[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Analysis / IVDescriptors.cpp
blobd8b8f961136e8ef06a870c23782945df78fb8d43
1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file "describes" induction and recurrence variables.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/IVDescriptors.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/Analysis/DemandedBits.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MustExecute.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/IR/ValueHandle.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/KnownBits.h"
37 #include <set>
39 using namespace llvm;
40 using namespace llvm::PatternMatch;
42 #define DEBUG_TYPE "iv-descriptors"
44 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
45 SmallPtrSetImpl<Instruction *> &Set) {
46 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
47 if (!Set.count(dyn_cast<Instruction>(*Use)))
48 return false;
49 return true;
52 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) {
53 switch (Kind) {
54 default:
55 break;
56 case RecurKind::Add:
57 case RecurKind::Mul:
58 case RecurKind::Or:
59 case RecurKind::And:
60 case RecurKind::Xor:
61 case RecurKind::SMax:
62 case RecurKind::SMin:
63 case RecurKind::UMax:
64 case RecurKind::UMin:
65 return true;
67 return false;
70 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) {
71 return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind);
74 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurKind Kind) {
75 switch (Kind) {
76 default:
77 break;
78 case RecurKind::Add:
79 case RecurKind::Mul:
80 case RecurKind::FAdd:
81 case RecurKind::FMul:
82 return true;
84 return false;
87 /// Determines if Phi may have been type-promoted. If Phi has a single user
88 /// that ANDs the Phi with a type mask, return the user. RT is updated to
89 /// account for the narrower bit width represented by the mask, and the AND
90 /// instruction is added to CI.
91 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
92 SmallPtrSetImpl<Instruction *> &Visited,
93 SmallPtrSetImpl<Instruction *> &CI) {
94 if (!Phi->hasOneUse())
95 return Phi;
97 const APInt *M = nullptr;
98 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
100 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
101 // with a new integer type of the corresponding bit width.
102 if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
103 int32_t Bits = (*M + 1).exactLogBase2();
104 if (Bits > 0) {
105 RT = IntegerType::get(Phi->getContext(), Bits);
106 Visited.insert(Phi);
107 CI.insert(J);
108 return J;
111 return Phi;
114 /// Compute the minimal bit width needed to represent a reduction whose exit
115 /// instruction is given by Exit.
116 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
117 DemandedBits *DB,
118 AssumptionCache *AC,
119 DominatorTree *DT) {
120 bool IsSigned = false;
121 const DataLayout &DL = Exit->getModule()->getDataLayout();
122 uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
124 if (DB) {
125 // Use the demanded bits analysis to determine the bits that are live out
126 // of the exit instruction, rounding up to the nearest power of two. If the
127 // use of demanded bits results in a smaller bit width, we know the value
128 // must be positive (i.e., IsSigned = false), because if this were not the
129 // case, the sign bit would have been demanded.
130 auto Mask = DB->getDemandedBits(Exit);
131 MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
134 if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
135 // If demanded bits wasn't able to limit the bit width, we can try to use
136 // value tracking instead. This can be the case, for example, if the value
137 // may be negative.
138 auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
139 auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
140 MaxBitWidth = NumTypeBits - NumSignBits;
141 KnownBits Bits = computeKnownBits(Exit, DL);
142 if (!Bits.isNonNegative()) {
143 // If the value is not known to be non-negative, we set IsSigned to true,
144 // meaning that we will use sext instructions instead of zext
145 // instructions to restore the original type.
146 IsSigned = true;
147 if (!Bits.isNegative())
148 // If the value is not known to be negative, we don't known what the
149 // upper bit is, and therefore, we don't know what kind of extend we
150 // will need. In this case, just increase the bit width by one bit and
151 // use sext.
152 ++MaxBitWidth;
155 if (!isPowerOf2_64(MaxBitWidth))
156 MaxBitWidth = NextPowerOf2(MaxBitWidth);
158 return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
159 IsSigned);
162 /// Collect cast instructions that can be ignored in the vectorizer's cost
163 /// model, given a reduction exit value and the minimal type in which the
164 /// reduction can be represented.
165 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
166 Type *RecurrenceType,
167 SmallPtrSetImpl<Instruction *> &Casts) {
169 SmallVector<Instruction *, 8> Worklist;
170 SmallPtrSet<Instruction *, 8> Visited;
171 Worklist.push_back(Exit);
173 while (!Worklist.empty()) {
174 Instruction *Val = Worklist.pop_back_val();
175 Visited.insert(Val);
176 if (auto *Cast = dyn_cast<CastInst>(Val))
177 if (Cast->getSrcTy() == RecurrenceType) {
178 // If the source type of a cast instruction is equal to the recurrence
179 // type, it will be eliminated, and should be ignored in the vectorizer
180 // cost model.
181 Casts.insert(Cast);
182 continue;
185 // Add all operands to the work list if they are loop-varying values that
186 // we haven't yet visited.
187 for (Value *O : cast<User>(Val)->operands())
188 if (auto *I = dyn_cast<Instruction>(O))
189 if (TheLoop->contains(I) && !Visited.count(I))
190 Worklist.push_back(I);
194 // Check if a given Phi node can be recognized as an ordered reduction for
195 // vectorizing floating point operations without unsafe math.
