 /// integer in the low three bits. The high bit provides a flag for when this
206 /// function may read any global. The low two bits are the ModRefInfo. And
207 /// the pointer, when non-null, points to a map from GlobalValue to
208 /// ModRefInfo specific to that GlobalValue.
209 PointerIntPair
<AlignedMap
*, 3, unsigned, AlignedMapPointerTraits
> Info
;
212 void GlobalsAAResult::DeletionCallbackHandle::deleted() {
213 Value
*V
= getValPtr();
214 if (auto *F
= dyn_cast
<Function
>(V
))
215 GAR
->FunctionInfos
.erase(F
);
217 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
218 if (GAR
->NonAddressTakenGlobals
.erase(GV
)) {
219 // This global might be an indirect global. If so, remove it and
220 // remove any AllocRelatedValues for it.
221 if (GAR
->IndirectGlobals
.erase(GV
)) {
222 // Remove any entries in AllocsForIndirectGlobals for this global.
223 for (auto I
= GAR
->AllocsForIndirectGlobals
.begin(),
224 E
= GAR
->AllocsForIndirectGlobals
.end();
227 GAR
->AllocsForIndirectGlobals
.erase(I
);
230 // Scan the function info we have collected and remove this global
232 for (auto &FIPair
: GAR
->FunctionInfos
)
233 FIPair
.second
.eraseModRefInfoForGlobal(*GV
);
237 // If this is an allocation related to an indirect global, remove it.
238 GAR
->AllocsForIndirectGlobals
.erase(V
);
240 // And clear out the handle.
242 GAR
->Handles
.erase(I
);
243 // This object is now destroyed!
246 FunctionModRefBehavior
GlobalsAAResult::getModRefBehavior(const Function
*F
) {
247 FunctionModRefBehavior Min
= FMRB_UnknownModRefBehavior
;
249 if (FunctionInfo
*FI
= getFunctionInfo(F
)) {
250 if (!isModOrRefSet(FI
->getModRefInfo()))
251 Min
= FMRB_DoesNotAccessMemory
;
252 else if (!isModSet(FI
->getModRefInfo()))
253 Min
= FMRB_OnlyReadsMemory
;
256 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F
) & Min
);
259 FunctionModRefBehavior
260 GlobalsAAResult::getModRefBehavior(const CallBase
*Call
) {
261 FunctionModRefBehavior Min
= FMRB_UnknownModRefBehavior
;
263 if (!Call
->hasOperandBundles())
264 if (const Function
*F
= Call
->getCalledFunction())
265 if (FunctionInfo
*FI
= getFunctionInfo(F
)) {
266 if (!isModOrRefSet(FI
->getModRefInfo()))
267 Min
= FMRB_DoesNotAccessMemory
;
268 else if (!isModSet(FI
->getModRefInfo()))
269 Min
= FMRB_OnlyReadsMemory
;
272 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call
) & Min
);
275 /// Returns the function info for the function, or null if we don't have
276 /// anything useful to say about it.
277 GlobalsAAResult::FunctionInfo
*
278 GlobalsAAResult::getFunctionInfo(const Function
*F
) {
279 auto I
= FunctionInfos
.find(F
);
280 if (I
!= FunctionInfos
.end())
285 /// AnalyzeGlobals - Scan through the users of all of the internal
286 /// GlobalValue's in the program. If none of them have their "address taken"
287 /// (really, their address passed to something nontrivial), record this fact,
288 /// and record the functions that they are used directly in.
289 void GlobalsAAResult::AnalyzeGlobals(Module
&M
) {
290 SmallPtrSet
<Function
*, 32> TrackedFunctions
;
291 for (Function
&F
: M
)
292 if (F
.hasLocalLinkage()) {
293 if (!AnalyzeUsesOfPointer(&F
)) {
294 // Remember that we are tracking this global.
