1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
13 // There are several aspects to this library. First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression. These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
37 //===----------------------------------------------------------------------===//
39 // There are several good references for the techniques used in this analysis.
41 // Chains of recurrences -- a method to expedite the evaluation
42 // of closed-form functions
43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 // On computational properties of chains of recurrences
48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 // Robert A. van Engelen
51 // Efficient Symbolic Analysis for Optimizing Compilers
52 // Robert A. van Engelen
54 // Using the chains of recurrences algebra for data dependence testing and
55 // induction variable substitution
56 // MS Thesis, Johnie Birch
58 //===----------------------------------------------------------------------===//
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
137 using namespace llvm
;
138 using namespace PatternMatch
;
140 #define DEBUG_TYPE "scalar-evolution"
142 STATISTIC(NumArrayLenItCounts
,
143 "Number of trip counts computed with array length");
144 STATISTIC(NumTripCountsComputed
,
145 "Number of loops with predictable loop counts");
146 STATISTIC(NumTripCountsNotComputed
,
147 "Number of loops without predictable loop counts");
148 STATISTIC(NumBruteForceTripCountsComputed
,
149 "Number of loops with trip counts computed by force");
151 static cl::opt
<unsigned>
152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden
,
154 cl::desc("Maximum number of iterations SCEV will "
155 "symbolically execute a constant "
159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
160 static cl::opt
<bool> VerifySCEV(
161 "verify-scev", cl::Hidden
,
162 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
163 static cl::opt
<bool> VerifySCEVStrict(
164 "verify-scev-strict", cl::Hidden
,
165 cl::desc("Enable stricter verification with -verify-scev is passed"));
167 VerifySCEVMap("verify-scev-maps", cl::Hidden
,
168 cl::desc("Verify no dangling value in ScalarEvolution's "
169 "ExprValueMap (slow)"));
171 static cl::opt
<bool> VerifyIR(
172 "scev-verify-ir", cl::Hidden
,
173 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
176 static cl::opt
<unsigned> MulOpsInlineThreshold(
177 "scev-mulops-inline-threshold", cl::Hidden
,
178 cl::desc("Threshold for inlining multiplication operands into a SCEV"),
181 static cl::opt
<unsigned> AddOpsInlineThreshold(
182 "scev-addops-inline-threshold", cl::Hidden
,
183 cl::desc("Threshold for inlining addition operands into a SCEV"),
186 static cl::opt
<unsigned> MaxSCEVCompareDepth(
187 "scalar-evolution-max-scev-compare-depth", cl::Hidden
,
188 cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
191 static cl::opt
<unsigned> MaxSCEVOperationsImplicationDepth(
192 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden
,
193 cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
196 static cl::opt
<unsigned> MaxValueCompareDepth(
197 "scalar-evolution-max-value-compare-depth", cl::Hidden
,
198 cl::desc("Maximum depth of recursive value complexity comparisons"),
201 static cl::opt
<unsigned>
202 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden
,
203 cl::desc("Maximum depth of recursive arithmetics"),
206 static cl::opt
<unsigned> MaxConstantEvolvingDepth(
207 "scalar-evolution-max-constant-evolving-depth", cl::Hidden
,
208 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
210 static cl::opt
<unsigned>
211 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden
,
212 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
215 static cl::opt
<unsigned>
216 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden
,
217 cl::desc("Max coefficients in AddRec during evolving"),
220 static cl::opt
<unsigned>
221 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden
,
222 cl::desc("Size of the expression which is considered huge"),
226 ClassifyExpressions("scalar-evolution-classify-expressions",
227 cl::Hidden
, cl::init(true),
228 cl::desc("When printing analysis, include information on every instruction"));
230 static cl::opt
<bool> UseExpensiveRangeSharpening(
231 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden
,
233 cl::desc("Use more powerful methods of sharpening expression ranges. May "
234 "be costly in terms of compile time"));
236 //===----------------------------------------------------------------------===//
237 // SCEV class definitions
238 //===----------------------------------------------------------------------===//
240 //===----------------------------------------------------------------------===//
241 // Implementation of the SCEV class.
244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
245 LLVM_DUMP_METHOD
void SCEV::dump() const {
251 void SCEV::print(raw_ostream
&OS
) const {
252 switch (getSCEVType()) {
254 cast
<SCEVConstant
>(this)->getValue()->printAsOperand(OS
, false);
257 const SCEVPtrToIntExpr
*PtrToInt
= cast
<SCEVPtrToIntExpr
>(this);
258 const SCEV
*Op
= PtrToInt
->getOperand();
259 OS
<< "(ptrtoint " << *Op
->getType() << " " << *Op
<< " to "
260 << *PtrToInt
->getType() << ")";
264 const SCEVTruncateExpr
*Trunc
= cast
<SCEVTruncateExpr
>(this);
265 const SCEV
*Op
= Trunc
->getOperand();
266 OS
<< "(trunc " << *Op
->getType() << " " << *Op
<< " to "
267 << *Trunc
->getType() << ")";
271 const SCEVZeroExtendExpr
*ZExt
= cast
<SCEVZeroExtendExpr
>(this);
272 const SCEV
*Op
= ZExt
->getOperand();
273 OS
<< "(zext " << *Op
->getType() << " " << *Op
<< " to "
274 << *ZExt
->getType() << ")";
278 const SCEVSignExtendExpr
*SExt
= cast
<SCEVSignExtendExpr
>(this);
279 const SCEV
*Op
= SExt
->getOperand();
280 OS
<< "(sext " << *Op
->getType() << " " << *Op
<< " to "
281 << *SExt
->getType() << ")";
285 const SCEVAddRecExpr
*AR
= cast
<SCEVAddRecExpr
>(this);
286 OS
<< "{" << *AR
->getOperand(0);
287 for (unsigned i
= 1, e
= AR
->getNumOperands(); i
!= e
; ++i
)
288 OS
<< ",+," << *AR
->getOperand(i
);
290 if (AR
->hasNoUnsignedWrap())
292 if (AR
->hasNoSignedWrap())
294 if (AR
->hasNoSelfWrap() &&
295 !AR
->getNoWrapFlags((NoWrapFlags
)(FlagNUW
| FlagNSW
)))
297 AR
->getLoop()->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
307 const SCEVNAryExpr
*NAry
= cast
<SCEVNAryExpr
>(this);
308 const char *OpStr
= nullptr;
309 switch (NAry
->getSCEVType()) {
310 case scAddExpr
: OpStr
= " + "; break;
311 case scMulExpr
: OpStr
= " * "; break;
312 case scUMaxExpr
: OpStr
= " umax "; break;
313 case scSMaxExpr
: OpStr
= " smax "; break;
321 llvm_unreachable("There are no other nary expression types.");
324 ListSeparator
LS(OpStr
);
325 for (const SCEV
*Op
: NAry
->operands())
328 switch (NAry
->getSCEVType()) {
331 if (NAry
->hasNoUnsignedWrap())
333 if (NAry
->hasNoSignedWrap())
337 // Nothing to print for other nary expressions.
343 const SCEVUDivExpr
*UDiv
= cast
<SCEVUDivExpr
>(this);
344 OS
<< "(" << *UDiv
->getLHS() << " /u " << *UDiv
->getRHS() << ")";
348 const SCEVUnknown
*U
= cast
<SCEVUnknown
>(this);
350 if (U
->isSizeOf(AllocTy
)) {
351 OS
<< "sizeof(" << *AllocTy
<< ")";
354 if (U
->isAlignOf(AllocTy
)) {
355 OS
<< "alignof(" << *AllocTy
<< ")";
361 if (U
->isOffsetOf(CTy
, FieldNo
)) {
362 OS
<< "offsetof(" << *CTy
<< ", ";
363 FieldNo
->printAsOperand(OS
, false);
368 // Otherwise just print it normally.
369 U
->getValue()->printAsOperand(OS
, false);
372 case scCouldNotCompute
:
373 OS
<< "***COULDNOTCOMPUTE***";
376 llvm_unreachable("Unknown SCEV kind!");
379 Type
*SCEV::getType() const {
380 switch (getSCEVType()) {
382 return cast
<SCEVConstant
>(this)->getType();
387 return cast
<SCEVCastExpr
>(this)->getType();
389 return cast
<SCEVAddRecExpr
>(this)->getType();
391 return cast
<SCEVMulExpr
>(this)->getType();
396 return cast
<SCEVMinMaxExpr
>(this)->getType();
398 return cast
<SCEVAddExpr
>(this)->getType();
400 return cast
<SCEVUDivExpr
>(this)->getType();
402 return cast
<SCEVUnknown
>(this)->getType();
403 case scCouldNotCompute
:
404 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
406 llvm_unreachable("Unknown SCEV kind!");
409 bool SCEV::isZero() const {
410 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(this))
411 return SC
->getValue()->isZero();
415 bool SCEV::isOne() const {
416 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(this))
417 return SC
->getValue()->isOne();
421 bool SCEV::isAllOnesValue() const {
422 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(this))
423 return SC
->getValue()->isMinusOne();
427 bool SCEV::isNonConstantNegative() const {
428 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(this);
429 if (!Mul
) return false;
431 // If there is a constant factor, it will be first.
432 const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Mul
->getOperand(0));
433 if (!SC
) return false;
435 // Return true if the value is negative, this matches things like (-42 * V).
436 return SC
->getAPInt().isNegative();
439 SCEVCouldNotCompute::SCEVCouldNotCompute() :
440 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute
, 0) {}
442 bool SCEVCouldNotCompute::classof(const SCEV
*S
) {
443 return S
->getSCEVType() == scCouldNotCompute
;
446 const SCEV
*ScalarEvolution::getConstant(ConstantInt
*V
) {
448 ID
.AddInteger(scConstant
);
451 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
452 SCEV
*S
= new (SCEVAllocator
) SCEVConstant(ID
.Intern(SCEVAllocator
), V
);
453 UniqueSCEVs
.InsertNode(S
, IP
);
457 const SCEV
*ScalarEvolution::getConstant(const APInt
&Val
) {
458 return getConstant(ConstantInt::get(getContext(), Val
));
462 ScalarEvolution::getConstant(Type
*Ty
, uint64_t V
, bool isSigned
) {
463 IntegerType
*ITy
= cast
<IntegerType
>(getEffectiveSCEVType(Ty
));
464 return getConstant(ConstantInt::get(ITy
, V
, isSigned
));
467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID
, SCEVTypes SCEVTy
,
468 const SCEV
*op
, Type
*ty
)
469 : SCEV(ID
, SCEVTy
, computeExpressionSize(op
)), Ty(ty
) {
473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID
, const SCEV
*Op
,
475 : SCEVCastExpr(ID
, scPtrToInt
, Op
, ITy
) {
476 assert(getOperand()->getType()->isPointerTy() && Ty
->isIntegerTy() &&
477 "Must be a non-bit-width-changing pointer-to-integer cast!");
480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID
,
481 SCEVTypes SCEVTy
, const SCEV
*op
,
483 : SCEVCastExpr(ID
, SCEVTy
, op
, ty
) {}
485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID
, const SCEV
*op
,
487 : SCEVIntegralCastExpr(ID
, scTruncate
, op
, ty
) {
488 assert(getOperand()->getType()->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
489 "Cannot truncate non-integer value!");
492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID
,
493 const SCEV
*op
, Type
*ty
)
494 : SCEVIntegralCastExpr(ID
, scZeroExtend
, op
, ty
) {
495 assert(getOperand()->getType()->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
496 "Cannot zero extend non-integer value!");
499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID
,
500 const SCEV
*op
, Type
*ty
)
501 : SCEVIntegralCastExpr(ID
, scSignExtend
, op
, ty
) {
502 assert(getOperand()->getType()->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
503 "Cannot sign extend non-integer value!");
506 void SCEVUnknown::deleted() {
507 // Clear this SCEVUnknown from various maps.
