1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------===//
9 // This file implements the MemorySSAUpdater class.
11 //===----------------------------------------------------------------===//
12 #include "llvm/Analysis/MemorySSAUpdater.h"
13 #include "llvm/Analysis/LoopIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/Analysis/IteratedDominanceFrontier.h"
18 #include "llvm/Analysis/MemorySSA.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/GlobalVariable.h"
23 #include "llvm/IR/IRBuilder.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Metadata.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/FormattedStream.h"
31 #define DEBUG_TYPE "memoryssa"
34 // This is the marker algorithm from "Simple and Efficient Construction of
35 // Static Single Assignment Form"
36 // The simple, non-marker algorithm places phi nodes at any join
37 // Here, we place markers, and only place phi nodes if they end up necessary.
38 // They are only necessary if they break a cycle (IE we recursively visit
39 // ourselves again), or we discover, while getting the value of the operands,
40 // that there are two or more definitions needing to be merged.
41 // This still will leave non-minimal form in the case of irreducible control
42 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
43 MemoryAccess
*MemorySSAUpdater::getPreviousDefRecursive(
45 DenseMap
<BasicBlock
*, TrackingVH
<MemoryAccess
>> &CachedPreviousDef
) {
46 // First, do a cache lookup. Without this cache, certain CFG structures
47 // (like a series of if statements) take exponential time to visit.
48 auto Cached
= CachedPreviousDef
.find(BB
);
49 if (Cached
!= CachedPreviousDef
.end())
50 return Cached
->second
;
52 // If this method is called from an unreachable block, return LoE.
53 if (!MSSA
->DT
->isReachableFromEntry(BB
))
54 return MSSA
->getLiveOnEntryDef();
56 if (BasicBlock
*Pred
= BB
->getUniquePredecessor()) {
57 VisitedBlocks
.insert(BB
);
58 // Single predecessor case, just recurse, we can only have one definition.
59 MemoryAccess
*Result
= getPreviousDefFromEnd(Pred
, CachedPreviousDef
);
60 CachedPreviousDef
.insert({BB
, Result
});
64 if (VisitedBlocks
.count(BB
)) {
65 // We hit our node again, meaning we had a cycle, we must insert a phi
66 // node to break it so we have an operand. The only case this will
67 // insert useless phis is if we have irreducible control flow.
68 MemoryAccess
*Result
= MSSA
->createMemoryPhi(BB
);
69 CachedPreviousDef
.insert({BB
, Result
});
73 if (VisitedBlocks
.insert(BB
).second
) {
74 // Mark us visited so we can detect a cycle
75 SmallVector
<TrackingVH
<MemoryAccess
>, 8> PhiOps
;
77 // Recurse to get the values in our predecessors for placement of a
78 // potential phi node. This will insert phi nodes if we cycle in order to
79 // break the cycle and have an operand.
80 bool UniqueIncomingAccess
= true;
81 MemoryAccess
*SingleAccess
= nullptr;
82 for (auto *Pred
: predecessors(BB
)) {
83 if (MSSA
->DT
->isReachableFromEntry(Pred
)) {
84 auto *IncomingAccess
= getPreviousDefFromEnd(Pred
, CachedPreviousDef
);
86 SingleAccess
= IncomingAccess
;
87 else if (IncomingAccess
!= SingleAccess
)
88 UniqueIncomingAccess
= false;
89 PhiOps
.push_back(IncomingAccess
);
91 PhiOps
.push_back(MSSA
->getLiveOnEntryDef());
94 // Now try to simplify the ops to avoid placing a phi.
95 // This may return null if we never created a phi yet, that's okay
96 MemoryPhi
*Phi
= dyn_cast_or_null
<MemoryPhi
>(MSSA
->getMemoryAccess(BB
));
98 // See if we can avoid the phi by simplifying it.
99 auto *Result
= tryRemoveTrivialPhi(Phi
, PhiOps
);
100 // If we couldn't simplify, we may have to create a phi
101 if (Result
== Phi
&& UniqueIncomingAccess
&& SingleAccess
) {
102 // A concrete Phi only exists if we created an empty one to break a cycle.
104 assert(Phi
->operands().empty() && "Expected empty Phi");
105 Phi
->replaceAllUsesWith(SingleAccess
);
106 removeMemoryAccess(Phi
);
108 Result
= SingleAccess
;
109 } else if (Result
== Phi
&& !(UniqueIncomingAccess
&& SingleAccess
)) {
111 Phi
= MSSA
->createMemoryPhi(BB
);
113 // See if the existing phi operands match what we need.
114 // Unlike normal SSA, we only allow one phi node per block, so we can't just
116 if (Phi
->getNumOperands() != 0) {
117 // FIXME: Figure out whether this is dead code and if so remove it.
118 if (!std::equal(Phi
->op_begin(), Phi
->op_end(), PhiOps
.begin())) {
119 // These will have been filled in by the recursive read we did above.
120 llvm::copy(PhiOps
, Phi
->op_begin());
121 std::copy(pred_begin(BB
), pred_end(BB
), Phi
->block_begin());
125 for (auto *Pred
: predecessors(BB
))
126 Phi
->addIncoming(&*PhiOps
[i
++], Pred
);
127 InsertedPHIs
.push_back(Phi
);
132 // Set ourselves up for the next variable by resetting visited state.
133 VisitedBlocks
.erase(BB
);
134 CachedPreviousDef
.insert({BB
, Result
});
137 llvm_unreachable("Should have hit one of the three cases above");
140 // This starts at the memory access, and goes backwards in the block to find the
141 // previous definition. If a definition is not found the block of the access,
142 // it continues globally, creating phi nodes to ensure we have a single
144 MemoryAccess
*MemorySSAUpdater::getPreviousDef(MemoryAccess
*MA
) {
145 if (auto *LocalResult
= getPreviousDefInBlock(MA
))
147 DenseMap
<BasicBlock
*, TrackingVH
<MemoryAccess
>> CachedPreviousDef
;
148 return getPreviousDefRecursive(MA
->getBlock(), CachedPreviousDef
);
151 // This starts at the memory access, and goes backwards in the block to the find
152 // the previous definition. If the definition is not found in the block of the
153 // access, it returns nullptr.
154 MemoryAccess
*MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess
*MA
) {
155 auto *Defs
= MSSA
->getWritableBlockDefs(MA
->getBlock());
157 // It's possible there are no defs, or we got handed the first def to start.
159 // If this is a def, we can just use the def iterators.
160 if (!isa
<MemoryUse
>(MA
)) {
161 auto Iter
= MA
->getReverseDefsIterator();
163 if (Iter
!= Defs
->rend())
166 // Otherwise, have to walk the all access iterator.
167 auto End
= MSSA
->getWritableBlockAccesses(MA
->getBlock())->rend();
168 for (auto &U
: make_range(++MA
->getReverseIterator(), End
))
169 if (!isa
<MemoryUse
>(U
))
170 return cast
<MemoryAccess
>(&U
);
171 // Note that if MA comes before Defs->begin(), we won't hit a def.
178 // This starts at the end of block
179 MemoryAccess
*MemorySSAUpdater::getPreviousDefFromEnd(
181 DenseMap
<BasicBlock
*, TrackingVH
<MemoryAccess
>> &CachedPreviousDef
) {
182 auto *Defs
= MSSA
->getWritableBlockDefs(BB
);
185 CachedPreviousDef
.insert({BB
, &*Defs
->rbegin()});
186 return &*Defs
->rbegin();
189 return getPreviousDefRecursive(BB
, CachedPreviousDef
);
191 // Recurse over a set of phi uses to eliminate the trivial ones
192 MemoryAccess
*MemorySSAUpdater::recursePhi(MemoryAccess
*Phi
) {
195 TrackingVH
<MemoryAccess
> Res(Phi
);
196 SmallVector
<TrackingVH
<Value
>, 8> Uses
;
197 std::copy(Phi
->user_begin(), Phi
->user_end(), std::back_inserter(Uses
));
199 if (MemoryPhi
*UsePhi
= dyn_cast
<MemoryPhi
>(&*U
))
200 tryRemoveTrivialPhi(UsePhi
);
204 // Eliminate trivial phis
205 // Phis are trivial if they are defined either by themselves, or all the same
207 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
208 // We recursively try to remove them.
