1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This family of functions identifies calls to builtin functions that allocate
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/MemoryBuiltins.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
50 #define DEBUG_TYPE "memory-builtins"
52 enum AllocType
: uint8_t {
53 OpNewLike
= 1<<0, // allocates; never returns null
54 MallocLike
= 1<<1 | OpNewLike
, // allocates; may return null
55 AlignedAllocLike
= 1<<2, // allocates with alignment; may return null
56 CallocLike
= 1<<3, // allocates + bzero
57 ReallocLike
= 1<<4, // reallocates
59 MallocOrCallocLike
= MallocLike
| CallocLike
| AlignedAllocLike
,
60 AllocLike
= MallocOrCallocLike
| StrDupLike
,
61 AnyAlloc
= AllocLike
| ReallocLike
67 // First and Second size parameters (or -1 if unused)
68 int FstParam
, SndParam
;
71 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
72 // know which functions are nounwind, noalias, nocapture parameters, etc.
73 static const std::pair
<LibFunc
, AllocFnsTy
> AllocationFnData
[] = {
74 {LibFunc_malloc
, {MallocLike
, 1, 0, -1}},
75 {LibFunc_vec_malloc
, {MallocLike
, 1, 0, -1}},
76 {LibFunc_valloc
, {MallocLike
, 1, 0, -1}},
77 {LibFunc_Znwj
, {OpNewLike
, 1, 0, -1}}, // new(unsigned int)
78 {LibFunc_ZnwjRKSt9nothrow_t
, {MallocLike
, 2, 0, -1}}, // new(unsigned int, nothrow)
79 {LibFunc_ZnwjSt11align_val_t
, {OpNewLike
, 2, 0, -1}}, // new(unsigned int, align_val_t)
80 {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t
, // new(unsigned int, align_val_t, nothrow)
81 {MallocLike
, 3, 0, -1}},
82 {LibFunc_Znwm
, {OpNewLike
, 1, 0, -1}}, // new(unsigned long)
83 {LibFunc_ZnwmRKSt9nothrow_t
, {MallocLike
, 2, 0, -1}}, // new(unsigned long, nothrow)
84 {LibFunc_ZnwmSt11align_val_t
, {OpNewLike
, 2, 0, -1}}, // new(unsigned long, align_val_t)
85 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t
, // new(unsigned long, align_val_t, nothrow)
86 {MallocLike
, 3, 0, -1}},
87 {LibFunc_Znaj
, {OpNewLike
, 1, 0, -1}}, // new[](unsigned int)
88 {LibFunc_ZnajRKSt9nothrow_t
, {MallocLike
, 2, 0, -1}}, // new[](unsigned int, nothrow)
89 {LibFunc_ZnajSt11align_val_t
, {OpNewLike
, 2, 0, -1}}, // new[](unsigned int, align_val_t)
90 {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t
, // new[](unsigned int, align_val_t, nothrow)
91 {MallocLike
, 3, 0, -1}},
92 {LibFunc_Znam
, {OpNewLike
, 1, 0, -1}}, // new[](unsigned long)
93 {LibFunc_ZnamRKSt9nothrow_t
, {MallocLike
, 2, 0, -1}}, // new[](unsigned long, nothrow)
94 {LibFunc_ZnamSt11align_val_t
, {OpNewLike
, 2, 0, -1}}, // new[](unsigned long, align_val_t)
95 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t
, // new[](unsigned long, align_val_t, nothrow)
96 {MallocLike
, 3, 0, -1}},
97 {LibFunc_msvc_new_int
, {OpNewLike
, 1, 0, -1}}, // new(unsigned int)
98 {LibFunc_msvc_new_int_nothrow
, {MallocLike
, 2, 0, -1}}, // new(unsigned int, nothrow)
99 {LibFunc_msvc_new_longlong
, {OpNewLike
, 1, 0, -1}}, // new(unsigned long long)
100 {LibFunc_msvc_new_longlong_nothrow
, {MallocLike
, 2, 0, -1}}, // new(unsigned long long, nothrow)
101 {LibFunc_msvc_new_array_int
, {OpNewLike
, 1, 0, -1}}, // new[](unsigned int)
102 {LibFunc_msvc_new_array_int_nothrow
, {MallocLike
, 2, 0, -1}}, // new[](unsigned int, nothrow)
103 {LibFunc_msvc_new_array_longlong
, {OpNewLike
, 1, 0, -1}}, // new[](unsigned long long)
104 {LibFunc_msvc_new_array_longlong_nothrow
, {MallocLike
, 2, 0, -1}}, // new[](unsigned long long, nothrow)
105 {LibFunc_aligned_alloc
, {AlignedAllocLike
, 2, 1, -1}},
106 {LibFunc_memalign
, {AlignedAllocLike
, 2, 1, -1}},
107 {LibFunc_calloc
, {CallocLike
, 2, 0, 1}},
108 {LibFunc_vec_calloc
, {CallocLike
, 2, 0, 1}},
109 {LibFunc_realloc
, {ReallocLike
, 2, 1, -1}},
110 {LibFunc_vec_realloc
, {ReallocLike
, 2, 1, -1}},
111 {LibFunc_reallocf
, {ReallocLike
, 2, 1, -1}},
112 {LibFunc_strdup
, {StrDupLike
, 1, -1, -1}},
113 {LibFunc_strndup
, {StrDupLike
, 2, 1, -1}},
114 {LibFunc___kmpc_alloc_shared
, {MallocLike
, 1, 0, -1}},
115 // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
118 static const Function
*getCalledFunction(const Value
*V
, bool LookThroughBitCast
,
120 // Don't care about intrinsics in this case.