196 static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst,
197 Instruction *Exit, PHINode *Phi) {
198 // Currently only FAdd is supported
199 if (Kind != RecurKind::FAdd)
200 return false;
202 if (Exit->getOpcode() != Instruction::FAdd || Exit != ExactFPMathInst)
203 return false;
205 // The only pattern accepted is the one in which the reduction PHI
206 // is used as one of the operands of the exit instruction
207 auto *LHS = Exit->getOperand(0);
208 auto *RHS = Exit->getOperand(1);
209 if (LHS != Phi && RHS != Phi)
210 return false;
212 LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi
213 << ", ExitInst: " << *Exit << "\n");
215 return true;
218 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurKind Kind,
219 Loop *TheLoop, FastMathFlags FuncFMF,
220 RecurrenceDescriptor &RedDes,
221 DemandedBits *DB,
222 AssumptionCache *AC,
223 DominatorTree *DT) {
224 if (Phi->getNumIncomingValues() != 2)
225 return false;
227 // Reduction variables are only found in the loop header block.
228 if (Phi->getParent() != TheLoop->getHeader())
229 return false;
231 // Obtain the reduction start value from the value that comes from the loop
232 // preheader.
233 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
235 // ExitInstruction is the single value which is used outside the loop.
236 // We only allow for a single reduction value to be used outside the loop.
237 // This includes users of the reduction, variables (which form a cycle
238 // which ends in the phi node).
239 Instruction *ExitInstruction = nullptr;
240 // Indicates that we found a reduction operation in our scan.
241 bool FoundReduxOp = false;
243 // We start with the PHI node and scan for all of the users of this
244 // instruction. All users must be instructions that can be used as reduction
245 // variables (such as ADD). We must have a single out-of-block user. The cycle
246 // must include the original PHI.
247 bool FoundStartPHI = false;
249 // To recognize min/max patterns formed by a icmp select sequence, we store
250 // the number of instruction we saw from the recognized min/max pattern,
251 // to make sure we only see exactly the two instructions.
252 unsigned NumCmpSelectPatternInst = 0;
253 InstDesc ReduxDesc(false, nullptr);
255 // Data used for determining if the recurrence has been type-promoted.
256 Type *RecurrenceType = Phi->getType();
257 SmallPtrSet<Instruction *, 4> CastInsts;
258 Instruction *Start = Phi;
259 bool IsSigned = false;
261 SmallPtrSet<Instruction *, 8> VisitedInsts;
262 SmallVector<Instruction *, 8> Worklist;
264 // Return early if the recurrence kind does not match the type of Phi. If the
265 // recurrence kind is arithmetic, we attempt to look through AND operations
266 // resulting from the type promotion performed by InstCombine. Vector
267 // operations are not limited to the legal integer widths, so we may be able
268 // to evaluate the reduction in the narrower width.
269 if (RecurrenceType->isFloatingPointTy()) {
270 if (!isFloatingPointRecurrenceKind(Kind))
271 return false;
272 } else if (RecurrenceType->isIntegerTy()) {
273 if (!isIntegerRecurrenceKind(Kind))
274 return false;
275 if (!isMinMaxRecurrenceKind(Kind))
276 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
277 } else {
278 // Pointer min/max may exist, but it is not supported as a reduction op.
279 return false;
282 Worklist.push_back(Start);
283 VisitedInsts.insert(Start);
285 // Start with all flags set because we will intersect this with the reduction
286 // flags from all the reduction operations.
287 FastMathFlags FMF = FastMathFlags::getFast();
289 // A value in the reduction can be used:
290 // - By the reduction:
291 // - Reduction operation:
292 // - One use of reduction value (safe).
293 // - Multiple use of reduction value (not safe).
294 // - PHI:
295 // - All uses of the PHI must be the reduction (safe).
296 // - Otherwise, not safe.
297 // - By instructions outside of the loop (safe).
298 // * One value may have several outside users, but all outside
299 // uses must be of the same value.
300 // - By an instruction that is not part of the reduction (not safe).
301 // This is either:
302 // * An instruction type other than PHI or the reduction operation.
303 // * A PHI in the header other than the initial PHI.
304 while (!Worklist.empty()) {
305 Instruction *Cur = Worklist.pop_back_val();
307 // No Users.
308 // If the instruction has no users then this is a broken chain and can't be
309 // a reduction variable.
310 if (Cur->use_empty())
311 return false;
313 bool IsAPhi = isa<PHINode>(Cur);
315 // A header PHI use other than the original PHI.
316 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
317 return false;
319 // Reductions of instructions such as Div, and Sub is only possible if the
320 // LHS is the reduction variable.
321 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
322 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
323 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
324 return false;
326 // Any reduction instruction must be of one of the allowed kinds. We ignore
327 // the starting value (the Phi or an AND instruction if the Phi has been
328 // type-promoted).
329 if (Cur != Start) {
330 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, FuncFMF);
331 if (!ReduxDesc.isRecurrence())
332 return false;
333 // FIXME: FMF is allowed on phi, but propagation is not handled correctly.
334 if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) {
335 FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags();
336 if (auto *Sel = dyn_cast<SelectInst>(ReduxDesc.getPatternInst())) {
337 // Accept FMF on either fcmp or select of a min/max idiom.
338 // TODO: This is a hack to work-around the fact that FMF may not be
339 // assigned/propagated correctly. If that problem is fixed or we
340 // standardize on fmin/fmax via intrinsics, this can be removed.
341 if (auto *FCmp = dyn_cast<FCmpInst>(Sel->getCondition()))
342 CurFMF |= FCmp->getFastMathFlags();
344 FMF &= CurFMF;
346 // Update this reduction kind if we matched a new instruction.