209 MemoryAccess
*MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi
*Phi
) {
210 assert(Phi
&& "Can only remove concrete Phi.");
211 auto OperRange
= Phi
->operands();
212 return tryRemoveTrivialPhi(Phi
, OperRange
);
214 template <class RangeType
>
215 MemoryAccess
*MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi
*Phi
,
216 RangeType
&Operands
) {
217 // Bail out on non-opt Phis.
218 if (NonOptPhis
.count(Phi
))
221 // Detect equal or self arguments
222 MemoryAccess
*Same
= nullptr;
223 for (auto &Op
: Operands
) {
224 // If the same or self, good so far
225 if (Op
== Phi
|| Op
== Same
)
227 // not the same, return the phi since it's not eliminatable by us
230 Same
= cast
<MemoryAccess
>(&*Op
);
232 // Never found a non-self reference, the phi is undef
234 return MSSA
->getLiveOnEntryDef();
236 Phi
->replaceAllUsesWith(Same
);
237 removeMemoryAccess(Phi
);
240 // We should only end up recursing in case we replaced something, in which
241 // case, we may have made other Phis trivial.
242 return recursePhi(Same
);
245 void MemorySSAUpdater::insertUse(MemoryUse
*MU
, bool RenameUses
) {
246 InsertedPHIs
.clear();
247 MU
->setDefiningAccess(getPreviousDef(MU
));
249 // In cases without unreachable blocks, because uses do not create new
250 // may-defs, there are only two cases:
251 // 1. There was a def already below us, and therefore, we should not have
252 // created a phi node because it was already needed for the def.
254 // 2. There is no def below us, and therefore, there is no extra renaming work
257 // In cases with unreachable blocks, where the unnecessary Phis were
258 // optimized out, adding the Use may re-insert those Phis. Hence, when
259 // inserting Uses outside of the MSSA creation process, and new Phis were
260 // added, rename all uses if we are asked.
262 if (!RenameUses
&& !InsertedPHIs
.empty()) {
263 auto *Defs
= MSSA
->getBlockDefs(MU
->getBlock());
265 assert((!Defs
|| (++Defs
->begin() == Defs
->end())) &&
266 "Block may have only a Phi or no defs");
269 if (RenameUses
&& InsertedPHIs
.size()) {
270 SmallPtrSet
<BasicBlock
*, 16> Visited
;
271 BasicBlock
*StartBlock
= MU
->getBlock();
273 if (auto *Defs
= MSSA
->getWritableBlockDefs(StartBlock
)) {
274 MemoryAccess
*FirstDef
= &*Defs
->begin();
275 // Convert to incoming value if it's a memorydef. A phi *is* already an
277 if (auto *MD
= dyn_cast
<MemoryDef
>(FirstDef
))
278 FirstDef
= MD
->getDefiningAccess();
280 MSSA
->renamePass(MU
->getBlock(), FirstDef
, Visited
);
282 // We just inserted a phi into this block, so the incoming value will
283 // become the phi anyway, so it does not matter what we pass.
284 for (auto &MP
: InsertedPHIs
)
285 if (MemoryPhi
*Phi
= cast_or_null
<MemoryPhi
>(MP
))
286 MSSA
->renamePass(Phi
->getBlock(), nullptr, Visited
);
290 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
291 static void setMemoryPhiValueForBlock(MemoryPhi
*MP
, const BasicBlock
*BB
,
292 MemoryAccess
*NewDef
) {
293 // Replace any operand with us an incoming block with the new defining
295 int i
= MP
->getBasicBlockIndex(BB
);
296 assert(i
!= -1 && "Should have found the basic block in the phi");
297 // We can't just compare i against getNumOperands since one is signed and the
298 // other not. So use it to index into the block iterator.
299 for (auto BBIter
= MP
->block_begin() + i
; BBIter
!= MP
->block_end();
303 MP
->setIncomingValue(i
, NewDef
);
308 // A brief description of the algorithm:
309 // First, we compute what should define the new def, using the SSA
310 // construction algorithm.
311 // Then, we update the defs below us (and any new phi nodes) in the graph to
312 // point to the correct new defs, to ensure we only have one variable, and no
313 // disconnected stores.
314 void MemorySSAUpdater::insertDef(MemoryDef
*MD
, bool RenameUses
) {
315 InsertedPHIs
.clear();
317 // See if we had a local def, and if not, go hunting.
318 MemoryAccess
*DefBefore
= getPreviousDef(MD
);
319 bool DefBeforeSameBlock
= false;
320 if (DefBefore
->getBlock() == MD
->getBlock() &&
321 !(isa
<MemoryPhi
>(DefBefore
) &&
322 llvm::is_contained(InsertedPHIs
, DefBefore
)))
323 DefBeforeSameBlock
= true;
325 // There is a def before us, which means we can replace any store/phi uses
326 // of that thing with us, since we are in the way of whatever was there
328 // We now define that def's memorydefs and memoryphis
329 if (DefBeforeSameBlock
) {
330 DefBefore
->replaceUsesWithIf(MD
, [MD
](Use
&U
) {
331 // Leave the MemoryUses alone.
332 // Also make sure we skip ourselves to avoid self references.
333 User
*Usr
= U
.getUser();
334 return !isa
<MemoryUse
>(Usr
) && Usr
!= MD
;
335 // Defs are automatically unoptimized when the user is set to MD below,
336 // because the isOptimized() call will fail to find the same ID.
340 // and that def is now our defining access.
341 MD
->setDefiningAccess(DefBefore
);
343 SmallVector
<WeakVH
, 8> FixupList(InsertedPHIs
.begin(), InsertedPHIs
.end());
345 SmallSet
<WeakVH
, 8> ExistingPhis
;
347 // Remember the index where we may insert new phis.
348 unsigned NewPhiIndex
= InsertedPHIs
.size();
349 if (!DefBeforeSameBlock
) {
350 // If there was a local def before us, we must have the same effect it
351 // did. Because every may-def is the same, any phis/etc we would create, it
352 // would also have created. If there was no local def before us, we
353 // performed a global update, and have to search all successors and make
354 // sure we update the first def in each of them (following all paths until
355 // we hit the first def along each path). This may also insert phi nodes.
356 // TODO: There are other cases we can skip this work, such as when we have a
357 // single successor, and only used a straight line of single pred blocks
358 // backwards to find the def. To make that work, we'd have to track whether
359 // getDefRecursive only ever used the single predecessor case. These types
360 // of paths also only exist in between CFG simplifications.
362 // If this is the first def in the block and this insert is in an arbitrary
363 // place, compute IDF and place phis.
364 SmallPtrSet
<BasicBlock
*, 2> DefiningBlocks
;
366 // If this is the last Def in the block, we may need additional Phis.
367 // Compute IDF in all cases, as renaming needs to be done even when MD is
368 // not the last access, because it can introduce a new access past which a
369 // previous access was optimized; that access needs to be reoptimized.
370 DefiningBlocks
.insert(MD
->getBlock());
371 for (const auto &VH
: InsertedPHIs
)
372 if (const auto *RealPHI
= cast_or_null
<MemoryPhi
>(VH
))
373 DefiningBlocks
.insert(RealPHI
->getBlock());
374 ForwardIDFCalculator
IDFs(*MSSA
->DT
);
375 SmallVector
<BasicBlock
*, 32> IDFBlocks
;
376 IDFs
.setDefiningBlocks(DefiningBlocks
);
377 IDFs
.calculate(IDFBlocks
);
378 SmallVector
<AssertingVH
<MemoryPhi
>, 4> NewInsertedPHIs
;
379 for (auto *BBIDF
: IDFBlocks
) {
380 auto *MPhi
= MSSA
->getMemoryAccess(BBIDF
);
382 MPhi
= MSSA
->createMemoryPhi(BBIDF
);
383 NewInsertedPHIs
.push_back(MPhi
);
385 ExistingPhis
.insert(MPhi
);
387 // Add the phis created into the IDF blocks to NonOptPhis, so they are not
388 // optimized out as trivial by the call to getPreviousDefFromEnd below.
389 // Once they are complete, all these Phis are added to the FixupList, and
390 // removed from NonOptPhis inside fixupDefs(). Existing Phis in IDF may
391 // need fixing as well, and potentially be trivial before this insertion,
392 // hence add all IDF Phis. See PR43044.