121 if (isa
<IntrinsicInst
>(V
))
124 if (LookThroughBitCast
)
125 V
= V
->stripPointerCasts();
127 const auto *CB
= dyn_cast
<CallBase
>(V
);
131 IsNoBuiltin
= CB
->isNoBuiltin();
133 if (const Function
*Callee
= CB
->getCalledFunction())
138 /// Returns the allocation data for the given value if it's either a call to a
139 /// known allocation function, or a call to a function with the allocsize
141 static Optional
<AllocFnsTy
>
142 getAllocationDataForFunction(const Function
*Callee
, AllocType AllocTy
,
143 const TargetLibraryInfo
*TLI
) {
144 // Make sure that the function is available.
146 if (!TLI
|| !TLI
->getLibFunc(*Callee
, TLIFn
) || !TLI
->has(TLIFn
))
149 const auto *Iter
= find_if(
150 AllocationFnData
, [TLIFn
](const std::pair
<LibFunc
, AllocFnsTy
> &P
) {
151 return P
.first
== TLIFn
;
154 if (Iter
== std::end(AllocationFnData
))
157 const AllocFnsTy
*FnData
= &Iter
->second
;
158 if ((FnData
->AllocTy
& AllocTy
) != FnData
->AllocTy
)
161 // Check function prototype.
162 int FstParam
= FnData
->FstParam
;
163 int SndParam
= FnData
->SndParam
;
164 FunctionType
*FTy
= Callee
->getFunctionType();
166 if (FTy
->getReturnType() == Type::getInt8PtrTy(FTy
->getContext()) &&
167 FTy
->getNumParams() == FnData
->NumParams
&&
169 (FTy
->getParamType(FstParam
)->isIntegerTy(32) ||
170 FTy
->getParamType(FstParam
)->isIntegerTy(64))) &&
172 FTy
->getParamType(SndParam
)->isIntegerTy(32) ||
173 FTy
->getParamType(SndParam
)->isIntegerTy(64)))
178 static Optional
<AllocFnsTy
> getAllocationData(const Value
*V
, AllocType AllocTy
,
179 const TargetLibraryInfo
*TLI
,
180 bool LookThroughBitCast
= false) {
181 bool IsNoBuiltinCall
;
182 if (const Function
*Callee
=
183 getCalledFunction(V
, LookThroughBitCast
, IsNoBuiltinCall
))
184 if (!IsNoBuiltinCall
)
185 return getAllocationDataForFunction(Callee
, AllocTy
, TLI
);
189 static Optional
<AllocFnsTy
>
190 getAllocationData(const Value
*V
, AllocType AllocTy
,
191 function_ref
<const TargetLibraryInfo
&(Function
&)> GetTLI
,
192 bool LookThroughBitCast
= false) {
193 bool IsNoBuiltinCall
;
194 if (const Function
*Callee
=
195 getCalledFunction(V
, LookThroughBitCast
, IsNoBuiltinCall
))
196 if (!IsNoBuiltinCall
)
197 return getAllocationDataForFunction(
198 Callee
, AllocTy
, &GetTLI(const_cast<Function
&>(*Callee
)));
202 static Optional
<AllocFnsTy
> getAllocationSize(const Value
*V
,
203 const TargetLibraryInfo
*TLI
) {
204 bool IsNoBuiltinCall
;
205 const Function
*Callee
=
206 getCalledFunction(V
, /*LookThroughBitCast=*/false, IsNoBuiltinCall
);
210 // Prefer to use existing information over allocsize. This will give us an
212 if (!IsNoBuiltinCall
)
213 if (Optional
<AllocFnsTy
> Data
=
214 getAllocationDataForFunction(Callee
, AnyAlloc
, TLI
))
217 Attribute Attr
= Callee
->getFnAttribute(Attribute::AllocSize
);
218 if (Attr
== Attribute())
221 std::pair
<unsigned, Optional
<unsigned>> Args
= Attr
.getAllocSizeArgs();
224 // Because allocsize only tells us how many bytes are allocated, we're not
225 // really allowed to assume anything, so we use MallocLike.
226 Result
.AllocTy
= MallocLike
;
227 Result
.NumParams
= Callee
->getNumOperands();
228 Result
.FstParam
= Args
.first
;
229 Result
.SndParam
= Args
.second
.getValueOr(-1);
233 static bool hasNoAliasAttr(const Value
*V
, bool LookThroughBitCast
) {
235 dyn_cast
<CallBase
>(LookThroughBitCast
? V
->stripPointerCasts() : V
);
236 return CB
&& CB
->hasRetAttr(Attribute::NoAlias
);
239 /// Tests if a value is a call or invoke to a library function that
240 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
242 bool llvm::isAllocationFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
243 bool LookThroughBitCast
) {
244 return getAllocationData(V
, AnyAlloc
, TLI
, LookThroughBitCast
).hasValue();
246 bool llvm::isAllocationFn(
247 const Value
*V
, function_ref
<const TargetLibraryInfo
&(Function
&)> GetTLI
,
248 bool LookThroughBitCast
) {
249 return getAllocationData(V
, AnyAlloc
, GetTLI
, LookThroughBitCast
).hasValue();
252 /// Tests if a value is a call or invoke to a function that returns a
253 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
254 bool llvm::isNoAliasFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
255 bool LookThroughBitCast
) {
256 // it's safe to consider realloc as noalias since accessing the original
257 // pointer is undefined behavior
258 return isAllocationFn(V
, TLI
, LookThroughBitCast
) ||
259 hasNoAliasAttr(V
, LookThroughBitCast
);
262 /// Tests if a value is a call or invoke to a library function that
263 /// allocates uninitialized memory (such as malloc).
