[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Analysis / InlineSizeEstimatorAnalysis.cpp
bloba2e231e2d0f44db354df474d0d4a7fe40dee8467
1 //===- InlineSizeEstimatorAnalysis.cpp - IR to native size from ML model --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements feature and label extraction for offline supervised learning
10 // of a IR to native size model.
12 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/InlineSizeEstimatorAnalysis.h"
15 #ifdef LLVM_HAVE_TF_API
16 #include "llvm/Analysis/Utils/TFUtils.h"
17 #endif
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/IR/BasicBlock.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/PassManager.h"
26 #include "llvm/MC/MCAsmLayout.h"
27 #include "llvm/Support/Casting.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>
32 #include <deque>
34 using namespace llvm;
36 AnalysisKey InlineSizeEstimatorAnalysis::Key;
38 #define DEBUG_TYPE "inline-size-estimator"
40 #ifdef LLVM_HAVE_TF_API
41 cl::opt<std::string> TFIR2NativeModelPath(
42 "ml-inliner-ir2native-model", cl::Hidden,
43 cl::desc("Path to saved model evaluating native size from IR."));
45 namespace {
46 unsigned getMaxInstructionID() {
47 #define LAST_OTHER_INST(NR) return NR;
48 #include "llvm/IR/Instruction.def"
51 class IRToNativeSizeLearning {
52 public:
53 enum class NamedFeatureIndex : size_t {
54 InitialSize,
55 Blocks,
56 Calls,
57 IsLocal,
58 IsLinkOnceODR,
59 IsLinkOnce,
60 Loops,
61 MaxLoopDepth,
62 MaxDomTreeLevel,
64 NumNamedFeatures
66 static const size_t NumNamedFeatures =
67 static_cast<size_t>(NamedFeatureIndex::NumNamedFeatures);
68 struct FunctionFeatures {
69 static const size_t FeatureCount;
71 std::array<int32_t, NumNamedFeatures> NamedFeatures = {0};
72 std::vector<int32_t> InstructionHistogram;
73 std::vector<int32_t> InstructionPairHistogram;
75 void fillTensor(int32_t *Ptr) const;
76 int32_t &operator[](NamedFeatureIndex Pos) {
77 return NamedFeatures[static_cast<size_t>(Pos)];
80 IRToNativeSizeLearning() = default;
82 static FunctionFeatures getFunctionFeatures(Function &F,
83 FunctionAnalysisManager &FAM);
86 // This is a point in time - we determined including these pairs of
87 // consecutive instructions (in the IR layout available at inline time) as
88 // features improves the model performance. We want to move away from manual
89 // feature selection.
90 // The array is given in opcode pairs rather than labels because 1) labels
91 // weren't readily available, and 2) the successions were hand - extracted.
93 // This array must be sorted.
94 static const std::array<std::pair<size_t, size_t>, 137>
95 ImportantInstructionSuccessions{
96 {{1, 1}, {1, 4}, {1, 5}, {1, 7}, {1, 8}, {1, 9}, {1, 11},
97 {1, 12}, {1, 13}, {1, 14}, {1, 18}, {1, 20}, {1, 22}, {1, 24},
98 {1, 25}, {1, 26}, {1, 27}, {1, 28}, {1, 29}, {1, 30}, {1, 31},
99 {1, 32}, {1, 33}, {1, 34}, {1, 39}, {1, 40}, {1, 42}, {1, 45},
100 {2, 1}, {2, 2}, {2, 13}, {2, 28}, {2, 29}, {2, 32}, {2, 33},
101 {2, 34}, {2, 38}, {2, 48}, {2, 49}, {2, 53}, {2, 55}, {2, 56},
102 {13, 2}, {13, 13}, {13, 26}, {13, 33}, {13, 34}, {13, 56}, {15, 27},
103 {28, 2}, {28, 48}, {28, 53}, {29, 2}, {29, 33}, {29, 56}, {31, 31},
104 {31, 33}, {31, 34}, {31, 49}, {32, 1}, {32, 2}, {32, 13}, {32, 15},
105 {32, 28}, {32, 29}, {32, 32}, {32, 33}, {32, 34}, {32, 39}, {32, 40},
106 {32, 48}, {32, 49}, {32, 53}, {32, 56}, {33, 1}, {33, 2}, {33, 32},
107 {33, 33}, {33, 34}, {33, 49}, {33, 53}, {33, 56}, {34, 1}, {34, 2},
108 {34, 32}, {34, 33}, {34, 34}, {34, 49}, {34, 53}, {34, 56}, {38, 34},
109 {39, 57}, {40, 34}, {47, 15}, {47, 49}, {48, 2}, {48, 34}, {48, 56},
110 {49, 1}, {49, 2}, {49, 28}, {49, 32}, {49, 33}, {49, 34}, {49, 39},
111 {49, 49}, {49, 56}, {53, 1}, {53, 2}, {53, 28}, {53, 34}, {53, 53},
112 {53, 57}, {55, 1}, {55, 28}, {55, 34}, {55, 53}, {55, 55}, {55, 56},
113 {56, 1}, {56, 2}, {56, 7}, {56, 13}, {56, 32}, {56, 33}, {56, 34},
114 {56, 49}, {56, 53}, {56, 56}, {56, 64}, {57, 34}, {57, 56}, {57, 57},
115 {64, 1}, {64, 64}, {65, 1}, {65, 65}}};
117 // We have: 9 calculated features (the features here); 1 feature for each
118 // instruction opcode; and 1 feature for each manually-identified sequence.