295 NonAddressTakenGlobals
.insert(&F
);
296 TrackedFunctions
.insert(&F
);
297 Handles
.emplace_front(*this, &F
);
298 Handles
.front().I
= Handles
.begin();
299 ++NumNonAddrTakenFunctions
;
301 UnknownFunctionsWithLocalLinkage
= true;
304 SmallPtrSet
<Function
*, 16> Readers
, Writers
;
305 for (GlobalVariable
&GV
: M
.globals())
306 if (GV
.hasLocalLinkage()) {
307 if (!AnalyzeUsesOfPointer(&GV
, &Readers
,
308 GV
.isConstant() ? nullptr : &Writers
)) {
309 // Remember that we are tracking this global, and the mod/ref fns
310 NonAddressTakenGlobals
.insert(&GV
);
311 Handles
.emplace_front(*this, &GV
);
312 Handles
.front().I
= Handles
.begin();
314 for (Function
*Reader
: Readers
) {
315 if (TrackedFunctions
.insert(Reader
).second
) {
316 Handles
.emplace_front(*this, Reader
);
317 Handles
.front().I
= Handles
.begin();
319 FunctionInfos
[Reader
].addModRefInfoForGlobal(GV
, ModRefInfo::Ref
);
322 if (!GV
.isConstant()) // No need to keep track of writers to constants
323 for (Function
*Writer
: Writers
) {
324 if (TrackedFunctions
.insert(Writer
).second
) {
325 Handles
.emplace_front(*this, Writer
);
326 Handles
.front().I
= Handles
.begin();
328 FunctionInfos
[Writer
].addModRefInfoForGlobal(GV
, ModRefInfo::Mod
);
330 ++NumNonAddrTakenGlobalVars
;
332 // If this global holds a pointer type, see if it is an indirect global.
333 if (GV
.getValueType()->isPointerTy() &&
334 AnalyzeIndirectGlobalMemory(&GV
))
335 ++NumIndirectGlobalVars
;
342 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
343 /// If this is used by anything complex (i.e., the address escapes), return
344 /// true. Also, while we are at it, keep track of those functions that read and
345 /// write to the value.
347 /// If OkayStoreDest is non-null, stores into this global are allowed.
348 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value
*V
,
349 SmallPtrSetImpl
<Function
*> *Readers
,
350 SmallPtrSetImpl
<Function
*> *Writers
,
351 GlobalValue
*OkayStoreDest
) {
352 if (!V
->getType()->isPointerTy())
355 for (Use
&U
: V
->uses()) {
356 User
*I
= U
.getUser();
357 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
359 Readers
->insert(LI
->getParent()->getParent());
360 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
361 if (V
== SI
->getOperand(1)) {
363 Writers
->insert(SI
->getParent()->getParent());
364 } else if (SI
->getOperand(1) != OkayStoreDest
) {
365 return true; // Storing the pointer
367 } else if (Operator::getOpcode(I
) == Instruction::GetElementPtr
) {
368 if (AnalyzeUsesOfPointer(I
, Readers
, Writers
))
370 } else if (Operator::getOpcode(I
) == Instruction::BitCast
||
371 Operator::getOpcode(I
) == Instruction::AddrSpaceCast
) {
372 if (AnalyzeUsesOfPointer(I
, Readers
, Writers
, OkayStoreDest
))
374 } else if (auto *Call
= dyn_cast
<CallBase
>(I
)) {
375 // Make sure that this is just the function being called, not that it is
376 // passing into the function.
377 if (Call
->isDataOperand(&U
)) {
378 // Detect calls to free.
379 if (Call
->isArgOperand(&U
) &&
380 isFreeCall(I
, &GetTLI(*Call
->getFunction()))) {
382 Writers
->insert(Call
->getParent()->getParent());
384 return true; // Argument of an unknown call.
387 } else if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(I
)) {
388 if (!isa
<ConstantPointerNull
>(ICI
->getOperand(1)))
389 return true; // Allow comparison against null.
390 } else if (Constant
*C
= dyn_cast
<Constant
>(I
)) {
391 // Ignore constants which don't have any live uses.
392 if (isa
<GlobalValue
>(C
) || C
->isConstantUsed())
402 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
403 /// which holds a pointer type. See if the global always points to non-aliased
404 /// heap memory: that is, all initializers of the globals are allocations, and
405 /// those allocations have no use other than initialization of the global.
406 /// Further, all loads out of GV must directly use the memory, not store the
407 /// pointer somewhere. If this is true, we consider the memory pointed to by
408 /// GV to be owned by GV and can disambiguate other pointers from it.
409 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable
*GV
) {
410 // Keep track of values related to the allocation of the memory, f.e. the
411 // value produced by the malloc call and any casts.
