[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Analysis / MemorySSA.cpp
blobdc830ca7a812ae730b3f09be14fa105d4ce39111
1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSA class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/MemorySSA.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/iterator.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/CFGPrinter.h"
29 #include "llvm/Analysis/IteratedDominanceFrontier.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/AssemblyAnnotationWriter.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/PassManager.h"
42 #include "llvm/IR/Use.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/AtomicOrdering.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/FormattedStream.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <cstdlib>
56 #include <iterator>
57 #include <memory>
58 #include <utility>
60 using namespace llvm;
62 #define DEBUG_TYPE "memoryssa"
64 static cl::opt<std::string>
65 DotCFGMSSA("dot-cfg-mssa",
66 cl::value_desc("file name for generated dot file"),
67 cl::desc("file name for generated dot file"), cl::init(""));
69 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
70 true)
71 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
72 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
73 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
74 true)
76 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
77 "Memory SSA Printer", false, false)
78 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
79 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
80 "Memory SSA Printer", false, false)
82 static cl::opt<unsigned> MaxCheckLimit(
83 "memssa-check-limit", cl::Hidden, cl::init(100),
84 cl::desc("The maximum number of stores/phis MemorySSA"
85 "will consider trying to walk past (default = 100)"));
87 // Always verify MemorySSA if expensive checking is enabled.
88 #ifdef EXPENSIVE_CHECKS
89 bool llvm::VerifyMemorySSA = true;
90 #else
91 bool llvm::VerifyMemorySSA = false;
92 #endif
94 static cl::opt<bool, true>
95 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
96 cl::Hidden, cl::desc("Enable verification of MemorySSA."));
98 namespace llvm {
100 /// An assembly annotator class to print Memory SSA information in
101 /// comments.
102 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
103 friend class MemorySSA;
105 const MemorySSA *MSSA;
107 public:
108 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
110 void emitBasicBlockStartAnnot(const BasicBlock *BB,
111 formatted_raw_ostream &OS) override {
112 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
113 OS << "; " << *MA << "\n";
116 void emitInstructionAnnot(const Instruction *I,
117 formatted_raw_ostream &OS) override {
118 if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
119 OS << "; " << *MA << "\n";
123 } // end namespace llvm
125 namespace {
127 /// Our current alias analysis API differentiates heavily between calls and
128 /// non-calls, and functions called on one usually assert on the other.
129 /// This class encapsulates the distinction to simplify other code that wants
130 /// "Memory affecting instructions and related data" to use as a key.
131 /// For example, this class is used as a densemap key in the use optimizer.
132 class MemoryLocOrCall {
133 public:
134 bool IsCall = false;
136 MemoryLocOrCall(MemoryUseOrDef *MUD)
137 : MemoryLocOrCall(MUD->getMemoryInst()) {}
138 MemoryLocOrCall(const MemoryUseOrDef *MUD)
139 : MemoryLocOrCall(MUD->getMemoryInst()) {}
141 MemoryLocOrCall(Instruction *Inst) {
142 if (auto *C = dyn_cast<CallBase>(Inst)) {
143 IsCall = true;
144 Call = C;
145 } else {
146 IsCall = false;
147 // There is no such thing as a memorylocation for a fence inst, and it is
148 // unique in that regard.
149 if (!isa<FenceInst>(Inst))
150 Loc = MemoryLocation::get(Inst);
154 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
156 const CallBase *getCall() const {
157 assert(IsCall);
158 return Call;
161 MemoryLocation getLoc() const {
162 assert(!IsCall);
163 return Loc;
166 bool operator==(const MemoryLocOrCall &Other) const {
167 if (IsCall != Other.IsCall)
168 return false;
170 if (!IsCall)
171 return Loc == Other.Loc;
173 if (Call->getCalledOperand() != Other.Call->getCalledOperand())
174 return false;
176 return Call->arg_size() == Other.Call->arg_size() &&
177 std::equal(Call->arg_begin(), Call->arg_end(),
178 Other.Call->arg_begin());
181 private:
182 union {
183 const CallBase *Call;
184 MemoryLocation Loc;
188 } // end anonymous namespace
190 namespace llvm {
192 template <> struct DenseMapInfo<MemoryLocOrCall> {
193 static inline MemoryLocOrCall getEmptyKey() {
194 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
197 static inline MemoryLocOrCall getTombstoneKey() {
198 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
201 static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
202 if (!MLOC.IsCall)
203 return hash_combine(
204 MLOC.IsCall,
205 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
207 hash_code hash =
208 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
209 MLOC.getCall()->getCalledOperand()));
211 for (const Value *Arg : MLOC.getCall()->args())
212 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
213 return hash;
216 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
217 return LHS == RHS;
221 } // end namespace llvm
223 /// This does one-way checks to see if Use could theoretically be hoisted above
224 /// MayClobber. This will not check the other way around.
226 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
227 /// MayClobber, with no potentially clobbering operations in between them.
228 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
229 static bool areLoadsReorderable(const LoadInst *Use,
230 const LoadInst *MayClobber) {
231 bool VolatileUse = Use->isVolatile();
232 bool VolatileClobber = MayClobber->isVolatile();
233 // Volatile operations may never be reordered with other volatile operations.
234 if (VolatileUse && VolatileClobber)
235 return false;
236 // Otherwise, volatile doesn't matter here. From the language reference:
237 // 'optimizers may change the order of volatile operations relative to
238 // non-volatile operations.'"
240 // If a load is seq_cst, it cannot be moved above other loads. If its ordering
241 // is weaker, it can be moved above other loads. We just need to be sure that
242 // MayClobber isn't an acquire load, because loads can't be moved above
243 // acquire loads.
245 // Note that this explicitly *does* allow the free reordering of monotonic (or
246 // weaker) loads of the same address.
247 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
248 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
249 AtomicOrdering::Acquire);
250 return !(SeqCstUse || MayClobberIsAcquire);
253 namespace {
255 struct ClobberAlias {
256 bool IsClobber;
257 Optional<AliasResult> AR;
260 } // end anonymous namespace
262 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
263 // ignored if IsClobber = false.
264 template <typename AliasAnalysisType>
265 static ClobberAlias
266 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc,
267 const Instruction *UseInst, AliasAnalysisType &AA) {
268 Instruction *DefInst = MD->getMemoryInst();
269 assert(DefInst && "Defining instruction not actually an instruction");
270 Optional<AliasResult> AR;
272 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
273 // These intrinsics will show up as affecting memory, but they are just
274 // markers, mostly.
276 // FIXME: We probably don't actually want MemorySSA to model these at all
277 // (including creating MemoryAccesses for them): we just end up inventing
278 // clobbers where they don't really exist at all. Please see D43269 for
279 // context.
280 switch (II->getIntrinsicID()) {
281 case Intrinsic::invariant_start:
282 case Intrinsic::invariant_end:
283 case Intrinsic::assume:
284 case Intrinsic::experimental_noalias_scope_decl:
285 return {false, AliasResult(AliasResult::NoAlias)};
286 case Intrinsic::dbg_addr:
287 case Intrinsic::dbg_declare:
288 case Intrinsic::dbg_label:
289 case Intrinsic::dbg_value:
290 llvm_unreachable("debuginfo shouldn't have associated defs!");
291 default:
292 break;
296 if (auto *CB = dyn_cast_or_null<CallBase>(UseInst)) {
297 ModRefInfo I = AA.getModRefInfo(DefInst, CB);
298 AR = isMustSet(I) ? AliasResult::MustAlias : AliasResult::MayAlias;
299 return {isModOrRefSet(I), AR};
302 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
303 if (auto *UseLoad = dyn_cast_or_null<LoadInst>(UseInst))
304 return {!areLoadsReorderable(UseLoad, DefLoad),
305 AliasResult(AliasResult::MayAlias)};
307 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
308 AR = isMustSet(I) ? AliasResult::MustAlias : AliasResult::MayAlias;
309 return {isModSet(I), AR};
312 template <typename AliasAnalysisType>
313 static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
314 const MemoryUseOrDef *MU,
315 const MemoryLocOrCall &UseMLOC,
316 AliasAnalysisType &AA) {
317 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
318 // to exist while MemoryLocOrCall is pushed through places.
319 if (UseMLOC.IsCall)
320 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
321 AA);
322 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
323 AA);
326 // Return true when MD may alias MU, return false otherwise.
327 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
328 AliasAnalysis &AA) {
329 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
332 namespace {
334 struct UpwardsMemoryQuery {
335 // True if our original query started off as a call
336 bool IsCall = false;
337 // The pointer location we started the query with. This will be empty if
338 // IsCall is true.
339 MemoryLocation StartingLoc;
340 // This is the instruction we were querying about.
341 const Instruction *Inst = nullptr;
342 // The MemoryAccess we actually got called with, used to test local domination
343 const MemoryAccess *OriginalAccess = nullptr;
344 Optional<AliasResult> AR = AliasResult(AliasResult::MayAlias);
345 bool SkipSelfAccess = false;
347 UpwardsMemoryQuery() = default;
349 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
350 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) {
351 if (!IsCall)
352 StartingLoc = MemoryLocation::get(Inst);
356 } // end anonymous namespace
358 template <typename AliasAnalysisType>
359 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA,
360 const Instruction *I) {
361 // If the memory can't be changed, then loads of the memory can't be
362 // clobbered.
363 if (auto *LI = dyn_cast<LoadInst>(I))
364 return I->hasMetadata(LLVMContext::MD_invariant_load) ||
365 AA.pointsToConstantMemory(MemoryLocation::get(LI));
366 return false;
369 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
370 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
372 /// This is meant to be as simple and self-contained as possible. Because it
373 /// uses no cache, etc., it can be relatively expensive.
375 /// \param Start The MemoryAccess that we want to walk from.
376 /// \param ClobberAt A clobber for Start.
377 /// \param StartLoc The MemoryLocation for Start.
378 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to.
379 /// \param Query The UpwardsMemoryQuery we used for our search.
380 /// \param AA The AliasAnalysis we used for our search.
381 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
383 template <typename AliasAnalysisType>
384 LLVM_ATTRIBUTE_UNUSED static void
385 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
386 const MemoryLocation &StartLoc, const MemorySSA &MSSA,
387 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA,
388 bool AllowImpreciseClobber = false) {
389 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
391 if (MSSA.isLiveOnEntryDef(Start)) {
392 assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
393 "liveOnEntry must clobber itself");
394 return;
397 bool FoundClobber = false;
398 DenseSet<ConstMemoryAccessPair> VisitedPhis;
399 SmallVector<ConstMemoryAccessPair, 8> Worklist;
400 Worklist.emplace_back(Start, StartLoc);
401 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
402 // is found, complain.