393 NonOptPhis
.insert(MPhi
);
395 for (auto &MPhi
: NewInsertedPHIs
) {
396 auto *BBIDF
= MPhi
->getBlock();
397 for (auto *Pred
: predecessors(BBIDF
)) {
398 DenseMap
<BasicBlock
*, TrackingVH
<MemoryAccess
>> CachedPreviousDef
;
399 MPhi
->addIncoming(getPreviousDefFromEnd(Pred
, CachedPreviousDef
), Pred
);
403 // Re-take the index where we're adding the new phis, because the above call
404 // to getPreviousDefFromEnd, may have inserted into InsertedPHIs.
405 NewPhiIndex
= InsertedPHIs
.size();
406 for (auto &MPhi
: NewInsertedPHIs
) {
407 InsertedPHIs
.push_back(&*MPhi
);
408 FixupList
.push_back(&*MPhi
);
411 FixupList
.push_back(MD
);
414 // Remember the index where we stopped inserting new phis above, since the
415 // fixupDefs call in the loop below may insert more, that are already minimal.
416 unsigned NewPhiIndexEnd
= InsertedPHIs
.size();
418 while (!FixupList
.empty()) {
419 unsigned StartingPHISize
= InsertedPHIs
.size();
420 fixupDefs(FixupList
);
422 // Put any new phis on the fixup list, and process them
423 FixupList
.append(InsertedPHIs
.begin() + StartingPHISize
, InsertedPHIs
.end());
426 // Optimize potentially non-minimal phis added in this method.
427 unsigned NewPhiSize
= NewPhiIndexEnd
- NewPhiIndex
;
429 tryRemoveTrivialPhis(ArrayRef
<WeakVH
>(&InsertedPHIs
[NewPhiIndex
], NewPhiSize
));
431 // Now that all fixups are done, rename all uses if we are asked. Skip
432 // renaming for defs in unreachable blocks.
433 BasicBlock
*StartBlock
= MD
->getBlock();
434 if (RenameUses
&& MSSA
->getDomTree().getNode(StartBlock
)) {
435 SmallPtrSet
<BasicBlock
*, 16> Visited
;
436 // We are guaranteed there is a def in the block, because we just got it
437 // handed to us in this function.
438 MemoryAccess
*FirstDef
= &*MSSA
->getWritableBlockDefs(StartBlock
)->begin();
439 // Convert to incoming value if it's a memorydef. A phi *is* already an
441 if (auto *MD
= dyn_cast
<MemoryDef
>(FirstDef
))
442 FirstDef
= MD
->getDefiningAccess();
444 MSSA
->renamePass(MD
->getBlock(), FirstDef
, Visited
);
445 // We just inserted a phi into this block, so the incoming value will become
446 // the phi anyway, so it does not matter what we pass.
447 for (auto &MP
: InsertedPHIs
) {
448 MemoryPhi
*Phi
= dyn_cast_or_null
<MemoryPhi
>(MP
);
450 MSSA
->renamePass(Phi
->getBlock(), nullptr, Visited
);
452 // Existing Phi blocks may need renaming too, if an access was previously
453 // optimized and the inserted Defs "covers" the Optimized value.
454 for (auto &MP
: ExistingPhis
) {
455 MemoryPhi
*Phi
= dyn_cast_or_null
<MemoryPhi
>(MP
);
457 MSSA
->renamePass(Phi
->getBlock(), nullptr, Visited
);
462 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl
<WeakVH
> &Vars
) {
463 SmallPtrSet
<const BasicBlock
*, 8> Seen
;
464 SmallVector
<const BasicBlock
*, 16> Worklist
;
465 for (auto &Var
: Vars
) {
466 MemoryAccess
*NewDef
= dyn_cast_or_null
<MemoryAccess
>(Var
);
469 // First, see if there is a local def after the operand.
470 auto *Defs
= MSSA
->getWritableBlockDefs(NewDef
->getBlock());
471 auto DefIter
= NewDef
->getDefsIterator();
473 // The temporary Phi is being fixed, unmark it for not to optimize.
474 if (MemoryPhi
*Phi
= dyn_cast
<MemoryPhi
>(NewDef
))
475 NonOptPhis
.erase(Phi
);
477 // If there is a local def after us, we only have to rename that.
478 if (++DefIter
!= Defs
->end()) {
479 cast
<MemoryDef
>(DefIter
)->setDefiningAccess(NewDef
);
483 // Otherwise, we need to search down through the CFG.
484 // For each of our successors, handle it directly if their is a phi, or
485 // place on the fixup worklist.
486 for (const auto *S
: successors(NewDef
->getBlock())) {
487 if (auto *MP
= MSSA
->getMemoryAccess(S
))
488 setMemoryPhiValueForBlock(MP
, NewDef
->getBlock(), NewDef
);
490 Worklist
.push_back(S
);
493 while (!Worklist
.empty()) {
494 const BasicBlock
*FixupBlock
= Worklist
.back();
497 // Get the first def in the block that isn't a phi node.
498 if (auto *Defs
= MSSA
->getWritableBlockDefs(FixupBlock
)) {
499 auto *FirstDef
= &*Defs
->begin();
500 // The loop above and below should have taken care of phi nodes
501 assert(!isa
<MemoryPhi
>(FirstDef
) &&
502 "Should have already handled phi nodes!");
503 // We are now this def's defining access, make sure we actually dominate
505 assert(MSSA
->dominates(NewDef
, FirstDef
) &&
506 "Should have dominated the new access");
508 // This may insert new phi nodes, because we are not guaranteed the
509 // block we are processing has a single pred, and depending where the
510 // store was inserted, it may require phi nodes below it.
511 cast
<MemoryDef
>(FirstDef
)->setDefiningAccess(getPreviousDef(FirstDef
));
514 // We didn't find a def, so we must continue.
515 for (const auto *S
: successors(FixupBlock
)) {
516 // If there is a phi node, handle it.
517 // Otherwise, put the block on the worklist
518 if (auto *MP
= MSSA
->getMemoryAccess(S
))
519 setMemoryPhiValueForBlock(MP
, FixupBlock
, NewDef
);
521 // If we cycle, we should have ended up at a phi node that we already
522 // processed. FIXME: Double check this
523 if (!Seen
.insert(S
).second
)
525 Worklist
.push_back(S
);
532 void MemorySSAUpdater::removeEdge(BasicBlock
*From
, BasicBlock
*To
) {
533 if (MemoryPhi
*MPhi
= MSSA
->getMemoryAccess(To
)) {
534 MPhi
->unorderedDeleteIncomingBlock(From
);
535 tryRemoveTrivialPhi(MPhi
);
539 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock
*From
,
540 const BasicBlock
*To
) {
541 if (MemoryPhi
*MPhi
= MSSA
->getMemoryAccess(To
)) {
543 MPhi
->unorderedDeleteIncomingIf([&](const MemoryAccess
*, BasicBlock
*B
) {
551 tryRemoveTrivialPhi(MPhi
);
555 /// If all arguments of a MemoryPHI are defined by the same incoming
556 /// argument, return that argument.
557 static MemoryAccess
*onlySingleValue(MemoryPhi
*MP
) {
558 MemoryAccess
*MA
= nullptr;
560 for (auto &Arg
: MP
->operands()) {
562 MA
= cast
<MemoryAccess
>(Arg
);
569 static MemoryAccess
*getNewDefiningAccessForClone(MemoryAccess
*MA
,
570 const ValueToValueMapTy
&VMap
,
571 PhiToDefMap
&MPhiMap
,
572 bool CloneWasSimplified
,
574 MemoryAccess
*InsnDefining
= MA
;
575 if (MemoryDef
*DefMUD
= dyn_cast
<MemoryDef
>(InsnDefining
)) {
576 if (!MSSA
->isLiveOnEntryDef(DefMUD
)) {
577 Instruction
*DefMUDI
= DefMUD
->getMemoryInst();
578 assert(DefMUDI
&& "Found MemoryUseOrDef with no Instruction.");
579 if (Instruction
*NewDefMUDI
=
580 cast_or_null
<Instruction
>(VMap
.lookup(DefMUDI
))) {
581 InsnDefining
= MSSA
->getMemoryAccess(NewDefMUDI
);
582 if (!CloneWasSimplified
)
583 assert(InsnDefining
&& "Defining instruction cannot be nullptr.");
584 else if (!InsnDefining
|| isa
<MemoryUse
>(InsnDefining
)) {
585 // The clone was simplified, it's no longer a MemoryDef, look up.
586 auto DefIt
= DefMUD
->getDefsIterator();
587 // Since simplified clones only occur in single block cloning, a
588 // previous definition must exist, otherwise NewDefMUDI would not
589 // have been found in VMap.