119 // For the latter 2, we build a histogram: we count the number of
120 // occurrences of each instruction opcode or succession of instructions,
121 // respectively.
122 // Note that instruction opcodes start from 1. For convenience, we also have an
123 // always 0 feature for the '0' opcode, hence the extra 1.
124 const size_t IRToNativeSizeLearning::FunctionFeatures::FeatureCount =
125 ImportantInstructionSuccessions.size() + getMaxInstructionID() + 1 +
126 IRToNativeSizeLearning::NumNamedFeatures;
128 size_t getSize(Function &F, TargetTransformInfo &TTI) {
129 size_t Ret = 0;
130 for (const auto &BB : F)
131 for (const auto &I : BB)
132 Ret += *(TTI.getInstructionCost(
133 &I, TargetTransformInfo::TargetCostKind::TCK_CodeSize).getValue());
134 return Ret;
137 size_t getSize(Function &F, FunctionAnalysisManager &FAM) {
138 auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
139 return getSize(F, TTI);
142 unsigned getMaxDominatorTreeDepth(const Function &F,
143 const DominatorTree &Tree) {
144 unsigned Ret = 0;
145 for (const auto &BB : F)
146 if (const auto *TN = Tree.getNode(&BB))
147 Ret = std::max(Ret, TN->getLevel());
148 return Ret;
150 } // namespace
152 IRToNativeSizeLearning::FunctionFeatures
153 IRToNativeSizeLearning::getFunctionFeatures(Function &F,
154 FunctionAnalysisManager &FAM) {
155 assert(llvm::is_sorted(ImportantInstructionSuccessions) &&
156 "expected function features are sorted");
158 auto &DomTree = FAM.getResult<DominatorTreeAnalysis>(F);
159 FunctionFeatures FF;
160 size_t InstrCount = getMaxInstructionID() + 1;
161 FF.InstructionHistogram.resize(InstrCount);
163 FF.InstructionPairHistogram.resize(ImportantInstructionSuccessions.size());
165 int StartID = 0;
166 int LastID = StartID;
167 auto getPairIndex = [](size_t a, size_t b) {
168 auto I = llvm::find(ImportantInstructionSuccessions, std::make_pair(a, b));
169 if (I == ImportantInstructionSuccessions.end())
170 return -1;
171 return static_cast<int>(
172 std::distance(ImportantInstructionSuccessions.begin(), I));
175 // We don't want debug calls, because they'd just add noise.