347 // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind'
348 // state accurate while processing the worklist?
349 if (ReduxDesc.getRecKind() != RecurKind::None)
350 Kind = ReduxDesc.getRecKind();
353 bool IsASelect = isa<SelectInst>(Cur);
355 // A conditional reduction operation must only have 2 or less uses in
356 // VisitedInsts.
357 if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) &&
358 hasMultipleUsesOf(Cur, VisitedInsts, 2))
359 return false;
361 // A reduction operation must only have one use of the reduction value.
362 if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) &&
363 hasMultipleUsesOf(Cur, VisitedInsts, 1))
364 return false;
366 // All inputs to a PHI node must be a reduction value.
367 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
368 return false;
370 if (isIntMinMaxRecurrenceKind(Kind) &&
371 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
372 ++NumCmpSelectPatternInst;
373 if (isFPMinMaxRecurrenceKind(Kind) &&
374 (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
375 ++NumCmpSelectPatternInst;
377 // Check whether we found a reduction operator.
378 FoundReduxOp |= !IsAPhi && Cur != Start;
380 // Process users of current instruction. Push non-PHI nodes after PHI nodes
381 // onto the stack. This way we are going to have seen all inputs to PHI
382 // nodes once we get to them.
383 SmallVector<Instruction *, 8> NonPHIs;
384 SmallVector<Instruction *, 8> PHIs;
385 for (User *U : Cur->users()) {
386 Instruction *UI = cast<Instruction>(U);
388 // Check if we found the exit user.
389 BasicBlock *Parent = UI->getParent();
390 if (!TheLoop->contains(Parent)) {
391 // If we already know this instruction is used externally, move on to
392 // the next user.
393 if (ExitInstruction == Cur)
394 continue;
396 // Exit if you find multiple values used outside or if the header phi
397 // node is being used. In this case the user uses the value of the
398 // previous iteration, in which case we would loose "VF-1" iterations of
399 // the reduction operation if we vectorize.
400 if (ExitInstruction != nullptr || Cur == Phi)
401 return false;
403 // The instruction used by an outside user must be the last instruction
404 // before we feed back to the reduction phi. Otherwise, we loose VF-1
405 // operations on the value.
406 if (!is_contained(Phi->operands(), Cur))
407 return false;
409 ExitInstruction = Cur;
410 continue;
413 // Process instructions only once (termination). Each reduction cycle
414 // value must only be used once, except by phi nodes and min/max
415 // reductions which are represented as a cmp followed by a select.
416 InstDesc IgnoredVal(false, nullptr);
417 if (VisitedInsts.insert(UI).second) {
418 if (isa<PHINode>(UI))
419 PHIs.push_back(UI);
420 else
421 NonPHIs.push_back(UI);
422 } else if (!isa<PHINode>(UI) &&
423 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
424 !isa<SelectInst>(UI)) ||
425 (!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
426 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())))
427 return false;
429 // Remember that we completed the cycle.
430 if (UI == Phi)
431 FoundStartPHI = true;
433 Worklist.append(PHIs.begin(), PHIs.end());
434 Worklist.append(NonPHIs.begin(), NonPHIs.end());
437 // This means we have seen one but not the other instruction of the
438 // pattern or more than just a select and cmp.
439 if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2)
440 return false;
442 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
443 return false;
445 const bool IsOrdered = checkOrderedReduction(
446 Kind, ReduxDesc.getExactFPMathInst(), ExitInstruction, Phi);
448 if (Start != Phi) {
449 // If the starting value is not the same as the phi node, we speculatively
450 // looked through an 'and' instruction when evaluating a potential
451 // arithmetic reduction to determine if it may have been type-promoted.
453 // We now compute the minimal bit width that is required to represent the
454 // reduction. If this is the same width that was indicated by the 'and', we
455 // can represent the reduction in the smaller type. The 'and' instruction
456 // will be eliminated since it will essentially be a cast instruction that
457 // can be ignore in the cost model. If we compute a different type than we
458 // did when evaluating the 'and', the 'and' will not be eliminated, and we
459 // will end up with different kinds of operations in the recurrence
460 // expression (e.g., IntegerAND, IntegerADD). We give up if this is
461 // the case.
463 // The vectorizer relies on InstCombine to perform the actual
464 // type-shrinking. It does this by inserting instructions to truncate the
465 // exit value of the reduction to the width indicated by RecurrenceType and
466 // then extend this value back to the original width. If IsSigned is false,
467 // a 'zext' instruction will be generated; otherwise, a 'sext' will be
468 // used.
470 // TODO: We should not rely on InstCombine to rewrite the reduction in the
471 // smaller type. We should just generate a correctly typed expression
472 // to begin with.
473 Type *ComputedType;
474 std::tie(ComputedType, IsSigned) =
475 computeRecurrenceType(ExitInstruction, DB, AC, DT);
476 if (ComputedType != RecurrenceType)
477 return false;
479 // The recurrence expression will be represented in a narrower type. If
480 // there are any cast instructions that will be unnecessary, collect them
481 // in CastInsts. Note that the 'and' instruction was already included in
482 // this list.
484 // TODO: A better way to represent this may be to tag in some way all the
485 // instructions that are a part of the reduction. The vectorizer cost
486 // model could then apply the recurrence type to these instructions,
487 // without needing a white list of instructions to ignore.
488 // This may also be useful for the inloop reductions, if it can be
489 // kept simple enough.