590 assert(DefIt
!= MSSA
->getBlockDefs(DefMUD
->getBlock())->begin() &&
591 "Previous def must exist");
592 InsnDefining
= getNewDefiningAccessForClone(
593 &*(--DefIt
), VMap
, MPhiMap
, CloneWasSimplified
, MSSA
);
598 MemoryPhi
*DefPhi
= cast
<MemoryPhi
>(InsnDefining
);
599 if (MemoryAccess
*NewDefPhi
= MPhiMap
.lookup(DefPhi
))
600 InsnDefining
= NewDefPhi
;
602 assert(InsnDefining
&& "Defining instruction cannot be nullptr.");
606 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock
*BB
, BasicBlock
*NewBB
,
607 const ValueToValueMapTy
&VMap
,
608 PhiToDefMap
&MPhiMap
,
609 bool CloneWasSimplified
) {
610 const MemorySSA::AccessList
*Acc
= MSSA
->getBlockAccesses(BB
);
613 for (const MemoryAccess
&MA
: *Acc
) {
614 if (const MemoryUseOrDef
*MUD
= dyn_cast
<MemoryUseOrDef
>(&MA
)) {
615 Instruction
*Insn
= MUD
->getMemoryInst();
616 // Entry does not exist if the clone of the block did not clone all
617 // instructions. This occurs in LoopRotate when cloning instructions
618 // from the old header to the old preheader. The cloned instruction may
619 // also be a simplified Value, not an Instruction (see LoopRotate).
620 // Also in LoopRotate, even when it's an instruction, due to it being
621 // simplified, it may be a Use rather than a Def, so we cannot use MUD as
622 // template. Calls coming from updateForClonedBlockIntoPred, ensure this.
623 if (Instruction
*NewInsn
=
624 dyn_cast_or_null
<Instruction
>(VMap
.lookup(Insn
))) {
625 MemoryAccess
*NewUseOrDef
= MSSA
->createDefinedAccess(
627 getNewDefiningAccessForClone(MUD
->getDefiningAccess(), VMap
,
628 MPhiMap
, CloneWasSimplified
, MSSA
),
629 /*Template=*/CloneWasSimplified
? nullptr : MUD
,
630 /*CreationMustSucceed=*/CloneWasSimplified
? false : true);
632 MSSA
->insertIntoListsForBlock(NewUseOrDef
, NewBB
, MemorySSA::End
);
638 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock(
639 BasicBlock
*Header
, BasicBlock
*Preheader
, BasicBlock
*BEBlock
) {
640 auto *MPhi
= MSSA
->getMemoryAccess(Header
);
644 // Create phi node in the backedge block and populate it with the same
645 // incoming values as MPhi. Skip incoming values coming from Preheader.
646 auto *NewMPhi
= MSSA
->createMemoryPhi(BEBlock
);
647 bool HasUniqueIncomingValue
= true;
648 MemoryAccess
*UniqueValue
= nullptr;
649 for (unsigned I
= 0, E
= MPhi
->getNumIncomingValues(); I
!= E
; ++I
) {
650 BasicBlock
*IBB
= MPhi
->getIncomingBlock(I
);
651 MemoryAccess
*IV
= MPhi
->getIncomingValue(I
);
652 if (IBB
!= Preheader
) {
653 NewMPhi
->addIncoming(IV
, IBB
);
654 if (HasUniqueIncomingValue
) {
657 else if (UniqueValue
!= IV
)
658 HasUniqueIncomingValue
= false;
663 // Update incoming edges into MPhi. Remove all but the incoming edge from
664 // Preheader. Add an edge from NewMPhi
665 auto *AccFromPreheader
= MPhi
->getIncomingValueForBlock(Preheader
);
666 MPhi
->setIncomingValue(0, AccFromPreheader
);
667 MPhi
->setIncomingBlock(0, Preheader
);
668 for (unsigned I
= MPhi
->getNumIncomingValues() - 1; I
>= 1; --I
)
669 MPhi
->unorderedDeleteIncoming(I
);
670 MPhi
->addIncoming(NewMPhi
, BEBlock
);
672 // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be
673 // replaced with the unique value.
674 tryRemoveTrivialPhi(NewMPhi
);
677 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO
&LoopBlocks
,
678 ArrayRef
<BasicBlock
*> ExitBlocks
,
679 const ValueToValueMapTy
&VMap
,
680 bool IgnoreIncomingWithNoClones
) {
683 auto FixPhiIncomingValues
= [&](MemoryPhi
*Phi
, MemoryPhi
*NewPhi
) {
684 assert(Phi
&& NewPhi
&& "Invalid Phi nodes.");
685 BasicBlock
*NewPhiBB
= NewPhi
->getBlock();
686 SmallPtrSet
<BasicBlock
*, 4> NewPhiBBPreds(pred_begin(NewPhiBB
),
688 for (unsigned It
= 0, E
= Phi
->getNumIncomingValues(); It
< E
; ++It
) {
689 MemoryAccess
*IncomingAccess
= Phi
->getIncomingValue(It
);
690 BasicBlock
*IncBB
= Phi
->getIncomingBlock(It
);
692 if (BasicBlock
*NewIncBB
= cast_or_null
<BasicBlock
>(VMap
.lookup(IncBB
)))
694 else if (IgnoreIncomingWithNoClones
)
697 // Now we have IncBB, and will need to add incoming from it to NewPhi.
699 // If IncBB is not a predecessor of NewPhiBB, then do not add it.
700 // NewPhiBB was cloned without that edge.
701 if (!NewPhiBBPreds
.count(IncBB
))
704 // Determine incoming value and add it as incoming from IncBB.
705 if (MemoryUseOrDef
*IncMUD
= dyn_cast
<MemoryUseOrDef
>(IncomingAccess
)) {
706 if (!MSSA
->isLiveOnEntryDef(IncMUD
)) {
707 Instruction
*IncI
= IncMUD
->getMemoryInst();
708 assert(IncI
&& "Found MemoryUseOrDef with no Instruction.");
709 if (Instruction
*NewIncI
=
710 cast_or_null
<Instruction
>(VMap
.lookup(IncI
))) {
711 IncMUD
= MSSA
->getMemoryAccess(NewIncI
);
713 "MemoryUseOrDef cannot be null, all preds processed.");
716 NewPhi
->addIncoming(IncMUD
, IncBB
);
718 MemoryPhi
*IncPhi
= cast
<MemoryPhi
>(IncomingAccess
);
719 if (MemoryAccess
*NewDefPhi
= MPhiMap
.lookup(IncPhi
))
720 NewPhi
->addIncoming(NewDefPhi
, IncBB
);
722 NewPhi
->addIncoming(IncPhi
, IncBB
);
725 if (auto *SingleAccess
= onlySingleValue(NewPhi
)) {
726 MPhiMap
[Phi
] = SingleAccess
;
727 removeMemoryAccess(NewPhi
);
731 auto ProcessBlock
= [&](BasicBlock
*BB
) {
732 BasicBlock
*NewBlock
= cast_or_null
<BasicBlock
>(VMap
.lookup(BB
));
736 assert(!MSSA
->getWritableBlockAccesses(NewBlock
) &&
737 "Cloned block should have no accesses");
740 if (MemoryPhi
*MPhi
= MSSA
->getMemoryAccess(BB
)) {
741 MemoryPhi
*NewPhi
= MSSA
->createMemoryPhi(NewBlock
);
742 MPhiMap
[MPhi
] = NewPhi
;
744 // Update Uses and Defs.
745 cloneUsesAndDefs(BB
, NewBlock
, VMap
, MPhiMap
);
748 for (auto BB
: llvm::concat
<BasicBlock
*const>(LoopBlocks
, ExitBlocks
))
751 for (auto BB
: llvm::concat
<BasicBlock
*const>(LoopBlocks
, ExitBlocks
))
752 if (MemoryPhi
*MPhi
= MSSA
->getMemoryAccess(BB
))
753 if (MemoryAccess
*NewPhi
= MPhiMap
.lookup(MPhi
))
754 FixPhiIncomingValues(MPhi
, cast
<MemoryPhi
>(NewPhi
));
757 void MemorySSAUpdater::updateForClonedBlockIntoPred(
758 BasicBlock
*BB
, BasicBlock
*P1
, const ValueToValueMapTy
&VM
) {
759 // All defs/phis from outside BB that are used in BB, are valid uses in P1.
