[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Analysis / IRSimilarityIdentifier.cpp
bloba6298afb66f59325ecc387dc6431206fa1a6619b
1 //===- IRSimilarityIdentifier.cpp - Find similarity in a module -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // Implementation file for the IRSimilarityIdentifier for identifying
11 // similarities in IR including the IRInstructionMapper.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/IRSimilarityIdentifier.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/IR/Intrinsics.h"
18 #include "llvm/IR/Operator.h"
19 #include "llvm/IR/User.h"
20 #include "llvm/InitializePasses.h"
21 #include "llvm/Support/SuffixTree.h"
23 using namespace llvm;
24 using namespace IRSimilarity;
26 IRInstructionData::IRInstructionData(Instruction &I, bool Legality,
27 IRInstructionDataList &IDList)
28 : Inst(&I), Legal(Legality), IDL(&IDList) {
29 // We check for whether we have a comparison instruction. If it is, we
30 // find the "less than" version of the predicate for consistency for
31 // comparison instructions throught the program.
32 if (CmpInst *C = dyn_cast<CmpInst>(&I)) {
33 CmpInst::Predicate Predicate = predicateForConsistency(C);
34 if (Predicate != C->getPredicate())
35 RevisedPredicate = Predicate;
38 // Here we collect the operands and their types for determining whether
39 // the structure of the operand use matches between two different candidates.
40 for (Use &OI : I.operands()) {
41 if (isa<CmpInst>(I) && RevisedPredicate.hasValue()) {
42 // If we have a CmpInst where the predicate is reversed, it means the
43 // operands must be reversed as well.
44 OperVals.insert(OperVals.begin(), OI.get());
45 continue;
48 OperVals.push_back(OI.get());
52 CmpInst::Predicate IRInstructionData::predicateForConsistency(CmpInst *CI) {
53 switch (CI->getPredicate()) {
54 case CmpInst::FCMP_OGT:
55 case CmpInst::FCMP_UGT:
56 case CmpInst::FCMP_OGE:
57 case CmpInst::FCMP_UGE:
58 case CmpInst::ICMP_SGT:
59 case CmpInst::ICMP_UGT:
60 case CmpInst::ICMP_SGE:
61 case CmpInst::ICMP_UGE:
62 return CI->getSwappedPredicate();
63 default:
64 return CI->getPredicate();
68 CmpInst::Predicate IRInstructionData::getPredicate() const {
69 assert(isa<CmpInst>(Inst) &&
70 "Can only get a predicate from a compare instruction");
72 if (RevisedPredicate.hasValue())
73 return RevisedPredicate.getValue();
75 return cast<CmpInst>(Inst)->getPredicate();
78 static StringRef getCalledFunctionName(CallInst &CI) {
79 assert(CI.getCalledFunction() != nullptr && "Called Function is nullptr?");
81 return CI.getCalledFunction()->getName();
84 bool IRSimilarity::isClose(const IRInstructionData &A,
85 const IRInstructionData &B) {
87 if (!A.Legal || !B.Legal)
88 return false;
90 // Check if we are performing the same sort of operation on the same types
91 // but not on the same values.
92 if (!A.Inst->isSameOperationAs(B.Inst)) {
93 // If there is a predicate, this means that either there is a swapped
94 // predicate, or that the types are different, we want to make sure that
95 // the predicates are equivalent via swapping.
96 if (isa<CmpInst>(A.Inst) && isa<CmpInst>(B.Inst)) {
98 if (A.getPredicate() != B.getPredicate())
99 return false;
101 // If the predicates are the same via swap, make sure that the types are
102 // still the same.
103 auto ZippedTypes = zip(A.OperVals, B.OperVals);
105 return all_of(
106 ZippedTypes, [](std::tuple<llvm::Value *, llvm::Value *> R) {
107 return std::get<0>(R)->getType() == std::get<1>(R)->getType();
111 return false;
114 // Since any GEP Instruction operands after the first operand cannot be
115 // defined by a register, we must make sure that the operands after the first
116 // are the same in the two instructions
117 if (auto *GEP = dyn_cast<GetElementPtrInst>(A.Inst)) {
118 auto *OtherGEP = cast<GetElementPtrInst>(B.Inst);
120 // If the instructions do not have the same inbounds restrictions, we do
121 // not consider them the same.
122 if (GEP->isInBounds() != OtherGEP->isInBounds())
123 return false;
125 auto ZippedOperands = zip(GEP->indices(), OtherGEP->indices());
127 // We increment here since we do not care about the first instruction,
128 // we only care about the following operands since they must be the
129 // exact same to be considered similar.
130 return all_of(drop_begin(ZippedOperands),
131 [](std::tuple<llvm::Use &, llvm::Use &> R) {
132 return std::get<0>(R) == std::get<1>(R);
136 // If the instructions are functions, we make sure that the function name is
137 // the same. We already know that the types are since is isSameOperationAs is
138 // true.
