[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Analysis / Loads.cpp
blob1c55f485aa7637e979a95c674c12d1ba4d78c879
1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines simple local analyses for load instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/AssumeBundleQueries.h"
16 #include "llvm/Analysis/CaptureTracking.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/MemoryBuiltins.h"
19 #include "llvm/Analysis/MemoryLocation.h"
20 #include "llvm/Analysis/ScalarEvolution.h"
21 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/GlobalAlias.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
32 using namespace llvm;
34 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment,
35 const DataLayout &DL) {
36 Align BA = Base->getPointerAlignment(DL);
37 const APInt APAlign(Offset.getBitWidth(), Alignment.value());
38 assert(APAlign.isPowerOf2() && "must be a power of 2!");
39 return BA >= Alignment && !(Offset & (APAlign - 1));
42 /// Test if V is always a pointer to allocated and suitably aligned memory for
43 /// a simple load or store.
44 static bool isDereferenceableAndAlignedPointer(
45 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
46 const Instruction *CtxI, const DominatorTree *DT,
47 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited,
48 unsigned MaxDepth) {
49 assert(V->getType()->isPointerTy() && "Base must be pointer");
51 // Recursion limit.
52 if (MaxDepth-- == 0)
53 return false;
55 // Already visited? Bail out, we've likely hit unreachable code.
56 if (!Visited.insert(V).second)
57 return false;
59 // Note that it is not safe to speculate into a malloc'd region because
60 // malloc may return null.
62 // Recurse into both hands of select.
63 if (const SelectInst *Sel = dyn_cast<SelectInst>(V)) {
64 return isDereferenceableAndAlignedPointer(Sel->getTrueValue(), Alignment,
65 Size, DL, CtxI, DT, TLI, Visited,
66 MaxDepth) &&
67 isDereferenceableAndAlignedPointer(Sel->getFalseValue(), Alignment,
68 Size, DL, CtxI, DT, TLI, Visited,
69 MaxDepth);
72 // bitcast instructions are no-ops as far as dereferenceability is concerned.
73 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
74 if (BC->getSrcTy()->isPointerTy())
75 return isDereferenceableAndAlignedPointer(
76 BC->getOperand(0), Alignment, Size, DL, CtxI, DT, TLI,
77 Visited, MaxDepth);
80 bool CheckForNonNull, CheckForFreed;
81 APInt KnownDerefBytes(Size.getBitWidth(),
82 V->getPointerDereferenceableBytes(DL, CheckForNonNull,
83 CheckForFreed));
84 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) &&
85 !CheckForFreed)
86 if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) {
87 // As we recursed through GEPs to get here, we've incrementally checked
88 // that each step advanced by a multiple of the alignment. If our base is
89 // properly aligned, then the original offset accessed must also be.
90 Type *Ty = V->getType();
91 assert(Ty->isSized() && "must be sized");
92 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
93 return isAligned(V, Offset, Alignment, DL);
96 if (CtxI) {
97 /// Look through assumes to see if both dereferencability and alignment can
98 /// be provent by an assume
99 RetainedKnowledge AlignRK;
100 RetainedKnowledge DerefRK;
101 if (getKnowledgeForValue(
102 V, {Attribute::Dereferenceable, Attribute::Alignment}, nullptr,
103 [&](RetainedKnowledge RK, Instruction *Assume, auto) {
104 if (!isValidAssumeForContext(Assume, CtxI))
105 return false;
106 if (RK.AttrKind == Attribute::Alignment)
107 AlignRK = std::max(AlignRK, RK);
108 if (RK.AttrKind == Attribute::Dereferenceable)
109 DerefRK = std::max(DerefRK, RK);
110 if (AlignRK && DerefRK && AlignRK.ArgValue >= Alignment.value() &&
111 DerefRK.ArgValue >= Size.getZExtValue())
112 return true; // We have found what we needed so we stop looking
113 return false; // Other assumes may have better information. so
114 // keep looking
116 return true;
118 /// TODO refactor this function to be able to search independently for
119 /// Dereferencability and Alignment requirements.