403 while (!Worklist.empty()) {
404 auto MAP = Worklist.pop_back_val();
405 // All we care about is that nothing from Start to ClobberAt clobbers Start.
406 // We learn nothing from revisiting nodes.
407 if (!VisitedPhis.insert(MAP).second)
408 continue;
410 for (const auto *MA : def_chain(MAP.first)) {
411 if (MA == ClobberAt) {
412 if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
413 // instructionClobbersQuery isn't essentially free, so don't use `|=`,
414 // since it won't let us short-circuit.
416 // Also, note that this can't be hoisted out of the `Worklist` loop,
417 // since MD may only act as a clobber for 1 of N MemoryLocations.
418 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
419 if (!FoundClobber) {
420 ClobberAlias CA =
421 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
422 if (CA.IsClobber) {
423 FoundClobber = true;
424 // Not used: CA.AR;
428 break;
431 // We should never hit liveOnEntry, unless it's the clobber.
432 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
434 if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
435 // If Start is a Def, skip self.
436 if (MD == Start)
437 continue;
439 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
440 .IsClobber &&
441 "Found clobber before reaching ClobberAt!");
442 continue;
445 if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
446 (void)MU;
447 assert (MU == Start &&
448 "Can only find use in def chain if Start is a use");
449 continue;
452 assert(isa<MemoryPhi>(MA));
454 // Add reachable phi predecessors
455 for (auto ItB = upward_defs_begin(
456 {const_cast<MemoryAccess *>(MA), MAP.second},
457 MSSA.getDomTree()),
458 ItE = upward_defs_end();
459 ItB != ItE; ++ItB)
460 if (MSSA.getDomTree().isReachableFromEntry(ItB.getPhiArgBlock()))
461 Worklist.emplace_back(*ItB);
465 // If the verify is done following an optimization, it's possible that
466 // ClobberAt was a conservative clobbering, that we can now infer is not a
467 // true clobbering access. Don't fail the verify if that's the case.
468 // We do have accesses that claim they're optimized, but could be optimized
469 // further. Updating all these can be expensive, so allow it for now (FIXME).
470 if (AllowImpreciseClobber)
471 return;
473 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
474 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
475 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
476 "ClobberAt never acted as a clobber");
479 namespace {
481 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
482 /// in one class.
483 template <class AliasAnalysisType> class ClobberWalker {
484 /// Save a few bytes by using unsigned instead of size_t.
485 using ListIndex = unsigned;
487 /// Represents a span of contiguous MemoryDefs, potentially ending in a
488 /// MemoryPhi.
489 struct DefPath {
490 MemoryLocation Loc;
491 // Note that, because we always walk in reverse, Last will always dominate
492 // First. Also note that First and Last are inclusive.
493 MemoryAccess *First;
494 MemoryAccess *Last;
495 Optional<ListIndex> Previous;
497 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
498 Optional<ListIndex> Previous)
499 : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
501 DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
502 Optional<ListIndex> Previous)
503 : DefPath(Loc, Init, Init, Previous) {}
506 const MemorySSA &MSSA;
507 AliasAnalysisType &AA;
508 DominatorTree &DT;
509 UpwardsMemoryQuery *Query;
510 unsigned *UpwardWalkLimit;
512 // Phi optimization bookkeeping:
513 // List of DefPath to process during the current phi optimization walk.
514 SmallVector<DefPath, 32> Paths;
515 // List of visited <Access, Location> pairs; we can skip paths already
516 // visited with the same memory location.
517 DenseSet<ConstMemoryAccessPair> VisitedPhis;
518 // Record if phi translation has been performed during the current phi
519 // optimization walk, as merging alias results after phi translation can
520 // yield incorrect results. Context in PR46156.
521 bool PerformedPhiTranslation = false;
523 /// Find the nearest def or phi that `From` can legally be optimized to.
524 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
525 assert(From->getNumOperands() && "Phi with no operands?");
527 BasicBlock *BB = From->getBlock();
528 MemoryAccess *Result = MSSA.getLiveOnEntryDef();
529 DomTreeNode *Node = DT.getNode(BB);
530 while ((Node = Node->getIDom())) {
531 auto *Defs = MSSA.getBlockDefs(Node->getBlock());
532 if (Defs)
533 return &*Defs->rbegin();
535 return Result;
538 /// Result of calling walkToPhiOrClobber.
539 struct UpwardsWalkResult {
540 /// The "Result" of the walk. Either a clobber, the last thing we walked, or
541 /// both. Include alias info when clobber found.
542 MemoryAccess *Result;
543 bool IsKnownClobber;
544 Optional<AliasResult> AR;
547 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
548 /// This will update Desc.Last as it walks. It will (optionally) also stop at
549 /// StopAt.
551 /// This does not test for whether StopAt is a clobber
552 UpwardsWalkResult
553 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr,
554 const MemoryAccess *SkipStopAt = nullptr) const {
555 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
556 assert(UpwardWalkLimit && "Need a valid walk limit");
557 bool LimitAlreadyReached = false;
558 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set
559 // it to 1. This will not do any alias() calls. It either returns in the
560 // first iteration in the loop below, or is set back to 0 if all def chains
561 // are free of MemoryDefs.
562 if (!*UpwardWalkLimit) {
563 *UpwardWalkLimit = 1;
564 LimitAlreadyReached = true;
567 for (MemoryAccess *Current : def_chain(Desc.Last)) {
568 Desc.Last = Current;
569 if (Current == StopAt || Current == SkipStopAt)
570 return {Current, false, AliasResult(AliasResult::MayAlias)};
572 if (auto *MD = dyn_cast<MemoryDef>(Current)) {
573 if (MSSA.isLiveOnEntryDef(MD))
574 return {MD, true, AliasResult(AliasResult::MustAlias)};
576 if (!--*UpwardWalkLimit)
577 return {Current, true, AliasResult(AliasResult::MayAlias)};
579 ClobberAlias CA =
580 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
581 if (CA.IsClobber)
582 return {MD, true, CA.AR};
586 if (LimitAlreadyReached)
587 *UpwardWalkLimit = 0;
589 assert(isa<MemoryPhi>(Desc.Last) &&
590 "Ended at a non-clobber that's not a phi?");
591 return {Desc.Last, false, AliasResult(AliasResult::MayAlias)};
594 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
595 ListIndex PriorNode) {
596 auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT,
597 &PerformedPhiTranslation);
598 auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end());
599 for (const MemoryAccessPair &P : UpwardDefs) {
600 PausedSearches.push_back(Paths.size());
601 Paths.emplace_back(P.second, P.first, PriorNode);
605 /// Represents a search that terminated after finding a clobber. This clobber
606 /// may or may not be present in the path of defs from LastNode..SearchStart,
607 /// since it may have been retrieved from cache.
608 struct TerminatedPath {
609 MemoryAccess *Clobber;
610 ListIndex LastNode;
613 /// Get an access that keeps us from optimizing to the given phi.
615 /// PausedSearches is an array of indices into the Paths array. Its incoming
616 /// value is the indices of searches that stopped at the last phi optimization
617 /// target. It's left in an unspecified state.
619 /// If this returns None, NewPaused is a vector of searches that terminated
620 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
621 Optional<TerminatedPath>
622 getBlockingAccess(const MemoryAccess *StopWhere,
623 SmallVectorImpl<ListIndex> &PausedSearches,
624 SmallVectorImpl<ListIndex> &NewPaused,
625 SmallVectorImpl<TerminatedPath> &Terminated) {
626 assert(!PausedSearches.empty() && "No searches to continue?");
628 // BFS vs DFS really doesn't make a difference here, so just do a DFS with
629 // PausedSearches as our stack.
630 while (!PausedSearches.empty()) {
631 ListIndex PathIndex = PausedSearches.pop_back_val();
632 DefPath &Node = Paths[PathIndex];
634 // If we've already visited this path with this MemoryLocation, we don't
635 // need to do so again.
637 // NOTE: That we just drop these paths on the ground makes caching
638 // behavior sporadic. e.g. given a diamond:
639 // A
640 // B C
641 // D
643 // ...If we walk D, B, A, C, we'll only cache the result of phi
644 // optimization for A, B, and D; C will be skipped because it dies here.
645 // This arguably isn't the worst thing ever, since:
646 // - We generally query things in a top-down order, so if we got below D
647 // without needing cache entries for {C, MemLoc}, then chances are
648 // that those cache entries would end up ultimately unused.
649 // - We still cache things for A, so C only needs to walk up a bit.
650 // If this behavior becomes problematic, we can fix without a ton of extra
651 // work.
652 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) {
653 if (PerformedPhiTranslation) {
654 // If visiting this path performed Phi translation, don't continue,
655 // since it may not be correct to merge results from two paths if one
656 // relies on the phi translation.
657 TerminatedPath Term{Node.Last, PathIndex};
658 return Term;
660 continue;
663 const MemoryAccess *SkipStopWhere = nullptr;
664 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) {
665 assert(isa<MemoryDef>(Query->OriginalAccess));
666 SkipStopWhere = Query->OriginalAccess;
669 UpwardsWalkResult Res = walkToPhiOrClobber(Node,
670 /*StopAt=*/StopWhere,
671 /*SkipStopAt=*/SkipStopWhere);
672 if (Res.IsKnownClobber) {
673 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere);
675 // If this wasn't a cache hit, we hit a clobber when walking. That's a
676 // failure.
677 TerminatedPath Term{Res.Result, PathIndex};
678 if (!MSSA.dominates(Res.Result, StopWhere))
679 return Term;
681 // Otherwise, it's a valid thing to potentially optimize to.
682 Terminated.push_back(Term);
683 continue;
686 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) {
687 // We've hit our target. Save this path off for if we want to continue
688 // walking. If we are in the mode of skipping the OriginalAccess, and
689 // we've reached back to the OriginalAccess, do not save path, we've
690 // just looped back to self.