760 // Since those defs/phis must have dominated BB, and also dominate P1.
761 // Defs from BB being used in BB will be replaced with the cloned defs from
762 // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
763 // incoming def into the Phi from P1.
764 // Instructions cloned into the predecessor are in practice sometimes
765 // simplified, so disable the use of the template, and create an access from
768 if (MemoryPhi
*MPhi
= MSSA
->getMemoryAccess(BB
))
769 MPhiMap
[MPhi
] = MPhi
->getIncomingValueForBlock(P1
);
770 cloneUsesAndDefs(BB
, P1
, VM
, MPhiMap
, /*CloneWasSimplified=*/true);
773 template <typename Iter
>
774 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
775 ArrayRef
<BasicBlock
*> ExitBlocks
, Iter ValuesBegin
, Iter ValuesEnd
,
777 SmallVector
<CFGUpdate
, 4> Updates
;
778 // Update/insert phis in all successors of exit blocks.
779 for (auto *Exit
: ExitBlocks
)
780 for (const ValueToValueMapTy
*VMap
: make_range(ValuesBegin
, ValuesEnd
))
781 if (BasicBlock
*NewExit
= cast_or_null
<BasicBlock
>(VMap
->lookup(Exit
))) {
782 BasicBlock
*ExitSucc
= NewExit
->getTerminator()->getSuccessor(0);
783 Updates
.push_back({DT
.Insert
, NewExit
, ExitSucc
});
785 applyInsertUpdates(Updates
, DT
);
788 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
789 ArrayRef
<BasicBlock
*> ExitBlocks
, const ValueToValueMapTy
&VMap
,
791 const ValueToValueMapTy
*const Arr
[] = {&VMap
};
792 privateUpdateExitBlocksForClonedLoop(ExitBlocks
, std::begin(Arr
),
796 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
797 ArrayRef
<BasicBlock
*> ExitBlocks
,
798 ArrayRef
<std::unique_ptr
<ValueToValueMapTy
>> VMaps
, DominatorTree
&DT
) {
799 auto GetPtr
= [&](const std::unique_ptr
<ValueToValueMapTy
> &I
) {
802 using MappedIteratorType
=
803 mapped_iterator
<const std::unique_ptr
<ValueToValueMapTy
> *,
805 auto MapBegin
= MappedIteratorType(VMaps
.begin(), GetPtr
);
806 auto MapEnd
= MappedIteratorType(VMaps
.end(), GetPtr
);
807 privateUpdateExitBlocksForClonedLoop(ExitBlocks
, MapBegin
, MapEnd
, DT
);
810 void MemorySSAUpdater::applyUpdates(ArrayRef
<CFGUpdate
> Updates
,
811 DominatorTree
&DT
, bool UpdateDT
) {
812 SmallVector
<CFGUpdate
, 4> DeleteUpdates
;
813 SmallVector
<CFGUpdate
, 4> RevDeleteUpdates
;
814 SmallVector
<CFGUpdate
, 4> InsertUpdates
;
815 for (auto &Update
: Updates
) {
816 if (Update
.getKind() == DT
.Insert
)
817 InsertUpdates
.push_back({DT
.Insert
, Update
.getFrom(), Update
.getTo()});
819 DeleteUpdates
.push_back({DT
.Delete
, Update
.getFrom(), Update
.getTo()});
820 RevDeleteUpdates
.push_back({DT
.Insert
, Update
.getFrom(), Update
.getTo()});
824 if (!DeleteUpdates
.empty()) {
826 SmallVector
<CFGUpdate
, 0> Empty
;
827 // Deletes are reversed applied, because this CFGView is pretending the
828 // deletes did not happen yet, hence the edges still exist.
829 DT
.applyUpdates(Empty
, RevDeleteUpdates
);
831 // Apply all updates, with the RevDeleteUpdates as PostCFGView.
832 DT
.applyUpdates(Updates
, RevDeleteUpdates
);
835 // Note: the MSSA update below doesn't distinguish between a GD with
836 // (RevDelete,false) and (Delete, true), but this matters for the DT
837 // updates above; for "children" purposes they are equivalent; but the
838 // updates themselves convey the desired update, used inside DT only.
839 GraphDiff
<BasicBlock
*> GD(RevDeleteUpdates
);
840 applyInsertUpdates(InsertUpdates
, DT
, &GD
);
841 // Update DT to redelete edges; this matches the real CFG so we can perform
842 // the standard update without a postview of the CFG.
843 DT
.applyUpdates(DeleteUpdates
);
846 DT
.applyUpdates(Updates
);
847 GraphDiff
<BasicBlock
*> GD
;
848 applyInsertUpdates(InsertUpdates
, DT
, &GD
);
851 // Update for deleted edges
852 for (auto &Update
: DeleteUpdates
)
853 removeEdge(Update
.getFrom(), Update
.getTo());
856 void MemorySSAUpdater::applyInsertUpdates(ArrayRef
<CFGUpdate
> Updates
,
858 GraphDiff
<BasicBlock
*> GD
;
859 applyInsertUpdates(Updates
, DT
, &GD
);
862 void MemorySSAUpdater::applyInsertUpdates(ArrayRef
<CFGUpdate
> Updates
,
864 const GraphDiff
<BasicBlock
*> *GD
) {
865 // Get recursive last Def, assuming well formed MSSA and updated DT.
866 auto GetLastDef
= [&](BasicBlock
*BB
) -> MemoryAccess
* {
868 MemorySSA::DefsList
*Defs
= MSSA
->getWritableBlockDefs(BB
);
869 // Return last Def or Phi in BB, if it exists.
871 return &*(--Defs
->end());
873 // Check number of predecessors, we only care if there's more than one.
875 BasicBlock
*Pred
= nullptr;
876 for (auto *Pi
: GD
->template getChildren
</*InverseEdge=*/true>(BB
)) {
883 // If BB has multiple predecessors, get last definition from IDom.
885 // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
886 // DT is invalidated. Return LoE as its last def. This will be added to
887 // MemoryPhi node, and later deleted when the block is deleted.
889 return MSSA
->getLiveOnEntryDef();
890 if (auto *IDom
= DT
.getNode(BB
)->getIDom())
891 if (IDom
->getBlock() != BB
) {
892 BB
= IDom
->getBlock();
895 return MSSA
->getLiveOnEntryDef();
897 // Single predecessor, BB cannot be dead. GetLastDef of Pred.
898 assert(Count
== 1 && Pred
&& "Single predecessor expected.");
899 // BB can be unreachable though, return LoE if that is the case.
901 return MSSA
->getLiveOnEntryDef();
905 llvm_unreachable("Unable to get last definition.");
908 // Get nearest IDom given a set of blocks.
909 // TODO: this can be optimized by starting the search at the node with the
910 // lowest level (highest in the tree).
911 auto FindNearestCommonDominator
=
912 [&](const SmallSetVector
<BasicBlock
*, 2> &BBSet
) -> BasicBlock
* {
913 BasicBlock
*PrevIDom
= *BBSet
.begin();
914 for (auto *BB
: BBSet
)
915 PrevIDom
= DT
.findNearestCommonDominator(PrevIDom
, BB
);
919 // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
921 auto GetNoLongerDomBlocks
=
922 [&](BasicBlock
*PrevIDom
, BasicBlock
*CurrIDom
,
923 SmallVectorImpl
<BasicBlock
*> &BlocksPrevDom
) {
924 if (PrevIDom
== CurrIDom
)
926 BlocksPrevDom
.push_back(PrevIDom
);
927 BasicBlock
*NextIDom
= PrevIDom
;
928 while (BasicBlock
*UpIDom
=
929 DT
.getNode(NextIDom
)->getIDom()->getBlock()) {
930 if (UpIDom
== CurrIDom
)
932 BlocksPrevDom
.push_back(UpIDom
);
937 // Map a BB to its predecessors: added + previously existing. To get a
938 // deterministic order, store predecessors as SetVectors. The order in each
939 // will be defined by the order in Updates (fixed) and the order given by
940 // children<> (also fixed). Since we further iterate over these ordered sets,
941 // we lose the information of multiple edges possibly existing between two
942 // blocks, so we'll keep and EdgeCount map for that.
943 // An alternate implementation could keep unordered set for the predecessors,
944 // traverse either Updates or children<> each time to get the deterministic
945 // order, and drop the usage of EdgeCount. This alternate approach would still
946 // require querying the maps for each predecessor, and children<> call has
947 // additional computation inside for creating the snapshot-graph predecessors.
