1 //===- Loads.cpp - Local load analysis ------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines simple local analyses for load instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/AssumeBundleQueries.h"
16 #include "llvm/Analysis/CaptureTracking.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/MemoryBuiltins.h"
19 #include "llvm/Analysis/MemoryLocation.h"
20 #include "llvm/Analysis/ScalarEvolution.h"
21 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/GlobalAlias.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
34 static bool isAligned(const Value
*Base
, const APInt
&Offset
, Align Alignment
,
35 const DataLayout
&DL
) {
36 Align BA
= Base
->getPointerAlignment(DL
);
37 const APInt
APAlign(Offset
.getBitWidth(), Alignment
.value());
38 assert(APAlign
.isPowerOf2() && "must be a power of 2!");
39 return BA
>= Alignment
&& !(Offset
& (APAlign
- 1));
42 /// Test if V is always a pointer to allocated and suitably aligned memory for
43 /// a simple load or store.
44 static bool isDereferenceableAndAlignedPointer(
45 const Value
*V
, Align Alignment
, const APInt
&Size
, const DataLayout
&DL
,
46 const Instruction
*CtxI
, const DominatorTree
*DT
,
47 const TargetLibraryInfo
*TLI
, SmallPtrSetImpl
<const Value
*> &Visited
,
49 assert(V
->getType()->isPointerTy() && "Base must be pointer");
55 // Already visited? Bail out, we've likely hit unreachable code.
56 if (!Visited
.insert(V
).second
)
59 // Note that it is not safe to speculate into a malloc'd region because
60 // malloc may return null.
62 // Recurse into both hands of select.
63 if (const SelectInst
*Sel
= dyn_cast
<SelectInst
>(V
)) {
64 return isDereferenceableAndAlignedPointer(Sel
->getTrueValue(), Alignment
,
65 Size
, DL
, CtxI
, DT
, TLI
, Visited
,
67 isDereferenceableAndAlignedPointer(Sel
->getFalseValue(), Alignment
,
68 Size
, DL
, CtxI
, DT
, TLI
, Visited
,
72 // bitcast instructions are no-ops as far as dereferenceability is concerned.
73 if (const BitCastOperator
*BC
= dyn_cast
<BitCastOperator
>(V
)) {
74 if (BC
->getSrcTy()->isPointerTy())
75 return isDereferenceableAndAlignedPointer(
76 BC
->getOperand(0), Alignment
, Size
, DL
, CtxI
, DT
, TLI
,
80 bool CheckForNonNull
, CheckForFreed
;
81 APInt
KnownDerefBytes(Size
.getBitWidth(),
82 V
->getPointerDereferenceableBytes(DL
, CheckForNonNull
,
84 if (KnownDerefBytes
.getBoolValue() && KnownDerefBytes
.uge(Size
) &&
86 if (!CheckForNonNull
|| isKnownNonZero(V
, DL
, 0, nullptr, CtxI
, DT
)) {
87 // As we recursed through GEPs to get here, we've incrementally checked
88 // that each step advanced by a multiple of the alignment. If our base is
89 // properly aligned, then the original offset accessed must also be.
90 Type
*Ty
= V
->getType();
91 assert(Ty
->isSized() && "must be sized");
92 APInt
Offset(DL
.getTypeStoreSizeInBits(Ty
), 0);
93 return isAligned(V
, Offset
, Alignment
, DL
);
97 /// Look through assumes to see if both dereferencability and alignment can
98 /// be provent by an assume
99 RetainedKnowledge AlignRK
;
100 RetainedKnowledge DerefRK
;
101 if (getKnowledgeForValue(
102 V
, {Attribute::Dereferenceable
, Attribute::Alignment
}, nullptr,
103 [&](RetainedKnowledge RK
, Instruction
*Assume
, auto) {
104 if (!isValidAssumeForContext(Assume
, CtxI
))
106 if (RK
.AttrKind
== Attribute::Alignment
)
107 AlignRK
= std::max(AlignRK
, RK
);
108 if (RK
.AttrKind
== Attribute::Dereferenceable
)
109 DerefRK
= std::max(DerefRK
, RK
);
110 if (AlignRK
&& DerefRK
&& AlignRK
.ArgValue
>= Alignment
.value() &&
111 DerefRK
.ArgValue
>= Size
.getZExtValue())
112 return true; // We have found what we needed so we stop looking
113 return false; // Other assumes may have better information. so
118 /// TODO refactor this function to be able to search independently for
119 /// Dereferencability and Alignment requirements.
