[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Analysis / MustExecute.cpp
blob5ca72f5f3623b8fbb95e5d3faac3ba0fa3be903a
1 //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/MustExecute.h"
10 #include "llvm/ADT/PostOrderIterator.h"
11 #include "llvm/ADT/StringExtras.h"
12 #include "llvm/Analysis/CFG.h"
13 #include "llvm/Analysis/InstructionSimplify.h"
14 #include "llvm/Analysis/LoopInfo.h"
15 #include "llvm/Analysis/Passes.h"
16 #include "llvm/Analysis/PostDominators.h"
17 #include "llvm/Analysis/ValueTracking.h"
18 #include "llvm/IR/AssemblyAnnotationWriter.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/InstIterator.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/InitializePasses.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/FormattedStream.h"
28 #include "llvm/Support/raw_ostream.h"
30 using namespace llvm;
32 #define DEBUG_TYPE "must-execute"
34 const DenseMap<BasicBlock *, ColorVector> &
35 LoopSafetyInfo::getBlockColors() const {
36 return BlockColors;
39 void LoopSafetyInfo::copyColors(BasicBlock *New, BasicBlock *Old) {
40 ColorVector &ColorsForNewBlock = BlockColors[New];
41 ColorVector &ColorsForOldBlock = BlockColors[Old];
42 ColorsForNewBlock = ColorsForOldBlock;
45 bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
46 (void)BB;
47 return anyBlockMayThrow();
50 bool SimpleLoopSafetyInfo::anyBlockMayThrow() const {
51 return MayThrow;
54 void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
55 assert(CurLoop != nullptr && "CurLoop can't be null");
56 BasicBlock *Header = CurLoop->getHeader();
57 // Iterate over header and compute safety info.
58 HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(Header);
59 MayThrow = HeaderMayThrow;
60 // Iterate over loop instructions and compute safety info.
61 // Skip header as it has been computed and stored in HeaderMayThrow.
62 // The first block in loopinfo.Blocks is guaranteed to be the header.
63 assert(Header == *CurLoop->getBlocks().begin() &&
64 "First block must be header");
65 for (Loop::block_iterator BB = std::next(CurLoop->block_begin()),
66 BBE = CurLoop->block_end();
67 (BB != BBE) && !MayThrow; ++BB)
68 MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(*BB);
70 computeBlockColors(CurLoop);
73 bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
74 return ICF.hasICF(BB);
77 bool ICFLoopSafetyInfo::anyBlockMayThrow() const {
78 return MayThrow;
81 void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
82 assert(CurLoop != nullptr && "CurLoop can't be null");
83 ICF.clear();
84 MW.clear();
85 MayThrow = false;
86 // Figure out the fact that at least one block may throw.
87 for (auto &BB : CurLoop->blocks())
88 if (ICF.hasICF(&*BB)) {
89 MayThrow = true;
90 break;
92 computeBlockColors(CurLoop);
95 void ICFLoopSafetyInfo::insertInstructionTo(const Instruction *Inst,
96 const BasicBlock *BB) {
97 ICF.insertInstructionTo(Inst, BB);
98 MW.insertInstructionTo(Inst, BB);
101 void ICFLoopSafetyInfo::removeInstruction(const Instruction *Inst) {
102 ICF.removeInstruction(Inst);
103 MW.removeInstruction(Inst);
106 void LoopSafetyInfo::computeBlockColors(const Loop *CurLoop) {
107 // Compute funclet colors if we might sink/hoist in a function with a funclet
108 // personality routine.
109 Function *Fn = CurLoop->getHeader()->getParent();
110 if (Fn->hasPersonalityFn())
111 if (Constant *PersonalityFn = Fn->getPersonalityFn())
112 if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn)))
113 BlockColors = colorEHFunclets(*Fn);
116 /// Return true if we can prove that the given ExitBlock is not reached on the
117 /// first iteration of the given loop. That is, the backedge of the loop must
118 /// be executed before the ExitBlock is executed in any dynamic execution trace.
119 static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock,
120 const DominatorTree *DT,
121 const Loop *CurLoop) {
122 auto *CondExitBlock = ExitBlock->getSinglePredecessor();
123 if (!CondExitBlock)
124 // expect unique exits
125 return false;
126 assert(CurLoop->contains(CondExitBlock) && "meaning of exit block");
127 auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator());
128 if (!BI || !BI->isConditional())
129 return false;
130 // If condition is constant and false leads to ExitBlock then we always
131 // execute the true branch.
