[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Analysis / MemoryDependenceAnalysis.cpp
blobb44d15e715566104e820a1cf838d476159c36359
1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an analysis that determines, for a given memory
10 // operation, what preceding memory operations it depends on. It builds on
11 // alias analysis information, and tries to provide a lazy, caching interface to
12 // a common kind of alias information query.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/PHITransAddr.h"
27 #include "llvm/Analysis/PhiValues.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/PredIteratorCache.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/MathExtras.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 #include <utility>
63 using namespace llvm;
65 #define DEBUG_TYPE "memdep"
67 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
68 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
69 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
71 STATISTIC(NumCacheNonLocalPtr,
72 "Number of fully cached non-local ptr responses");
73 STATISTIC(NumCacheDirtyNonLocalPtr,
74 "Number of cached, but dirty, non-local ptr responses");
75 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
76 STATISTIC(NumCacheCompleteNonLocalPtr,
77 "Number of block queries that were completely cached");
79 // Limit for the number of instructions to scan in a block.
81 static cl::opt<unsigned> BlockScanLimit(
82 "memdep-block-scan-limit", cl::Hidden, cl::init(100),
83 cl::desc("The number of instructions to scan in a block in memory "
84 "dependency analysis (default = 100)"));
86 static cl::opt<unsigned>
87 BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
88 cl::desc("The number of blocks to scan during memory "
89 "dependency analysis (default = 1000)"));
91 // Limit on the number of memdep results to process.
92 static const unsigned int NumResultsLimit = 100;
94 /// This is a helper function that removes Val from 'Inst's set in ReverseMap.
95 ///
96 /// If the set becomes empty, remove Inst's entry.
97 template <typename KeyTy>
98 static void
99 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
100 Instruction *Inst, KeyTy Val) {
101 typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
102 ReverseMap.find(Inst);
103 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
104 bool Found = InstIt->second.erase(Val);
105 assert(Found && "Invalid reverse map!");
106 (void)Found;
107 if (InstIt->second.empty())
108 ReverseMap.erase(InstIt);
111 /// If the given instruction references a specific memory location, fill in Loc
112 /// with the details, otherwise set Loc.Ptr to null.
114 /// Returns a ModRefInfo value describing the general behavior of the
115 /// instruction.
116 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
117 const TargetLibraryInfo &TLI) {
118 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
119 if (LI->isUnordered()) {
120 Loc = MemoryLocation::get(LI);
121 return ModRefInfo::Ref;
123 if (LI->getOrdering() == AtomicOrdering::Monotonic) {
124 Loc = MemoryLocation::get(LI);
125 return ModRefInfo::ModRef;
127 Loc = MemoryLocation();
128 return ModRefInfo::ModRef;
131 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
132 if (SI->isUnordered()) {
133 Loc = MemoryLocation::get(SI);
134 return ModRefInfo::Mod;
136 if (SI->getOrdering() == AtomicOrdering::Monotonic) {
137 Loc = MemoryLocation::get(SI);
138 return ModRefInfo::ModRef;
140 Loc = MemoryLocation();
141 return ModRefInfo::ModRef;
144 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
145 Loc = MemoryLocation::get(V);
146 return ModRefInfo::ModRef;
149 if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
150 // calls to free() deallocate the entire structure
151 Loc = MemoryLocation::getAfter(CI->getArgOperand(0));
152 return ModRefInfo::Mod;
155 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
156 switch (II->getIntrinsicID()) {
157 case Intrinsic::lifetime_start:
158 case Intrinsic::lifetime_end:
159 case Intrinsic::invariant_start:
160 Loc = MemoryLocation::getForArgument(II, 1, TLI);
161 // These intrinsics don't really modify the memory, but returning Mod
162 // will allow them to be handled conservatively.
163 return ModRefInfo::Mod;
164 case Intrinsic::invariant_end:
165 Loc = MemoryLocation::getForArgument(II, 2, TLI);
166 // These intrinsics don't really modify the memory, but returning Mod
167 // will allow them to be handled conservatively.
168 return ModRefInfo::Mod;
169 case Intrinsic::masked_load:
170 Loc = MemoryLocation::getForArgument(II, 0, TLI);
171 return ModRefInfo::Ref;
172 case Intrinsic::masked_store:
173 Loc = MemoryLocation::getForArgument(II, 1, TLI);
174 return ModRefInfo::Mod;
175 default:
176 break;
180 // Otherwise, just do the coarse-grained thing that always works.
181 if (Inst->mayWriteToMemory())
182 return ModRefInfo::ModRef;
183 if (Inst->mayReadFromMemory())
184 return ModRefInfo::Ref;
185 return ModRefInfo::NoModRef;
188 /// Private helper for finding the local dependencies of a call site.
189 MemDepResult MemoryDependenceResults::getCallDependencyFrom(
190 CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
191 BasicBlock *BB) {
192 unsigned Limit = getDefaultBlockScanLimit();
194 // Walk backwards through the block, looking for dependencies.
195 while (ScanIt != BB->begin()) {
196 Instruction *Inst = &*--ScanIt;
197 // Debug intrinsics don't cause dependences and should not affect Limit
198 if (isa<DbgInfoIntrinsic>(Inst))
199 continue;
201 // Limit the amount of scanning we do so we don't end up with quadratic
202 // running time on extreme testcases.
203 --Limit;
204 if (!Limit)
205 return MemDepResult::getUnknown();
207 // If this inst is a memory op, get the pointer it accessed
208 MemoryLocation Loc;
209 ModRefInfo MR = GetLocation(Inst, Loc, TLI);
210 if (Loc.Ptr) {
211 // A simple instruction.
212 if (isModOrRefSet(AA.getModRefInfo(Call, Loc)))
213 return MemDepResult::getClobber(Inst);
214 continue;
217 if (auto *CallB = dyn_cast<CallBase>(Inst)) {
218 // If these two calls do not interfere, look past it.
219 if (isNoModRef(AA.getModRefInfo(Call, CallB))) {
220 // If the two calls are the same, return Inst as a Def, so that
221 // Call can be found redundant and eliminated.
222 if (isReadOnlyCall && !isModSet(MR) &&
223 Call->isIdenticalToWhenDefined(CallB))
224 return MemDepResult::getDef(Inst);
226 // Otherwise if the two calls don't interact (e.g. CallB is readnone)
227 // keep scanning.
228 continue;
229 } else
230 return MemDepResult::getClobber(Inst);
233 // If we could not obtain a pointer for the instruction and the instruction
234 // touches memory then assume that this is a dependency.
235 if (isModOrRefSet(MR))
236 return MemDepResult::getClobber(Inst);
239 // No dependence found. If this is the entry block of the function, it is
240 // unknown, otherwise it is non-local.
241 if (BB != &BB->getParent()->getEntryBlock())
242 return MemDepResult::getNonLocal();
243 return MemDepResult::getNonFuncLocal();
246 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
247 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
248 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
249 BatchAAResults &BatchAA) {
250 MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
251 if (QueryInst != nullptr) {
252 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
253 InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
255 if (InvariantGroupDependency.isDef())
256 return InvariantGroupDependency;
259 MemDepResult SimpleDep = getSimplePointerDependencyFrom(
260 MemLoc, isLoad, ScanIt, BB, QueryInst, Limit, BatchAA);
261 if (SimpleDep.isDef())
262 return SimpleDep;
263 // Non-local invariant group dependency indicates there is non local Def
264 // (it only returns nonLocal if it finds nonLocal def), which is better than
265 // local clobber and everything else.