121 // For GEPs, determine if the indexing lands within the allocated object.
122 if (const GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(V
)) {
123 const Value
*Base
= GEP
->getPointerOperand();
125 APInt
Offset(DL
.getIndexTypeSizeInBits(GEP
->getType()), 0);
126 if (!GEP
->accumulateConstantOffset(DL
, Offset
) || Offset
.isNegative() ||
127 !Offset
.urem(APInt(Offset
.getBitWidth(), Alignment
.value()))
131 // If the base pointer is dereferenceable for Offset+Size bytes, then the
132 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base
133 // pointer is aligned to Align bytes, and the Offset is divisible by Align
134 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
135 // aligned to Align bytes.
137 // Offset and Size may have different bit widths if we have visited an
138 // addrspacecast, so we can't do arithmetic directly on the APInt values.
139 return isDereferenceableAndAlignedPointer(
140 Base
, Alignment
, Offset
+ Size
.sextOrTrunc(Offset
.getBitWidth()), DL
,
141 CtxI
, DT
, TLI
, Visited
, MaxDepth
);
144 // For gc.relocate, look through relocations
145 if (const GCRelocateInst
*RelocateInst
= dyn_cast
<GCRelocateInst
>(V
))
146 return isDereferenceableAndAlignedPointer(RelocateInst
->getDerivedPtr(),
147 Alignment
, Size
, DL
, CtxI
, DT
,
148 TLI
, Visited
, MaxDepth
);
150 if (const AddrSpaceCastInst
*ASC
= dyn_cast
<AddrSpaceCastInst
>(V
))
151 return isDereferenceableAndAlignedPointer(ASC
->getOperand(0), Alignment
,
152 Size
, DL
, CtxI
, DT
, TLI
,
155 if (const auto *Call
= dyn_cast
<CallBase
>(V
)) {
156 if (auto *RP
= getArgumentAliasingToReturnedPointer(Call
, true))
157 return isDereferenceableAndAlignedPointer(RP
, Alignment
, Size
, DL
, CtxI
,
158 DT
, TLI
, Visited
, MaxDepth
);
160 // If we have a call we can't recurse through, check to see if this is an
161 // allocation function for which we can establish an minimum object size.
162 // Such a minimum object size is analogous to a deref_or_null attribute in
163 // that we still need to prove the result non-null at point of use.
164 // NOTE: We can only use the object size as a base fact as we a) need to
165 // prove alignment too, and b) don't want the compile time impact of a
166 // separate recursive walk.
168 // TODO: It may be okay to round to align, but that would imply that
169 // accessing slightly out of bounds was legal, and we're currently
170 // inconsistent about that. For the moment, be conservative.
171 Opts
.RoundToAlign
= false;
172 Opts
.NullIsUnknownSize
= true;
174 if (getObjectSize(V
, ObjSize
, DL
, TLI
, Opts
)) {
175 APInt
KnownDerefBytes(Size
.getBitWidth(), ObjSize
);
176 if (KnownDerefBytes
.getBoolValue() && KnownDerefBytes
.uge(Size
) &&
177 isKnownNonZero(V
, DL
, 0, nullptr, CtxI
, DT
) && !V
->canBeFreed()) {
178 // As we recursed through GEPs to get here, we've incrementally
179 // checked that each step advanced by a multiple of the alignment. If
180 // our base is properly aligned, then the original offset accessed
182 Type
*Ty
= V
->getType();
183 assert(Ty
->isSized() && "must be sized");
184 APInt
Offset(DL
.getTypeStoreSizeInBits(Ty
), 0);
185 return isAligned(V
, Offset
, Alignment
, DL
);
190 // If we don't know, assume the worst.
194 bool llvm::isDereferenceableAndAlignedPointer(const Value
*V
, Align Alignment
,
196 const DataLayout
&DL
,
197 const Instruction
*CtxI
,
198 const DominatorTree
*DT
,
199 const TargetLibraryInfo
*TLI
) {
200 // Note: At the moment, Size can be zero. This ends up being interpreted as
201 // a query of whether [Base, V] is dereferenceable and V is aligned (since
202 // that's what the implementation happened to do). It's unclear if this is
203 // the desired semantic, but at least SelectionDAG does exercise this case.
