1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the MemorySSA class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/MemorySSA.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/iterator.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/CFGPrinter.h"
29 #include "llvm/Analysis/IteratedDominanceFrontier.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/AssemblyAnnotationWriter.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/PassManager.h"
42 #include "llvm/IR/Use.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/AtomicOrdering.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/FormattedStream.h"
52 #include "llvm/Support/raw_ostream.h"
62 #define DEBUG_TYPE "memoryssa"
64 static cl::opt
<std::string
>
65 DotCFGMSSA("dot-cfg-mssa",
66 cl::value_desc("file name for generated dot file"),
67 cl::desc("file name for generated dot file"), cl::init(""));
69 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass
, "memoryssa", "Memory SSA", false,
71 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
72 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
73 INITIALIZE_PASS_END(MemorySSAWrapperPass
, "memoryssa", "Memory SSA", false,
76 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass
, "print-memoryssa",
77 "Memory SSA Printer", false, false)
78 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass
)
79 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass
, "print-memoryssa",
80 "Memory SSA Printer", false, false)
82 static cl::opt
<unsigned> MaxCheckLimit(
83 "memssa-check-limit", cl::Hidden
, cl::init(100),
84 cl::desc("The maximum number of stores/phis MemorySSA"
85 "will consider trying to walk past (default = 100)"));
87 // Always verify MemorySSA if expensive checking is enabled.
88 #ifdef EXPENSIVE_CHECKS
89 bool llvm::VerifyMemorySSA
= true;
91 bool llvm::VerifyMemorySSA
= false;
94 static cl::opt
<bool, true>
95 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA
),
96 cl::Hidden
, cl::desc("Enable verification of MemorySSA."));
100 /// An assembly annotator class to print Memory SSA information in
102 class MemorySSAAnnotatedWriter
: public AssemblyAnnotationWriter
{
103 friend class MemorySSA
;
105 const MemorySSA
*MSSA
;
108 MemorySSAAnnotatedWriter(const MemorySSA
*M
) : MSSA(M
) {}
110 void emitBasicBlockStartAnnot(const BasicBlock
*BB
,
111 formatted_raw_ostream
&OS
) override
{
112 if (MemoryAccess
*MA
= MSSA
->getMemoryAccess(BB
))
113 OS
<< "; " << *MA
<< "\n";
116 void emitInstructionAnnot(const Instruction
*I
,
117 formatted_raw_ostream
&OS
) override
{
118 if (MemoryAccess
*MA
= MSSA
->getMemoryAccess(I
))
119 OS
<< "; " << *MA
<< "\n";
123 } // end namespace llvm
127 /// Our current alias analysis API differentiates heavily between calls and
128 /// non-calls, and functions called on one usually assert on the other.
129 /// This class encapsulates the distinction to simplify other code that wants
130 /// "Memory affecting instructions and related data" to use as a key.
131 /// For example, this class is used as a densemap key in the use optimizer.
132 class MemoryLocOrCall
{
136 MemoryLocOrCall(MemoryUseOrDef
*MUD
)
137 : MemoryLocOrCall(MUD
->getMemoryInst()) {}
138 MemoryLocOrCall(const MemoryUseOrDef
*MUD
)
139 : MemoryLocOrCall(MUD
->getMemoryInst()) {}
141 MemoryLocOrCall(Instruction
*Inst
) {
142 if (auto *C
= dyn_cast
<CallBase
>(Inst
)) {
147 // There is no such thing as a memorylocation for a fence inst, and it is
148 // unique in that regard.
149 if (!isa
<FenceInst
>(Inst
))
150 Loc
= MemoryLocation::get(Inst
);
154 explicit MemoryLocOrCall(const MemoryLocation
&Loc
) : Loc(Loc
) {}
156 const CallBase
*getCall() const {
161 MemoryLocation
getLoc() const {
166 bool operator==(const MemoryLocOrCall
&Other
) const {
167 if (IsCall
!= Other
.IsCall
)
171 return Loc
== Other
.Loc
;
173 if (Call
->getCalledOperand() != Other
.Call
->getCalledOperand())
176 return Call
->arg_size() == Other
.Call
->arg_size() &&
177 std::equal(Call
->arg_begin(), Call
->arg_end(),
178 Other
.Call
->arg_begin());
183 const CallBase
*Call
;
188 } // end anonymous namespace
192 template <> struct DenseMapInfo
<MemoryLocOrCall
> {
193 static inline MemoryLocOrCall
getEmptyKey() {
194 return MemoryLocOrCall(DenseMapInfo
<MemoryLocation
>::getEmptyKey());
197 static inline MemoryLocOrCall
getTombstoneKey() {
198 return MemoryLocOrCall(DenseMapInfo
<MemoryLocation
>::getTombstoneKey());
201 static unsigned getHashValue(const MemoryLocOrCall
&MLOC
) {
205 DenseMapInfo
<MemoryLocation
>::getHashValue(MLOC
.getLoc()));
208 hash_combine(MLOC
.IsCall
, DenseMapInfo
<const Value
*>::getHashValue(
209 MLOC
.getCall()->getCalledOperand()));
211 for (const Value
*Arg
: MLOC
.getCall()->args())
212 hash
= hash_combine(hash
, DenseMapInfo
<const Value
*>::getHashValue(Arg
));
216 static bool isEqual(const MemoryLocOrCall
&LHS
, const MemoryLocOrCall
&RHS
) {
221 } // end namespace llvm
223 /// This does one-way checks to see if Use could theoretically be hoisted above
224 /// MayClobber. This will not check the other way around.
226 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
227 /// MayClobber, with no potentially clobbering operations in between them.
228 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
229 static bool areLoadsReorderable(const LoadInst
*Use
,
230 const LoadInst
*MayClobber
) {
231 bool VolatileUse
= Use
->isVolatile();
232 bool VolatileClobber
= MayClobber
->isVolatile();
233 // Volatile operations may never be reordered with other volatile operations.
234 if (VolatileUse
&& VolatileClobber
)
236 // Otherwise, volatile doesn't matter here. From the language reference:
237 // 'optimizers may change the order of volatile operations relative to
238 // non-volatile operations.'"
240 // If a load is seq_cst, it cannot be moved above other loads. If its ordering
241 // is weaker, it can be moved above other loads. We just need to be sure that
242 // MayClobber isn't an acquire load, because loads can't be moved above
245 // Note that this explicitly *does* allow the free reordering of monotonic (or
246 // weaker) loads of the same address.
247 bool SeqCstUse
= Use
->getOrdering() == AtomicOrdering::SequentiallyConsistent
;
248 bool MayClobberIsAcquire
= isAtLeastOrStrongerThan(MayClobber
->getOrdering(),
249 AtomicOrdering::Acquire
);
250 return !(SeqCstUse
|| MayClobberIsAcquire
);
255 struct ClobberAlias
{
257 Optional
<AliasResult
> AR
;
260 } // end anonymous namespace
262 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
263 // ignored if IsClobber = false.
264 template <typename AliasAnalysisType
>
266 instructionClobbersQuery(const MemoryDef
*MD
, const MemoryLocation
&UseLoc
,
267 const Instruction
*UseInst
, AliasAnalysisType
&AA
) {
268 Instruction
*DefInst
= MD
->getMemoryInst();
269 assert(DefInst
&& "Defining instruction not actually an instruction");
270 Optional
<AliasResult
> AR
;
272 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(DefInst
)) {
273 // These intrinsics will show up as affecting memory, but they are just
276 // FIXME: We probably don't actually want MemorySSA to model these at all
277 // (including creating MemoryAccesses for them): we just end up inventing
278 // clobbers where they don't really exist at all. Please see D43269 for
280 switch (II
->getIntrinsicID()) {
281 case Intrinsic::invariant_start
:
282 case Intrinsic::invariant_end
:
283 case Intrinsic::assume
:
284 case Intrinsic::experimental_noalias_scope_decl
:
285 return {false, AliasResult(AliasResult::NoAlias
)};
286 case Intrinsic::dbg_addr
:
287 case Intrinsic::dbg_declare
:
288 case Intrinsic::dbg_label
:
289 case Intrinsic::dbg_value
:
290 llvm_unreachable("debuginfo shouldn't have associated defs!");
296 if (auto *CB
= dyn_cast_or_null
<CallBase
>(UseInst
)) {
297 ModRefInfo I
= AA
.getModRefInfo(DefInst
, CB
);
298 AR
= isMustSet(I
) ? AliasResult::MustAlias
: AliasResult::MayAlias
;
299 return {isModOrRefSet(I
), AR
};
302 if (auto *DefLoad
= dyn_cast
<LoadInst
>(DefInst
))
303 if (auto *UseLoad
= dyn_cast_or_null
<LoadInst
>(UseInst
))
304 return {!areLoadsReorderable(UseLoad
, DefLoad
),
305 AliasResult(AliasResult::MayAlias
)};
307 ModRefInfo I
= AA
.getModRefInfo(DefInst
, UseLoc
);
308 AR
= isMustSet(I
) ? AliasResult::MustAlias
: AliasResult::MayAlias
;
309 return {isModSet(I
), AR
};
312 template <typename AliasAnalysisType
>
313 static ClobberAlias
instructionClobbersQuery(MemoryDef
*MD
,
314 const MemoryUseOrDef
*MU
,
315 const MemoryLocOrCall
&UseMLOC
,
316 AliasAnalysisType
&AA
) {
317 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
318 // to exist while MemoryLocOrCall is pushed through places.
320 return instructionClobbersQuery(MD
, MemoryLocation(), MU
->getMemoryInst(),
322 return instructionClobbersQuery(MD
, UseMLOC
.getLoc(), MU
->getMemoryInst(),
326 // Return true when MD may alias MU, return false otherwise.
327 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef
*MD
, const MemoryUseOrDef
*MU
,
329 return instructionClobbersQuery(MD
, MU
, MemoryLocOrCall(MU
), AA
).IsClobber
;
334 struct UpwardsMemoryQuery
{
335 // True if our original query started off as a call
337 // The pointer location we started the query with. This will be empty if
339 MemoryLocation StartingLoc
;
340 // This is the instruction we were querying about.
341 const Instruction
*Inst
= nullptr;
342 // The MemoryAccess we actually got called with, used to test local domination
343 const MemoryAccess
*OriginalAccess
= nullptr;
344 Optional
<AliasResult
> AR
= AliasResult(AliasResult::MayAlias
);
345 bool SkipSelfAccess
= false;
347 UpwardsMemoryQuery() = default;
349 UpwardsMemoryQuery(const Instruction
*Inst
, const MemoryAccess
*Access
)
350 : IsCall(isa
<CallBase
>(Inst
)), Inst(Inst
), OriginalAccess(Access
) {
352 StartingLoc
= MemoryLocation::get(Inst
);
356 } // end anonymous namespace
358 template <typename AliasAnalysisType
>
359 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType
&AA
,
360 const Instruction
*I
) {
361 // If the memory can't be changed, then loads of the memory can't be
363 if (auto *LI
= dyn_cast
<LoadInst
>(I
))
364 return I
->hasMetadata(LLVMContext::MD_invariant_load
) ||
365 AA
.pointsToConstantMemory(MemoryLocation::get(LI
));
369 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
370 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
372 /// This is meant to be as simple and self-contained as possible. Because it
373 /// uses no cache, etc., it can be relatively expensive.
375 /// \param Start The MemoryAccess that we want to walk from.
376 /// \param ClobberAt A clobber for Start.
377 /// \param StartLoc The MemoryLocation for Start.
378 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to.
379 /// \param Query The UpwardsMemoryQuery we used for our search.
380 /// \param AA The AliasAnalysis we used for our search.
381 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
383 template <typename AliasAnalysisType
>
384 LLVM_ATTRIBUTE_UNUSED
static void
385 checkClobberSanity(const MemoryAccess
*Start
, MemoryAccess
*ClobberAt
,
386 const MemoryLocation
&StartLoc
, const MemorySSA
&MSSA
,
387 const UpwardsMemoryQuery
&Query
, AliasAnalysisType
&AA
,
388 bool AllowImpreciseClobber
= false) {
389 assert(MSSA
.dominates(ClobberAt
, Start
) && "Clobber doesn't dominate start?");
391 if (MSSA
.isLiveOnEntryDef(Start
)) {
392 assert(MSSA
.isLiveOnEntryDef(ClobberAt
) &&
393 "liveOnEntry must clobber itself");
397 bool FoundClobber
= false;
398 DenseSet
<ConstMemoryAccessPair
> VisitedPhis
;
399 SmallVector
<ConstMemoryAccessPair
, 8> Worklist
;
400 Worklist
.emplace_back(Start
, StartLoc
);
401 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
402 // is found, complain.