139 if (isa<CallInst>(A.Inst) && isa<CallInst>(B.Inst)) {
140 CallInst *CIA = cast<CallInst>(A.Inst);
141 CallInst *CIB = cast<CallInst>(B.Inst);
142 if (getCalledFunctionName(*CIA).compare(getCalledFunctionName(*CIB)) != 0)
143 return false;
146 return true;
149 // TODO: This is the same as the MachineOutliner, and should be consolidated
150 // into the same interface.
151 void IRInstructionMapper::convertToUnsignedVec(
152 BasicBlock &BB, std::vector<IRInstructionData *> &InstrList,
153 std::vector<unsigned> &IntegerMapping) {
154 BasicBlock::iterator It = BB.begin();
156 std::vector<unsigned> IntegerMappingForBB;
157 std::vector<IRInstructionData *> InstrListForBB;
159 HaveLegalRange = false;
160 CanCombineWithPrevInstr = false;
161 AddedIllegalLastTime = true;
163 for (BasicBlock::iterator Et = BB.end(); It != Et; ++It) {
164 switch (InstClassifier.visit(*It)) {
165 case InstrType::Legal:
166 mapToLegalUnsigned(It, IntegerMappingForBB, InstrListForBB);
167 break;
168 case InstrType::Illegal:
169 mapToIllegalUnsigned(It, IntegerMappingForBB, InstrListForBB);
170 break;
171 case InstrType::Invisible:
172 AddedIllegalLastTime = false;
173 break;
177 if (HaveLegalRange) {
178 mapToIllegalUnsigned(It, IntegerMappingForBB, InstrListForBB, true);
179 for (IRInstructionData *ID : InstrListForBB)
180 this->IDL->push_back(*ID);
181 llvm::append_range(InstrList, InstrListForBB);
182 llvm::append_range(IntegerMapping, IntegerMappingForBB);
186 // TODO: This is the same as the MachineOutliner, and should be consolidated
187 // into the same interface.
188 unsigned IRInstructionMapper::mapToLegalUnsigned(
189 BasicBlock::iterator &It, std::vector<unsigned> &IntegerMappingForBB,
190 std::vector<IRInstructionData *> &InstrListForBB) {
191 // We added something legal, so we should unset the AddedLegalLastTime
192 // flag.
193 AddedIllegalLastTime = false;
195 // If we have at least two adjacent legal instructions (which may have
196 // invisible instructions in between), remember that.
197 if (CanCombineWithPrevInstr)
198 HaveLegalRange = true;
199 CanCombineWithPrevInstr = true;
201 // Get the integer for this instruction or give it the current
202 // LegalInstrNumber.
203 IRInstructionData *ID = allocateIRInstructionData(*It, true, *IDL);
204 InstrListForBB.push_back(ID);
206 // Add to the instruction list
207 bool WasInserted;
208 DenseMap<IRInstructionData *, unsigned, IRInstructionDataTraits>::iterator
209 ResultIt;
210 std::tie(ResultIt, WasInserted) =
211 InstructionIntegerMap.insert(std::make_pair(ID, LegalInstrNumber));
212 unsigned INumber = ResultIt->second;
214 // There was an insertion.
215 if (WasInserted)
216 LegalInstrNumber++;
218 IntegerMappingForBB.push_back(INumber);
220 // Make sure we don't overflow or use any integers reserved by the DenseMap.
221 assert(LegalInstrNumber < IllegalInstrNumber &&
222 "Instruction mapping overflow!");
224 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
225 "Tried to assign DenseMap tombstone or empty key to instruction.");
226 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
227 "Tried to assign DenseMap tombstone or empty key to instruction.");
229 return INumber;
232 IRInstructionData *
233 IRInstructionMapper::allocateIRInstructionData(Instruction &I, bool Legality,
234 IRInstructionDataList &IDL) {
235 return new (InstDataAllocator->Allocate()) IRInstructionData(I, Legality, IDL);
238 IRInstructionDataList *
239 IRInstructionMapper::allocateIRInstructionDataList() {
240 return new (IDLAllocator->Allocate()) IRInstructionDataList();
243 // TODO: This is the same as the MachineOutliner, and should be consolidated
244 // into the same interface.
245 unsigned IRInstructionMapper::mapToIllegalUnsigned(
246 BasicBlock::iterator &It, std::vector<unsigned> &IntegerMappingForBB,
247 std::vector<IRInstructionData *> &InstrListForBB, bool End) {
248 // Can't combine an illegal instruction. Set the flag.
249 CanCombineWithPrevInstr = false;
251 // Only add one illegal number per range of legal numbers.
252 if (AddedIllegalLastTime)
253 return IllegalInstrNumber;
255 IRInstructionData *ID = nullptr;
256 if (!End)
257 ID = allocateIRInstructionData(*It, false, *IDL);
258 InstrListForBB.push_back(ID);
260 // Remember that we added an illegal number last time.
