[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Analysis / MemoryBuiltins.cpp
blob7af38003743fc5fda54da3ee950795ce12790d21
1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions identifies calls to builtin functions that allocate
10 // or free memory.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/MemoryBuiltins.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
46 #include <utility>
48 using namespace llvm;
50 #define DEBUG_TYPE "memory-builtins"
52 enum AllocType : uint8_t {
53 OpNewLike = 1<<0, // allocates; never returns null
54 MallocLike = 1<<1 | OpNewLike, // allocates; may return null
55 AlignedAllocLike = 1<<2, // allocates with alignment; may return null
56 CallocLike = 1<<3, // allocates + bzero
57 ReallocLike = 1<<4, // reallocates
58 StrDupLike = 1<<5,
59 MallocOrCallocLike = MallocLike | CallocLike | AlignedAllocLike,
60 AllocLike = MallocOrCallocLike | StrDupLike,
61 AnyAlloc = AllocLike | ReallocLike
64 struct AllocFnsTy {
65 AllocType AllocTy;
66 unsigned NumParams;
67 // First and Second size parameters (or -1 if unused)
68 int FstParam, SndParam;
71 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
72 // know which functions are nounwind, noalias, nocapture parameters, etc.
73 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
74 {LibFunc_malloc, {MallocLike, 1, 0, -1}},
75 {LibFunc_vec_malloc, {MallocLike, 1, 0, -1}},
76 {LibFunc_valloc, {MallocLike, 1, 0, -1}},
77 {LibFunc_Znwj, {OpNewLike, 1, 0, -1}}, // new(unsigned int)
78 {LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow)
79 {LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned int, align_val_t)
80 {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, // new(unsigned int, align_val_t, nothrow)
81 {MallocLike, 3, 0, -1}},
82 {LibFunc_Znwm, {OpNewLike, 1, 0, -1}}, // new(unsigned long)
83 {LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned long, nothrow)
84 {LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned long, align_val_t)
85 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, // new(unsigned long, align_val_t, nothrow)
86 {MallocLike, 3, 0, -1}},
87 {LibFunc_Znaj, {OpNewLike, 1, 0, -1}}, // new[](unsigned int)
88 {LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow)
89 {LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned int, align_val_t)
90 {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, // new[](unsigned int, align_val_t, nothrow)
91 {MallocLike, 3, 0, -1}},
92 {LibFunc_Znam, {OpNewLike, 1, 0, -1}}, // new[](unsigned long)
93 {LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned long, nothrow)
94 {LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned long, align_val_t)
95 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, // new[](unsigned long, align_val_t, nothrow)
96 {MallocLike, 3, 0, -1}},
97 {LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1}}, // new(unsigned int)
98 {LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow)
99 {LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1}}, // new(unsigned long long)
100 {LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned long long, nothrow)
101 {LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1}}, // new[](unsigned int)
102 {LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow)
103 {LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1}}, // new[](unsigned long long)
104 {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned long long, nothrow)
105 {LibFunc_aligned_alloc, {AlignedAllocLike, 2, 1, -1}},
106 {LibFunc_memalign, {AlignedAllocLike, 2, 1, -1}},
107 {LibFunc_calloc, {CallocLike, 2, 0, 1}},
108 {LibFunc_vec_calloc, {CallocLike, 2, 0, 1}},
109 {LibFunc_realloc, {ReallocLike, 2, 1, -1}},
110 {LibFunc_vec_realloc, {ReallocLike, 2, 1, -1}},
111 {LibFunc_reallocf, {ReallocLike, 2, 1, -1}},
112 {LibFunc_strdup, {StrDupLike, 1, -1, -1}},
113 {LibFunc_strndup, {StrDupLike, 2, 1, -1}},
114 {LibFunc___kmpc_alloc_shared, {MallocLike, 1, 0, -1}},
115 // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
118 static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast,
119 bool &IsNoBuiltin) {
120 // Don't care about intrinsics in this case.
121 if (isa<IntrinsicInst>(V))
122 return nullptr;
124 if (LookThroughBitCast)
125 V = V->stripPointerCasts();
127 const auto *CB = dyn_cast<CallBase>(V);
128 if (!CB)
129 return nullptr;
131 IsNoBuiltin = CB->isNoBuiltin();
133 if (const Function *Callee = CB->getCalledFunction())
134 return Callee;
135 return nullptr;
138 /// Returns the allocation data for the given value if it's either a call to a
139 /// known allocation function, or a call to a function with the allocsize
140 /// attribute.