490 collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
493 // We found a reduction var if we have reached the original phi node and we
494 // only have a single instruction with out-of-loop users.
496 // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
497 // is saved as part of the RecurrenceDescriptor.
499 // Save the description of this reduction variable.
500 RecurrenceDescriptor RD(RdxStart, ExitInstruction, Kind, FMF,
501 ReduxDesc.getExactFPMathInst(), RecurrenceType,
502 IsSigned, IsOrdered, CastInsts);
503 RedDes = RD;
505 return true;
508 RecurrenceDescriptor::InstDesc
509 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I,
510 const InstDesc &Prev) {
511 assert((isa<CmpInst>(I) || isa<SelectInst>(I)) &&
512 "Expected a cmp or select instruction");
514 // We must handle the select(cmp()) as a single instruction. Advance to the
515 // select.
516 CmpInst::Predicate Pred;
517 if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
518 if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
519 return InstDesc(Select, Prev.getRecKind());
522 // Only match select with single use cmp condition.
523 if (!match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
524 m_Value())))
525 return InstDesc(false, I);
527 // Look for a min/max pattern.
528 if (match(I, m_UMin(m_Value(), m_Value())))
529 return InstDesc(I, RecurKind::UMin);
530 if (match(I, m_UMax(m_Value(), m_Value())))
531 return InstDesc(I, RecurKind::UMax);
532 if (match(I, m_SMax(m_Value(), m_Value())))
533 return InstDesc(I, RecurKind::SMax);
534 if (match(I, m_SMin(m_Value(), m_Value())))
535 return InstDesc(I, RecurKind::SMin);
536 if (match(I, m_OrdFMin(m_Value(), m_Value())))
537 return InstDesc(I, RecurKind::FMin);
538 if (match(I, m_OrdFMax(m_Value(), m_Value())))
539 return InstDesc(I, RecurKind::FMax);
540 if (match(I, m_UnordFMin(m_Value(), m_Value())))
541 return InstDesc(I, RecurKind::FMin);
542 if (match(I, m_UnordFMax(m_Value(), m_Value())))
543 return InstDesc(I, RecurKind::FMax);
545 return InstDesc(false, I);
548 /// Returns true if the select instruction has users in the compare-and-add
549 /// reduction pattern below. The select instruction argument is the last one
550 /// in the sequence.
552 /// %sum.1 = phi ...
553 /// ...
554 /// %cmp = fcmp pred %0, %CFP
555 /// %add = fadd %0, %sum.1
556 /// %sum.2 = select %cmp, %add, %sum.1
557 RecurrenceDescriptor::InstDesc
558 RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) {
559 SelectInst *SI = dyn_cast<SelectInst>(I);
560 if (!SI)
561 return InstDesc(false, I);
563 CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
564 // Only handle single use cases for now.
565 if (!CI || !CI->hasOneUse())
566 return InstDesc(false, I);
568 Value *TrueVal = SI->getTrueValue();
569 Value *FalseVal = SI->getFalseValue();
570 // Handle only when either of operands of select instruction is a PHI
571 // node for now.
572 if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
573 (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
574 return InstDesc(false, I);
576 Instruction *I1 =
577 isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
578 : dyn_cast<Instruction>(TrueVal);
579 if (!I1 || !I1->isBinaryOp())
580 return InstDesc(false, I);
582 Value *Op1, *Op2;
583 if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) ||
584 m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
585 I1->isFast())
586 return InstDesc(Kind == RecurKind::FAdd, SI);
588 if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast()))
589 return InstDesc(Kind == RecurKind::FMul, SI);
591 return InstDesc(false, I);
594 RecurrenceDescriptor::InstDesc
595 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurKind Kind,
596 InstDesc &Prev, FastMathFlags FMF) {
597 switch (I->getOpcode()) {
598 default:
599 return InstDesc(false, I);
600 case Instruction::PHI:
601 return InstDesc(I, Prev.getRecKind(), Prev.getExactFPMathInst());
602 case Instruction::Sub:
603 case Instruction::Add:
604 return InstDesc(Kind == RecurKind::Add, I);
605 case Instruction::Mul:
606 return InstDesc(Kind == RecurKind::Mul, I);
607 case Instruction::And:
608 return InstDesc(Kind == RecurKind::And, I);
609 case Instruction::Or:
610 return InstDesc(Kind == RecurKind::Or, I);
611 case Instruction::Xor:
612 return InstDesc(Kind == RecurKind::Xor, I);
613 case Instruction::FDiv:
614 case Instruction::FMul:
615 return InstDesc(Kind == RecurKind::FMul, I,
616 I->hasAllowReassoc() ? nullptr : I);
617 case Instruction::FSub:
618 case Instruction::FAdd:
619 return InstDesc(Kind == RecurKind::FAdd, I,
620 I->hasAllowReassoc() ? nullptr : I);
621 case Instruction::Select:
622 if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul)
623 return isConditionalRdxPattern(Kind, I);
624 LLVM_FALLTHROUGH;
625 case Instruction::FCmp:
626 case Instruction::ICmp:
627 if (isIntMinMaxRecurrenceKind(Kind) ||
628 (FMF.noNaNs() && FMF.noSignedZeros() && isFPMinMaxRecurrenceKind(Kind)))
629 return isMinMaxSelectCmpPattern(I, Prev);
630 return InstDesc(false, I);
634 bool RecurrenceDescriptor::hasMultipleUsesOf(
635 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
636 unsigned MaxNumUses) {
637 unsigned NumUses = 0;
638 for (const Use &U : I->operands()) {
639 if (Insts.count(dyn_cast<Instruction>(U)))
640 ++NumUses;
641 if (NumUses > MaxNumUses)
642 return true;
645 return false;
648 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
649 RecurrenceDescriptor &RedDes,
650 DemandedBits *DB, AssumptionCache *AC,
651 DominatorTree *DT) {
653 BasicBlock *Header = TheLoop->getHeader();
654 Function &F = *Header->getParent();
655 FastMathFlags FMF;
656 FMF.setNoNaNs(
657 F.getFnAttribute("no-nans-fp-math").getValueAsBool());