412 std::vector
<Value
*> AllocRelatedValues
;
414 // If the initializer is a valid pointer, bail.
415 if (Constant
*C
= GV
->getInitializer())
416 if (!C
->isNullValue())
419 // Walk the user list of the global. If we find anything other than a direct
420 // load or store, bail out.
421 for (User
*U
: GV
->users()) {
422 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
423 // The pointer loaded from the global can only be used in simple ways:
424 // we allow addressing of it and loading storing to it. We do *not* allow
425 // storing the loaded pointer somewhere else or passing to a function.
426 if (AnalyzeUsesOfPointer(LI
))
427 return false; // Loaded pointer escapes.
428 // TODO: Could try some IP mod/ref of the loaded pointer.
429 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
430 // Storing the global itself.
431 if (SI
->getOperand(0) == GV
)
434 // If storing the null pointer, ignore it.
435 if (isa
<ConstantPointerNull
>(SI
->getOperand(0)))
438 // Check the value being stored.
439 Value
*Ptr
= getUnderlyingObject(SI
->getOperand(0));
441 if (!isAllocLikeFn(Ptr
, &GetTLI(*SI
->getFunction())))
442 return false; // Too hard to analyze.
444 // Analyze all uses of the allocation. If any of them are used in a
445 // non-simple way (e.g. stored to another global) bail out.
446 if (AnalyzeUsesOfPointer(Ptr
, /*Readers*/ nullptr, /*Writers*/ nullptr,
448 return false; // Loaded pointer escapes.
450 // Remember that this allocation is related to the indirect global.
451 AllocRelatedValues
.push_back(Ptr
);
453 // Something complex, bail out.
458 // Okay, this is an indirect global. Remember all of the allocations for
459 // this global in AllocsForIndirectGlobals.
460 while (!AllocRelatedValues
.empty()) {
461 AllocsForIndirectGlobals
[AllocRelatedValues
.back()] = GV
;
462 Handles
.emplace_front(*this, AllocRelatedValues
.back());
463 Handles
.front().I
= Handles
.begin();
464 AllocRelatedValues
.pop_back();
466 IndirectGlobals
.insert(GV
);
467 Handles
.emplace_front(*this, GV
);
468 Handles
.front().I
= Handles
.begin();
472 void GlobalsAAResult::CollectSCCMembership(CallGraph
&CG
) {
473 // We do a bottom-up SCC traversal of the call graph. In other words, we
474 // visit all callees before callers (leaf-first).
476 for (scc_iterator
<CallGraph
*> I
= scc_begin(&CG
); !I
.isAtEnd(); ++I
) {
477 const std::vector
<CallGraphNode
*> &SCC
= *I
;
478 assert(!SCC
.empty() && "SCC with no functions?");
480 for (auto *CGN
: SCC
)
481 if (Function
*F
= CGN
->getFunction())
482 FunctionToSCCMap
[F
] = SCCID
;
487 /// AnalyzeCallGraph - At this point, we know the functions where globals are
488 /// immediately stored to and read from. Propagate this information up the call
489 /// graph to all callers and compute the mod/ref info for all memory for each
491 void GlobalsAAResult::AnalyzeCallGraph(CallGraph
&CG
, Module
&M
) {
492 // We do a bottom-up SCC traversal of the call graph. In other words, we
493 // visit all callees before callers (leaf-first).
494 for (scc_iterator
<CallGraph
*> I
= scc_begin(&CG
); !I
.isAtEnd(); ++I
) {
495 const std::vector
<CallGraphNode
*> &SCC
= *I
;
496 assert(!SCC
.empty() && "SCC with no functions?");
498 Function
*F
= SCC
[0]->getFunction();
500 if (!F
|| !F
->isDefinitionExact()) {
501 // Calls externally or not exact - can't say anything useful. Remove any
502 // existing function records (may have been created when scanning
504 for (auto *Node
: SCC
)
505 FunctionInfos
.erase(Node
->getFunction());
509 FunctionInfo
&FI
= FunctionInfos
[F
];
510 Handles
.emplace_front(*this, F
);
511 Handles
.front().I
= Handles
.begin();
512 bool KnowNothing
= false;
514 // Collect the mod/ref properties due to called functions. We only compute
516 for (unsigned i
= 0, e
= SCC
.size(); i
!= e
&& !KnowNothing
; ++i
) {
522 if (F
->isDeclaration() || F
->hasOptNone()) {
523 // Try to get mod/ref behaviour from function attributes.