508 SE
->forgetMemoizedResults(this);
510 // Remove this SCEVUnknown from the uniquing map.
511 SE
->UniqueSCEVs
.RemoveNode(this);
513 // Release the value.
517 void SCEVUnknown::allUsesReplacedWith(Value
*New
) {
518 // Remove this SCEVUnknown from the uniquing map.
519 SE
->UniqueSCEVs
.RemoveNode(this);
521 // Update this SCEVUnknown to point to the new value. This is needed
522 // because there may still be outstanding SCEVs which still point to
527 bool SCEVUnknown::isSizeOf(Type
*&AllocTy
) const {
528 if (ConstantExpr
*VCE
= dyn_cast
<ConstantExpr
>(getValue()))
529 if (VCE
->getOpcode() == Instruction::PtrToInt
)
530 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(VCE
->getOperand(0)))
531 if (CE
->getOpcode() == Instruction::GetElementPtr
&&
532 CE
->getOperand(0)->isNullValue() &&
533 CE
->getNumOperands() == 2)
534 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CE
->getOperand(1)))
536 AllocTy
= cast
<GEPOperator
>(CE
)->getSourceElementType();
543 bool SCEVUnknown::isAlignOf(Type
*&AllocTy
) const {
544 if (ConstantExpr
*VCE
= dyn_cast
<ConstantExpr
>(getValue()))
545 if (VCE
->getOpcode() == Instruction::PtrToInt
)
546 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(VCE
->getOperand(0)))
547 if (CE
->getOpcode() == Instruction::GetElementPtr
&&
548 CE
->getOperand(0)->isNullValue()) {
549 Type
*Ty
= cast
<GEPOperator
>(CE
)->getSourceElementType();
550 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
))
551 if (!STy
->isPacked() &&
552 CE
->getNumOperands() == 3 &&
553 CE
->getOperand(1)->isNullValue()) {
554 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CE
->getOperand(2)))
556 STy
->getNumElements() == 2 &&
557 STy
->getElementType(0)->isIntegerTy(1)) {
558 AllocTy
= STy
->getElementType(1);
567 bool SCEVUnknown::isOffsetOf(Type
*&CTy
, Constant
*&FieldNo
) const {
568 if (ConstantExpr
*VCE
= dyn_cast
<ConstantExpr
>(getValue()))
569 if (VCE
->getOpcode() == Instruction::PtrToInt
)
570 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(VCE
->getOperand(0)))
571 if (CE
->getOpcode() == Instruction::GetElementPtr
&&
572 CE
->getNumOperands() == 3 &&
573 CE
->getOperand(0)->isNullValue() &&
574 CE
->getOperand(1)->isNullValue()) {
575 Type
*Ty
= cast
<GEPOperator
>(CE
)->getSourceElementType();
576 // Ignore vector types here so that ScalarEvolutionExpander doesn't
577 // emit getelementptrs that index into vectors.
578 if (Ty
->isStructTy() || Ty
->isArrayTy()) {
580 FieldNo
= CE
->getOperand(2);
588 //===----------------------------------------------------------------------===//
590 //===----------------------------------------------------------------------===//
592 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
593 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
594 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that
595 /// have been previously deemed to be "equally complex" by this routine. It is
596 /// intended to avoid exponential time complexity in cases like:
606 /// CompareValueComplexity(%f, %c)
608 /// Since we do not continue running this routine on expression trees once we
609 /// have seen unequal values, there is no need to track them in the cache.
611 CompareValueComplexity(EquivalenceClasses
<const Value
*> &EqCacheValue
,
612 const LoopInfo
*const LI
, Value
*LV
, Value
*RV
,
614 if (Depth
> MaxValueCompareDepth
|| EqCacheValue
.isEquivalent(LV
, RV
))
617 // Order pointer values after integer values. This helps SCEVExpander form
619 bool LIsPointer
= LV
->getType()->isPointerTy(),
620 RIsPointer
= RV
->getType()->isPointerTy();
621 if (LIsPointer
!= RIsPointer
)
622 return (int)LIsPointer
- (int)RIsPointer
;
624 // Compare getValueID values.
625 unsigned LID
= LV
->getValueID(), RID
= RV
->getValueID();
627 return (int)LID
- (int)RID
;
629 // Sort arguments by their position.
630 if (const auto *LA
= dyn_cast
<Argument
>(LV
)) {
631 const auto *RA
= cast
<Argument
>(RV
);
632 unsigned LArgNo
= LA
->getArgNo(), RArgNo
= RA
->getArgNo();
633 return (int)LArgNo
- (int)RArgNo
;
636 if (const auto *LGV
= dyn_cast
<GlobalValue
>(LV
)) {
637 const auto *RGV
= cast
<GlobalValue
>(RV
);
639 const auto IsGVNameSemantic
= [&](const GlobalValue
*GV
) {
640 auto LT
= GV
->getLinkage();
641 return !(GlobalValue::isPrivateLinkage(LT
) ||
642 GlobalValue::isInternalLinkage(LT
));
645 // Use the names to distinguish the two values, but only if the
646 // names are semantically important.
647 if (IsGVNameSemantic(LGV
) && IsGVNameSemantic(RGV
))
648 return LGV
->getName().compare(RGV
->getName());
651 // For instructions, compare their loop depth, and their operand count. This
653 if (const auto *LInst
= dyn_cast
<Instruction
>(LV
)) {
654 const auto *RInst
= cast
<Instruction
>(RV
);
656 // Compare loop depths.
657 const BasicBlock
*LParent
= LInst
->getParent(),
658 *RParent
= RInst
->getParent();
659 if (LParent
!= RParent
) {
660 unsigned LDepth
= LI
->getLoopDepth(LParent
),
661 RDepth
= LI
->getLoopDepth(RParent
);
662 if (LDepth
!= RDepth
)
663 return (int)LDepth
- (int)RDepth
;
666 // Compare the number of operands.
667 unsigned LNumOps
= LInst
->getNumOperands(),
668 RNumOps
= RInst
->getNumOperands();
669 if (LNumOps
!= RNumOps
)
670 return (int)LNumOps
- (int)RNumOps
;
672 for (unsigned Idx
: seq(0u, LNumOps
)) {
674 CompareValueComplexity(EqCacheValue
, LI
, LInst
->getOperand(Idx
),
675 RInst
->getOperand(Idx
), Depth
+ 1);
681 EqCacheValue
.unionSets(LV
, RV
);
685 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
686 // than RHS, respectively. A three-way result allows recursive comparisons to be
688 // If the max analysis depth was reached, return None, assuming we do not know
689 // if they are equivalent for sure.
691 CompareSCEVComplexity(EquivalenceClasses
<const SCEV
*> &EqCacheSCEV
,
692 EquivalenceClasses
<const Value
*> &EqCacheValue
,
693 const LoopInfo
*const LI
, const SCEV
*LHS
,
694 const SCEV
*RHS
, DominatorTree
&DT
, unsigned Depth
= 0) {
695 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
699 // Primarily, sort the SCEVs by their getSCEVType().
700 SCEVTypes LType
= LHS
->getSCEVType(), RType
= RHS
->getSCEVType();
702 return (int)LType
- (int)RType
;
704 if (EqCacheSCEV
.isEquivalent(LHS
, RHS
))
707 if (Depth
> MaxSCEVCompareDepth
)
710 // Aside from the getSCEVType() ordering, the particular ordering
711 // isn't very important except that it's beneficial to be consistent,
712 // so that (a + b) and (b + a) don't end up as different expressions.
715 const SCEVUnknown
*LU
= cast
<SCEVUnknown
>(LHS
);
716 const SCEVUnknown
*RU
= cast
<SCEVUnknown
>(RHS
);
718 int X
= CompareValueComplexity(EqCacheValue
, LI
, LU
->getValue(),
719 RU
->getValue(), Depth
+ 1);
721 EqCacheSCEV
.unionSets(LHS
, RHS
);
726 const SCEVConstant
*LC
= cast
<SCEVConstant
>(LHS
);
727 const SCEVConstant
*RC
= cast
<SCEVConstant
>(RHS
);
729 // Compare constant values.
730 const APInt
&LA
= LC
->getAPInt();
731 const APInt
&RA
= RC
->getAPInt();
732 unsigned LBitWidth
= LA
.getBitWidth(), RBitWidth
= RA
.getBitWidth();
733 if (LBitWidth
!= RBitWidth
)
734 return (int)LBitWidth
- (int)RBitWidth
;
735 return LA
.ult(RA
) ? -1 : 1;
739 const SCEVAddRecExpr
*LA
= cast
<SCEVAddRecExpr
>(LHS
);
740 const SCEVAddRecExpr
*RA
= cast
<SCEVAddRecExpr
>(RHS
);
742 // There is always a dominance between two recs that are used by one SCEV,
743 // so we can safely sort recs by loop header dominance. We require such
744 // order in getAddExpr.
745 const Loop
*LLoop
= LA
->getLoop(), *RLoop
= RA
->getLoop();
746 if (LLoop
!= RLoop
) {
747 const BasicBlock
*LHead
= LLoop
->getHeader(), *RHead
= RLoop
->getHeader();
748 assert(LHead
!= RHead
&& "Two loops share the same header?");
749 if (DT
.dominates(LHead
, RHead
))
752 assert(DT
.dominates(RHead
, LHead
) &&
753 "No dominance between recurrences used by one SCEV?");
757 // Addrec complexity grows with operand count.
758 unsigned LNumOps
= LA
->getNumOperands(), RNumOps
= RA
->getNumOperands();
759 if (LNumOps
!= RNumOps
)
760 return (int)LNumOps
- (int)RNumOps
;
762 // Lexicographically compare.
763 for (unsigned i
= 0; i
!= LNumOps
; ++i
) {
764 auto X
= CompareSCEVComplexity(EqCacheSCEV
, EqCacheValue
, LI
,
765 LA
->getOperand(i
), RA
->getOperand(i
), DT
,
770 EqCacheSCEV
.unionSets(LHS
, RHS
);
780 const SCEVNAryExpr
*LC
= cast
<SCEVNAryExpr
>(LHS
);
781 const SCEVNAryExpr
*RC
= cast
<SCEVNAryExpr
>(RHS
);
783 // Lexicographically compare n-ary expressions.
784 unsigned LNumOps
= LC
->getNumOperands(), RNumOps
= RC
->getNumOperands();
785 if (LNumOps
!= RNumOps
)
786 return (int)LNumOps
- (int)RNumOps
;
788 for (unsigned i
= 0; i
!= LNumOps
; ++i
) {
789 auto X
= CompareSCEVComplexity(EqCacheSCEV
, EqCacheValue
, LI
,
790 LC
->getOperand(i
), RC
->getOperand(i
), DT
,
795 EqCacheSCEV
.unionSets(LHS
, RHS
);
800 const SCEVUDivExpr
*LC
= cast
<SCEVUDivExpr
>(LHS
);
801 const SCEVUDivExpr
*RC
= cast
<SCEVUDivExpr
>(RHS
);
803 // Lexicographically compare udiv expressions.