261 AddedIllegalLastTime = true;
262 unsigned INumber = IllegalInstrNumber;
263 IntegerMappingForBB.push_back(IllegalInstrNumber--);
265 assert(LegalInstrNumber < IllegalInstrNumber &&
266 "Instruction mapping overflow!");
268 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
269 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
271 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
272 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
274 return INumber;
277 IRSimilarityCandidate::IRSimilarityCandidate(unsigned StartIdx, unsigned Len,
278 IRInstructionData *FirstInstIt,
279 IRInstructionData *LastInstIt)
280 : StartIdx(StartIdx), Len(Len) {
282 assert(FirstInstIt != nullptr && "Instruction is nullptr!");
283 assert(LastInstIt != nullptr && "Instruction is nullptr!");
284 assert(StartIdx + Len > StartIdx &&
285 "Overflow for IRSimilarityCandidate range?");
286 assert(Len - 1 == static_cast<unsigned>(std::distance(
287 iterator(FirstInstIt), iterator(LastInstIt))) &&
288 "Length of the first and last IRInstructionData do not match the "
289 "given length");
291 // We iterate over the given instructions, and map each unique value
292 // to a unique number in the IRSimilarityCandidate ValueToNumber and
293 // NumberToValue maps. A constant get its own value globally, the individual
294 // uses of the constants are not considered to be unique.
296 // IR: Mapping Added:
297 // %add1 = add i32 %a, c1 %add1 -> 3, %a -> 1, c1 -> 2
298 // %add2 = add i32 %a, %1 %add2 -> 4
299 // %add3 = add i32 c2, c1 %add3 -> 6, c2 -> 5
301 // when replace with global values, starting from 1, would be
303 // 3 = add i32 1, 2
304 // 4 = add i32 1, 3
305 // 6 = add i32 5, 2
306 unsigned LocalValNumber = 1;
307 IRInstructionDataList::iterator ID = iterator(*FirstInstIt);
308 for (unsigned Loc = StartIdx; Loc < StartIdx + Len; Loc++, ID++) {
309 // Map the operand values to an unsigned integer if it does not already
310 // have an unsigned integer assigned to it.
311 for (Value *Arg : ID->OperVals)
312 if (ValueToNumber.find(Arg) == ValueToNumber.end()) {
313 ValueToNumber.try_emplace(Arg, LocalValNumber);
314 NumberToValue.try_emplace(LocalValNumber, Arg);
315 LocalValNumber++;
318 // Mapping the instructions to an unsigned integer if it is not already
319 // exist in the mapping.
320 if (ValueToNumber.find(ID->Inst) == ValueToNumber.end()) {
321 ValueToNumber.try_emplace(ID->Inst, LocalValNumber);
322 NumberToValue.try_emplace(LocalValNumber, ID->Inst);
323 LocalValNumber++;
327 // Setting the first and last instruction data pointers for the candidate. If
328 // we got through the entire for loop without hitting an assert, we know
329 // that both of these instructions are not nullptrs.
330 FirstInst = FirstInstIt;
331 LastInst = LastInstIt;
334 bool IRSimilarityCandidate::isSimilar(const IRSimilarityCandidate &A,
335 const IRSimilarityCandidate &B) {
336 if (A.getLength() != B.getLength())
337 return false;
339 auto InstrDataForBoth =
340 zip(make_range(A.begin(), A.end()), make_range(B.begin(), B.end()));
342 return all_of(InstrDataForBoth,
343 [](std::tuple<IRInstructionData &, IRInstructionData &> R) {
344 IRInstructionData &A = std::get<0>(R);
345 IRInstructionData &B = std::get<1>(R);
346 if (!A.Legal || !B.Legal)
347 return false;
348 return isClose(A, B);
352 /// Determine if one or more of the assigned global value numbers for the
353 /// operands in \p TargetValueNumbers is in the current mapping set for operand
354 /// numbers in \p SourceOperands. The set of possible corresponding global
355 /// value numbers are replaced with the most recent version of compatible
356 /// values.
358 /// \param [in] SourceValueToNumberMapping - The mapping of a Value to global
359 /// value number for the source IRInstructionCandidate.
360 /// \param [in, out] CurrentSrcTgtNumberMapping - The current mapping of source
361 /// IRSimilarityCandidate global value numbers to a set of possible numbers in
362 /// the target.
363 /// \param [in] SourceOperands - The operands in the original
364 /// IRSimilarityCandidate in the current instruction.
365 /// \param [in] TargetValueNumbers - The global value numbers of the operands in
366 /// the corresponding Instruction in the other IRSimilarityCandidate.
367 /// \returns true if there exists a possible mapping between the source
368 /// Instruction operands and the target Instruction operands, and false if not.