121 // For GEPs, determine if the indexing lands within the allocated object.
122 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
123 const Value *Base = GEP->getPointerOperand();
125 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
126 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
127 !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value()))
128 .isMinValue())
129 return false;
131 // If the base pointer is dereferenceable for Offset+Size bytes, then the
132 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base
133 // pointer is aligned to Align bytes, and the Offset is divisible by Align
134 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
135 // aligned to Align bytes.
137 // Offset and Size may have different bit widths if we have visited an
138 // addrspacecast, so we can't do arithmetic directly on the APInt values.
139 return isDereferenceableAndAlignedPointer(
140 Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL,
141 CtxI, DT, TLI, Visited, MaxDepth);
144 // For gc.relocate, look through relocations
145 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
146 return isDereferenceableAndAlignedPointer(RelocateInst->getDerivedPtr(),
147 Alignment, Size, DL, CtxI, DT,
148 TLI, Visited, MaxDepth);
150 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
151 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment,
152 Size, DL, CtxI, DT, TLI,
153 Visited, MaxDepth);
155 if (const auto *Call = dyn_cast<CallBase>(V)) {
156 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
157 return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI,
158 DT, TLI, Visited, MaxDepth);
160 // If we have a call we can't recurse through, check to see if this is an
161 // allocation function for which we can establish an minimum object size.
162 // Such a minimum object size is analogous to a deref_or_null attribute in
163 // that we still need to prove the result non-null at point of use.
164 // NOTE: We can only use the object size as a base fact as we a) need to
165 // prove alignment too, and b) don't want the compile time impact of a
166 // separate recursive walk.
167 ObjectSizeOpts Opts;
168 // TODO: It may be okay to round to align, but that would imply that
169 // accessing slightly out of bounds was legal, and we're currently
170 // inconsistent about that. For the moment, be conservative.
171 Opts.RoundToAlign = false;
172 Opts.NullIsUnknownSize = true;
173 uint64_t ObjSize;
174 if (getObjectSize(V, ObjSize, DL, TLI, Opts)) {
175 APInt KnownDerefBytes(Size.getBitWidth(), ObjSize);
176 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) &&
177 isKnownNonZero(V, DL, 0, nullptr, CtxI, DT) && !V->canBeFreed()) {
178 // As we recursed through GEPs to get here, we've incrementally
179 // checked that each step advanced by a multiple of the alignment. If
180 // our base is properly aligned, then the original offset accessed
181 // must also be.
182 Type *Ty = V->getType();
183 assert(Ty->isSized() && "must be sized");
184 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
185 return isAligned(V, Offset, Alignment, DL);
190 // If we don't know, assume the worst.
191 return false;
194 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Align Alignment,
195 const APInt &Size,
196 const DataLayout &DL,
197 const Instruction *CtxI,
198 const DominatorTree *DT,
199 const TargetLibraryInfo *TLI) {
200 // Note: At the moment, Size can be zero. This ends up being interpreted as
201 // a query of whether [Base, V] is dereferenceable and V is aligned (since
202 // that's what the implementation happened to do). It's unclear if this is
203 // the desired semantic, but at least SelectionDAG does exercise this case.
205 SmallPtrSet<const Value *, 32> Visited;
206 return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT,
207 TLI, Visited, 16);
210 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty,
211 MaybeAlign MA,
212 const DataLayout &DL,
213 const Instruction *CtxI,
214 const DominatorTree *DT,
215 const TargetLibraryInfo *TLI) {
216 // For unsized types or scalable vectors we don't know exactly how many bytes
217 // are dereferenced, so bail out.