804 auto X
= CompareSCEVComplexity(EqCacheSCEV
, EqCacheValue
, LI
, LC
->getLHS(),
805 RC
->getLHS(), DT
, Depth
+ 1);
808 X
= CompareSCEVComplexity(EqCacheSCEV
, EqCacheValue
, LI
, LC
->getRHS(),
809 RC
->getRHS(), DT
, Depth
+ 1);
811 EqCacheSCEV
.unionSets(LHS
, RHS
);
819 const SCEVCastExpr
*LC
= cast
<SCEVCastExpr
>(LHS
);
820 const SCEVCastExpr
*RC
= cast
<SCEVCastExpr
>(RHS
);
822 // Compare cast expressions by operand.
824 CompareSCEVComplexity(EqCacheSCEV
, EqCacheValue
, LI
, LC
->getOperand(),
825 RC
->getOperand(), DT
, Depth
+ 1);
827 EqCacheSCEV
.unionSets(LHS
, RHS
);
831 case scCouldNotCompute
:
832 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
834 llvm_unreachable("Unknown SCEV kind!");
837 /// Given a list of SCEV objects, order them by their complexity, and group
838 /// objects of the same complexity together by value. When this routine is
839 /// finished, we know that any duplicates in the vector are consecutive and that
840 /// complexity is monotonically increasing.
842 /// Note that we go take special precautions to ensure that we get deterministic
843 /// results from this routine. In other words, we don't want the results of
844 /// this to depend on where the addresses of various SCEV objects happened to
846 static void GroupByComplexity(SmallVectorImpl
<const SCEV
*> &Ops
,
847 LoopInfo
*LI
, DominatorTree
&DT
) {
848 if (Ops
.size() < 2) return; // Noop
850 EquivalenceClasses
<const SCEV
*> EqCacheSCEV
;
851 EquivalenceClasses
<const Value
*> EqCacheValue
;
853 // Whether LHS has provably less complexity than RHS.
854 auto IsLessComplex
= [&](const SCEV
*LHS
, const SCEV
*RHS
) {
856 CompareSCEVComplexity(EqCacheSCEV
, EqCacheValue
, LI
, LHS
, RHS
, DT
);
857 return Complexity
&& *Complexity
< 0;
859 if (Ops
.size() == 2) {
860 // This is the common case, which also happens to be trivially simple.
862 const SCEV
*&LHS
= Ops
[0], *&RHS
= Ops
[1];
863 if (IsLessComplex(RHS
, LHS
))
868 // Do the rough sort by complexity.
869 llvm::stable_sort(Ops
, [&](const SCEV
*LHS
, const SCEV
*RHS
) {
870 return IsLessComplex(LHS
, RHS
);
873 // Now that we are sorted by complexity, group elements of the same
874 // complexity. Note that this is, at worst, N^2, but the vector is likely to
875 // be extremely short in practice. Note that we take this approach because we
876 // do not want to depend on the addresses of the objects we are grouping.
877 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
-2; ++i
) {
878 const SCEV
*S
= Ops
[i
];
879 unsigned Complexity
= S
->getSCEVType();
881 // If there are any objects of the same complexity and same value as this
883 for (unsigned j
= i
+1; j
!= e
&& Ops
[j
]->getSCEVType() == Complexity
; ++j
) {
884 if (Ops
[j
] == S
) { // Found a duplicate.
885 // Move it to immediately after i'th element.
886 std::swap(Ops
[i
+1], Ops
[j
]);
887 ++i
; // no need to rescan it.
888 if (i
== e
-2) return; // Done!
894 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
895 /// least HugeExprThreshold nodes).
896 static bool hasHugeExpression(ArrayRef
<const SCEV
*> Ops
) {
897 return any_of(Ops
, [](const SCEV
*S
) {
898 return S
->getExpressionSize() >= HugeExprThreshold
;
902 //===----------------------------------------------------------------------===//
903 // Simple SCEV method implementations
904 //===----------------------------------------------------------------------===//
906 /// Compute BC(It, K). The result has width W. Assume, K > 0.
907 static const SCEV
*BinomialCoefficient(const SCEV
*It
, unsigned K
,
910 // Handle the simplest case efficiently.
912 return SE
.getTruncateOrZeroExtend(It
, ResultTy
);
914 // We are using the following formula for BC(It, K):
916 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
918 // Suppose, W is the bitwidth of the return value. We must be prepared for
919 // overflow. Hence, we must assure that the result of our computation is
920 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
921 // safe in modular arithmetic.
923 // However, this code doesn't use exactly that formula; the formula it uses
924 // is something like the following, where T is the number of factors of 2 in
925 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
928 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
930 // This formula is trivially equivalent to the previous formula. However,
931 // this formula can be implemented much more efficiently. The trick is that
932 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
933 // arithmetic. To do exact division in modular arithmetic, all we have
934 // to do is multiply by the inverse. Therefore, this step can be done at
937 // The next issue is how to safely do the division by 2^T. The way this
938 // is done is by doing the multiplication step at a width of at least W + T
939 // bits. This way, the bottom W+T bits of the product are accurate. Then,
940 // when we perform the division by 2^T (which is equivalent to a right shift
941 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
942 // truncated out after the division by 2^T.
944 // In comparison to just directly using the first formula, this technique
945 // is much more efficient; using the first formula requires W * K bits,
946 // but this formula less than W + K bits. Also, the first formula requires
947 // a division step, whereas this formula only requires multiplies and shifts.
949 // It doesn't matter whether the subtraction step is done in the calculation
950 // width or the input iteration count's width; if the subtraction overflows,
951 // the result must be zero anyway. We prefer here to do it in the width of
952 // the induction variable because it helps a lot for certain cases; CodeGen
953 // isn't smart enough to ignore the overflow, which leads to much less
954 // efficient code if the width of the subtraction is wider than the native
957 // (It's possible to not widen at all by pulling out factors of 2 before
958 // the multiplication; for example, K=2 can be calculated as
959 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
960 // extra arithmetic, so it's not an obvious win, and it gets
961 // much more complicated for K > 3.)
963 // Protection from insane SCEVs; this bound is conservative,
964 // but it probably doesn't matter.
966 return SE
.getCouldNotCompute();
968 unsigned W
= SE
.getTypeSizeInBits(ResultTy
);
970 // Calculate K! / 2^T and T; we divide out the factors of two before
971 // multiplying for calculating K! / 2^T to avoid overflow.
972 // Other overflow doesn't matter because we only care about the bottom
973 // W bits of the result.
974 APInt
OddFactorial(W
, 1);
976 for (unsigned i
= 3; i
<= K
; ++i
) {
978 unsigned TwoFactors
= Mult
.countTrailingZeros();
980 Mult
.lshrInPlace(TwoFactors
);
981 OddFactorial
*= Mult
;
984 // We need at least W + T bits for the multiplication step
985 unsigned CalculationBits
= W
+ T
;
987 // Calculate 2^T, at width T+W.
988 APInt DivFactor
= APInt::getOneBitSet(CalculationBits
, T
);
990 // Calculate the multiplicative inverse of K! / 2^T;
991 // this multiplication factor will perform the exact division by
993 APInt Mod
= APInt::getSignedMinValue(W
+1);
994 APInt MultiplyFactor
= OddFactorial
.zext(W
+1);
995 MultiplyFactor
= MultiplyFactor
.multiplicativeInverse(Mod
);
996 MultiplyFactor
= MultiplyFactor
.trunc(W
);
998 // Calculate the product, at width T+W
999 IntegerType
*CalculationTy
= IntegerType::get(SE
.getContext(),
1001 const SCEV
*Dividend
= SE
.getTruncateOrZeroExtend(It
, CalculationTy
);
1002 for (unsigned i
= 1; i
!= K
; ++i
) {
1003 const SCEV
*S
= SE
.getMinusSCEV(It
, SE
.getConstant(It
->getType(), i
));
1004 Dividend
= SE
.getMulExpr(Dividend
,
1005 SE
.getTruncateOrZeroExtend(S
, CalculationTy
));
1009 const SCEV
*DivResult
= SE
.getUDivExpr(Dividend
, SE
.getConstant(DivFactor
));
1011 // Truncate the result, and divide by K! / 2^T.
1013 return SE
.getMulExpr(SE
.getConstant(MultiplyFactor
),
1014 SE
.getTruncateOrZeroExtend(DivResult
, ResultTy
));
1017 /// Return the value of this chain of recurrences at the specified iteration
1018 /// number. We can evaluate this recurrence by multiplying each element in the
1019 /// chain by the binomial coefficient corresponding to it. In other words, we
1020 /// can evaluate {A,+,B,+,C,+,D} as:
1022 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1024 /// where BC(It, k) stands for binomial coefficient.
1025 const SCEV
*SCEVAddRecExpr::evaluateAtIteration(const SCEV
*It
,
1026 ScalarEvolution
&SE
) const {
1027 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It
, SE
);
1031 SCEVAddRecExpr::evaluateAtIteration(ArrayRef
<const SCEV
*> Operands
,
1032 const SCEV
*It
, ScalarEvolution
&SE
) {
1033 assert(Operands
.size() > 0);
1034 const SCEV
*Result
= Operands
[0];
1035 for (unsigned i
= 1, e
= Operands
.size(); i
!= e
; ++i
) {
1036 // The computation is correct in the face of overflow provided that the
1037 // multiplication is performed _after_ the evaluation of the binomial
1039 const SCEV
*Coeff
= BinomialCoefficient(It
, i
, SE
, Result
->getType());
1040 if (isa
<SCEVCouldNotCompute
>(Coeff
))
1043 Result
= SE
.getAddExpr(Result
, SE
.getMulExpr(Operands
[i
], Coeff
));
1048 //===----------------------------------------------------------------------===//
1049 // SCEV Expression folder implementations
1050 //===----------------------------------------------------------------------===//
1052 const SCEV
*ScalarEvolution::getLosslessPtrToIntExpr(const SCEV
*Op
,
1054 assert(Depth
<= 1 &&
1055 "getLosslessPtrToIntExpr() should self-recurse at most once.");
1057 // We could be called with an integer-typed operands during SCEV rewrites.
1058 // Since the operand is an integer already, just perform zext/trunc/self cast.
1059 if (!Op
->getType()->isPointerTy())
1062 // What would be an ID for such a SCEV cast expression?
1063 FoldingSetNodeID ID
;
1064 ID
.AddInteger(scPtrToInt
);
1069 // Is there already an expression for such a cast?
1070 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
))
1073 // It isn't legal for optimizations to construct new ptrtoint expressions
1074 // for non-integral pointers.
1075 if (getDataLayout().isNonIntegralPointerType(Op
->getType()))
1076 return getCouldNotCompute();
1078 Type
*IntPtrTy
= getDataLayout().getIntPtrType(Op
->getType());
1080 // We can only trivially model ptrtoint if SCEV's effective (integer) type
1081 // is sufficiently wide to represent all possible pointer values.
1082 // We could theoretically teach SCEV to truncate wider pointers, but
1083 // that isn't implemented for now.
1084 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op
->getType())) !=
1085 getDataLayout().getTypeSizeInBits(IntPtrTy
))
1086 return getCouldNotCompute();
1088 // If not, is this expression something we can't reduce any further?
1089 if (auto *U
= dyn_cast
<SCEVUnknown
>(Op
)) {
1090 // Perform some basic constant folding. If the operand of the ptr2int cast
1091 // is a null pointer, don't create a ptr2int SCEV expression (that will be
1092 // left as-is), but produce a zero constant.
1093 // NOTE: We could handle a more general case, but lack motivational cases.
1094 if (isa
<ConstantPointerNull
>(U
->getValue()))
1095 return getZero(IntPtrTy
);
1097 // Create an explicit cast node.