948 // As such, we favor using a little additional storage and less compute time.
949 // This decision can be revisited if we find the alternative more favorable.
952 SmallSetVector
<BasicBlock
*, 2> Added
;
953 SmallSetVector
<BasicBlock
*, 2> Prev
;
955 SmallDenseMap
<BasicBlock
*, PredInfo
> PredMap
;
957 for (auto &Edge
: Updates
) {
958 BasicBlock
*BB
= Edge
.getTo();
959 auto &AddedBlockSet
= PredMap
[BB
].Added
;
960 AddedBlockSet
.insert(Edge
.getFrom());
963 // Store all existing predecessor for each BB, at least one must exist.
964 SmallDenseMap
<std::pair
<BasicBlock
*, BasicBlock
*>, int> EdgeCountMap
;
965 SmallPtrSet
<BasicBlock
*, 2> NewBlocks
;
966 for (auto &BBPredPair
: PredMap
) {
967 auto *BB
= BBPredPair
.first
;
968 const auto &AddedBlockSet
= BBPredPair
.second
.Added
;
969 auto &PrevBlockSet
= BBPredPair
.second
.Prev
;
970 for (auto *Pi
: GD
->template getChildren
</*InverseEdge=*/true>(BB
)) {
971 if (!AddedBlockSet
.count(Pi
))
972 PrevBlockSet
.insert(Pi
);
973 EdgeCountMap
[{Pi
, BB
}]++;
976 if (PrevBlockSet
.empty()) {
977 assert(pred_size(BB
) == AddedBlockSet
.size() && "Duplicate edges added.");
980 << "Adding a predecessor to a block with no predecessors. "
981 "This must be an edge added to a new, likely cloned, block. "
982 "Its memory accesses must be already correct, assuming completed "
983 "via the updateExitBlocksForClonedLoop API. "
984 "Assert a single such edge is added so no phi addition or "
985 "additional processing is required.\n");
986 assert(AddedBlockSet
.size() == 1 &&
987 "Can only handle adding one predecessor to a new block.");
988 // Need to remove new blocks from PredMap. Remove below to not invalidate
990 NewBlocks
.insert(BB
);
993 // Nothing to process for new/cloned blocks.
994 for (auto *BB
: NewBlocks
)
997 SmallVector
<BasicBlock
*, 16> BlocksWithDefsToReplace
;
998 SmallVector
<WeakVH
, 8> InsertedPhis
;
1000 // First create MemoryPhis in all blocks that don't have one. Create in the
1001 // order found in Updates, not in PredMap, to get deterministic numbering.
1002 for (auto &Edge
: Updates
) {
1003 BasicBlock
*BB
= Edge
.getTo();
1004 if (PredMap
.count(BB
) && !MSSA
->getMemoryAccess(BB
))
1005 InsertedPhis
.push_back(MSSA
->createMemoryPhi(BB
));
1008 // Now we'll fill in the MemoryPhis with the right incoming values.
1009 for (auto &BBPredPair
: PredMap
) {
1010 auto *BB
= BBPredPair
.first
;
1011 const auto &PrevBlockSet
= BBPredPair
.second
.Prev
;
1012 const auto &AddedBlockSet
= BBPredPair
.second
.Added
;
1013 assert(!PrevBlockSet
.empty() &&
1014 "At least one previous predecessor must exist.");
1016 // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
1017 // keeping this map before the loop. We can reuse already populated entries
1018 // if an edge is added from the same predecessor to two different blocks,
1019 // and this does happen in rotate. Note that the map needs to be updated
1020 // when deleting non-necessary phis below, if the phi is in the map by
1021 // replacing the value with DefP1.
1022 SmallDenseMap
<BasicBlock
*, MemoryAccess
*> LastDefAddedPred
;
1023 for (auto *AddedPred
: AddedBlockSet
) {
1024 auto *DefPn
= GetLastDef(AddedPred
);
1025 assert(DefPn
!= nullptr && "Unable to find last definition.");
1026 LastDefAddedPred
[AddedPred
] = DefPn
;
1029 MemoryPhi
*NewPhi
= MSSA
->getMemoryAccess(BB
);
1030 // If Phi is not empty, add an incoming edge from each added pred. Must
1031 // still compute blocks with defs to replace for this block below.
1032 if (NewPhi
->getNumOperands()) {
1033 for (auto *Pred
: AddedBlockSet
) {
1034 auto *LastDefForPred
= LastDefAddedPred
[Pred
];
1035 for (int I
= 0, E
= EdgeCountMap
[{Pred
, BB
}]; I
< E
; ++I
)
1036 NewPhi
->addIncoming(LastDefForPred
, Pred
);
1039 // Pick any existing predecessor and get its definition. All other
1040 // existing predecessors should have the same one, since no phi existed.
1041 auto *P1
= *PrevBlockSet
.begin();
1042 MemoryAccess
*DefP1
= GetLastDef(P1
);
1044 // Check DefP1 against all Defs in LastDefPredPair. If all the same,
1046 bool InsertPhi
= false;
1047 for (auto LastDefPredPair
: LastDefAddedPred
)
1048 if (DefP1
!= LastDefPredPair
.second
) {
1053 // Since NewPhi may be used in other newly added Phis, replace all uses
1054 // of NewPhi with the definition coming from all predecessors (DefP1),
1055 // before deleting it.
1056 NewPhi
->replaceAllUsesWith(DefP1
);
1057 removeMemoryAccess(NewPhi
);
1061 // Update Phi with new values for new predecessors and old value for all
1062 // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
1063 // sets, the order of entries in NewPhi is deterministic.
1064 for (auto *Pred
: AddedBlockSet
) {
1065 auto *LastDefForPred
= LastDefAddedPred
[Pred
];
1066 for (int I
= 0, E
= EdgeCountMap
[{Pred
, BB
}]; I
< E
; ++I
)
1067 NewPhi
->addIncoming(LastDefForPred
, Pred
);
1069 for (auto *Pred
: PrevBlockSet
)
1070 for (int I
= 0, E
= EdgeCountMap
[{Pred
, BB
}]; I
< E
; ++I
)
1071 NewPhi
->addIncoming(DefP1
, Pred
);
1074 // Get all blocks that used to dominate BB and no longer do after adding
1075 // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
1076 assert(DT
.getNode(BB
)->getIDom() && "BB does not have valid idom");
1077 BasicBlock
*PrevIDom
= FindNearestCommonDominator(PrevBlockSet
);
1078 assert(PrevIDom
&& "Previous IDom should exists");
1079 BasicBlock
*NewIDom
= DT
.getNode(BB
)->getIDom()->getBlock();
1080 assert(NewIDom
&& "BB should have a new valid idom");
1081 assert(DT
.dominates(NewIDom
, PrevIDom
) &&
1082 "New idom should dominate old idom");
1083 GetNoLongerDomBlocks(PrevIDom
, NewIDom
, BlocksWithDefsToReplace
);
1086 tryRemoveTrivialPhis(InsertedPhis
);
1087 // Create the set of blocks that now have a definition. We'll use this to
1088 // compute IDF and add Phis there next.
1089 SmallVector
<BasicBlock
*, 8> BlocksToProcess
;
1090 for (auto &VH
: InsertedPhis
)
1091 if (auto *MPhi
= cast_or_null
<MemoryPhi
>(VH
))
1092 BlocksToProcess
.push_back(MPhi
->getBlock());
1094 // Compute IDF and add Phis in all IDF blocks that do not have one.
1095 SmallVector
<BasicBlock
*, 32> IDFBlocks
;
1096 if (!BlocksToProcess
.empty()) {
1097 ForwardIDFCalculator
IDFs(DT
, GD
);
1098 SmallPtrSet
<BasicBlock
*, 16> DefiningBlocks(BlocksToProcess
.begin(),
1099 BlocksToProcess
.end());
1100 IDFs
.setDefiningBlocks(DefiningBlocks
);
1101 IDFs
.calculate(IDFBlocks
);
1103 SmallSetVector
<MemoryPhi
*, 4> PhisToFill
;
1104 // First create all needed Phis.
1105 for (auto *BBIDF
: IDFBlocks
)
1106 if (!MSSA
->getMemoryAccess(BBIDF
)) {
1107 auto *IDFPhi
= MSSA
->createMemoryPhi(BBIDF
);
1108 InsertedPhis
.push_back(IDFPhi
);
1109 PhisToFill
.insert(IDFPhi
);
1111 // Then update or insert their correct incoming values.