264 bool llvm::isMallocLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
265 bool LookThroughBitCast
) {
266 return getAllocationData(V
, MallocLike
, TLI
, LookThroughBitCast
).hasValue();
268 bool llvm::isMallocLikeFn(
269 const Value
*V
, function_ref
<const TargetLibraryInfo
&(Function
&)> GetTLI
,
270 bool LookThroughBitCast
) {
271 return getAllocationData(V
, MallocLike
, GetTLI
, LookThroughBitCast
)
275 /// Tests if a value is a call or invoke to a library function that
276 /// allocates uninitialized memory with alignment (such as aligned_alloc).
277 bool llvm::isAlignedAllocLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
278 bool LookThroughBitCast
) {
279 return getAllocationData(V
, AlignedAllocLike
, TLI
, LookThroughBitCast
)
282 bool llvm::isAlignedAllocLikeFn(
283 const Value
*V
, function_ref
<const TargetLibraryInfo
&(Function
&)> GetTLI
,
284 bool LookThroughBitCast
) {
285 return getAllocationData(V
, AlignedAllocLike
, GetTLI
, LookThroughBitCast
)
289 /// Tests if a value is a call or invoke to a library function that
290 /// allocates zero-filled memory (such as calloc).
291 bool llvm::isCallocLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
292 bool LookThroughBitCast
) {
293 return getAllocationData(V
, CallocLike
, TLI
, LookThroughBitCast
).hasValue();
296 /// Tests if a value is a call or invoke to a library function that
297 /// allocates memory similar to malloc or calloc.
298 bool llvm::isMallocOrCallocLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
299 bool LookThroughBitCast
) {
300 return getAllocationData(V
, MallocOrCallocLike
, TLI
,
301 LookThroughBitCast
).hasValue();
304 /// Tests if a value is a call or invoke to a library function that
305 /// allocates memory (either malloc, calloc, or strdup like).
306 bool llvm::isAllocLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
307 bool LookThroughBitCast
) {
308 return getAllocationData(V
, AllocLike
, TLI
, LookThroughBitCast
).hasValue();
311 /// Tests if a value is a call or invoke to a library function that
312 /// reallocates memory (e.g., realloc).
313 bool llvm::isReallocLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
314 bool LookThroughBitCast
) {
315 return getAllocationData(V
, ReallocLike
, TLI
, LookThroughBitCast
).hasValue();
318 /// Tests if a functions is a call or invoke to a library function that
319 /// reallocates memory (e.g., realloc).
320 bool llvm::isReallocLikeFn(const Function
*F
, const TargetLibraryInfo
*TLI
) {
321 return getAllocationDataForFunction(F
, ReallocLike
, TLI
).hasValue();
324 /// Tests if a value is a call or invoke to a library function that
325 /// allocates memory and throws if an allocation failed (e.g., new).
326 bool llvm::isOpNewLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
327 bool LookThroughBitCast
) {
328 return getAllocationData(V
, OpNewLike
, TLI
, LookThroughBitCast
).hasValue();
331 /// Tests if a value is a call or invoke to a library function that
332 /// allocates memory (strdup, strndup).
333 bool llvm::isStrdupLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
334 bool LookThroughBitCast
) {
335 return getAllocationData(V
, StrDupLike
, TLI
, LookThroughBitCast
).hasValue();
338 /// extractMallocCall - Returns the corresponding CallInst if the instruction
339 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we
340 /// ignore InvokeInst here.
341 const CallInst
*llvm::extractMallocCall(
343 function_ref
<const TargetLibraryInfo
&(Function
&)> GetTLI
) {
344 return isMallocLikeFn(I
, GetTLI
) ? dyn_cast
<CallInst
>(I
) : nullptr;
347 static Value
*computeArraySize(const CallInst
*CI
, const DataLayout
&DL
,
348 const TargetLibraryInfo
*TLI
,
349 bool LookThroughSExt
= false) {
353 // The size of the malloc's result type must be known to determine array size.
354 Type
*T
= getMallocAllocatedType(CI
, TLI
);
355 if (!T
|| !T
->isSized())
358 unsigned ElementSize
= DL
.getTypeAllocSize(T
);
359 if (StructType
*ST
= dyn_cast
<StructType
>(T
))
360 ElementSize
= DL
.getStructLayout(ST
)->getSizeInBytes();
362 // If malloc call's arg can be determined to be a multiple of ElementSize,
363 // return the multiple. Otherwise, return NULL.
364 Value
*MallocArg
= CI
->getArgOperand(0);
365 Value
*Multiple
= nullptr;
366 if (ComputeMultiple(MallocArg
, ElementSize
, Multiple
, LookThroughSExt
))
372 /// getMallocType - Returns the PointerType resulting from the malloc call.
373 /// The PointerType depends on the number of bitcast uses of the malloc call:
374 /// 0: PointerType is the calls' return type.
375 /// 1: PointerType is the bitcast's result type.
376 /// >1: Unique PointerType cannot be determined, return NULL.
377 PointerType
*llvm::getMallocType(const CallInst
*CI
,
378 const TargetLibraryInfo
*TLI
) {
379 assert(isMallocLikeFn(CI
, TLI
) && "getMallocType and not malloc call");
381 PointerType
*MallocType
= nullptr;
382 unsigned NumOfBitCastUses
= 0;
384 // Determine if CallInst has a bitcast use.
385 for (const User
*U
: CI
->users())
386 if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(U
)) {
387 MallocType
= cast
<PointerType
>(BCI
->getDestTy());
391 // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
392 if (NumOfBitCastUses
== 1)
395 // Malloc call was not bitcast, so type is the malloc function's return type.