132 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition()))
133 return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock;
134 auto *Cond = dyn_cast<CmpInst>(BI->getCondition());
135 if (!Cond)
136 return false;
137 // todo: this would be a lot more powerful if we used scev, but all the
138 // plumbing is currently missing to pass a pointer in from the pass
139 // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known
140 auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0));
141 auto *RHS = Cond->getOperand(1);
142 if (!LHS || LHS->getParent() != CurLoop->getHeader())
143 return false;
144 auto DL = ExitBlock->getModule()->getDataLayout();
145 auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader());
146 auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(),
147 IVStart, RHS,
148 {DL, /*TLI*/ nullptr,
149 DT, /*AC*/ nullptr, BI});
150 auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull);
151 if (!SimpleCst)
152 return false;
153 if (ExitBlock == BI->getSuccessor(0))
154 return SimpleCst->isZeroValue();
155 assert(ExitBlock == BI->getSuccessor(1) && "implied by above");
156 return SimpleCst->isAllOnesValue();
159 /// Collect all blocks from \p CurLoop which lie on all possible paths from
160 /// the header of \p CurLoop (inclusive) to BB (exclusive) into the set
161 /// \p Predecessors. If \p BB is the header, \p Predecessors will be empty.
162 static void collectTransitivePredecessors(
163 const Loop *CurLoop, const BasicBlock *BB,
164 SmallPtrSetImpl<const BasicBlock *> &Predecessors) {
165 assert(Predecessors.empty() && "Garbage in predecessors set?");
166 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
167 if (BB == CurLoop->getHeader())
168 return;
169 SmallVector<const BasicBlock *, 4> WorkList;
170 for (auto *Pred : predecessors(BB)) {
171 Predecessors.insert(Pred);
172 WorkList.push_back(Pred);
174 while (!WorkList.empty()) {
175 auto *Pred = WorkList.pop_back_val();
176 assert(CurLoop->contains(Pred) && "Should only reach loop blocks!");
177 // We are not interested in backedges and we don't want to leave loop.
178 if (Pred == CurLoop->getHeader())
179 continue;
180 // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all
181 // blocks of this inner loop, even those that are always executed AFTER the
182 // BB. It may make our analysis more conservative than it could be, see test
183 // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll.
184 // We can ignore backedge of all loops containing BB to get a sligtly more
185 // optimistic result.
186 for (auto *PredPred : predecessors(Pred))
187 if (Predecessors.insert(PredPred).second)
188 WorkList.push_back(PredPred);
192 bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop,
193 const BasicBlock *BB,
194 const DominatorTree *DT) const {
195 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
197 // Fast path: header is always reached once the loop is entered.
198 if (BB == CurLoop->getHeader())
199 return true;
201 // Collect all transitive predecessors of BB in the same loop. This set will
202 // be a subset of the blocks within the loop.
203 SmallPtrSet<const BasicBlock *, 4> Predecessors;
204 collectTransitivePredecessors(CurLoop, BB, Predecessors);
206 // Make sure that all successors of, all predecessors of BB which are not
207 // dominated by BB, are either:
208 // 1) BB,
209 // 2) Also predecessors of BB,
210 // 3) Exit blocks which are not taken on 1st iteration.
211 // Memoize blocks we've already checked.
212 SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors;
213 for (auto *Pred : Predecessors) {
214 // Predecessor block may throw, so it has a side exit.
215 if (blockMayThrow(Pred))
216 return false;
218 // BB dominates Pred, so if Pred runs, BB must run.
219 // This is true when Pred is a loop latch.
220 if (DT->dominates(BB, Pred))
221 continue;
223 for (auto *Succ : successors(Pred))
224 if (CheckedSuccessors.insert(Succ).second &&
225 Succ != BB && !Predecessors.count(Succ))
226 // By discharging conditions that are not executed on the 1st iteration,
227 // we guarantee that *at least* on the first iteration all paths from
228 // header that *may* execute will lead us to the block of interest. So
229 // that if we had virtually peeled one iteration away, in this peeled
230 // iteration the set of predecessors would contain only paths from
231 // header to BB without any exiting edges that may execute.