141 static Optional<AllocFnsTy>
142 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
143 const TargetLibraryInfo *TLI) {
144 // Make sure that the function is available.
145 LibFunc TLIFn;
146 if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
147 return None;
149 const auto *Iter = find_if(
150 AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
151 return P.first == TLIFn;
154 if (Iter == std::end(AllocationFnData))
155 return None;
157 const AllocFnsTy *FnData = &Iter->second;
158 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
159 return None;
161 // Check function prototype.
162 int FstParam = FnData->FstParam;
163 int SndParam = FnData->SndParam;
164 FunctionType *FTy = Callee->getFunctionType();
166 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
167 FTy->getNumParams() == FnData->NumParams &&
168 (FstParam < 0 ||
169 (FTy->getParamType(FstParam)->isIntegerTy(32) ||
170 FTy->getParamType(FstParam)->isIntegerTy(64))) &&
171 (SndParam < 0 ||
172 FTy->getParamType(SndParam)->isIntegerTy(32) ||
173 FTy->getParamType(SndParam)->isIntegerTy(64)))
174 return *FnData;
175 return None;
178 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
179 const TargetLibraryInfo *TLI,
180 bool LookThroughBitCast = false) {
181 bool IsNoBuiltinCall;
182 if (const Function *Callee =
183 getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall))
184 if (!IsNoBuiltinCall)
185 return getAllocationDataForFunction(Callee, AllocTy, TLI);
186 return None;
189 static Optional<AllocFnsTy>
190 getAllocationData(const Value *V, AllocType AllocTy,
191 function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
192 bool LookThroughBitCast = false) {
193 bool IsNoBuiltinCall;
194 if (const Function *Callee =
195 getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall))
196 if (!IsNoBuiltinCall)
197 return getAllocationDataForFunction(
198 Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee)));
199 return None;
202 static Optional<AllocFnsTy> getAllocationSize(const Value *V,
203 const TargetLibraryInfo *TLI) {
204 bool IsNoBuiltinCall;
205 const Function *Callee =
206 getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
207 if (!Callee)
208 return None;
210 // Prefer to use existing information over allocsize. This will give us an
211 // accurate AllocTy.
212 if (!IsNoBuiltinCall)
213 if (Optional<AllocFnsTy> Data =
214 getAllocationDataForFunction(Callee, AnyAlloc, TLI))
215 return Data;
217 Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
218 if (Attr == Attribute())
219 return None;
221 std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
223 AllocFnsTy Result;
224 // Because allocsize only tells us how many bytes are allocated, we're not
225 // really allowed to assume anything, so we use MallocLike.
226 Result.AllocTy = MallocLike;
227 Result.NumParams = Callee->getNumOperands();
228 Result.FstParam = Args.first;
229 Result.SndParam = Args.second.getValueOr(-1);
230 return Result;
233 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
234 const auto *CB =
235 dyn_cast<CallBase>(LookThroughBitCast ? V->stripPointerCasts() : V);
236 return CB && CB->hasRetAttr(Attribute::NoAlias);
239 /// Tests if a value is a call or invoke to a library function that
240 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
241 /// like).
242 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
243 bool LookThroughBitCast) {
244 return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue();
246 bool llvm::isAllocationFn(
247 const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
248 bool LookThroughBitCast) {
249 return getAllocationData(V, AnyAlloc, GetTLI, LookThroughBitCast).hasValue();
252 /// Tests if a value is a call or invoke to a function that returns a
253 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
254 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
255 bool LookThroughBitCast) {
256 // it's safe to consider realloc as noalias since accessing the original
257 // pointer is undefined behavior
258 return isAllocationFn(V, TLI, LookThroughBitCast) ||
259 hasNoAliasAttr(V, LookThroughBitCast);
262 /// Tests if a value is a call or invoke to a library function that
263 /// allocates uninitialized memory (such as malloc).