524 if (F
->doesNotAccessMemory()) {
525 // Can't do better than that!
526 } else if (F
->onlyReadsMemory()) {
527 FI
.addModRefInfo(ModRefInfo::Ref
);
528 if (!F
->isIntrinsic() && !F
->onlyAccessesArgMemory())
529 // This function might call back into the module and read a global -
530 // consider every global as possibly being read by this function.
531 FI
.setMayReadAnyGlobal();
533 FI
.addModRefInfo(ModRefInfo::ModRef
);
534 if (!F
->onlyAccessesArgMemory())
535 FI
.setMayReadAnyGlobal();
536 if (!F
->isIntrinsic()) {
544 for (CallGraphNode::iterator CI
= SCC
[i
]->begin(), E
= SCC
[i
]->end();
545 CI
!= E
&& !KnowNothing
; ++CI
)
546 if (Function
*Callee
= CI
->second
->getFunction()) {
547 if (FunctionInfo
*CalleeFI
= getFunctionInfo(Callee
)) {
548 // Propagate function effect up.
549 FI
.addFunctionInfo(*CalleeFI
);
551 // Can't say anything about it. However, if it is inside our SCC,
552 // then nothing needs to be done.
553 CallGraphNode
*CalleeNode
= CG
[Callee
];
554 if (!is_contained(SCC
, CalleeNode
))
562 // If we can't say anything useful about this SCC, remove all SCC functions
563 // from the FunctionInfos map.
565 for (auto *Node
: SCC
)
566 FunctionInfos
.erase(Node
->getFunction());
570 // Scan the function bodies for explicit loads or stores.
571 for (auto *Node
: SCC
) {
572 if (isModAndRefSet(FI
.getModRefInfo()))
573 break; // The mod/ref lattice saturates here.
575 // Don't prove any properties based on the implementation of an optnone
576 // function. Function attributes were already used as a best approximation
578 if (Node
->getFunction()->hasOptNone())
581 for (Instruction
&I
: instructions(Node
->getFunction())) {
582 if (isModAndRefSet(FI
.getModRefInfo()))
583 break; // The mod/ref lattice saturates here.
585 // We handle calls specially because the graph-relevant aspects are
587 if (auto *Call
= dyn_cast
<CallBase
>(&I
)) {
588 auto &TLI
= GetTLI(*Node
->getFunction());
589 if (isAllocationFn(Call
, &TLI
) || isFreeCall(Call
, &TLI
)) {
590 // FIXME: It is completely unclear why this is necessary and not
591 // handled by the above graph code.
592 FI
.addModRefInfo(ModRefInfo::ModRef
);
593 } else if (Function
*Callee
= Call
->getCalledFunction()) {
594 // The callgraph doesn't include intrinsic calls.
595 if (Callee
->isIntrinsic()) {
596 if (isa
<DbgInfoIntrinsic
>(Call
))
597 // Don't let dbg intrinsics affect alias info.
600 FunctionModRefBehavior Behaviour
=
601 AAResultBase::getModRefBehavior(Callee
);
602 FI
.addModRefInfo(createModRefInfo(Behaviour
));
608 // All non-call instructions we use the primary predicates for whether
609 // they read or write memory.
610 if (I
.mayReadFromMemory())
611 FI
.addModRefInfo(ModRefInfo::Ref
);
612 if (I
.mayWriteToMemory())
613 FI
.addModRefInfo(ModRefInfo::Mod
);
617 if (!isModSet(FI
.getModRefInfo()))
618 ++NumReadMemFunctions
;
619 if (!isModOrRefSet(FI
.getModRefInfo()))
622 // Finally, now that we know the full effect on this SCC, clone the
623 // information to each function in the SCC.
624 // FI is a reference into FunctionInfos, so copy it now so that it doesn't
625 // get invalidated if DenseMap decides to re-hash.
626 FunctionInfo CachedFI
= FI
;
627 for (unsigned i
= 1, e
= SCC
.size(); i
!= e
; ++i
)
628 FunctionInfos
[SCC
[i
]->getFunction()] = CachedFI
;
632 // GV is a non-escaping global. V is a pointer address that has been loaded from.