218 if (!Ty->isSized() || isa<ScalableVectorType>(Ty))
219 return false;
221 // When dereferenceability information is provided by a dereferenceable
222 // attribute, we know exactly how many bytes are dereferenceable. If we can
223 // determine the exact offset to the attributed variable, we can use that
224 // information here.
226 // Require ABI alignment for loads without alignment specification
227 const Align Alignment = DL.getValueOrABITypeAlignment(MA, Ty);
228 APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()),
229 DL.getTypeStoreSize(Ty));
230 return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI,
231 DT, TLI);
234 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty,
235 const DataLayout &DL,
236 const Instruction *CtxI,
237 const DominatorTree *DT,
238 const TargetLibraryInfo *TLI) {
239 return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, DT, TLI);
242 /// Test if A and B will obviously have the same value.
244 /// This includes recognizing that %t0 and %t1 will have the same
245 /// value in code like this:
246 /// \code
247 /// %t0 = getelementptr \@a, 0, 3
248 /// store i32 0, i32* %t0
249 /// %t1 = getelementptr \@a, 0, 3
250 /// %t2 = load i32* %t1
251 /// \endcode
253 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
254 // Test if the values are trivially equivalent.
255 if (A == B)
256 return true;
258 // Test if the values come from identical arithmetic instructions.
259 // Use isIdenticalToWhenDefined instead of isIdenticalTo because
260 // this function is only used when one address use dominates the
261 // other, which means that they'll always either have the same
262 // value or one of them will have an undefined value.
263 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
264 isa<GetElementPtrInst>(A))
265 if (const Instruction *BI = dyn_cast<Instruction>(B))
266 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
267 return true;
269 // Otherwise they may not be equivalent.
270 return false;
273 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L,
274 ScalarEvolution &SE,
275 DominatorTree &DT) {
276 auto &DL = LI->getModule()->getDataLayout();
277 Value *Ptr = LI->getPointerOperand();
279 APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()),
280 DL.getTypeStoreSize(LI->getType()).getFixedSize());
281 const Align Alignment = LI->getAlign();
283 Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI();
285 // If given a uniform (i.e. non-varying) address, see if we can prove the
286 // access is safe within the loop w/o needing predication.
287 if (L->isLoopInvariant(Ptr))
288 return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL,
289 HeaderFirstNonPHI, &DT);
291 // Otherwise, check to see if we have a repeating access pattern where we can
292 // prove that all accesses are well aligned and dereferenceable.
293 auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr));
294 if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine())
295 return false;
296 auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE));
297 if (!Step)
298 return false;
299 // TODO: generalize to access patterns which have gaps
300 if (Step->getAPInt() != EltSize)
301 return false;
303 auto TC = SE.getSmallConstantMaxTripCount(L);
304 if (!TC)
305 return false;
307 const APInt AccessSize = TC * EltSize;
309 auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart());
310 if (!StartS)
311 return false;
312 assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition");
313 Value *Base = StartS->getValue();
315 // For the moment, restrict ourselves to the case where the access size is a
316 // multiple of the requested alignment and the base is aligned.
317 // TODO: generalize if a case found which warrants
318 if (EltSize.urem(Alignment.value()) != 0)
319 return false;
320 return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL,
321 HeaderFirstNonPHI, &DT);
324 /// Check if executing a load of this pointer value cannot trap.
326 /// If DT and ScanFrom are specified this method performs context-sensitive
327 /// analysis and returns true if it is safe to load immediately before ScanFrom.
329 /// If it is not obviously safe to load from the specified pointer, we do
330 /// a quick local scan of the basic block containing \c ScanFrom, to determine
331 /// if the address is already accessed.
333 /// This uses the pointee type to determine how many bytes need to be safe to
334 /// load from the pointer.