205 SmallPtrSet
<const Value
*, 32> Visited
;
206 return ::isDereferenceableAndAlignedPointer(V
, Alignment
, Size
, DL
, CtxI
, DT
,
210 bool llvm::isDereferenceableAndAlignedPointer(const Value
*V
, Type
*Ty
,
212 const DataLayout
&DL
,
213 const Instruction
*CtxI
,
214 const DominatorTree
*DT
,
215 const TargetLibraryInfo
*TLI
) {
216 // For unsized types or scalable vectors we don't know exactly how many bytes
217 // are dereferenced, so bail out.
218 if (!Ty
->isSized() || isa
<ScalableVectorType
>(Ty
))
221 // When dereferenceability information is provided by a dereferenceable
222 // attribute, we know exactly how many bytes are dereferenceable. If we can
223 // determine the exact offset to the attributed variable, we can use that
226 // Require ABI alignment for loads without alignment specification
227 const Align Alignment
= DL
.getValueOrABITypeAlignment(MA
, Ty
);
228 APInt
AccessSize(DL
.getPointerTypeSizeInBits(V
->getType()),
229 DL
.getTypeStoreSize(Ty
));
230 return isDereferenceableAndAlignedPointer(V
, Alignment
, AccessSize
, DL
, CtxI
,
234 bool llvm::isDereferenceablePointer(const Value
*V
, Type
*Ty
,
235 const DataLayout
&DL
,
236 const Instruction
*CtxI
,
237 const DominatorTree
*DT
,
238 const TargetLibraryInfo
*TLI
) {
239 return isDereferenceableAndAlignedPointer(V
, Ty
, Align(1), DL
, CtxI
, DT
, TLI
);
242 /// Test if A and B will obviously have the same value.
244 /// This includes recognizing that %t0 and %t1 will have the same
245 /// value in code like this:
247 /// %t0 = getelementptr \@a, 0, 3
248 /// store i32 0, i32* %t0
249 /// %t1 = getelementptr \@a, 0, 3
250 /// %t2 = load i32* %t1
253 static bool AreEquivalentAddressValues(const Value
*A
, const Value
*B
) {
254 // Test if the values are trivially equivalent.
258 // Test if the values come from identical arithmetic instructions.
259 // Use isIdenticalToWhenDefined instead of isIdenticalTo because
260 // this function is only used when one address use dominates the
261 // other, which means that they'll always either have the same
262 // value or one of them will have an undefined value.
263 if (isa
<BinaryOperator
>(A
) || isa
<CastInst
>(A
) || isa
<PHINode
>(A
) ||
264 isa
<GetElementPtrInst
>(A
))
265 if (const Instruction
*BI
= dyn_cast
<Instruction
>(B
))
266 if (cast
<Instruction
>(A
)->isIdenticalToWhenDefined(BI
))
269 // Otherwise they may not be equivalent.
273 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst
*LI
, Loop
*L
,
276 auto &DL
= LI
->getModule()->getDataLayout();
277 Value
*Ptr
= LI
->getPointerOperand();
279 APInt
EltSize(DL
.getIndexTypeSizeInBits(Ptr
->getType()),
280 DL
.getTypeStoreSize(LI
->getType()).getFixedSize());
281 const Align Alignment
= LI
->getAlign();
283 Instruction
*HeaderFirstNonPHI
= L
->getHeader()->getFirstNonPHI();
285 // If given a uniform (i.e. non-varying) address, see if we can prove the
286 // access is safe within the loop w/o needing predication.
287 if (L
->isLoopInvariant(Ptr
))
288 return isDereferenceableAndAlignedPointer(Ptr
, Alignment
, EltSize
, DL
,
289 HeaderFirstNonPHI
, &DT
);
291 // Otherwise, check to see if we have a repeating access pattern where we can
292 // prove that all accesses are well aligned and dereferenceable.
293 auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(SE
.getSCEV(Ptr
));
294 if (!AddRec
|| AddRec
->getLoop() != L
|| !AddRec
->isAffine())
296 auto* Step
= dyn_cast
<SCEVConstant
>(AddRec
->getStepRecurrence(SE
));
299 // TODO: generalize to access patterns which have gaps
300 if (Step
->getAPInt() != EltSize
)
303 auto TC
= SE
.getSmallConstantMaxTripCount(L
);
307 const APInt AccessSize
= TC
* EltSize
;
309 auto *StartS
= dyn_cast
<SCEVUnknown
>(AddRec
->getStart());
312 assert(SE
.isLoopInvariant(StartS
, L
) && "implied by addrec definition");
313 Value
*Base
= StartS
->getValue();
315 // For the moment, restrict ourselves to the case where the access size is a
316 // multiple of the requested alignment and the base is aligned.