403 while (!Worklist
.empty()) {
404 auto MAP
= Worklist
.pop_back_val();
405 // All we care about is that nothing from Start to ClobberAt clobbers Start.
406 // We learn nothing from revisiting nodes.
407 if (!VisitedPhis
.insert(MAP
).second
)
410 for (const auto *MA
: def_chain(MAP
.first
)) {
411 if (MA
== ClobberAt
) {
412 if (const auto *MD
= dyn_cast
<MemoryDef
>(MA
)) {
413 // instructionClobbersQuery isn't essentially free, so don't use `|=`,
414 // since it won't let us short-circuit.
416 // Also, note that this can't be hoisted out of the `Worklist` loop,
417 // since MD may only act as a clobber for 1 of N MemoryLocations.
418 FoundClobber
= FoundClobber
|| MSSA
.isLiveOnEntryDef(MD
);
421 instructionClobbersQuery(MD
, MAP
.second
, Query
.Inst
, AA
);
431 // We should never hit liveOnEntry, unless it's the clobber.
432 assert(!MSSA
.isLiveOnEntryDef(MA
) && "Hit liveOnEntry before clobber?");
434 if (const auto *MD
= dyn_cast
<MemoryDef
>(MA
)) {
435 // If Start is a Def, skip self.
439 assert(!instructionClobbersQuery(MD
, MAP
.second
, Query
.Inst
, AA
)
441 "Found clobber before reaching ClobberAt!");
445 if (const auto *MU
= dyn_cast
<MemoryUse
>(MA
)) {
447 assert (MU
== Start
&&
448 "Can only find use in def chain if Start is a use");
452 assert(isa
<MemoryPhi
>(MA
));
454 // Add reachable phi predecessors
455 for (auto ItB
= upward_defs_begin(
456 {const_cast<MemoryAccess
*>(MA
), MAP
.second
},
458 ItE
= upward_defs_end();
460 if (MSSA
.getDomTree().isReachableFromEntry(ItB
.getPhiArgBlock()))
461 Worklist
.emplace_back(*ItB
);
465 // If the verify is done following an optimization, it's possible that
466 // ClobberAt was a conservative clobbering, that we can now infer is not a
467 // true clobbering access. Don't fail the verify if that's the case.
468 // We do have accesses that claim they're optimized, but could be optimized
469 // further. Updating all these can be expensive, so allow it for now (FIXME).
470 if (AllowImpreciseClobber
)
473 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
474 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
475 assert((isa
<MemoryPhi
>(ClobberAt
) || FoundClobber
) &&
476 "ClobberAt never acted as a clobber");
481 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
483 template <class AliasAnalysisType
> class ClobberWalker
{
484 /// Save a few bytes by using unsigned instead of size_t.
485 using ListIndex
= unsigned;
487 /// Represents a span of contiguous MemoryDefs, potentially ending in a
491 // Note that, because we always walk in reverse, Last will always dominate
492 // First. Also note that First and Last are inclusive.
495 Optional
<ListIndex
> Previous
;
497 DefPath(const MemoryLocation
&Loc
, MemoryAccess
*First
, MemoryAccess
*Last
,
498 Optional
<ListIndex
> Previous
)
499 : Loc(Loc
), First(First
), Last(Last
), Previous(Previous
) {}
501 DefPath(const MemoryLocation
&Loc
, MemoryAccess
*Init
,
502 Optional
<ListIndex
> Previous
)
503 : DefPath(Loc
, Init
, Init
, Previous
) {}
506 const MemorySSA
&MSSA
;
507 AliasAnalysisType
&AA
;
509 UpwardsMemoryQuery
*Query
;
510 unsigned *UpwardWalkLimit
;
512 // Phi optimization bookkeeping:
513 // List of DefPath to process during the current phi optimization walk.
514 SmallVector
<DefPath
, 32> Paths
;
515 // List of visited <Access, Location> pairs; we can skip paths already
516 // visited with the same memory location.
517 DenseSet
<ConstMemoryAccessPair
> VisitedPhis
;
518 // Record if phi translation has been performed during the current phi
519 // optimization walk, as merging alias results after phi translation can
520 // yield incorrect results. Context in PR46156.
521 bool PerformedPhiTranslation
= false;
523 /// Find the nearest def or phi that `From` can legally be optimized to.
524 const MemoryAccess
*getWalkTarget(const MemoryPhi
*From
) const {
525 assert(From
->getNumOperands() && "Phi with no operands?");
527 BasicBlock
*BB
= From
->getBlock();
528 MemoryAccess
*Result
= MSSA
.getLiveOnEntryDef();
529 DomTreeNode
*Node
= DT
.getNode(BB
);
530 while ((Node
= Node
->getIDom())) {
531 auto *Defs
= MSSA
.getBlockDefs(Node
->getBlock());
533 return &*Defs
->rbegin();
538 /// Result of calling walkToPhiOrClobber.
539 struct UpwardsWalkResult
{
540 /// The "Result" of the walk. Either a clobber, the last thing we walked, or
541 /// both. Include alias info when clobber found.
542 MemoryAccess
*Result
;
544 Optional
<AliasResult
> AR
;
547 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
548 /// This will update Desc.Last as it walks. It will (optionally) also stop at
551 /// This does not test for whether StopAt is a clobber
553 walkToPhiOrClobber(DefPath
&Desc
, const MemoryAccess
*StopAt
= nullptr,
554 const MemoryAccess
*SkipStopAt
= nullptr) const {
555 assert(!isa
<MemoryUse
>(Desc
.Last
) && "Uses don't exist in my world");
556 assert(UpwardWalkLimit
&& "Need a valid walk limit");
557 bool LimitAlreadyReached
= false;
558 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set
559 // it to 1. This will not do any alias() calls. It either returns in the
560 // first iteration in the loop below, or is set back to 0 if all def chains
561 // are free of MemoryDefs.
562 if (!*UpwardWalkLimit
) {
563 *UpwardWalkLimit
= 1;
564 LimitAlreadyReached
= true;
567 for (MemoryAccess
*Current
: def_chain(Desc
.Last
)) {
569 if (Current
== StopAt
|| Current
== SkipStopAt
)
570 return {Current
, false, AliasResult(AliasResult::MayAlias
)};
572 if (auto *MD
= dyn_cast
<MemoryDef
>(Current
)) {
573 if (MSSA
.isLiveOnEntryDef(MD
))
574 return {MD
, true, AliasResult(AliasResult::MustAlias
)};
576 if (!--*UpwardWalkLimit
)
577 return {Current
, true, AliasResult(AliasResult::MayAlias
)};
580 instructionClobbersQuery(MD
, Desc
.Loc
, Query
->Inst
, AA
);
582 return {MD
, true, CA
.AR
};
586 if (LimitAlreadyReached
)
587 *UpwardWalkLimit
= 0;
589 assert(isa
<MemoryPhi
>(Desc
.Last
) &&
590 "Ended at a non-clobber that's not a phi?");
591 return {Desc
.Last
, false, AliasResult(AliasResult::MayAlias
)};
594 void addSearches(MemoryPhi
*Phi
, SmallVectorImpl
<ListIndex
> &PausedSearches
,
595 ListIndex PriorNode
) {
596 auto UpwardDefsBegin
= upward_defs_begin({Phi
, Paths
[PriorNode
].Loc
}, DT
,
597 &PerformedPhiTranslation
);
598 auto UpwardDefs
= make_range(UpwardDefsBegin
, upward_defs_end());
599 for (const MemoryAccessPair
&P
: UpwardDefs
) {
600 PausedSearches
.push_back(Paths
.size());
601 Paths
.emplace_back(P
.second
, P
.first
, PriorNode
);
605 /// Represents a search that terminated after finding a clobber. This clobber
606 /// may or may not be present in the path of defs from LastNode..SearchStart,
607 /// since it may have been retrieved from cache.
608 struct TerminatedPath
{
609 MemoryAccess
*Clobber
;
613 /// Get an access that keeps us from optimizing to the given phi.
615 /// PausedSearches is an array of indices into the Paths array. Its incoming
616 /// value is the indices of searches that stopped at the last phi optimization
617 /// target. It's left in an unspecified state.
619 /// If this returns None, NewPaused is a vector of searches that terminated
620 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
621 Optional
<TerminatedPath
>
622 getBlockingAccess(const MemoryAccess
*StopWhere
,
623 SmallVectorImpl
<ListIndex
> &PausedSearches
,
624 SmallVectorImpl
<ListIndex
> &NewPaused
,
625 SmallVectorImpl
<TerminatedPath
> &Terminated
) {
626 assert(!PausedSearches
.empty() && "No searches to continue?");
628 // BFS vs DFS really doesn't make a difference here, so just do a DFS with
629 // PausedSearches as our stack.
630 while (!PausedSearches
.empty()) {
631 ListIndex PathIndex
= PausedSearches
.pop_back_val();
632 DefPath
&Node
= Paths
[PathIndex
];
634 // If we've already visited this path with this MemoryLocation, we don't
635 // need to do so again.
637 // NOTE: That we just drop these paths on the ground makes caching
638 // behavior sporadic. e.g. given a diamond:
643 // ...If we walk D, B, A, C, we'll only cache the result of phi
644 // optimization for A, B, and D; C will be skipped because it dies here.
645 // This arguably isn't the worst thing ever, since:
646 // - We generally query things in a top-down order, so if we got below D
647 // without needing cache entries for {C, MemLoc}, then chances are
648 // that those cache entries would end up ultimately unused.
649 // - We still cache things for A, so C only needs to walk up a bit.
650 // If this behavior becomes problematic, we can fix without a ton of extra
652 if (!VisitedPhis
.insert({Node
.Last
, Node
.Loc
}).second
) {
653 if (PerformedPhiTranslation
) {
654 // If visiting this path performed Phi translation, don't continue,
655 // since it may not be correct to merge results from two paths if one
656 // relies on the phi translation.
657 TerminatedPath Term
{Node
.Last
, PathIndex
};
663 const MemoryAccess
*SkipStopWhere
= nullptr;
664 if (Query
->SkipSelfAccess
&& Node
.Loc
== Query
->StartingLoc
) {
665 assert(isa
<MemoryDef
>(Query
->OriginalAccess
));
666 SkipStopWhere
= Query
->OriginalAccess
;
669 UpwardsWalkResult Res
= walkToPhiOrClobber(Node
,
670 /*StopAt=*/StopWhere
,
671 /*SkipStopAt=*/SkipStopWhere
);
672 if (Res
.IsKnownClobber
) {
673 assert(Res
.Result
!= StopWhere
&& Res
.Result
!= SkipStopWhere
);
675 // If this wasn't a cache hit, we hit a clobber when walking. That's a
677 TerminatedPath Term
{Res
.Result
, PathIndex
};
678 if (!MSSA
.dominates(Res
.Result
, StopWhere
))
681 // Otherwise, it's a valid thing to potentially optimize to.
682 Terminated
.push_back(Term
);
686 if (Res
.Result
== StopWhere
|| Res
.Result
== SkipStopWhere
) {
687 // We've hit our target. Save this path off for if we want to continue
688 // walking. If we are in the mode of skipping the OriginalAccess, and
689 // we've reached back to the OriginalAccess, do not save path, we've
690 // just looped back to self.
691 if (Res
.Result
!= SkipStopWhere
)
692 NewPaused
.push_back(PathIndex
);
696 assert(!MSSA
.isLiveOnEntryDef(Res
.Result
) && "liveOnEntry is a clobber");
697 addSearches(cast
<MemoryPhi
>(Res
.Result
), PausedSearches
, PathIndex
);
703 template <typename T
, typename Walker
>
704 struct generic_def_path_iterator
705 : public iterator_facade_base
<generic_def_path_iterator
<T
, Walker
>,
706 std::forward_iterator_tag
, T
*> {
707 generic_def_path_iterator() {}
708 generic_def_path_iterator(Walker
*W
, ListIndex N
) : W(W
), N(N
) {}
710 T
&operator*() const { return curNode(); }
712 generic_def_path_iterator
&operator++() {
713 N
= curNode().Previous
;
717 bool operator==(const generic_def_path_iterator
&O
) const {
718 if (N
.hasValue() != O
.N
.hasValue())
720 return !N
.hasValue() || *N
== *O
.N
;
724 T
&curNode() const { return W
->Paths
[*N
]; }
727 Optional
<ListIndex
> N
= None
;
730 using def_path_iterator
= generic_def_path_iterator
<DefPath
, ClobberWalker
>;
731 using const_def_path_iterator
=
732 generic_def_path_iterator
<const DefPath
, const ClobberWalker
>;
734 iterator_range
<def_path_iterator
> def_path(ListIndex From
) {
735 return make_range(def_path_iterator(this, From
), def_path_iterator());
738 iterator_range
<const_def_path_iterator
> const_def_path(ListIndex From
) const {
739 return make_range(const_def_path_iterator(this, From
),
740 const_def_path_iterator());
744 /// The path that contains our result.