633 // If we can prove that V must escape, we can conclude that a load from V cannot
635 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue
*GV
,
638 const DataLayout
&DL
) {
639 SmallPtrSet
<const Value
*, 8> Visited
;
640 SmallVector
<const Value
*, 8> Inputs
;
644 const Value
*Input
= Inputs
.pop_back_val();
646 if (isa
<GlobalValue
>(Input
) || isa
<Argument
>(Input
) || isa
<CallInst
>(Input
) ||
647 isa
<InvokeInst
>(Input
))
648 // Arguments to functions or returns from functions are inherently
649 // escaping, so we can immediately classify those as not aliasing any
650 // non-addr-taken globals.
652 // (Transitive) loads from a global are also safe - if this aliased
653 // another global, its address would escape, so no alias.
656 // Recurse through a limited number of selects, loads and PHIs. This is an
657 // arbitrary depth of 4, lower numbers could be used to fix compile time
658 // issues if needed, but this is generally expected to be only be important
663 if (auto *LI
= dyn_cast
<LoadInst
>(Input
)) {
664 Inputs
.push_back(getUnderlyingObject(LI
->getPointerOperand()));
667 if (auto *SI
= dyn_cast
<SelectInst
>(Input
)) {
668 const Value
*LHS
= getUnderlyingObject(SI
->getTrueValue());
669 const Value
*RHS
= getUnderlyingObject(SI
->getFalseValue());
670 if (Visited
.insert(LHS
).second
)
671 Inputs
.push_back(LHS
);
672 if (Visited
.insert(RHS
).second
)
673 Inputs
.push_back(RHS
);
676 if (auto *PN
= dyn_cast
<PHINode
>(Input
)) {
677 for (const Value
*Op
: PN
->incoming_values()) {
678 Op
= getUnderlyingObject(Op
);
679 if (Visited
.insert(Op
).second
)
680 Inputs
.push_back(Op
);
686 } while (!Inputs
.empty());
688 // All inputs were known to be no-alias.
692 // There are particular cases where we can conclude no-alias between
693 // a non-addr-taken global and some other underlying object. Specifically,
694 // a non-addr-taken global is known to not be escaped from any function. It is
695 // also incorrect for a transformation to introduce an escape of a global in
696 // a way that is observable when it was not there previously. One function
697 // being transformed to introduce an escape which could possibly be observed
698 // (via loading from a global or the return value for example) within another
699 // function is never safe. If the observation is made through non-atomic
700 // operations on different threads, it is a data-race and UB. If the
701 // observation is well defined, by being observed the transformation would have
702 // changed program behavior by introducing the observed escape, making it an
703 // invalid transform.
705 // This property does require that transformations which *temporarily* escape
706 // a global that was not previously escaped, prior to restoring it, cannot rely
707 // on the results of GMR::alias. This seems a reasonable restriction, although
708 // currently there is no way to enforce it. There is also no realistic
709 // optimization pass that would make this mistake. The closest example is
710 // a transformation pass which does reg2mem of SSA values but stores them into
711 // global variables temporarily before restoring the global variable's value.
712 // This could be useful to expose "benign" races for example. However, it seems
713 // reasonable to require that a pass which introduces escapes of global
714 // variables in this way to either not trust AA results while the escape is
715 // active, or to be forced to operate as a module pass that cannot co-exist
716 // with an alias analysis such as GMR.
717 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue
*GV
,
719 // In order to know that the underlying object cannot alias the
720 // non-addr-taken global, we must know that it would have to be an escape.
721 // Thus if the underlying object is a function argument, a load from
722 // a global, or the return of a function, it cannot alias. We can also
723 // recurse through PHI nodes and select nodes provided all of their inputs
724 // resolve to one of these known-escaping roots.
725 SmallPtrSet
<const Value
*, 8> Visited
;
726 SmallVector
<const Value
*, 8> Inputs
;
731 const Value
*Input
= Inputs
.pop_back_val();
733 if (auto *InputGV
= dyn_cast
<GlobalValue
>(Input
)) {
734 // If one input is the very global we're querying against, then we can't
735 // conclude no-alias.
739 // Distinct GlobalVariables never alias, unless overriden or zero-sized.
740 // FIXME: The condition can be refined, but be conservative for now.