1098 // We can reuse the existing insert position since if we get here,
1099 // we won't have made any changes which would invalidate it.
1100 SCEV
*S
= new (SCEVAllocator
)
1101 SCEVPtrToIntExpr(ID
.Intern(SCEVAllocator
), Op
, IntPtrTy
);
1102 UniqueSCEVs
.InsertNode(S
, IP
);
1103 addToLoopUseLists(S
);
1107 assert(Depth
== 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1108 "non-SCEVUnknown's.");
1110 // Otherwise, we've got some expression that is more complex than just a
1111 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1112 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1113 // only, and the expressions must otherwise be integer-typed.
1114 // So sink the cast down to the SCEVUnknown's.
1116 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1117 /// which computes a pointer-typed value, and rewrites the whole expression
1118 /// tree so that *all* the computations are done on integers, and the only
1119 /// pointer-typed operands in the expression are SCEVUnknown.
1120 class SCEVPtrToIntSinkingRewriter
1121 : public SCEVRewriteVisitor
<SCEVPtrToIntSinkingRewriter
> {
1122 using Base
= SCEVRewriteVisitor
<SCEVPtrToIntSinkingRewriter
>;
1125 SCEVPtrToIntSinkingRewriter(ScalarEvolution
&SE
) : SCEVRewriteVisitor(SE
) {}
1127 static const SCEV
*rewrite(const SCEV
*Scev
, ScalarEvolution
&SE
) {
1128 SCEVPtrToIntSinkingRewriter
Rewriter(SE
);
1129 return Rewriter
.visit(Scev
);
1132 const SCEV
*visit(const SCEV
*S
) {
1133 Type
*STy
= S
->getType();
1134 // If the expression is not pointer-typed, just keep it as-is.
1135 if (!STy
->isPointerTy())
1137 // Else, recursively sink the cast down into it.
1138 return Base::visit(S
);
1141 const SCEV
*visitAddExpr(const SCEVAddExpr
*Expr
) {
1142 SmallVector
<const SCEV
*, 2> Operands
;
1143 bool Changed
= false;
1144 for (auto *Op
: Expr
->operands()) {
1145 Operands
.push_back(visit(Op
));
1146 Changed
|= Op
!= Operands
.back();
1148 return !Changed
? Expr
: SE
.getAddExpr(Operands
, Expr
->getNoWrapFlags());
1151 const SCEV
*visitMulExpr(const SCEVMulExpr
*Expr
) {
1152 SmallVector
<const SCEV
*, 2> Operands
;
1153 bool Changed
= false;
1154 for (auto *Op
: Expr
->operands()) {
1155 Operands
.push_back(visit(Op
));
1156 Changed
|= Op
!= Operands
.back();
1158 return !Changed
? Expr
: SE
.getMulExpr(Operands
, Expr
->getNoWrapFlags());
1161 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
1162 assert(Expr
->getType()->isPointerTy() &&
1163 "Should only reach pointer-typed SCEVUnknown's.");
1164 return SE
.getLosslessPtrToIntExpr(Expr
, /*Depth=*/1);
1168 // And actually perform the cast sinking.
1169 const SCEV
*IntOp
= SCEVPtrToIntSinkingRewriter::rewrite(Op
, *this);
1170 assert(IntOp
->getType()->isIntegerTy() &&
1171 "We must have succeeded in sinking the cast, "
1172 "and ending up with an integer-typed expression!");
1176 const SCEV
*ScalarEvolution::getPtrToIntExpr(const SCEV
*Op
, Type
*Ty
) {
1177 assert(Ty
->isIntegerTy() && "Target type must be an integer type!");
1179 const SCEV
*IntOp
= getLosslessPtrToIntExpr(Op
);
1180 if (isa
<SCEVCouldNotCompute
>(IntOp
))
1183 return getTruncateOrZeroExtend(IntOp
, Ty
);
1186 const SCEV
*ScalarEvolution::getTruncateExpr(const SCEV
*Op
, Type
*Ty
,
1188 assert(getTypeSizeInBits(Op
->getType()) > getTypeSizeInBits(Ty
) &&
1189 "This is not a truncating conversion!");
1190 assert(isSCEVable(Ty
) &&
1191 "This is not a conversion to a SCEVable type!");
1192 assert(!Op
->getType()->isPointerTy() && "Can't truncate pointer!");
1193 Ty
= getEffectiveSCEVType(Ty
);
1195 FoldingSetNodeID ID
;
1196 ID
.AddInteger(scTruncate
);
1200 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1202 // Fold if the operand is constant.
1203 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
1205 cast
<ConstantInt
>(ConstantExpr::getTrunc(SC
->getValue(), Ty
)));
1207 // trunc(trunc(x)) --> trunc(x)
1208 if (const SCEVTruncateExpr
*ST
= dyn_cast
<SCEVTruncateExpr
>(Op
))
1209 return getTruncateExpr(ST
->getOperand(), Ty
, Depth
+ 1);
1211 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1212 if (const SCEVSignExtendExpr
*SS
= dyn_cast
<SCEVSignExtendExpr
>(Op
))
1213 return getTruncateOrSignExtend(SS
->getOperand(), Ty
, Depth
+ 1);
1215 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1216 if (const SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
1217 return getTruncateOrZeroExtend(SZ
->getOperand(), Ty
, Depth
+ 1);
1219 if (Depth
> MaxCastDepth
) {
1221 new (SCEVAllocator
) SCEVTruncateExpr(ID
.Intern(SCEVAllocator
), Op
, Ty
);
1222 UniqueSCEVs
.InsertNode(S
, IP
);
1223 addToLoopUseLists(S
);
1227 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1228 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1229 // if after transforming we have at most one truncate, not counting truncates
1230 // that replace other casts.
1231 if (isa
<SCEVAddExpr
>(Op
) || isa
<SCEVMulExpr
>(Op
)) {
1232 auto *CommOp
= cast
<SCEVCommutativeExpr
>(Op
);
1233 SmallVector
<const SCEV
*, 4> Operands
;
1234 unsigned numTruncs
= 0;
1235 for (unsigned i
= 0, e
= CommOp
->getNumOperands(); i
!= e
&& numTruncs
< 2;
1237 const SCEV
*S
= getTruncateExpr(CommOp
->getOperand(i
), Ty
, Depth
+ 1);
1238 if (!isa
<SCEVIntegralCastExpr
>(CommOp
->getOperand(i
)) &&
1239 isa
<SCEVTruncateExpr
>(S
))
1241 Operands
.push_back(S
);
1243 if (numTruncs
< 2) {
1244 if (isa
<SCEVAddExpr
>(Op
))
1245 return getAddExpr(Operands
);
1246 else if (isa
<SCEVMulExpr
>(Op
))
1247 return getMulExpr(Operands
);
1249 llvm_unreachable("Unexpected SCEV type for Op.");
1251 // Although we checked in the beginning that ID is not in the cache, it is
1252 // possible that during recursion and different modification ID was inserted
1253 // into the cache. So if we find it, just return it.
1254 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
))
1258 // If the input value is a chrec scev, truncate the chrec's operands.
1259 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Op
)) {
1260 SmallVector
<const SCEV
*, 4> Operands
;
1261 for (const SCEV
*Op
: AddRec
->operands())
1262 Operands
.push_back(getTruncateExpr(Op
, Ty
, Depth
+ 1));
1263 return getAddRecExpr(Operands
, AddRec
->getLoop(), SCEV::FlagAnyWrap
);
1266 // Return zero if truncating to known zeros.
1267 uint32_t MinTrailingZeros
= GetMinTrailingZeros(Op
);
1268 if (MinTrailingZeros
>= getTypeSizeInBits(Ty
))
1271 // The cast wasn't folded; create an explicit cast node. We can reuse
1272 // the existing insert position since if we get here, we won't have
1273 // made any changes which would invalidate it.
1274 SCEV
*S
= new (SCEVAllocator
) SCEVTruncateExpr(ID
.Intern(SCEVAllocator
),
1276 UniqueSCEVs
.InsertNode(S
, IP
);
1277 addToLoopUseLists(S
);
1281 // Get the limit of a recurrence such that incrementing by Step cannot cause
1282 // signed overflow as long as the value of the recurrence within the
1283 // loop does not exceed this limit before incrementing.
1284 static const SCEV
*getSignedOverflowLimitForStep(const SCEV
*Step
,
1285 ICmpInst::Predicate
*Pred
,
1286 ScalarEvolution
*SE
) {
1287 unsigned BitWidth
= SE
->getTypeSizeInBits(Step
->getType());
1288 if (SE
->isKnownPositive(Step
)) {
1289 *Pred
= ICmpInst::ICMP_SLT
;
1290 return SE
->getConstant(APInt::getSignedMinValue(BitWidth
) -
1291 SE
->getSignedRangeMax(Step
));
1293 if (SE
->isKnownNegative(Step
)) {
1294 *Pred
= ICmpInst::ICMP_SGT
;
1295 return SE
->getConstant(APInt::getSignedMaxValue(BitWidth
) -
1296 SE
->getSignedRangeMin(Step
));
1301 // Get the limit of a recurrence such that incrementing by Step cannot cause
1302 // unsigned overflow as long as the value of the recurrence within the loop does
1303 // not exceed this limit before incrementing.
1304 static const SCEV
*getUnsignedOverflowLimitForStep(const SCEV
*Step
,
1305 ICmpInst::Predicate
*Pred
,
1306 ScalarEvolution
*SE
) {
1307 unsigned BitWidth
= SE
->getTypeSizeInBits(Step
->getType());
1308 *Pred
= ICmpInst::ICMP_ULT
;
1310 return SE
->getConstant(APInt::getMinValue(BitWidth
) -
1311 SE
->getUnsignedRangeMax(Step
));
1316 struct ExtendOpTraitsBase
{
1317 typedef const SCEV
*(ScalarEvolution::*GetExtendExprTy
)(const SCEV
*, Type
*,
1321 // Used to make code generic over signed and unsigned overflow.
1322 template <typename ExtendOp
> struct ExtendOpTraits
{
1325 // static const SCEV::NoWrapFlags WrapType;
1327 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1329 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1330 // ICmpInst::Predicate *Pred,
1331 // ScalarEvolution *SE);
1335 struct ExtendOpTraits
<SCEVSignExtendExpr
> : public ExtendOpTraitsBase
{
1336 static const SCEV::NoWrapFlags WrapType
= SCEV::FlagNSW
;
1338 static const GetExtendExprTy GetExtendExpr
;
1340 static const SCEV
*getOverflowLimitForStep(const SCEV
*Step
,
1341 ICmpInst::Predicate
*Pred
,
1342 ScalarEvolution
*SE
) {
1343 return getSignedOverflowLimitForStep(Step
, Pred
, SE
);
1347 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits
<
1348 SCEVSignExtendExpr
>::GetExtendExpr
= &ScalarEvolution::getSignExtendExpr
;
1351 struct ExtendOpTraits
<SCEVZeroExtendExpr
> : public ExtendOpTraitsBase
{
1352 static const SCEV::NoWrapFlags WrapType
= SCEV::FlagNUW
;
1354 static const GetExtendExprTy GetExtendExpr
;
1356 static const SCEV
*getOverflowLimitForStep(const SCEV
*Step
,
1357 ICmpInst::Predicate
*Pred
,
1358 ScalarEvolution
*SE
) {
1359 return getUnsignedOverflowLimitForStep(Step
, Pred
, SE
);
1363 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits
<
1364 SCEVZeroExtendExpr
>::GetExtendExpr
= &ScalarEvolution::getZeroExtendExpr
;
1366 } // end anonymous namespace
1368 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1369 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1370 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1371 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1372 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1373 // expression "Step + sext/zext(PreIncAR)" is congruent with
1374 // "sext/zext(PostIncAR)"
1375 template <typename ExtendOpTy
>
1376 static const SCEV
*getPreStartForExtend(const SCEVAddRecExpr
*AR
, Type
*Ty
,
1377 ScalarEvolution
*SE
, unsigned Depth
) {
1378 auto WrapType
= ExtendOpTraits
<ExtendOpTy
>::WrapType
;
1379 auto GetExtendExpr
= ExtendOpTraits
<ExtendOpTy
>::GetExtendExpr
;
1381 const Loop
*L
= AR
->getLoop();
1382 const SCEV
*Start
= AR
->getStart();
1383 const SCEV
*Step
= AR
->getStepRecurrence(*SE
);
1385 // Check for a simple looking step prior to loop entry.