266 if (InvariantGroupDependency.isNonLocal())
267 return InvariantGroupDependency;
269 assert(InvariantGroupDependency.isUnknown() &&
270 "InvariantGroupDependency should be only unknown at this point");
271 return SimpleDep;
274 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
275 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
276 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
277 BatchAAResults BatchAA(AA);
278 return getPointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst, Limit,
279 BatchAA);
282 MemDepResult
283 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
284 BasicBlock *BB) {
286 if (!LI->hasMetadata(LLVMContext::MD_invariant_group))
287 return MemDepResult::getUnknown();
289 // Take the ptr operand after all casts and geps 0. This way we can search
290 // cast graph down only.
291 Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
293 // It's is not safe to walk the use list of global value, because function
294 // passes aren't allowed to look outside their functions.
295 // FIXME: this could be fixed by filtering instructions from outside
296 // of current function.
297 if (isa<GlobalValue>(LoadOperand))
298 return MemDepResult::getUnknown();
300 // Queue to process all pointers that are equivalent to load operand.
301 SmallVector<const Value *, 8> LoadOperandsQueue;
302 LoadOperandsQueue.push_back(LoadOperand);
304 Instruction *ClosestDependency = nullptr;
305 // Order of instructions in uses list is unpredictible. In order to always
306 // get the same result, we will look for the closest dominance.
307 auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
308 assert(Other && "Must call it with not null instruction");
309 if (Best == nullptr || DT.dominates(Best, Other))
310 return Other;
311 return Best;
314 // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
315 // we will see all the instructions. This should be fixed in MSSA.
316 while (!LoadOperandsQueue.empty()) {
317 const Value *Ptr = LoadOperandsQueue.pop_back_val();
318 assert(Ptr && !isa<GlobalValue>(Ptr) &&
319 "Null or GlobalValue should not be inserted");
321 for (const Use &Us : Ptr->uses()) {
322 auto *U = dyn_cast<Instruction>(Us.getUser());
323 if (!U || U == LI || !DT.dominates(U, LI))
324 continue;
326 // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
327 // users. U = bitcast Ptr
328 if (isa<BitCastInst>(U)) {
329 LoadOperandsQueue.push_back(U);
330 continue;
332 // Gep with zeros is equivalent to bitcast.
333 // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
334 // or gep 0 to bitcast because of SROA, so there are 2 forms. When
335 // typeless pointers will be ready then both cases will be gone
336 // (and this BFS also won't be needed).
337 if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
338 if (GEP->hasAllZeroIndices()) {
339 LoadOperandsQueue.push_back(U);
340 continue;
343 // If we hit load/store with the same invariant.group metadata (and the
344 // same pointer operand) we can assume that value pointed by pointer
345 // operand didn't change.
346 if ((isa<LoadInst>(U) ||
347 (isa<StoreInst>(U) &&
348 cast<StoreInst>(U)->getPointerOperand() == Ptr)) &&
349 U->hasMetadata(LLVMContext::MD_invariant_group))
350 ClosestDependency = GetClosestDependency(ClosestDependency, U);
354 if (!ClosestDependency)
355 return MemDepResult::getUnknown();
356 if (ClosestDependency->getParent() == BB)
357 return MemDepResult::getDef(ClosestDependency);
358 // Def(U) can't be returned here because it is non-local. If local
359 // dependency won't be found then return nonLocal counting that the
360 // user will call getNonLocalPointerDependency, which will return cached
361 // result.
362 NonLocalDefsCache.try_emplace(
363 LI, NonLocalDepResult(ClosestDependency->getParent(),
364 MemDepResult::getDef(ClosestDependency), nullptr));
365 ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
366 return MemDepResult::getNonLocal();
369 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
370 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
371 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
372 BatchAAResults &BatchAA) {
373 bool isInvariantLoad = false;
375 unsigned DefaultLimit = getDefaultBlockScanLimit();
376 if (!Limit)
377 Limit = &DefaultLimit;
379 // We must be careful with atomic accesses, as they may allow another thread
380 // to touch this location, clobbering it. We are conservative: if the
381 // QueryInst is not a simple (non-atomic) memory access, we automatically
382 // return getClobber.
383 // If it is simple, we know based on the results of
384 // "Compiler testing via a theory of sound optimisations in the C11/C++11
385 // memory model" in PLDI 2013, that a non-atomic location can only be
386 // clobbered between a pair of a release and an acquire action, with no
387 // access to the location in between.
388 // Here is an example for giving the general intuition behind this rule.
389 // In the following code:
390 // store x 0;
391 // release action; [1]
392 // acquire action; [4]
393 // %val = load x;
394 // It is unsafe to replace %val by 0 because another thread may be running:
395 // acquire action; [2]
396 // store x 42;
397 // release action; [3]
398 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
399 // being 42. A key property of this program however is that if either
400 // 1 or 4 were missing, there would be a race between the store of 42
401 // either the store of 0 or the load (making the whole program racy).
402 // The paper mentioned above shows that the same property is respected
403 // by every program that can detect any optimization of that kind: either
404 // it is racy (undefined) or there is a release followed by an acquire
405 // between the pair of accesses under consideration.
407 // If the load is invariant, we "know" that it doesn't alias *any* write. We
408 // do want to respect mustalias results since defs are useful for value
409 // forwarding, but any mayalias write can be assumed to be noalias.
410 // Arguably, this logic should be pushed inside AliasAnalysis itself.
411 if (isLoad && QueryInst) {
412 LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
413 if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load))
414 isInvariantLoad = true;
417 // Return "true" if and only if the instruction I is either a non-simple
418 // load or a non-simple store.
419 auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool {
420 if (auto *LI = dyn_cast<LoadInst>(I))
421 return !LI->isSimple();
422 if (auto *SI = dyn_cast<StoreInst>(I))
423 return !SI->isSimple();
424 return false;
427 // Return "true" if I is not a load and not a store, but it does access
428 // memory.
429 auto isOtherMemAccess = [](Instruction *I) -> bool {
430 return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory();
433 // Walk backwards through the basic block, looking for dependencies.
434 while (ScanIt != BB->begin()) {
435 Instruction *Inst = &*--ScanIt;
437 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
438 // Debug intrinsics don't (and can't) cause dependencies.
439 if (isa<DbgInfoIntrinsic>(II))
440 continue;
442 // Limit the amount of scanning we do so we don't end up with quadratic
443 // running time on extreme testcases.
444 --*Limit;
445 if (!*Limit)
446 return MemDepResult::getUnknown();
448 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
449 // If we reach a lifetime begin or end marker, then the query ends here
450 // because the value is undefined.
451 Intrinsic::ID ID = II->getIntrinsicID();
452 switch (ID) {
453 case Intrinsic::lifetime_start: {
454 // FIXME: This only considers queries directly on the invariant-tagged
455 // pointer, not on query pointers that are indexed off of them. It'd
456 // be nice to handle that at some point (the right approach is to use
457 // GetPointerBaseWithConstantOffset).
458 MemoryLocation ArgLoc = MemoryLocation::getAfter(II->getArgOperand(1));
459 if (BatchAA.isMustAlias(ArgLoc, MemLoc))
460 return MemDepResult::getDef(II);
461 continue;
463 case Intrinsic::masked_load:
464 case Intrinsic::masked_store: {
465 MemoryLocation Loc;
466 /*ModRefInfo MR =*/ GetLocation(II, Loc, TLI);
467 AliasResult R = BatchAA.alias(Loc, MemLoc);
468 if (R == AliasResult::NoAlias)
469 continue;
470 if (R == AliasResult::MustAlias)
471 return MemDepResult::getDef(II);
472 if (ID == Intrinsic::masked_load)
473 continue;
474 return MemDepResult::getClobber(II);
479 // Values depend on loads if the pointers are must aliased. This means
480 // that a load depends on another must aliased load from the same value.