369 static bool checkNumberingAndReplaceCommutative(
370 const DenseMap<Value *, unsigned> &SourceValueToNumberMapping,
371 DenseMap<unsigned, DenseSet<unsigned>> &CurrentSrcTgtNumberMapping,
372 ArrayRef<Value *> &SourceOperands,
373 DenseSet<unsigned> &TargetValueNumbers){
375 DenseMap<unsigned, DenseSet<unsigned>>::iterator ValueMappingIt;
377 unsigned ArgVal;
378 bool WasInserted;
380 // Iterate over the operands in the source IRSimilarityCandidate to determine
381 // whether there exists an operand in the other IRSimilarityCandidate that
382 // creates a valid mapping of Value to Value between the
383 // IRSimilarityCaniddates.
384 for (Value *V : SourceOperands) {
385 ArgVal = SourceValueToNumberMapping.find(V)->second;
387 std::tie(ValueMappingIt, WasInserted) = CurrentSrcTgtNumberMapping.insert(
388 std::make_pair(ArgVal, TargetValueNumbers));
390 // Instead of finding a current mapping, we inserted a set. This means a
391 // mapping did not exist for the source Instruction operand, it has no
392 // current constraints we need to check.
393 if (WasInserted)
394 continue;
396 // If a mapping already exists for the source operand to the values in the
397 // other IRSimilarityCandidate we need to iterate over the items in other
398 // IRSimilarityCandidate's Instruction to determine whether there is a valid
399 // mapping of Value to Value.
400 DenseSet<unsigned> NewSet;
401 for (unsigned &Curr : ValueMappingIt->second)
402 // If we can find the value in the mapping, we add it to the new set.
403 if (TargetValueNumbers.contains(Curr))
404 NewSet.insert(Curr);
406 // If we could not find a Value, return 0.
407 if (NewSet.empty())
408 return false;
410 // Otherwise replace the old mapping with the newly constructed one.
411 if (NewSet.size() != ValueMappingIt->second.size())
412 ValueMappingIt->second.swap(NewSet);
414 // We have reached no conclusions about the mapping, and cannot remove
415 // any items from the other operands, so we move to check the next operand.
416 if (ValueMappingIt->second.size() != 1)
417 continue;
420 unsigned ValToRemove = *ValueMappingIt->second.begin();
421 // When there is only one item left in the mapping for and operand, remove
422 // the value from the other operands. If it results in there being no
423 // mapping, return false, it means the mapping is wrong
424 for (Value *InnerV : SourceOperands) {
425 if (V == InnerV)
426 continue;
428 unsigned InnerVal = SourceValueToNumberMapping.find(InnerV)->second;
429 ValueMappingIt = CurrentSrcTgtNumberMapping.find(InnerVal);
430 if (ValueMappingIt == CurrentSrcTgtNumberMapping.end())
431 continue;
433 ValueMappingIt->second.erase(ValToRemove);
434 if (ValueMappingIt->second.empty())
435 return false;
439 return true;
442 /// Determine if operand number \p TargetArgVal is in the current mapping set
443 /// for operand number \p SourceArgVal.
445 /// \param [in, out] CurrentSrcTgtNumberMapping current mapping of global
446 /// value numbers from source IRSimilarityCandidate to target
447 /// IRSimilarityCandidate.
448 /// \param [in] SourceArgVal The global value number for an operand in the
449 /// in the original candidate.
450 /// \param [in] TargetArgVal The global value number for the corresponding
451 /// operand in the other candidate.
452 /// \returns True if there exists a mapping and false if not.
453 bool checkNumberingAndReplace(
454 DenseMap<unsigned, DenseSet<unsigned>> &CurrentSrcTgtNumberMapping,
455 unsigned SourceArgVal, unsigned TargetArgVal) {
456 // We are given two unsigned integers representing the global values of
457 // the operands in different IRSimilarityCandidates and a current mapping
458 // between the two.
460 // Source Operand GVN: 1
461 // Target Operand GVN: 2
462 // CurrentMapping: {1: {1, 2}}
464 // Since we have mapping, and the target operand is contained in the set, we
465 // update it to:
466 // CurrentMapping: {1: {2}}
467 // and can return true. But, if the mapping was
468 // CurrentMapping: {1: {3}}
469 // we would return false.
471 bool WasInserted;
472 DenseMap<unsigned, DenseSet<unsigned>>::iterator Val;
474 std::tie(Val, WasInserted) = CurrentSrcTgtNumberMapping.insert(
475 std::make_pair(SourceArgVal, DenseSet<unsigned>({TargetArgVal})));
477 // If we created a new mapping, then we are done.
478 if (WasInserted)
479 return true;
481 // If there is more than one option in the mapping set, and the target value
482 // is included in the mapping set replace that set with one that only includes
483 // the target value, as it is the only valid mapping via the non commutative
484 // instruction.