691 if (Res.Result != SkipStopWhere)
692 NewPaused.push_back(PathIndex);
693 continue;
696 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
697 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
700 return None;
703 template <typename T, typename Walker>
704 struct generic_def_path_iterator
705 : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
706 std::forward_iterator_tag, T *> {
707 generic_def_path_iterator() {}
708 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
710 T &operator*() const { return curNode(); }
712 generic_def_path_iterator &operator++() {
713 N = curNode().Previous;
714 return *this;
717 bool operator==(const generic_def_path_iterator &O) const {
718 if (N.hasValue() != O.N.hasValue())
719 return false;
720 return !N.hasValue() || *N == *O.N;
723 private:
724 T &curNode() const { return W->Paths[*N]; }
726 Walker *W = nullptr;
727 Optional<ListIndex> N = None;
730 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
731 using const_def_path_iterator =
732 generic_def_path_iterator<const DefPath, const ClobberWalker>;
734 iterator_range<def_path_iterator> def_path(ListIndex From) {
735 return make_range(def_path_iterator(this, From), def_path_iterator());
738 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
739 return make_range(const_def_path_iterator(this, From),
740 const_def_path_iterator());
743 struct OptznResult {
744 /// The path that contains our result.
745 TerminatedPath PrimaryClobber;
746 /// The paths that we can legally cache back from, but that aren't
747 /// necessarily the result of the Phi optimization.
748 SmallVector<TerminatedPath, 4> OtherClobbers;
751 ListIndex defPathIndex(const DefPath &N) const {
752 // The assert looks nicer if we don't need to do &N
753 const DefPath *NP = &N;
754 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
755 "Out of bounds DefPath!");
756 return NP - &Paths.front();
759 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
760 /// that act as legal clobbers. Note that this won't return *all* clobbers.
762 /// Phi optimization algorithm tl;dr:
763 /// - Find the earliest def/phi, A, we can optimize to
764 /// - Find if all paths from the starting memory access ultimately reach A
765 /// - If not, optimization isn't possible.
766 /// - Otherwise, walk from A to another clobber or phi, A'.
767 /// - If A' is a def, we're done.
768 /// - If A' is a phi, try to optimize it.
770 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
771 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
772 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
773 const MemoryLocation &Loc) {
774 assert(Paths.empty() && VisitedPhis.empty() && !PerformedPhiTranslation &&
775 "Reset the optimization state.");
777 Paths.emplace_back(Loc, Start, Phi, None);
778 // Stores how many "valid" optimization nodes we had prior to calling
779 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
780 auto PriorPathsSize = Paths.size();
782 SmallVector<ListIndex, 16> PausedSearches;
783 SmallVector<ListIndex, 8> NewPaused;
784 SmallVector<TerminatedPath, 4> TerminatedPaths;
786 addSearches(Phi, PausedSearches, 0);
788 // Moves the TerminatedPath with the "most dominated" Clobber to the end of
789 // Paths.
790 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
791 assert(!Paths.empty() && "Need a path to move");
792 auto Dom = Paths.begin();
793 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
794 if (!MSSA.dominates(I->Clobber, Dom->Clobber))
795 Dom = I;
796 auto Last = Paths.end() - 1;
797 if (Last != Dom)
798 std::iter_swap(Last, Dom);
801 MemoryPhi *Current = Phi;
802 while (true) {
803 assert(!MSSA.isLiveOnEntryDef(Current) &&
804 "liveOnEntry wasn't treated as a clobber?");
806 const auto *Target = getWalkTarget(Current);
807 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
808 // optimization for the prior phi.
809 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
810 return MSSA.dominates(P.Clobber, Target);
811 }));
813 // FIXME: This is broken, because the Blocker may be reported to be
814 // liveOnEntry, and we'll happily wait for that to disappear (read: never)
815 // For the moment, this is fine, since we do nothing with blocker info.
816 if (Optional<TerminatedPath> Blocker = getBlockingAccess(
817 Target, PausedSearches, NewPaused, TerminatedPaths)) {
819 // Find the node we started at. We can't search based on N->Last, since
820 // we may have gone around a loop with a different MemoryLocation.
821 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
822 return defPathIndex(N) < PriorPathsSize;
824 assert(Iter != def_path_iterator());
826 DefPath &CurNode = *Iter;
827 assert(CurNode.Last == Current);
829 // Two things:
830 // A. We can't reliably cache all of NewPaused back. Consider a case
831 // where we have two paths in NewPaused; one of which can't optimize
832 // above this phi, whereas the other can. If we cache the second path
833 // back, we'll end up with suboptimal cache entries. We can handle
834 // cases like this a bit better when we either try to find all
835 // clobbers that block phi optimization, or when our cache starts
836 // supporting unfinished searches.
837 // B. We can't reliably cache TerminatedPaths back here without doing
838 // extra checks; consider a case like:
839 // T
840 // / \
841 // D C
842 // \ /
843 // S
844 // Where T is our target, C is a node with a clobber on it, D is a
845 // diamond (with a clobber *only* on the left or right node, N), and
846 // S is our start. Say we walk to D, through the node opposite N
847 // (read: ignoring the clobber), and see a cache entry in the top
848 // node of D. That cache entry gets put into TerminatedPaths. We then
849 // walk up to C (N is later in our worklist), find the clobber, and
850 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
851 // the bottom part of D to the cached clobber, ignoring the clobber
852 // in N. Again, this problem goes away if we start tracking all
853 // blockers for a given phi optimization.
854 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
855 return {Result, {}};
858 // If there's nothing left to search, then all paths led to valid clobbers
859 // that we got from our cache; pick the nearest to the start, and allow
860 // the rest to be cached back.
861 if (NewPaused.empty()) {
862 MoveDominatedPathToEnd(TerminatedPaths);
863 TerminatedPath Result = TerminatedPaths.pop_back_val();
864 return {Result, std::move(TerminatedPaths)};
867 MemoryAccess *DefChainEnd = nullptr;
868 SmallVector<TerminatedPath, 4> Clobbers;
869 for (ListIndex Paused : NewPaused) {
870 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
871 if (WR.IsKnownClobber)
872 Clobbers.push_back({WR.Result, Paused});
873 else
874 // Micro-opt: If we hit the end of the chain, save it.
875 DefChainEnd = WR.Result;
878 if (!TerminatedPaths.empty()) {
879 // If we couldn't find the dominating phi/liveOnEntry in the above loop,
880 // do it now.
881 if (!DefChainEnd)
882 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
883 DefChainEnd = MA;
884 assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry");
886 // If any of the terminated paths don't dominate the phi we'll try to
887 // optimize, we need to figure out what they are and quit.
888 const BasicBlock *ChainBB = DefChainEnd->getBlock();
889 for (const TerminatedPath &TP : TerminatedPaths) {
890 // Because we know that DefChainEnd is as "high" as we can go, we
891 // don't need local dominance checks; BB dominance is sufficient.
892 if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
893 Clobbers.push_back(TP);
897 // If we have clobbers in the def chain, find the one closest to Current
898 // and quit.
899 if (!Clobbers.empty()) {
900 MoveDominatedPathToEnd(Clobbers);
901 TerminatedPath Result = Clobbers.pop_back_val();
902 return {Result, std::move(Clobbers)};
905 assert(all_of(NewPaused,
906 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
908 // Because liveOnEntry is a clobber, this must be a phi.
909 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
911 PriorPathsSize = Paths.size();
912 PausedSearches.clear();
913 for (ListIndex I : NewPaused)
914 addSearches(DefChainPhi, PausedSearches, I);
915 NewPaused.clear();
917 Current = DefChainPhi;
921 void verifyOptResult(const OptznResult &R) const {
922 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
923 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
924 }));
927 void resetPhiOptznState() {
928 Paths.clear();
929 VisitedPhis.clear();
930 PerformedPhiTranslation = false;
933 public:
934 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT)
935 : MSSA(MSSA), AA(AA), DT(DT) {}
937 AliasAnalysisType *getAA() { return &AA; }
938 /// Finds the nearest clobber for the given query, optimizing phis if
939 /// possible.
940 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q,
941 unsigned &UpWalkLimit) {
942 Query = &Q;
943 UpwardWalkLimit = &UpWalkLimit;
944 // Starting limit must be > 0.
945 if (!UpWalkLimit)
946 UpWalkLimit++;
948 MemoryAccess *Current = Start;
949 // This walker pretends uses don't exist. If we're handed one, silently grab
950 // its def. (This has the nice side-effect of ensuring we never cache uses)
951 if (auto *MU = dyn_cast<MemoryUse>(Start))
952 Current = MU->getDefiningAccess();
954 DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
955 // Fast path for the overly-common case (no crazy phi optimization
956 // necessary)
957 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
958 MemoryAccess *Result;
959 if (WalkResult.IsKnownClobber) {
960 Result = WalkResult.Result;
961 Q.AR = WalkResult.AR;
962 } else {
963 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
964 Current, Q.StartingLoc);
965 verifyOptResult(OptRes);
966 resetPhiOptznState();
967 Result = OptRes.PrimaryClobber.Clobber;
970 #ifdef EXPENSIVE_CHECKS
971 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0)
972 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
973 #endif
974 return Result;
978 struct RenamePassData {
979 DomTreeNode *DTN;
980 DomTreeNode::const_iterator ChildIt;
981 MemoryAccess *IncomingVal;
983 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
984 MemoryAccess *M)
985 : DTN(D), ChildIt(It), IncomingVal(M) {}
987 void swap(RenamePassData &RHS) {
988 std::swap(DTN, RHS.DTN);
989 std::swap(ChildIt, RHS.ChildIt);
990 std::swap(IncomingVal, RHS.IncomingVal);
994 } // end anonymous namespace
996 namespace llvm {
998 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase {
999 ClobberWalker<AliasAnalysisType> Walker;
1000 MemorySSA *MSSA;
1002 public:
1003 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D)
1004 : Walker(*M, *A, *D), MSSA(M) {}
1006 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *,
1007 const MemoryLocation &,
1008 unsigned &);
1009 // Third argument (bool), defines whether the clobber search should skip the
1010 // original queried access. If true, there will be a follow-up query searching
1011 // for a clobber access past "self". Note that the Optimized access is not
1012 // updated if a new clobber is found by this SkipSelf search. If this
1013 // additional query becomes heavily used we may decide to cache the result.
1014 // Walker instantiations will decide how to set the SkipSelf bool.
1015 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool);
1018 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
1019 /// longer does caching on its own, but the name has been retained for the
1020 /// moment.