745 TerminatedPath PrimaryClobber
;
746 /// The paths that we can legally cache back from, but that aren't
747 /// necessarily the result of the Phi optimization.
748 SmallVector
<TerminatedPath
, 4> OtherClobbers
;
751 ListIndex
defPathIndex(const DefPath
&N
) const {
752 // The assert looks nicer if we don't need to do &N
753 const DefPath
*NP
= &N
;
754 assert(!Paths
.empty() && NP
>= &Paths
.front() && NP
<= &Paths
.back() &&
755 "Out of bounds DefPath!");
756 return NP
- &Paths
.front();
759 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
760 /// that act as legal clobbers. Note that this won't return *all* clobbers.
762 /// Phi optimization algorithm tl;dr:
763 /// - Find the earliest def/phi, A, we can optimize to
764 /// - Find if all paths from the starting memory access ultimately reach A
765 /// - If not, optimization isn't possible.
766 /// - Otherwise, walk from A to another clobber or phi, A'.
767 /// - If A' is a def, we're done.
768 /// - If A' is a phi, try to optimize it.
770 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
771 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
772 OptznResult
tryOptimizePhi(MemoryPhi
*Phi
, MemoryAccess
*Start
,
773 const MemoryLocation
&Loc
) {
774 assert(Paths
.empty() && VisitedPhis
.empty() && !PerformedPhiTranslation
&&
775 "Reset the optimization state.");
777 Paths
.emplace_back(Loc
, Start
, Phi
, None
);
778 // Stores how many "valid" optimization nodes we had prior to calling
779 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
780 auto PriorPathsSize
= Paths
.size();
782 SmallVector
<ListIndex
, 16> PausedSearches
;
783 SmallVector
<ListIndex
, 8> NewPaused
;
784 SmallVector
<TerminatedPath
, 4> TerminatedPaths
;
786 addSearches(Phi
, PausedSearches
, 0);
788 // Moves the TerminatedPath with the "most dominated" Clobber to the end of
790 auto MoveDominatedPathToEnd
= [&](SmallVectorImpl
<TerminatedPath
> &Paths
) {
791 assert(!Paths
.empty() && "Need a path to move");
792 auto Dom
= Paths
.begin();
793 for (auto I
= std::next(Dom
), E
= Paths
.end(); I
!= E
; ++I
)
794 if (!MSSA
.dominates(I
->Clobber
, Dom
->Clobber
))
796 auto Last
= Paths
.end() - 1;
798 std::iter_swap(Last
, Dom
);
801 MemoryPhi
*Current
= Phi
;
803 assert(!MSSA
.isLiveOnEntryDef(Current
) &&
804 "liveOnEntry wasn't treated as a clobber?");
806 const auto *Target
= getWalkTarget(Current
);
807 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
808 // optimization for the prior phi.
809 assert(all_of(TerminatedPaths
, [&](const TerminatedPath
&P
) {
810 return MSSA
.dominates(P
.Clobber
, Target
);
813 // FIXME: This is broken, because the Blocker may be reported to be
814 // liveOnEntry, and we'll happily wait for that to disappear (read: never)
815 // For the moment, this is fine, since we do nothing with blocker info.
816 if (Optional
<TerminatedPath
> Blocker
= getBlockingAccess(
817 Target
, PausedSearches
, NewPaused
, TerminatedPaths
)) {
819 // Find the node we started at. We can't search based on N->Last, since
820 // we may have gone around a loop with a different MemoryLocation.
821 auto Iter
= find_if(def_path(Blocker
->LastNode
), [&](const DefPath
&N
) {
822 return defPathIndex(N
) < PriorPathsSize
;
824 assert(Iter
!= def_path_iterator());
826 DefPath
&CurNode
= *Iter
;
827 assert(CurNode
.Last
== Current
);
830 // A. We can't reliably cache all of NewPaused back. Consider a case
831 // where we have two paths in NewPaused; one of which can't optimize
832 // above this phi, whereas the other can. If we cache the second path
833 // back, we'll end up with suboptimal cache entries. We can handle
834 // cases like this a bit better when we either try to find all
835 // clobbers that block phi optimization, or when our cache starts
836 // supporting unfinished searches.
837 // B. We can't reliably cache TerminatedPaths back here without doing
838 // extra checks; consider a case like:
844 // Where T is our target, C is a node with a clobber on it, D is a
845 // diamond (with a clobber *only* on the left or right node, N), and
846 // S is our start. Say we walk to D, through the node opposite N
847 // (read: ignoring the clobber), and see a cache entry in the top
848 // node of D. That cache entry gets put into TerminatedPaths. We then
849 // walk up to C (N is later in our worklist), find the clobber, and
850 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
851 // the bottom part of D to the cached clobber, ignoring the clobber
852 // in N. Again, this problem goes away if we start tracking all
853 // blockers for a given phi optimization.
854 TerminatedPath Result
{CurNode
.Last
, defPathIndex(CurNode
)};
858 // If there's nothing left to search, then all paths led to valid clobbers
859 // that we got from our cache; pick the nearest to the start, and allow
860 // the rest to be cached back.
861 if (NewPaused
.empty()) {
862 MoveDominatedPathToEnd(TerminatedPaths
);
863 TerminatedPath Result
= TerminatedPaths
.pop_back_val();
864 return {Result
, std::move(TerminatedPaths
)};
867 MemoryAccess
*DefChainEnd
= nullptr;
868 SmallVector
<TerminatedPath
, 4> Clobbers
;
869 for (ListIndex Paused
: NewPaused
) {
870 UpwardsWalkResult WR
= walkToPhiOrClobber(Paths
[Paused
]);
871 if (WR
.IsKnownClobber
)
872 Clobbers
.push_back({WR
.Result
, Paused
});
874 // Micro-opt: If we hit the end of the chain, save it.
875 DefChainEnd
= WR
.Result
;
878 if (!TerminatedPaths
.empty()) {
879 // If we couldn't find the dominating phi/liveOnEntry in the above loop,
882 for (auto *MA
: def_chain(const_cast<MemoryAccess
*>(Target
)))
884 assert(DefChainEnd
&& "Failed to find dominating phi/liveOnEntry");
886 // If any of the terminated paths don't dominate the phi we'll try to
887 // optimize, we need to figure out what they are and quit.
888 const BasicBlock
*ChainBB
= DefChainEnd
->getBlock();
889 for (const TerminatedPath
&TP
: TerminatedPaths
) {
890 // Because we know that DefChainEnd is as "high" as we can go, we
891 // don't need local dominance checks; BB dominance is sufficient.
892 if (DT
.dominates(ChainBB
, TP
.Clobber
->getBlock()))
893 Clobbers
.push_back(TP
);
897 // If we have clobbers in the def chain, find the one closest to Current
899 if (!Clobbers
.empty()) {
900 MoveDominatedPathToEnd(Clobbers
);
901 TerminatedPath Result
= Clobbers
.pop_back_val();
902 return {Result
, std::move(Clobbers
)};
905 assert(all_of(NewPaused
,
906 [&](ListIndex I
) { return Paths
[I
].Last
== DefChainEnd
; }));
908 // Because liveOnEntry is a clobber, this must be a phi.
909 auto *DefChainPhi
= cast
<MemoryPhi
>(DefChainEnd
);
911 PriorPathsSize
= Paths
.size();
912 PausedSearches
.clear();
913 for (ListIndex I
: NewPaused
)
914 addSearches(DefChainPhi
, PausedSearches
, I
);
917 Current
= DefChainPhi
;
921 void verifyOptResult(const OptznResult
&R
) const {
922 assert(all_of(R
.OtherClobbers
, [&](const TerminatedPath
&P
) {
923 return MSSA
.dominates(P
.Clobber
, R
.PrimaryClobber
.Clobber
);
927 void resetPhiOptznState() {
930 PerformedPhiTranslation
= false;
934 ClobberWalker(const MemorySSA
&MSSA
, AliasAnalysisType
&AA
, DominatorTree
&DT
)
935 : MSSA(MSSA
), AA(AA
), DT(DT
) {}
937 AliasAnalysisType
*getAA() { return &AA
; }
938 /// Finds the nearest clobber for the given query, optimizing phis if
940 MemoryAccess
*findClobber(MemoryAccess
*Start
, UpwardsMemoryQuery
&Q
,
941 unsigned &UpWalkLimit
) {
943 UpwardWalkLimit
= &UpWalkLimit
;
944 // Starting limit must be > 0.
948 MemoryAccess
*Current
= Start
;
949 // This walker pretends uses don't exist. If we're handed one, silently grab
950 // its def. (This has the nice side-effect of ensuring we never cache uses)
951 if (auto *MU
= dyn_cast
<MemoryUse
>(Start
))
952 Current
= MU
->getDefiningAccess();
954 DefPath
FirstDesc(Q
.StartingLoc
, Current
, Current
, None
);
955 // Fast path for the overly-common case (no crazy phi optimization
957 UpwardsWalkResult WalkResult
= walkToPhiOrClobber(FirstDesc
);
958 MemoryAccess
*Result
;
959 if (WalkResult
.IsKnownClobber
) {
960 Result
= WalkResult
.Result
;
961 Q
.AR
= WalkResult
.AR
;
963 OptznResult OptRes
= tryOptimizePhi(cast
<MemoryPhi
>(FirstDesc
.Last
),
964 Current
, Q
.StartingLoc
);
965 verifyOptResult(OptRes
);
966 resetPhiOptznState();
967 Result
= OptRes
.PrimaryClobber
.Clobber
;
970 #ifdef EXPENSIVE_CHECKS
971 if (!Q
.SkipSelfAccess
&& *UpwardWalkLimit
> 0)
972 checkClobberSanity(Current
, Result
, Q
.StartingLoc
, MSSA
, Q
, AA
);
978 struct RenamePassData
{
980 DomTreeNode::const_iterator ChildIt
;
981 MemoryAccess
*IncomingVal
;
983 RenamePassData(DomTreeNode
*D
, DomTreeNode::const_iterator It
,
985 : DTN(D
), ChildIt(It
), IncomingVal(M
) {}
987 void swap(RenamePassData
&RHS
) {
988 std::swap(DTN
, RHS
.DTN
);
989 std::swap(ChildIt
, RHS
.ChildIt
);
990 std::swap(IncomingVal
, RHS
.IncomingVal
);
994 } // end anonymous namespace
998 template <class AliasAnalysisType
> class MemorySSA::ClobberWalkerBase
{
999 ClobberWalker
<AliasAnalysisType
> Walker
;
1003 ClobberWalkerBase(MemorySSA
*M
, AliasAnalysisType
*A
, DominatorTree
*D
)
1004 : Walker(*M
, *A
, *D
), MSSA(M
) {}
1006 MemoryAccess
*getClobberingMemoryAccessBase(MemoryAccess
*,
1007 const MemoryLocation
&,
1009 // Third argument (bool), defines whether the clobber search should skip the
1010 // original queried access. If true, there will be a follow-up query searching
1011 // for a clobber access past "self". Note that the Optimized access is not
1012 // updated if a new clobber is found by this SkipSelf search. If this
1013 // additional query becomes heavily used we may decide to cache the result.
1014 // Walker instantiations will decide how to set the SkipSelf bool.