317 // TODO: generalize if a case found which warrants
318 if (EltSize
.urem(Alignment
.value()) != 0)
320 return isDereferenceableAndAlignedPointer(Base
, Alignment
, AccessSize
, DL
,
321 HeaderFirstNonPHI
, &DT
);
324 /// Check if executing a load of this pointer value cannot trap.
326 /// If DT and ScanFrom are specified this method performs context-sensitive
327 /// analysis and returns true if it is safe to load immediately before ScanFrom.
329 /// If it is not obviously safe to load from the specified pointer, we do
330 /// a quick local scan of the basic block containing \c ScanFrom, to determine
331 /// if the address is already accessed.
333 /// This uses the pointee type to determine how many bytes need to be safe to
334 /// load from the pointer.
335 bool llvm::isSafeToLoadUnconditionally(Value
*V
, Align Alignment
, APInt
&Size
,
336 const DataLayout
&DL
,
337 Instruction
*ScanFrom
,
338 const DominatorTree
*DT
,
339 const TargetLibraryInfo
*TLI
) {
340 // If DT is not specified we can't make context-sensitive query
341 const Instruction
* CtxI
= DT
? ScanFrom
: nullptr;
342 if (isDereferenceableAndAlignedPointer(V
, Alignment
, Size
, DL
, CtxI
, DT
, TLI
))
348 if (Size
.getBitWidth() > 64)
350 const uint64_t LoadSize
= Size
.getZExtValue();
352 // Otherwise, be a little bit aggressive by scanning the local block where we
353 // want to check to see if the pointer is already being loaded or stored
354 // from/to. If so, the previous load or store would have already trapped,
355 // so there is no harm doing an extra load (also, CSE will later eliminate
356 // the load entirely).
357 BasicBlock::iterator BBI
= ScanFrom
->getIterator(),
358 E
= ScanFrom
->getParent()->begin();
360 // We can at least always strip pointer casts even though we can't use the
362 V
= V
->stripPointerCasts();
367 // If we see a free or a call which may write to memory (i.e. which might do
368 // a free) the pointer could be marked invalid.
369 if (isa
<CallInst
>(BBI
) && BBI
->mayWriteToMemory() &&
370 !isa
<DbgInfoIntrinsic
>(BBI
))
376 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(BBI
)) {
377 // Ignore volatile loads. The execution of a volatile load cannot
378 // be used to prove an address is backed by regular memory; it can,
379 // for example, point to an MMIO register.
380 if (LI
->isVolatile())
382 AccessedPtr
= LI
->getPointerOperand();
383 AccessedTy
= LI
->getType();
384 AccessedAlign
= LI
->getAlign();
385 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(BBI
)) {
386 // Ignore volatile stores (see comment for loads).
387 if (SI
->isVolatile())
389 AccessedPtr
= SI
->getPointerOperand();
390 AccessedTy
= SI
->getValueOperand()->getType();
391 AccessedAlign
= SI
->getAlign();
395 if (AccessedAlign
< Alignment
)
398 // Handle trivial cases.
399 if (AccessedPtr
== V
&&
400 LoadSize
<= DL
.getTypeStoreSize(AccessedTy
))
403 if (AreEquivalentAddressValues(AccessedPtr
->stripPointerCasts(), V
) &&
404 LoadSize
<= DL
.getTypeStoreSize(AccessedTy
))
410 bool llvm::isSafeToLoadUnconditionally(Value
*V
, Type
*Ty
, Align Alignment
,
411 const DataLayout
&DL
,
412 Instruction
*ScanFrom
,
413 const DominatorTree
*DT
,
414 const TargetLibraryInfo
*TLI
) {
415 APInt
Size(DL
.getIndexTypeSizeInBits(V
->getType()), DL
.getTypeStoreSize(Ty
));
416 return isSafeToLoadUnconditionally(V
, Alignment
, Size
, DL
, ScanFrom
, DT
, TLI
);
419 /// DefMaxInstsToScan - the default number of maximum instructions
420 /// to scan in the block, used by FindAvailableLoadedValue().
421 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
422 /// threading in part by eliminating partially redundant loads.
423 /// At that point, the value of MaxInstsToScan was already set to '6'
424 /// without documented explanation.
426 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden
,
427 cl::desc("Use this to specify the default maximum number of instructions "
428 "to scan backward from a given instruction, when searching for "
429 "available loaded value"));
431 Value
*llvm::FindAvailableLoadedValue(LoadInst
*Load
,
433 BasicBlock::iterator
&ScanFrom
,
434 unsigned MaxInstsToScan
,
435 AAResults
*AA
, bool *IsLoad
,
436 unsigned *NumScanedInst
) {
437 // Don't CSE load that is volatile or anything stronger than unordered.