1112 for (auto *BBIDF
: IDFBlocks
) {
1113 auto *IDFPhi
= MSSA
->getMemoryAccess(BBIDF
);
1114 assert(IDFPhi
&& "Phi must exist");
1115 if (!PhisToFill
.count(IDFPhi
)) {
1116 // Update existing Phi.
1117 // FIXME: some updates may be redundant, try to optimize and skip some.
1118 for (unsigned I
= 0, E
= IDFPhi
->getNumIncomingValues(); I
< E
; ++I
)
1119 IDFPhi
->setIncomingValue(I
, GetLastDef(IDFPhi
->getIncomingBlock(I
)));
1121 for (auto *Pi
: GD
->template getChildren
</*InverseEdge=*/true>(BBIDF
))
1122 IDFPhi
->addIncoming(GetLastDef(Pi
), Pi
);
1127 // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
1128 // longer dominate, replace those with the closest dominating def.
1129 // This will also update optimized accesses, as they're also uses.
1130 for (auto *BlockWithDefsToReplace
: BlocksWithDefsToReplace
) {
1131 if (auto DefsList
= MSSA
->getWritableBlockDefs(BlockWithDefsToReplace
)) {
1132 for (auto &DefToReplaceUses
: *DefsList
) {
1133 BasicBlock
*DominatingBlock
= DefToReplaceUses
.getBlock();
1134 Value::use_iterator UI
= DefToReplaceUses
.use_begin(),
1135 E
= DefToReplaceUses
.use_end();
1139 MemoryAccess
*Usr
= cast
<MemoryAccess
>(U
.getUser());
1140 if (MemoryPhi
*UsrPhi
= dyn_cast
<MemoryPhi
>(Usr
)) {
1141 BasicBlock
*DominatedBlock
= UsrPhi
->getIncomingBlock(U
);
1142 if (!DT
.dominates(DominatingBlock
, DominatedBlock
))
1143 U
.set(GetLastDef(DominatedBlock
));
1145 BasicBlock
*DominatedBlock
= Usr
->getBlock();
1146 if (!DT
.dominates(DominatingBlock
, DominatedBlock
)) {
1147 if (auto *DomBlPhi
= MSSA
->getMemoryAccess(DominatedBlock
))
1150 auto *IDom
= DT
.getNode(DominatedBlock
)->getIDom();
1151 assert(IDom
&& "Block must have a valid IDom.");
1152 U
.set(GetLastDef(IDom
->getBlock()));
1154 cast
<MemoryUseOrDef
>(Usr
)->resetOptimized();
1161 tryRemoveTrivialPhis(InsertedPhis
);
1164 // Move What before Where in the MemorySSA IR.
1165 template <class WhereType
>
1166 void MemorySSAUpdater::moveTo(MemoryUseOrDef
*What
, BasicBlock
*BB
,
1168 // Mark MemoryPhi users of What not to be optimized.
1169 for (auto *U
: What
->users())
1170 if (MemoryPhi
*PhiUser
= dyn_cast
<MemoryPhi
>(U
))
1171 NonOptPhis
.insert(PhiUser
);
1173 // Replace all our users with our defining access.
1174 What
->replaceAllUsesWith(What
->getDefiningAccess());
1176 // Let MemorySSA take care of moving it around in the lists.
1177 MSSA
->moveTo(What
, BB
, Where
);
1179 // Now reinsert it into the IR and do whatever fixups needed.
1180 if (auto *MD
= dyn_cast
<MemoryDef
>(What
))
1181 insertDef(MD
, /*RenameUses=*/true);
1183 insertUse(cast
<MemoryUse
>(What
), /*RenameUses=*/true);
1185 // Clear dangling pointers. We added all MemoryPhi users, but not all
1186 // of them are removed by fixupDefs().
1190 // Move What before Where in the MemorySSA IR.
1191 void MemorySSAUpdater::moveBefore(MemoryUseOrDef
*What
, MemoryUseOrDef
*Where
) {
1192 moveTo(What
, Where
->getBlock(), Where
->getIterator());
1195 // Move What after Where in the MemorySSA IR.
1196 void MemorySSAUpdater::moveAfter(MemoryUseOrDef
*What
, MemoryUseOrDef
*Where
) {
1197 moveTo(What
, Where
->getBlock(), ++Where
->getIterator());
1200 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef
*What
, BasicBlock
*BB
,
1201 MemorySSA::InsertionPlace Where
) {
1202 if (Where
!= MemorySSA::InsertionPlace::BeforeTerminator
)
1203 return moveTo(What
, BB
, Where
);
1205 if (auto *Where
= MSSA
->getMemoryAccess(BB
->getTerminator()))
1206 return moveBefore(What
, Where
);
1208 return moveTo(What
, BB
, MemorySSA::InsertionPlace::End
);
1211 // All accesses in To used to be in From. Move to end and update access lists.
1212 void MemorySSAUpdater::moveAllAccesses(BasicBlock
*From
, BasicBlock
*To
,
1213 Instruction
*Start
) {
1215 MemorySSA::AccessList
*Accs
= MSSA
->getWritableBlockAccesses(From
);
1219 assert(Start
->getParent() == To
&& "Incorrect Start instruction");
1220 MemoryAccess
*FirstInNew
= nullptr;
1221 for (Instruction
&I
: make_range(Start
->getIterator(), To
->end()))
1222 if ((FirstInNew
= MSSA
->getMemoryAccess(&I
)))
1225 auto *MUD
= cast
<MemoryUseOrDef
>(FirstInNew
);
1227 auto NextIt
= ++MUD
->getIterator();
1228 MemoryUseOrDef
*NextMUD
= (!Accs
|| NextIt
== Accs
->end())
1230 : cast
<MemoryUseOrDef
>(&*NextIt
);
1231 MSSA
->moveTo(MUD
, To
, MemorySSA::End
);
1232 // Moving MUD from Accs in the moveTo above, may delete Accs, so we need
1233 // to retrieve it again.
1234 Accs
= MSSA
->getWritableBlockAccesses(From
);
1239 // If all accesses were moved and only a trivial Phi remains, we try to remove
1240 // that Phi. This is needed when From is going to be deleted.
1241 auto *Defs
= MSSA
->getWritableBlockDefs(From
);
1242 if (Defs
&& !Defs
->empty())
1243 if (auto *Phi
= dyn_cast
<MemoryPhi
>(&*Defs
->begin()))
1244 tryRemoveTrivialPhi(Phi
);
1247 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock
*From
,
1249 Instruction
*Start
) {
1250 assert(MSSA
->getBlockAccesses(To
) == nullptr &&
1251 "To block is expected to be free of MemoryAccesses.");
1252 moveAllAccesses(From
, To
, Start
);
1253 for (BasicBlock
*Succ
: successors(To
))
1254 if (MemoryPhi
*MPhi
= MSSA
->getMemoryAccess(Succ
))
1255 MPhi
->setIncomingBlock(MPhi
->getBasicBlockIndex(From
), To
);
1258 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock
*From
, BasicBlock
*To
,
1259 Instruction
*Start
) {
1260 assert(From
->getUniquePredecessor() == To
&&
1261 "From block is expected to have a single predecessor (To).");
1262 moveAllAccesses(From
, To
, Start
);
1263 for (BasicBlock
*Succ
: successors(From
))
1264 if (MemoryPhi
*MPhi
= MSSA
->getMemoryAccess(Succ
))
1265 MPhi
->setIncomingBlock(MPhi
->getBasicBlockIndex(From
), To
);
1268 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
1269 BasicBlock
*Old
, BasicBlock
*New
, ArrayRef
<BasicBlock
*> Preds
,
1270 bool IdenticalEdgesWereMerged
) {
1271 assert(!MSSA
->getWritableBlockAccesses(New
) &&
1272 "Access list should be null for a new block.");
1273 MemoryPhi
*Phi
= MSSA
->getMemoryAccess(Old
);
1276 if (Old
->hasNPredecessors(1)) {
1277 assert(pred_size(New
) == Preds
.size() &&
1278 "Should have moved all predecessors.");
1279 MSSA
->moveTo(Phi
, New
, MemorySSA::Beginning
);
1281 assert(!Preds
.empty() && "Must be moving at least one predecessor to the "
1282 "new immediate predecessor.");
1283 MemoryPhi
*NewPhi
= MSSA
->createMemoryPhi(New
);
1284 SmallPtrSet
<BasicBlock
*, 16> PredsSet(Preds
.begin(), Preds
.end());
1285 // Currently only support the case of removing a single incoming edge when
1286 // identical edges were not merged.
