[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Analysis / LegacyDivergenceAnalysis.cpp
blob031bf3bae51dd127839142cf52dd2a429d439ff7
1 //===- LegacyDivergenceAnalysis.cpp --------- Legacy Divergence Analysis
2 //Implementation -==//
3 //
4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 // See https://llvm.org/LICENSE.txt for license information.
6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements divergence analysis which determines whether a branch
11 // in a GPU program is divergent.It can help branch optimizations such as jump
12 // threading and loop unswitching to make better decisions.
14 // GPU programs typically use the SIMD execution model, where multiple threads
15 // in the same execution group have to execute in lock-step. Therefore, if the
16 // code contains divergent branches (i.e., threads in a group do not agree on
17 // which path of the branch to take), the group of threads has to execute all
18 // the paths from that branch with different subsets of threads enabled until
19 // they converge at the immediately post-dominating BB of the paths.
21 // Due to this execution model, some optimizations such as jump
22 // threading and loop unswitching can be unfortunately harmful when performed on
23 // divergent branches. Therefore, an analysis that computes which branches in a
24 // GPU program are divergent can help the compiler to selectively run these
25 // optimizations.
27 // This file defines divergence analysis which computes a conservative but
28 // non-trivial approximation of all divergent branches in a GPU program. It
29 // partially implements the approach described in
31 // Divergence Analysis
32 // Sampaio, Souza, Collange, Pereira
33 // TOPLAS '13
35 // The divergence analysis identifies the sources of divergence (e.g., special
36 // variables that hold the thread ID), and recursively marks variables that are
37 // data or sync dependent on a source of divergence as divergent.
39 // While data dependency is a well-known concept, the notion of sync dependency
40 // is worth more explanation. Sync dependence characterizes the control flow
41 // aspect of the propagation of branch divergence. For example,
43 // %cond = icmp slt i32 %tid, 10
44 // br i1 %cond, label %then, label %else
45 // then:
46 // br label %merge
47 // else:
48 // br label %merge
49 // merge:
50 // %a = phi i32 [ 0, %then ], [ 1, %else ]
52 // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
53 // because %tid is not on its use-def chains, %a is sync dependent on %tid
54 // because the branch "br i1 %cond" depends on %tid and affects which value %a
55 // is assigned to.
57 // The current implementation has the following limitations:
58 // 1. intra-procedural. It conservatively considers the arguments of a
59 // non-kernel-entry function and the return value of a function call as
60 // divergent.
61 // 2. memory as black box. It conservatively considers values loaded from
62 // generic or local address as divergent. This can be improved by leveraging
63 // pointer analysis.
65 //===----------------------------------------------------------------------===//
67 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
68 #include "llvm/ADT/PostOrderIterator.h"
69 #include "llvm/Analysis/CFG.h"
70 #include "llvm/Analysis/DivergenceAnalysis.h"
71 #include "llvm/Analysis/Passes.h"
72 #include "llvm/Analysis/PostDominators.h"
73 #include "llvm/Analysis/TargetTransformInfo.h"
74 #include "llvm/IR/Dominators.h"
75 #include "llvm/IR/InstIterator.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/Value.h"
78 #include "llvm/InitializePasses.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include <vector>
83 using namespace llvm;
85 #define DEBUG_TYPE "divergence"
87 // transparently use the GPUDivergenceAnalysis
88 static cl::opt<bool> UseGPUDA("use-gpu-divergence-analysis", cl::init(false),
89 cl::Hidden,
90 cl::desc("turn the LegacyDivergenceAnalysis into "
91 "a wrapper for GPUDivergenceAnalysis"));
93 namespace {
95 class DivergencePropagator {
96 public:
97 DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT,
98 PostDominatorTree &PDT, DenseSet<const Value *> &DV,
99 DenseSet<const Use *> &DU)
100 : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV), DU(DU) {}
101 void populateWithSourcesOfDivergence();
102 void propagate();
104 private:
105 // A helper function that explores data dependents of V.
106 void exploreDataDependency(Value *V);
107 // A helper function that explores sync dependents of TI.
108 void exploreSyncDependency(Instruction *TI);
109 // Computes the influence region from Start to End. This region includes all
110 // basic blocks on any simple path from Start to End.
111 void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End,
112 DenseSet<BasicBlock *> &InfluenceRegion);
113 // Finds all users of I that are outside the influence region, and add these
114 // users to Worklist.
115 void findUsersOutsideInfluenceRegion(
116 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion);
118 Function &F;
119 TargetTransformInfo &TTI;
120 DominatorTree &DT;
121 PostDominatorTree &PDT;
122 std::vector<Value *> Worklist; // Stack for DFS.
123 DenseSet<const Value *> &DV; // Stores all divergent values.
124 DenseSet<const Use *> &DU; // Stores divergent uses of possibly uniform
125 // values.