741 auto *GVar
= dyn_cast
<GlobalVariable
>(GV
);
742 auto *InputGVar
= dyn_cast
<GlobalVariable
>(InputGV
);
743 if (GVar
&& InputGVar
&&
744 !GVar
->isDeclaration() && !InputGVar
->isDeclaration() &&
745 !GVar
->isInterposable() && !InputGVar
->isInterposable()) {
746 Type
*GVType
= GVar
->getInitializer()->getType();
747 Type
*InputGVType
= InputGVar
->getInitializer()->getType();
748 if (GVType
->isSized() && InputGVType
->isSized() &&
749 (DL
.getTypeAllocSize(GVType
) > 0) &&
750 (DL
.getTypeAllocSize(InputGVType
) > 0))
754 // Conservatively return false, even though we could be smarter
755 // (e.g. look through GlobalAliases).
759 if (isa
<Argument
>(Input
) || isa
<CallInst
>(Input
) ||
760 isa
<InvokeInst
>(Input
)) {
761 // Arguments to functions or returns from functions are inherently
762 // escaping, so we can immediately classify those as not aliasing any
763 // non-addr-taken globals.
767 // Recurse through a limited number of selects, loads and PHIs. This is an
768 // arbitrary depth of 4, lower numbers could be used to fix compile time
769 // issues if needed, but this is generally expected to be only be important
774 if (auto *LI
= dyn_cast
<LoadInst
>(Input
)) {
775 // A pointer loaded from a global would have been captured, and we know
776 // that the global is non-escaping, so no alias.
777 const Value
*Ptr
= getUnderlyingObject(LI
->getPointerOperand());
778 if (isNonEscapingGlobalNoAliasWithLoad(GV
, Ptr
, Depth
, DL
))
779 // The load does not alias with GV.
781 // Otherwise, a load could come from anywhere, so bail.
784 if (auto *SI
= dyn_cast
<SelectInst
>(Input
)) {
785 const Value
*LHS
= getUnderlyingObject(SI
->getTrueValue());
786 const Value
*RHS
= getUnderlyingObject(SI
->getFalseValue());
787 if (Visited
.insert(LHS
).second
)
788 Inputs
.push_back(LHS
);
789 if (Visited
.insert(RHS
).second
)
790 Inputs
.push_back(RHS
);
793 if (auto *PN
= dyn_cast
<PHINode
>(Input
)) {
794 for (const Value
*Op
: PN
->incoming_values()) {
795 Op
= getUnderlyingObject(Op
);
796 if (Visited
.insert(Op
).second
)
797 Inputs
.push_back(Op
);
802 // FIXME: It would be good to handle other obvious no-alias cases here, but
803 // it isn't clear how to do so reasonably without building a small version
804 // of BasicAA into this code. We could recurse into AAResultBase::alias
805 // here but that seems likely to go poorly as we're inside the
806 // implementation of such a query. Until then, just conservatively return
809 } while (!Inputs
.empty());
811 // If all the inputs to V were definitively no-alias, then V is no-alias.
815 bool GlobalsAAResult::invalidate(Module
&, const PreservedAnalyses
&PA
,
816 ModuleAnalysisManager::Invalidator
&) {
817 // Check whether the analysis has been explicitly invalidated. Otherwise, it's
818 // stateless and remains preserved.
819 auto PAC
= PA
.getChecker
<GlobalsAA
>();
820 return !PAC
.preservedWhenStateless();
823 /// alias - If one of the pointers is to a global that we are tracking, and the
824 /// other is some random pointer, we know there cannot be an alias, because the
825 /// address of the global isn't taken.
826 AliasResult
GlobalsAAResult::alias(const MemoryLocation
&LocA
,
827 const MemoryLocation
&LocB
,
829 // Get the base object these pointers point to.
831 getUnderlyingObject(LocA
.Ptr
->stripPointerCastsForAliasAnalysis());
833 getUnderlyingObject(LocB
.Ptr
->stripPointerCastsForAliasAnalysis());
835 // If either of the underlying values is a global, they may be non-addr-taken
836 // globals, which we can answer queries about.
837 const GlobalValue
*GV1
= dyn_cast
<GlobalValue
>(UV1
);
838 const GlobalValue
*GV2
= dyn_cast
<GlobalValue
>(UV2
);
840 // If the global's address is taken, pretend we don't know it's a pointer to
842 if (GV1
&& !NonAddressTakenGlobals
.count(GV1
))
844 if (GV2
&& !NonAddressTakenGlobals
.count(GV2
))
847 // If the two pointers are derived from two different non-addr-taken
848 // globals we know these can't alias.