1015 MemoryAccess
*getClobberingMemoryAccessBase(MemoryAccess
*, unsigned &, bool);
1018 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
1019 /// longer does caching on its own, but the name has been retained for the
1021 template <class AliasAnalysisType
>
1022 class MemorySSA::CachingWalker final
: public MemorySSAWalker
{
1023 ClobberWalkerBase
<AliasAnalysisType
> *Walker
;
1026 CachingWalker(MemorySSA
*M
, ClobberWalkerBase
<AliasAnalysisType
> *W
)
1027 : MemorySSAWalker(M
), Walker(W
) {}
1028 ~CachingWalker() override
= default;
1030 using MemorySSAWalker::getClobberingMemoryAccess
;
1032 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
, unsigned &UWL
) {
1033 return Walker
->getClobberingMemoryAccessBase(MA
, UWL
, false);
1035 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
,
1036 const MemoryLocation
&Loc
,
1038 return Walker
->getClobberingMemoryAccessBase(MA
, Loc
, UWL
);
1041 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
) override
{
1042 unsigned UpwardWalkLimit
= MaxCheckLimit
;
1043 return getClobberingMemoryAccess(MA
, UpwardWalkLimit
);
1045 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
,
1046 const MemoryLocation
&Loc
) override
{
1047 unsigned UpwardWalkLimit
= MaxCheckLimit
;
1048 return getClobberingMemoryAccess(MA
, Loc
, UpwardWalkLimit
);
1051 void invalidateInfo(MemoryAccess
*MA
) override
{
1052 if (auto *MUD
= dyn_cast
<MemoryUseOrDef
>(MA
))
1053 MUD
->resetOptimized();
1057 template <class AliasAnalysisType
>
1058 class MemorySSA::SkipSelfWalker final
: public MemorySSAWalker
{
1059 ClobberWalkerBase
<AliasAnalysisType
> *Walker
;
1062 SkipSelfWalker(MemorySSA
*M
, ClobberWalkerBase
<AliasAnalysisType
> *W
)
1063 : MemorySSAWalker(M
), Walker(W
) {}
1064 ~SkipSelfWalker() override
= default;
1066 using MemorySSAWalker::getClobberingMemoryAccess
;
1068 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
, unsigned &UWL
) {
1069 return Walker
->getClobberingMemoryAccessBase(MA
, UWL
, true);
1071 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
,
1072 const MemoryLocation
&Loc
,
1074 return Walker
->getClobberingMemoryAccessBase(MA
, Loc
, UWL
);
1077 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
) override
{
1078 unsigned UpwardWalkLimit
= MaxCheckLimit
;
1079 return getClobberingMemoryAccess(MA
, UpwardWalkLimit
);
1081 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
,
1082 const MemoryLocation
&Loc
) override
{
1083 unsigned UpwardWalkLimit
= MaxCheckLimit
;
1084 return getClobberingMemoryAccess(MA
, Loc
, UpwardWalkLimit
);
1087 void invalidateInfo(MemoryAccess
*MA
) override
{
1088 if (auto *MUD
= dyn_cast
<MemoryUseOrDef
>(MA
))
1089 MUD
->resetOptimized();
1093 } // end namespace llvm
1095 void MemorySSA::renameSuccessorPhis(BasicBlock
*BB
, MemoryAccess
*IncomingVal
,
1096 bool RenameAllUses
) {
1097 // Pass through values to our successors
1098 for (const BasicBlock
*S
: successors(BB
)) {
1099 auto It
= PerBlockAccesses
.find(S
);
1100 // Rename the phi nodes in our successor block
1101 if (It
== PerBlockAccesses
.end() || !isa
<MemoryPhi
>(It
->second
->front()))
1103 AccessList
*Accesses
= It
->second
.get();
1104 auto *Phi
= cast
<MemoryPhi
>(&Accesses
->front());
1105 if (RenameAllUses
) {
1106 bool ReplacementDone
= false;
1107 for (unsigned I
= 0, E
= Phi
->getNumIncomingValues(); I
!= E
; ++I
)
1108 if (Phi
->getIncomingBlock(I
) == BB
) {
1109 Phi
->setIncomingValue(I
, IncomingVal
);
1110 ReplacementDone
= true;
1112 (void) ReplacementDone
;
1113 assert(ReplacementDone
&& "Incomplete phi during partial rename");
1115 Phi
->addIncoming(IncomingVal
, BB
);
1119 /// Rename a single basic block into MemorySSA form.
1120 /// Uses the standard SSA renaming algorithm.
1121 /// \returns The new incoming value.
1122 MemoryAccess
*MemorySSA::renameBlock(BasicBlock
*BB
, MemoryAccess
*IncomingVal
,
1123 bool RenameAllUses
) {
1124 auto It
= PerBlockAccesses
.find(BB
);
1125 // Skip most processing if the list is empty.
1126 if (It
!= PerBlockAccesses
.end()) {
1127 AccessList
*Accesses
= It
->second
.get();
1128 for (MemoryAccess
&L
: *Accesses
) {
1129 if (MemoryUseOrDef
*MUD
= dyn_cast
<MemoryUseOrDef
>(&L
)) {
1130 if (MUD
->getDefiningAccess() == nullptr || RenameAllUses
)
1131 MUD
->setDefiningAccess(IncomingVal
);
1132 if (isa
<MemoryDef
>(&L
))
1142 /// This is the standard SSA renaming algorithm.
1144 /// We walk the dominator tree in preorder, renaming accesses, and then filling
1145 /// in phi nodes in our successors.
1146 void MemorySSA::renamePass(DomTreeNode
*Root
, MemoryAccess
*IncomingVal
,
1147 SmallPtrSetImpl
<BasicBlock
*> &Visited
,
1148 bool SkipVisited
, bool RenameAllUses
) {
1149 assert(Root
&& "Trying to rename accesses in an unreachable block");
1151 SmallVector
<RenamePassData
, 32> WorkStack
;
1152 // Skip everything if we already renamed this block and we are skipping.
1153 // Note: You can't sink this into the if, because we need it to occur
1154 // regardless of whether we skip blocks or not.
1155 bool AlreadyVisited
= !Visited
.insert(Root
->getBlock()).second
;
1156 if (SkipVisited
&& AlreadyVisited
)
1159 IncomingVal
= renameBlock(Root
->getBlock(), IncomingVal
, RenameAllUses
);
1160 renameSuccessorPhis(Root
->getBlock(), IncomingVal
, RenameAllUses
);
1161 WorkStack
.push_back({Root
, Root
->begin(), IncomingVal
});
1163 while (!WorkStack
.empty()) {
1164 DomTreeNode
*Node
= WorkStack
.back().DTN
;
1165 DomTreeNode::const_iterator ChildIt
= WorkStack
.back().ChildIt
;
1166 IncomingVal
= WorkStack
.back().IncomingVal
;
1168 if (ChildIt
== Node
->end()) {
1169 WorkStack
.pop_back();
1171 DomTreeNode
*Child
= *ChildIt
;
1172 ++WorkStack
.back().ChildIt
;
1173 BasicBlock
*BB
= Child
->getBlock();
1174 // Note: You can't sink this into the if, because we need it to occur
1175 // regardless of whether we skip blocks or not.
1176 AlreadyVisited
= !Visited
.insert(BB
).second
;
1177 if (SkipVisited
&& AlreadyVisited
) {
1178 // We already visited this during our renaming, which can happen when
1179 // being asked to rename multiple blocks. Figure out the incoming val,
1180 // which is the last def.
1181 // Incoming value can only change if there is a block def, and in that
1182 // case, it's the last block def in the list.
1183 if (auto *BlockDefs
= getWritableBlockDefs(BB
))
1184 IncomingVal
= &*BlockDefs
->rbegin();
1186 IncomingVal
= renameBlock(BB
, IncomingVal
, RenameAllUses
);
1187 renameSuccessorPhis(BB
, IncomingVal
, RenameAllUses
);
1188 WorkStack
.push_back({Child
, Child
->begin(), IncomingVal
});
1193 /// This handles unreachable block accesses by deleting phi nodes in
1194 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1195 /// being uses of the live on entry definition.
1196 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock
*BB
) {
1197 assert(!DT
->isReachableFromEntry(BB
) &&
1198 "Reachable block found while handling unreachable blocks");
1200 // Make sure phi nodes in our reachable successors end up with a
1201 // LiveOnEntryDef for our incoming edge, even though our block is forward
1202 // unreachable. We could just disconnect these blocks from the CFG fully,
1203 // but we do not right now.
1204 for (const BasicBlock
*S
: successors(BB
)) {
1205 if (!DT
->isReachableFromEntry(S
))
1207 auto It
= PerBlockAccesses
.find(S
);
1208 // Rename the phi nodes in our successor block
1209 if (It
== PerBlockAccesses
.end() || !isa
<MemoryPhi
>(It
->second
->front()))
1211 AccessList
*Accesses
= It
->second
.get();
1212 auto *Phi
= cast
<MemoryPhi
>(&Accesses
->front());
1213 Phi
->addIncoming(LiveOnEntryDef
.get(), BB
);
1216 auto It
= PerBlockAccesses
.find(BB
);
1217 if (It
== PerBlockAccesses
.end())
1220 auto &Accesses
= It
->second
;
1221 for (auto AI
= Accesses
->begin(), AE
= Accesses
->end(); AI
!= AE
;) {
1222 auto Next
= std::next(AI
);
1223 // If we have a phi, just remove it. We are going to replace all
1224 // users with live on entry.
1225 if (auto *UseOrDef
= dyn_cast
<MemoryUseOrDef
>(AI
))
1226 UseOrDef
->setDefiningAccess(LiveOnEntryDef
.get());
1228 Accesses
->erase(AI
);
1233 MemorySSA::MemorySSA(Function
&Func
, AliasAnalysis
*AA
, DominatorTree
*DT
)
1234 : AA(nullptr), DT(DT
), F(Func
), LiveOnEntryDef(nullptr), Walker(nullptr),
1235 SkipWalker(nullptr), NextID(0) {
1236 // Build MemorySSA using a batch alias analysis. This reuses the internal
1237 // state that AA collects during an alias()/getModRefInfo() call. This is
1238 // safe because there are no CFG changes while building MemorySSA and can
1239 // significantly reduce the time spent by the compiler in AA, because we will
1240 // make queries about all the instructions in the Function.
1241 assert(AA
&& "No alias analysis?");
1242 BatchAAResults
BatchAA(*AA
);
1243 buildMemorySSA(BatchAA
);
1244 // Intentionally leave AA to nullptr while building so we don't accidently
1245 // use non-batch AliasAnalysis.
1247 // Also create the walker here.
1251 MemorySSA::~MemorySSA() {
1252 // Drop all our references
1253 for (const auto &Pair
: PerBlockAccesses
)
1254 for (MemoryAccess
&MA
: *Pair
.second
)
1255 MA
.dropAllReferences();
1258 MemorySSA::AccessList
*MemorySSA::getOrCreateAccessList(const BasicBlock
*BB
) {
1259 auto Res
= PerBlockAccesses
.insert(std::make_pair(BB
, nullptr));
1262 Res
.first
->second
= std::make_unique
<AccessList
>();
1263 return Res
.first
->second
.get();
1266 MemorySSA::DefsList
*MemorySSA::getOrCreateDefsList(const BasicBlock
*BB
) {
1267 auto Res
= PerBlockDefs
.insert(std::make_pair(BB
, nullptr));
1270 Res
.first
->second
= std::make_unique
<DefsList
>();
1271 return Res
.first
->second
.get();
1276 /// This class is a batch walker of all MemoryUse's in the program, and points
1277 /// their defining access at the thing that actually clobbers them. Because it
1278 /// is a batch walker that touches everything, it does not operate like the
1279 /// other walkers. This walker is basically performing a top-down SSA renaming
1280 /// pass, where the version stack is used as the cache. This enables it to be
1281 /// significantly more time and memory efficient than using the regular walker,
1282 /// which is walking bottom-up.
1283 class MemorySSA::OptimizeUses
{
1285 OptimizeUses(MemorySSA
*MSSA
, CachingWalker
<BatchAAResults
> *Walker
,
1286 BatchAAResults
*BAA
, DominatorTree
*DT
)
1287 : MSSA(MSSA
), Walker(Walker
), AA(BAA
), DT(DT
) {}
1289 void optimizeUses();
1292 /// This represents where a given memorylocation is in the stack.
1293 struct MemlocStackInfo
{
1294 // This essentially is keeping track of versions of the stack. Whenever
1295 // the stack changes due to pushes or pops, these versions increase.
1296 unsigned long StackEpoch
;
1297 unsigned long PopEpoch
;
1298 // This is the lower bound of places on the stack to check. It is equal to
1299 // the place the last stack walk ended.
1300 // Note: Correctness depends on this being initialized to 0, which densemap
1302 unsigned long LowerBound
;
1303 const BasicBlock
*LowerBoundBlock
;
1304 // This is where the last walk for this memory location ended.
1305 unsigned long LastKill
;
1307 Optional
<AliasResult
> AR
;
1310 void optimizeUsesInBlock(const BasicBlock
*, unsigned long &, unsigned long &,
1311 SmallVectorImpl
<MemoryAccess
*> &,
1312 DenseMap
<MemoryLocOrCall
, MemlocStackInfo
> &);
1315 CachingWalker
<BatchAAResults
> *Walker
;
1320 } // end namespace llvm
1322 /// Optimize the uses in a given block This is basically the SSA renaming
1323 /// algorithm, with one caveat: We are able to use a single stack for all
1324 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1325 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1326 /// going to be some position in that stack of possible ones.