233 // TODO: We only do it for exiting edges currently. We could use the
234 // same function to skip some of the edges within the loop if we know
235 // that they will not be taken on the 1st iteration.
237 // TODO: If we somehow know the number of iterations in loop, the same
238 // check may be done for any arbitrary N-th iteration as long as N is
239 // not greater than minimum number of iterations in this loop.
240 if (CurLoop->contains(Succ) ||
241 !CanProveNotTakenFirstIteration(Succ, DT, CurLoop))
242 return false;
245 // All predecessors can only lead us to BB.
246 return true;
249 /// Returns true if the instruction in a loop is guaranteed to execute at least
250 /// once.
251 bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
252 const DominatorTree *DT,
253 const Loop *CurLoop) const {
254 // If the instruction is in the header block for the loop (which is very
255 // common), it is always guaranteed to dominate the exit blocks. Since this
256 // is a common case, and can save some work, check it now.
257 if (Inst.getParent() == CurLoop->getHeader())
258 // If there's a throw in the header block, we can't guarantee we'll reach
259 // Inst unless we can prove that Inst comes before the potential implicit
260 // exit. At the moment, we use a (cheap) hack for the common case where
261 // the instruction of interest is the first one in the block.
262 return !HeaderMayThrow ||
263 Inst.getParent()->getFirstNonPHIOrDbg() == &Inst;
265 // If there is a path from header to exit or latch that doesn't lead to our
266 // instruction's block, return false.
267 return allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
270 bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
271 const DominatorTree *DT,
272 const Loop *CurLoop) const {
273 return !ICF.isDominatedByICFIFromSameBlock(&Inst) &&
274 allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
277 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock *BB,
278 const Loop *CurLoop) const {
279 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
281 // Fast path: there are no instructions before header.
282 if (BB == CurLoop->getHeader())
283 return true;
285 // Collect all transitive predecessors of BB in the same loop. This set will
286 // be a subset of the blocks within the loop.
287 SmallPtrSet<const BasicBlock *, 4> Predecessors;
288 collectTransitivePredecessors(CurLoop, BB, Predecessors);
289 // Find if there any instruction in either predecessor that could write
290 // to memory.
291 for (auto *Pred : Predecessors)
292 if (MW.mayWriteToMemory(Pred))
293 return false;
294 return true;
297 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction &I,
298 const Loop *CurLoop) const {
299 auto *BB = I.getParent();
300 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
301 return !MW.isDominatedByMemoryWriteFromSameBlock(&I) &&
302 doesNotWriteMemoryBefore(BB, CurLoop);
305 namespace {
306 struct MustExecutePrinter : public FunctionPass {
308 static char ID; // Pass identification, replacement for typeid
309 MustExecutePrinter() : FunctionPass(ID) {
310 initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry());
312 void getAnalysisUsage(AnalysisUsage &AU) const override {
313 AU.setPreservesAll();
314 AU.addRequired<DominatorTreeWrapperPass>();
315 AU.addRequired<LoopInfoWrapperPass>();
317 bool runOnFunction(Function &F) override;
319 struct MustBeExecutedContextPrinter : public ModulePass {
320 static char ID;
322 MustBeExecutedContextPrinter() : ModulePass(ID) {
323 initializeMustBeExecutedContextPrinterPass(
324 *PassRegistry::getPassRegistry());
326 void getAnalysisUsage(AnalysisUsage &AU) const override {
327 AU.setPreservesAll();
329 bool runOnModule(Module &M) override;
333 char MustExecutePrinter::ID = 0;
334 INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute",
335 "Instructions which execute on loop entry", false, true)
336 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
337 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
338 INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute",
339 "Instructions which execute on loop entry", false, true)
341 FunctionPass *llvm::createMustExecutePrinter() {
342 return new MustExecutePrinter();
345 char MustBeExecutedContextPrinter::ID = 0;
346 INITIALIZE_PASS_BEGIN(MustBeExecutedContextPrinter,
347 "print-must-be-executed-contexts",
348 "print the must-be-executed-context for all instructions",
349 false, true)
350 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
351 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
352 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
353 INITIALIZE_PASS_END(MustBeExecutedContextPrinter,
354 "print-must-be-executed-contexts",
355 "print the must-be-executed-context for all instructions",
356 false, true)
358 ModulePass *llvm::createMustBeExecutedContextPrinter() {
359 return new MustBeExecutedContextPrinter();
362 bool MustBeExecutedContextPrinter::runOnModule(Module &M) {
363 // We provide non-PM analysis here because the old PM doesn't like to query
364 // function passes from a module pass.