264 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
265 bool LookThroughBitCast) {
266 return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue();
268 bool llvm::isMallocLikeFn(
269 const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
270 bool LookThroughBitCast) {
271 return getAllocationData(V, MallocLike, GetTLI, LookThroughBitCast)
272 .hasValue();
275 /// Tests if a value is a call or invoke to a library function that
276 /// allocates uninitialized memory with alignment (such as aligned_alloc).
277 bool llvm::isAlignedAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
278 bool LookThroughBitCast) {
279 return getAllocationData(V, AlignedAllocLike, TLI, LookThroughBitCast)
280 .hasValue();
282 bool llvm::isAlignedAllocLikeFn(
283 const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
284 bool LookThroughBitCast) {
285 return getAllocationData(V, AlignedAllocLike, GetTLI, LookThroughBitCast)
286 .hasValue();
289 /// Tests if a value is a call or invoke to a library function that
290 /// allocates zero-filled memory (such as calloc).
291 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
292 bool LookThroughBitCast) {
293 return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue();
296 /// Tests if a value is a call or invoke to a library function that
297 /// allocates memory similar to malloc or calloc.
298 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
299 bool LookThroughBitCast) {
300 return getAllocationData(V, MallocOrCallocLike, TLI,
301 LookThroughBitCast).hasValue();
304 /// Tests if a value is a call or invoke to a library function that
305 /// allocates memory (either malloc, calloc, or strdup like).
306 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
307 bool LookThroughBitCast) {
308 return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue();
311 /// Tests if a value is a call or invoke to a library function that
312 /// reallocates memory (e.g., realloc).
313 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
314 bool LookThroughBitCast) {
315 return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast).hasValue();
318 /// Tests if a functions is a call or invoke to a library function that
319 /// reallocates memory (e.g., realloc).
320 bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) {
321 return getAllocationDataForFunction(F, ReallocLike, TLI).hasValue();
324 /// Tests if a value is a call or invoke to a library function that
325 /// allocates memory and throws if an allocation failed (e.g., new).
326 bool llvm::isOpNewLikeFn(const Value *V, const TargetLibraryInfo *TLI,
327 bool LookThroughBitCast) {
328 return getAllocationData(V, OpNewLike, TLI, LookThroughBitCast).hasValue();
331 /// Tests if a value is a call or invoke to a library function that
332 /// allocates memory (strdup, strndup).
333 bool llvm::isStrdupLikeFn(const Value *V, const TargetLibraryInfo *TLI,
334 bool LookThroughBitCast) {
335 return getAllocationData(V, StrDupLike, TLI, LookThroughBitCast).hasValue();
338 /// extractMallocCall - Returns the corresponding CallInst if the instruction
339 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we
340 /// ignore InvokeInst here.
341 const CallInst *llvm::extractMallocCall(
342 const Value *I,
343 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
344 return isMallocLikeFn(I, GetTLI) ? dyn_cast<CallInst>(I) : nullptr;
347 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL,
348 const TargetLibraryInfo *TLI,
349 bool LookThroughSExt = false) {
350 if (!CI)
351 return nullptr;
353 // The size of the malloc's result type must be known to determine array size.
354 Type *T = getMallocAllocatedType(CI, TLI);
355 if (!T || !T->isSized())
356 return nullptr;
358 unsigned ElementSize = DL.getTypeAllocSize(T);
359 if (StructType *ST = dyn_cast<StructType>(T))
360 ElementSize = DL.getStructLayout(ST)->getSizeInBytes();
362 // If malloc call's arg can be determined to be a multiple of ElementSize,
363 // return the multiple. Otherwise, return NULL.
364 Value *MallocArg = CI->getArgOperand(0);
365 Value *Multiple = nullptr;
366 if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt))
367 return Multiple;
369 return nullptr;
372 /// getMallocType - Returns the PointerType resulting from the malloc call.
373 /// The PointerType depends on the number of bitcast uses of the malloc call:
374 /// 0: PointerType is the calls' return type.
375 /// 1: PointerType is the bitcast's result type.
376 /// >1: Unique PointerType cannot be determined, return NULL.
377 PointerType *llvm::getMallocType(const CallInst *CI,
378 const TargetLibraryInfo *TLI) {
379 assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
381 PointerType *MallocType = nullptr;
382 unsigned NumOfBitCastUses = 0;
384 // Determine if CallInst has a bitcast use.