1328 /// We track the stack positions that each MemoryLocation needs
1329 /// to check, and last ended at. This is because we only want to check the
1330 /// things that changed since last time. The same MemoryLocation should
1331 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1332 /// things like this, and if they start, we can modify MemoryLocOrCall to
1333 /// include relevant data)
1334 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1335 const BasicBlock
*BB
, unsigned long &StackEpoch
, unsigned long &PopEpoch
,
1336 SmallVectorImpl
<MemoryAccess
*> &VersionStack
,
1337 DenseMap
<MemoryLocOrCall
, MemlocStackInfo
> &LocStackInfo
) {
1339 /// If no accesses, nothing to do.
1340 MemorySSA::AccessList
*Accesses
= MSSA
->getWritableBlockAccesses(BB
);
1341 if (Accesses
== nullptr)
1344 // Pop everything that doesn't dominate the current block off the stack,
1345 // increment the PopEpoch to account for this.
1348 !VersionStack
.empty() &&
1349 "Version stack should have liveOnEntry sentinel dominating everything");
1350 BasicBlock
*BackBlock
= VersionStack
.back()->getBlock();
1351 if (DT
->dominates(BackBlock
, BB
))
1353 while (VersionStack
.back()->getBlock() == BackBlock
)
1354 VersionStack
.pop_back();
1358 for (MemoryAccess
&MA
: *Accesses
) {
1359 auto *MU
= dyn_cast
<MemoryUse
>(&MA
);
1361 VersionStack
.push_back(&MA
);
1366 if (isUseTriviallyOptimizableToLiveOnEntry(*AA
, MU
->getMemoryInst())) {
1367 MU
->setDefiningAccess(MSSA
->getLiveOnEntryDef(), true, None
);
1371 MemoryLocOrCall
UseMLOC(MU
);
1372 auto &LocInfo
= LocStackInfo
[UseMLOC
];
1373 // If the pop epoch changed, it means we've removed stuff from top of
1374 // stack due to changing blocks. We may have to reset the lower bound or
1376 if (LocInfo
.PopEpoch
!= PopEpoch
) {
1377 LocInfo
.PopEpoch
= PopEpoch
;
1378 LocInfo
.StackEpoch
= StackEpoch
;
1379 // If the lower bound was in something that no longer dominates us, we
1380 // have to reset it.
1381 // We can't simply track stack size, because the stack may have had
1382 // pushes/pops in the meantime.
1383 // XXX: This is non-optimal, but only is slower cases with heavily
1384 // branching dominator trees. To get the optimal number of queries would
1385 // be to make lowerbound and lastkill a per-loc stack, and pop it until
1386 // the top of that stack dominates us. This does not seem worth it ATM.
1387 // A much cheaper optimization would be to always explore the deepest
1388 // branch of the dominator tree first. This will guarantee this resets on
1389 // the smallest set of blocks.
1390 if (LocInfo
.LowerBoundBlock
&& LocInfo
.LowerBoundBlock
!= BB
&&
1391 !DT
->dominates(LocInfo
.LowerBoundBlock
, BB
)) {
1392 // Reset the lower bound of things to check.
1393 // TODO: Some day we should be able to reset to last kill, rather than
1395 LocInfo
.LowerBound
= 0;
1396 LocInfo
.LowerBoundBlock
= VersionStack
[0]->getBlock();
1397 LocInfo
.LastKillValid
= false;
1399 } else if (LocInfo
.StackEpoch
!= StackEpoch
) {
1400 // If all that has changed is the StackEpoch, we only have to check the
1401 // new things on the stack, because we've checked everything before. In
1402 // this case, the lower bound of things to check remains the same.
1403 LocInfo
.PopEpoch
= PopEpoch
;
1404 LocInfo
.StackEpoch
= StackEpoch
;
1406 if (!LocInfo
.LastKillValid
) {
1407 LocInfo
.LastKill
= VersionStack
.size() - 1;
1408 LocInfo
.LastKillValid
= true;
1409 LocInfo
.AR
= AliasResult::MayAlias
;
1412 // At this point, we should have corrected last kill and LowerBound to be
1414 assert(LocInfo
.LowerBound
< VersionStack
.size() &&
1415 "Lower bound out of range");
1416 assert(LocInfo
.LastKill
< VersionStack
.size() &&
1417 "Last kill info out of range");
1418 // In any case, the new upper bound is the top of the stack.
1419 unsigned long UpperBound
= VersionStack
.size() - 1;
1421 if (UpperBound
- LocInfo
.LowerBound
> MaxCheckLimit
) {
1422 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU
<< " ("
1423 << *(MU
->getMemoryInst()) << ")"
1424 << " because there are "
1425 << UpperBound
- LocInfo
.LowerBound
1426 << " stores to disambiguate\n");
1427 // Because we did not walk, LastKill is no longer valid, as this may
1428 // have been a kill.
1429 LocInfo
.LastKillValid
= false;
1432 bool FoundClobberResult
= false;
1433 unsigned UpwardWalkLimit
= MaxCheckLimit
;
1434 while (UpperBound
> LocInfo
.LowerBound
) {
1435 if (isa
<MemoryPhi
>(VersionStack
[UpperBound
])) {
1436 // For phis, use the walker, see where we ended up, go there
1437 MemoryAccess
*Result
=
1438 Walker
->getClobberingMemoryAccess(MU
, UpwardWalkLimit
);
1439 // We are guaranteed to find it or something is wrong
1440 while (VersionStack
[UpperBound
] != Result
) {
1441 assert(UpperBound
!= 0);
1444 FoundClobberResult
= true;
1448 MemoryDef
*MD
= cast
<MemoryDef
>(VersionStack
[UpperBound
]);
1449 ClobberAlias CA
= instructionClobbersQuery(MD
, MU
, UseMLOC
, *AA
);
1451 FoundClobberResult
= true;
1458 // Note: Phis always have AliasResult AR set to MayAlias ATM.
1460 // At the end of this loop, UpperBound is either a clobber, or lower bound
1461 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1462 if (FoundClobberResult
|| UpperBound
< LocInfo
.LastKill
) {
1463 // We were last killed now by where we got to
1464 if (MSSA
->isLiveOnEntryDef(VersionStack
[UpperBound
]))
1466 MU
->setDefiningAccess(VersionStack
[UpperBound
], true, LocInfo
.AR
);
1467 LocInfo
.LastKill
= UpperBound
;
1469 // Otherwise, we checked all the new ones, and now we know we can get to
1471 MU
->setDefiningAccess(VersionStack
[LocInfo
.LastKill
], true, LocInfo
.AR
);
1473 LocInfo
.LowerBound
= VersionStack
.size() - 1;
1474 LocInfo
.LowerBoundBlock
= BB
;
1478 /// Optimize uses to point to their actual clobbering definitions.
1479 void MemorySSA::OptimizeUses::optimizeUses() {
1480 SmallVector
<MemoryAccess
*, 16> VersionStack
;
1481 DenseMap
<MemoryLocOrCall
, MemlocStackInfo
> LocStackInfo
;
1482 VersionStack
.push_back(MSSA
->getLiveOnEntryDef());
1484 unsigned long StackEpoch
= 1;
1485 unsigned long PopEpoch
= 1;
1486 // We perform a non-recursive top-down dominator tree walk.
1487 for (const auto *DomNode
: depth_first(DT
->getRootNode()))
1488 optimizeUsesInBlock(DomNode
->getBlock(), StackEpoch
, PopEpoch
, VersionStack
,
1492 void MemorySSA::placePHINodes(
1493 const SmallPtrSetImpl
<BasicBlock
*> &DefiningBlocks
) {
1494 // Determine where our MemoryPhi's should go
1495 ForwardIDFCalculator
IDFs(*DT
);
1496 IDFs
.setDefiningBlocks(DefiningBlocks
);
1497 SmallVector
<BasicBlock
*, 32> IDFBlocks
;
1498 IDFs
.calculate(IDFBlocks
);
1500 // Now place MemoryPhi nodes.
1501 for (auto &BB
: IDFBlocks
)
1502 createMemoryPhi(BB
);
1505 void MemorySSA::buildMemorySSA(BatchAAResults
&BAA
) {
1506 // We create an access to represent "live on entry", for things like
1507 // arguments or users of globals, where the memory they use is defined before
1508 // the beginning of the function. We do not actually insert it into the IR.
1509 // We do not define a live on exit for the immediate uses, and thus our
1510 // semantics do *not* imply that something with no immediate uses can simply
1512 BasicBlock
&StartingPoint
= F
.getEntryBlock();
1513 LiveOnEntryDef
.reset(new MemoryDef(F
.getContext(), nullptr, nullptr,
1514 &StartingPoint
, NextID
++));
1516 // We maintain lists of memory accesses per-block, trading memory for time. We
1517 // could just look up the memory access for every possible instruction in the
1519 SmallPtrSet
<BasicBlock
*, 32> DefiningBlocks
;
1520 // Go through each block, figure out where defs occur, and chain together all
1522 for (BasicBlock
&B
: F
) {
1523 bool InsertIntoDef
= false;
1524 AccessList
*Accesses
= nullptr;
1525 DefsList
*Defs
= nullptr;
1526 for (Instruction
&I
: B
) {
1527 MemoryUseOrDef
*MUD
= createNewAccess(&I
, &BAA
);
1532 Accesses
= getOrCreateAccessList(&B
);
1533 Accesses
->push_back(MUD
);
1534 if (isa
<MemoryDef
>(MUD
)) {
1535 InsertIntoDef
= true;
1537 Defs
= getOrCreateDefsList(&B
);
1538 Defs
->push_back(*MUD
);
1542 DefiningBlocks
.insert(&B
);
1544 placePHINodes(DefiningBlocks
);
1546 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1547 // filled in with all blocks.
1548 SmallPtrSet
<BasicBlock
*, 16> Visited
;
1549 renamePass(DT
->getRootNode(), LiveOnEntryDef
.get(), Visited
);
1551 ClobberWalkerBase
<BatchAAResults
> WalkerBase(this, &BAA
, DT
);
1552 CachingWalker
<BatchAAResults
> WalkerLocal(this, &WalkerBase
);
1553 OptimizeUses(this, &WalkerLocal
, &BAA
, DT
).optimizeUses();
1555 // Mark the uses in unreachable blocks as live on entry, so that they go
1558 if (!Visited
.count(&BB
))
1559 markUnreachableAsLiveOnEntry(&BB
);
1562 MemorySSAWalker
*MemorySSA::getWalker() { return getWalkerImpl(); }
1564 MemorySSA::CachingWalker
<AliasAnalysis
> *MemorySSA::getWalkerImpl() {
1566 return Walker
.get();
1570 std::make_unique
<ClobberWalkerBase
<AliasAnalysis
>>(this, AA
, DT
);
1573 std::make_unique
<CachingWalker
<AliasAnalysis
>>(this, WalkerBase
.get());
1574 return Walker
.get();
1577 MemorySSAWalker
*MemorySSA::getSkipSelfWalker() {
1579 return SkipWalker
.get();
1583 std::make_unique
<ClobberWalkerBase
<AliasAnalysis
>>(this, AA
, DT
);
1586 std::make_unique
<SkipSelfWalker
<AliasAnalysis
>>(this, WalkerBase
.get());
1587 return SkipWalker
.get();
1591 // This is a helper function used by the creation routines. It places NewAccess
1592 // into the access and defs lists for a given basic block, at the given
1594 void MemorySSA::insertIntoListsForBlock(MemoryAccess
*NewAccess
,
1595 const BasicBlock
*BB
,
1596 InsertionPlace Point
) {
1597 auto *Accesses
= getOrCreateAccessList(BB
);
1598 if (Point
== Beginning
) {
1599 // If it's a phi node, it goes first, otherwise, it goes after any phi
1601 if (isa
<MemoryPhi
>(NewAccess
)) {
1602 Accesses
->push_front(NewAccess
);
1603 auto *Defs
= getOrCreateDefsList(BB
);
1604 Defs
->push_front(*NewAccess
);
1606 auto AI
= find_if_not(
1607 *Accesses
, [](const MemoryAccess
&MA
) { return isa
<MemoryPhi
>(MA
); });
1608 Accesses
->insert(AI
, NewAccess
);
1609 if (!isa
<MemoryUse
>(NewAccess
)) {
1610 auto *Defs
= getOrCreateDefsList(BB
);
1611 auto DI
= find_if_not(
1612 *Defs
, [](const MemoryAccess
&MA
) { return isa
<MemoryPhi
>(MA
); });
1613 Defs
->insert(DI
, *NewAccess
);
1617 Accesses
->push_back(NewAccess
);
1618 if (!isa
<MemoryUse
>(NewAccess
)) {
1619 auto *Defs
= getOrCreateDefsList(BB
);
1620 Defs
->push_back(*NewAccess
);
1623 BlockNumberingValid
.erase(BB
);
1626 void MemorySSA::insertIntoListsBefore(MemoryAccess
*What
, const BasicBlock
*BB
,
1627 AccessList::iterator InsertPt
) {
1628 auto *Accesses
= getWritableBlockAccesses(BB
);
1629 bool WasEnd
= InsertPt
== Accesses
->end();
1630 Accesses
->insert(AccessList::iterator(InsertPt
), What
);
1631 if (!isa
<MemoryUse
>(What
)) {
1632 auto *Defs
= getOrCreateDefsList(BB
);
1633 // If we got asked to insert at the end, we have an easy job, just shove it
1634 // at the end. If we got asked to insert before an existing def, we also get
1635 // an iterator. If we got asked to insert before a use, we have to hunt for
1638 Defs
->push_back(*What
);
1639 } else if (isa
<MemoryDef
>(InsertPt
)) {
1640 Defs
->insert(InsertPt
->getDefsIterator(), *What
);
1642 while (InsertPt
!= Accesses
->end() && !isa
<MemoryDef
>(InsertPt
))
1644 // Either we found a def, or we are inserting at the end
1645 if (InsertPt
== Accesses
->end())
1646 Defs
->push_back(*What
);
1648 Defs
->insert(InsertPt
->getDefsIterator(), *What
);
1651 BlockNumberingValid
.erase(BB
);
1654 void MemorySSA::prepareForMoveTo(MemoryAccess
*What
, BasicBlock
*BB
) {
1655 // Keep it in the lookup tables, remove from the lists
1656 removeFromLists(What
, false);
1658 // Note that moving should implicitly invalidate the optimized state of a
1659 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1661 if (auto *MD
= dyn_cast
<MemoryDef
>(What
))
1662 MD
->resetOptimized();
1666 // Move What before Where in the IR. The end result is that What will belong to
1667 // the right lists and have the right Block set, but will not otherwise be
1668 // correct. It will not have the right defining access, and if it is a def,
1669 // things below it will not properly be updated.