1386 const SCEVAddExpr
*SA
= dyn_cast
<SCEVAddExpr
>(Start
);
1390 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1391 // subtraction is expensive. For this purpose, perform a quick and dirty
1392 // difference, by checking for Step in the operand list.
1393 SmallVector
<const SCEV
*, 4> DiffOps
;
1394 for (const SCEV
*Op
: SA
->operands())
1396 DiffOps
.push_back(Op
);
1398 if (DiffOps
.size() == SA
->getNumOperands())
1401 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1404 // 1. NSW/NUW flags on the step increment.
1405 auto PreStartFlags
=
1406 ScalarEvolution::maskFlags(SA
->getNoWrapFlags(), SCEV::FlagNUW
);
1407 const SCEV
*PreStart
= SE
->getAddExpr(DiffOps
, PreStartFlags
);
1408 const SCEVAddRecExpr
*PreAR
= dyn_cast
<SCEVAddRecExpr
>(
1409 SE
->getAddRecExpr(PreStart
, Step
, L
, SCEV::FlagAnyWrap
));
1411 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1412 // "S+X does not sign/unsign-overflow".
1415 const SCEV
*BECount
= SE
->getBackedgeTakenCount(L
);
1416 if (PreAR
&& PreAR
->getNoWrapFlags(WrapType
) &&
1417 !isa
<SCEVCouldNotCompute
>(BECount
) && SE
->isKnownPositive(BECount
))
1420 // 2. Direct overflow check on the step operation's expression.
1421 unsigned BitWidth
= SE
->getTypeSizeInBits(AR
->getType());
1422 Type
*WideTy
= IntegerType::get(SE
->getContext(), BitWidth
* 2);
1423 const SCEV
*OperandExtendedStart
=
1424 SE
->getAddExpr((SE
->*GetExtendExpr
)(PreStart
, WideTy
, Depth
),
1425 (SE
->*GetExtendExpr
)(Step
, WideTy
, Depth
));
1426 if ((SE
->*GetExtendExpr
)(Start
, WideTy
, Depth
) == OperandExtendedStart
) {
1427 if (PreAR
&& AR
->getNoWrapFlags(WrapType
)) {
1428 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1429 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1430 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1431 SE
->setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(PreAR
), WrapType
);
1436 // 3. Loop precondition.
1437 ICmpInst::Predicate Pred
;
1438 const SCEV
*OverflowLimit
=
1439 ExtendOpTraits
<ExtendOpTy
>::getOverflowLimitForStep(Step
, &Pred
, SE
);
1441 if (OverflowLimit
&&
1442 SE
->isLoopEntryGuardedByCond(L
, Pred
, PreStart
, OverflowLimit
))
1448 // Get the normalized zero or sign extended expression for this AddRec's Start.
1449 template <typename ExtendOpTy
>
1450 static const SCEV
*getExtendAddRecStart(const SCEVAddRecExpr
*AR
, Type
*Ty
,
1451 ScalarEvolution
*SE
,
1453 auto GetExtendExpr
= ExtendOpTraits
<ExtendOpTy
>::GetExtendExpr
;
1455 const SCEV
*PreStart
= getPreStartForExtend
<ExtendOpTy
>(AR
, Ty
, SE
, Depth
);
1457 return (SE
->*GetExtendExpr
)(AR
->getStart(), Ty
, Depth
);
1459 return SE
->getAddExpr((SE
->*GetExtendExpr
)(AR
->getStepRecurrence(*SE
), Ty
,
1461 (SE
->*GetExtendExpr
)(PreStart
, Ty
, Depth
));
1464 // Try to prove away overflow by looking at "nearby" add recurrences. A
1465 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1466 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1470 // {S,+,X} == {S-T,+,X} + T
1471 // => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1473 // If ({S-T,+,X} + T) does not overflow ... (1)
1475 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1477 // If {S-T,+,X} does not overflow ... (2)
1479 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1480 // == {Ext(S-T)+Ext(T),+,Ext(X)}
1482 // If (S-T)+T does not overflow ... (3)
1484 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1485 // == {Ext(S),+,Ext(X)} == LHS
1487 // Thus, if (1), (2) and (3) are true for some T, then
1488 // Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1490 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1491 // does not overflow" restricted to the 0th iteration. Therefore we only need
1492 // to check for (1) and (2).
1494 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1495 // is `Delta` (defined below).
1496 template <typename ExtendOpTy
>
1497 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV
*Start
,
1500 auto WrapType
= ExtendOpTraits
<ExtendOpTy
>::WrapType
;
1502 // We restrict `Start` to a constant to prevent SCEV from spending too much
1503 // time here. It is correct (but more expensive) to continue with a
1504 // non-constant `Start` and do a general SCEV subtraction to compute
1505 // `PreStart` below.
1506 const SCEVConstant
*StartC
= dyn_cast
<SCEVConstant
>(Start
);
1510 APInt StartAI
= StartC
->getAPInt();
1512 for (unsigned Delta
: {-2, -1, 1, 2}) {
1513 const SCEV
*PreStart
= getConstant(StartAI
- Delta
);
1515 FoldingSetNodeID ID
;
1516 ID
.AddInteger(scAddRecExpr
);
1517 ID
.AddPointer(PreStart
);
1518 ID
.AddPointer(Step
);
1522 static_cast<SCEVAddRecExpr
*>(UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
));
1524 // Give up if we don't already have the add recurrence we need because
1525 // actually constructing an add recurrence is relatively expensive.
1526 if (PreAR
&& PreAR
->getNoWrapFlags(WrapType
)) { // proves (2)
1527 const SCEV
*DeltaS
= getConstant(StartC
->getType(), Delta
);
1528 ICmpInst::Predicate Pred
= ICmpInst::BAD_ICMP_PREDICATE
;
1529 const SCEV
*Limit
= ExtendOpTraits
<ExtendOpTy
>::getOverflowLimitForStep(
1530 DeltaS
, &Pred
, this);
1531 if (Limit
&& isKnownPredicate(Pred
, PreAR
, Limit
)) // proves (1)
1539 // Finds an integer D for an expression (C + x + y + ...) such that the top
1540 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1541 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1542 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1543 // the (C + x + y + ...) expression is \p WholeAddExpr.
1544 static APInt
extractConstantWithoutWrapping(ScalarEvolution
&SE
,
1545 const SCEVConstant
*ConstantTerm
,
1546 const SCEVAddExpr
*WholeAddExpr
) {
1547 const APInt
&C
= ConstantTerm
->getAPInt();
1548 const unsigned BitWidth
= C
.getBitWidth();
1549 // Find number of trailing zeros of (x + y + ...) w/o the C first:
1550 uint32_t TZ
= BitWidth
;
1551 for (unsigned I
= 1, E
= WholeAddExpr
->getNumOperands(); I
< E
&& TZ
; ++I
)
1552 TZ
= std::min(TZ
, SE
.GetMinTrailingZeros(WholeAddExpr
->getOperand(I
)));
1554 // Set D to be as many least significant bits of C as possible while still
1555 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1556 return TZ
< BitWidth
? C
.trunc(TZ
).zext(BitWidth
) : C
;
1558 return APInt(BitWidth
, 0);
1561 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1562 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1563 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1564 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1565 static APInt
extractConstantWithoutWrapping(ScalarEvolution
&SE
,
1566 const APInt
&ConstantStart
,
1568 const unsigned BitWidth
= ConstantStart
.getBitWidth();
1569 const uint32_t TZ
= SE
.GetMinTrailingZeros(Step
);
1571 return TZ
< BitWidth
? ConstantStart
.trunc(TZ
).zext(BitWidth
)
1573 return APInt(BitWidth
, 0);
1577 ScalarEvolution::getZeroExtendExpr(const SCEV
*Op
, Type
*Ty
, unsigned Depth
) {
1578 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
1579 "This is not an extending conversion!");
1580 assert(isSCEVable(Ty
) &&
1581 "This is not a conversion to a SCEVable type!");
1582 assert(!Op
->getType()->isPointerTy() && "Can't extend pointer!");
1583 Ty
= getEffectiveSCEVType(Ty
);
1585 // Fold if the operand is constant.
1586 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
1588 cast
<ConstantInt
>(ConstantExpr::getZExt(SC
->getValue(), Ty
)));
1590 // zext(zext(x)) --> zext(x)
1591 if (const SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
1592 return getZeroExtendExpr(SZ
->getOperand(), Ty
, Depth
+ 1);
1594 // Before doing any expensive analysis, check to see if we've already
1595 // computed a SCEV for this Op and Ty.
1596 FoldingSetNodeID ID
;
1597 ID
.AddInteger(scZeroExtend
);
1601 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1602 if (Depth
> MaxCastDepth
) {
1603 SCEV
*S
= new (SCEVAllocator
) SCEVZeroExtendExpr(ID
.Intern(SCEVAllocator
),
1605 UniqueSCEVs
.InsertNode(S
, IP
);
1606 addToLoopUseLists(S
);
1610 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1611 if (const SCEVTruncateExpr
*ST
= dyn_cast
<SCEVTruncateExpr
>(Op
)) {
1612 // It's possible the bits taken off by the truncate were all zero bits. If
1613 // so, we should be able to simplify this further.
1614 const SCEV
*X
= ST
->getOperand();
1615 ConstantRange CR
= getUnsignedRange(X
);
1616 unsigned TruncBits
= getTypeSizeInBits(ST
->getType());
1617 unsigned NewBits
= getTypeSizeInBits(Ty
);
1618 if (CR
.truncate(TruncBits
).zeroExtend(NewBits
).contains(
1619 CR
.zextOrTrunc(NewBits
)))
1620 return getTruncateOrZeroExtend(X
, Ty
, Depth
);
1623 // If the input value is a chrec scev, and we can prove that the value
1624 // did not overflow the old, smaller, value, we can zero extend all of the
1625 // operands (often constants). This allows analysis of something like
1626 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1627 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
))
1628 if (AR
->isAffine()) {
1629 const SCEV
*Start
= AR
->getStart();
1630 const SCEV
*Step
= AR
->getStepRecurrence(*this);
1631 unsigned BitWidth
= getTypeSizeInBits(AR
->getType());
1632 const Loop
*L
= AR
->getLoop();
1634 if (!AR
->hasNoUnsignedWrap()) {
1635 auto NewFlags
= proveNoWrapViaConstantRanges(AR
);
1636 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), NewFlags
);
1639 // If we have special knowledge that this addrec won't overflow,
1640 // we don't need to do any further analysis.