335 bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, APInt &Size,
336 const DataLayout &DL,
337 Instruction *ScanFrom,
338 const DominatorTree *DT,
339 const TargetLibraryInfo *TLI) {
340 // If DT is not specified we can't make context-sensitive query
341 const Instruction* CtxI = DT ? ScanFrom : nullptr;
342 if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT, TLI))
343 return true;
345 if (!ScanFrom)
346 return false;
348 if (Size.getBitWidth() > 64)
349 return false;
350 const uint64_t LoadSize = Size.getZExtValue();
352 // Otherwise, be a little bit aggressive by scanning the local block where we
353 // want to check to see if the pointer is already being loaded or stored
354 // from/to. If so, the previous load or store would have already trapped,
355 // so there is no harm doing an extra load (also, CSE will later eliminate
356 // the load entirely).
357 BasicBlock::iterator BBI = ScanFrom->getIterator(),
358 E = ScanFrom->getParent()->begin();
360 // We can at least always strip pointer casts even though we can't use the
361 // base here.
362 V = V->stripPointerCasts();
364 while (BBI != E) {
365 --BBI;
367 // If we see a free or a call which may write to memory (i.e. which might do
368 // a free) the pointer could be marked invalid.
369 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
370 !isa<DbgInfoIntrinsic>(BBI))
371 return false;
373 Value *AccessedPtr;
374 Type *AccessedTy;
375 Align AccessedAlign;
376 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
377 // Ignore volatile loads. The execution of a volatile load cannot
378 // be used to prove an address is backed by regular memory; it can,
379 // for example, point to an MMIO register.
380 if (LI->isVolatile())
381 continue;
382 AccessedPtr = LI->getPointerOperand();
383 AccessedTy = LI->getType();
384 AccessedAlign = LI->getAlign();
385 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
386 // Ignore volatile stores (see comment for loads).
387 if (SI->isVolatile())
388 continue;
389 AccessedPtr = SI->getPointerOperand();
390 AccessedTy = SI->getValueOperand()->getType();
391 AccessedAlign = SI->getAlign();
392 } else
393 continue;
395 if (AccessedAlign < Alignment)
396 continue;
398 // Handle trivial cases.
399 if (AccessedPtr == V &&
400 LoadSize <= DL.getTypeStoreSize(AccessedTy))
401 return true;
403 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
404 LoadSize <= DL.getTypeStoreSize(AccessedTy))
405 return true;
407 return false;
410 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment,
411 const DataLayout &DL,
412 Instruction *ScanFrom,
413 const DominatorTree *DT,
414 const TargetLibraryInfo *TLI) {
415 APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty));
416 return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, DT, TLI);
419 /// DefMaxInstsToScan - the default number of maximum instructions
420 /// to scan in the block, used by FindAvailableLoadedValue().
421 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
422 /// threading in part by eliminating partially redundant loads.
423 /// At that point, the value of MaxInstsToScan was already set to '6'
424 /// without documented explanation.
425 cl::opt<unsigned>
426 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
427 cl::desc("Use this to specify the default maximum number of instructions "
428 "to scan backward from a given instruction, when searching for "
429 "available loaded value"));
431 Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
432 BasicBlock *ScanBB,
433 BasicBlock::iterator &ScanFrom,
434 unsigned MaxInstsToScan,
435 AAResults *AA, bool *IsLoad,
436 unsigned *NumScanedInst) {
437 // Don't CSE load that is volatile or anything stronger than unordered.
438 if (!Load->isUnordered())
439 return nullptr;
441 MemoryLocation Loc = MemoryLocation::get(Load);
442 return findAvailablePtrLoadStore(Loc, Load->getType(), Load->isAtomic(),
443 ScanBB, ScanFrom, MaxInstsToScan, AA, IsLoad,
444 NumScanedInst);
447 // Check if the load and the store have the same base, constant offsets and
448 // non-overlapping access ranges.