1021 template <class AliasAnalysisType>
1022 class MemorySSA::CachingWalker final : public MemorySSAWalker {
1023 ClobberWalkerBase<AliasAnalysisType> *Walker;
1025 public:
1026 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
1027 : MemorySSAWalker(M), Walker(W) {}
1028 ~CachingWalker() override = default;
1030 using MemorySSAWalker::getClobberingMemoryAccess;
1032 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
1033 return Walker->getClobberingMemoryAccessBase(MA, UWL, false);
1035 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1036 const MemoryLocation &Loc,
1037 unsigned &UWL) {
1038 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
1041 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
1042 unsigned UpwardWalkLimit = MaxCheckLimit;
1043 return getClobberingMemoryAccess(MA, UpwardWalkLimit);
1045 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1046 const MemoryLocation &Loc) override {
1047 unsigned UpwardWalkLimit = MaxCheckLimit;
1048 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
1051 void invalidateInfo(MemoryAccess *MA) override {
1052 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1053 MUD->resetOptimized();
1057 template <class AliasAnalysisType>
1058 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker {
1059 ClobberWalkerBase<AliasAnalysisType> *Walker;
1061 public:
1062 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
1063 : MemorySSAWalker(M), Walker(W) {}
1064 ~SkipSelfWalker() override = default;
1066 using MemorySSAWalker::getClobberingMemoryAccess;
1068 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
1069 return Walker->getClobberingMemoryAccessBase(MA, UWL, true);
1071 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1072 const MemoryLocation &Loc,
1073 unsigned &UWL) {
1074 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
1077 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
1078 unsigned UpwardWalkLimit = MaxCheckLimit;
1079 return getClobberingMemoryAccess(MA, UpwardWalkLimit);
1081 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1082 const MemoryLocation &Loc) override {
1083 unsigned UpwardWalkLimit = MaxCheckLimit;
1084 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
1087 void invalidateInfo(MemoryAccess *MA) override {
1088 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1089 MUD->resetOptimized();
1093 } // end namespace llvm
1095 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
1096 bool RenameAllUses) {
1097 // Pass through values to our successors
1098 for (const BasicBlock *S : successors(BB)) {
1099 auto It = PerBlockAccesses.find(S);
1100 // Rename the phi nodes in our successor block
1101 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1102 continue;
1103 AccessList *Accesses = It->second.get();
1104 auto *Phi = cast<MemoryPhi>(&Accesses->front());
1105 if (RenameAllUses) {
1106 bool ReplacementDone = false;
1107 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
1108 if (Phi->getIncomingBlock(I) == BB) {
1109 Phi->setIncomingValue(I, IncomingVal);
1110 ReplacementDone = true;
1112 (void) ReplacementDone;
1113 assert(ReplacementDone && "Incomplete phi during partial rename");
1114 } else
1115 Phi->addIncoming(IncomingVal, BB);
1119 /// Rename a single basic block into MemorySSA form.
1120 /// Uses the standard SSA renaming algorithm.
1121 /// \returns The new incoming value.
1122 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
1123 bool RenameAllUses) {
1124 auto It = PerBlockAccesses.find(BB);
1125 // Skip most processing if the list is empty.
1126 if (It != PerBlockAccesses.end()) {
1127 AccessList *Accesses = It->second.get();
1128 for (MemoryAccess &L : *Accesses) {
1129 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
1130 if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
1131 MUD->setDefiningAccess(IncomingVal);
1132 if (isa<MemoryDef>(&L))
1133 IncomingVal = &L;
1134 } else {
1135 IncomingVal = &L;
1139 return IncomingVal;
1142 /// This is the standard SSA renaming algorithm.
1144 /// We walk the dominator tree in preorder, renaming accesses, and then filling
1145 /// in phi nodes in our successors.
1146 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
1147 SmallPtrSetImpl<BasicBlock *> &Visited,
1148 bool SkipVisited, bool RenameAllUses) {
1149 assert(Root && "Trying to rename accesses in an unreachable block");
1151 SmallVector<RenamePassData, 32> WorkStack;
1152 // Skip everything if we already renamed this block and we are skipping.
1153 // Note: You can't sink this into the if, because we need it to occur
1154 // regardless of whether we skip blocks or not.
1155 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1156 if (SkipVisited && AlreadyVisited)
1157 return;
1159 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1160 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
1161 WorkStack.push_back({Root, Root->begin(), IncomingVal});
1163 while (!WorkStack.empty()) {
1164 DomTreeNode *Node = WorkStack.back().DTN;
1165 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1166 IncomingVal = WorkStack.back().IncomingVal;
1168 if (ChildIt == Node->end()) {
1169 WorkStack.pop_back();
1170 } else {
1171 DomTreeNode *Child = *ChildIt;
1172 ++WorkStack.back().ChildIt;
1173 BasicBlock *BB = Child->getBlock();
1174 // Note: You can't sink this into the if, because we need it to occur
1175 // regardless of whether we skip blocks or not.
1176 AlreadyVisited = !Visited.insert(BB).second;
1177 if (SkipVisited && AlreadyVisited) {
1178 // We already visited this during our renaming, which can happen when
1179 // being asked to rename multiple blocks. Figure out the incoming val,
1180 // which is the last def.
1181 // Incoming value can only change if there is a block def, and in that
1182 // case, it's the last block def in the list.
1183 if (auto *BlockDefs = getWritableBlockDefs(BB))
1184 IncomingVal = &*BlockDefs->rbegin();
1185 } else
1186 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1187 renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
1188 WorkStack.push_back({Child, Child->begin(), IncomingVal});
1193 /// This handles unreachable block accesses by deleting phi nodes in
1194 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1195 /// being uses of the live on entry definition.
1196 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1197 assert(!DT->isReachableFromEntry(BB) &&
1198 "Reachable block found while handling unreachable blocks");
1200 // Make sure phi nodes in our reachable successors end up with a
1201 // LiveOnEntryDef for our incoming edge, even though our block is forward
1202 // unreachable. We could just disconnect these blocks from the CFG fully,
1203 // but we do not right now.
1204 for (const BasicBlock *S : successors(BB)) {
1205 if (!DT->isReachableFromEntry(S))
1206 continue;
1207 auto It = PerBlockAccesses.find(S);
1208 // Rename the phi nodes in our successor block
1209 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1210 continue;
1211 AccessList *Accesses = It->second.get();
1212 auto *Phi = cast<MemoryPhi>(&Accesses->front());
1213 Phi->addIncoming(LiveOnEntryDef.get(), BB);
1216 auto It = PerBlockAccesses.find(BB);
1217 if (It == PerBlockAccesses.end())
1218 return;
1220 auto &Accesses = It->second;
1221 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1222 auto Next = std::next(AI);
1223 // If we have a phi, just remove it. We are going to replace all
1224 // users with live on entry.
1225 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1226 UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1227 else
1228 Accesses->erase(AI);
1229 AI = Next;
1233 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1234 : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
1235 SkipWalker(nullptr), NextID(0) {
1236 // Build MemorySSA using a batch alias analysis. This reuses the internal
1237 // state that AA collects during an alias()/getModRefInfo() call. This is
1238 // safe because there are no CFG changes while building MemorySSA and can
1239 // significantly reduce the time spent by the compiler in AA, because we will
1240 // make queries about all the instructions in the Function.
1241 assert(AA && "No alias analysis?");
1242 BatchAAResults BatchAA(*AA);
1243 buildMemorySSA(BatchAA);
1244 // Intentionally leave AA to nullptr while building so we don't accidently
1245 // use non-batch AliasAnalysis.
1246 this->AA = AA;
1247 // Also create the walker here.
1248 getWalker();
1251 MemorySSA::~MemorySSA() {
1252 // Drop all our references
1253 for (const auto &Pair : PerBlockAccesses)
1254 for (MemoryAccess &MA : *Pair.second)
1255 MA.dropAllReferences();
1258 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
1259 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1261 if (Res.second)
1262 Res.first->second = std::make_unique<AccessList>();
1263 return Res.first->second.get();
1266 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1267 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1269 if (Res.second)
1270 Res.first->second = std::make_unique<DefsList>();
1271 return Res.first->second.get();
1274 namespace llvm {
1276 /// This class is a batch walker of all MemoryUse's in the program, and points
1277 /// their defining access at the thing that actually clobbers them. Because it
1278 /// is a batch walker that touches everything, it does not operate like the
1279 /// other walkers. This walker is basically performing a top-down SSA renaming
1280 /// pass, where the version stack is used as the cache. This enables it to be
1281 /// significantly more time and memory efficient than using the regular walker,
1282 /// which is walking bottom-up.
1283 class MemorySSA::OptimizeUses {
1284 public:
1285 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker,
1286 BatchAAResults *BAA, DominatorTree *DT)
1287 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {}
1289 void optimizeUses();
1291 private:
1292 /// This represents where a given memorylocation is in the stack.
1293 struct MemlocStackInfo {
1294 // This essentially is keeping track of versions of the stack. Whenever
1295 // the stack changes due to pushes or pops, these versions increase.
1296 unsigned long StackEpoch;
1297 unsigned long PopEpoch;
1298 // This is the lower bound of places on the stack to check. It is equal to
1299 // the place the last stack walk ended.
1300 // Note: Correctness depends on this being initialized to 0, which densemap
1301 // does
1302 unsigned long LowerBound;
1303 const BasicBlock *LowerBoundBlock;
1304 // This is where the last walk for this memory location ended.
1305 unsigned long LastKill;
1306 bool LastKillValid;
1307 Optional<AliasResult> AR;
1310 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1311 SmallVectorImpl<MemoryAccess *> &,
1312 DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
1314 MemorySSA *MSSA;
1315 CachingWalker<BatchAAResults> *Walker;
1316 BatchAAResults *AA;
1317 DominatorTree *DT;
1320 } // end namespace llvm
1322 /// Optimize the uses in a given block This is basically the SSA renaming
1323 /// algorithm, with one caveat: We are able to use a single stack for all
1324 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1325 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1326 /// going to be some position in that stack of possible ones.
1328 /// We track the stack positions that each MemoryLocation needs
1329 /// to check, and last ended at. This is because we only want to check the
1330 /// things that changed since last time. The same MemoryLocation should
1331 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1332 /// things like this, and if they start, we can modify MemoryLocOrCall to
1333 /// include relevant data)
1334 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1335 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1336 SmallVectorImpl<MemoryAccess *> &VersionStack,
1337 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1339 /// If no accesses, nothing to do.
1340 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1341 if (Accesses == nullptr)
1342 return;
1344 // Pop everything that doesn't dominate the current block off the stack,
1345 // increment the PopEpoch to account for this.