396 if (NumOfBitCastUses
== 0)
397 return cast
<PointerType
>(CI
->getType());
399 // Type could not be determined.
403 /// getMallocAllocatedType - Returns the Type allocated by malloc call.
404 /// The Type depends on the number of bitcast uses of the malloc call:
405 /// 0: PointerType is the malloc calls' return type.
406 /// 1: PointerType is the bitcast's result type.
407 /// >1: Unique PointerType cannot be determined, return NULL.
408 Type
*llvm::getMallocAllocatedType(const CallInst
*CI
,
409 const TargetLibraryInfo
*TLI
) {
410 PointerType
*PT
= getMallocType(CI
, TLI
);
411 return PT
? PT
->getElementType() : nullptr;
414 /// getMallocArraySize - Returns the array size of a malloc call. If the
415 /// argument passed to malloc is a multiple of the size of the malloced type,
416 /// then return that multiple. For non-array mallocs, the multiple is
417 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be
419 Value
*llvm::getMallocArraySize(CallInst
*CI
, const DataLayout
&DL
,
420 const TargetLibraryInfo
*TLI
,
421 bool LookThroughSExt
) {
422 assert(isMallocLikeFn(CI
, TLI
) && "getMallocArraySize and not malloc call");
423 return computeArraySize(CI
, DL
, TLI
, LookThroughSExt
);
426 /// extractCallocCall - Returns the corresponding CallInst if the instruction
427 /// is a calloc call.
428 const CallInst
*llvm::extractCallocCall(const Value
*I
,
429 const TargetLibraryInfo
*TLI
) {
430 return isCallocLikeFn(I
, TLI
) ? cast
<CallInst
>(I
) : nullptr;
433 /// isLibFreeFunction - Returns true if the function is a builtin free()
434 bool llvm::isLibFreeFunction(const Function
*F
, const LibFunc TLIFn
) {
435 unsigned ExpectedNumParams
;
436 if (TLIFn
== LibFunc_free
||
437 TLIFn
== LibFunc_ZdlPv
|| // operator delete(void*)
438 TLIFn
== LibFunc_ZdaPv
|| // operator delete[](void*)
439 TLIFn
== LibFunc_msvc_delete_ptr32
|| // operator delete(void*)
440 TLIFn
== LibFunc_msvc_delete_ptr64
|| // operator delete(void*)
441 TLIFn
== LibFunc_msvc_delete_array_ptr32
|| // operator delete[](void*)
442 TLIFn
== LibFunc_msvc_delete_array_ptr64
) // operator delete[](void*)
443 ExpectedNumParams
= 1;
444 else if (TLIFn
== LibFunc_ZdlPvj
|| // delete(void*, uint)
445 TLIFn
== LibFunc_ZdlPvm
|| // delete(void*, ulong)
446 TLIFn
== LibFunc_ZdlPvRKSt9nothrow_t
|| // delete(void*, nothrow)
447 TLIFn
== LibFunc_ZdlPvSt11align_val_t
|| // delete(void*, align_val_t)
448 TLIFn
== LibFunc_ZdaPvj
|| // delete[](void*, uint)
449 TLIFn
== LibFunc_ZdaPvm
|| // delete[](void*, ulong)
450 TLIFn
== LibFunc_ZdaPvRKSt9nothrow_t
|| // delete[](void*, nothrow)
451 TLIFn
== LibFunc_ZdaPvSt11align_val_t
|| // delete[](void*, align_val_t)
452 TLIFn
== LibFunc_msvc_delete_ptr32_int
|| // delete(void*, uint)
453 TLIFn
== LibFunc_msvc_delete_ptr64_longlong
|| // delete(void*, ulonglong)
454 TLIFn
== LibFunc_msvc_delete_ptr32_nothrow
|| // delete(void*, nothrow)
455 TLIFn
== LibFunc_msvc_delete_ptr64_nothrow
|| // delete(void*, nothrow)
456 TLIFn
== LibFunc_msvc_delete_array_ptr32_int
|| // delete[](void*, uint)
457 TLIFn
== LibFunc_msvc_delete_array_ptr64_longlong
|| // delete[](void*, ulonglong)
458 TLIFn
== LibFunc_msvc_delete_array_ptr32_nothrow
|| // delete[](void*, nothrow)
459 TLIFn
== LibFunc_msvc_delete_array_ptr64_nothrow
|| // delete[](void*, nothrow)
460 TLIFn
== LibFunc___kmpc_free_shared
) // OpenMP Offloading RTL free
461 ExpectedNumParams
= 2;
462 else if (TLIFn
== LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t
|| // delete(void*, align_val_t, nothrow)
463 TLIFn
== LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t
|| // delete[](void*, align_val_t, nothrow)
464 TLIFn
== LibFunc_ZdlPvjSt11align_val_t
|| // delete(void*, unsigned long, align_val_t)
465 TLIFn
== LibFunc_ZdlPvmSt11align_val_t
|| // delete(void*, unsigned long, align_val_t)
466 TLIFn
== LibFunc_ZdaPvjSt11align_val_t
|| // delete[](void*, unsigned int, align_val_t)
467 TLIFn
== LibFunc_ZdaPvmSt11align_val_t
) // delete[](void*, unsigned long, align_val_t)
468 ExpectedNumParams
= 3;
472 // Check free prototype.
473 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
474 // attribute will exist.