385 for (const User *U : CI->users())
386 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
387 MallocType = cast<PointerType>(BCI->getDestTy());
388 NumOfBitCastUses++;
391 // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
392 if (NumOfBitCastUses == 1)
393 return MallocType;
395 // Malloc call was not bitcast, so type is the malloc function's return type.
396 if (NumOfBitCastUses == 0)
397 return cast<PointerType>(CI->getType());
399 // Type could not be determined.
400 return nullptr;
403 /// getMallocAllocatedType - Returns the Type allocated by malloc call.
404 /// The Type depends on the number of bitcast uses of the malloc call:
405 /// 0: PointerType is the malloc calls' return type.
406 /// 1: PointerType is the bitcast's result type.
407 /// >1: Unique PointerType cannot be determined, return NULL.
408 Type *llvm::getMallocAllocatedType(const CallInst *CI,
409 const TargetLibraryInfo *TLI) {
410 PointerType *PT = getMallocType(CI, TLI);
411 return PT ? PT->getElementType() : nullptr;
414 /// getMallocArraySize - Returns the array size of a malloc call. If the
415 /// argument passed to malloc is a multiple of the size of the malloced type,
416 /// then return that multiple. For non-array mallocs, the multiple is
417 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be
418 /// determined.
419 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL,
420 const TargetLibraryInfo *TLI,
421 bool LookThroughSExt) {
422 assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
423 return computeArraySize(CI, DL, TLI, LookThroughSExt);
426 /// extractCallocCall - Returns the corresponding CallInst if the instruction
427 /// is a calloc call.
428 const CallInst *llvm::extractCallocCall(const Value *I,
429 const TargetLibraryInfo *TLI) {
430 return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr;
433 /// isLibFreeFunction - Returns true if the function is a builtin free()
434 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) {
435 unsigned ExpectedNumParams;
436 if (TLIFn == LibFunc_free ||
437 TLIFn == LibFunc_ZdlPv || // operator delete(void*)
438 TLIFn == LibFunc_ZdaPv || // operator delete[](void*)
439 TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*)
440 TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*)
441 TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*)
442 TLIFn == LibFunc_msvc_delete_array_ptr64) // operator delete[](void*)
443 ExpectedNumParams = 1;
444 else if (TLIFn == LibFunc_ZdlPvj || // delete(void*, uint)
445 TLIFn == LibFunc_ZdlPvm || // delete(void*, ulong)
446 TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
447 TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t)
448 TLIFn == LibFunc_ZdaPvj || // delete[](void*, uint)
449 TLIFn == LibFunc_ZdaPvm || // delete[](void*, ulong)
450 TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow)
451 TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t)
452 TLIFn == LibFunc_msvc_delete_ptr32_int || // delete(void*, uint)
453 TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong)
454 TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow)
455 TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow)
456 TLIFn == LibFunc_msvc_delete_array_ptr32_int || // delete[](void*, uint)
457 TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong)
458 TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow)
459 TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow || // delete[](void*, nothrow)
460 TLIFn == LibFunc___kmpc_free_shared) // OpenMP Offloading RTL free
461 ExpectedNumParams = 2;
462 else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow)
463 TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t || // delete[](void*, align_val_t, nothrow)
464 TLIFn == LibFunc_ZdlPvjSt11align_val_t || // delete(void*, unsigned long, align_val_t)
465 TLIFn == LibFunc_ZdlPvmSt11align_val_t || // delete(void*, unsigned long, align_val_t)
466 TLIFn == LibFunc_ZdaPvjSt11align_val_t || // delete[](void*, unsigned int, align_val_t)
467 TLIFn == LibFunc_ZdaPvmSt11align_val_t) // delete[](void*, unsigned long, align_val_t)
468 ExpectedNumParams = 3;
469 else
470 return false;
472 // Check free prototype.
473 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
474 // attribute will exist.
475 FunctionType *FTy = F->getFunctionType();
476 if (!FTy->getReturnType()->isVoidTy())
477 return false;
478 if (FTy->getNumParams() != ExpectedNumParams)
479 return false;
480 if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext()))
481 return false;
483 return true;
486 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
487 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
488 bool IsNoBuiltinCall;
489 const Function *Callee =
490 getCalledFunction(I, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
491 if (Callee == nullptr || IsNoBuiltinCall)
492 return nullptr;
494 LibFunc TLIFn;
495 if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
496 return nullptr;
498 return isLibFreeFunction(Callee, TLIFn) ? dyn_cast<CallInst>(I) : nullptr;
502 //===----------------------------------------------------------------------===//
503 // Utility functions to compute size of objects.