1346 while (true) {
1347 assert(
1348 !VersionStack.empty() &&
1349 "Version stack should have liveOnEntry sentinel dominating everything");
1350 BasicBlock *BackBlock = VersionStack.back()->getBlock();
1351 if (DT->dominates(BackBlock, BB))
1352 break;
1353 while (VersionStack.back()->getBlock() == BackBlock)
1354 VersionStack.pop_back();
1355 ++PopEpoch;
1358 for (MemoryAccess &MA : *Accesses) {
1359 auto *MU = dyn_cast<MemoryUse>(&MA);
1360 if (!MU) {
1361 VersionStack.push_back(&MA);
1362 ++StackEpoch;
1363 continue;
1366 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
1367 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
1368 continue;
1371 MemoryLocOrCall UseMLOC(MU);
1372 auto &LocInfo = LocStackInfo[UseMLOC];
1373 // If the pop epoch changed, it means we've removed stuff from top of
1374 // stack due to changing blocks. We may have to reset the lower bound or
1375 // last kill info.
1376 if (LocInfo.PopEpoch != PopEpoch) {
1377 LocInfo.PopEpoch = PopEpoch;
1378 LocInfo.StackEpoch = StackEpoch;
1379 // If the lower bound was in something that no longer dominates us, we
1380 // have to reset it.
1381 // We can't simply track stack size, because the stack may have had
1382 // pushes/pops in the meantime.
1383 // XXX: This is non-optimal, but only is slower cases with heavily
1384 // branching dominator trees. To get the optimal number of queries would
1385 // be to make lowerbound and lastkill a per-loc stack, and pop it until
1386 // the top of that stack dominates us. This does not seem worth it ATM.
1387 // A much cheaper optimization would be to always explore the deepest
1388 // branch of the dominator tree first. This will guarantee this resets on
1389 // the smallest set of blocks.
1390 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
1391 !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
1392 // Reset the lower bound of things to check.
1393 // TODO: Some day we should be able to reset to last kill, rather than
1394 // 0.
1395 LocInfo.LowerBound = 0;
1396 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
1397 LocInfo.LastKillValid = false;
1399 } else if (LocInfo.StackEpoch != StackEpoch) {
1400 // If all that has changed is the StackEpoch, we only have to check the
1401 // new things on the stack, because we've checked everything before. In
1402 // this case, the lower bound of things to check remains the same.
1403 LocInfo.PopEpoch = PopEpoch;
1404 LocInfo.StackEpoch = StackEpoch;
1406 if (!LocInfo.LastKillValid) {
1407 LocInfo.LastKill = VersionStack.size() - 1;
1408 LocInfo.LastKillValid = true;
1409 LocInfo.AR = AliasResult::MayAlias;
1412 // At this point, we should have corrected last kill and LowerBound to be
1413 // in bounds.
1414 assert(LocInfo.LowerBound < VersionStack.size() &&
1415 "Lower bound out of range");
1416 assert(LocInfo.LastKill < VersionStack.size() &&
1417 "Last kill info out of range");
1418 // In any case, the new upper bound is the top of the stack.
1419 unsigned long UpperBound = VersionStack.size() - 1;
1421 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
1422 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1423 << *(MU->getMemoryInst()) << ")"
1424 << " because there are "
1425 << UpperBound - LocInfo.LowerBound
1426 << " stores to disambiguate\n");
1427 // Because we did not walk, LastKill is no longer valid, as this may
1428 // have been a kill.
1429 LocInfo.LastKillValid = false;
1430 continue;
1432 bool FoundClobberResult = false;
1433 unsigned UpwardWalkLimit = MaxCheckLimit;
1434 while (UpperBound > LocInfo.LowerBound) {
1435 if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1436 // For phis, use the walker, see where we ended up, go there
1437 MemoryAccess *Result =
1438 Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit);
1439 // We are guaranteed to find it or something is wrong
1440 while (VersionStack[UpperBound] != Result) {
1441 assert(UpperBound != 0);
1442 --UpperBound;
1444 FoundClobberResult = true;
1445 break;
1448 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
1449 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1450 if (CA.IsClobber) {
1451 FoundClobberResult = true;
1452 LocInfo.AR = CA.AR;
1453 break;
1455 --UpperBound;
1458 // Note: Phis always have AliasResult AR set to MayAlias ATM.
1460 // At the end of this loop, UpperBound is either a clobber, or lower bound
1461 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1462 if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
1463 // We were last killed now by where we got to
1464 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1465 LocInfo.AR = None;
1466 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
1467 LocInfo.LastKill = UpperBound;
1468 } else {
1469 // Otherwise, we checked all the new ones, and now we know we can get to
1470 // LastKill.
1471 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
1473 LocInfo.LowerBound = VersionStack.size() - 1;
1474 LocInfo.LowerBoundBlock = BB;
1478 /// Optimize uses to point to their actual clobbering definitions.
1479 void MemorySSA::OptimizeUses::optimizeUses() {
1480 SmallVector<MemoryAccess *, 16> VersionStack;
1481 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
1482 VersionStack.push_back(MSSA->getLiveOnEntryDef());
1484 unsigned long StackEpoch = 1;
1485 unsigned long PopEpoch = 1;
1486 // We perform a non-recursive top-down dominator tree walk.
1487 for (const auto *DomNode : depth_first(DT->getRootNode()))
1488 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1489 LocStackInfo);
1492 void MemorySSA::placePHINodes(
1493 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
1494 // Determine where our MemoryPhi's should go
1495 ForwardIDFCalculator IDFs(*DT);
1496 IDFs.setDefiningBlocks(DefiningBlocks);
1497 SmallVector<BasicBlock *, 32> IDFBlocks;
1498 IDFs.calculate(IDFBlocks);
1500 // Now place MemoryPhi nodes.
1501 for (auto &BB : IDFBlocks)
1502 createMemoryPhi(BB);
1505 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) {
1506 // We create an access to represent "live on entry", for things like
1507 // arguments or users of globals, where the memory they use is defined before
1508 // the beginning of the function. We do not actually insert it into the IR.
1509 // We do not define a live on exit for the immediate uses, and thus our
1510 // semantics do *not* imply that something with no immediate uses can simply
1511 // be removed.
1512 BasicBlock &StartingPoint = F.getEntryBlock();
1513 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1514 &StartingPoint, NextID++));
1516 // We maintain lists of memory accesses per-block, trading memory for time. We
1517 // could just look up the memory access for every possible instruction in the
1518 // stream.
1519 SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
1520 // Go through each block, figure out where defs occur, and chain together all
1521 // the accesses.
1522 for (BasicBlock &B : F) {
1523 bool InsertIntoDef = false;
1524 AccessList *Accesses = nullptr;
1525 DefsList *Defs = nullptr;
1526 for (Instruction &I : B) {
1527 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA);
1528 if (!MUD)
1529 continue;
1531 if (!Accesses)
1532 Accesses = getOrCreateAccessList(&B);
1533 Accesses->push_back(MUD);
1534 if (isa<MemoryDef>(MUD)) {
1535 InsertIntoDef = true;
1536 if (!Defs)
1537 Defs = getOrCreateDefsList(&B);
1538 Defs->push_back(*MUD);
1541 if (InsertIntoDef)
1542 DefiningBlocks.insert(&B);
1544 placePHINodes(DefiningBlocks);
1546 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1547 // filled in with all blocks.
1548 SmallPtrSet<BasicBlock *, 16> Visited;
1549 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1551 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT);
1552 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase);
1553 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses();
1555 // Mark the uses in unreachable blocks as live on entry, so that they go
1556 // somewhere.
1557 for (auto &BB : F)
1558 if (!Visited.count(&BB))
1559 markUnreachableAsLiveOnEntry(&BB);
1562 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1564 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() {
1565 if (Walker)
1566 return Walker.get();
1568 if (!WalkerBase)
1569 WalkerBase =
1570 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
1572 Walker =
1573 std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get());
1574 return Walker.get();
1577 MemorySSAWalker *MemorySSA::getSkipSelfWalker() {
1578 if (SkipWalker)
1579 return SkipWalker.get();
1581 if (!WalkerBase)
1582 WalkerBase =
1583 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
1585 SkipWalker =
1586 std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get());
1587 return SkipWalker.get();
1591 // This is a helper function used by the creation routines. It places NewAccess
1592 // into the access and defs lists for a given basic block, at the given
1593 // insertion point.
1594 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1595 const BasicBlock *BB,
1596 InsertionPlace Point) {
1597 auto *Accesses = getOrCreateAccessList(BB);
1598 if (Point == Beginning) {
1599 // If it's a phi node, it goes first, otherwise, it goes after any phi
1600 // nodes.
1601 if (isa<MemoryPhi>(NewAccess)) {
1602 Accesses->push_front(NewAccess);
1603 auto *Defs = getOrCreateDefsList(BB);
1604 Defs->push_front(*NewAccess);
1605 } else {
1606 auto AI = find_if_not(
1607 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1608 Accesses->insert(AI, NewAccess);
1609 if (!isa<MemoryUse>(NewAccess)) {
1610 auto *Defs = getOrCreateDefsList(BB);
1611 auto DI = find_if_not(
1612 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1613 Defs->insert(DI, *NewAccess);
1616 } else {
1617 Accesses->push_back(NewAccess);
1618 if (!isa<MemoryUse>(NewAccess)) {
1619 auto *Defs = getOrCreateDefsList(BB);
1620 Defs->push_back(*NewAccess);
1623 BlockNumberingValid.erase(BB);
1626 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1627 AccessList::iterator InsertPt) {
1628 auto *Accesses = getWritableBlockAccesses(BB);
1629 bool WasEnd = InsertPt == Accesses->end();
1630 Accesses->insert(AccessList::iterator(InsertPt), What);
1631 if (!isa<MemoryUse>(What)) {
1632 auto *Defs = getOrCreateDefsList(BB);
1633 // If we got asked to insert at the end, we have an easy job, just shove it
1634 // at the end. If we got asked to insert before an existing def, we also get
1635 // an iterator. If we got asked to insert before a use, we have to hunt for
1636 // the next def.