849 if (GV1
&& GV2
&& GV1
!= GV2
)
850 return AliasResult::NoAlias
;
852 // If one is and the other isn't, it isn't strictly safe but we can fake
853 // this result if necessary for performance. This does not appear to be
854 // a common problem in practice.
855 if (EnableUnsafeGlobalsModRefAliasResults
)
856 if ((GV1
|| GV2
) && GV1
!= GV2
)
857 return AliasResult::NoAlias
;
859 // Check for a special case where a non-escaping global can be used to
860 // conclude no-alias.
861 if ((GV1
|| GV2
) && GV1
!= GV2
) {
862 const GlobalValue
*GV
= GV1
? GV1
: GV2
;
863 const Value
*UV
= GV1
? UV2
: UV1
;
864 if (isNonEscapingGlobalNoAlias(GV
, UV
))
865 return AliasResult::NoAlias
;
868 // Otherwise if they are both derived from the same addr-taken global, we
869 // can't know the two accesses don't overlap.
872 // These pointers may be based on the memory owned by an indirect global. If
873 // so, we may be able to handle this. First check to see if the base pointer
874 // is a direct load from an indirect global.
876 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(UV1
))
877 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(LI
->getOperand(0)))
878 if (IndirectGlobals
.count(GV
))
880 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(UV2
))
881 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(LI
->getOperand(0)))
882 if (IndirectGlobals
.count(GV
))
885 // These pointers may also be from an allocation for the indirect global. If
886 // so, also handle them.
888 GV1
= AllocsForIndirectGlobals
.lookup(UV1
);
890 GV2
= AllocsForIndirectGlobals
.lookup(UV2
);
892 // Now that we know whether the two pointers are related to indirect globals,
893 // use this to disambiguate the pointers. If the pointers are based on
894 // different indirect globals they cannot alias.
895 if (GV1
&& GV2
&& GV1
!= GV2
)
896 return AliasResult::NoAlias
;
898 // If one is based on an indirect global and the other isn't, it isn't
899 // strictly safe but we can fake this result if necessary for performance.
900 // This does not appear to be a common problem in practice.
901 if (EnableUnsafeGlobalsModRefAliasResults
)
902 if ((GV1
|| GV2
) && GV1
!= GV2
)
903 return AliasResult::NoAlias
;
905 return AAResultBase::alias(LocA
, LocB
, AAQI
);
908 ModRefInfo
GlobalsAAResult::getModRefInfoForArgument(const CallBase
*Call
,
909 const GlobalValue
*GV
,
911 if (Call
->doesNotAccessMemory())
912 return ModRefInfo::NoModRef
;
913 ModRefInfo ConservativeResult
=
914 Call
->onlyReadsMemory() ? ModRefInfo::Ref
: ModRefInfo::ModRef
;
916 // Iterate through all the arguments to the called function. If any argument
917 // is based on GV, return the conservative result.
918 for (auto &A
: Call
->args()) {
919 SmallVector
<const Value
*, 4> Objects
;
920 getUnderlyingObjects(A
, Objects
);
922 // All objects must be identified.
923 if (!all_of(Objects
, isIdentifiedObject
) &&
924 // Try ::alias to see if all objects are known not to alias GV.
925 !all_of(Objects
, [&](const Value
*V
) {
926 return this->alias(MemoryLocation::getBeforeOrAfter(V
),
927 MemoryLocation::getBeforeOrAfter(GV
),
928 AAQI
) == AliasResult::NoAlias
;
930 return ConservativeResult
;
932 if (is_contained(Objects
, GV
))
933 return ConservativeResult
;
936 // We identified all objects in the argument list, and none of them were GV.
937 return ModRefInfo::NoModRef
;
940 ModRefInfo
GlobalsAAResult::getModRefInfo(const CallBase
*Call
,
941 const MemoryLocation
&Loc
,
943 ModRefInfo Known
= ModRefInfo::ModRef
;
945 // If we are asking for mod/ref info of a direct call with a pointer to a
946 // global we are tracking, return information if we have it.