1670 void MemorySSA::moveTo(MemoryUseOrDef
*What
, BasicBlock
*BB
,
1671 AccessList::iterator Where
) {
1672 prepareForMoveTo(What
, BB
);
1673 insertIntoListsBefore(What
, BB
, Where
);
1676 void MemorySSA::moveTo(MemoryAccess
*What
, BasicBlock
*BB
,
1677 InsertionPlace Point
) {
1678 if (isa
<MemoryPhi
>(What
)) {
1679 assert(Point
== Beginning
&&
1680 "Can only move a Phi at the beginning of the block");
1681 // Update lookup table entry
1682 ValueToMemoryAccess
.erase(What
->getBlock());
1683 bool Inserted
= ValueToMemoryAccess
.insert({BB
, What
}).second
;
1685 assert(Inserted
&& "Cannot move a Phi to a block that already has one");
1688 prepareForMoveTo(What
, BB
);
1689 insertIntoListsForBlock(What
, BB
, Point
);
1692 MemoryPhi
*MemorySSA::createMemoryPhi(BasicBlock
*BB
) {
1693 assert(!getMemoryAccess(BB
) && "MemoryPhi already exists for this BB");
1694 MemoryPhi
*Phi
= new MemoryPhi(BB
->getContext(), BB
, NextID
++);
1695 // Phi's always are placed at the front of the block.
1696 insertIntoListsForBlock(Phi
, BB
, Beginning
);
1697 ValueToMemoryAccess
[BB
] = Phi
;
1701 MemoryUseOrDef
*MemorySSA::createDefinedAccess(Instruction
*I
,
1702 MemoryAccess
*Definition
,
1703 const MemoryUseOrDef
*Template
,
1704 bool CreationMustSucceed
) {
1705 assert(!isa
<PHINode
>(I
) && "Cannot create a defined access for a PHI");
1706 MemoryUseOrDef
*NewAccess
= createNewAccess(I
, AA
, Template
);
1707 if (CreationMustSucceed
)
1708 assert(NewAccess
!= nullptr && "Tried to create a memory access for a "
1709 "non-memory touching instruction");
1711 assert((!Definition
|| !isa
<MemoryUse
>(Definition
)) &&
1712 "A use cannot be a defining access");
1713 NewAccess
->setDefiningAccess(Definition
);
1718 // Return true if the instruction has ordering constraints.
1719 // Note specifically that this only considers stores and loads
1720 // because others are still considered ModRef by getModRefInfo.
1721 static inline bool isOrdered(const Instruction
*I
) {
1722 if (auto *SI
= dyn_cast
<StoreInst
>(I
)) {
1723 if (!SI
->isUnordered())
1725 } else if (auto *LI
= dyn_cast
<LoadInst
>(I
)) {
1726 if (!LI
->isUnordered())
1732 /// Helper function to create new memory accesses
1733 template <typename AliasAnalysisType
>
1734 MemoryUseOrDef
*MemorySSA::createNewAccess(Instruction
*I
,
1735 AliasAnalysisType
*AAP
,
1736 const MemoryUseOrDef
*Template
) {
1737 // The assume intrinsic has a control dependency which we model by claiming
1738 // that it writes arbitrarily. Debuginfo intrinsics may be considered
1739 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory
1740 // dependencies here.
1741 // FIXME: Replace this special casing with a more accurate modelling of
1742 // assume's control dependency.
1743 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
1744 switch (II
->getIntrinsicID()) {
1747 case Intrinsic::assume
:
1748 case Intrinsic::experimental_noalias_scope_decl
:
1753 // Using a nonstandard AA pipelines might leave us with unexpected modref
1754 // results for I, so add a check to not model instructions that may not read
1755 // from or write to memory. This is necessary for correctness.
1756 if (!I
->mayReadFromMemory() && !I
->mayWriteToMemory())
1761 Def
= isa
<MemoryDef
>(Template
);
1762 Use
= isa
<MemoryUse
>(Template
);
1763 #if !defined(NDEBUG)
1764 ModRefInfo ModRef
= AAP
->getModRefInfo(I
, None
);
1765 bool DefCheck
, UseCheck
;
1766 DefCheck
= isModSet(ModRef
) || isOrdered(I
);
1767 UseCheck
= isRefSet(ModRef
);
1768 assert(Def
== DefCheck
&& (Def
|| Use
== UseCheck
) && "Invalid template");
1771 // Find out what affect this instruction has on memory.
1772 ModRefInfo ModRef
= AAP
->getModRefInfo(I
, None
);
1773 // The isOrdered check is used to ensure that volatiles end up as defs
1774 // (atomics end up as ModRef right now anyway). Until we separate the
1775 // ordering chain from the memory chain, this enables people to see at least
1776 // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1777 // will still give an answer that bypasses other volatile loads. TODO:
1778 // Separate memory aliasing and ordering into two different chains so that
1779 // we can precisely represent both "what memory will this read/write/is
1780 // clobbered by" and "what instructions can I move this past".
1781 Def
= isModSet(ModRef
) || isOrdered(I
);
1782 Use
= isRefSet(ModRef
);
1785 // It's possible for an instruction to not modify memory at all. During
1786 // construction, we ignore them.
1790 MemoryUseOrDef
*MUD
;
1792 MUD
= new MemoryDef(I
->getContext(), nullptr, I
, I
->getParent(), NextID
++);
1794 MUD
= new MemoryUse(I
->getContext(), nullptr, I
, I
->getParent());
1795 ValueToMemoryAccess
[I
] = MUD
;
1799 /// Properly remove \p MA from all of MemorySSA's lookup tables.
1800 void MemorySSA::removeFromLookups(MemoryAccess
*MA
) {
1801 assert(MA
->use_empty() &&
1802 "Trying to remove memory access that still has uses");
1803 BlockNumbering
.erase(MA
);
1804 if (auto *MUD
= dyn_cast
<MemoryUseOrDef
>(MA
))
1805 MUD
->setDefiningAccess(nullptr);
1806 // Invalidate our walker's cache if necessary
1807 if (!isa
<MemoryUse
>(MA
))
1808 getWalker()->invalidateInfo(MA
);
1811 if (const auto *MUD
= dyn_cast
<MemoryUseOrDef
>(MA
))
1812 MemoryInst
= MUD
->getMemoryInst();
1814 MemoryInst
= MA
->getBlock();
1816 auto VMA
= ValueToMemoryAccess
.find(MemoryInst
);
1817 if (VMA
->second
== MA
)
1818 ValueToMemoryAccess
.erase(VMA
);
1821 /// Properly remove \p MA from all of MemorySSA's lists.
1823 /// Because of the way the intrusive list and use lists work, it is important to
1824 /// do removal in the right order.
1825 /// ShouldDelete defaults to true, and will cause the memory access to also be
1826 /// deleted, not just removed.
1827 void MemorySSA::removeFromLists(MemoryAccess
*MA
, bool ShouldDelete
) {
1828 BasicBlock
*BB
= MA
->getBlock();
1829 // The access list owns the reference, so we erase it from the non-owning list
1831 if (!isa
<MemoryUse
>(MA
)) {
1832 auto DefsIt
= PerBlockDefs
.find(BB
);
1833 std::unique_ptr
<DefsList
> &Defs
= DefsIt
->second
;
1836 PerBlockDefs
.erase(DefsIt
);
1839 // The erase call here will delete it. If we don't want it deleted, we call
1841 auto AccessIt
= PerBlockAccesses
.find(BB
);
1842 std::unique_ptr
<AccessList
> &Accesses
= AccessIt
->second
;
1844 Accesses
->erase(MA
);
1846 Accesses
->remove(MA
);
1848 if (Accesses
->empty()) {
1849 PerBlockAccesses
.erase(AccessIt
);
1850 BlockNumberingValid
.erase(BB
);
1854 void MemorySSA::print(raw_ostream
&OS
) const {
1855 MemorySSAAnnotatedWriter
Writer(this);
1856 F
.print(OS
, &Writer
);
1859 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1860 LLVM_DUMP_METHOD
void MemorySSA::dump() const { print(dbgs()); }
1863 void MemorySSA::verifyMemorySSA() const {
1864 verifyOrderingDominationAndDefUses(F
);
1865 verifyDominationNumbers(F
);
1866 verifyPrevDefInPhis(F
);
1867 // Previously, the verification used to also verify that the clobberingAccess
1868 // cached by MemorySSA is the same as the clobberingAccess found at a later
1869 // query to AA. This does not hold true in general due to the current fragility
1870 // of BasicAA which has arbitrary caps on the things it analyzes before giving
1871 // up. As a result, transformations that are correct, will lead to BasicAA
1872 // returning different Alias answers before and after that transformation.
1873 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
1874 // random, in the worst case we'd need to rebuild MemorySSA from scratch after
1875 // every transformation, which defeats the purpose of using it. For such an
1876 // example, see test4 added in D51960.
1879 void MemorySSA::verifyPrevDefInPhis(Function
&F
) const {
1880 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1881 for (const BasicBlock
&BB
: F
) {
1882 if (MemoryPhi
*Phi
= getMemoryAccess(&BB
)) {
1883 for (unsigned I
= 0, E
= Phi
->getNumIncomingValues(); I
!= E
; ++I
) {
1884 auto *Pred
= Phi
->getIncomingBlock(I
);
1885 auto *IncAcc
= Phi
->getIncomingValue(I
);
1886 // If Pred has no unreachable predecessors, get last def looking at
1887 // IDoms. If, while walkings IDoms, any of these has an unreachable
1888 // predecessor, then the incoming def can be any access.
1889 if (auto *DTNode
= DT
->getNode(Pred
)) {
1891 if (auto *DefList
= getBlockDefs(DTNode
->getBlock())) {
1892 auto *LastAcc
= &*(--DefList
->end());
1893 assert(LastAcc
== IncAcc
&&
1894 "Incorrect incoming access into phi.");
1897 DTNode
= DTNode
->getIDom();
1900 // If Pred has unreachable predecessors, but has at least a Def, the
1901 // incoming access can be the last Def in Pred, or it could have been
1902 // optimized to LoE. After an update, though, the LoE may have been
1903 // replaced by another access, so IncAcc may be any access.
1904 // If Pred has unreachable predecessors and no Defs, incoming access
1905 // should be LoE; However, after an update, it may be any access.
1913 /// Verify that all of the blocks we believe to have valid domination numbers
1914 /// actually have valid domination numbers.