1637 if (WasEnd) {
1638 Defs->push_back(*What);
1639 } else if (isa<MemoryDef>(InsertPt)) {
1640 Defs->insert(InsertPt->getDefsIterator(), *What);
1641 } else {
1642 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1643 ++InsertPt;
1644 // Either we found a def, or we are inserting at the end
1645 if (InsertPt == Accesses->end())
1646 Defs->push_back(*What);
1647 else
1648 Defs->insert(InsertPt->getDefsIterator(), *What);
1651 BlockNumberingValid.erase(BB);
1654 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1655 // Keep it in the lookup tables, remove from the lists
1656 removeFromLists(What, false);
1658 // Note that moving should implicitly invalidate the optimized state of a
1659 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1660 // MemoryDef.
1661 if (auto *MD = dyn_cast<MemoryDef>(What))
1662 MD->resetOptimized();
1663 What->setBlock(BB);
1666 // Move What before Where in the IR. The end result is that What will belong to
1667 // the right lists and have the right Block set, but will not otherwise be
1668 // correct. It will not have the right defining access, and if it is a def,
1669 // things below it will not properly be updated.
1670 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1671 AccessList::iterator Where) {
1672 prepareForMoveTo(What, BB);
1673 insertIntoListsBefore(What, BB, Where);
1676 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
1677 InsertionPlace Point) {
1678 if (isa<MemoryPhi>(What)) {
1679 assert(Point == Beginning &&
1680 "Can only move a Phi at the beginning of the block");
1681 // Update lookup table entry
1682 ValueToMemoryAccess.erase(What->getBlock());
1683 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1684 (void)Inserted;
1685 assert(Inserted && "Cannot move a Phi to a block that already has one");
1688 prepareForMoveTo(What, BB);
1689 insertIntoListsForBlock(What, BB, Point);
1692 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1693 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
1694 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
1695 // Phi's always are placed at the front of the block.
1696 insertIntoListsForBlock(Phi, BB, Beginning);
1697 ValueToMemoryAccess[BB] = Phi;
1698 return Phi;
1701 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1702 MemoryAccess *Definition,
1703 const MemoryUseOrDef *Template,
1704 bool CreationMustSucceed) {
1705 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1706 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template);
1707 if (CreationMustSucceed)
1708 assert(NewAccess != nullptr && "Tried to create a memory access for a "
1709 "non-memory touching instruction");
1710 if (NewAccess) {
1711 assert((!Definition || !isa<MemoryUse>(Definition)) &&
1712 "A use cannot be a defining access");
1713 NewAccess->setDefiningAccess(Definition);
1715 return NewAccess;
1718 // Return true if the instruction has ordering constraints.
1719 // Note specifically that this only considers stores and loads
1720 // because others are still considered ModRef by getModRefInfo.
1721 static inline bool isOrdered(const Instruction *I) {
1722 if (auto *SI = dyn_cast<StoreInst>(I)) {
1723 if (!SI->isUnordered())
1724 return true;
1725 } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1726 if (!LI->isUnordered())
1727 return true;
1729 return false;
1732 /// Helper function to create new memory accesses
1733 template <typename AliasAnalysisType>
1734 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
1735 AliasAnalysisType *AAP,
1736 const MemoryUseOrDef *Template) {
1737 // The assume intrinsic has a control dependency which we model by claiming
1738 // that it writes arbitrarily. Debuginfo intrinsics may be considered
1739 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory
1740 // dependencies here.
1741 // FIXME: Replace this special casing with a more accurate modelling of
1742 // assume's control dependency.
1743 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1744 switch (II->getIntrinsicID()) {
1745 default:
1746 break;
1747 case Intrinsic::assume:
1748 case Intrinsic::experimental_noalias_scope_decl:
1749 return nullptr;
1753 // Using a nonstandard AA pipelines might leave us with unexpected modref
1754 // results for I, so add a check to not model instructions that may not read
1755 // from or write to memory. This is necessary for correctness.
1756 if (!I->mayReadFromMemory() && !I->mayWriteToMemory())
1757 return nullptr;
1759 bool Def, Use;
1760 if (Template) {
1761 Def = isa<MemoryDef>(Template);
1762 Use = isa<MemoryUse>(Template);
1763 #if !defined(NDEBUG)
1764 ModRefInfo ModRef = AAP->getModRefInfo(I, None);
1765 bool DefCheck, UseCheck;
1766 DefCheck = isModSet(ModRef) || isOrdered(I);
1767 UseCheck = isRefSet(ModRef);
1768 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template");
1769 #endif
1770 } else {
1771 // Find out what affect this instruction has on memory.
1772 ModRefInfo ModRef = AAP->getModRefInfo(I, None);
1773 // The isOrdered check is used to ensure that volatiles end up as defs
1774 // (atomics end up as ModRef right now anyway). Until we separate the
1775 // ordering chain from the memory chain, this enables people to see at least
1776 // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1777 // will still give an answer that bypasses other volatile loads. TODO:
1778 // Separate memory aliasing and ordering into two different chains so that
1779 // we can precisely represent both "what memory will this read/write/is
1780 // clobbered by" and "what instructions can I move this past".
1781 Def = isModSet(ModRef) || isOrdered(I);
1782 Use = isRefSet(ModRef);
1785 // It's possible for an instruction to not modify memory at all. During
1786 // construction, we ignore them.
1787 if (!Def && !Use)
1788 return nullptr;
1790 MemoryUseOrDef *MUD;
1791 if (Def)
1792 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
1793 else
1794 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
1795 ValueToMemoryAccess[I] = MUD;
1796 return MUD;
1799 /// Properly remove \p MA from all of MemorySSA's lookup tables.
1800 void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1801 assert(MA->use_empty() &&
1802 "Trying to remove memory access that still has uses");
1803 BlockNumbering.erase(MA);
1804 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1805 MUD->setDefiningAccess(nullptr);
1806 // Invalidate our walker's cache if necessary
1807 if (!isa<MemoryUse>(MA))
1808 getWalker()->invalidateInfo(MA);
1810 Value *MemoryInst;
1811 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1812 MemoryInst = MUD->getMemoryInst();
1813 else
1814 MemoryInst = MA->getBlock();
1816 auto VMA = ValueToMemoryAccess.find(MemoryInst);
1817 if (VMA->second == MA)
1818 ValueToMemoryAccess.erase(VMA);
1821 /// Properly remove \p MA from all of MemorySSA's lists.
1823 /// Because of the way the intrusive list and use lists work, it is important to
1824 /// do removal in the right order.
1825 /// ShouldDelete defaults to true, and will cause the memory access to also be
1826 /// deleted, not just removed.
1827 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
1828 BasicBlock *BB = MA->getBlock();
1829 // The access list owns the reference, so we erase it from the non-owning list
1830 // first.
1831 if (!isa<MemoryUse>(MA)) {
1832 auto DefsIt = PerBlockDefs.find(BB);
1833 std::unique_ptr<DefsList> &Defs = DefsIt->second;
1834 Defs->remove(*MA);
1835 if (Defs->empty())
1836 PerBlockDefs.erase(DefsIt);
1839 // The erase call here will delete it. If we don't want it deleted, we call
1840 // remove instead.
1841 auto AccessIt = PerBlockAccesses.find(BB);
1842 std::unique_ptr<AccessList> &Accesses = AccessIt->second;
1843 if (ShouldDelete)
1844 Accesses->erase(MA);
1845 else
1846 Accesses->remove(MA);
1848 if (Accesses->empty()) {
1849 PerBlockAccesses.erase(AccessIt);
1850 BlockNumberingValid.erase(BB);
1854 void MemorySSA::print(raw_ostream &OS) const {
1855 MemorySSAAnnotatedWriter Writer(this);
1856 F.print(OS, &Writer);
1859 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1860 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
1861 #endif
1863 void MemorySSA::verifyMemorySSA() const {
1864 verifyOrderingDominationAndDefUses(F);
1865 verifyDominationNumbers(F);
1866 verifyPrevDefInPhis(F);
1867 // Previously, the verification used to also verify that the clobberingAccess
1868 // cached by MemorySSA is the same as the clobberingAccess found at a later
1869 // query to AA. This does not hold true in general due to the current fragility
1870 // of BasicAA which has arbitrary caps on the things it analyzes before giving
1871 // up. As a result, transformations that are correct, will lead to BasicAA
1872 // returning different Alias answers before and after that transformation.
1873 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
1874 // random, in the worst case we'd need to rebuild MemorySSA from scratch after
1875 // every transformation, which defeats the purpose of using it. For such an
1876 // example, see test4 added in D51960.
1879 void MemorySSA::verifyPrevDefInPhis(Function &F) const {
1880 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1881 for (const BasicBlock &BB : F) {
1882 if (MemoryPhi *Phi = getMemoryAccess(&BB)) {
1883 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1884 auto *Pred = Phi->getIncomingBlock(I);
1885 auto *IncAcc = Phi->getIncomingValue(I);
1886 // If Pred has no unreachable predecessors, get last def looking at
1887 // IDoms. If, while walkings IDoms, any of these has an unreachable
1888 // predecessor, then the incoming def can be any access.
1889 if (auto *DTNode = DT->getNode(Pred)) {
1890 while (DTNode) {
1891 if (auto *DefList = getBlockDefs(DTNode->getBlock())) {
1892 auto *LastAcc = &*(--DefList->end());
1893 assert(LastAcc == IncAcc &&
1894 "Incorrect incoming access into phi.");
1895 break;
1897 DTNode = DTNode->getIDom();
1899 } else {
1900 // If Pred has unreachable predecessors, but has at least a Def, the
1901 // incoming access can be the last Def in Pred, or it could have been
1902 // optimized to LoE. After an update, though, the LoE may have been
1903 // replaced by another access, so IncAcc may be any access.
1904 // If Pred has unreachable predecessors and no Defs, incoming access
1905 // should be LoE; However, after an update, it may be any access.
1910 #endif
1913 /// Verify that all of the blocks we believe to have valid domination numbers
1914 /// actually have valid domination numbers.
1915 void MemorySSA::verifyDominationNumbers(const Function &F) const {
1916 #ifndef NDEBUG
1917 if (BlockNumberingValid.empty())
1918 return;
1920 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1921 for (const BasicBlock &BB : F) {
1922 if (!ValidBlocks.count(&BB))
1923 continue;
1925 ValidBlocks.erase(&BB);
1927 const AccessList *Accesses = getBlockAccesses(&BB);
1928 // It's correct to say an empty block has valid numbering.
1929 if (!Accesses)
1930 continue;
1932 // Block numbering starts at 1.