176 for (const auto &BB : F) {
177 for (const auto &I : BB.instructionsWithoutDebug()) {
178 auto ID = I.getOpcode();
180 ++FF.InstructionHistogram[ID];
181 int PairIndex = getPairIndex(LastID, ID);
182 if (PairIndex >= 0)
183 ++FF.InstructionPairHistogram[PairIndex];
184 LastID = ID;
185 if (isa<CallBase>(I))
186 ++FF[NamedFeatureIndex::Calls];
190 FF[NamedFeatureIndex::InitialSize] = getSize(F, FAM);
191 FF[NamedFeatureIndex::IsLocal] = F.hasLocalLinkage();
192 FF[NamedFeatureIndex::IsLinkOnceODR] = F.hasLinkOnceODRLinkage();
193 FF[NamedFeatureIndex::IsLinkOnce] = F.hasLinkOnceLinkage();
194 FF[NamedFeatureIndex::Blocks] =
195 std::distance(F.getBasicBlockList().begin(), F.getBasicBlockList().end());
196 auto &LI = FAM.getResult<LoopAnalysis>(F);
197 FF[NamedFeatureIndex::Loops] = std::distance(LI.begin(), LI.end());
198 for (auto &L : LI)
199 FF[NamedFeatureIndex::MaxLoopDepth] =
200 std::max(FF[NamedFeatureIndex::MaxLoopDepth],
201 static_cast<int32_t>(L->getLoopDepth()));
202 FF[NamedFeatureIndex::MaxDomTreeLevel] = getMaxDominatorTreeDepth(F, DomTree);
203 return FF;
206 void IRToNativeSizeLearning::FunctionFeatures::fillTensor(int32_t *Ptr) const {
207 std::copy(NamedFeatures.begin(), NamedFeatures.end(), Ptr);
208 Ptr += NamedFeatures.size();
209 std::copy(InstructionHistogram.begin(), InstructionHistogram.end(), Ptr);
210 Ptr += InstructionHistogram.size();
211 std::copy(InstructionPairHistogram.begin(), InstructionPairHistogram.end(),
212 Ptr);
215 bool InlineSizeEstimatorAnalysis::isEvaluatorRequested() {
216 return !TFIR2NativeModelPath.empty();
219 InlineSizeEstimatorAnalysis::InlineSizeEstimatorAnalysis() {
220 if (!isEvaluatorRequested()) {
221 return;
223 std::vector<TensorSpec> InputSpecs{TensorSpec::createSpec<int32_t>(
224 "serving_default_input_1",
225 {1, static_cast<int64_t>(
226 IRToNativeSizeLearning::FunctionFeatures::FeatureCount)})};
227 std::vector<TensorSpec> OutputSpecs{
228 TensorSpec::createSpec<float>("StatefulPartitionedCall", {1})};
229 Evaluator = std::make_unique<TFModelEvaluator>(
230 TFIR2NativeModelPath.getValue().c_str(), InputSpecs, OutputSpecs);
231 if (!Evaluator || !Evaluator->isValid()) {
232 Evaluator.reset();
233 return;
237 InlineSizeEstimatorAnalysis::Result
238 InlineSizeEstimatorAnalysis::run(const Function &F,
239 FunctionAnalysisManager &FAM) {
240 if (!Evaluator)
241 return None;
242 auto Features = IRToNativeSizeLearning::getFunctionFeatures(
243 const_cast<Function &>(F), FAM);
244 int32_t *V = Evaluator->getInput<int32_t>(0);
245 Features.fillTensor(V);
246 auto ER = Evaluator->evaluate();
247 if (!ER)
248 return None;
249 float Ret = *ER->getTensorValue<float>(0);
250 if (Ret < 0.0)
251 Ret = 0.0;
252 return static_cast<size_t>(Ret);
255 InlineSizeEstimatorAnalysis::~InlineSizeEstimatorAnalysis() {}
256 InlineSizeEstimatorAnalysis::InlineSizeEstimatorAnalysis(
257 InlineSizeEstimatorAnalysis &&Other)
258 : Evaluator(std::move(Other.Evaluator)) {}
260 #else
261 namespace llvm {
262 class TFModelEvaluator {};
263 } // namespace llvm
264 InlineSizeEstimatorAnalysis::InlineSizeEstimatorAnalysis() {}
265 InlineSizeEstimatorAnalysis ::InlineSizeEstimatorAnalysis(
266 InlineSizeEstimatorAnalysis &&) {}
267 InlineSizeEstimatorAnalysis::~InlineSizeEstimatorAnalysis() {}
268 InlineSizeEstimatorAnalysis::Result
269 InlineSizeEstimatorAnalysis::run(const Function &F,
270 FunctionAnalysisManager &FAM) {
271 return None;
273 bool InlineSizeEstimatorAnalysis::isEvaluatorRequested() { return false; }
274 #endif
276 PreservedAnalyses
277 InlineSizeEstimatorAnalysisPrinterPass::run(Function &F,
278 FunctionAnalysisManager &AM) {
279 OS << "[InlineSizeEstimatorAnalysis] size estimate for " << F.getName()
280 << ": " << AM.getResult<InlineSizeEstimatorAnalysis>(F) << "\n";
281 return PreservedAnalyses::all();