505 static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
506 if (Data.second.isNegative() || Data.first.ult(Data.second))
507 return APInt(Data.first.getBitWidth(), 0);
508 return Data.first - Data.second;
511 /// Compute the size of the object pointed by Ptr. Returns true and the
512 /// object size in Size if successful, and false otherwise.
513 /// If RoundToAlign is true, then Size is rounded up to the alignment of
514 /// allocas, byval arguments, and global variables.
515 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
516 const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
517 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
518 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
519 if (!Visitor.bothKnown(Data))
520 return false;
522 Size = getSizeWithOverflow(Data).getZExtValue();
523 return true;
526 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
527 const DataLayout &DL,
528 const TargetLibraryInfo *TLI,
529 bool MustSucceed) {
530 assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
531 "ObjectSize must be a call to llvm.objectsize!");
533 bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
534 ObjectSizeOpts EvalOptions;
535 // Unless we have to fold this to something, try to be as accurate as
536 // possible.
537 if (MustSucceed)
538 EvalOptions.EvalMode =
539 MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
540 else
541 EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;
543 EvalOptions.NullIsUnknownSize =
544 cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
546 auto *ResultType = cast<IntegerType>(ObjectSize->getType());
547 bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
548 if (StaticOnly) {
549 // FIXME: Does it make sense to just return a failure value if the size won't
550 // fit in the output and `!MustSucceed`?
551 uint64_t Size;
552 if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
553 isUIntN(ResultType->getBitWidth(), Size))
554 return ConstantInt::get(ResultType, Size);
555 } else {
556 LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
557 ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
558 SizeOffsetEvalType SizeOffsetPair =
559 Eval.compute(ObjectSize->getArgOperand(0));
561 if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
562 IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL));
563 Builder.SetInsertPoint(ObjectSize);
565 // If we've outside the end of the object, then we can always access
566 // exactly 0 bytes.
567 Value *ResultSize =
568 Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second);
569 Value *UseZero =
570 Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second);
571 ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType);
572 Value *Ret = Builder.CreateSelect(
573 UseZero, ConstantInt::get(ResultType, 0), ResultSize);
575 // The non-constant size expression cannot evaluate to -1.
576 if (!isa<Constant>(SizeOffsetPair.first) ||
577 !isa<Constant>(SizeOffsetPair.second))
578 Builder.CreateAssumption(
579 Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1)));
581 return Ret;
585 if (!MustSucceed)
586 return nullptr;
588 return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
591 STATISTIC(ObjectVisitorArgument,
592 "Number of arguments with unsolved size and offset");
593 STATISTIC(ObjectVisitorLoad,
594 "Number of load instructions with unsolved size and offset");
596 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Alignment) {
597 if (Options.RoundToAlign && Alignment)
598 return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align(Alignment)));
599 return Size;
602 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
603 const TargetLibraryInfo *TLI,
604 LLVMContext &Context,
605 ObjectSizeOpts Options)
606 : DL(DL), TLI(TLI), Options(Options) {
607 // Pointer size must be rechecked for each object visited since it could have
608 // a different address space.
611 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
612 IntTyBits = DL.getIndexTypeSizeInBits(V->getType());
613 Zero = APInt::getNullValue(IntTyBits);
615 V = V->stripPointerCasts();
616 if (Instruction *I = dyn_cast<Instruction>(V)) {
617 // If we have already seen this instruction, bail out. Cycles can happen in
618 // unreachable code after constant propagation.
619 if (!SeenInsts.insert(I).second)
620 return unknown();
622 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
623 return visitGEPOperator(*GEP);
624 return visit(*I);
626 if (Argument *A = dyn_cast<Argument>(V))
627 return visitArgument(*A);
628 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
629 return visitConstantPointerNull(*P);
630 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
631 return visitGlobalAlias(*GA);
632 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
633 return visitGlobalVariable(*GV);
634 if (UndefValue *UV = dyn_cast<UndefValue>(V))
635 return visitUndefValue(*UV);
636 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
637 if (CE->getOpcode() == Instruction::IntToPtr)
638 return unknown(); // clueless
639 if (CE->getOpcode() == Instruction::GetElementPtr)
640 return visitGEPOperator(cast<GEPOperator>(*CE));
643 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
644 << *V << '\n');
645 return unknown();
648 /// When we're compiling N-bit code, and the user uses parameters that are
649 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
650 /// trouble with APInt size issues. This function handles resizing + overflow
651 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
652 /// I's value.