1915 void MemorySSA::verifyDominationNumbers(const Function
&F
) const {
1917 if (BlockNumberingValid
.empty())
1920 SmallPtrSet
<const BasicBlock
*, 16> ValidBlocks
= BlockNumberingValid
;
1921 for (const BasicBlock
&BB
: F
) {
1922 if (!ValidBlocks
.count(&BB
))
1925 ValidBlocks
.erase(&BB
);
1927 const AccessList
*Accesses
= getBlockAccesses(&BB
);
1928 // It's correct to say an empty block has valid numbering.
1932 // Block numbering starts at 1.
1933 unsigned long LastNumber
= 0;
1934 for (const MemoryAccess
&MA
: *Accesses
) {
1935 auto ThisNumberIter
= BlockNumbering
.find(&MA
);
1936 assert(ThisNumberIter
!= BlockNumbering
.end() &&
1937 "MemoryAccess has no domination number in a valid block!");
1939 unsigned long ThisNumber
= ThisNumberIter
->second
;
1940 assert(ThisNumber
> LastNumber
&&
1941 "Domination numbers should be strictly increasing!");
1942 LastNumber
= ThisNumber
;
1946 assert(ValidBlocks
.empty() &&
1947 "All valid BasicBlocks should exist in F -- dangling pointers?");
1951 /// Verify ordering: the order and existence of MemoryAccesses matches the
1952 /// order and existence of memory affecting instructions.
1953 /// Verify domination: each definition dominates all of its uses.
1954 /// Verify def-uses: the immediate use information - walk all the memory
1955 /// accesses and verifying that, for each use, it appears in the appropriate
1957 void MemorySSA::verifyOrderingDominationAndDefUses(Function
&F
) const {
1958 #if !defined(NDEBUG)
1959 // Walk all the blocks, comparing what the lookups think and what the access
1960 // lists think, as well as the order in the blocks vs the order in the access
1962 SmallVector
<MemoryAccess
*, 32> ActualAccesses
;
1963 SmallVector
<MemoryAccess
*, 32> ActualDefs
;
1964 for (BasicBlock
&B
: F
) {
1965 const AccessList
*AL
= getBlockAccesses(&B
);
1966 const auto *DL
= getBlockDefs(&B
);
1967 MemoryPhi
*Phi
= getMemoryAccess(&B
);
1970 ActualAccesses
.push_back(Phi
);
1971 ActualDefs
.push_back(Phi
);
1972 // Verify domination
1973 for (const Use
&U
: Phi
->uses())
1974 assert(dominates(Phi
, U
) && "Memory PHI does not dominate it's uses");
1975 #if defined(EXPENSIVE_CHECKS)
1977 assert(Phi
->getNumOperands() == static_cast<unsigned>(std::distance(
1978 pred_begin(&B
), pred_end(&B
))) &&
1979 "Incomplete MemoryPhi Node");
1980 for (unsigned I
= 0, E
= Phi
->getNumIncomingValues(); I
!= E
; ++I
) {
1981 verifyUseInDefs(Phi
->getIncomingValue(I
), Phi
);
1982 assert(is_contained(predecessors(&B
), Phi
->getIncomingBlock(I
)) &&
1983 "Incoming phi block not a block predecessor");
1988 for (Instruction
&I
: B
) {
1989 MemoryUseOrDef
*MA
= getMemoryAccess(&I
);
1990 assert((!MA
|| (AL
&& (isa
<MemoryUse
>(MA
) || DL
))) &&
1991 "We have memory affecting instructions "
1992 "in this block but they are not in the "
1993 "access list or defs list");
1996 ActualAccesses
.push_back(MA
);
1997 if (MemoryAccess
*MD
= dyn_cast
<MemoryDef
>(MA
)) {
1999 ActualDefs
.push_back(MA
);
2000 // Verify domination.
2001 for (const Use
&U
: MD
->uses())
2002 assert(dominates(MD
, U
) &&
2003 "Memory Def does not dominate it's uses");
2005 #if defined(EXPENSIVE_CHECKS)
2007 verifyUseInDefs(MA
->getDefiningAccess(), MA
);
2011 // Either we hit the assert, really have no accesses, or we have both
2012 // accesses and an access list. Same with defs.
2016 assert(AL
->size() == ActualAccesses
.size() &&
2017 "We don't have the same number of accesses in the block as on the "
2019 assert((DL
|| ActualDefs
.size() == 0) &&
2020 "Either we should have a defs list, or we should have no defs");
2021 assert((!DL
|| DL
->size() == ActualDefs
.size()) &&
2022 "We don't have the same number of defs in the block as on the "
2024 auto ALI
= AL
->begin();
2025 auto AAI
= ActualAccesses
.begin();
2026 while (ALI
!= AL
->end() && AAI
!= ActualAccesses
.end()) {
2027 assert(&*ALI
== *AAI
&& "Not the same accesses in the same order");
2031 ActualAccesses
.clear();
2033 auto DLI
= DL
->begin();
2034 auto ADI
= ActualDefs
.begin();
2035 while (DLI
!= DL
->end() && ADI
!= ActualDefs
.end()) {
2036 assert(&*DLI
== *ADI
&& "Not the same defs in the same order");
2046 /// Verify the def-use lists in MemorySSA, by verifying that \p Use
2047 /// appears in the use list of \p Def.
2048 void MemorySSA::verifyUseInDefs(MemoryAccess
*Def
, MemoryAccess
*Use
) const {
2050 // The live on entry use may cause us to get a NULL def here
2052 assert(isLiveOnEntryDef(Use
) &&
2053 "Null def but use not point to live on entry def");
2055 assert(is_contained(Def
->users(), Use
) &&
2056 "Did not find use in def's use list");
2060 /// Perform a local numbering on blocks so that instruction ordering can be
2061 /// determined in constant time.
2062 /// TODO: We currently just number in order. If we numbered by N, we could
2063 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
2064 /// log2(N) sequences of mixed before and after) without needing to invalidate
2066 void MemorySSA::renumberBlock(const BasicBlock
*B
) const {
2067 // The pre-increment ensures the numbers really start at 1.
2068 unsigned long CurrentNumber
= 0;
2069 const AccessList
*AL
= getBlockAccesses(B
);
2070 assert(AL
!= nullptr && "Asking to renumber an empty block");
2071 for (const auto &I
: *AL
)
2072 BlockNumbering
[&I
] = ++CurrentNumber
;
2073 BlockNumberingValid
.insert(B
);
2076 /// Determine, for two memory accesses in the same block,
2077 /// whether \p Dominator dominates \p Dominatee.
2078 /// \returns True if \p Dominator dominates \p Dominatee.
2079 bool MemorySSA::locallyDominates(const MemoryAccess
*Dominator
,
2080 const MemoryAccess
*Dominatee
) const {
2081 const BasicBlock
*DominatorBlock
= Dominator
->getBlock();
2083 assert((DominatorBlock
== Dominatee
->getBlock()) &&
2084 "Asking for local domination when accesses are in different blocks!");
2085 // A node dominates itself.
2086 if (Dominatee
== Dominator
)
2089 // When Dominatee is defined on function entry, it is not dominated by another
2091 if (isLiveOnEntryDef(Dominatee
))
2094 // When Dominator is defined on function entry, it dominates the other memory
2096 if (isLiveOnEntryDef(Dominator
))
2099 if (!BlockNumberingValid
.count(DominatorBlock
))
2100 renumberBlock(DominatorBlock
);
2102 unsigned long DominatorNum
= BlockNumbering
.lookup(Dominator
);
2103 // All numbers start with 1
2104 assert(DominatorNum
!= 0 && "Block was not numbered properly");
2105 unsigned long DominateeNum
= BlockNumbering
.lookup(Dominatee
);
2106 assert(DominateeNum
!= 0 && "Block was not numbered properly");
2107 return DominatorNum
< DominateeNum
;
2110 bool MemorySSA::dominates(const MemoryAccess
*Dominator
,
2111 const MemoryAccess
*Dominatee
) const {
2112 if (Dominator
== Dominatee
)
2115 if (isLiveOnEntryDef(Dominatee
))
2118 if (Dominator
->getBlock() != Dominatee
->getBlock())
2119 return DT
->dominates(Dominator
->getBlock(), Dominatee
->getBlock());
2120 return locallyDominates(Dominator
, Dominatee
);
2123 bool MemorySSA::dominates(const MemoryAccess
*Dominator
,
2124 const Use
&Dominatee
) const {
2125 if (MemoryPhi
*MP
= dyn_cast
<MemoryPhi
>(Dominatee
.getUser())) {
2126 BasicBlock
*UseBB
= MP
->getIncomingBlock(Dominatee
);
2127 // The def must dominate the incoming block of the phi.
2128 if (UseBB
!= Dominator
->getBlock())
2129 return DT
->dominates(Dominator
->getBlock(), UseBB
);
2130 // If the UseBB and the DefBB are the same, compare locally.
2131 return locallyDominates(Dominator
, cast
<MemoryAccess
>(Dominatee
));
2133 // If it's not a PHI node use, the normal dominates can already handle it.
2134 return dominates(Dominator
, cast
<MemoryAccess
>(Dominatee
.getUser()));
2137 const static char LiveOnEntryStr
[] = "liveOnEntry";
2139 void MemoryAccess::print(raw_ostream
&OS
) const {
2140 switch (getValueID()) {
2141 case MemoryPhiVal
: return static_cast<const MemoryPhi
*>(this)->print(OS
);
2142 case MemoryDefVal
: return static_cast<const MemoryDef
*>(this)->print(OS
);
2143 case MemoryUseVal
: return static_cast<const MemoryUse
*>(this)->print(OS
);
2145 llvm_unreachable("invalid value id");
2148 void MemoryDef::print(raw_ostream
&OS
) const {
2149 MemoryAccess
*UO
= getDefiningAccess();
2151 auto printID
= [&OS
](MemoryAccess
*A
) {
2152 if (A
&& A
->getID())
2155 OS
<< LiveOnEntryStr
;
2158 OS
<< getID() << " = MemoryDef(";
2162 if (isOptimized()) {
2164 printID(getOptimized());
2166 if (Optional
<AliasResult
> AR
= getOptimizedAccessType())
2171 void MemoryPhi::print(raw_ostream
&OS
) const {
2172 ListSeparator
LS(",");
2173 OS
<< getID() << " = MemoryPhi(";
2174 for (const auto &Op
: operands()) {
2175 BasicBlock
*BB
= getIncomingBlock(Op
);
2176 MemoryAccess
*MA
= cast
<MemoryAccess
>(Op
);
2180 OS
<< BB
->getName();
2182 BB
->printAsOperand(OS
, false);
2184 if (unsigned ID
= MA
->getID())
2187 OS
<< LiveOnEntryStr
;
2193 void MemoryUse::print(raw_ostream
&OS
) const {
2194 MemoryAccess
*UO
= getDefiningAccess();
2196 if (UO
&& UO
->getID())
2199 OS
<< LiveOnEntryStr
;
2202 if (Optional
<AliasResult
> AR
= getOptimizedAccessType())
2206 void MemoryAccess::dump() const {
2207 // Cannot completely remove virtual function even in release mode.
2208 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2214 char MemorySSAPrinterLegacyPass::ID
= 0;
2216 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID
) {
2217 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2220 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
2221 AU
.setPreservesAll();
2222 AU
.addRequired
<MemorySSAWrapperPass
>();
2225 class DOTFuncMSSAInfo
{
2228 MemorySSAAnnotatedWriter MSSAWriter
;
2231 DOTFuncMSSAInfo(const Function
&F
, MemorySSA
&MSSA
)
2232 : F(F
), MSSAWriter(&MSSA
) {}
2234 const Function
*getFunction() { return &F
; }
2235 MemorySSAAnnotatedWriter
&getWriter() { return MSSAWriter
; }
2241 struct GraphTraits
<DOTFuncMSSAInfo
*> : public GraphTraits
<const BasicBlock
*> {
2242 static NodeRef
getEntryNode(DOTFuncMSSAInfo
*CFGInfo
) {
2243 return &(CFGInfo
->getFunction()->getEntryBlock());
2246 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
2247 using nodes_iterator
= pointer_iterator
<Function::const_iterator
>;
2249 static nodes_iterator
nodes_begin(DOTFuncMSSAInfo
*CFGInfo
) {
2250 return nodes_iterator(CFGInfo
->getFunction()->begin());
2253 static nodes_iterator
nodes_end(DOTFuncMSSAInfo
*CFGInfo
) {
2254 return nodes_iterator(CFGInfo
->getFunction()->end());
2257 static size_t size(DOTFuncMSSAInfo
*CFGInfo
) {
2258 return CFGInfo
->getFunction()->size();
2263 struct DOTGraphTraits
<DOTFuncMSSAInfo
*> : public DefaultDOTGraphTraits
{
2265 DOTGraphTraits(bool IsSimple
= false) : DefaultDOTGraphTraits(IsSimple
) {}
2267 static std::string
getGraphName(DOTFuncMSSAInfo
*CFGInfo
) {
2268 return "MSSA CFG for '" + CFGInfo
->getFunction()->getName().str() +
2272 std::string
getNodeLabel(const BasicBlock
*Node
, DOTFuncMSSAInfo
*CFGInfo
) {
2273 return DOTGraphTraits
<DOTFuncInfo
*>::getCompleteNodeLabel(
2275 [CFGInfo
](raw_string_ostream
&OS
, const BasicBlock
&BB
) -> void {
2276 BB
.print(OS
, &CFGInfo
->getWriter(), true, true);
2278 [](std::string
&S
, unsigned &I
, unsigned Idx
) -> void {
2279 std::string Str
= S
.substr(I
, Idx
- I
);
2281 if (SR
.count(" = MemoryDef(") || SR
.count(" = MemoryPhi(") ||
2282 SR
.count("MemoryUse("))
2284 DOTGraphTraits
<DOTFuncInfo
*>::eraseComment(S
, I
, Idx
);
2288 static std::string
getEdgeSourceLabel(const BasicBlock
*Node
,
2289 const_succ_iterator I
) {
2290 return DOTGraphTraits
<DOTFuncInfo
*>::getEdgeSourceLabel(Node
, I
);
2293 /// Display the raw branch weights from PGO.