486 DenseSet<unsigned> &TargetSet = Val->second;
487 if (TargetSet.size() > 1 && TargetSet.contains(TargetArgVal)) {
488 TargetSet.clear();
489 TargetSet.insert(TargetArgVal);
490 return true;
493 // Return true if we can find the value in the set.
494 return TargetSet.contains(TargetArgVal);
497 bool IRSimilarityCandidate::compareNonCommutativeOperandMapping(
498 OperandMapping A, OperandMapping B) {
499 // Iterators to keep track of where we are in the operands for each
500 // Instruction.
501 ArrayRef<Value *>::iterator VItA = A.OperVals.begin();
502 ArrayRef<Value *>::iterator VItB = B.OperVals.begin();
503 unsigned OperandLength = A.OperVals.size();
505 // For each operand, get the value numbering and ensure it is consistent.
506 for (unsigned Idx = 0; Idx < OperandLength; Idx++, VItA++, VItB++) {
507 unsigned OperValA = A.IRSC.ValueToNumber.find(*VItA)->second;
508 unsigned OperValB = B.IRSC.ValueToNumber.find(*VItB)->second;
510 // Attempt to add a set with only the target value. If there is no mapping
511 // we can create it here.
513 // For an instruction like a subtraction:
514 // IRSimilarityCandidateA: IRSimilarityCandidateB:
515 // %resultA = sub %a, %b %resultB = sub %d, %e
517 // We map %a -> %d and %b -> %e.
519 // And check to see whether their mapping is consistent in
520 // checkNumberingAndReplace.
522 if (!checkNumberingAndReplace(A.ValueNumberMapping, OperValA, OperValB))
523 return false;
525 if (!checkNumberingAndReplace(B.ValueNumberMapping, OperValB, OperValA))
526 return false;
528 return true;
531 bool IRSimilarityCandidate::compareCommutativeOperandMapping(
532 OperandMapping A, OperandMapping B) {
533 DenseSet<unsigned> ValueNumbersA;
534 DenseSet<unsigned> ValueNumbersB;
536 ArrayRef<Value *>::iterator VItA = A.OperVals.begin();
537 ArrayRef<Value *>::iterator VItB = B.OperVals.begin();
538 unsigned OperandLength = A.OperVals.size();
540 // Find the value number sets for the operands.
541 for (unsigned Idx = 0; Idx < OperandLength;
542 Idx++, VItA++, VItB++) {
543 ValueNumbersA.insert(A.IRSC.ValueToNumber.find(*VItA)->second);
544 ValueNumbersB.insert(B.IRSC.ValueToNumber.find(*VItB)->second);
547 // Iterate over the operands in the first IRSimilarityCandidate and make sure
548 // there exists a possible mapping with the operands in the second
549 // IRSimilarityCandidate.
550 if (!checkNumberingAndReplaceCommutative(A.IRSC.ValueToNumber,
551 A.ValueNumberMapping, A.OperVals,
552 ValueNumbersB))
553 return false;
555 // Iterate over the operands in the second IRSimilarityCandidate and make sure
556 // there exists a possible mapping with the operands in the first
557 // IRSimilarityCandidate.
558 if (!checkNumberingAndReplaceCommutative(B.IRSC.ValueToNumber,
559 B.ValueNumberMapping, B.OperVals,
560 ValueNumbersA))
561 return false;
563 return true;
566 bool IRSimilarityCandidate::compareStructure(const IRSimilarityCandidate &A,
567 const IRSimilarityCandidate &B) {
568 if (A.getLength() != B.getLength())
569 return false;
571 if (A.ValueToNumber.size() != B.ValueToNumber.size())
572 return false;
574 iterator ItA = A.begin();
575 iterator ItB = B.begin();
577 // These sets create a create a mapping between the values in one candidate
578 // to values in the other candidate. If we create a set with one element,
579 // and that same element maps to the original element in the candidate
580 // we have a good mapping.
581 DenseMap<unsigned, DenseSet<unsigned>> ValueNumberMappingA;
582 DenseMap<unsigned, DenseSet<unsigned>> ValueNumberMappingB;
583 DenseMap<unsigned, DenseSet<unsigned>>::iterator ValueMappingIt;
585 bool WasInserted;
587 // Iterate over the instructions contained in each candidate
588 unsigned SectionLength = A.getStartIdx() + A.getLength();
589 for (unsigned Loc = A.getStartIdx(); Loc < SectionLength;
590 ItA++, ItB++, Loc++) {
591 // Make sure the instructions are similar to one another.
592 if (!isClose(*ItA, *ItB))
593 return false;
595 Instruction *IA = ItA->Inst;
596 Instruction *IB = ItB->Inst;
598 if (!ItA->Legal || !ItB->Legal)
599 return false;
601 // Get the operand sets for the instructions.