365 SmallVector<std::unique_ptr<PostDominatorTree>, 8> PDTs;
366 SmallVector<std::unique_ptr<DominatorTree>, 8> DTs;
367 SmallVector<std::unique_ptr<LoopInfo>, 8> LIs;
369 GetterTy<LoopInfo> LIGetter = [&](const Function &F) {
370 DTs.push_back(std::make_unique<DominatorTree>(const_cast<Function &>(F)));
371 LIs.push_back(std::make_unique<LoopInfo>(*DTs.back()));
372 return LIs.back().get();
374 GetterTy<DominatorTree> DTGetter = [&](const Function &F) {
375 DTs.push_back(std::make_unique<DominatorTree>(const_cast<Function&>(F)));
376 return DTs.back().get();
378 GetterTy<PostDominatorTree> PDTGetter = [&](const Function &F) {
379 PDTs.push_back(
380 std::make_unique<PostDominatorTree>(const_cast<Function &>(F)));
381 return PDTs.back().get();
383 MustBeExecutedContextExplorer Explorer(
384 /* ExploreInterBlock */ true,
385 /* ExploreCFGForward */ true,
386 /* ExploreCFGBackward */ true, LIGetter, DTGetter, PDTGetter);
388 for (Function &F : M) {
389 for (Instruction &I : instructions(F)) {
390 dbgs() << "-- Explore context of: " << I << "\n";
391 for (const Instruction *CI : Explorer.range(&I))
392 dbgs() << " [F: " << CI->getFunction()->getName() << "] " << *CI
393 << "\n";
397 return false;
400 static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) {
401 // TODO: merge these two routines. For the moment, we display the best
402 // result obtained by *either* implementation. This is a bit unfair since no
403 // caller actually gets the full power at the moment.
404 SimpleLoopSafetyInfo LSI;
405 LSI.computeLoopSafetyInfo(L);
406 return LSI.isGuaranteedToExecute(I, DT, L) ||
407 isGuaranteedToExecuteForEveryIteration(&I, L);
410 namespace {
411 /// An assembly annotator class to print must execute information in
412 /// comments.
413 class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter {
414 DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec;
416 public:
417 MustExecuteAnnotatedWriter(const Function &F,
418 DominatorTree &DT, LoopInfo &LI) {
419 for (auto &I: instructions(F)) {
420 Loop *L = LI.getLoopFor(I.getParent());
421 while (L) {
422 if (isMustExecuteIn(I, L, &DT)) {
423 MustExec[&I].push_back(L);
425 L = L->getParentLoop();
429 MustExecuteAnnotatedWriter(const Module &M,
430 DominatorTree &DT, LoopInfo &LI) {
431 for (auto &F : M)
432 for (auto &I: instructions(F)) {
433 Loop *L = LI.getLoopFor(I.getParent());
434 while (L) {
435 if (isMustExecuteIn(I, L, &DT)) {
436 MustExec[&I].push_back(L);
438 L = L->getParentLoop();
444 void printInfoComment(const Value &V, formatted_raw_ostream &OS) override {
445 if (!MustExec.count(&V))
446 return;
448 const auto &Loops = MustExec.lookup(&V);
449 const auto NumLoops = Loops.size();
450 if (NumLoops > 1)
451 OS << " ; (mustexec in " << NumLoops << " loops: ";
452 else
453 OS << " ; (mustexec in: ";
455 ListSeparator LS;
456 for (const Loop *L : Loops)
457 OS << LS << L->getHeader()->getName();
458 OS << ")";
461 } // namespace
463 bool MustExecutePrinter::runOnFunction(Function &F) {
464 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
465 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
467 MustExecuteAnnotatedWriter Writer(F, DT, LI);
468 F.print(dbgs(), &Writer);
470 return false;
473 /// Return true if \p L might be an endless loop.
474 static bool maybeEndlessLoop(const Loop &L) {
475 if (L.getHeader()->getParent()->hasFnAttribute(Attribute::WillReturn))
476 return false;
477 // TODO: Actually try to prove it is not.