438 if (!Load
->isUnordered())
441 MemoryLocation Loc
= MemoryLocation::get(Load
);
442 return findAvailablePtrLoadStore(Loc
, Load
->getType(), Load
->isAtomic(),
443 ScanBB
, ScanFrom
, MaxInstsToScan
, AA
, IsLoad
,
447 // Check if the load and the store have the same base, constant offsets and
448 // non-overlapping access ranges.
449 static bool areNonOverlapSameBaseLoadAndStore(const Value
*LoadPtr
,
451 const Value
*StorePtr
,
453 const DataLayout
&DL
) {
454 APInt
LoadOffset(DL
.getTypeSizeInBits(LoadPtr
->getType()), 0);
455 APInt
StoreOffset(DL
.getTypeSizeInBits(StorePtr
->getType()), 0);
456 const Value
*LoadBase
= LoadPtr
->stripAndAccumulateConstantOffsets(
457 DL
, LoadOffset
, /* AllowNonInbounds */ false);
458 const Value
*StoreBase
= StorePtr
->stripAndAccumulateConstantOffsets(
459 DL
, StoreOffset
, /* AllowNonInbounds */ false);
460 if (LoadBase
!= StoreBase
)
462 auto LoadAccessSize
= LocationSize::precise(DL
.getTypeStoreSize(LoadTy
));
463 auto StoreAccessSize
= LocationSize::precise(DL
.getTypeStoreSize(StoreTy
));
464 ConstantRange
LoadRange(LoadOffset
,
465 LoadOffset
+ LoadAccessSize
.toRaw());
466 ConstantRange
StoreRange(StoreOffset
,
467 StoreOffset
+ StoreAccessSize
.toRaw());
468 return LoadRange
.intersectWith(StoreRange
).isEmptySet();
471 static Value
*getAvailableLoadStore(Instruction
*Inst
, const Value
*Ptr
,
472 Type
*AccessTy
, bool AtLeastAtomic
,
473 const DataLayout
&DL
, bool *IsLoadCSE
) {
474 // If this is a load of Ptr, the loaded value is available.
475 // (This is true even if the load is volatile or atomic, although
476 // those cases are unlikely.)
477 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(Inst
)) {
478 // We can value forward from an atomic to a non-atomic, but not the
480 if (LI
->isAtomic() < AtLeastAtomic
)
483 Value
*LoadPtr
= LI
->getPointerOperand()->stripPointerCasts();
484 if (!AreEquivalentAddressValues(LoadPtr
, Ptr
))
487 if (CastInst::isBitOrNoopPointerCastable(LI
->getType(), AccessTy
, DL
)) {
494 // If this is a store through Ptr, the value is available!
495 // (This is true even if the store is volatile or atomic, although
496 // those cases are unlikely.)
497 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
498 // We can value forward from an atomic to a non-atomic, but not the
500 if (SI
->isAtomic() < AtLeastAtomic
)
503 Value
*StorePtr
= SI
->getPointerOperand()->stripPointerCasts();
504 if (!AreEquivalentAddressValues(StorePtr
, Ptr
))
510 Value
*Val
= SI
->getValueOperand();
511 if (CastInst::isBitOrNoopPointerCastable(Val
->getType(), AccessTy
, DL
))
514 if (auto *C
= dyn_cast
<Constant
>(Val
))
515 return ConstantFoldLoadThroughBitcast(C
, AccessTy
, DL
);
521 Value
*llvm::findAvailablePtrLoadStore(
522 const MemoryLocation
&Loc
, Type
*AccessTy
, bool AtLeastAtomic
,
523 BasicBlock
*ScanBB
, BasicBlock::iterator
&ScanFrom
, unsigned MaxInstsToScan
,
524 AAResults
*AA
, bool *IsLoadCSE
, unsigned *NumScanedInst
) {
525 if (MaxInstsToScan
== 0)
526 MaxInstsToScan
= ~0U;
528 const DataLayout
&DL
= ScanBB
->getModule()->getDataLayout();
529 const Value
*StrippedPtr
= Loc
.Ptr
->stripPointerCasts();
531 while (ScanFrom
!= ScanBB
->begin()) {
532 // We must ignore debug info directives when counting (otherwise they
533 // would affect codegen).