602 ArrayRef<Value *> OperValsA = ItA->OperVals;
603 ArrayRef<Value *> OperValsB = ItB->OperVals;
605 unsigned InstValA = A.ValueToNumber.find(IA)->second;
606 unsigned InstValB = B.ValueToNumber.find(IB)->second;
608 // Ensure that the mappings for the instructions exists.
609 std::tie(ValueMappingIt, WasInserted) = ValueNumberMappingA.insert(
610 std::make_pair(InstValA, DenseSet<unsigned>({InstValB})));
611 if (!WasInserted && !ValueMappingIt->second.contains(InstValB))
612 return false;
614 std::tie(ValueMappingIt, WasInserted) = ValueNumberMappingB.insert(
615 std::make_pair(InstValB, DenseSet<unsigned>({InstValA})));
616 if (!WasInserted && !ValueMappingIt->second.contains(InstValA))
617 return false;
619 // We have different paths for commutative instructions and non-commutative
620 // instructions since commutative instructions could allow multiple mappings
621 // to certain values.
622 if (IA->isCommutative() && !isa<FPMathOperator>(IA)) {
623 if (!compareCommutativeOperandMapping(
624 {A, OperValsA, ValueNumberMappingA},
625 {B, OperValsB, ValueNumberMappingB}))
626 return false;
627 continue;
630 // Handle the non-commutative cases.
631 if (!compareNonCommutativeOperandMapping(
632 {A, OperValsA, ValueNumberMappingA},
633 {B, OperValsB, ValueNumberMappingB}))
634 return false;
636 return true;
639 bool IRSimilarityCandidate::overlap(const IRSimilarityCandidate &A,
640 const IRSimilarityCandidate &B) {
641 auto DoesOverlap = [](const IRSimilarityCandidate &X,
642 const IRSimilarityCandidate &Y) {
643 // Check:
644 // XXXXXX X starts before Y ends
645 // YYYYYYY Y starts after X starts
646 return X.StartIdx <= Y.getEndIdx() && Y.StartIdx >= X.StartIdx;
649 return DoesOverlap(A, B) || DoesOverlap(B, A);
652 void IRSimilarityIdentifier::populateMapper(
653 Module &M, std::vector<IRInstructionData *> &InstrList,
654 std::vector<unsigned> &IntegerMapping) {
656 std::vector<IRInstructionData *> InstrListForModule;
657 std::vector<unsigned> IntegerMappingForModule;
658 // Iterate over the functions in the module to map each Instruction in each
659 // BasicBlock to an unsigned integer.
660 for (Function &F : M) {
662 if (F.empty())
663 continue;
665 for (BasicBlock &BB : F) {
667 if (BB.sizeWithoutDebug() < 2)
668 continue;
670 // BB has potential to have similarity since it has a size greater than 2
671 // and can therefore match other regions greater than 2. Map it to a list
672 // of unsigned integers.
673 Mapper.convertToUnsignedVec(BB, InstrListForModule,
674 IntegerMappingForModule);
678 // Insert the InstrListForModule at the end of the overall InstrList so that
679 // we can have a long InstrList for the entire set of Modules being analyzed.
680 llvm::append_range(InstrList, InstrListForModule);
681 // Do the same as above, but for IntegerMapping.
682 llvm::append_range(IntegerMapping, IntegerMappingForModule);
685 void IRSimilarityIdentifier::populateMapper(
686 ArrayRef<std::unique_ptr<Module>> &Modules,
687 std::vector<IRInstructionData *> &InstrList,
688 std::vector<unsigned> &IntegerMapping) {
690 // Iterate over, and map the instructions in each module.
691 for (const std::unique_ptr<Module> &M : Modules)
692 populateMapper(*M, InstrList, IntegerMapping);
695 /// From a repeated subsequence, find all the different instances of the
696 /// subsequence from the \p InstrList, and create an IRSimilarityCandidate from
697 /// the IRInstructionData in subsequence.
699 /// \param [in] Mapper - The instruction mapper for sanity checks.
700 /// \param [in] InstrList - The vector that holds the instruction data.
701 /// \param [in] IntegerMapping - The vector that holds the mapped integers.
702 /// \param [out] CandsForRepSubstring - The vector to store the generated
703 /// IRSimilarityCandidates.
704 static void createCandidatesFromSuffixTree(
705 const IRInstructionMapper& Mapper, std::vector<IRInstructionData *> &InstrList,
706 std::vector<unsigned> &IntegerMapping, SuffixTree::RepeatedSubstring &RS,
707 std::vector<IRSimilarityCandidate> &CandsForRepSubstring) {
709 unsigned StringLen = RS.Length;
711 // Create an IRSimilarityCandidate for instance of this subsequence \p RS.
712 for (const unsigned &StartIdx : RS.StartIndices) {
713 unsigned EndIdx = StartIdx + StringLen - 1;
715 // Check that this subsequence does not contain an illegal instruction.