481 // One exception is atomic loads: a value can depend on an atomic load that
482 // it does not alias with when this atomic load indicates that another
483 // thread may be accessing the location.
484 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
485 // While volatile access cannot be eliminated, they do not have to clobber
486 // non-aliasing locations, as normal accesses, for example, can be safely
487 // reordered with volatile accesses.
488 if (LI->isVolatile()) {
489 if (!QueryInst)
490 // Original QueryInst *may* be volatile
491 return MemDepResult::getClobber(LI);
492 if (QueryInst->isVolatile())
493 // Ordering required if QueryInst is itself volatile
494 return MemDepResult::getClobber(LI);
495 // Otherwise, volatile doesn't imply any special ordering
498 // Atomic loads have complications involved.
499 // A Monotonic (or higher) load is OK if the query inst is itself not
500 // atomic.
501 // FIXME: This is overly conservative.
502 if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
503 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
504 isOtherMemAccess(QueryInst))
505 return MemDepResult::getClobber(LI);
506 if (LI->getOrdering() != AtomicOrdering::Monotonic)
507 return MemDepResult::getClobber(LI);
510 MemoryLocation LoadLoc = MemoryLocation::get(LI);
512 // If we found a pointer, check if it could be the same as our pointer.
513 AliasResult R = BatchAA.alias(LoadLoc, MemLoc);
515 if (isLoad) {
516 if (R == AliasResult::NoAlias)
517 continue;
519 // Must aliased loads are defs of each other.
520 if (R == AliasResult::MustAlias)
521 return MemDepResult::getDef(Inst);
523 // If we have a partial alias, then return this as a clobber for the
524 // client to handle.
525 if (R == AliasResult::PartialAlias && R.hasOffset()) {
526 ClobberOffsets[LI] = R.getOffset();
527 return MemDepResult::getClobber(Inst);
530 // Random may-alias loads don't depend on each other without a
531 // dependence.
532 continue;
535 // Stores don't depend on other no-aliased accesses.
536 if (R == AliasResult::NoAlias)
537 continue;
539 // Stores don't alias loads from read-only memory.
540 if (BatchAA.pointsToConstantMemory(LoadLoc))
541 continue;
543 // Stores depend on may/must aliased loads.
544 return MemDepResult::getDef(Inst);
547 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
548 // Atomic stores have complications involved.
549 // A Monotonic store is OK if the query inst is itself not atomic.
550 // FIXME: This is overly conservative.
551 if (!SI->isUnordered() && SI->isAtomic()) {
552 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
553 isOtherMemAccess(QueryInst))
554 return MemDepResult::getClobber(SI);
555 if (SI->getOrdering() != AtomicOrdering::Monotonic)
556 return MemDepResult::getClobber(SI);
559 // FIXME: this is overly conservative.
560 // While volatile access cannot be eliminated, they do not have to clobber
561 // non-aliasing locations, as normal accesses can for example be reordered
562 // with volatile accesses.
563 if (SI->isVolatile())
564 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
565 isOtherMemAccess(QueryInst))
566 return MemDepResult::getClobber(SI);
568 // If alias analysis can tell that this store is guaranteed to not modify
569 // the query pointer, ignore it. Use getModRefInfo to handle cases where
570 // the query pointer points to constant memory etc.
571 if (!isModOrRefSet(BatchAA.getModRefInfo(SI, MemLoc)))
572 continue;
574 // Ok, this store might clobber the query pointer. Check to see if it is
575 // a must alias: in this case, we want to return this as a def.
576 // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
577 MemoryLocation StoreLoc = MemoryLocation::get(SI);
579 // If we found a pointer, check if it could be the same as our pointer.
580 AliasResult R = BatchAA.alias(StoreLoc, MemLoc);
582 if (R == AliasResult::NoAlias)
583 continue;
584 if (R == AliasResult::MustAlias)
585 return MemDepResult::getDef(Inst);
586 if (isInvariantLoad)
587 continue;
588 return MemDepResult::getClobber(Inst);
591 // If this is an allocation, and if we know that the accessed pointer is to
592 // the allocation, return Def. This means that there is no dependence and
593 // the access can be optimized based on that. For example, a load could
594 // turn into undef. Note that we can bypass the allocation itself when
595 // looking for a clobber in many cases; that's an alias property and is
596 // handled by BasicAA.
597 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) {
598 const Value *AccessPtr = getUnderlyingObject(MemLoc.Ptr);
599 if (AccessPtr == Inst || BatchAA.isMustAlias(Inst, AccessPtr))
600 return MemDepResult::getDef(Inst);
603 if (isInvariantLoad)
604 continue;
606 // A release fence requires that all stores complete before it, but does
607 // not prevent the reordering of following loads or stores 'before' the
608 // fence. As a result, we look past it when finding a dependency for
609 // loads. DSE uses this to find preceding stores to delete and thus we
610 // can't bypass the fence if the query instruction is a store.
611 if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
612 if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
613 continue;
615 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
616 ModRefInfo MR = BatchAA.getModRefInfo(Inst, MemLoc);
617 // If necessary, perform additional analysis.
618 if (isModAndRefSet(MR))
619 MR = BatchAA.callCapturesBefore(Inst, MemLoc, &DT);
620 switch (clearMust(MR)) {
621 case ModRefInfo::NoModRef:
622 // If the call has no effect on the queried pointer, just ignore it.
623 continue;
624 case ModRefInfo::Mod:
625 return MemDepResult::getClobber(Inst);
626 case ModRefInfo::Ref:
627 // If the call is known to never store to the pointer, and if this is a
628 // load query, we can safely ignore it (scan past it).
629 if (isLoad)
630 continue;
631 LLVM_FALLTHROUGH;
632 default:
633 // Otherwise, there is a potential dependence. Return a clobber.
634 return MemDepResult::getClobber(Inst);
638 // No dependence found. If this is the entry block of the function, it is
639 // unknown, otherwise it is non-local.
640 if (BB != &BB->getParent()->getEntryBlock())
641 return MemDepResult::getNonLocal();
642 return MemDepResult::getNonFuncLocal();
645 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
646 ClobberOffsets.clear();
647 Instruction *ScanPos = QueryInst;
649 // Check for a cached result
650 MemDepResult &LocalCache = LocalDeps[QueryInst];
652 // If the cached entry is non-dirty, just return it. Note that this depends
653 // on MemDepResult's default constructing to 'dirty'.
654 if (!LocalCache.isDirty())
655 return LocalCache;
657 // Otherwise, if we have a dirty entry, we know we can start the scan at that
658 // instruction, which may save us some work.
659 if (Instruction *Inst = LocalCache.getInst()) {
660 ScanPos = Inst;
662 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
665 BasicBlock *QueryParent = QueryInst->getParent();
667 // Do the scan.
668 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
669 // No dependence found. If this is the entry block of the function, it is
670 // unknown, otherwise it is non-local.
671 if (QueryParent != &QueryParent->getParent()->getEntryBlock())
672 LocalCache = MemDepResult::getNonLocal();
673 else
674 LocalCache = MemDepResult::getNonFuncLocal();
675 } else {
676 MemoryLocation MemLoc;
677 ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
678 if (MemLoc.Ptr) {
679 // If we can do a pointer scan, make it happen.