478 // TODO: If maybeEndlessLoop is going to be expensive, cache it.
479 return true;
482 bool llvm::mayContainIrreducibleControl(const Function &F, const LoopInfo *LI) {
483 if (!LI)
484 return false;
485 using RPOTraversal = ReversePostOrderTraversal<const Function *>;
486 RPOTraversal FuncRPOT(&F);
487 return containsIrreducibleCFG<const BasicBlock *, const RPOTraversal,
488 const LoopInfo>(FuncRPOT, *LI);
491 /// Lookup \p Key in \p Map and return the result, potentially after
492 /// initializing the optional through \p Fn(\p args).
493 template <typename K, typename V, typename FnTy, typename... ArgsTy>
494 static V getOrCreateCachedOptional(K Key, DenseMap<K, Optional<V>> &Map,
495 FnTy &&Fn, ArgsTy&&... args) {
496 Optional<V> &OptVal = Map[Key];
497 if (!OptVal.hasValue())
498 OptVal = Fn(std::forward<ArgsTy>(args)...);
499 return OptVal.getValue();
502 const BasicBlock *
503 MustBeExecutedContextExplorer::findForwardJoinPoint(const BasicBlock *InitBB) {
504 const LoopInfo *LI = LIGetter(*InitBB->getParent());
505 const PostDominatorTree *PDT = PDTGetter(*InitBB->getParent());
507 LLVM_DEBUG(dbgs() << "\tFind forward join point for " << InitBB->getName()
508 << (LI ? " [LI]" : "") << (PDT ? " [PDT]" : ""));
510 const Function &F = *InitBB->getParent();
511 const Loop *L = LI ? LI->getLoopFor(InitBB) : nullptr;
512 const BasicBlock *HeaderBB = L ? L->getHeader() : InitBB;
513 bool WillReturnAndNoThrow = (F.hasFnAttribute(Attribute::WillReturn) ||
514 (L && !maybeEndlessLoop(*L))) &&
515 F.doesNotThrow();
516 LLVM_DEBUG(dbgs() << (L ? " [in loop]" : "")
517 << (WillReturnAndNoThrow ? " [WillReturn] [NoUnwind]" : "")
518 << "\n");
520 // Determine the adjacent blocks in the given direction but exclude (self)
521 // loops under certain circumstances.
522 SmallVector<const BasicBlock *, 8> Worklist;
523 for (const BasicBlock *SuccBB : successors(InitBB)) {
524 bool IsLatch = SuccBB == HeaderBB;
525 // Loop latches are ignored in forward propagation if the loop cannot be
526 // endless and may not throw: control has to go somewhere.
527 if (!WillReturnAndNoThrow || !IsLatch)
528 Worklist.push_back(SuccBB);
530 LLVM_DEBUG(dbgs() << "\t\t#Worklist: " << Worklist.size() << "\n");
532 // If there are no other adjacent blocks, there is no join point.
533 if (Worklist.empty())
534 return nullptr;
536 // If there is one adjacent block, it is the join point.
537 if (Worklist.size() == 1)
538 return Worklist[0];
540 // Try to determine a join block through the help of the post-dominance
541 // tree. If no tree was provided, we perform simple pattern matching for one
542 // block conditionals and one block loops only.