534 Instruction
*Inst
= &*--ScanFrom
;
535 if (Inst
->isDebugOrPseudoInst())
538 // Restore ScanFrom to expected value in case next test succeeds
544 // Don't scan huge blocks.
545 if (MaxInstsToScan
-- == 0)
550 if (Value
*Available
= getAvailableLoadStore(Inst
, StrippedPtr
, AccessTy
,
551 AtLeastAtomic
, DL
, IsLoadCSE
))
554 // Try to get the store size for the type.
555 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
556 Value
*StorePtr
= SI
->getPointerOperand()->stripPointerCasts();
558 // If both StrippedPtr and StorePtr reach all the way to an alloca or
559 // global and they are different, ignore the store. This is a trivial form
560 // of alias analysis that is important for reg2mem'd code.
561 if ((isa
<AllocaInst
>(StrippedPtr
) || isa
<GlobalVariable
>(StrippedPtr
)) &&
562 (isa
<AllocaInst
>(StorePtr
) || isa
<GlobalVariable
>(StorePtr
)) &&
563 StrippedPtr
!= StorePtr
)
567 // When AA isn't available, but if the load and the store have the same
568 // base, constant offsets and non-overlapping access ranges, ignore the
569 // store. This is a simple form of alias analysis that is used by the
570 // inliner. FIXME: use BasicAA if possible.
571 if (areNonOverlapSameBaseLoadAndStore(
572 Loc
.Ptr
, AccessTy
, SI
->getPointerOperand(),
573 SI
->getValueOperand()->getType(), DL
))
576 // If we have alias analysis and it says the store won't modify the
577 // loaded value, ignore the store.
578 if (!isModSet(AA
->getModRefInfo(SI
, Loc
)))
582 // Otherwise the store that may or may not alias the pointer, bail out.
587 // If this is some other instruction that may clobber Ptr, bail out.
588 if (Inst
->mayWriteToMemory()) {
589 // If alias analysis claims that it really won't modify the load,
591 if (AA
&& !isModSet(AA
->getModRefInfo(Inst
, Loc
)))
594 // May modify the pointer, bail out.
600 // Got to the start of the block, we didn't find it, but are done for this
605 Value
*llvm::FindAvailableLoadedValue(LoadInst
*Load
, AAResults
&AA
,
607 unsigned MaxInstsToScan
) {
608 const DataLayout
&DL
= Load
->getModule()->getDataLayout();
609 Value
*StrippedPtr
= Load
->getPointerOperand()->stripPointerCasts();
610 BasicBlock
*ScanBB
= Load
->getParent();
611 Type
*AccessTy
= Load
->getType();
612 bool AtLeastAtomic
= Load
->isAtomic();
614 if (!Load
->isUnordered())
617 // Try to find an available value first, and delay expensive alias analysis
618 // queries until later.
619 Value
*Available
= nullptr;;
620 SmallVector
<Instruction
*> MustNotAliasInsts
;
621 for (Instruction
&Inst
: make_range(++Load
->getReverseIterator(),
623 if (Inst
.isDebugOrPseudoInst())
626 if (MaxInstsToScan
-- == 0)
629 Available
= getAvailableLoadStore(&Inst
, StrippedPtr
, AccessTy
,
630 AtLeastAtomic
, DL
, IsLoadCSE
);
634 if (Inst
.mayWriteToMemory())
635 MustNotAliasInsts
.push_back(&Inst
);
638 // If we found an available value, ensure that the instructions in between
639 // did not modify the memory location.
641 MemoryLocation Loc
= MemoryLocation::get(Load
);
642 for (Instruction
*Inst
: MustNotAliasInsts
)
643 if (isModSet(AA
.getModRefInfo(Inst
, Loc
)))
650 bool llvm::canReplacePointersIfEqual(Value
*A
, Value
*B
, const DataLayout
&DL
,
652 Type
*Ty
= A
->getType();
653 assert(Ty
== B
->getType() && Ty
->isPointerTy() &&
654 "values must have matching pointer types");
656 // NOTE: The checks in the function are incomplete and currently miss illegal
657 // cases! The current implementation is a starting point and the
658 // implementation should be made stricter over time.
659 if (auto *C
= dyn_cast
<Constant
>(B
)) {
660 // Do not allow replacing a pointer with a constant pointer, unless it is
661 // either null or at least one byte is dereferenceable.
662 APInt
OneByte(DL
.getPointerTypeSizeInBits(Ty
), 1);
663 return C
->isNullValue() ||
664 isDereferenceableAndAlignedPointer(B
, Align(1), OneByte
, DL
, CtxI
);