653 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
654 // More bits than we can handle. Checking the bit width isn't necessary, but
655 // it's faster than checking active bits, and should give `false` in the
656 // vast majority of cases.
657 if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
658 return false;
659 if (I.getBitWidth() != IntTyBits)
660 I = I.zextOrTrunc(IntTyBits);
661 return true;
664 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
665 if (!I.getAllocatedType()->isSized())
666 return unknown();
668 if (isa<ScalableVectorType>(I.getAllocatedType()))
669 return unknown();
671 APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
672 if (!I.isArrayAllocation())
673 return std::make_pair(align(Size, I.getAlignment()), Zero);
675 Value *ArraySize = I.getArraySize();
676 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
677 APInt NumElems = C->getValue();
678 if (!CheckedZextOrTrunc(NumElems))
679 return unknown();
681 bool Overflow;
682 Size = Size.umul_ov(NumElems, Overflow);
683 return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()),
684 Zero);
686 return unknown();
689 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
690 Type *MemoryTy = A.getPointeeInMemoryValueType();
691 // No interprocedural analysis is done at the moment.
692 if (!MemoryTy|| !MemoryTy->isSized()) {
693 ++ObjectVisitorArgument;
694 return unknown();
697 APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy));
698 return std::make_pair(align(Size, A.getParamAlignment()), Zero);
701 SizeOffsetType ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) {
702 Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
703 if (!FnData)
704 return unknown();
706 // Handle strdup-like functions separately.
707 if (FnData->AllocTy == StrDupLike) {
708 APInt Size(IntTyBits, GetStringLength(CB.getArgOperand(0)));
709 if (!Size)
710 return unknown();
712 // Strndup limits strlen.
713 if (FnData->FstParam > 0) {
714 ConstantInt *Arg =
715 dyn_cast<ConstantInt>(CB.getArgOperand(FnData->FstParam));
716 if (!Arg)
717 return unknown();
719 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
720 if (Size.ugt(MaxSize))
721 Size = MaxSize + 1;
723 return std::make_pair(Size, Zero);
726 ConstantInt *Arg = dyn_cast<ConstantInt>(CB.getArgOperand(FnData->FstParam));
727 if (!Arg)
728 return unknown();
730 APInt Size = Arg->getValue();
731 if (!CheckedZextOrTrunc(Size))
732 return unknown();
734 // Size is determined by just 1 parameter.
735 if (FnData->SndParam < 0)
736 return std::make_pair(Size, Zero);
738 Arg = dyn_cast<ConstantInt>(CB.getArgOperand(FnData->SndParam));
739 if (!Arg)
740 return unknown();
742 APInt NumElems = Arg->getValue();
743 if (!CheckedZextOrTrunc(NumElems))
744 return unknown();
746 bool Overflow;
747 Size = Size.umul_ov(NumElems, Overflow);
748 return Overflow ? unknown() : std::make_pair(Size, Zero);
750 // TODO: handle more standard functions (+ wchar cousins):
751 // - strdup / strndup
752 // - strcpy / strncpy
753 // - strcat / strncat
754 // - memcpy / memmove
755 // - strcat / strncat
756 // - memset
759 SizeOffsetType
760 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
761 // If null is unknown, there's nothing we can do. Additionally, non-zero
762 // address spaces can make use of null, so we don't presume to know anything
763 // about that.
765 // TODO: How should this work with address space casts? We currently just drop
766 // them on the floor, but it's unclear what we should do when a NULL from
767 // addrspace(1) gets casted to addrspace(0) (or vice-versa).
768 if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
769 return unknown();
770 return std::make_pair(Zero, Zero);
773 SizeOffsetType
774 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
775 return unknown();
778 SizeOffsetType
779 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
780 // Easy cases were already folded by previous passes.