2294 std::string
getEdgeAttributes(const BasicBlock
*Node
, const_succ_iterator I
,
2295 DOTFuncMSSAInfo
*CFGInfo
) {
2299 std::string
getNodeAttributes(const BasicBlock
*Node
,
2300 DOTFuncMSSAInfo
*CFGInfo
) {
2301 return getNodeLabel(Node
, CFGInfo
).find(';') != std::string::npos
2302 ? "style=filled, fillcolor=lightpink"
2309 bool MemorySSAPrinterLegacyPass::runOnFunction(Function
&F
) {
2310 auto &MSSA
= getAnalysis
<MemorySSAWrapperPass
>().getMSSA();
2311 if (DotCFGMSSA
!= "") {
2312 DOTFuncMSSAInfo
CFGInfo(F
, MSSA
);
2313 WriteGraph(&CFGInfo
, "", false, "MSSA", DotCFGMSSA
);
2317 if (VerifyMemorySSA
)
2318 MSSA
.verifyMemorySSA();
2322 AnalysisKey
MemorySSAAnalysis::Key
;
2324 MemorySSAAnalysis::Result
MemorySSAAnalysis::run(Function
&F
,
2325 FunctionAnalysisManager
&AM
) {
2326 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
2327 auto &AA
= AM
.getResult
<AAManager
>(F
);
2328 return MemorySSAAnalysis::Result(std::make_unique
<MemorySSA
>(F
, &AA
, &DT
));
2331 bool MemorySSAAnalysis::Result::invalidate(
2332 Function
&F
, const PreservedAnalyses
&PA
,
2333 FunctionAnalysisManager::Invalidator
&Inv
) {
2334 auto PAC
= PA
.getChecker
<MemorySSAAnalysis
>();
2335 return !(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Function
>>()) ||
2336 Inv
.invalidate
<AAManager
>(F
, PA
) ||
2337 Inv
.invalidate
<DominatorTreeAnalysis
>(F
, PA
);
2340 PreservedAnalyses
MemorySSAPrinterPass::run(Function
&F
,
2341 FunctionAnalysisManager
&AM
) {
2342 auto &MSSA
= AM
.getResult
<MemorySSAAnalysis
>(F
).getMSSA();
2343 if (DotCFGMSSA
!= "") {
2344 DOTFuncMSSAInfo
CFGInfo(F
, MSSA
);
2345 WriteGraph(&CFGInfo
, "", false, "MSSA", DotCFGMSSA
);
2347 OS
<< "MemorySSA for function: " << F
.getName() << "\n";
2351 return PreservedAnalyses::all();
2354 PreservedAnalyses
MemorySSAVerifierPass::run(Function
&F
,
2355 FunctionAnalysisManager
&AM
) {
2356 AM
.getResult
<MemorySSAAnalysis
>(F
).getMSSA().verifyMemorySSA();
2358 return PreservedAnalyses::all();
2361 char MemorySSAWrapperPass::ID
= 0;
2363 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID
) {
2364 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2367 void MemorySSAWrapperPass::releaseMemory() { MSSA
.reset(); }
2369 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
2370 AU
.setPreservesAll();
2371 AU
.addRequiredTransitive
<DominatorTreeWrapperPass
>();
2372 AU
.addRequiredTransitive
<AAResultsWrapperPass
>();
2375 bool MemorySSAWrapperPass::runOnFunction(Function
&F
) {
2376 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
2377 auto &AA
= getAnalysis
<AAResultsWrapperPass
>().getAAResults();
2378 MSSA
.reset(new MemorySSA(F
, &AA
, &DT
));
2382 void MemorySSAWrapperPass::verifyAnalysis() const {
2383 if (VerifyMemorySSA
)
2384 MSSA
->verifyMemorySSA();
2387 void MemorySSAWrapperPass::print(raw_ostream
&OS
, const Module
*M
) const {
2391 MemorySSAWalker::MemorySSAWalker(MemorySSA
*M
) : MSSA(M
) {}
2393 /// Walk the use-def chains starting at \p StartingAccess and find
2394 /// the MemoryAccess that actually clobbers Loc.
2396 /// \returns our clobbering memory access
2397 template <typename AliasAnalysisType
>
2399 MemorySSA::ClobberWalkerBase
<AliasAnalysisType
>::getClobberingMemoryAccessBase(
2400 MemoryAccess
*StartingAccess
, const MemoryLocation
&Loc
,
2401 unsigned &UpwardWalkLimit
) {
2402 assert(!isa
<MemoryUse
>(StartingAccess
) && "Use cannot be defining access");
2404 Instruction
*I
= nullptr;
2405 if (auto *StartingUseOrDef
= dyn_cast
<MemoryUseOrDef
>(StartingAccess
)) {
2406 if (MSSA
->isLiveOnEntryDef(StartingUseOrDef
))
2407 return StartingUseOrDef
;
2409 I
= StartingUseOrDef
->getMemoryInst();
2411 // Conservatively, fences are always clobbers, so don't perform the walk if
2413 if (!isa
<CallBase
>(I
) && I
->isFenceLike())
2414 return StartingUseOrDef
;
2417 UpwardsMemoryQuery Q
;
2418 Q
.OriginalAccess
= StartingAccess
;
2419 Q
.StartingLoc
= Loc
;
2423 // Unlike the other function, do not walk to the def of a def, because we are
2424 // handed something we already believe is the clobbering access.
2425 // We never set SkipSelf to true in Q in this method.
2426 MemoryAccess
*Clobber
=
2427 Walker
.findClobber(StartingAccess
, Q
, UpwardWalkLimit
);
2429 dbgs() << "Clobber starting at access " << *StartingAccess
<< "\n";
2431 dbgs() << " for instruction " << *I
<< "\n";
2432 dbgs() << " is " << *Clobber
<< "\n";
2437 template <typename AliasAnalysisType
>
2439 MemorySSA::ClobberWalkerBase
<AliasAnalysisType
>::getClobberingMemoryAccessBase(
2440 MemoryAccess
*MA
, unsigned &UpwardWalkLimit
, bool SkipSelf
) {
2441 auto *StartingAccess
= dyn_cast
<MemoryUseOrDef
>(MA
);
2442 // If this is a MemoryPhi, we can't do anything.
2443 if (!StartingAccess
)
2446 bool IsOptimized
= false;
2448 // If this is an already optimized use or def, return the optimized result.
2449 // Note: Currently, we store the optimized def result in a separate field,
2450 // since we can't use the defining access.
2451 if (StartingAccess
->isOptimized()) {
2452 if (!SkipSelf
|| !isa
<MemoryDef
>(StartingAccess
))
2453 return StartingAccess
->getOptimized();
2457 const Instruction
*I
= StartingAccess
->getMemoryInst();
2458 // We can't sanely do anything with a fence, since they conservatively clobber
2459 // all memory, and have no locations to get pointers from to try to
2461 if (!isa
<CallBase
>(I
) && I
->isFenceLike())
2462 return StartingAccess
;
2464 UpwardsMemoryQuery
Q(I
, StartingAccess
);
2466 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker
.getAA(), I
)) {
2467 MemoryAccess
*LiveOnEntry
= MSSA
->getLiveOnEntryDef();
2468 StartingAccess
->setOptimized(LiveOnEntry
);
2469 StartingAccess
->setOptimizedAccessType(None
);
2473 MemoryAccess
*OptimizedAccess
;
2475 // Start with the thing we already think clobbers this location
2476 MemoryAccess
*DefiningAccess
= StartingAccess
->getDefiningAccess();
2478 // At this point, DefiningAccess may be the live on entry def.
2479 // If it is, we will not get a better result.
2480 if (MSSA
->isLiveOnEntryDef(DefiningAccess
)) {
2481 StartingAccess
->setOptimized(DefiningAccess
);
2482 StartingAccess
->setOptimizedAccessType(None
);
2483 return DefiningAccess
;
2486 OptimizedAccess
= Walker
.findClobber(DefiningAccess
, Q
, UpwardWalkLimit
);
2487 StartingAccess
->setOptimized(OptimizedAccess
);
2488 if (MSSA
->isLiveOnEntryDef(OptimizedAccess
))
2489 StartingAccess
->setOptimizedAccessType(None
);
2490 else if (Q
.AR
&& *Q
.AR
== AliasResult::MustAlias
)
2491 StartingAccess
->setOptimizedAccessType(
2492 AliasResult(AliasResult::MustAlias
));
2494 OptimizedAccess
= StartingAccess
->getOptimized();
2496 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I
<< " is ");
2497 LLVM_DEBUG(dbgs() << *StartingAccess
<< "\n");
2498 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I
<< " is ");
2499 LLVM_DEBUG(dbgs() << *OptimizedAccess
<< "\n");
2501 MemoryAccess
*Result
;
2502 if (SkipSelf
&& isa
<MemoryPhi
>(OptimizedAccess
) &&
2503 isa
<MemoryDef
>(StartingAccess
) && UpwardWalkLimit
) {
2504 assert(isa
<MemoryDef
>(Q
.OriginalAccess
));
2505 Q
.SkipSelfAccess
= true;
2506 Result
= Walker
.findClobber(OptimizedAccess
, Q
, UpwardWalkLimit
);
2508 Result
= OptimizedAccess
;
2510 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf
);
2511 LLVM_DEBUG(dbgs() << "] for " << *I
<< " is " << *Result
<< "\n");
2517 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess
*MA
) {
2518 if (auto *Use
= dyn_cast
<MemoryUseOrDef
>(MA
))
2519 return Use
->getDefiningAccess();
2523 MemoryAccess
*DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2524 MemoryAccess
*StartingAccess
, const MemoryLocation
&) {
2525 if (auto *Use
= dyn_cast
<MemoryUseOrDef
>(StartingAccess
))
2526 return Use
->getDefiningAccess();
2527 return StartingAccess
;
2530 void MemoryPhi::deleteMe(DerivedUser
*Self
) {
2531 delete static_cast<MemoryPhi
*>(Self
);
2534 void MemoryDef::deleteMe(DerivedUser
*Self
) {
2535 delete static_cast<MemoryDef
*>(Self
);
2538 void MemoryUse::deleteMe(DerivedUser
*Self
) {
2539 delete static_cast<MemoryUse
*>(Self
);
2542 bool upward_defs_iterator::IsGuaranteedLoopInvariant(Value
*Ptr
) const {
2543 auto IsGuaranteedLoopInvariantBase
= [](Value
*Ptr
) {
2544 Ptr
= Ptr
->stripPointerCasts();
2545 if (!isa
<Instruction
>(Ptr
))
2547 return isa
<AllocaInst
>(Ptr
);
2550 Ptr
= Ptr
->stripPointerCasts();
2551 if (auto *I
= dyn_cast
<Instruction
>(Ptr
)) {
2552 if (I
->getParent()->isEntryBlock())
2555 if (auto *GEP
= dyn_cast
<GEPOperator
>(Ptr
)) {
2556 return IsGuaranteedLoopInvariantBase(GEP
->getPointerOperand()) &&
2557 GEP
->hasAllConstantIndices();
2559 return IsGuaranteedLoopInvariantBase(Ptr
);