1641 if (AR
->hasNoUnsignedWrap())
1642 return getAddRecExpr(
1643 getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this, Depth
+ 1),
1644 getZeroExtendExpr(Step
, Ty
, Depth
+ 1), L
, AR
->getNoWrapFlags());
1646 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1647 // Note that this serves two purposes: It filters out loops that are
1648 // simply not analyzable, and it covers the case where this code is
1649 // being called from within backedge-taken count analysis, such that
1650 // attempting to ask for the backedge-taken count would likely result
1651 // in infinite recursion. In the later case, the analysis code will
1652 // cope with a conservative value, and it will take care to purge
1653 // that value once it has finished.
1654 const SCEV
*MaxBECount
= getConstantMaxBackedgeTakenCount(L
);
1655 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
)) {
1656 // Manually compute the final value for AR, checking for overflow.
1658 // Check whether the backedge-taken count can be losslessly casted to
1659 // the addrec's type. The count is always unsigned.
1660 const SCEV
*CastedMaxBECount
=
1661 getTruncateOrZeroExtend(MaxBECount
, Start
->getType(), Depth
);
1662 const SCEV
*RecastedMaxBECount
= getTruncateOrZeroExtend(
1663 CastedMaxBECount
, MaxBECount
->getType(), Depth
);
1664 if (MaxBECount
== RecastedMaxBECount
) {
1665 Type
*WideTy
= IntegerType::get(getContext(), BitWidth
* 2);
1666 // Check whether Start+Step*MaxBECount has no unsigned overflow.
1667 const SCEV
*ZMul
= getMulExpr(CastedMaxBECount
, Step
,
1668 SCEV::FlagAnyWrap
, Depth
+ 1);
1669 const SCEV
*ZAdd
= getZeroExtendExpr(getAddExpr(Start
, ZMul
,
1673 const SCEV
*WideStart
= getZeroExtendExpr(Start
, WideTy
, Depth
+ 1);
1674 const SCEV
*WideMaxBECount
=
1675 getZeroExtendExpr(CastedMaxBECount
, WideTy
, Depth
+ 1);
1676 const SCEV
*OperandExtendedAdd
=
1677 getAddExpr(WideStart
,
1678 getMulExpr(WideMaxBECount
,
1679 getZeroExtendExpr(Step
, WideTy
, Depth
+ 1),
1680 SCEV::FlagAnyWrap
, Depth
+ 1),
1681 SCEV::FlagAnyWrap
, Depth
+ 1);
1682 if (ZAdd
== OperandExtendedAdd
) {
1683 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1684 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), SCEV::FlagNUW
);
1685 // Return the expression with the addrec on the outside.
1686 return getAddRecExpr(
1687 getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this,
1689 getZeroExtendExpr(Step
, Ty
, Depth
+ 1), L
,
1690 AR
->getNoWrapFlags());
1692 // Similar to above, only this time treat the step value as signed.
1693 // This covers loops that count down.
1694 OperandExtendedAdd
=
1695 getAddExpr(WideStart
,
1696 getMulExpr(WideMaxBECount
,
1697 getSignExtendExpr(Step
, WideTy
, Depth
+ 1),
1698 SCEV::FlagAnyWrap
, Depth
+ 1),
1699 SCEV::FlagAnyWrap
, Depth
+ 1);
1700 if (ZAdd
== OperandExtendedAdd
) {
1701 // Cache knowledge of AR NW, which is propagated to this AddRec.
1702 // Negative step causes unsigned wrap, but it still can't self-wrap.
1703 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), SCEV::FlagNW
);
1704 // Return the expression with the addrec on the outside.
1705 return getAddRecExpr(
1706 getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this,
1708 getSignExtendExpr(Step
, Ty
, Depth
+ 1), L
,
1709 AR
->getNoWrapFlags());
1714 // Normally, in the cases we can prove no-overflow via a
1715 // backedge guarding condition, we can also compute a backedge
1716 // taken count for the loop. The exceptions are assumptions and
1717 // guards present in the loop -- SCEV is not great at exploiting
1718 // these to compute max backedge taken counts, but can still use
1719 // these to prove lack of overflow. Use this fact to avoid
1720 // doing extra work that may not pay off.
1721 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
) || HasGuards
||
1722 !AC
.assumptions().empty()) {
1724 auto NewFlags
= proveNoUnsignedWrapViaInduction(AR
);
1725 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), NewFlags
);
1726 if (AR
->hasNoUnsignedWrap()) {
1727 // Same as nuw case above - duplicated here to avoid a compile time
1728 // issue. It's not clear that the order of checks does matter, but
1729 // it's one of two issue possible causes for a change which was
1730 // reverted. Be conservative for the moment.
1731 return getAddRecExpr(
1732 getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this,
1734 getZeroExtendExpr(Step
, Ty
, Depth
+ 1), L
,
1735 AR
->getNoWrapFlags());
1738 // For a negative step, we can extend the operands iff doing so only
1739 // traverses values in the range zext([0,UINT_MAX]).
1740 if (isKnownNegative(Step
)) {
1741 const SCEV
*N
= getConstant(APInt::getMaxValue(BitWidth
) -
1742 getSignedRangeMin(Step
));
1743 if (isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_UGT
, AR
, N
) ||
1744 isKnownOnEveryIteration(ICmpInst::ICMP_UGT
, AR
, N
)) {
1745 // Cache knowledge of AR NW, which is propagated to this
1746 // AddRec. Negative step causes unsigned wrap, but it
1747 // still can't self-wrap.
1748 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), SCEV::FlagNW
);
1749 // Return the expression with the addrec on the outside.
1750 return getAddRecExpr(
1751 getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this,
1753 getSignExtendExpr(Step
, Ty
, Depth
+ 1), L
,
1754 AR
->getNoWrapFlags());
1759 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1760 // if D + (C - D + Step * n) could be proven to not unsigned wrap
1761 // where D maximizes the number of trailing zeros of (C - D + Step * n)
1762 if (const auto *SC
= dyn_cast
<SCEVConstant
>(Start
)) {
1763 const APInt
&C
= SC
->getAPInt();
1764 const APInt
&D
= extractConstantWithoutWrapping(*this, C
, Step
);
1766 const SCEV
*SZExtD
= getZeroExtendExpr(getConstant(D
), Ty
, Depth
);
1767 const SCEV
*SResidual
=
1768 getAddRecExpr(getConstant(C
- D
), Step
, L
, AR
->getNoWrapFlags());
1769 const SCEV
*SZExtR
= getZeroExtendExpr(SResidual
, Ty
, Depth
+ 1);
1770 return getAddExpr(SZExtD
, SZExtR
,
1771 (SCEV::NoWrapFlags
)(SCEV::FlagNSW
| SCEV::FlagNUW
),
1776 if (proveNoWrapByVaryingStart
<SCEVZeroExtendExpr
>(Start
, Step
, L
)) {
1777 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), SCEV::FlagNUW
);
1778 return getAddRecExpr(
1779 getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this, Depth
+ 1),
1780 getZeroExtendExpr(Step
, Ty
, Depth
+ 1), L
, AR
->getNoWrapFlags());
1784 // zext(A % B) --> zext(A) % zext(B)
1788 if (matchURem(Op
, LHS
, RHS
))
1789 return getURemExpr(getZeroExtendExpr(LHS
, Ty
, Depth
+ 1),
1790 getZeroExtendExpr(RHS
, Ty
, Depth
+ 1));
1793 // zext(A / B) --> zext(A) / zext(B).
1794 if (auto *Div
= dyn_cast
<SCEVUDivExpr
>(Op
))
1795 return getUDivExpr(getZeroExtendExpr(Div
->getLHS(), Ty
, Depth
+ 1),
1796 getZeroExtendExpr(Div
->getRHS(), Ty
, Depth
+ 1));
1798 if (auto *SA
= dyn_cast
<SCEVAddExpr
>(Op
)) {
1799 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1800 if (SA
->hasNoUnsignedWrap()) {
1801 // If the addition does not unsign overflow then we can, by definition,
1802 // commute the zero extension with the addition operation.
1803 SmallVector
<const SCEV
*, 4> Ops
;
1804 for (const auto *Op
: SA
->operands())
1805 Ops
.push_back(getZeroExtendExpr(Op
, Ty
, Depth
+ 1));
1806 return getAddExpr(Ops
, SCEV::FlagNUW
, Depth
+ 1);
1809 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1810 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1811 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1813 // Often address arithmetics contain expressions like
1814 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1815 // This transformation is useful while proving that such expressions are
1816 // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1817 if (const auto *SC
= dyn_cast
<SCEVConstant
>(SA
->getOperand(0))) {
1818 const APInt
&D
= extractConstantWithoutWrapping(*this, SC
, SA
);
1820 const SCEV
*SZExtD
= getZeroExtendExpr(getConstant(D
), Ty
, Depth
);
1821 const SCEV
*SResidual
=
1822 getAddExpr(getConstant(-D
), SA
, SCEV::FlagAnyWrap
, Depth
);
1823 const SCEV
*SZExtR
= getZeroExtendExpr(SResidual
, Ty
, Depth
+ 1);
1824 return getAddExpr(SZExtD
, SZExtR
,
1825 (SCEV::NoWrapFlags
)(SCEV::FlagNSW
| SCEV::FlagNUW
),
1831 if (auto *SM
= dyn_cast
<SCEVMulExpr
>(Op
)) {
1832 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1833 if (SM
->hasNoUnsignedWrap()) {
1834 // If the multiply does not unsign overflow then we can, by definition,
1835 // commute the zero extension with the multiply operation.
1836 SmallVector
<const SCEV
*, 4> Ops
;
1837 for (const auto *Op
: SM
->operands())
1838 Ops
.push_back(getZeroExtendExpr(Op
, Ty
, Depth
+ 1));
1839 return getMulExpr(Ops
, SCEV::FlagNUW
, Depth
+ 1);
1842 // zext(2^K * (trunc X to iN)) to iM ->
1843 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1847 // zext(2^K * (trunc X to iN)) to iM
1848 // = zext((trunc X to iN) << K) to iM
1849 // = zext((trunc X to i{N-K}) << K)<nuw> to iM
1850 // (because shl removes the top K bits)
1851 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1852 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1854 if (SM
->getNumOperands() == 2)
1855 if (auto *MulLHS
= dyn_cast
<SCEVConstant
>(SM
->getOperand(0)))
1856 if (MulLHS
->getAPInt().isPowerOf2())
1857 if (auto *TruncRHS
= dyn_cast
<SCEVTruncateExpr
>(SM
->getOperand(1))) {
1858 int NewTruncBits
= getTypeSizeInBits(TruncRHS
->getType()) -
1859 MulLHS
->getAPInt().logBase2();
1860 Type
*NewTruncTy
= IntegerType::get(getContext(), NewTruncBits
);
1862 getZeroExtendExpr(MulLHS
, Ty
),
1864 getTruncateExpr(TruncRHS
->getOperand(), NewTruncTy
), Ty
),
1865 SCEV::FlagNUW
, Depth
+ 1);
1869 // The cast wasn't folded; create an explicit cast node.
1870 // Recompute the insert position, as it may have been invalidated.
1871 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1872 SCEV
*S
= new (SCEVAllocator
) SCEVZeroExtendExpr(ID
.Intern(SCEVAllocator
),
1874 UniqueSCEVs
.InsertNode(S
, IP
);
1875 addToLoopUseLists(S
);
1880 ScalarEvolution::getSignExtendExpr(const SCEV
*Op
, Type
*Ty
, unsigned Depth
) {
1881 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
1882 "This is not an extending conversion!");
1883 assert(isSCEVable(Ty
) &&
1884 "This is not a conversion to a SCEVable type!");
1885 assert(!Op
->getType()->isPointerTy() && "Can't extend pointer!");
1886 Ty
= getEffectiveSCEVType(Ty
);
1888 // Fold if the operand is constant.