543 const BasicBlock *JoinBB = nullptr;
544 if (PDT)
545 if (const auto *InitNode = PDT->getNode(InitBB))
546 if (const auto *IDomNode = InitNode->getIDom())
547 JoinBB = IDomNode->getBlock();
549 if (!JoinBB && Worklist.size() == 2) {
550 const BasicBlock *Succ0 = Worklist[0];
551 const BasicBlock *Succ1 = Worklist[1];
552 const BasicBlock *Succ0UniqueSucc = Succ0->getUniqueSuccessor();
553 const BasicBlock *Succ1UniqueSucc = Succ1->getUniqueSuccessor();
554 if (Succ0UniqueSucc == InitBB) {
555 // InitBB -> Succ0 -> InitBB
556 // InitBB -> Succ1 = JoinBB
557 JoinBB = Succ1;
558 } else if (Succ1UniqueSucc == InitBB) {
559 // InitBB -> Succ1 -> InitBB
560 // InitBB -> Succ0 = JoinBB
561 JoinBB = Succ0;
562 } else if (Succ0 == Succ1UniqueSucc) {
563 // InitBB -> Succ0 = JoinBB
564 // InitBB -> Succ1 -> Succ0 = JoinBB
565 JoinBB = Succ0;
566 } else if (Succ1 == Succ0UniqueSucc) {
567 // InitBB -> Succ0 -> Succ1 = JoinBB
568 // InitBB -> Succ1 = JoinBB
569 JoinBB = Succ1;
570 } else if (Succ0UniqueSucc == Succ1UniqueSucc) {
571 // InitBB -> Succ0 -> JoinBB
572 // InitBB -> Succ1 -> JoinBB
573 JoinBB = Succ0UniqueSucc;
577 if (!JoinBB && L)
578 JoinBB = L->getUniqueExitBlock();
580 if (!JoinBB)
581 return nullptr;
583 LLVM_DEBUG(dbgs() << "\t\tJoin block candidate: " << JoinBB->getName() << "\n");
585 // In forward direction we check if control will for sure reach JoinBB from
586 // InitBB, thus it can not be "stopped" along the way. Ways to "stop" control
587 // are: infinite loops and instructions that do not necessarily transfer
588 // execution to their successor. To check for them we traverse the CFG from
589 // the adjacent blocks to the JoinBB, looking at all intermediate blocks.
591 // If we know the function is "will-return" and "no-throw" there is no need
592 // for futher checks.
593 if (!F.hasFnAttribute(Attribute::WillReturn) || !F.doesNotThrow()) {
595 auto BlockTransfersExecutionToSuccessor = [](const BasicBlock *BB) {
596 return isGuaranteedToTransferExecutionToSuccessor(BB);
599 SmallPtrSet<const BasicBlock *, 16> Visited;
600 while (!Worklist.empty()) {
601 const BasicBlock *ToBB = Worklist.pop_back_val();
602 if (ToBB == JoinBB)
603 continue;
605 // Make sure all loops in-between are finite.
606 if (!Visited.insert(ToBB).second) {
607 if (!F.hasFnAttribute(Attribute::WillReturn)) {
608 if (!LI)
609 return nullptr;
611 bool MayContainIrreducibleControl = getOrCreateCachedOptional(
612 &F, IrreducibleControlMap, mayContainIrreducibleControl, F, LI);
613 if (MayContainIrreducibleControl)
614 return nullptr;
616 const Loop *L = LI->getLoopFor(ToBB);
617 if (L && maybeEndlessLoop(*L))
618 return nullptr;
621 continue;
624 // Make sure the block has no instructions that could stop control
625 // transfer.
626 bool TransfersExecution = getOrCreateCachedOptional(
627 ToBB, BlockTransferMap, BlockTransfersExecutionToSuccessor, ToBB);
628 if (!TransfersExecution)
629 return nullptr;
631 append_range(Worklist, successors(ToBB));
635 LLVM_DEBUG(dbgs() << "\tJoin block: " << JoinBB->getName() << "\n");
636 return JoinBB;
638 const BasicBlock *
639 MustBeExecutedContextExplorer::findBackwardJoinPoint(const BasicBlock *InitBB) {
640 const LoopInfo *LI = LIGetter(*InitBB->getParent());
641 const DominatorTree *DT = DTGetter(*InitBB->getParent());
642 LLVM_DEBUG(dbgs() << "\tFind backward join point for " << InitBB->getName()
643 << (LI ? " [LI]" : "") << (DT ? " [DT]" : ""));
645 // Try to determine a join block through the help of the dominance tree. If no
646 // tree was provided, we perform simple pattern matching for one block
647 // conditionals only.
648 if (DT)
649 if (const auto *InitNode = DT->getNode(InitBB))
650 if (const auto *IDomNode = InitNode->getIDom())
651 return IDomNode->getBlock();
653 const Loop *L = LI ? LI->getLoopFor(InitBB) : nullptr;
654 const BasicBlock *HeaderBB = L ? L->getHeader() : nullptr;
656 // Determine the predecessor blocks but ignore backedges.
657 SmallVector<const BasicBlock *, 8> Worklist;
658 for (const BasicBlock *PredBB : predecessors(InitBB)) {
659 bool IsBackedge =
660 (PredBB == InitBB) || (HeaderBB == InitBB && L->contains(PredBB));
661 // Loop backedges are ignored in backwards propagation: control has to come
662 // from somewhere.