475 FunctionType
*FTy
= F
->getFunctionType();
476 if (!FTy
->getReturnType()->isVoidTy())
478 if (FTy
->getNumParams() != ExpectedNumParams
)
480 if (FTy
->getParamType(0) != Type::getInt8PtrTy(F
->getContext()))
486 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
487 const CallInst
*llvm::isFreeCall(const Value
*I
, const TargetLibraryInfo
*TLI
) {
488 bool IsNoBuiltinCall
;
489 const Function
*Callee
=
490 getCalledFunction(I
, /*LookThroughBitCast=*/false, IsNoBuiltinCall
);
491 if (Callee
== nullptr || IsNoBuiltinCall
)
495 if (!TLI
|| !TLI
->getLibFunc(*Callee
, TLIFn
) || !TLI
->has(TLIFn
))
498 return isLibFreeFunction(Callee
, TLIFn
) ? dyn_cast
<CallInst
>(I
) : nullptr;
502 //===----------------------------------------------------------------------===//
503 // Utility functions to compute size of objects.
505 static APInt
getSizeWithOverflow(const SizeOffsetType
&Data
) {
506 if (Data
.second
.isNegative() || Data
.first
.ult(Data
.second
))
507 return APInt(Data
.first
.getBitWidth(), 0);
508 return Data
.first
- Data
.second
;
511 /// Compute the size of the object pointed by Ptr. Returns true and the
512 /// object size in Size if successful, and false otherwise.
513 /// If RoundToAlign is true, then Size is rounded up to the alignment of
514 /// allocas, byval arguments, and global variables.
515 bool llvm::getObjectSize(const Value
*Ptr
, uint64_t &Size
, const DataLayout
&DL
,
516 const TargetLibraryInfo
*TLI
, ObjectSizeOpts Opts
) {
517 ObjectSizeOffsetVisitor
Visitor(DL
, TLI
, Ptr
->getContext(), Opts
);
518 SizeOffsetType Data
= Visitor
.compute(const_cast<Value
*>(Ptr
));
519 if (!Visitor
.bothKnown(Data
))
522 Size
= getSizeWithOverflow(Data
).getZExtValue();
526 Value
*llvm::lowerObjectSizeCall(IntrinsicInst
*ObjectSize
,
527 const DataLayout
&DL
,
528 const TargetLibraryInfo
*TLI
,
530 assert(ObjectSize
->getIntrinsicID() == Intrinsic::objectsize
&&
531 "ObjectSize must be a call to llvm.objectsize!");
533 bool MaxVal
= cast
<ConstantInt
>(ObjectSize
->getArgOperand(1))->isZero();
534 ObjectSizeOpts EvalOptions
;
535 // Unless we have to fold this to something, try to be as accurate as
538 EvalOptions
.EvalMode
=
539 MaxVal
? ObjectSizeOpts::Mode::Max
: ObjectSizeOpts::Mode::Min
;
541 EvalOptions
.EvalMode
= ObjectSizeOpts::Mode::Exact
;
543 EvalOptions
.NullIsUnknownSize
=
544 cast
<ConstantInt
>(ObjectSize
->getArgOperand(2))->isOne();
546 auto *ResultType
= cast
<IntegerType
>(ObjectSize
->getType());
547 bool StaticOnly
= cast
<ConstantInt
>(ObjectSize
->getArgOperand(3))->isZero();
549 // FIXME: Does it make sense to just return a failure value if the size won't
550 // fit in the output and `!MustSucceed`?
552 if (getObjectSize(ObjectSize
->getArgOperand(0), Size
, DL
, TLI
, EvalOptions
) &&
553 isUIntN(ResultType
->getBitWidth(), Size
))
554 return ConstantInt::get(ResultType
, Size
);
556 LLVMContext
&Ctx
= ObjectSize
->getFunction()->getContext();
557 ObjectSizeOffsetEvaluator
Eval(DL
, TLI
, Ctx
, EvalOptions
);
558 SizeOffsetEvalType SizeOffsetPair
=
559 Eval
.compute(ObjectSize
->getArgOperand(0));
561 if (SizeOffsetPair
!= ObjectSizeOffsetEvaluator::unknown()) {
562 IRBuilder
<TargetFolder
> Builder(Ctx
, TargetFolder(DL
));
563 Builder
.SetInsertPoint(ObjectSize
);
565 // If we've outside the end of the object, then we can always access
568 Builder
.CreateSub(SizeOffsetPair
.first
, SizeOffsetPair
.second
);
570 Builder
.CreateICmpULT(SizeOffsetPair
.first
, SizeOffsetPair
.second
);
571 ResultSize
= Builder
.CreateZExtOrTrunc(ResultSize
, ResultType
);
572 Value
*Ret
= Builder
.CreateSelect(
573 UseZero
, ConstantInt::get(ResultType
, 0), ResultSize
);
575 // The non-constant size expression cannot evaluate to -1.
576 if (!isa
<Constant
>(SizeOffsetPair
.first
) ||
577 !isa
<Constant
>(SizeOffsetPair
.second
))
578 Builder
.CreateAssumption(
579 Builder
.CreateICmpNE(Ret
, ConstantInt::get(ResultType
, -1)));
588 return ConstantInt::get(ResultType
, MaxVal
? -1ULL : 0);
591 STATISTIC(ObjectVisitorArgument
,
592 "Number of arguments with unsolved size and offset");
593 STATISTIC(ObjectVisitorLoad
,
594 "Number of load instructions with unsolved size and offset");
596 APInt
ObjectSizeOffsetVisitor::align(APInt Size
, uint64_t Alignment
) {
597 if (Options
.RoundToAlign
&& Alignment
)
598 return APInt(IntTyBits
, alignTo(Size
.getZExtValue(), Align(Alignment
)));
602 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout
&DL
,
603 const TargetLibraryInfo
*TLI
,
604 LLVMContext
&Context
,
605 ObjectSizeOpts Options
)
606 : DL(DL
), TLI(TLI
), Options(Options
) {
607 // Pointer size must be rechecked for each object visited since it could have
608 // a different address space.