449 static bool areNonOverlapSameBaseLoadAndStore(const Value *LoadPtr,
450 Type *LoadTy,
451 const Value *StorePtr,
452 Type *StoreTy,
453 const DataLayout &DL) {
454 APInt LoadOffset(DL.getTypeSizeInBits(LoadPtr->getType()), 0);
455 APInt StoreOffset(DL.getTypeSizeInBits(StorePtr->getType()), 0);
456 const Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets(
457 DL, LoadOffset, /* AllowNonInbounds */ false);
458 const Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets(
459 DL, StoreOffset, /* AllowNonInbounds */ false);
460 if (LoadBase != StoreBase)
461 return false;
462 auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy));
463 auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy));
464 ConstantRange LoadRange(LoadOffset,
465 LoadOffset + LoadAccessSize.toRaw());
466 ConstantRange StoreRange(StoreOffset,
467 StoreOffset + StoreAccessSize.toRaw());
468 return LoadRange.intersectWith(StoreRange).isEmptySet();
471 static Value *getAvailableLoadStore(Instruction *Inst, const Value *Ptr,
472 Type *AccessTy, bool AtLeastAtomic,
473 const DataLayout &DL, bool *IsLoadCSE) {
474 // If this is a load of Ptr, the loaded value is available.
475 // (This is true even if the load is volatile or atomic, although
476 // those cases are unlikely.)
477 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
478 // We can value forward from an atomic to a non-atomic, but not the
479 // other way around.
480 if (LI->isAtomic() < AtLeastAtomic)
481 return nullptr;
483 Value *LoadPtr = LI->getPointerOperand()->stripPointerCasts();
484 if (!AreEquivalentAddressValues(LoadPtr, Ptr))
485 return nullptr;
487 if (CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
488 if (IsLoadCSE)
489 *IsLoadCSE = true;
490 return LI;
494 // If this is a store through Ptr, the value is available!
495 // (This is true even if the store is volatile or atomic, although
496 // those cases are unlikely.)
497 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
498 // We can value forward from an atomic to a non-atomic, but not the
499 // other way around.
500 if (SI->isAtomic() < AtLeastAtomic)
501 return nullptr;
503 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
504 if (!AreEquivalentAddressValues(StorePtr, Ptr))
505 return nullptr;
507 if (IsLoadCSE)
508 *IsLoadCSE = false;
510 Value *Val = SI->getValueOperand();
511 if (CastInst::isBitOrNoopPointerCastable(Val->getType(), AccessTy, DL))
512 return Val;
514 if (auto *C = dyn_cast<Constant>(Val))
515 return ConstantFoldLoadThroughBitcast(C, AccessTy, DL);
518 return nullptr;
521 Value *llvm::findAvailablePtrLoadStore(
522 const MemoryLocation &Loc, Type *AccessTy, bool AtLeastAtomic,
523 BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan,
524 AAResults *AA, bool *IsLoadCSE, unsigned *NumScanedInst) {
525 if (MaxInstsToScan == 0)
526 MaxInstsToScan = ~0U;
528 const DataLayout &DL = ScanBB->getModule()->getDataLayout();
529 const Value *StrippedPtr = Loc.Ptr->stripPointerCasts();
531 while (ScanFrom != ScanBB->begin()) {
532 // We must ignore debug info directives when counting (otherwise they
533 // would affect codegen).
534 Instruction *Inst = &*--ScanFrom;
535 if (Inst->isDebugOrPseudoInst())
536 continue;
538 // Restore ScanFrom to expected value in case next test succeeds
539 ScanFrom++;
541 if (NumScanedInst)
542 ++(*NumScanedInst);
544 // Don't scan huge blocks.
545 if (MaxInstsToScan-- == 0)
546 return nullptr;
548 --ScanFrom;
550 if (Value *Available = getAvailableLoadStore(Inst, StrippedPtr, AccessTy,
551 AtLeastAtomic, DL, IsLoadCSE))
552 return Available;
554 // Try to get the store size for the type.
555 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
556 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
558 // If both StrippedPtr and StorePtr reach all the way to an alloca or
559 // global and they are different, ignore the store. This is a trivial form
560 // of alias analysis that is important for reg2mem'd code.