680 bool isLoad = !isModSet(MR);
681 if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
682 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
684 LocalCache =
685 getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(),
686 QueryParent, QueryInst, nullptr);
687 } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) {
688 bool isReadOnly = AA.onlyReadsMemory(QueryCall);
689 LocalCache = getCallDependencyFrom(QueryCall, isReadOnly,
690 ScanPos->getIterator(), QueryParent);
691 } else
692 // Non-memory instruction.
693 LocalCache = MemDepResult::getUnknown();
696 // Remember the result!
697 if (Instruction *I = LocalCache.getInst())
698 ReverseLocalDeps[I].insert(QueryInst);
700 return LocalCache;
703 #ifndef NDEBUG
704 /// This method is used when -debug is specified to verify that cache arrays
705 /// are properly kept sorted.
706 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
707 int Count = -1) {
708 if (Count == -1)
709 Count = Cache.size();
710 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
711 "Cache isn't sorted!");
713 #endif
715 const MemoryDependenceResults::NonLocalDepInfo &
716 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) {
717 assert(getDependency(QueryCall).isNonLocal() &&
718 "getNonLocalCallDependency should only be used on calls with "
719 "non-local deps!");
720 PerInstNLInfo &CacheP = NonLocalDepsMap[QueryCall];
721 NonLocalDepInfo &Cache = CacheP.first;
723 // This is the set of blocks that need to be recomputed. In the cached case,
724 // this can happen due to instructions being deleted etc. In the uncached
725 // case, this starts out as the set of predecessors we care about.
726 SmallVector<BasicBlock *, 32> DirtyBlocks;
728 if (!Cache.empty()) {
729 // Okay, we have a cache entry. If we know it is not dirty, just return it
730 // with no computation.
731 if (!CacheP.second) {
732 ++NumCacheNonLocal;
733 return Cache;
736 // If we already have a partially computed set of results, scan them to
737 // determine what is dirty, seeding our initial DirtyBlocks worklist.
738 for (auto &Entry : Cache)
739 if (Entry.getResult().isDirty())
740 DirtyBlocks.push_back(Entry.getBB());
742 // Sort the cache so that we can do fast binary search lookups below.
743 llvm::sort(Cache);
745 ++NumCacheDirtyNonLocal;
746 // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
747 // << Cache.size() << " cached: " << *QueryInst;
748 } else {
749 // Seed DirtyBlocks with each of the preds of QueryInst's block.
750 BasicBlock *QueryBB = QueryCall->getParent();
751 append_range(DirtyBlocks, PredCache.get(QueryBB));
752 ++NumUncacheNonLocal;
755 // isReadonlyCall - If this is a read-only call, we can be more aggressive.
756 bool isReadonlyCall = AA.onlyReadsMemory(QueryCall);
758 SmallPtrSet<BasicBlock *, 32> Visited;
760 unsigned NumSortedEntries = Cache.size();
761 LLVM_DEBUG(AssertSorted(Cache));
763 // Iterate while we still have blocks to update.
764 while (!DirtyBlocks.empty()) {
765 BasicBlock *DirtyBB = DirtyBlocks.pop_back_val();
767 // Already processed this block?
768 if (!Visited.insert(DirtyBB).second)
769 continue;
771 // Do a binary search to see if we already have an entry for this block in
772 // the cache set. If so, find it.
773 LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
774 NonLocalDepInfo::iterator Entry =
775 std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
776 NonLocalDepEntry(DirtyBB));
777 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
778 --Entry;
780 NonLocalDepEntry *ExistingResult = nullptr;
781 if (Entry != Cache.begin() + NumSortedEntries &&
782 Entry->getBB() == DirtyBB) {
783 // If we already have an entry, and if it isn't already dirty, the block
784 // is done.
785 if (!Entry->getResult().isDirty())
786 continue;
788 // Otherwise, remember this slot so we can update the value.
789 ExistingResult = &*Entry;
792 // If the dirty entry has a pointer, start scanning from it so we don't have
793 // to rescan the entire block.
794 BasicBlock::iterator ScanPos = DirtyBB->end();
795 if (ExistingResult) {
796 if (Instruction *Inst = ExistingResult->getResult().getInst()) {
797 ScanPos = Inst->getIterator();
798 // We're removing QueryInst's use of Inst.
799 RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst,
800 QueryCall);
804 // Find out if this block has a local dependency for QueryInst.
805 MemDepResult Dep;
807 if (ScanPos != DirtyBB->begin()) {
808 Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB);
809 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
810 // No dependence found. If this is the entry block of the function, it is
811 // a clobber, otherwise it is unknown.
812 Dep = MemDepResult::getNonLocal();
813 } else {
814 Dep = MemDepResult::getNonFuncLocal();
817 // If we had a dirty entry for the block, update it. Otherwise, just add
818 // a new entry.
819 if (ExistingResult)
820 ExistingResult->setResult(Dep);
821 else
822 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
824 // If the block has a dependency (i.e. it isn't completely transparent to
825 // the value), remember the association!
826 if (!Dep.isNonLocal()) {
827 // Keep the ReverseNonLocalDeps map up to date so we can efficiently
828 // update this when we remove instructions.
829 if (Instruction *Inst = Dep.getInst())
830 ReverseNonLocalDeps[Inst].insert(QueryCall);
831 } else {
833 // If the block *is* completely transparent to the load, we need to check
834 // the predecessors of this block. Add them to our worklist.
835 append_range(DirtyBlocks, PredCache.get(DirtyBB));
839 return Cache;
842 void MemoryDependenceResults::getNonLocalPointerDependency(
843 Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
844 const MemoryLocation Loc = MemoryLocation::get(QueryInst);
845 bool isLoad = isa<LoadInst>(QueryInst);
846 BasicBlock *FromBB = QueryInst->getParent();
847 assert(FromBB);
849 assert(Loc.Ptr->getType()->isPointerTy() &&
850 "Can't get pointer deps of a non-pointer!");
851 Result.clear();
853 // Check if there is cached Def with invariant.group.
854 auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
855 if (NonLocalDefIt != NonLocalDefsCache.end()) {
856 Result.push_back(NonLocalDefIt->second);
857 ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
858 .erase(QueryInst);
859 NonLocalDefsCache.erase(NonLocalDefIt);
860 return;
863 // This routine does not expect to deal with volatile instructions.
864 // Doing so would require piping through the QueryInst all the way through.
865 // TODO: volatiles can't be elided, but they can be reordered with other
866 // non-volatile accesses.
868 // We currently give up on any instruction which is ordered, but we do handle
869 // atomic instructions which are unordered.
870 // TODO: Handle ordered instructions
871 auto isOrdered = [](Instruction *Inst) {
872 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
873 return !LI->isUnordered();
874 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
875 return !SI->isUnordered();
877 return false;
879 if (QueryInst->isVolatile() || isOrdered(QueryInst)) {
880 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
881 const_cast<Value *>(Loc.Ptr)));
882 return;
884 const DataLayout &DL = FromBB->getModule()->getDataLayout();
885 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
887 // This is the set of blocks we've inspected, and the pointer we consider in
888 // each block. Because of critical edges, we currently bail out if querying
889 // a block with multiple different pointers. This can happen during PHI
890 // translation.
891 DenseMap<BasicBlock *, Value *> Visited;
892 if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
893 Result, Visited, true))
894 return;
895 Result.clear();
896 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
897 const_cast<Value *>(Loc.Ptr)));
900 /// Compute the memdep value for BB with Pointer/PointeeSize using either
901 /// cached information in Cache or by doing a lookup (which may use dirty cache
902 /// info if available).
904 /// If we do a lookup, add the result to the cache.
905 MemDepResult MemoryDependenceResults::getNonLocalInfoForBlock(
906 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
907 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries,
908 BatchAAResults &BatchAA) {
910 bool isInvariantLoad = false;
912 if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
913 isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
915 // Do a binary search to see if we already have an entry for this block in
916 // the cache set. If so, find it.