781 return unknown();
784 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
785 SizeOffsetType PtrData = compute(GEP.getPointerOperand());
786 APInt Offset(DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()), 0);
787 if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
788 return unknown();
790 return std::make_pair(PtrData.first, PtrData.second + Offset);
793 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
794 if (GA.isInterposable())
795 return unknown();
796 return compute(GA.getAliasee());
799 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
800 if (!GV.hasDefinitiveInitializer())
801 return unknown();
803 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType()));
804 return std::make_pair(align(Size, GV.getAlignment()), Zero);
807 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
808 // clueless
809 return unknown();
812 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
813 ++ObjectVisitorLoad;
814 return unknown();
817 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
818 // too complex to analyze statically.
819 return unknown();
822 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
823 SizeOffsetType TrueSide = compute(I.getTrueValue());
824 SizeOffsetType FalseSide = compute(I.getFalseValue());
825 if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
826 if (TrueSide == FalseSide) {
827 return TrueSide;
830 APInt TrueResult = getSizeWithOverflow(TrueSide);
831 APInt FalseResult = getSizeWithOverflow(FalseSide);
833 if (TrueResult == FalseResult) {
834 return TrueSide;
836 if (Options.EvalMode == ObjectSizeOpts::Mode::Min) {
837 if (TrueResult.slt(FalseResult))
838 return TrueSide;
839 return FalseSide;
841 if (Options.EvalMode == ObjectSizeOpts::Mode::Max) {
842 if (TrueResult.sgt(FalseResult))
843 return TrueSide;
844 return FalseSide;
847 return unknown();
850 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
851 return std::make_pair(Zero, Zero);
854 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
855 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
856 << '\n');
857 return unknown();
860 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
861 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
862 ObjectSizeOpts EvalOpts)
863 : DL(DL), TLI(TLI), Context(Context),
864 Builder(Context, TargetFolder(DL),
865 IRBuilderCallbackInserter(
866 [&](Instruction *I) { InsertedInstructions.insert(I); })),
867 EvalOpts(EvalOpts) {
868 // IntTy and Zero must be set for each compute() since the address space may
869 // be different for later objects.
872 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
873 // XXX - Are vectors of pointers possible here?
874 IntTy = cast<IntegerType>(DL.getIndexType(V->getType()));
875 Zero = ConstantInt::get(IntTy, 0);
877 SizeOffsetEvalType Result = compute_(V);
879 if (!bothKnown(Result)) {
880 // Erase everything that was computed in this iteration from the cache, so
881 // that no dangling references are left behind. We could be a bit smarter if
882 // we kept a dependency graph. It's probably not worth the complexity.
883 for (const Value *SeenVal : SeenVals) {
884 CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
885 // non-computable results can be safely cached
886 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
887 CacheMap.erase(CacheIt);
890 // Erase any instructions we inserted as part of the traversal.
891 for (Instruction *I : InsertedInstructions) {
892 I->replaceAllUsesWith(UndefValue::get(I->getType()));
893 I->eraseFromParent();
897 SeenVals.clear();
898 InsertedInstructions.clear();
899 return Result;
902 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
903 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts);
904 SizeOffsetType Const = Visitor.compute(V);
905 if (Visitor.bothKnown(Const))
906 return std::make_pair(ConstantInt::get(Context, Const.first),
907 ConstantInt::get(Context, Const.second));
909 V = V->stripPointerCasts();
911 // Check cache.
912 CacheMapTy::iterator CacheIt = CacheMap.find(V);
913 if (CacheIt != CacheMap.end())
914 return CacheIt->second;
916 // Always generate code immediately before the instruction being
917 // processed, so that the generated code dominates the same BBs.
918 BuilderTy::InsertPointGuard Guard(Builder);
919 if (Instruction *I = dyn_cast<Instruction>(V))
920 Builder.SetInsertPoint(I);
922 // Now compute the size and offset.
923 SizeOffsetEvalType Result;
925 // Record the pointers that were handled in this run, so that they can be
926 // cleaned later if something fails. We also use this set to break cycles that
927 // can occur in dead code.
928 if (!SeenVals.insert(V).second) {
929 Result = unknown();
930 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
931 Result = visitGEPOperator(*GEP);
932 } else if (Instruction *I = dyn_cast<Instruction>(V)) {
933 Result = visit(*I);
934 } else if (isa<Argument>(V) ||
935 (isa<ConstantExpr>(V) &&
936 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
937 isa<GlobalAlias>(V) ||
938 isa<GlobalVariable>(V)) {
939 // Ignore values where we cannot do more than ObjectSizeVisitor.