1933 unsigned long LastNumber = 0;
1934 for (const MemoryAccess &MA : *Accesses) {
1935 auto ThisNumberIter = BlockNumbering.find(&MA);
1936 assert(ThisNumberIter != BlockNumbering.end() &&
1937 "MemoryAccess has no domination number in a valid block!");
1939 unsigned long ThisNumber = ThisNumberIter->second;
1940 assert(ThisNumber > LastNumber &&
1941 "Domination numbers should be strictly increasing!");
1942 LastNumber = ThisNumber;
1946 assert(ValidBlocks.empty() &&
1947 "All valid BasicBlocks should exist in F -- dangling pointers?");
1948 #endif
1951 /// Verify ordering: the order and existence of MemoryAccesses matches the
1952 /// order and existence of memory affecting instructions.
1953 /// Verify domination: each definition dominates all of its uses.
1954 /// Verify def-uses: the immediate use information - walk all the memory
1955 /// accesses and verifying that, for each use, it appears in the appropriate
1956 /// def's use list
1957 void MemorySSA::verifyOrderingDominationAndDefUses(Function &F) const {
1958 #if !defined(NDEBUG)
1959 // Walk all the blocks, comparing what the lookups think and what the access
1960 // lists think, as well as the order in the blocks vs the order in the access
1961 // lists.
1962 SmallVector<MemoryAccess *, 32> ActualAccesses;
1963 SmallVector<MemoryAccess *, 32> ActualDefs;
1964 for (BasicBlock &B : F) {
1965 const AccessList *AL = getBlockAccesses(&B);
1966 const auto *DL = getBlockDefs(&B);
1967 MemoryPhi *Phi = getMemoryAccess(&B);
1968 if (Phi) {
1969 // Verify ordering.
1970 ActualAccesses.push_back(Phi);
1971 ActualDefs.push_back(Phi);
1972 // Verify domination
1973 for (const Use &U : Phi->uses())
1974 assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses");
1975 #if defined(EXPENSIVE_CHECKS)
1976 // Verify def-uses.
1977 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1978 pred_begin(&B), pred_end(&B))) &&
1979 "Incomplete MemoryPhi Node");
1980 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1981 verifyUseInDefs(Phi->getIncomingValue(I), Phi);
1982 assert(is_contained(predecessors(&B), Phi->getIncomingBlock(I)) &&
1983 "Incoming phi block not a block predecessor");
1985 #endif
1988 for (Instruction &I : B) {
1989 MemoryUseOrDef *MA = getMemoryAccess(&I);
1990 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1991 "We have memory affecting instructions "
1992 "in this block but they are not in the "
1993 "access list or defs list");
1994 if (MA) {
1995 // Verify ordering.
1996 ActualAccesses.push_back(MA);
1997 if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) {
1998 // Verify ordering.
1999 ActualDefs.push_back(MA);
2000 // Verify domination.
2001 for (const Use &U : MD->uses())
2002 assert(dominates(MD, U) &&
2003 "Memory Def does not dominate it's uses");
2005 #if defined(EXPENSIVE_CHECKS)
2006 // Verify def-uses.
2007 verifyUseInDefs(MA->getDefiningAccess(), MA);
2008 #endif
2011 // Either we hit the assert, really have no accesses, or we have both
2012 // accesses and an access list. Same with defs.
2013 if (!AL && !DL)
2014 continue;
2015 // Verify ordering.
2016 assert(AL->size() == ActualAccesses.size() &&
2017 "We don't have the same number of accesses in the block as on the "
2018 "access list");
2019 assert((DL || ActualDefs.size() == 0) &&
2020 "Either we should have a defs list, or we should have no defs");
2021 assert((!DL || DL->size() == ActualDefs.size()) &&
2022 "We don't have the same number of defs in the block as on the "
2023 "def list");
2024 auto ALI = AL->begin();
2025 auto AAI = ActualAccesses.begin();
2026 while (ALI != AL->end() && AAI != ActualAccesses.end()) {
2027 assert(&*ALI == *AAI && "Not the same accesses in the same order");
2028 ++ALI;
2029 ++AAI;
2031 ActualAccesses.clear();
2032 if (DL) {
2033 auto DLI = DL->begin();
2034 auto ADI = ActualDefs.begin();
2035 while (DLI != DL->end() && ADI != ActualDefs.end()) {
2036 assert(&*DLI == *ADI && "Not the same defs in the same order");
2037 ++DLI;
2038 ++ADI;
2041 ActualDefs.clear();
2043 #endif
2046 /// Verify the def-use lists in MemorySSA, by verifying that \p Use
2047 /// appears in the use list of \p Def.
2048 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
2049 #ifndef NDEBUG
2050 // The live on entry use may cause us to get a NULL def here
2051 if (!Def)
2052 assert(isLiveOnEntryDef(Use) &&
2053 "Null def but use not point to live on entry def");
2054 else
2055 assert(is_contained(Def->users(), Use) &&
2056 "Did not find use in def's use list");
2057 #endif
2060 /// Perform a local numbering on blocks so that instruction ordering can be
2061 /// determined in constant time.
2062 /// TODO: We currently just number in order. If we numbered by N, we could
2063 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
2064 /// log2(N) sequences of mixed before and after) without needing to invalidate
2065 /// the numbering.
2066 void MemorySSA::renumberBlock(const BasicBlock *B) const {
2067 // The pre-increment ensures the numbers really start at 1.
2068 unsigned long CurrentNumber = 0;
2069 const AccessList *AL = getBlockAccesses(B);
2070 assert(AL != nullptr && "Asking to renumber an empty block");
2071 for (const auto &I : *AL)
2072 BlockNumbering[&I] = ++CurrentNumber;
2073 BlockNumberingValid.insert(B);
2076 /// Determine, for two memory accesses in the same block,
2077 /// whether \p Dominator dominates \p Dominatee.
2078 /// \returns True if \p Dominator dominates \p Dominatee.
2079 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
2080 const MemoryAccess *Dominatee) const {
2081 const BasicBlock *DominatorBlock = Dominator->getBlock();
2083 assert((DominatorBlock == Dominatee->getBlock()) &&
2084 "Asking for local domination when accesses are in different blocks!");
2085 // A node dominates itself.
2086 if (Dominatee == Dominator)
2087 return true;
2089 // When Dominatee is defined on function entry, it is not dominated by another
2090 // memory access.
2091 if (isLiveOnEntryDef(Dominatee))
2092 return false;
2094 // When Dominator is defined on function entry, it dominates the other memory
2095 // access.
2096 if (isLiveOnEntryDef(Dominator))
2097 return true;
2099 if (!BlockNumberingValid.count(DominatorBlock))
2100 renumberBlock(DominatorBlock);
2102 unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
2103 // All numbers start with 1
2104 assert(DominatorNum != 0 && "Block was not numbered properly");
2105 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
2106 assert(DominateeNum != 0 && "Block was not numbered properly");
2107 return DominatorNum < DominateeNum;
2110 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2111 const MemoryAccess *Dominatee) const {
2112 if (Dominator == Dominatee)
2113 return true;
2115 if (isLiveOnEntryDef(Dominatee))
2116 return false;
2118 if (Dominator->getBlock() != Dominatee->getBlock())
2119 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
2120 return locallyDominates(Dominator, Dominatee);
2123 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2124 const Use &Dominatee) const {
2125 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
2126 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
2127 // The def must dominate the incoming block of the phi.
2128 if (UseBB != Dominator->getBlock())
2129 return DT->dominates(Dominator->getBlock(), UseBB);
2130 // If the UseBB and the DefBB are the same, compare locally.
2131 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
2133 // If it's not a PHI node use, the normal dominates can already handle it.
2134 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
2137 const static char LiveOnEntryStr[] = "liveOnEntry";
2139 void MemoryAccess::print(raw_ostream &OS) const {
2140 switch (getValueID()) {
2141 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
2142 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
2143 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
2145 llvm_unreachable("invalid value id");
2148 void MemoryDef::print(raw_ostream &OS) const {
2149 MemoryAccess *UO = getDefiningAccess();
2151 auto printID = [&OS](MemoryAccess *A) {
2152 if (A && A->getID())
2153 OS << A->getID();
2154 else
2155 OS << LiveOnEntryStr;
2158 OS << getID() << " = MemoryDef(";
2159 printID(UO);
2160 OS << ")";
2162 if (isOptimized()) {
2163 OS << "->";
2164 printID(getOptimized());
2166 if (Optional<AliasResult> AR = getOptimizedAccessType())
2167 OS << " " << *AR;
2171 void MemoryPhi::print(raw_ostream &OS) const {
2172 ListSeparator LS(",");
2173 OS << getID() << " = MemoryPhi(";
2174 for (const auto &Op : operands()) {
2175 BasicBlock *BB = getIncomingBlock(Op);
2176 MemoryAccess *MA = cast<MemoryAccess>(Op);
2178 OS << LS << '{';
2179 if (BB->hasName())
2180 OS << BB->getName();
2181 else
2182 BB->printAsOperand(OS, false);
2183 OS << ',';
2184 if (unsigned ID = MA->getID())
2185 OS << ID;
2186 else
2187 OS << LiveOnEntryStr;
2188 OS << '}';
2190 OS << ')';
2193 void MemoryUse::print(raw_ostream &OS) const {
2194 MemoryAccess *UO = getDefiningAccess();
2195 OS << "MemoryUse(";
2196 if (UO && UO->getID())
2197 OS << UO->getID();
2198 else
2199 OS << LiveOnEntryStr;
2200 OS << ')';
2202 if (Optional<AliasResult> AR = getOptimizedAccessType())
2203 OS << " " << *AR;
2206 void MemoryAccess::dump() const {
2207 // Cannot completely remove virtual function even in release mode.