917 NonLocalDepInfo::iterator Entry = std::upper_bound(
918 Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
919 if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
920 --Entry;
922 NonLocalDepEntry *ExistingResult = nullptr;
923 if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
924 ExistingResult = &*Entry;
926 // Use cached result for invariant load only if there is no dependency for non
927 // invariant load. In this case invariant load can not have any dependency as
928 // well.
929 if (ExistingResult && isInvariantLoad &&
930 !ExistingResult->getResult().isNonFuncLocal())
931 ExistingResult = nullptr;
933 // If we have a cached entry, and it is non-dirty, use it as the value for
934 // this dependency.
935 if (ExistingResult && !ExistingResult->getResult().isDirty()) {
936 ++NumCacheNonLocalPtr;
937 return ExistingResult->getResult();
940 // Otherwise, we have to scan for the value. If we have a dirty cache
941 // entry, start scanning from its position, otherwise we scan from the end
942 // of the block.
943 BasicBlock::iterator ScanPos = BB->end();
944 if (ExistingResult && ExistingResult->getResult().getInst()) {
945 assert(ExistingResult->getResult().getInst()->getParent() == BB &&
946 "Instruction invalidated?");
947 ++NumCacheDirtyNonLocalPtr;
948 ScanPos = ExistingResult->getResult().getInst()->getIterator();
950 // Eliminating the dirty entry from 'Cache', so update the reverse info.
951 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
952 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
953 } else {
954 ++NumUncacheNonLocalPtr;
957 // Scan the block for the dependency.
958 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB,
959 QueryInst, nullptr, BatchAA);
961 // Don't cache results for invariant load.
962 if (isInvariantLoad)
963 return Dep;
965 // If we had a dirty entry for the block, update it. Otherwise, just add
966 // a new entry.
967 if (ExistingResult)
968 ExistingResult->setResult(Dep);
969 else
970 Cache->push_back(NonLocalDepEntry(BB, Dep));
972 // If the block has a dependency (i.e. it isn't completely transparent to
973 // the value), remember the reverse association because we just added it
974 // to Cache!
975 if (!Dep.isDef() && !Dep.isClobber())
976 return Dep;
978 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
979 // update MemDep when we remove instructions.
980 Instruction *Inst = Dep.getInst();
981 assert(Inst && "Didn't depend on anything?");
982 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
983 ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
984 return Dep;
987 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the
988 /// array that are already properly ordered.
990 /// This is optimized for the case when only a few entries are added.
991 static void
992 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
993 unsigned NumSortedEntries) {
994 switch (Cache.size() - NumSortedEntries) {
995 case 0:
996 // done, no new entries.
997 break;
998 case 2: {
999 // Two new entries, insert the last one into place.
1000 NonLocalDepEntry Val = Cache.back();
1001 Cache.pop_back();
1002 MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1003 std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
1004 Cache.insert(Entry, Val);
1005 LLVM_FALLTHROUGH;
1007 case 1:
1008 // One new entry, Just insert the new value at the appropriate position.
1009 if (Cache.size() != 1) {
1010 NonLocalDepEntry Val = Cache.back();
1011 Cache.pop_back();
1012 MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1013 llvm::upper_bound(Cache, Val);
1014 Cache.insert(Entry, Val);
1016 break;
1017 default:
1018 // Added many values, do a full scale sort.
1019 llvm::sort(Cache);
1020 break;
1024 /// Perform a dependency query based on pointer/pointeesize starting at the end
1025 /// of StartBB.
1027 /// Add any clobber/def results to the results vector and keep track of which
1028 /// blocks are visited in 'Visited'.
1030 /// This has special behavior for the first block queries (when SkipFirstBlock
1031 /// is true). In this special case, it ignores the contents of the specified
1032 /// block and starts returning dependence info for its predecessors.
1034 /// This function returns true on success, or false to indicate that it could
1035 /// not compute dependence information for some reason. This should be treated
1036 /// as a clobber dependence on the first instruction in the predecessor block.
1037 bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1038 Instruction *QueryInst, const PHITransAddr &Pointer,
1039 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1040 SmallVectorImpl<NonLocalDepResult> &Result,
1041 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock,
1042 bool IsIncomplete) {
1043 // Look up the cached info for Pointer.
1044 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1046 // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1047 // CacheKey, this value will be inserted as the associated value. Otherwise,
1048 // it'll be ignored, and we'll have to check to see if the cached size and
1049 // aa tags are consistent with the current query.
1050 NonLocalPointerInfo InitialNLPI;
1051 InitialNLPI.Size = Loc.Size;
1052 InitialNLPI.AATags = Loc.AATags;
1054 bool isInvariantLoad = false;
1055 if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
1056 isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
1058 // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1059 // already have one.
1060 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1061 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1062 NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1064 // If we already have a cache entry for this CacheKey, we may need to do some
1065 // work to reconcile the cache entry and the current query.
1066 // Invariant loads don't participate in caching. Thus no need to reconcile.
1067 if (!isInvariantLoad && !Pair.second) {
1068 if (CacheInfo->Size != Loc.Size) {
1069 bool ThrowOutEverything;
1070 if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
1071 // FIXME: We may be able to do better in the face of results with mixed
1072 // precision. We don't appear to get them in practice, though, so just
1073 // be conservative.
1074 ThrowOutEverything =
1075 CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
1076 CacheInfo->Size.getValue() < Loc.Size.getValue();
1077 } else {
1078 // For our purposes, unknown size > all others.
1079 ThrowOutEverything = !Loc.Size.hasValue();
1082 if (ThrowOutEverything) {
1083 // The query's Size is greater than the cached one. Throw out the
1084 // cached data and proceed with the query at the greater size.
1085 CacheInfo->Pair = BBSkipFirstBlockPair();
1086 CacheInfo->Size = Loc.Size;
1087 for (auto &Entry : CacheInfo->NonLocalDeps)
1088 if (Instruction *Inst = Entry.getResult().getInst())
1089 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1090 CacheInfo->NonLocalDeps.clear();
1091 // The cache is cleared (in the above line) so we will have lost
1092 // information about blocks we have already visited. We therefore must
1093 // assume that the cache information is incomplete.
1094 IsIncomplete = true;
1095 } else {
1096 // This query's Size is less than the cached one. Conservatively restart
1097 // the query using the greater size.
1098 return getNonLocalPointerDepFromBB(
1099 QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1100 StartBB, Result, Visited, SkipFirstBlock, IsIncomplete);
1104 // If the query's AATags are inconsistent with the cached one,
1105 // conservatively throw out the cached data and restart the query with
1106 // no tag if needed.
1107 if (CacheInfo->AATags != Loc.AATags) {
1108 if (CacheInfo->AATags) {
1109 CacheInfo->Pair = BBSkipFirstBlockPair();
1110 CacheInfo->AATags = AAMDNodes();
1111 for (auto &Entry : CacheInfo->NonLocalDeps)
1112 if (Instruction *Inst = Entry.getResult().getInst())
1113 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1114 CacheInfo->NonLocalDeps.clear();
1115 // The cache is cleared (in the above line) so we will have lost
1116 // information about blocks we have already visited. We therefore must
1117 // assume that the cache information is incomplete.
1118 IsIncomplete = true;
1120 if (Loc.AATags)
1121 return getNonLocalPointerDepFromBB(
1122 QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1123 Visited, SkipFirstBlock, IsIncomplete);
1127 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1129 // If we have valid cached information for exactly the block we are
1130 // investigating, just return it with no recomputation.