947 if (const GlobalValue
*GV
=
948 dyn_cast
<GlobalValue
>(getUnderlyingObject(Loc
.Ptr
)))
949 // If GV is internal to this IR and there is no function with local linkage
950 // that has had their address taken, keep looking for a tighter ModRefInfo.
951 if (GV
->hasLocalLinkage() && !UnknownFunctionsWithLocalLinkage
)
952 if (const Function
*F
= Call
->getCalledFunction())
953 if (NonAddressTakenGlobals
.count(GV
))
954 if (const FunctionInfo
*FI
= getFunctionInfo(F
))
955 Known
= unionModRef(FI
->getModRefInfoForGlobal(*GV
),
956 getModRefInfoForArgument(Call
, GV
, AAQI
));
958 if (!isModOrRefSet(Known
))
959 return ModRefInfo::NoModRef
; // No need to query other mod/ref analyses
960 return intersectModRef(Known
, AAResultBase::getModRefInfo(Call
, Loc
, AAQI
));
963 GlobalsAAResult::GlobalsAAResult(
964 const DataLayout
&DL
,
965 std::function
<const TargetLibraryInfo
&(Function
&F
)> GetTLI
)
966 : AAResultBase(), DL(DL
), GetTLI(std::move(GetTLI
)) {}
968 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult
&&Arg
)
969 : AAResultBase(std::move(Arg
)), DL(Arg
.DL
), GetTLI(std::move(Arg
.GetTLI
)),
970 NonAddressTakenGlobals(std::move(Arg
.NonAddressTakenGlobals
)),
971 IndirectGlobals(std::move(Arg
.IndirectGlobals
)),
972 AllocsForIndirectGlobals(std::move(Arg
.AllocsForIndirectGlobals
)),
973 FunctionInfos(std::move(Arg
.FunctionInfos
)),
974 Handles(std::move(Arg
.Handles
)) {
975 // Update the parent for each DeletionCallbackHandle.
976 for (auto &H
: Handles
) {
977 assert(H
.GAR
== &Arg
);
982 GlobalsAAResult::~GlobalsAAResult() {}
984 /*static*/ GlobalsAAResult
GlobalsAAResult::analyzeModule(
985 Module
&M
, std::function
<const TargetLibraryInfo
&(Function
&F
)> GetTLI
,
987 GlobalsAAResult
Result(M
.getDataLayout(), GetTLI
);
989 // Discover which functions aren't recursive, to feed into AnalyzeGlobals.
990 Result
.CollectSCCMembership(CG
);
992 // Find non-addr taken globals.
993 Result
.AnalyzeGlobals(M
);
996 Result
.AnalyzeCallGraph(CG
, M
);
1001 AnalysisKey
GlobalsAA::Key
;
1003 GlobalsAAResult
GlobalsAA::run(Module
&M
, ModuleAnalysisManager
&AM
) {
1004 FunctionAnalysisManager
&FAM
=
1005 AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
1006 auto GetTLI
= [&FAM
](Function
&F
) -> TargetLibraryInfo
& {
1007 return FAM
.getResult
<TargetLibraryAnalysis
>(F
);
1009 return GlobalsAAResult::analyzeModule(M
, GetTLI
,
1010 AM
.getResult
<CallGraphAnalysis
>(M
));
1013 char GlobalsAAWrapperPass::ID
= 0;
1014 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass
, "globals-aa",
1015 "Globals Alias Analysis", false, true)
1016 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass
)
1017 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
1018 INITIALIZE_PASS_END(GlobalsAAWrapperPass
, "globals-aa",
1019 "Globals Alias Analysis", false, true)
1021 ModulePass
*llvm::createGlobalsAAWrapperPass() {
1022 return new GlobalsAAWrapperPass();
1025 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID
) {
1026 initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry());
1029 bool GlobalsAAWrapperPass::runOnModule(Module
&M
) {
1030 auto GetTLI
= [this](Function
&F
) -> TargetLibraryInfo
& {
1031 return this->getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
1033 Result
.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule(
1034 M
, GetTLI
, getAnalysis
<CallGraphWrapperPass
>().getCallGraph())));
1038 bool GlobalsAAWrapperPass::doFinalization(Module
&M
) {
1043 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
1044 AU
.setPreservesAll();
1045 AU
.addRequired
<CallGraphWrapperPass
>();
1046 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();