611 SizeOffsetType
ObjectSizeOffsetVisitor::compute(Value
*V
) {
612 IntTyBits
= DL
.getIndexTypeSizeInBits(V
->getType());
613 Zero
= APInt::getNullValue(IntTyBits
);
615 V
= V
->stripPointerCasts();
616 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
617 // If we have already seen this instruction, bail out. Cycles can happen in
618 // unreachable code after constant propagation.
619 if (!SeenInsts
.insert(I
).second
)
622 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(V
))
623 return visitGEPOperator(*GEP
);
626 if (Argument
*A
= dyn_cast
<Argument
>(V
))
627 return visitArgument(*A
);
628 if (ConstantPointerNull
*P
= dyn_cast
<ConstantPointerNull
>(V
))
629 return visitConstantPointerNull(*P
);
630 if (GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
))
631 return visitGlobalAlias(*GA
);
632 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
))
633 return visitGlobalVariable(*GV
);
634 if (UndefValue
*UV
= dyn_cast
<UndefValue
>(V
))
635 return visitUndefValue(*UV
);
636 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
637 if (CE
->getOpcode() == Instruction::IntToPtr
)
638 return unknown(); // clueless
639 if (CE
->getOpcode() == Instruction::GetElementPtr
)
640 return visitGEPOperator(cast
<GEPOperator
>(*CE
));
643 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
648 /// When we're compiling N-bit code, and the user uses parameters that are
649 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
650 /// trouble with APInt size issues. This function handles resizing + overflow
651 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
653 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt
&I
) {
654 // More bits than we can handle. Checking the bit width isn't necessary, but
655 // it's faster than checking active bits, and should give `false` in the
656 // vast majority of cases.
657 if (I
.getBitWidth() > IntTyBits
&& I
.getActiveBits() > IntTyBits
)
659 if (I
.getBitWidth() != IntTyBits
)
660 I
= I
.zextOrTrunc(IntTyBits
);
664 SizeOffsetType
ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst
&I
) {
665 if (!I
.getAllocatedType()->isSized())
668 if (isa
<ScalableVectorType
>(I
.getAllocatedType()))
671 APInt
Size(IntTyBits
, DL
.getTypeAllocSize(I
.getAllocatedType()));
672 if (!I
.isArrayAllocation())
673 return std::make_pair(align(Size
, I
.getAlignment()), Zero
);
675 Value
*ArraySize
= I
.getArraySize();
676 if (const ConstantInt
*C
= dyn_cast
<ConstantInt
>(ArraySize
)) {
677 APInt NumElems
= C
->getValue();
678 if (!CheckedZextOrTrunc(NumElems
))
682 Size
= Size
.umul_ov(NumElems
, Overflow
);
683 return Overflow
? unknown() : std::make_pair(align(Size
, I
.getAlignment()),
689 SizeOffsetType
ObjectSizeOffsetVisitor::visitArgument(Argument
&A
) {
690 Type
*MemoryTy
= A
.getPointeeInMemoryValueType();
691 // No interprocedural analysis is done at the moment.
692 if (!MemoryTy
|| !MemoryTy
->isSized()) {
693 ++ObjectVisitorArgument
;
697 APInt
Size(IntTyBits
, DL
.getTypeAllocSize(MemoryTy
));
698 return std::make_pair(align(Size
, A
.getParamAlignment()), Zero
);
701 SizeOffsetType
ObjectSizeOffsetVisitor::visitCallBase(CallBase
&CB
) {
702 Optional
<AllocFnsTy
> FnData
= getAllocationSize(&CB
, TLI
);
706 // Handle strdup-like functions separately.
707 if (FnData
->AllocTy
== StrDupLike
) {
708 APInt
Size(IntTyBits
, GetStringLength(CB
.getArgOperand(0)));
712 // Strndup limits strlen.
713 if (FnData
->FstParam
> 0) {
715 dyn_cast
<ConstantInt
>(CB
.getArgOperand(FnData
->FstParam
));
719 APInt MaxSize
= Arg
->getValue().zextOrSelf(IntTyBits
);
720 if (Size
.ugt(MaxSize
))
723 return std::make_pair(Size
, Zero
);
726 ConstantInt
*Arg
= dyn_cast
<ConstantInt
>(CB
.getArgOperand(FnData
->FstParam
));
730 APInt Size
= Arg
->getValue();
731 if (!CheckedZextOrTrunc(Size
))
734 // Size is determined by just 1 parameter.
735 if (FnData
->SndParam
< 0)
736 return std::make_pair(Size
, Zero
);
738 Arg
= dyn_cast
<ConstantInt
>(CB
.getArgOperand(FnData
->SndParam
));
742 APInt NumElems
= Arg
->getValue();
743 if (!CheckedZextOrTrunc(NumElems
))
747 Size
= Size
.umul_ov(NumElems
, Overflow
);
748 return Overflow
? unknown() : std::make_pair(Size
, Zero
);
750 // TODO: handle more standard functions (+ wchar cousins):
751 // - strdup / strndup
752 // - strcpy / strncpy
753 // - strcat / strncat
754 // - memcpy / memmove
755 // - strcat / strncat
760 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull
& CPN
) {
761 // If null is unknown, there's nothing we can do. Additionally, non-zero
762 // address spaces can make use of null, so we don't presume to know anything
765 // TODO: How should this work with address space casts? We currently just drop
766 // them on the floor, but it's unclear what we should do when a NULL from
767 // addrspace(1) gets casted to addrspace(0) (or vice-versa).
768 if (Options
.NullIsUnknownSize
|| CPN
.getType()->getAddressSpace())
770 return std::make_pair(Zero
, Zero
);
774 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst
&) {
779 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst
&) {
780 // Easy cases were already folded by previous passes.