1131 // Don't use cached information for invariant loads since it is valid for
1132 // non-invariant loads only.
1133 if (!IsIncomplete && !isInvariantLoad &&
1134 CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1135 // We have a fully cached result for this query then we can just return the
1136 // cached results and populate the visited set. However, we have to verify
1137 // that we don't already have conflicting results for these blocks. Check
1138 // to ensure that if a block in the results set is in the visited set that
1139 // it was for the same pointer query.
1140 if (!Visited.empty()) {
1141 for (auto &Entry : *Cache) {
1142 DenseMap<BasicBlock *, Value *>::iterator VI =
1143 Visited.find(Entry.getBB());
1144 if (VI == Visited.end() || VI->second == Pointer.getAddr())
1145 continue;
1147 // We have a pointer mismatch in a block. Just return false, saying
1148 // that something was clobbered in this result. We could also do a
1149 // non-fully cached query, but there is little point in doing this.
1150 return false;
1154 Value *Addr = Pointer.getAddr();
1155 for (auto &Entry : *Cache) {
1156 Visited.insert(std::make_pair(Entry.getBB(), Addr));
1157 if (Entry.getResult().isNonLocal()) {
1158 continue;
1161 if (DT.isReachableFromEntry(Entry.getBB())) {
1162 Result.push_back(
1163 NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1166 ++NumCacheCompleteNonLocalPtr;
1167 return true;
1170 // Otherwise, either this is a new block, a block with an invalid cache
1171 // pointer or one that we're about to invalidate by putting more info into
1172 // it than its valid cache info. If empty and not explicitly indicated as
1173 // incomplete, the result will be valid cache info, otherwise it isn't.
1175 // Invariant loads don't affect cache in any way thus no need to update
1176 // CacheInfo as well.
1177 if (!isInvariantLoad) {
1178 if (!IsIncomplete && Cache->empty())
1179 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1180 else
1181 CacheInfo->Pair = BBSkipFirstBlockPair();
1184 SmallVector<BasicBlock *, 32> Worklist;
1185 Worklist.push_back(StartBB);
1187 // PredList used inside loop.
1188 SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1190 // Keep track of the entries that we know are sorted. Previously cached
1191 // entries will all be sorted. The entries we add we only sort on demand (we
1192 // don't insert every element into its sorted position). We know that we
1193 // won't get any reuse from currently inserted values, because we don't
1194 // revisit blocks after we insert info for them.
1195 unsigned NumSortedEntries = Cache->size();
1196 unsigned WorklistEntries = BlockNumberLimit;
1197 bool GotWorklistLimit = false;
1198 LLVM_DEBUG(AssertSorted(*Cache));
1200 BatchAAResults BatchAA(AA);
1201 while (!Worklist.empty()) {
1202 BasicBlock *BB = Worklist.pop_back_val();
1204 // If we do process a large number of blocks it becomes very expensive and
1205 // likely it isn't worth worrying about
1206 if (Result.size() > NumResultsLimit) {
1207 Worklist.clear();
1208 // Sort it now (if needed) so that recursive invocations of
1209 // getNonLocalPointerDepFromBB and other routines that could reuse the
1210 // cache value will only see properly sorted cache arrays.
1211 if (Cache && NumSortedEntries != Cache->size()) {
1212 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1214 // Since we bail out, the "Cache" set won't contain all of the
1215 // results for the query. This is ok (we can still use it to accelerate
1216 // specific block queries) but we can't do the fastpath "return all
1217 // results from the set". Clear out the indicator for this.
1218 CacheInfo->Pair = BBSkipFirstBlockPair();
1219 return false;
1222 // Skip the first block if we have it.
1223 if (!SkipFirstBlock) {
1224 // Analyze the dependency of *Pointer in FromBB. See if we already have
1225 // been here.
1226 assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1228 // Get the dependency info for Pointer in BB. If we have cached
1229 // information, we will use it, otherwise we compute it.
1230 LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
1231 MemDepResult Dep = getNonLocalInfoForBlock(
1232 QueryInst, Loc, isLoad, BB, Cache, NumSortedEntries, BatchAA);
1234 // If we got a Def or Clobber, add this to the list of results.
1235 if (!Dep.isNonLocal()) {
1236 if (DT.isReachableFromEntry(BB)) {
1237 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1238 continue;
1243 // If 'Pointer' is an instruction defined in this block, then we need to do
1244 // phi translation to change it into a value live in the predecessor block.
1245 // If not, we just add the predecessors to the worklist and scan them with
1246 // the same Pointer.
1247 if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1248 SkipFirstBlock = false;
1249 SmallVector<BasicBlock *, 16> NewBlocks;
1250 for (BasicBlock *Pred : PredCache.get(BB)) {
1251 // Verify that we haven't looked at this block yet.
1252 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1253 Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1254 if (InsertRes.second) {
1255 // First time we've looked at *PI.
1256 NewBlocks.push_back(Pred);
1257 continue;
1260 // If we have seen this block before, but it was with a different
1261 // pointer then we have a phi translation failure and we have to treat
1262 // this as a clobber.
1263 if (InsertRes.first->second != Pointer.getAddr()) {
1264 // Make sure to clean up the Visited map before continuing on to
1265 // PredTranslationFailure.
1266 for (unsigned i = 0; i < NewBlocks.size(); i++)
1267 Visited.erase(NewBlocks[i]);
1268 goto PredTranslationFailure;
1271 if (NewBlocks.size() > WorklistEntries) {
1272 // Make sure to clean up the Visited map before continuing on to
1273 // PredTranslationFailure.
1274 for (unsigned i = 0; i < NewBlocks.size(); i++)
1275 Visited.erase(NewBlocks[i]);
1276 GotWorklistLimit = true;
1277 goto PredTranslationFailure;
1279 WorklistEntries -= NewBlocks.size();
1280 Worklist.append(NewBlocks.begin(), NewBlocks.end());
1281 continue;
1284 // We do need to do phi translation, if we know ahead of time we can't phi
1285 // translate this value, don't even try.
1286 if (!Pointer.IsPotentiallyPHITranslatable())
1287 goto PredTranslationFailure;
1289 // We may have added values to the cache list before this PHI translation.
1290 // If so, we haven't done anything to ensure that the cache remains sorted.
1291 // Sort it now (if needed) so that recursive invocations of
1292 // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1293 // value will only see properly sorted cache arrays.
1294 if (Cache && NumSortedEntries != Cache->size()) {
1295 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1296 NumSortedEntries = Cache->size();
1298 Cache = nullptr;
1300 PredList.clear();
1301 for (BasicBlock *Pred : PredCache.get(BB)) {
1302 PredList.push_back(std::make_pair(Pred, Pointer));
1304 // Get the PHI translated pointer in this predecessor. This can fail if
1305 // not translatable, in which case the getAddr() returns null.
1306 PHITransAddr &PredPointer = PredList.back().second;
1307 PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
1308 Value *PredPtrVal = PredPointer.getAddr();
1310 // Check to see if we have already visited this pred block with another
1311 // pointer. If so, we can't do this lookup. This failure can occur
1312 // with PHI translation when a critical edge exists and the PHI node in
1313 // the successor translates to a pointer value different than the
1314 // pointer the block was first analyzed with.
1315 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1316 Visited.insert(std::make_pair(Pred, PredPtrVal));
1318 if (!InsertRes.second) {
1319 // We found the pred; take it off the list of preds to visit.
1320 PredList.pop_back();
1322 // If the predecessor was visited with PredPtr, then we already did
1323 // the analysis and can ignore it.