128 void DivergencePropagator::populateWithSourcesOfDivergence() {
129 Worklist.clear();
130 DV.clear();
131 DU.clear();
132 for (auto &I : instructions(F)) {
133 if (TTI.isSourceOfDivergence(&I)) {
134 Worklist.push_back(&I);
135 DV.insert(&I);
138 for (auto &Arg : F.args()) {
139 if (TTI.isSourceOfDivergence(&Arg)) {
140 Worklist.push_back(&Arg);
141 DV.insert(&Arg);
146 void DivergencePropagator::exploreSyncDependency(Instruction *TI) {
147 // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
148 // immediate post dominator are divergent. This rule handles if-then-else
149 // patterns. For example,
151 // if (tid < 5)
152 // a1 = 1;
153 // else
154 // a2 = 2;
155 // a = phi(a1, a2); // sync dependent on (tid < 5)
156 BasicBlock *ThisBB = TI->getParent();
158 // Unreachable blocks may not be in the dominator tree.
159 if (!DT.isReachableFromEntry(ThisBB))
160 return;
162 // If the function has no exit blocks or doesn't reach any exit blocks, the
163 // post dominator may be null.
164 DomTreeNode *ThisNode = PDT.getNode(ThisBB);
165 if (!ThisNode)
166 return;
168 BasicBlock *IPostDom = ThisNode->getIDom()->getBlock();
169 if (IPostDom == nullptr)
170 return;
172 for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) {
173 // A PHINode is uniform if it returns the same value no matter which path is
174 // taken.
175 if (!cast<PHINode>(I)->hasConstantOrUndefValue() && DV.insert(&*I).second)
176 Worklist.push_back(&*I);
179 // Propagation rule 2: if a value defined in a loop is used outside, the user
180 // is sync dependent on the condition of the loop exits that dominate the
181 // user. For example,
183 // int i = 0;
184 // do {
185 // i++;
186 // if (foo(i)) ... // uniform
187 // } while (i < tid);
188 // if (bar(i)) ... // divergent
190 // A program may contain unstructured loops. Therefore, we cannot leverage
191 // LoopInfo, which only recognizes natural loops.
193 // The algorithm used here handles both natural and unstructured loops. Given
194 // a branch TI, we first compute its influence region, the union of all simple
195 // paths from TI to its immediate post dominator (IPostDom). Then, we search
196 // for all the values defined in the influence region but used outside. All
197 // these users are sync dependent on TI.
198 DenseSet<BasicBlock *> InfluenceRegion;
199 computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion);
200 // An insight that can speed up the search process is that all the in-region
201 // values that are used outside must dominate TI. Therefore, instead of
202 // searching every basic blocks in the influence region, we search all the
203 // dominators of TI until it is outside the influence region.
204 BasicBlock *InfluencedBB = ThisBB;
205 while (InfluenceRegion.count(InfluencedBB)) {
206 for (auto &I : *InfluencedBB) {
207 if (!DV.count(&I))
208 findUsersOutsideInfluenceRegion(I, InfluenceRegion);
210 DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
211 if (IDomNode == nullptr)
212 break;
213 InfluencedBB = IDomNode->getBlock();
217 void DivergencePropagator::findUsersOutsideInfluenceRegion(
218 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
219 for (Use &Use : I.uses()) {
220 Instruction *UserInst = cast<Instruction>(Use.getUser());
221 if (!InfluenceRegion.count(UserInst->getParent())) {
222 DU.insert(&Use);
223 if (DV.insert(UserInst).second)
224 Worklist.push_back(UserInst);
229 // A helper function for computeInfluenceRegion that adds successors of "ThisBB"
230 // to the influence region.
231 static void
232 addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End,
233 DenseSet<BasicBlock *> &InfluenceRegion,
234 std::vector<BasicBlock *> &InfluenceStack) {
235 for (BasicBlock *Succ : successors(ThisBB)) {
236 if (Succ != End && InfluenceRegion.insert(Succ).second)
237 InfluenceStack.push_back(Succ);
241 void DivergencePropagator::computeInfluenceRegion(
242 BasicBlock *Start, BasicBlock *End,
243 DenseSet<BasicBlock *> &InfluenceRegion) {
244 assert(PDT.properlyDominates(End, Start) &&
245 "End does not properly dominate Start");
247 // The influence region starts from the end of "Start" to the beginning of
248 // "End". Therefore, "Start" should not be in the region unless "Start" is in
249 // a loop that doesn't contain "End".
250 std::vector<BasicBlock *> InfluenceStack;
251 addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack);
252 while (!InfluenceStack.empty()) {
253 BasicBlock *BB = InfluenceStack.back();
254 InfluenceStack.pop_back();
255 addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack);
259 void DivergencePropagator::exploreDataDependency(Value *V) {
260 // Follow def-use chains of V.
261 for (User *U : V->users()) {
262 if (!TTI.isAlwaysUniform(U) && DV.insert(U).second)
263 Worklist.push_back(U);
267 void DivergencePropagator::propagate() {
268 // Traverse the dependency graph using DFS.