658 FMF.setNoSignedZeros(
659 F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool());
661 if (AddReductionVar(Phi, RecurKind::Add, TheLoop, FMF, RedDes, DB, AC, DT)) {
662 LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
663 return true;
665 if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, FMF, RedDes, DB, AC, DT)) {
666 LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
667 return true;
669 if (AddReductionVar(Phi, RecurKind::Or, TheLoop, FMF, RedDes, DB, AC, DT)) {
670 LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
671 return true;
673 if (AddReductionVar(Phi, RecurKind::And, TheLoop, FMF, RedDes, DB, AC, DT)) {
674 LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
675 return true;
677 if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, FMF, RedDes, DB, AC, DT)) {
678 LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
679 return true;
681 if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
682 LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n");
683 return true;
685 if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
686 LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n");
687 return true;
689 if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
690 LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n");
691 return true;
693 if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
694 LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n");
695 return true;
697 if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, FMF, RedDes, DB, AC, DT)) {
698 LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
699 return true;
701 if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, FMF, RedDes, DB, AC, DT)) {
702 LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
703 return true;
705 if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
706 LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n");
707 return true;
709 if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
710 LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n");
711 return true;
713 // Not a reduction of known type.
714 return false;
717 bool RecurrenceDescriptor::isFirstOrderRecurrence(
718 PHINode *Phi, Loop *TheLoop,
719 MapVector<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
721 // Ensure the phi node is in the loop header and has two incoming values.
722 if (Phi->getParent() != TheLoop->getHeader() ||
723 Phi->getNumIncomingValues() != 2)
724 return false;
726 // Ensure the loop has a preheader and a single latch block. The loop
727 // vectorizer will need the latch to set up the next iteration of the loop.
728 auto *Preheader = TheLoop->getLoopPreheader();
729 auto *Latch = TheLoop->getLoopLatch();
730 if (!Preheader || !Latch)
731 return false;
733 // Ensure the phi node's incoming blocks are the loop preheader and latch.
734 if (Phi->getBasicBlockIndex(Preheader) < 0 ||
735 Phi->getBasicBlockIndex(Latch) < 0)
736 return false;
738 // Get the previous value. The previous value comes from the latch edge while
739 // the initial value comes form the preheader edge.
740 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
741 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
742 SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
743 return false;
745 // Ensure every user of the phi node (recursively) is dominated by the
746 // previous value. The dominance requirement ensures the loop vectorizer will
747 // not need to vectorize the initial value prior to the first iteration of the
748 // loop.
749 // TODO: Consider extending this sinking to handle memory instructions.
751 // We optimistically assume we can sink all users after Previous. Keep a set
752 // of instructions to sink after Previous ordered by dominance in the common
753 // basic block. It will be applied to SinkAfter if all users can be sunk.
754 auto CompareByComesBefore = [](const Instruction *A, const Instruction *B) {
755 return A->comesBefore(B);
757 std::set<Instruction *, decltype(CompareByComesBefore)> InstrsToSink(
758 CompareByComesBefore);
760 BasicBlock *PhiBB = Phi->getParent();
761 SmallVector<Instruction *, 8> WorkList;
762 auto TryToPushSinkCandidate = [&](Instruction *SinkCandidate) {
763 // Already sunk SinkCandidate.
764 if (SinkCandidate->getParent() == PhiBB &&
765 InstrsToSink.find(SinkCandidate) != InstrsToSink.end())
766 return true;
768 // Cyclic dependence.
769 if (Previous == SinkCandidate)
770 return false;
772 if (DT->dominates(Previous,
773 SinkCandidate)) // We already are good w/o sinking.
774 return true;
776 if (SinkCandidate->getParent() != PhiBB ||
777 SinkCandidate->mayHaveSideEffects() ||
778 SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator())
779 return false;
781 // Do not try to sink an instruction multiple times (if multiple operands
782 // are first order recurrences).
783 // TODO: We can support this case, by sinking the instruction after the
784 // 'deepest' previous instruction.
785 if (SinkAfter.find(SinkCandidate) != SinkAfter.end())
786 return false;
788 // If we reach a PHI node that is not dominated by Previous, we reached a
789 // header PHI. No need for sinking.
790 if (isa<PHINode>(SinkCandidate))
791 return true;
793 // Sink User tentatively and check its users
794 InstrsToSink.insert(SinkCandidate);
795 WorkList.push_back(SinkCandidate);
796 return true;
799 WorkList.push_back(Phi);
800 // Try to recursively sink instructions and their users after Previous.
801 while (!WorkList.empty()) {
802 Instruction *Current = WorkList.pop_back_val();
803 for (User *User : Current->users()) {
804 if (!TryToPushSinkCandidate(cast<Instruction>(User)))
805 return false;
809 // We can sink all users of Phi. Update the mapping.