1324 if (InsertRes.first->second == PredPtrVal)
1325 continue;
1327 // Otherwise, the block was previously analyzed with a different
1328 // pointer. We can't represent the result of this case, so we just
1329 // treat this as a phi translation failure.
1331 // Make sure to clean up the Visited map before continuing on to
1332 // PredTranslationFailure.
1333 for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1334 Visited.erase(PredList[i].first);
1336 goto PredTranslationFailure;
1340 // Actually process results here; this need to be a separate loop to avoid
1341 // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1342 // any results for. (getNonLocalPointerDepFromBB will modify our
1343 // datastructures in ways the code after the PredTranslationFailure label
1344 // doesn't expect.)
1345 for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1346 BasicBlock *Pred = PredList[i].first;
1347 PHITransAddr &PredPointer = PredList[i].second;
1348 Value *PredPtrVal = PredPointer.getAddr();
1350 bool CanTranslate = true;
1351 // If PHI translation was unable to find an available pointer in this
1352 // predecessor, then we have to assume that the pointer is clobbered in
1353 // that predecessor. We can still do PRE of the load, which would insert
1354 // a computation of the pointer in this predecessor.
1355 if (!PredPtrVal)
1356 CanTranslate = false;
1358 // FIXME: it is entirely possible that PHI translating will end up with
1359 // the same value. Consider PHI translating something like:
1360 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
1361 // to recurse here, pedantically speaking.
1363 // If getNonLocalPointerDepFromBB fails here, that means the cached
1364 // result conflicted with the Visited list; we have to conservatively
1365 // assume it is unknown, but this also does not block PRE of the load.
1366 if (!CanTranslate ||
1367 !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1368 Loc.getWithNewPtr(PredPtrVal), isLoad,
1369 Pred, Result, Visited)) {
1370 // Add the entry to the Result list.
1371 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1372 Result.push_back(Entry);
1374 // Since we had a phi translation failure, the cache for CacheKey won't
1375 // include all of the entries that we need to immediately satisfy future
1376 // queries. Mark this in NonLocalPointerDeps by setting the
1377 // BBSkipFirstBlockPair pointer to null. This requires reuse of the
1378 // cached value to do more work but not miss the phi trans failure.
1379 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1380 NLPI.Pair = BBSkipFirstBlockPair();
1381 continue;
1385 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1386 CacheInfo = &NonLocalPointerDeps[CacheKey];
1387 Cache = &CacheInfo->NonLocalDeps;
1388 NumSortedEntries = Cache->size();
1390 // Since we did phi translation, the "Cache" set won't contain all of the
1391 // results for the query. This is ok (we can still use it to accelerate
1392 // specific block queries) but we can't do the fastpath "return all
1393 // results from the set" Clear out the indicator for this.
1394 CacheInfo->Pair = BBSkipFirstBlockPair();
1395 SkipFirstBlock = false;
1396 continue;
1398 PredTranslationFailure:
1399 // The following code is "failure"; we can't produce a sane translation
1400 // for the given block. It assumes that we haven't modified any of
1401 // our datastructures while processing the current block.
1403 if (!Cache) {
1404 // Refresh the CacheInfo/Cache pointer if it got invalidated.
1405 CacheInfo = &NonLocalPointerDeps[CacheKey];
1406 Cache = &CacheInfo->NonLocalDeps;
1407 NumSortedEntries = Cache->size();
1410 // Since we failed phi translation, the "Cache" set won't contain all of the
1411 // results for the query. This is ok (we can still use it to accelerate
1412 // specific block queries) but we can't do the fastpath "return all
1413 // results from the set". Clear out the indicator for this.
1414 CacheInfo->Pair = BBSkipFirstBlockPair();
1416 // If *nothing* works, mark the pointer as unknown.
1418 // If this is the magic first block, return this as a clobber of the whole
1419 // incoming value. Since we can't phi translate to one of the predecessors,
1420 // we have to bail out.
1421 if (SkipFirstBlock)
1422 return false;
1424 // Results of invariant loads are not cached thus no need to update cached
1425 // information.
1426 if (!isInvariantLoad) {
1427 for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1428 if (I.getBB() != BB)
1429 continue;
1431 assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1432 !DT.isReachableFromEntry(BB)) &&
1433 "Should only be here with transparent block");
1435 I.setResult(MemDepResult::getUnknown());
1438 break;
1441 (void)GotWorklistLimit;
1442 // Go ahead and report unknown dependence.
1443 Result.push_back(
1444 NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr()));
1447 // Okay, we're done now. If we added new values to the cache, re-sort it.
1448 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1449 LLVM_DEBUG(AssertSorted(*Cache));
1450 return true;
1453 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
1454 void MemoryDependenceResults::removeCachedNonLocalPointerDependencies(
1455 ValueIsLoadPair P) {
1457 // Most of the time this cache is empty.
1458 if (!NonLocalDefsCache.empty()) {
1459 auto it = NonLocalDefsCache.find(P.getPointer());
1460 if (it != NonLocalDefsCache.end()) {
1461 RemoveFromReverseMap(ReverseNonLocalDefsCache,
1462 it->second.getResult().getInst(), P.getPointer());
1463 NonLocalDefsCache.erase(it);
1466 if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
1467 auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
1468 if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
1469 for (const auto *entry : toRemoveIt->second)
1470 NonLocalDefsCache.erase(entry);
1471 ReverseNonLocalDefsCache.erase(toRemoveIt);
1476 CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1477 if (It == NonLocalPointerDeps.end())
1478 return;
1480 // Remove all of the entries in the BB->val map. This involves removing
1481 // instructions from the reverse map.
1482 NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1484 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1485 Instruction *Target = PInfo[i].getResult().getInst();
1486 if (!Target)
1487 continue; // Ignore non-local dep results.
1488 assert(Target->getParent() == PInfo[i].getBB());
1490 // Eliminating the dirty entry from 'Cache', so update the reverse info.
1491 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1494 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1495 NonLocalPointerDeps.erase(It);
1498 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1499 // If Ptr isn't really a pointer, just ignore it.
1500 if (!Ptr->getType()->isPointerTy())
1501 return;
1502 // Flush store info for the pointer.
1503 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1504 // Flush load info for the pointer.
1505 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1506 // Invalidate phis that use the pointer.
1507 PV.invalidateValue(Ptr);
1510 void MemoryDependenceResults::invalidateCachedPredecessors() {
1511 PredCache.clear();
1514 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1515 // Walk through the Non-local dependencies, removing this one as the value
1516 // for any cached queries.
1517 NonLocalDepMapType::iterator NLDI = NonLocalDepsMap.find(RemInst);
1518 if (NLDI != NonLocalDepsMap.end()) {
1519 NonLocalDepInfo &BlockMap = NLDI->second.first;
1520 for (auto &Entry : BlockMap)
1521 if (Instruction *Inst = Entry.getResult().getInst())
1522 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1523 NonLocalDepsMap.erase(NLDI);
1526 // If we have a cached local dependence query for this instruction, remove it.
1527 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1528 if (LocalDepEntry != LocalDeps.end()) {
1529 // Remove us from DepInst's reverse set now that the local dep info is gone.
1530 if (Instruction *Inst = LocalDepEntry->second.getInst())
1531 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1533 // Remove this local dependency info.
1534 LocalDeps.erase(LocalDepEntry);
1537 // If we have any cached dependencies on this instruction, remove
1538 // them.
1540 // If the instruction is a pointer, remove it from both the load info and the
1541 // store info.
1542 if (RemInst->getType()->isPointerTy()) {
1543 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1544 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1545 } else {
1546 // Otherwise, if the instructions is in the map directly, it must be a load.