2208 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2209 print(dbgs());
2210 dbgs() << "\n";
2211 #endif
2214 char MemorySSAPrinterLegacyPass::ID = 0;
2216 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
2217 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2220 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
2221 AU.setPreservesAll();
2222 AU.addRequired<MemorySSAWrapperPass>();
2225 class DOTFuncMSSAInfo {
2226 private:
2227 const Function &F;
2228 MemorySSAAnnotatedWriter MSSAWriter;
2230 public:
2231 DOTFuncMSSAInfo(const Function &F, MemorySSA &MSSA)
2232 : F(F), MSSAWriter(&MSSA) {}
2234 const Function *getFunction() { return &F; }
2235 MemorySSAAnnotatedWriter &getWriter() { return MSSAWriter; }
2238 namespace llvm {
2240 template <>
2241 struct GraphTraits<DOTFuncMSSAInfo *> : public GraphTraits<const BasicBlock *> {
2242 static NodeRef getEntryNode(DOTFuncMSSAInfo *CFGInfo) {
2243 return &(CFGInfo->getFunction()->getEntryBlock());
2246 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
2247 using nodes_iterator = pointer_iterator<Function::const_iterator>;
2249 static nodes_iterator nodes_begin(DOTFuncMSSAInfo *CFGInfo) {
2250 return nodes_iterator(CFGInfo->getFunction()->begin());
2253 static nodes_iterator nodes_end(DOTFuncMSSAInfo *CFGInfo) {
2254 return nodes_iterator(CFGInfo->getFunction()->end());
2257 static size_t size(DOTFuncMSSAInfo *CFGInfo) {
2258 return CFGInfo->getFunction()->size();
2262 template <>
2263 struct DOTGraphTraits<DOTFuncMSSAInfo *> : public DefaultDOTGraphTraits {
2265 DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
2267 static std::string getGraphName(DOTFuncMSSAInfo *CFGInfo) {
2268 return "MSSA CFG for '" + CFGInfo->getFunction()->getName().str() +
2269 "' function";
2272 std::string getNodeLabel(const BasicBlock *Node, DOTFuncMSSAInfo *CFGInfo) {
2273 return DOTGraphTraits<DOTFuncInfo *>::getCompleteNodeLabel(
2274 Node, nullptr,
2275 [CFGInfo](raw_string_ostream &OS, const BasicBlock &BB) -> void {
2276 BB.print(OS, &CFGInfo->getWriter(), true, true);
2278 [](std::string &S, unsigned &I, unsigned Idx) -> void {
2279 std::string Str = S.substr(I, Idx - I);
2280 StringRef SR = Str;
2281 if (SR.count(" = MemoryDef(") || SR.count(" = MemoryPhi(") ||
2282 SR.count("MemoryUse("))
2283 return;
2284 DOTGraphTraits<DOTFuncInfo *>::eraseComment(S, I, Idx);
2288 static std::string getEdgeSourceLabel(const BasicBlock *Node,
2289 const_succ_iterator I) {
2290 return DOTGraphTraits<DOTFuncInfo *>::getEdgeSourceLabel(Node, I);
2293 /// Display the raw branch weights from PGO.
2294 std::string getEdgeAttributes(const BasicBlock *Node, const_succ_iterator I,
2295 DOTFuncMSSAInfo *CFGInfo) {
2296 return "";
2299 std::string getNodeAttributes(const BasicBlock *Node,
2300 DOTFuncMSSAInfo *CFGInfo) {
2301 return getNodeLabel(Node, CFGInfo).find(';') != std::string::npos
2302 ? "style=filled, fillcolor=lightpink"
2303 : "";
2307 } // namespace llvm
2309 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
2310 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2311 if (DotCFGMSSA != "") {
2312 DOTFuncMSSAInfo CFGInfo(F, MSSA);
2313 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA);
2314 } else
2315 MSSA.print(dbgs());
2317 if (VerifyMemorySSA)
2318 MSSA.verifyMemorySSA();
2319 return false;
2322 AnalysisKey MemorySSAAnalysis::Key;
2324 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2325 FunctionAnalysisManager &AM) {
2326 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2327 auto &AA = AM.getResult<AAManager>(F);
2328 return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT));
2331 bool MemorySSAAnalysis::Result::invalidate(
2332 Function &F, const PreservedAnalyses &PA,
2333 FunctionAnalysisManager::Invalidator &Inv) {
2334 auto PAC = PA.getChecker<MemorySSAAnalysis>();
2335 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
2336 Inv.invalidate<AAManager>(F, PA) ||
2337 Inv.invalidate<DominatorTreeAnalysis>(F, PA);
2340 PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2341 FunctionAnalysisManager &AM) {
2342 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
2343 if (DotCFGMSSA != "") {
2344 DOTFuncMSSAInfo CFGInfo(F, MSSA);
2345 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA);
2346 } else {
2347 OS << "MemorySSA for function: " << F.getName() << "\n";
2348 MSSA.print(OS);
2351 return PreservedAnalyses::all();
2354 PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2355 FunctionAnalysisManager &AM) {
2356 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
2358 return PreservedAnalyses::all();
2361 char MemorySSAWrapperPass::ID = 0;
2363 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2364 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2367 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2369 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2370 AU.setPreservesAll();
2371 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2372 AU.addRequiredTransitive<AAResultsWrapperPass>();
2375 bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2376 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2377 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2378 MSSA.reset(new MemorySSA(F, &AA, &DT));
2379 return false;
2382 void MemorySSAWrapperPass::verifyAnalysis() const {
2383 if (VerifyMemorySSA)
2384 MSSA->verifyMemorySSA();
2387 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
2388 MSSA->print(OS);
2391 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2393 /// Walk the use-def chains starting at \p StartingAccess and find
2394 /// the MemoryAccess that actually clobbers Loc.
2396 /// \returns our clobbering memory access
2397 template <typename AliasAnalysisType>
2398 MemoryAccess *
2399 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
2400 MemoryAccess *StartingAccess, const MemoryLocation &Loc,
2401 unsigned &UpwardWalkLimit) {
2402 assert(!isa<MemoryUse>(StartingAccess) && "Use cannot be defining access");
2404 Instruction *I = nullptr;
2405 if (auto *StartingUseOrDef = dyn_cast<MemoryUseOrDef>(StartingAccess)) {
2406 if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2407 return StartingUseOrDef;
2409 I = StartingUseOrDef->getMemoryInst();
2411 // Conservatively, fences are always clobbers, so don't perform the walk if
2412 // we hit a fence.
2413 if (!isa<CallBase>(I) && I->isFenceLike())
2414 return StartingUseOrDef;
2417 UpwardsMemoryQuery Q;
2418 Q.OriginalAccess = StartingAccess;
2419 Q.StartingLoc = Loc;
2420 Q.Inst = nullptr;
2421 Q.IsCall = false;
2423 // Unlike the other function, do not walk to the def of a def, because we are
2424 // handed something we already believe is the clobbering access.
2425 // We never set SkipSelf to true in Q in this method.
2426 MemoryAccess *Clobber =
2427 Walker.findClobber(StartingAccess, Q, UpwardWalkLimit);
2428 LLVM_DEBUG({
2429 dbgs() << "Clobber starting at access " << *StartingAccess << "\n";
2430 if (I)
2431 dbgs() << " for instruction " << *I << "\n";
2432 dbgs() << " is " << *Clobber << "\n";
2434 return Clobber;
2437 template <typename AliasAnalysisType>
2438 MemoryAccess *
2439 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
2440 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) {
2441 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2442 // If this is a MemoryPhi, we can't do anything.
2443 if (!StartingAccess)
2444 return MA;
2446 bool IsOptimized = false;
2448 // If this is an already optimized use or def, return the optimized result.
2449 // Note: Currently, we store the optimized def result in a separate field,
2450 // since we can't use the defining access.
2451 if (StartingAccess->isOptimized()) {
2452 if (!SkipSelf || !isa<MemoryDef>(StartingAccess))
2453 return StartingAccess->getOptimized();
2454 IsOptimized = true;
2457 const Instruction *I = StartingAccess->getMemoryInst();
2458 // We can't sanely do anything with a fence, since they conservatively clobber
2459 // all memory, and have no locations to get pointers from to try to
2460 // disambiguate.
2461 if (!isa<CallBase>(I) && I->isFenceLike())
2462 return StartingAccess;
2464 UpwardsMemoryQuery Q(I, StartingAccess);
2466 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) {
2467 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
2468 StartingAccess->setOptimized(LiveOnEntry);
2469 StartingAccess->setOptimizedAccessType(None);
2470 return LiveOnEntry;
2473 MemoryAccess *OptimizedAccess;
2474 if (!IsOptimized) {
2475 // Start with the thing we already think clobbers this location
2476 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2478 // At this point, DefiningAccess may be the live on entry def.
2479 // If it is, we will not get a better result.
2480 if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
2481 StartingAccess->setOptimized(DefiningAccess);
2482 StartingAccess->setOptimizedAccessType(None);
2483 return DefiningAccess;
2486 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit);
2487 StartingAccess->setOptimized(OptimizedAccess);
2488 if (MSSA->isLiveOnEntryDef(OptimizedAccess))
2489 StartingAccess->setOptimizedAccessType(None);
2490 else if (Q.AR && *Q.AR == AliasResult::MustAlias)
2491 StartingAccess->setOptimizedAccessType(
2492 AliasResult(AliasResult::MustAlias));
2493 } else
2494 OptimizedAccess = StartingAccess->getOptimized();
2496 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2497 LLVM_DEBUG(dbgs() << *StartingAccess << "\n");
2498 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is ");
2499 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n");
2501 MemoryAccess *Result;
2502 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) &&
2503 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) {
2504 assert(isa<MemoryDef>(Q.OriginalAccess));
2505 Q.SkipSelfAccess = true;
2506 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit);
2507 } else
2508 Result = OptimizedAccess;
2510 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf);
2511 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n");
2513 return Result;
2516 MemoryAccess *
2517 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2518 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2519 return Use->getDefiningAccess();
2520 return MA;
2523 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2524 MemoryAccess *StartingAccess, const MemoryLocation &) {
2525 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2526 return Use->getDefiningAccess();
2527 return StartingAccess;
2530 void MemoryPhi::deleteMe(DerivedUser *Self) {
2531 delete static_cast<MemoryPhi *>(Self);
2534 void MemoryDef::deleteMe(DerivedUser *Self) {
2535 delete static_cast<MemoryDef *>(Self);
2538 void MemoryUse::deleteMe(DerivedUser *Self) {
2539 delete static_cast<MemoryUse *>(Self);
2542 bool upward_defs_iterator::IsGuaranteedLoopInvariant(Value *Ptr) const {
2543 auto IsGuaranteedLoopInvariantBase = [](Value *Ptr) {
2544 Ptr = Ptr->stripPointerCasts();
2545 if (!isa<Instruction>(Ptr))
2546 return true;
2547 return isa<AllocaInst>(Ptr);
2550 Ptr = Ptr->stripPointerCasts();
2551 if (auto *I = dyn_cast<Instruction>(Ptr)) {
2552 if (I->getParent()->isEntryBlock())
2553 return true;
2555 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
2556 return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) &&
2557 GEP->hasAllConstantIndices();
2559 return IsGuaranteedLoopInvariantBase(Ptr);