810 for (Instruction *I : InstrsToSink) {
811 SinkAfter[I] = Previous;
812 Previous = I;
814 return true;
817 /// This function returns the identity element (or neutral element) for
818 /// the operation K.
819 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp,
820 FastMathFlags FMF) {
821 switch (K) {
822 case RecurKind::Xor:
823 case RecurKind::Add:
824 case RecurKind::Or:
825 // Adding, Xoring, Oring zero to a number does not change it.
826 return ConstantInt::get(Tp, 0);
827 case RecurKind::Mul:
828 // Multiplying a number by 1 does not change it.
829 return ConstantInt::get(Tp, 1);
830 case RecurKind::And:
831 // AND-ing a number with an all-1 value does not change it.
832 return ConstantInt::get(Tp, -1, true);
833 case RecurKind::FMul:
834 // Multiplying a number by 1 does not change it.
835 return ConstantFP::get(Tp, 1.0L);
836 case RecurKind::FAdd:
837 // Adding zero to a number does not change it.
838 // FIXME: Ideally we should not need to check FMF for FAdd and should always
839 // use -0.0. However, this will currently result in mixed vectors of 0.0/-0.0.
840 // Instead, we should ensure that 1) the FMF from FAdd are propagated to the PHI
841 // nodes where possible, and 2) PHIs with the nsz flag + -0.0 use 0.0. This would
842 // mean we can then remove the check for noSignedZeros() below (see D98963).
843 if (FMF.noSignedZeros())
844 return ConstantFP::get(Tp, 0.0L);
845 return ConstantFP::get(Tp, -0.0L);
846 case RecurKind::UMin:
847 return ConstantInt::get(Tp, -1);
848 case RecurKind::UMax:
849 return ConstantInt::get(Tp, 0);
850 case RecurKind::SMin:
851 return ConstantInt::get(Tp,
852 APInt::getSignedMaxValue(Tp->getIntegerBitWidth()));
853 case RecurKind::SMax:
854 return ConstantInt::get(Tp,
855 APInt::getSignedMinValue(Tp->getIntegerBitWidth()));
856 case RecurKind::FMin:
857 return ConstantFP::getInfinity(Tp, true);
858 case RecurKind::FMax:
859 return ConstantFP::getInfinity(Tp, false);
860 default:
861 llvm_unreachable("Unknown recurrence kind");
865 unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) {
866 switch (Kind) {
867 case RecurKind::Add:
868 return Instruction::Add;
869 case RecurKind::Mul:
870 return Instruction::Mul;
871 case RecurKind::Or:
872 return Instruction::Or;
873 case RecurKind::And:
874 return Instruction::And;
875 case RecurKind::Xor:
876 return Instruction::Xor;
877 case RecurKind::FMul:
878 return Instruction::FMul;
879 case RecurKind::FAdd:
880 return Instruction::FAdd;
881 case RecurKind::SMax:
882 case RecurKind::SMin:
883 case RecurKind::UMax:
884 case RecurKind::UMin:
885 return Instruction::ICmp;
886 case RecurKind::FMax:
887 case RecurKind::FMin:
888 return Instruction::FCmp;
889 default:
890 llvm_unreachable("Unknown recurrence operation");
894 SmallVector<Instruction *, 4>
895 RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const {
896 SmallVector<Instruction *, 4> ReductionOperations;
897 unsigned RedOp = getOpcode(Kind);
899 // Search down from the Phi to the LoopExitInstr, looking for instructions
900 // with a single user of the correct type for the reduction.
902 // Note that we check that the type of the operand is correct for each item in
903 // the chain, including the last (the loop exit value). This can come up from
904 // sub, which would otherwise be treated as an add reduction. MinMax also need
905 // to check for a pair of icmp/select, for which we use getNextInstruction and
906 // isCorrectOpcode functions to step the right number of instruction, and
907 // check the icmp/select pair.
908 // FIXME: We also do not attempt to look through Phi/Select's yet, which might
909 // be part of the reduction chain, or attempt to looks through And's to find a
910 // smaller bitwidth. Subs are also currently not allowed (which are usually
911 // treated as part of a add reduction) as they are expected to generally be
912 // more expensive than out-of-loop reductions, and need to be costed more
913 // carefully.
914 unsigned ExpectedUses = 1;
915 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp)
916 ExpectedUses = 2;
918 auto getNextInstruction = [&](Instruction *Cur) {
919 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
920 // We are expecting a icmp/select pair, which we go to the next select
921 // instruction if we can. We already know that Cur has 2 uses.
922 if (isa<SelectInst>(*Cur->user_begin()))
923 return cast<Instruction>(*Cur->user_begin());
924 else
925 return cast<Instruction>(*std::next(Cur->user_begin()));
927 return cast<Instruction>(*Cur->user_begin());
929 auto isCorrectOpcode = [&](Instruction *Cur) {
930 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
931 Value *LHS, *RHS;
932 return SelectPatternResult::isMinOrMax(
933 matchSelectPattern(Cur, LHS, RHS).Flavor);
935 return Cur->getOpcode() == RedOp;
938 // The loop exit instruction we check first (as a quick test) but add last. We
939 // check the opcode is correct (and dont allow them to be Subs) and that they
940 // have expected to have the expected number of uses. They will have one use
941 // from the phi and one from a LCSSA value, no matter the type.
