[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Analysis / LoopUnrollAnalyzer.cpp
blob15095d67d3852fc5d15303b32e0ff0dc060cd502
1 //===- LoopUnrollAnalyzer.cpp - Unrolling Effect Estimation -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements UnrolledInstAnalyzer class. It's used for predicting
10 // potential effects that loop unrolling might have, such as enabling constant
11 // propagation and other optimizations.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
16 #include "llvm/Analysis/LoopInfo.h"
18 using namespace llvm;
20 /// Try to simplify instruction \param I using its SCEV expression.
21 ///
22 /// The idea is that some AddRec expressions become constants, which then
23 /// could trigger folding of other instructions. However, that only happens
24 /// for expressions whose start value is also constant, which isn't always the
25 /// case. In another common and important case the start value is just some
26 /// address (i.e. SCEVUnknown) - in this case we compute the offset and save
27 /// it along with the base address instead.
28 bool UnrolledInstAnalyzer::simplifyInstWithSCEV(Instruction *I) {
29 if (!SE.isSCEVable(I->getType()))
30 return false;
32 const SCEV *S = SE.getSCEV(I);
33 if (auto *SC = dyn_cast<SCEVConstant>(S)) {
34 SimplifiedValues[I] = SC->getValue();
35 return true;
38 // If we have a loop invariant computation, we only need to compute it once.
39 // Given that, all but the first occurance are free.
40 if (!IterationNumber->isZero() && SE.isLoopInvariant(S, L))
41 return true;
43 auto *AR = dyn_cast<SCEVAddRecExpr>(S);
44 if (!AR || AR->getLoop() != L)
45 return false;
47 const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE);
48 // Check if the AddRec expression becomes a constant.
49 if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) {
50 SimplifiedValues[I] = SC->getValue();
51 return true;
54 // Check if the offset from the base address becomes a constant.
55 auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S));
56 if (!Base)
57 return false;
58 auto *Offset =
59 dyn_cast<SCEVConstant>(SE.getMinusSCEV(ValueAtIteration, Base));
60 if (!Offset)
61 return false;
62 SimplifiedAddress Address;
63 Address.Base = Base->getValue();
64 Address.Offset = Offset->getValue();
65 SimplifiedAddresses[I] = Address;
66 return false;
69 /// Try to simplify binary operator I.
70 ///
71 /// TODO: Probably it's worth to hoist the code for estimating the
72 /// simplifications effects to a separate class, since we have a very similar
73 /// code in InlineCost already.
74 bool UnrolledInstAnalyzer::visitBinaryOperator(BinaryOperator &I) {
75 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
76 if (!isa<Constant>(LHS))
77 if (Value *SimpleLHS = SimplifiedValues.lookup(LHS))
78 LHS = SimpleLHS;
79 if (!isa<Constant>(RHS))
80 if (Value *SimpleRHS = SimplifiedValues.lookup(RHS))
81 RHS = SimpleRHS;
83 Value *SimpleV = nullptr;
84 const DataLayout &DL = I.getModule()->getDataLayout();
85 if (auto FI = dyn_cast<FPMathOperator>(&I))
86 SimpleV =
87 SimplifyBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
88 else
89 SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
91 if (SimpleV) {
92 SimplifiedValues[&I] = SimpleV;
93 return true;
95 return Base::visitBinaryOperator(I);
98 /// Try to fold load I.
99 bool UnrolledInstAnalyzer::visitLoad(LoadInst &I) {
100 Value *AddrOp = I.getPointerOperand();
102 auto AddressIt = SimplifiedAddresses.find(AddrOp);
103 if (AddressIt == SimplifiedAddresses.end())
104 return false;
105 ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset;
107 auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base);
108 // We're only interested in loads that can be completely folded to a
109 // constant.