940 Result = unknown();
941 } else {
942 LLVM_DEBUG(
943 dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
944 << '\n');
945 Result = unknown();
948 // Don't reuse CacheIt since it may be invalid at this point.
949 CacheMap[V] = Result;
950 return Result;
953 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
954 if (!I.getAllocatedType()->isSized())
955 return unknown();
957 // must be a VLA
958 assert(I.isArrayAllocation());
960 // If needed, adjust the alloca's operand size to match the pointer size.
961 // Subsequent math operations expect the types to match.
962 Value *ArraySize = Builder.CreateZExtOrTrunc(
963 I.getArraySize(), DL.getIntPtrType(I.getContext()));
964 assert(ArraySize->getType() == Zero->getType() &&
965 "Expected zero constant to have pointer type");
967 Value *Size = ConstantInt::get(ArraySize->getType(),
968 DL.getTypeAllocSize(I.getAllocatedType()));
969 Size = Builder.CreateMul(Size, ArraySize);
970 return std::make_pair(Size, Zero);
973 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) {
974 Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
975 if (!FnData)
976 return unknown();
978 // Handle strdup-like functions separately.
979 if (FnData->AllocTy == StrDupLike) {
980 // TODO
981 return unknown();
984 Value *FirstArg = CB.getArgOperand(FnData->FstParam);
985 FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy);
986 if (FnData->SndParam < 0)
987 return std::make_pair(FirstArg, Zero);
989 Value *SecondArg = CB.getArgOperand(FnData->SndParam);
990 SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy);
991 Value *Size = Builder.CreateMul(FirstArg, SecondArg);
992 return std::make_pair(Size, Zero);
994 // TODO: handle more standard functions (+ wchar cousins):
995 // - strdup / strndup
996 // - strcpy / strncpy
997 // - strcat / strncat
998 // - memcpy / memmove
999 // - strcat / strncat
1000 // - memset
1003 SizeOffsetEvalType
1004 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
1005 return unknown();
1008 SizeOffsetEvalType
1009 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
1010 return unknown();
1013 SizeOffsetEvalType
1014 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
1015 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
1016 if (!bothKnown(PtrData))
1017 return unknown();
1019 Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
1020 Offset = Builder.CreateAdd(PtrData.second, Offset);
1021 return std::make_pair(PtrData.first, Offset);
1024 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
1025 // clueless
1026 return unknown();
1029 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
1030 return unknown();
1033 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
1034 // Create 2 PHIs: one for size and another for offset.
1035 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
1036 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
1038 // Insert right away in the cache to handle recursive PHIs.
1039 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
1041 // Compute offset/size for each PHI incoming pointer.
1042 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
1043 Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
1044 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
1046 if (!bothKnown(EdgeData)) {
1047 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
1048 OffsetPHI->eraseFromParent();
1049 InsertedInstructions.erase(OffsetPHI);
1050 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
1051 SizePHI->eraseFromParent();
1052 InsertedInstructions.erase(SizePHI);
1053 return unknown();
1055 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
1056 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
1059 Value *Size = SizePHI, *Offset = OffsetPHI;
1060 if (Value *Tmp = SizePHI->hasConstantValue()) {
1061 Size = Tmp;
1062 SizePHI->replaceAllUsesWith(Size);
1063 SizePHI->eraseFromParent();
1064 InsertedInstructions.erase(SizePHI);
1066 if (Value *Tmp = OffsetPHI->hasConstantValue()) {
1067 Offset = Tmp;
1068 OffsetPHI->replaceAllUsesWith(Offset);
1069 OffsetPHI->eraseFromParent();
1070 InsertedInstructions.erase(OffsetPHI);
1072 return std::make_pair(Size, Offset);
1075 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
1076 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue());
1077 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
1079 if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
1080 return unknown();
1081 if (TrueSide == FalseSide)
1082 return TrueSide;
1084 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
1085 FalseSide.first);
1086 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
1087 FalseSide.second);
1088 return std::make_pair(Size, Offset);
1091 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
1092 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
1093 << '\n');
1094 return unknown();