942 if (!isCorrectOpcode(LoopExitInstr) || !LoopExitInstr->hasNUses(2))
943 return {};
945 // Check that the Phi has one (or two for min/max) uses.
946 if (!Phi->hasNUses(ExpectedUses))
947 return {};
948 Instruction *Cur = getNextInstruction(Phi);
950 // Each other instruction in the chain should have the expected number of uses
951 // and be the correct opcode.
952 while (Cur != LoopExitInstr) {
953 if (!isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses))
954 return {};
956 ReductionOperations.push_back(Cur);
957 Cur = getNextInstruction(Cur);
960 ReductionOperations.push_back(Cur);
961 return ReductionOperations;
964 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
965 const SCEV *Step, BinaryOperator *BOp,
966 SmallVectorImpl<Instruction *> *Casts)
967 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
968 assert(IK != IK_NoInduction && "Not an induction");
970 // Start value type should match the induction kind and the value
971 // itself should not be null.
972 assert(StartValue && "StartValue is null");
973 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
974 "StartValue is not a pointer for pointer induction");
975 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
976 "StartValue is not an integer for integer induction");
978 // Check the Step Value. It should be non-zero integer value.
979 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
980 "Step value is zero");
982 assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
983 "Step value should be constant for pointer induction");
984 assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
985 "StepValue is not an integer");
987 assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
988 "StepValue is not FP for FpInduction");
989 assert((IK != IK_FpInduction ||
990 (InductionBinOp &&
991 (InductionBinOp->getOpcode() == Instruction::FAdd ||
992 InductionBinOp->getOpcode() == Instruction::FSub))) &&
993 "Binary opcode should be specified for FP induction");
995 if (Casts) {
996 for (auto &Inst : *Casts) {
997 RedundantCasts.push_back(Inst);
1002 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
1003 if (isa<SCEVConstant>(Step))
1004 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
1005 return nullptr;
1008 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
1009 ScalarEvolution *SE,
1010 InductionDescriptor &D) {
1012 // Here we only handle FP induction variables.
1013 assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
1015 if (TheLoop->getHeader() != Phi->getParent())
1016 return false;
1018 // The loop may have multiple entrances or multiple exits; we can analyze
1019 // this phi if it has a unique entry value and a unique backedge value.
1020 if (Phi->getNumIncomingValues() != 2)
1021 return false;
1022 Value *BEValue = nullptr, *StartValue = nullptr;
1023 if (TheLoop->contains(Phi->getIncomingBlock(0))) {
1024 BEValue = Phi->getIncomingValue(0);
1025 StartValue = Phi->getIncomingValue(1);
1026 } else {
1027 assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
1028 "Unexpected Phi node in the loop");
1029 BEValue = Phi->getIncomingValue(1);
1030 StartValue = Phi->getIncomingValue(0);
1033 BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
1034 if (!BOp)
1035 return false;
1037 Value *Addend = nullptr;
1038 if (BOp->getOpcode() == Instruction::FAdd) {
1039 if (BOp->getOperand(0) == Phi)
1040 Addend = BOp->getOperand(1);
1041 else if (BOp->getOperand(1) == Phi)
1042 Addend = BOp->getOperand(0);
1043 } else if (BOp->getOpcode() == Instruction::FSub)
1044 if (BOp->getOperand(0) == Phi)
1045 Addend = BOp->getOperand(1);
1047 if (!Addend)
1048 return false;
1050 // The addend should be loop invariant
1051 if (auto *I = dyn_cast<Instruction>(Addend))
1052 if (TheLoop->contains(I))
1053 return false;
1055 // FP Step has unknown SCEV
1056 const SCEV *Step = SE->getUnknown(Addend);
1057 D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
1058 return true;
1061 /// This function is called when we suspect that the update-chain of a phi node
1062 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
1063 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
1064 /// predicate P under which the SCEV expression for the phi can be the
1065 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
1066 /// cast instructions that are involved in the update-chain of this induction.
1067 /// A caller that adds the required runtime predicate can be free to drop these
1068 /// cast instructions, and compute the phi using \p AR (instead of some scev
1069 /// expression with casts).
1071 /// For example, without a predicate the scev expression can take the following
1072 /// form:
1073 /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
1075 /// It corresponds to the following IR sequence:
1076 /// %for.body:
1077 /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
1078 /// %casted_phi = "ExtTrunc i64 %x"
1079 /// %add = add i64 %casted_phi, %step
1081 /// where %x is given in \p PN,
1082 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
1083 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
1084 /// several forms, for example, such as:
1085 /// ExtTrunc1: %casted_phi = and %x, 2^n-1
1086 /// or:
1087 /// ExtTrunc2: %t = shl %x, m
1088 /// %casted_phi = ashr %t, m
1090 /// If we are able to find such sequence, we return the instructions
1091 /// we found, namely %casted_phi and the instructions on its use-def chain up
1092 /// to the phi (not including the phi).
1093 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
1094 const SCEVUnknown *PhiScev,
1095 const SCEVAddRecExpr *AR,
1096 SmallVectorImpl<Instruction *> &CastInsts) {
1098 assert(CastInsts.empty() && "CastInsts is expected to be empty.");
1099 auto *PN = cast<PHINode>(PhiScev->getValue());
1100 assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
1101 const Loop *L = AR->getLoop();
1103 // Find any cast instructions that participate in the def-use chain of
1104 // PhiScev in the loop.