784 SizeOffsetType
ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator
&GEP
) {
785 SizeOffsetType PtrData
= compute(GEP
.getPointerOperand());
786 APInt
Offset(DL
.getIndexTypeSizeInBits(GEP
.getPointerOperand()->getType()), 0);
787 if (!bothKnown(PtrData
) || !GEP
.accumulateConstantOffset(DL
, Offset
))
790 return std::make_pair(PtrData
.first
, PtrData
.second
+ Offset
);
793 SizeOffsetType
ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias
&GA
) {
794 if (GA
.isInterposable())
796 return compute(GA
.getAliasee());
799 SizeOffsetType
ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable
&GV
){
800 if (!GV
.hasDefinitiveInitializer())
803 APInt
Size(IntTyBits
, DL
.getTypeAllocSize(GV
.getValueType()));
804 return std::make_pair(align(Size
, GV
.getAlignment()), Zero
);
807 SizeOffsetType
ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst
&) {
812 SizeOffsetType
ObjectSizeOffsetVisitor::visitLoadInst(LoadInst
&) {
817 SizeOffsetType
ObjectSizeOffsetVisitor::visitPHINode(PHINode
&) {
818 // too complex to analyze statically.
822 SizeOffsetType
ObjectSizeOffsetVisitor::visitSelectInst(SelectInst
&I
) {
823 SizeOffsetType TrueSide
= compute(I
.getTrueValue());
824 SizeOffsetType FalseSide
= compute(I
.getFalseValue());
825 if (bothKnown(TrueSide
) && bothKnown(FalseSide
)) {
826 if (TrueSide
== FalseSide
) {
830 APInt TrueResult
= getSizeWithOverflow(TrueSide
);
831 APInt FalseResult
= getSizeWithOverflow(FalseSide
);
833 if (TrueResult
== FalseResult
) {
836 if (Options
.EvalMode
== ObjectSizeOpts::Mode::Min
) {
837 if (TrueResult
.slt(FalseResult
))
841 if (Options
.EvalMode
== ObjectSizeOpts::Mode::Max
) {
842 if (TrueResult
.sgt(FalseResult
))
850 SizeOffsetType
ObjectSizeOffsetVisitor::visitUndefValue(UndefValue
&) {
851 return std::make_pair(Zero
, Zero
);
854 SizeOffsetType
ObjectSizeOffsetVisitor::visitInstruction(Instruction
&I
) {
855 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
860 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
861 const DataLayout
&DL
, const TargetLibraryInfo
*TLI
, LLVMContext
&Context
,
862 ObjectSizeOpts EvalOpts
)
863 : DL(DL
), TLI(TLI
), Context(Context
),
864 Builder(Context
, TargetFolder(DL
),
865 IRBuilderCallbackInserter(
866 [&](Instruction
*I
) { InsertedInstructions
.insert(I
); })),
868 // IntTy and Zero must be set for each compute() since the address space may
869 // be different for later objects.
872 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::compute(Value
*V
) {
873 // XXX - Are vectors of pointers possible here?
874 IntTy
= cast
<IntegerType
>(DL
.getIndexType(V
->getType()));
875 Zero
= ConstantInt::get(IntTy
, 0);
877 SizeOffsetEvalType Result
= compute_(V
);
879 if (!bothKnown(Result
)) {
880 // Erase everything that was computed in this iteration from the cache, so
881 // that no dangling references are left behind. We could be a bit smarter if
882 // we kept a dependency graph. It's probably not worth the complexity.
883 for (const Value
*SeenVal
: SeenVals
) {
884 CacheMapTy::iterator CacheIt
= CacheMap
.find(SeenVal
);
885 // non-computable results can be safely cached
886 if (CacheIt
!= CacheMap
.end() && anyKnown(CacheIt
->second
))
887 CacheMap
.erase(CacheIt
);
890 // Erase any instructions we inserted as part of the traversal.
891 for (Instruction
*I
: InsertedInstructions
) {
892 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
893 I
->eraseFromParent();
898 InsertedInstructions
.clear();
902 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::compute_(Value
*V
) {
903 ObjectSizeOffsetVisitor
Visitor(DL
, TLI
, Context
, EvalOpts
);
904 SizeOffsetType Const
= Visitor
.compute(V
);
905 if (Visitor
.bothKnown(Const
))
906 return std::make_pair(ConstantInt::get(Context
, Const
.first
),
907 ConstantInt::get(Context
, Const
.second
));
909 V
= V
->stripPointerCasts();
912 CacheMapTy::iterator CacheIt
= CacheMap
.find(V
);
913 if (CacheIt
!= CacheMap
.end())
914 return CacheIt
->second
;
916 // Always generate code immediately before the instruction being
917 // processed, so that the generated code dominates the same BBs.
918 BuilderTy::InsertPointGuard
Guard(Builder
);
919 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
920 Builder
.SetInsertPoint(I
);
922 // Now compute the size and offset.
923 SizeOffsetEvalType Result
;
925 // Record the pointers that were handled in this run, so that they can be
926 // cleaned later if something fails. We also use this set to break cycles that
927 // can occur in dead code.
928 if (!SeenVals
.insert(V
).second
) {
930 } else if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(V
)) {
931 Result
= visitGEPOperator(*GEP
);
932 } else if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
934 } else if (isa
<Argument
>(V
) ||
935 (isa
<ConstantExpr
>(V
) &&
936 cast
<ConstantExpr
>(V
)->getOpcode() == Instruction::IntToPtr
) ||
937 isa
<GlobalAlias
>(V
) ||
938 isa
<GlobalVariable
>(V
)) {
939 // Ignore values where we cannot do more than ObjectSizeVisitor.