269 while (!Worklist.empty()) {
270 Value *V = Worklist.back();
271 Worklist.pop_back();
272 if (Instruction *I = dyn_cast<Instruction>(V)) {
273 // Terminators with less than two successors won't introduce sync
274 // dependency. Ignore them.
275 if (I->isTerminator() && I->getNumSuccessors() > 1)
276 exploreSyncDependency(I);
278 exploreDataDependency(V);
282 } // namespace
284 // Register this pass.
285 char LegacyDivergenceAnalysis::ID = 0;
286 LegacyDivergenceAnalysis::LegacyDivergenceAnalysis() : FunctionPass(ID) {
287 initializeLegacyDivergenceAnalysisPass(*PassRegistry::getPassRegistry());
289 INITIALIZE_PASS_BEGIN(LegacyDivergenceAnalysis, "divergence",
290 "Legacy Divergence Analysis", false, true)
291 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
292 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
293 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
294 INITIALIZE_PASS_END(LegacyDivergenceAnalysis, "divergence",
295 "Legacy Divergence Analysis", false, true)
297 FunctionPass *llvm::createLegacyDivergenceAnalysisPass() {
298 return new LegacyDivergenceAnalysis();
301 void LegacyDivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
302 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
303 AU.addRequiredTransitive<PostDominatorTreeWrapperPass>();
304 AU.addRequiredTransitive<LoopInfoWrapperPass>();
305 AU.setPreservesAll();
308 bool LegacyDivergenceAnalysis::shouldUseGPUDivergenceAnalysis(
309 const Function &F, const TargetTransformInfo &TTI) const {
310 if (!(UseGPUDA || TTI.useGPUDivergenceAnalysis()))
311 return false;
313 // GPUDivergenceAnalysis requires a reducible CFG.
314 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
315 using RPOTraversal = ReversePostOrderTraversal<const Function *>;
316 RPOTraversal FuncRPOT(&F);
317 return !containsIrreducibleCFG<const BasicBlock *, const RPOTraversal,
318 const LoopInfo>(FuncRPOT, LI);
321 bool LegacyDivergenceAnalysis::runOnFunction(Function &F) {
322 auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
323 if (TTIWP == nullptr)
324 return false;
326 TargetTransformInfo &TTI = TTIWP->getTTI(F);
327 // Fast path: if the target does not have branch divergence, we do not mark
328 // any branch as divergent.
329 if (!TTI.hasBranchDivergence())
330 return false;
332 DivergentValues.clear();
333 DivergentUses.clear();
334 gpuDA = nullptr;
336 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
337 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
339 if (shouldUseGPUDivergenceAnalysis(F, TTI)) {
340 // run the new GPU divergence analysis
341 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
342 gpuDA = std::make_unique<DivergenceInfo>(F, DT, PDT, LI, TTI,
343 /* KnownReducible = */ true);
345 } else {
346 // run LLVM's existing DivergenceAnalysis
347 DivergencePropagator DP(F, TTI, DT, PDT, DivergentValues, DivergentUses);
348 DP.populateWithSourcesOfDivergence();
349 DP.propagate();
352 LLVM_DEBUG(dbgs() << "\nAfter divergence analysis on " << F.getName()
353 << ":\n";
354 print(dbgs(), F.getParent()));
356 return false;
359 bool LegacyDivergenceAnalysis::isDivergent(const Value *V) const {
360 if (gpuDA) {
361 return gpuDA->isDivergent(*V);
363 return DivergentValues.count(V);
366 bool LegacyDivergenceAnalysis::isDivergentUse(const Use *U) const {
367 if (gpuDA) {
368 return gpuDA->isDivergentUse(*U);
370 return DivergentValues.count(U->get()) || DivergentUses.count(U);
373 void LegacyDivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
374 if ((!gpuDA || !gpuDA->hasDivergence()) && DivergentValues.empty())
375 return;
377 const Function *F = nullptr;
378 if (!DivergentValues.empty()) {
379 const Value *FirstDivergentValue = *DivergentValues.begin();
380 if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) {
381 F = Arg->getParent();
382 } else if (const Instruction *I =
383 dyn_cast<Instruction>(FirstDivergentValue)) {
384 F = I->getParent()->getParent();
385 } else {
386 llvm_unreachable("Only arguments and instructions can be divergent");
388 } else if (gpuDA) {
389 F = &gpuDA->getFunction();
391 if (!F)
392 return;
394 // Dumps all divergent values in F, arguments and then instructions.
395 for (auto &Arg : F->args()) {
396 OS << (isDivergent(&Arg) ? "DIVERGENT: " : " ");
397 OS << Arg << "\n";
399 // Iterate instructions using instructions() to ensure a deterministic order.
400 for (const BasicBlock &BB : *F) {
401 OS << "\n " << BB.getName() << ":\n";
402 for (auto &I : BB.instructionsWithoutDebug()) {
403 OS << (isDivergent(&I) ? "DIVERGENT: " : " ");
404 OS << I << "\n";
407 OS << "\n";