1547 // Remove it.
1548 auto toRemoveIt = NonLocalDefsCache.find(RemInst);
1549 if (toRemoveIt != NonLocalDefsCache.end()) {
1550 assert(isa<LoadInst>(RemInst) &&
1551 "only load instructions should be added directly");
1552 const Instruction *DepV = toRemoveIt->second.getResult().getInst();
1553 ReverseNonLocalDefsCache.find(DepV)->second.erase(RemInst);
1554 NonLocalDefsCache.erase(toRemoveIt);
1558 // Loop over all of the things that depend on the instruction we're removing.
1559 SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1561 // If we find RemInst as a clobber or Def in any of the maps for other values,
1562 // we need to replace its entry with a dirty version of the instruction after
1563 // it. If RemInst is a terminator, we use a null dirty value.
1565 // Using a dirty version of the instruction after RemInst saves having to scan
1566 // the entire block to get to this point.
1567 MemDepResult NewDirtyVal;
1568 if (!RemInst->isTerminator())
1569 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1571 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1572 if (ReverseDepIt != ReverseLocalDeps.end()) {
1573 // RemInst can't be the terminator if it has local stuff depending on it.
1574 assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
1575 "Nothing can locally depend on a terminator");
1577 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1578 assert(InstDependingOnRemInst != RemInst &&
1579 "Already removed our local dep info");
1581 LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1583 // Make sure to remember that new things depend on NewDepInst.
1584 assert(NewDirtyVal.getInst() &&
1585 "There is no way something else can have "
1586 "a local dep on this if it is a terminator!");
1587 ReverseDepsToAdd.push_back(
1588 std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1591 ReverseLocalDeps.erase(ReverseDepIt);
1593 // Add new reverse deps after scanning the set, to avoid invalidating the
1594 // 'ReverseDeps' reference.
1595 while (!ReverseDepsToAdd.empty()) {
1596 ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1597 ReverseDepsToAdd.back().second);
1598 ReverseDepsToAdd.pop_back();
1602 ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1603 if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1604 for (Instruction *I : ReverseDepIt->second) {
1605 assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1607 PerInstNLInfo &INLD = NonLocalDepsMap[I];
1608 // The information is now dirty!
1609 INLD.second = true;
1611 for (auto &Entry : INLD.first) {
1612 if (Entry.getResult().getInst() != RemInst)
1613 continue;
1615 // Convert to a dirty entry for the subsequent instruction.
1616 Entry.setResult(NewDirtyVal);
1618 if (Instruction *NextI = NewDirtyVal.getInst())
1619 ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1623 ReverseNonLocalDeps.erase(ReverseDepIt);
1625 // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1626 while (!ReverseDepsToAdd.empty()) {
1627 ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1628 ReverseDepsToAdd.back().second);
1629 ReverseDepsToAdd.pop_back();
1633 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1634 // value in the NonLocalPointerDeps info.
1635 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1636 ReverseNonLocalPtrDeps.find(RemInst);
1637 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1638 SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1639 ReversePtrDepsToAdd;
1641 for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1642 assert(P.getPointer() != RemInst &&
1643 "Already removed NonLocalPointerDeps info for RemInst");
1645 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1647 // The cache is not valid for any specific block anymore.
1648 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1650 // Update any entries for RemInst to use the instruction after it.
1651 for (auto &Entry : NLPDI) {
1652 if (Entry.getResult().getInst() != RemInst)
1653 continue;
1655 // Convert to a dirty entry for the subsequent instruction.
1656 Entry.setResult(NewDirtyVal);
1658 if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1659 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1662 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1663 // subsequent value may invalidate the sortedness.
1664 llvm::sort(NLPDI);
1667 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1669 while (!ReversePtrDepsToAdd.empty()) {
1670 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1671 ReversePtrDepsToAdd.back().second);
1672 ReversePtrDepsToAdd.pop_back();
1676 // Invalidate phis that use the removed instruction.
1677 PV.invalidateValue(RemInst);
1679 assert(!NonLocalDepsMap.count(RemInst) && "RemInst got reinserted?");
1680 LLVM_DEBUG(verifyRemoved(RemInst));
1683 /// Verify that the specified instruction does not occur in our internal data
1684 /// structures.
1686 /// This function verifies by asserting in debug builds.
1687 void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1688 #ifndef NDEBUG
1689 for (const auto &DepKV : LocalDeps) {
1690 assert(DepKV.first != D && "Inst occurs in data structures");
1691 assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1694 for (const auto &DepKV : NonLocalPointerDeps) {
1695 assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1696 for (const auto &Entry : DepKV.second.NonLocalDeps)
1697 assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1700 for (const auto &DepKV : NonLocalDepsMap) {
1701 assert(DepKV.first != D && "Inst occurs in data structures");
1702 const PerInstNLInfo &INLD = DepKV.second;
1703 for (const auto &Entry : INLD.first)
1704 assert(Entry.getResult().getInst() != D &&
1705 "Inst occurs in data structures");
1708 for (const auto &DepKV : ReverseLocalDeps) {
1709 assert(DepKV.first != D && "Inst occurs in data structures");
1710 for (Instruction *Inst : DepKV.second)
1711 assert(Inst != D && "Inst occurs in data structures");
1714 for (const auto &DepKV : ReverseNonLocalDeps) {
1715 assert(DepKV.first != D && "Inst occurs in data structures");
1716 for (Instruction *Inst : DepKV.second)
1717 assert(Inst != D && "Inst occurs in data structures");
1720 for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1721 assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1723 for (ValueIsLoadPair P : DepKV.second)
1724 assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1725 "Inst occurs in ReverseNonLocalPtrDeps map");
1727 #endif
1730 AnalysisKey MemoryDependenceAnalysis::Key;
1732 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
1733 : DefaultBlockScanLimit(BlockScanLimit) {}
1735 MemoryDependenceResults
1736 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1737 auto &AA = AM.getResult<AAManager>(F);
1738 auto &AC = AM.getResult<AssumptionAnalysis>(F);
1739 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1740 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1741 auto &PV = AM.getResult<PhiValuesAnalysis>(F);
1742 return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit);
1745 char MemoryDependenceWrapperPass::ID = 0;
1747 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1748 "Memory Dependence Analysis", false, true)
1749 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1750 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1751 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1752 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1753 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1754 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1755 "Memory Dependence Analysis", false, true)
1757 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1758 initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1761 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
1763 void MemoryDependenceWrapperPass::releaseMemory() {
1764 MemDep.reset();
1767 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1768 AU.setPreservesAll();
1769 AU.addRequired<AssumptionCacheTracker>();
1770 AU.addRequired<DominatorTreeWrapperPass>();
1771 AU.addRequired<PhiValuesWrapperPass>();
1772 AU.addRequiredTransitive<AAResultsWrapperPass>();
1773 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1776 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
1777 FunctionAnalysisManager::Invalidator &Inv) {
1778 // Check whether our analysis is preserved.
1779 auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
1780 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
1781 // If not, give up now.
1782 return true;
1784 // Check whether the analyses we depend on became invalid for any reason.
1785 if (Inv.invalidate<AAManager>(F, PA) ||
1786 Inv.invalidate<AssumptionAnalysis>(F, PA) ||
1787 Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
1788 Inv.invalidate<PhiValuesAnalysis>(F, PA))
1789 return true;
1791 // Otherwise this analysis result remains valid.
1792 return false;
1795 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1796 return DefaultBlockScanLimit;
1799 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1800 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1801 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1802 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1803 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1804 auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult();
1805 MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit);
1806 return false;