943 dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
948 // Don't reuse CacheIt since it may be invalid at this point.
949 CacheMap
[V
] = Result
;
953 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst
&I
) {
954 if (!I
.getAllocatedType()->isSized())
958 assert(I
.isArrayAllocation());
960 // If needed, adjust the alloca's operand size to match the pointer size.
961 // Subsequent math operations expect the types to match.
962 Value
*ArraySize
= Builder
.CreateZExtOrTrunc(
963 I
.getArraySize(), DL
.getIntPtrType(I
.getContext()));
964 assert(ArraySize
->getType() == Zero
->getType() &&
965 "Expected zero constant to have pointer type");
967 Value
*Size
= ConstantInt::get(ArraySize
->getType(),
968 DL
.getTypeAllocSize(I
.getAllocatedType()));
969 Size
= Builder
.CreateMul(Size
, ArraySize
);
970 return std::make_pair(Size
, Zero
);
973 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitCallBase(CallBase
&CB
) {
974 Optional
<AllocFnsTy
> FnData
= getAllocationSize(&CB
, TLI
);
978 // Handle strdup-like functions separately.
979 if (FnData
->AllocTy
== StrDupLike
) {
984 Value
*FirstArg
= CB
.getArgOperand(FnData
->FstParam
);
985 FirstArg
= Builder
.CreateZExtOrTrunc(FirstArg
, IntTy
);
986 if (FnData
->SndParam
< 0)
987 return std::make_pair(FirstArg
, Zero
);
989 Value
*SecondArg
= CB
.getArgOperand(FnData
->SndParam
);
990 SecondArg
= Builder
.CreateZExtOrTrunc(SecondArg
, IntTy
);
991 Value
*Size
= Builder
.CreateMul(FirstArg
, SecondArg
);
992 return std::make_pair(Size
, Zero
);
994 // TODO: handle more standard functions (+ wchar cousins):
995 // - strdup / strndup
996 // - strcpy / strncpy
997 // - strcat / strncat
998 // - memcpy / memmove
999 // - strcat / strncat
1004 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst
&) {
1009 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst
&) {
1014 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator
&GEP
) {
1015 SizeOffsetEvalType PtrData
= compute_(GEP
.getPointerOperand());
1016 if (!bothKnown(PtrData
))
1019 Value
*Offset
= EmitGEPOffset(&Builder
, DL
, &GEP
, /*NoAssumptions=*/true);
1020 Offset
= Builder
.CreateAdd(PtrData
.second
, Offset
);
1021 return std::make_pair(PtrData
.first
, Offset
);
1024 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst
&) {
1029 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst
&) {
1033 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitPHINode(PHINode
&PHI
) {
1034 // Create 2 PHIs: one for size and another for offset.
1035 PHINode
*SizePHI
= Builder
.CreatePHI(IntTy
, PHI
.getNumIncomingValues());
1036 PHINode
*OffsetPHI
= Builder
.CreatePHI(IntTy
, PHI
.getNumIncomingValues());
1038 // Insert right away in the cache to handle recursive PHIs.
1039 CacheMap
[&PHI
] = std::make_pair(SizePHI
, OffsetPHI
);
1041 // Compute offset/size for each PHI incoming pointer.
1042 for (unsigned i
= 0, e
= PHI
.getNumIncomingValues(); i
!= e
; ++i
) {
1043 Builder
.SetInsertPoint(&*PHI
.getIncomingBlock(i
)->getFirstInsertionPt());
1044 SizeOffsetEvalType EdgeData
= compute_(PHI
.getIncomingValue(i
));
1046 if (!bothKnown(EdgeData
)) {
1047 OffsetPHI
->replaceAllUsesWith(UndefValue::get(IntTy
));
1048 OffsetPHI
->eraseFromParent();
1049 InsertedInstructions
.erase(OffsetPHI
);
1050 SizePHI
->replaceAllUsesWith(UndefValue::get(IntTy
));
1051 SizePHI
->eraseFromParent();
1052 InsertedInstructions
.erase(SizePHI
);
1055 SizePHI
->addIncoming(EdgeData
.first
, PHI
.getIncomingBlock(i
));
1056 OffsetPHI
->addIncoming(EdgeData
.second
, PHI
.getIncomingBlock(i
));
1059 Value
*Size
= SizePHI
, *Offset
= OffsetPHI
;
1060 if (Value
*Tmp
= SizePHI
->hasConstantValue()) {
1062 SizePHI
->replaceAllUsesWith(Size
);
1063 SizePHI
->eraseFromParent();
1064 InsertedInstructions
.erase(SizePHI
);
1066 if (Value
*Tmp
= OffsetPHI
->hasConstantValue()) {
1068 OffsetPHI
->replaceAllUsesWith(Offset
);
1069 OffsetPHI
->eraseFromParent();
1070 InsertedInstructions
.erase(OffsetPHI
);
1072 return std::make_pair(Size
, Offset
);
1075 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst
&I
) {
1076 SizeOffsetEvalType TrueSide
= compute_(I
.getTrueValue());
1077 SizeOffsetEvalType FalseSide
= compute_(I
.getFalseValue());
1079 if (!bothKnown(TrueSide
) || !bothKnown(FalseSide
))
1081 if (TrueSide
== FalseSide
)
1084 Value
*Size
= Builder
.CreateSelect(I
.getCondition(), TrueSide
.first
,
1086 Value
*Offset
= Builder
.CreateSelect(I
.getCondition(), TrueSide
.second
,
1088 return std::make_pair(Size
, Offset
);
1091 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitInstruction(Instruction
&I
) {
1092 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I