716 bool ContainsIllegal = false;
717 for (unsigned CurrIdx = StartIdx; CurrIdx <= EndIdx; CurrIdx++) {
718 unsigned Key = IntegerMapping[CurrIdx];
719 if (Key > Mapper.IllegalInstrNumber) {
720 ContainsIllegal = true;
721 break;
725 // If we have an illegal instruction, we should not create an
726 // IRSimilarityCandidate for this region.
727 if (ContainsIllegal)
728 continue;
730 // We are getting iterators to the instructions in this region of code
731 // by advancing the start and end indices from the start of the
732 // InstrList.
733 std::vector<IRInstructionData *>::iterator StartIt = InstrList.begin();
734 std::advance(StartIt, StartIdx);
735 std::vector<IRInstructionData *>::iterator EndIt = InstrList.begin();
736 std::advance(EndIt, EndIdx);
738 CandsForRepSubstring.emplace_back(StartIdx, StringLen, *StartIt, *EndIt);
742 /// From the list of IRSimilarityCandidates, perform a comparison between each
743 /// IRSimilarityCandidate to determine if there are overlapping
744 /// IRInstructionData, or if they do not have the same structure.
746 /// \param [in] CandsForRepSubstring - The vector containing the
747 /// IRSimilarityCandidates.
748 /// \param [out] StructuralGroups - the mapping of unsigned integers to vector
749 /// of IRSimilarityCandidates where each of the IRSimilarityCandidates in the
750 /// vector are structurally similar to one another.
751 static void findCandidateStructures(
752 std::vector<IRSimilarityCandidate> &CandsForRepSubstring,
753 DenseMap<unsigned, SimilarityGroup> &StructuralGroups) {
754 std::vector<IRSimilarityCandidate>::iterator CandIt, CandEndIt, InnerCandIt,
755 InnerCandEndIt;
757 // IRSimilarityCandidates each have a structure for operand use. It is
758 // possible that two instances of the same subsequences have different
759 // structure. Each type of structure found is assigned a number. This
760 // DenseMap maps an IRSimilarityCandidate to which type of similarity
761 // discovered it fits within.
762 DenseMap<IRSimilarityCandidate *, unsigned> CandToGroup;
764 // Find the compatibility from each candidate to the others to determine
765 // which candidates overlap and which have the same structure by mapping
766 // each structure to a different group.
767 bool SameStructure;
768 bool Inserted;
769 unsigned CurrentGroupNum = 0;
770 unsigned OuterGroupNum;
771 DenseMap<IRSimilarityCandidate *, unsigned>::iterator CandToGroupIt;
772 DenseMap<IRSimilarityCandidate *, unsigned>::iterator CandToGroupItInner;
773 DenseMap<unsigned, SimilarityGroup>::iterator CurrentGroupPair;
775 // Iterate over the candidates to determine its structural and overlapping
776 // compatibility with other instructions
777 for (CandIt = CandsForRepSubstring.begin(),
778 CandEndIt = CandsForRepSubstring.end();
779 CandIt != CandEndIt; CandIt++) {
781 // Determine if it has an assigned structural group already.
782 CandToGroupIt = CandToGroup.find(&*CandIt);
783 if (CandToGroupIt == CandToGroup.end()) {
784 // If not, we assign it one, and add it to our mapping.
785 std::tie(CandToGroupIt, Inserted) =
786 CandToGroup.insert(std::make_pair(&*CandIt, CurrentGroupNum++));
789 // Get the structural group number from the iterator.
790 OuterGroupNum = CandToGroupIt->second;
792 // Check if we already have a list of IRSimilarityCandidates for the current
793 // structural group. Create one if one does not exist.
794 CurrentGroupPair = StructuralGroups.find(OuterGroupNum);
795 if (CurrentGroupPair == StructuralGroups.end())
796 std::tie(CurrentGroupPair, Inserted) = StructuralGroups.insert(
797 std::make_pair(OuterGroupNum, SimilarityGroup({*CandIt})));
799 // Iterate over the IRSimilarityCandidates following the current
800 // IRSimilarityCandidate in the list to determine whether the two
801 // IRSimilarityCandidates are compatible. This is so we do not repeat pairs
802 // of IRSimilarityCandidates.
803 for (InnerCandIt = std::next(CandIt),
804 InnerCandEndIt = CandsForRepSubstring.end();
805 InnerCandIt != InnerCandEndIt; InnerCandIt++) {
807 // We check if the inner item has a group already, if it does, we skip it.
808 CandToGroupItInner = CandToGroup.find(&*InnerCandIt);
809 if (CandToGroupItInner != CandToGroup.end())
810 continue;
812 // Otherwise we determine if they have the same structure and add it to
813 // vector if they match.