663 if (!IsBackedge)
664 Worklist.push_back(PredBB);
667 // If there are no other predecessor blocks, there is no join point.
668 if (Worklist.empty())
669 return nullptr;
671 // If there is one predecessor block, it is the join point.
672 if (Worklist.size() == 1)
673 return Worklist[0];
675 const BasicBlock *JoinBB = nullptr;
676 if (Worklist.size() == 2) {
677 const BasicBlock *Pred0 = Worklist[0];
678 const BasicBlock *Pred1 = Worklist[1];
679 const BasicBlock *Pred0UniquePred = Pred0->getUniquePredecessor();
680 const BasicBlock *Pred1UniquePred = Pred1->getUniquePredecessor();
681 if (Pred0 == Pred1UniquePred) {
682 // InitBB <- Pred0 = JoinBB
683 // InitBB <- Pred1 <- Pred0 = JoinBB
684 JoinBB = Pred0;
685 } else if (Pred1 == Pred0UniquePred) {
686 // InitBB <- Pred0 <- Pred1 = JoinBB
687 // InitBB <- Pred1 = JoinBB
688 JoinBB = Pred1;
689 } else if (Pred0UniquePred == Pred1UniquePred) {
690 // InitBB <- Pred0 <- JoinBB
691 // InitBB <- Pred1 <- JoinBB
692 JoinBB = Pred0UniquePred;
696 if (!JoinBB && L)
697 JoinBB = L->getHeader();
699 // In backwards direction there is no need to show termination of previous
700 // instructions. If they do not terminate, the code afterward is dead, making
701 // any information/transformation correct anyway.
702 return JoinBB;
705 const Instruction *
706 MustBeExecutedContextExplorer::getMustBeExecutedNextInstruction(
707 MustBeExecutedIterator &It, const Instruction *PP) {
708 if (!PP)
709 return PP;
710 LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP << "\n");
712 // If we explore only inside a given basic block we stop at terminators.
713 if (!ExploreInterBlock && PP->isTerminator()) {
714 LLVM_DEBUG(dbgs() << "\tReached terminator in intra-block mode, done\n");
715 return nullptr;
718 // If we do not traverse the call graph we check if we can make progress in
719 // the current function. First, check if the instruction is guaranteed to
720 // transfer execution to the successor.
721 bool TransfersExecution = isGuaranteedToTransferExecutionToSuccessor(PP);
722 if (!TransfersExecution)
723 return nullptr;
725 // If this is not a terminator we know that there is a single instruction
726 // after this one that is executed next if control is transfered. If not,
727 // we can try to go back to a call site we entered earlier. If none exists, we
728 // do not know any instruction that has to be executd next.
729 if (!PP->isTerminator()) {
730 const Instruction *NextPP = PP->getNextNode();
731 LLVM_DEBUG(dbgs() << "\tIntermediate instruction does transfer control\n");
732 return NextPP;
735 // Finally, we have to handle terminators, trivial ones first.
736 assert(PP->isTerminator() && "Expected a terminator!");
738 // A terminator without a successor is not handled yet.
739 if (PP->getNumSuccessors() == 0) {
740 LLVM_DEBUG(dbgs() << "\tUnhandled terminator\n");
741 return nullptr;
744 // A terminator with a single successor, we will continue at the beginning of
745 // that one.
746 if (PP->getNumSuccessors() == 1) {
747 LLVM_DEBUG(
748 dbgs() << "\tUnconditional terminator, continue with successor\n");
749 return &PP->getSuccessor(0)->front();
752 // Multiple successors mean we need to find the join point where control flow
753 // converges again. We use the findForwardJoinPoint helper function with
754 // information about the function and helper analyses, if available.
755 if (const BasicBlock *JoinBB = findForwardJoinPoint(PP->getParent()))
756 return &JoinBB->front();
758 LLVM_DEBUG(dbgs() << "\tNo join point found\n");
759 return nullptr;
762 const Instruction *
763 MustBeExecutedContextExplorer::getMustBeExecutedPrevInstruction(
764 MustBeExecutedIterator &It, const Instruction *PP) {
765 if (!PP)
766 return PP;
768 bool IsFirst = !(PP->getPrevNode());
769 LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP
770 << (IsFirst ? " [IsFirst]" : "") << "\n");
772 // If we explore only inside a given basic block we stop at the first
773 // instruction.