1105 // FORNOW/TODO: We currently expect the def-use chain to include only
1106 // two-operand instructions, where one of the operands is an invariant.
1107 // createAddRecFromPHIWithCasts() currently does not support anything more
1108 // involved than that, so we keep the search simple. This can be
1109 // extended/generalized as needed.
1111 auto getDef = [&](const Value *Val) -> Value * {
1112 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
1113 if (!BinOp)
1114 return nullptr;
1115 Value *Op0 = BinOp->getOperand(0);
1116 Value *Op1 = BinOp->getOperand(1);
1117 Value *Def = nullptr;
1118 if (L->isLoopInvariant(Op0))
1119 Def = Op1;
1120 else if (L->isLoopInvariant(Op1))
1121 Def = Op0;
1122 return Def;
1125 // Look for the instruction that defines the induction via the
1126 // loop backedge.
1127 BasicBlock *Latch = L->getLoopLatch();
1128 if (!Latch)
1129 return false;
1130 Value *Val = PN->getIncomingValueForBlock(Latch);
1131 if (!Val)
1132 return false;
1134 // Follow the def-use chain until the induction phi is reached.
1135 // If on the way we encounter a Value that has the same SCEV Expr as the
1136 // phi node, we can consider the instructions we visit from that point
1137 // as part of the cast-sequence that can be ignored.
1138 bool InCastSequence = false;
1139 auto *Inst = dyn_cast<Instruction>(Val);
1140 while (Val != PN) {
1141 // If we encountered a phi node other than PN, or if we left the loop,
1142 // we bail out.
1143 if (!Inst || !L->contains(Inst)) {
1144 return false;
1146 auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
1147 if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
1148 InCastSequence = true;
1149 if (InCastSequence) {
1150 // Only the last instruction in the cast sequence is expected to have
1151 // uses outside the induction def-use chain.
1152 if (!CastInsts.empty())
1153 if (!Inst->hasOneUse())
1154 return false;
1155 CastInsts.push_back(Inst);
1157 Val = getDef(Val);
1158 if (!Val)
1159 return false;
1160 Inst = dyn_cast<Instruction>(Val);
1163 return InCastSequence;
1166 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
1167 PredicatedScalarEvolution &PSE,
1168 InductionDescriptor &D, bool Assume) {
1169 Type *PhiTy = Phi->getType();
1171 // Handle integer and pointer inductions variables.
1172 // Now we handle also FP induction but not trying to make a
1173 // recurrent expression from the PHI node in-place.
1175 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
1176 !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
1177 return false;
1179 if (PhiTy->isFloatingPointTy())
1180 return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
1182 const SCEV *PhiScev = PSE.getSCEV(Phi);
1183 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1185 // We need this expression to be an AddRecExpr.
1186 if (Assume && !AR)
1187 AR = PSE.getAsAddRec(Phi);
1189 if (!AR) {
1190 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1191 return false;
1194 // Record any Cast instructions that participate in the induction update
1195 const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1196 // If we started from an UnknownSCEV, and managed to build an addRecurrence
1197 // only after enabling Assume with PSCEV, this means we may have encountered
1198 // cast instructions that required adding a runtime check in order to
1199 // guarantee the correctness of the AddRecurrence respresentation of the
1200 // induction.
1201 if (PhiScev != AR && SymbolicPhi) {
1202 SmallVector<Instruction *, 2> Casts;
1203 if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1204 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1207 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
1210 bool InductionDescriptor::isInductionPHI(
1211 PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1212 InductionDescriptor &D, const SCEV *Expr,
1213 SmallVectorImpl<Instruction *> *CastsToIgnore) {
1214 Type *PhiTy = Phi->getType();
1215 // We only handle integer and pointer inductions variables.
1216 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1217 return false;
1219 // Check that the PHI is consecutive.
1220 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
1221 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1223 if (!AR) {
1224 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1225 return false;
1228 if (AR->getLoop() != TheLoop) {
1229 // FIXME: We should treat this as a uniform. Unfortunately, we
1230 // don't currently know how to handled uniform PHIs.
1231 LLVM_DEBUG(
1232 dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1233 return false;
1236 Value *StartValue =
1237 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
1239 BasicBlock *Latch = AR->getLoop()->getLoopLatch();
1240 if (!Latch)
1241 return false;
1242 BinaryOperator *BOp =
1243 dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
1245 const SCEV *Step = AR->getStepRecurrence(*SE);
1246 // Calculate the pointer stride and check if it is consecutive.
1247 // The stride may be a constant or a loop invariant integer value.
1248 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1249 if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
1250 return false;
1252 if (PhiTy->isIntegerTy()) {
1253 D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp,
1254 CastsToIgnore);
1255 return true;
1258 assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1259 // Pointer induction should be a constant.
1260 if (!ConstStep)
1261 return false;
1263 ConstantInt *CV = ConstStep->getValue();
1264 Type *PointerElementType = PhiTy->getPointerElementType();
1265 // The pointer stride cannot be determined if the pointer element type is not
1266 // sized.
1267 if (!PointerElementType->isSized())
1268 return false;
1270 const DataLayout &DL = Phi->getModule()->getDataLayout();
1271 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
1272 if (!Size)
1273 return false;
1275 int64_t CVSize = CV->getSExtValue();
1276 if (CVSize % Size)
1277 return false;
1278 auto *StepValue =
1279 SE->getConstant(CV->getType(), CVSize / Size, true /* signed */);
1280 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue, BOp);
1281 return true;