814 SameStructure =
815 IRSimilarityCandidate::compareStructure(*CandIt, *InnerCandIt);
816 if (!SameStructure)
817 continue;
819 CandToGroup.insert(std::make_pair(&*InnerCandIt, OuterGroupNum));
820 CurrentGroupPair->second.push_back(*InnerCandIt);
825 void IRSimilarityIdentifier::findCandidates(
826 std::vector<IRInstructionData *> &InstrList,
827 std::vector<unsigned> &IntegerMapping) {
828 SuffixTree ST(IntegerMapping);
830 std::vector<IRSimilarityCandidate> CandsForRepSubstring;
831 std::vector<SimilarityGroup> NewCandidateGroups;
833 DenseMap<unsigned, SimilarityGroup> StructuralGroups;
835 // Iterate over the subsequences found by the Suffix Tree to create
836 // IRSimilarityCandidates for each repeated subsequence and determine which
837 // instances are structurally similar to one another.
838 for (SuffixTree::RepeatedSubstring &RS : ST) {
839 createCandidatesFromSuffixTree(Mapper, InstrList, IntegerMapping, RS,
840 CandsForRepSubstring);
842 if (CandsForRepSubstring.size() < 2)
843 continue;
845 findCandidateStructures(CandsForRepSubstring, StructuralGroups);
846 for (std::pair<unsigned, SimilarityGroup> &Group : StructuralGroups)
847 // We only add the group if it contains more than one
848 // IRSimilarityCandidate. If there is only one, that means there is no
849 // other repeated subsequence with the same structure.
850 if (Group.second.size() > 1)
851 SimilarityCandidates->push_back(Group.second);
853 CandsForRepSubstring.clear();
854 StructuralGroups.clear();
855 NewCandidateGroups.clear();
859 SimilarityGroupList &IRSimilarityIdentifier::findSimilarity(
860 ArrayRef<std::unique_ptr<Module>> Modules) {
861 resetSimilarityCandidates();
863 std::vector<IRInstructionData *> InstrList;
864 std::vector<unsigned> IntegerMapping;
866 populateMapper(Modules, InstrList, IntegerMapping);
867 findCandidates(InstrList, IntegerMapping);
869 return SimilarityCandidates.getValue();
872 SimilarityGroupList &IRSimilarityIdentifier::findSimilarity(Module &M) {
873 resetSimilarityCandidates();
875 std::vector<IRInstructionData *> InstrList;
876 std::vector<unsigned> IntegerMapping;
878 populateMapper(M, InstrList, IntegerMapping);
879 findCandidates(InstrList, IntegerMapping);
881 return SimilarityCandidates.getValue();
884 INITIALIZE_PASS(IRSimilarityIdentifierWrapperPass, "ir-similarity-identifier",
885 "ir-similarity-identifier", false, true)
887 IRSimilarityIdentifierWrapperPass::IRSimilarityIdentifierWrapperPass()
888 : ModulePass(ID) {
889 initializeIRSimilarityIdentifierWrapperPassPass(
890 *PassRegistry::getPassRegistry());
893 bool IRSimilarityIdentifierWrapperPass::doInitialization(Module &M) {
894 IRSI.reset(new IRSimilarityIdentifier());
895 return false;
898 bool IRSimilarityIdentifierWrapperPass::doFinalization(Module &M) {
899 IRSI.reset();
900 return false;
903 bool IRSimilarityIdentifierWrapperPass::runOnModule(Module &M) {
904 IRSI->findSimilarity(M);
905 return false;
908 AnalysisKey IRSimilarityAnalysis::Key;
909 IRSimilarityIdentifier IRSimilarityAnalysis::run(Module &M,
910 ModuleAnalysisManager &) {
912 auto IRSI = IRSimilarityIdentifier();
913 IRSI.findSimilarity(M);
914 return IRSI;
917 PreservedAnalyses
918 IRSimilarityAnalysisPrinterPass::run(Module &M, ModuleAnalysisManager &AM) {
919 IRSimilarityIdentifier &IRSI = AM.getResult<IRSimilarityAnalysis>(M);
920 Optional<SimilarityGroupList> &SimilarityCandidatesOpt = IRSI.getSimilarity();
922 for (std::vector<IRSimilarityCandidate> &CandVec : *SimilarityCandidatesOpt) {
923 OS << CandVec.size() << " candidates of length "
924 << CandVec.begin()->getLength() << ". Found in: \n";
925 for (IRSimilarityCandidate &Cand : CandVec) {
926 OS << " Function: " << Cand.front()->Inst->getFunction()->getName().str()
927 << ", Basic Block: ";
928 if (Cand.front()->Inst->getParent()->getName().str() == "")
929 OS << "(unnamed)";
930 else
931 OS << Cand.front()->Inst->getParent()->getName().str();
932 OS << "\n Start Instruction: ";
933 Cand.frontInstruction()->print(OS);
934 OS << "\n End Instruction: ";
935 Cand.backInstruction()->print(OS);
936 OS << "\n";
940 return PreservedAnalyses::all();
943 char IRSimilarityIdentifierWrapperPass::ID = 0;