1889 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
1891 cast
<ConstantInt
>(ConstantExpr::getSExt(SC
->getValue(), Ty
)));
1893 // sext(sext(x)) --> sext(x)
1894 if (const SCEVSignExtendExpr
*SS
= dyn_cast
<SCEVSignExtendExpr
>(Op
))
1895 return getSignExtendExpr(SS
->getOperand(), Ty
, Depth
+ 1);
1897 // sext(zext(x)) --> zext(x)
1898 if (const SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
1899 return getZeroExtendExpr(SZ
->getOperand(), Ty
, Depth
+ 1);
1901 // Before doing any expensive analysis, check to see if we've already
1902 // computed a SCEV for this Op and Ty.
1903 FoldingSetNodeID ID
;
1904 ID
.AddInteger(scSignExtend
);
1908 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1909 // Limit recursion depth.
1910 if (Depth
> MaxCastDepth
) {
1911 SCEV
*S
= new (SCEVAllocator
) SCEVSignExtendExpr(ID
.Intern(SCEVAllocator
),
1913 UniqueSCEVs
.InsertNode(S
, IP
);
1914 addToLoopUseLists(S
);
1918 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1919 if (const SCEVTruncateExpr
*ST
= dyn_cast
<SCEVTruncateExpr
>(Op
)) {
1920 // It's possible the bits taken off by the truncate were all sign bits. If
1921 // so, we should be able to simplify this further.
1922 const SCEV
*X
= ST
->getOperand();
1923 ConstantRange CR
= getSignedRange(X
);
1924 unsigned TruncBits
= getTypeSizeInBits(ST
->getType());
1925 unsigned NewBits
= getTypeSizeInBits(Ty
);
1926 if (CR
.truncate(TruncBits
).signExtend(NewBits
).contains(
1927 CR
.sextOrTrunc(NewBits
)))
1928 return getTruncateOrSignExtend(X
, Ty
, Depth
);
1931 if (auto *SA
= dyn_cast
<SCEVAddExpr
>(Op
)) {
1932 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1933 if (SA
->hasNoSignedWrap()) {
1934 // If the addition does not sign overflow then we can, by definition,
1935 // commute the sign extension with the addition operation.
1936 SmallVector
<const SCEV
*, 4> Ops
;
1937 for (const auto *Op
: SA
->operands())
1938 Ops
.push_back(getSignExtendExpr(Op
, Ty
, Depth
+ 1));
1939 return getAddExpr(Ops
, SCEV::FlagNSW
, Depth
+ 1);
1942 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1943 // if D + (C - D + x + y + ...) could be proven to not signed wrap
1944 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1946 // For instance, this will bring two seemingly different expressions:
1947 // 1 + sext(5 + 20 * %x + 24 * %y) and
1948 // sext(6 + 20 * %x + 24 * %y)
1949 // to the same form:
1950 // 2 + sext(4 + 20 * %x + 24 * %y)
1951 if (const auto *SC
= dyn_cast
<SCEVConstant
>(SA
->getOperand(0))) {
1952 const APInt
&D
= extractConstantWithoutWrapping(*this, SC
, SA
);
1954 const SCEV
*SSExtD
= getSignExtendExpr(getConstant(D
), Ty
, Depth
);
1955 const SCEV
*SResidual
=
1956 getAddExpr(getConstant(-D
), SA
, SCEV::FlagAnyWrap
, Depth
);
1957 const SCEV
*SSExtR
= getSignExtendExpr(SResidual
, Ty
, Depth
+ 1);
1958 return getAddExpr(SSExtD
, SSExtR
,
1959 (SCEV::NoWrapFlags
)(SCEV::FlagNSW
| SCEV::FlagNUW
),
1964 // If the input value is a chrec scev, and we can prove that the value
1965 // did not overflow the old, smaller, value, we can sign extend all of the
1966 // operands (often constants). This allows analysis of something like
1967 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
1968 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
))
1969 if (AR
->isAffine()) {
1970 const SCEV
*Start
= AR
->getStart();
1971 const SCEV
*Step
= AR
->getStepRecurrence(*this);
1972 unsigned BitWidth
= getTypeSizeInBits(AR
->getType());
1973 const Loop
*L
= AR
->getLoop();
1975 if (!AR
->hasNoSignedWrap()) {
1976 auto NewFlags
= proveNoWrapViaConstantRanges(AR
);
1977 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), NewFlags
);
1980 // If we have special knowledge that this addrec won't overflow,
1981 // we don't need to do any further analysis.
1982 if (AR
->hasNoSignedWrap())
1983 return getAddRecExpr(
1984 getExtendAddRecStart
<SCEVSignExtendExpr
>(AR
, Ty
, this, Depth
+ 1),
1985 getSignExtendExpr(Step
, Ty
, Depth
+ 1), L
, SCEV::FlagNSW
);
1987 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1988 // Note that this serves two purposes: It filters out loops that are
1989 // simply not analyzable, and it covers the case where this code is
1990 // being called from within backedge-taken count analysis, such that
1991 // attempting to ask for the backedge-taken count would likely result
1992 // in infinite recursion. In the later case, the analysis code will
1993 // cope with a conservative value, and it will take care to purge
1994 // that value once it has finished.
1995 const SCEV
*MaxBECount
= getConstantMaxBackedgeTakenCount(L
);
1996 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
)) {
1997 // Manually compute the final value for AR, checking for
2000 // Check whether the backedge-taken count can be losslessly casted to
2001 // the addrec's type. The count is always unsigned.
2002 const SCEV
*CastedMaxBECount
=
2003 getTruncateOrZeroExtend(MaxBECount
, Start
->getType(), Depth
);
2004 const SCEV
*RecastedMaxBECount
= getTruncateOrZeroExtend(
2005 CastedMaxBECount
, MaxBECount
->getType(), Depth
);
2006 if (MaxBECount
== RecastedMaxBECount
) {
2007 Type
*WideTy
= IntegerType::get(getContext(), BitWidth
* 2);
2008 // Check whether Start+Step*MaxBECount has no signed overflow.
2009 const SCEV
*SMul
= getMulExpr(CastedMaxBECount
, Step
,
2010 SCEV::FlagAnyWrap
, Depth
+ 1);
2011 const SCEV
*SAdd
= getSignExtendExpr(getAddExpr(Start
, SMul
,
2015 const SCEV
*WideStart
= getSignExtendExpr(Start
, WideTy
, Depth
+ 1);
2016 const SCEV
*WideMaxBECount
=
2017 getZeroExtendExpr(CastedMaxBECount
, WideTy
, Depth
+ 1);
2018 const SCEV
*OperandExtendedAdd
=
2019 getAddExpr(WideStart
,
2020 getMulExpr(WideMaxBECount
,
2021 getSignExtendExpr(Step
, WideTy
, Depth
+ 1),
2022 SCEV::FlagAnyWrap
, Depth
+ 1),
2023 SCEV::FlagAnyWrap
, Depth
+ 1);
2024 if (SAdd
== OperandExtendedAdd
) {
2025 // Cache knowledge of AR NSW, which is propagated to this AddRec.
2026 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), SCEV::FlagNSW
);
2027 // Return the expression with the addrec on the outside.
2028 return getAddRecExpr(
2029 getExtendAddRecStart
<SCEVSignExtendExpr
>(AR
, Ty
, this,
2031 getSignExtendExpr(Step
, Ty
, Depth
+ 1), L
,
2032 AR
->getNoWrapFlags());
2034 // Similar to above, only this time treat the step value as unsigned.
2035 // This covers loops that count up with an unsigned step.
2036 OperandExtendedAdd
=
2037 getAddExpr(WideStart
,
2038 getMulExpr(WideMaxBECount
,
2039 getZeroExtendExpr(Step
, WideTy
, Depth
+ 1),
2040 SCEV::FlagAnyWrap
, Depth
+ 1),
2041 SCEV::FlagAnyWrap
, Depth
+ 1);
2042 if (SAdd
== OperandExtendedAdd
) {
2043 // If AR wraps around then
2045 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
2046 // => SAdd != OperandExtendedAdd
2048 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2049 // (SAdd == OperandExtendedAdd => AR is NW)
2051 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), SCEV::FlagNW
);
2053 // Return the expression with the addrec on the outside.
2054 return getAddRecExpr(
2055 getExtendAddRecStart
<SCEVSignExtendExpr
>(AR
, Ty
, this,
2057 getZeroExtendExpr(Step
, Ty
, Depth
+ 1), L
,
2058 AR
->getNoWrapFlags());
2063 auto NewFlags
= proveNoSignedWrapViaInduction(AR
);
2064 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), NewFlags
);
2065 if (AR
->hasNoSignedWrap()) {
2066 // Same as nsw case above - duplicated here to avoid a compile time
2067 // issue. It's not clear that the order of checks does matter, but
2068 // it's one of two issue possible causes for a change which was
2069 // reverted. Be conservative for the moment.
2070 return getAddRecExpr(
2071 getExtendAddRecStart
<SCEVSignExtendExpr
>(AR
, Ty
, this, Depth
+ 1),
2072 getSignExtendExpr(Step
, Ty
, Depth
+ 1), L
, AR
->getNoWrapFlags());
2075 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2076 // if D + (C - D + Step * n) could be proven to not signed wrap
2077 // where D maximizes the number of trailing zeros of (C - D + Step * n)
2078 if (const auto *SC
= dyn_cast
<SCEVConstant
>(Start
)) {
2079 const APInt
&C
= SC
->getAPInt();
2080 const APInt
&D
= extractConstantWithoutWrapping(*this, C
, Step
);
2082 const SCEV
*SSExtD
= getSignExtendExpr(getConstant(D
), Ty
, Depth
);
2083 const SCEV
*SResidual
=
2084 getAddRecExpr(getConstant(C
- D
), Step
, L
, AR
->getNoWrapFlags());
2085 const SCEV
*SSExtR
= getSignExtendExpr(SResidual
, Ty
, Depth
+ 1);
2086 return getAddExpr(SSExtD
, SSExtR
,
2087 (SCEV::NoWrapFlags
)(SCEV::FlagNSW
| SCEV::FlagNUW
),
2092 if (proveNoWrapByVaryingStart
<SCEVSignExtendExpr
>(Start
, Step
, L
)) {
2093 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), SCEV::FlagNSW
);
2094 return getAddRecExpr(
2095 getExtendAddRecStart
<SCEVSignExtendExpr
>(AR
, Ty
, this, Depth
+ 1),
2096 getSignExtendExpr(Step
, Ty
, Depth
+ 1), L
, AR
->getNoWrapFlags());
2100 // If the input value is provably positive and we could not simplify
2101 // away the sext build a zext instead.
2102 if (isKnownNonNegative(Op
))
2103 return getZeroExtendExpr(Op
, Ty
, Depth
+ 1);
2105 // The cast wasn't folded; create an explicit cast node.
2106 // Recompute the insert position, as it may have been invalidated.
2107 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
2108 SCEV
*S
= new (SCEVAllocator
) SCEVSignExtendExpr(ID
.Intern(SCEVAllocator
),
2110 UniqueSCEVs
.InsertNode(S
, IP
);
2111 addToLoopUseLists(S
);
2115 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2116 /// unspecified bits out to the given type.