110 if (!GV || !GV->hasDefinitiveInitializer() || !GV->isConstant())
111 return false;
113 ConstantDataSequential *CDS =
114 dyn_cast<ConstantDataSequential>(GV->getInitializer());
115 if (!CDS)
116 return false;
118 // We might have a vector load from an array. FIXME: for now we just bail
119 // out in this case, but we should be able to resolve and simplify such
120 // loads.
121 if (CDS->getElementType() != I.getType())
122 return false;
124 unsigned ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
125 if (SimplifiedAddrOp->getValue().getActiveBits() > 64)
126 return false;
127 int64_t SimplifiedAddrOpV = SimplifiedAddrOp->getSExtValue();
128 if (SimplifiedAddrOpV < 0) {
129 // FIXME: For now we conservatively ignore out of bound accesses, but
130 // we're allowed to perform the optimization in this case.
131 return false;
133 uint64_t Index = static_cast<uint64_t>(SimplifiedAddrOpV) / ElemSize;
134 if (Index >= CDS->getNumElements()) {
135 // FIXME: For now we conservatively ignore out of bound accesses, but
136 // we're allowed to perform the optimization in this case.
137 return false;
140 Constant *CV = CDS->getElementAsConstant(Index);
141 assert(CV && "Constant expected.");
142 SimplifiedValues[&I] = CV;
144 return true;
147 /// Try to simplify cast instruction.
148 bool UnrolledInstAnalyzer::visitCastInst(CastInst &I) {
149 Value *Op = I.getOperand(0);
150 if (Value *Simplified = SimplifiedValues.lookup(Op))
151 Op = Simplified;
153 // The cast can be invalid, because SimplifiedValues contains results of SCEV
154 // analysis, which operates on integers (and, e.g., might convert i8* null to
155 // i32 0).
156 if (CastInst::castIsValid(I.getOpcode(), Op, I.getType())) {
157 const DataLayout &DL = I.getModule()->getDataLayout();
158 if (Value *V = SimplifyCastInst(I.getOpcode(), Op, I.getType(), DL)) {
159 SimplifiedValues[&I] = V;
160 return true;
164 return Base::visitCastInst(I);
167 /// Try to simplify cmp instruction.
168 bool UnrolledInstAnalyzer::visitCmpInst(CmpInst &I) {
169 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
171 // First try to handle simplified comparisons.
172 if (!isa<Constant>(LHS))
173 if (Value *SimpleLHS = SimplifiedValues.lookup(LHS))
174 LHS = SimpleLHS;
175 if (!isa<Constant>(RHS))
176 if (Value *SimpleRHS = SimplifiedValues.lookup(RHS))
177 RHS = SimpleRHS;
179 if (!isa<Constant>(LHS) && !isa<Constant>(RHS)) {
180 auto SimplifiedLHS = SimplifiedAddresses.find(LHS);
181 if (SimplifiedLHS != SimplifiedAddresses.end()) {
182 auto SimplifiedRHS = SimplifiedAddresses.find(RHS);
183 if (SimplifiedRHS != SimplifiedAddresses.end()) {
184 SimplifiedAddress &LHSAddr = SimplifiedLHS->second;
185 SimplifiedAddress &RHSAddr = SimplifiedRHS->second;
186 if (LHSAddr.Base == RHSAddr.Base) {
187 LHS = LHSAddr.Offset;
188 RHS = RHSAddr.Offset;
194 const DataLayout &DL = I.getModule()->getDataLayout();
195 if (Value *V = SimplifyCmpInst(I.getPredicate(), LHS, RHS, DL)) {
196 SimplifiedValues[&I] = V;
197 return true;
200 return Base::visitCmpInst(I);
203 bool UnrolledInstAnalyzer::visitPHINode(PHINode &PN) {
204 // Run base visitor first. This way we can gather some useful for later
205 // analysis information.
206 if (Base::visitPHINode(PN))
207 return true;
209 // The loop induction PHI nodes are definitionally free.
210 return PN.getParent() == L->getHeader();
213 bool UnrolledInstAnalyzer::visitInstruction(Instruction &I) {
214 return simplifyInstWithSCEV(&I);