561 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
562 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
563 StrippedPtr != StorePtr)
564 continue;
566 if (!AA) {
567 // When AA isn't available, but if the load and the store have the same
568 // base, constant offsets and non-overlapping access ranges, ignore the
569 // store. This is a simple form of alias analysis that is used by the
570 // inliner. FIXME: use BasicAA if possible.
571 if (areNonOverlapSameBaseLoadAndStore(
572 Loc.Ptr, AccessTy, SI->getPointerOperand(),
573 SI->getValueOperand()->getType(), DL))
574 continue;
575 } else {
576 // If we have alias analysis and it says the store won't modify the
577 // loaded value, ignore the store.
578 if (!isModSet(AA->getModRefInfo(SI, Loc)))
579 continue;
582 // Otherwise the store that may or may not alias the pointer, bail out.
583 ++ScanFrom;
584 return nullptr;
587 // If this is some other instruction that may clobber Ptr, bail out.
588 if (Inst->mayWriteToMemory()) {
589 // If alias analysis claims that it really won't modify the load,
590 // ignore it.
591 if (AA && !isModSet(AA->getModRefInfo(Inst, Loc)))
592 continue;
594 // May modify the pointer, bail out.
595 ++ScanFrom;
596 return nullptr;
600 // Got to the start of the block, we didn't find it, but are done for this
601 // block.
602 return nullptr;
605 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, AAResults &AA,
606 bool *IsLoadCSE,
607 unsigned MaxInstsToScan) {
608 const DataLayout &DL = Load->getModule()->getDataLayout();
609 Value *StrippedPtr = Load->getPointerOperand()->stripPointerCasts();
610 BasicBlock *ScanBB = Load->getParent();
611 Type *AccessTy = Load->getType();
612 bool AtLeastAtomic = Load->isAtomic();
614 if (!Load->isUnordered())
615 return nullptr;
617 // Try to find an available value first, and delay expensive alias analysis
618 // queries until later.
619 Value *Available = nullptr;;
620 SmallVector<Instruction *> MustNotAliasInsts;
621 for (Instruction &Inst : make_range(++Load->getReverseIterator(),
622 ScanBB->rend())) {
623 if (Inst.isDebugOrPseudoInst())
624 continue;
626 if (MaxInstsToScan-- == 0)
627 return nullptr;
629 Available = getAvailableLoadStore(&Inst, StrippedPtr, AccessTy,
630 AtLeastAtomic, DL, IsLoadCSE);
631 if (Available)
632 break;
634 if (Inst.mayWriteToMemory())
635 MustNotAliasInsts.push_back(&Inst);
638 // If we found an available value, ensure that the instructions in between
639 // did not modify the memory location.
640 if (Available) {
641 MemoryLocation Loc = MemoryLocation::get(Load);
642 for (Instruction *Inst : MustNotAliasInsts)
643 if (isModSet(AA.getModRefInfo(Inst, Loc)))
644 return nullptr;
647 return Available;
650 bool llvm::canReplacePointersIfEqual(Value *A, Value *B, const DataLayout &DL,
651 Instruction *CtxI) {
652 Type *Ty = A->getType();
653 assert(Ty == B->getType() && Ty->isPointerTy() &&
654 "values must have matching pointer types");
656 // NOTE: The checks in the function are incomplete and currently miss illegal
657 // cases! The current implementation is a starting point and the
658 // implementation should be made stricter over time.
659 if (auto *C = dyn_cast<Constant>(B)) {
660 // Do not allow replacing a pointer with a constant pointer, unless it is
661 // either null or at least one byte is dereferenceable.
662 APInt OneByte(DL.getPointerTypeSizeInBits(Ty), 1);
663 return C->isNullValue() ||
664 isDereferenceableAndAlignedPointer(B, Align(1), OneByte, DL, CtxI);
667 return true;