1287 if (!IdenticalEdgesWereMerged
)
1288 assert(PredsSet
.size() == Preds
.size() &&
1289 "If identical edges were not merged, we cannot have duplicate "
1290 "blocks in the predecessors");
1291 Phi
->unorderedDeleteIncomingIf([&](MemoryAccess
*MA
, BasicBlock
*B
) {
1292 if (PredsSet
.count(B
)) {
1293 NewPhi
->addIncoming(MA
, B
);
1294 if (!IdenticalEdgesWereMerged
)
1300 Phi
->addIncoming(NewPhi
, New
);
1301 tryRemoveTrivialPhi(NewPhi
);
1305 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess
*MA
, bool OptimizePhis
) {
1306 assert(!MSSA
->isLiveOnEntryDef(MA
) &&
1307 "Trying to remove the live on entry def");
1308 // We can only delete phi nodes if they have no uses, or we can replace all
1309 // uses with a single definition.
1310 MemoryAccess
*NewDefTarget
= nullptr;
1311 if (MemoryPhi
*MP
= dyn_cast
<MemoryPhi
>(MA
)) {
1312 // Note that it is sufficient to know that all edges of the phi node have
1313 // the same argument. If they do, by the definition of dominance frontiers
1314 // (which we used to place this phi), that argument must dominate this phi,
1315 // and thus, must dominate the phi's uses, and so we will not hit the assert
1317 NewDefTarget
= onlySingleValue(MP
);
1318 assert((NewDefTarget
|| MP
->use_empty()) &&
1319 "We can't delete this memory phi");
1321 NewDefTarget
= cast
<MemoryUseOrDef
>(MA
)->getDefiningAccess();
1324 SmallSetVector
<MemoryPhi
*, 4> PhisToCheck
;
1326 // Re-point the uses at our defining access
1327 if (!isa
<MemoryUse
>(MA
) && !MA
->use_empty()) {
1328 // Reset optimized on users of this store, and reset the uses.
1330 // 1. This is a slightly modified version of RAUW to avoid walking the
1332 // 2. If we wanted to be complete, we would have to reset the optimized
1333 // flags on users of phi nodes if doing the below makes a phi node have all
1334 // the same arguments. Instead, we prefer users to removeMemoryAccess those
1335 // phi nodes, because doing it here would be N^3.
1336 if (MA
->hasValueHandle())
1337 ValueHandleBase::ValueIsRAUWd(MA
, NewDefTarget
);
1338 // Note: We assume MemorySSA is not used in metadata since it's not really
1341 assert(NewDefTarget
!= MA
&& "Going into an infinite loop");
1342 while (!MA
->use_empty()) {
1343 Use
&U
= *MA
->use_begin();
1344 if (auto *MUD
= dyn_cast
<MemoryUseOrDef
>(U
.getUser()))
1345 MUD
->resetOptimized();
1347 if (MemoryPhi
*MP
= dyn_cast
<MemoryPhi
>(U
.getUser()))
1348 PhisToCheck
.insert(MP
);
1349 U
.set(NewDefTarget
);
1353 // The call below to erase will destroy MA, so we can't change the order we
1354 // are doing things here
1355 MSSA
->removeFromLookups(MA
);
1356 MSSA
->removeFromLists(MA
);
1358 // Optionally optimize Phi uses. This will recursively remove trivial phis.
1359 if (!PhisToCheck
.empty()) {
1360 SmallVector
<WeakVH
, 16> PhisToOptimize
{PhisToCheck
.begin(),
1362 PhisToCheck
.clear();
1364 unsigned PhisSize
= PhisToOptimize
.size();
1365 while (PhisSize
-- > 0)
1367 cast_or_null
<MemoryPhi
>(PhisToOptimize
.pop_back_val()))
1368 tryRemoveTrivialPhi(MP
);
1372 void MemorySSAUpdater::removeBlocks(
1373 const SmallSetVector
<BasicBlock
*, 8> &DeadBlocks
) {
1374 // First delete all uses of BB in MemoryPhis.
1375 for (BasicBlock
*BB
: DeadBlocks
) {
1376 Instruction
*TI
= BB
->getTerminator();
1377 assert(TI
&& "Basic block expected to have a terminator instruction");
1378 for (BasicBlock
*Succ
: successors(TI
))
1379 if (!DeadBlocks
.count(Succ
))
1380 if (MemoryPhi
*MP
= MSSA
->getMemoryAccess(Succ
)) {
1381 MP
->unorderedDeleteIncomingBlock(BB
);
1382 tryRemoveTrivialPhi(MP
);
1384 // Drop all references of all accesses in BB
1385 if (MemorySSA::AccessList
*Acc
= MSSA
->getWritableBlockAccesses(BB
))
1386 for (MemoryAccess
&MA
: *Acc
)
1387 MA
.dropAllReferences();
1390 // Next, delete all memory accesses in each block
1391 for (BasicBlock
*BB
: DeadBlocks
) {
1392 MemorySSA::AccessList
*Acc
= MSSA
->getWritableBlockAccesses(BB
);
1395 for (MemoryAccess
&MA
: llvm::make_early_inc_range(*Acc
)) {
1396 MSSA
->removeFromLookups(&MA
);
1397 MSSA
->removeFromLists(&MA
);
1402 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef
<WeakVH
> UpdatedPHIs
) {
1403 for (auto &VH
: UpdatedPHIs
)
1404 if (auto *MPhi
= cast_or_null
<MemoryPhi
>(VH
))
1405 tryRemoveTrivialPhi(MPhi
);
1408 void MemorySSAUpdater::changeToUnreachable(const Instruction
*I
) {
1409 const BasicBlock
*BB
= I
->getParent();
1410 // Remove memory accesses in BB for I and all following instructions.
1411 auto BBI
= I
->getIterator(), BBE
= BB
->end();
1412 // FIXME: If this becomes too expensive, iterate until the first instruction
1413 // with a memory access, then iterate over MemoryAccesses.
1415 removeMemoryAccess(&*(BBI
++));
1416 // Update phis in BB's successors to remove BB.
1417 SmallVector
<WeakVH
, 16> UpdatedPHIs
;
1418 for (const BasicBlock
*Successor
: successors(BB
)) {
1419 removeDuplicatePhiEdgesBetween(BB
, Successor
);
1420 if (MemoryPhi
*MPhi
= MSSA
->getMemoryAccess(Successor
)) {
1421 MPhi
->unorderedDeleteIncomingBlock(BB
);
1422 UpdatedPHIs
.push_back(MPhi
);
1425 // Optimize trivial phis.
1426 tryRemoveTrivialPhis(UpdatedPHIs
);
1429 MemoryAccess
*MemorySSAUpdater::createMemoryAccessInBB(
1430 Instruction
*I
, MemoryAccess
*Definition
, const BasicBlock
*BB
,
1431 MemorySSA::InsertionPlace Point
) {
1432 MemoryUseOrDef
*NewAccess
= MSSA
->createDefinedAccess(I
, Definition
);
1433 MSSA
->insertIntoListsForBlock(NewAccess
, BB
, Point
);
1437 MemoryUseOrDef
*MemorySSAUpdater::createMemoryAccessBefore(
1438 Instruction
*I
, MemoryAccess
*Definition
, MemoryUseOrDef
*InsertPt
) {
1439 assert(I
->getParent() == InsertPt
->getBlock() &&
1440 "New and old access must be in the same block");
1441 MemoryUseOrDef
*NewAccess
= MSSA
->createDefinedAccess(I
, Definition
);
1442 MSSA
->insertIntoListsBefore(NewAccess
, InsertPt
->getBlock(),
1443 InsertPt
->getIterator());
1447 MemoryUseOrDef
*MemorySSAUpdater::createMemoryAccessAfter(
1448 Instruction
*I
, MemoryAccess
*Definition
, MemoryAccess
*InsertPt
) {
1449 assert(I
->getParent() == InsertPt
->getBlock() &&
1450 "New and old access must be in the same block");
1451 MemoryUseOrDef
*NewAccess
= MSSA
->createDefinedAccess(I
, Definition
);
1452 MSSA
->insertIntoListsBefore(NewAccess
, InsertPt
->getBlock(),
1453 ++InsertPt
->getIterator());