774 if (!ExploreInterBlock && IsFirst) {
775 LLVM_DEBUG(dbgs() << "\tReached block front in intra-block mode, done\n");
776 return nullptr;
779 // The block and function that contains the current position.
780 const BasicBlock *PPBlock = PP->getParent();
782 // If we are inside a block we know what instruction was executed before, the
783 // previous one.
784 if (!IsFirst) {
785 const Instruction *PrevPP = PP->getPrevNode();
786 LLVM_DEBUG(
787 dbgs() << "\tIntermediate instruction, continue with previous\n");
788 // We did not enter a callee so we simply return the previous instruction.
789 return PrevPP;
792 // Finally, we have to handle the case where the program point is the first in
793 // a block but not in the function. We use the findBackwardJoinPoint helper
794 // function with information about the function and helper analyses, if
795 // available.
796 if (const BasicBlock *JoinBB = findBackwardJoinPoint(PPBlock))
797 return &JoinBB->back();
799 LLVM_DEBUG(dbgs() << "\tNo join point found\n");
800 return nullptr;
803 MustBeExecutedIterator::MustBeExecutedIterator(
804 MustBeExecutedContextExplorer &Explorer, const Instruction *I)
805 : Explorer(Explorer), CurInst(I) {
806 reset(I);
809 void MustBeExecutedIterator::reset(const Instruction *I) {
810 Visited.clear();
811 resetInstruction(I);
814 void MustBeExecutedIterator::resetInstruction(const Instruction *I) {
815 CurInst = I;
816 Head = Tail = nullptr;
817 Visited.insert({I, ExplorationDirection::FORWARD});
818 Visited.insert({I, ExplorationDirection::BACKWARD});
819 if (Explorer.ExploreCFGForward)
820 Head = I;
821 if (Explorer.ExploreCFGBackward)
822 Tail = I;
825 const Instruction *MustBeExecutedIterator::advance() {
826 assert(CurInst && "Cannot advance an end iterator!");
827 Head = Explorer.getMustBeExecutedNextInstruction(*this, Head);
828 if (Head && Visited.insert({Head, ExplorationDirection ::FORWARD}).second)
829 return Head;
830 Head = nullptr;
832 Tail = Explorer.getMustBeExecutedPrevInstruction(*this, Tail);
833 if (Tail && Visited.insert({Tail, ExplorationDirection ::BACKWARD}).second)
834 return Tail;
835 Tail = nullptr;
836 return nullptr;
839 PreservedAnalyses MustExecutePrinterPass::run(Function &F,
840 FunctionAnalysisManager &AM) {
841 auto &LI = AM.getResult<LoopAnalysis>(F);
842 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
844 MustExecuteAnnotatedWriter Writer(F, DT, LI);
845 F.print(OS, &Writer);
846 return PreservedAnalyses::all();
849 PreservedAnalyses
850 MustBeExecutedContextPrinterPass::run(Module &M, ModuleAnalysisManager &AM) {
851 FunctionAnalysisManager &FAM =
852 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
853 GetterTy<const LoopInfo> LIGetter = [&](const Function &F) {
854 return &FAM.getResult<LoopAnalysis>(const_cast<Function &>(F));
856 GetterTy<const DominatorTree> DTGetter = [&](const Function &F) {
857 return &FAM.getResult<DominatorTreeAnalysis>(const_cast<Function &>(F));
859 GetterTy<const PostDominatorTree> PDTGetter = [&](const Function &F) {
860 return &FAM.getResult<PostDominatorTreeAnalysis>(const_cast<Function &>(F));
863 MustBeExecutedContextExplorer Explorer(
864 /* ExploreInterBlock */ true,
865 /* ExploreCFGForward */ true,
866 /* ExploreCFGBackward */ true, LIGetter, DTGetter, PDTGetter);
868 for (Function &F : M) {
869 for (Instruction &I : instructions(F)) {
870 OS << "-- Explore context of: " << I << "\n";
871 for (const Instruction *CI : Explorer.range(&I))
872 OS << " [F: " << CI->getFunction()->getName() << "] " << *CI << "\n";
875 return PreservedAnalyses::all();