2117 const SCEV
*ScalarEvolution::getAnyExtendExpr(const SCEV
*Op
,
2119 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
2120 "This is not an extending conversion!");
2121 assert(isSCEVable(Ty
) &&
2122 "This is not a conversion to a SCEVable type!");
2123 Ty
= getEffectiveSCEVType(Ty
);
2125 // Sign-extend negative constants.
2126 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
2127 if (SC
->getAPInt().isNegative())
2128 return getSignExtendExpr(Op
, Ty
);
2130 // Peel off a truncate cast.
2131 if (const SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(Op
)) {
2132 const SCEV
*NewOp
= T
->getOperand();
2133 if (getTypeSizeInBits(NewOp
->getType()) < getTypeSizeInBits(Ty
))
2134 return getAnyExtendExpr(NewOp
, Ty
);
2135 return getTruncateOrNoop(NewOp
, Ty
);
2138 // Next try a zext cast. If the cast is folded, use it.
2139 const SCEV
*ZExt
= getZeroExtendExpr(Op
, Ty
);
2140 if (!isa
<SCEVZeroExtendExpr
>(ZExt
))
2143 // Next try a sext cast. If the cast is folded, use it.
2144 const SCEV
*SExt
= getSignExtendExpr(Op
, Ty
);
2145 if (!isa
<SCEVSignExtendExpr
>(SExt
))
2148 // Force the cast to be folded into the operands of an addrec.
2149 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
)) {
2150 SmallVector
<const SCEV
*, 4> Ops
;
2151 for (const SCEV
*Op
: AR
->operands())
2152 Ops
.push_back(getAnyExtendExpr(Op
, Ty
));
2153 return getAddRecExpr(Ops
, AR
->getLoop(), SCEV::FlagNW
);
2156 // If the expression is obviously signed, use the sext cast value.
2157 if (isa
<SCEVSMaxExpr
>(Op
))
2160 // Absent any other information, use the zext cast value.
2164 /// Process the given Ops list, which is a list of operands to be added under
2165 /// the given scale, update the given map. This is a helper function for
2166 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2167 /// that would form an add expression like this:
2169 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2171 /// where A and B are constants, update the map with these values:
2173 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2175 /// and add 13 + A*B*29 to AccumulatedConstant.
2176 /// This will allow getAddRecExpr to produce this:
2178 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2180 /// This form often exposes folding opportunities that are hidden in
2181 /// the original operand list.
2183 /// Return true iff it appears that any interesting folding opportunities
2184 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2185 /// the common case where no interesting opportunities are present, and
2186 /// is also used as a check to avoid infinite recursion.
2188 CollectAddOperandsWithScales(DenseMap
<const SCEV
*, APInt
> &M
,
2189 SmallVectorImpl
<const SCEV
*> &NewOps
,
2190 APInt
&AccumulatedConstant
,
2191 const SCEV
*const *Ops
, size_t NumOperands
,
2193 ScalarEvolution
&SE
) {
2194 bool Interesting
= false;
2196 // Iterate over the add operands. They are sorted, with constants first.
2198 while (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Ops
[i
])) {
2200 // Pull a buried constant out to the outside.
2201 if (Scale
!= 1 || AccumulatedConstant
!= 0 || C
->getValue()->isZero())
2203 AccumulatedConstant
+= Scale
* C
->getAPInt();
2206 // Next comes everything else. We're especially interested in multiplies
2207 // here, but they're in the middle, so just visit the rest with one loop.
2208 for (; i
!= NumOperands
; ++i
) {
2209 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[i
]);
2210 if (Mul
&& isa
<SCEVConstant
>(Mul
->getOperand(0))) {
2212 Scale
* cast
<SCEVConstant
>(Mul
->getOperand(0))->getAPInt();
2213 if (Mul
->getNumOperands() == 2 && isa
<SCEVAddExpr
>(Mul
->getOperand(1))) {
2214 // A multiplication of a constant with another add; recurse.
2215 const SCEVAddExpr
*Add
= cast
<SCEVAddExpr
>(Mul
->getOperand(1));
2217 CollectAddOperandsWithScales(M
, NewOps
, AccumulatedConstant
,
2218 Add
->op_begin(), Add
->getNumOperands(),
2221 // A multiplication of a constant with some other value. Update
2223 SmallVector
<const SCEV
*, 4> MulOps(drop_begin(Mul
->operands()));
2224 const SCEV
*Key
= SE
.getMulExpr(MulOps
);
2225 auto Pair
= M
.insert({Key
, NewScale
});
2227 NewOps
.push_back(Pair
.first
->first
);
2229 Pair
.first
->second
+= NewScale
;
2230 // The map already had an entry for this value, which may indicate
2231 // a folding opportunity.
2236 // An ordinary operand. Update the map.
2237 std::pair
<DenseMap
<const SCEV
*, APInt
>::iterator
, bool> Pair
=
2238 M
.insert({Ops
[i
], Scale
});
2240 NewOps
.push_back(Pair
.first
->first
);
2242 Pair
.first
->second
+= Scale
;
2243 // The map already had an entry for this value, which may indicate
2244 // a folding opportunity.
2253 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp
, bool Signed
,
2254 const SCEV
*LHS
, const SCEV
*RHS
) {
2255 const SCEV
*(ScalarEvolution::*Operation
)(const SCEV
*, const SCEV
*,
2256 SCEV::NoWrapFlags
, unsigned);
2259 llvm_unreachable("Unsupported binary op");
2260 case Instruction::Add
:
2261 Operation
= &ScalarEvolution::getAddExpr
;
2263 case Instruction::Sub
:
2264 Operation
= &ScalarEvolution::getMinusSCEV
;
2266 case Instruction::Mul
:
2267 Operation
= &ScalarEvolution::getMulExpr
;
2271 const SCEV
*(ScalarEvolution::*Extension
)(const SCEV
*, Type
*, unsigned) =
2272 Signed
? &ScalarEvolution::getSignExtendExpr
2273 : &ScalarEvolution::getZeroExtendExpr
;
2275 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2276 auto *NarrowTy
= cast
<IntegerType
>(LHS
->getType());
2278 IntegerType::get(NarrowTy
->getContext(), NarrowTy
->getBitWidth() * 2);
2280 const SCEV
*A
= (this->*Extension
)(
2281 (this->*Operation
)(LHS
, RHS
, SCEV::FlagAnyWrap
, 0), WideTy
, 0);
2282 const SCEV
*B
= (this->*Operation
)((this->*Extension
)(LHS
, WideTy
, 0),
2283 (this->*Extension
)(RHS
, WideTy
, 0),
2284 SCEV::FlagAnyWrap
, 0);
2288 std::pair
<SCEV::NoWrapFlags
, bool /*Deduced*/>
2289 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2290 const OverflowingBinaryOperator
*OBO
) {
2291 SCEV::NoWrapFlags Flags
= SCEV::NoWrapFlags::FlagAnyWrap
;
2293 if (OBO
->hasNoUnsignedWrap())
2294 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNUW
);
2295 if (OBO
->hasNoSignedWrap())
2296 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNSW
);
2298 bool Deduced
= false;
2300 if (OBO
->hasNoUnsignedWrap() && OBO
->hasNoSignedWrap())
2301 return {Flags
, Deduced
};
2303 if (OBO
->getOpcode() != Instruction::Add
&&
2304 OBO
->getOpcode() != Instruction::Sub
&&
2305 OBO
->getOpcode() != Instruction::Mul
)
2306 return {Flags
, Deduced
};
2308 const SCEV
*LHS
= getSCEV(OBO
->getOperand(0));
2309 const SCEV
*RHS
= getSCEV(OBO
->getOperand(1));
2311 if (!OBO
->hasNoUnsignedWrap() &&
2312 willNotOverflow((Instruction::BinaryOps
)OBO
->getOpcode(),
2313 /* Signed */ false, LHS
, RHS
)) {
2314 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNUW
);
2318 if (!OBO
->hasNoSignedWrap() &&
2319 willNotOverflow((Instruction::BinaryOps
)OBO
->getOpcode(),
2320 /* Signed */ true, LHS
, RHS
)) {
2321 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNSW
);
2325 return {Flags
, Deduced
};
2328 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2329 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
2330 // can't-overflow flags for the operation if possible.
2331 static SCEV::NoWrapFlags
2332 StrengthenNoWrapFlags(ScalarEvolution
*SE
, SCEVTypes Type
,
2333 const ArrayRef
<const SCEV
*> Ops
,
2334 SCEV::NoWrapFlags Flags
) {
2335 using namespace std::placeholders
;
2337 using OBO
= OverflowingBinaryOperator
;
2340 Type
== scAddExpr
|| Type
== scAddRecExpr
|| Type
== scMulExpr
;
2342 assert(CanAnalyze
&& "don't call from other places!");
2344 int SignOrUnsignMask
= SCEV::FlagNUW
| SCEV::FlagNSW
;
2345 SCEV::NoWrapFlags SignOrUnsignWrap
=
2346 ScalarEvolution::maskFlags(Flags
, SignOrUnsignMask
);
2348 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2349 auto IsKnownNonNegative
= [&](const SCEV
*S
) {
2350 return SE
->isKnownNonNegative(S
);
2353 if (SignOrUnsignWrap
== SCEV::FlagNSW
&& all_of(Ops
, IsKnownNonNegative
))
2355 ScalarEvolution::setFlags(Flags
, (SCEV::NoWrapFlags
)SignOrUnsignMask
);
2357 SignOrUnsignWrap
= ScalarEvolution::maskFlags(Flags
, SignOrUnsignMask
);
2359 if (SignOrUnsignWrap
!= SignOrUnsignMask
&&
2360 (Type
== scAddExpr
|| Type
== scMulExpr
) && Ops
.size() == 2 &&
2361 isa
<SCEVConstant
>(Ops
[0])) {
2366 return Instruction::Add
;
2368 return Instruction::Mul
;
2370 llvm_unreachable("Unexpected SCEV op.");
2374 const APInt
&C
= cast
<SCEVConstant
>(Ops
[0])->getAPInt();
2376 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2377 if (!(SignOrUnsignWrap
& SCEV::FlagNSW
)) {
2378 auto NSWRegion
= ConstantRange::makeGuaranteedNoWrapRegion(
2379 Opcode
, C
, OBO::NoSignedWrap
);
2380 if (NSWRegion
.contains(SE
->getSignedRange(Ops
[1])))
2381 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNSW
);
2384 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2385 if (!(SignOrUnsignWrap
& SCEV::FlagNUW
)) {
2386 auto NUWRegion
= ConstantRange::makeGuaranteedNoWrapRegion(
2387 Opcode
, C
, OBO::NoUnsignedWrap
);
2388 if (NUWRegion
.contains(SE
->getUnsignedRange(Ops
[1])))
2389 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNUW
);
2396 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV
*S
, const Loop
*L
) {
2397 return isLoopInvariant(S
, L
) && properlyDominates(S
, L
->getHeader());
2400 /// Get a canonical add expression, or something simpler if possible.
2401 const SCEV
*ScalarEvolution::getAddExpr(SmallVectorImpl
<const SCEV
*> &Ops
,
2402 SCEV::NoWrapFlags OrigFlags
,
2404 assert(!(OrigFlags
& ~(SCEV::FlagNUW
| SCEV::FlagNSW
)) &&
2405 "only nuw or nsw allowed");
2406 assert(!Ops
.empty() && "Cannot get empty add!");
2407 if (Ops
.size() == 1) return Ops
[0];
2409 Type
*ETy
= getEffectiveSCEVType(Ops
[0]->getType());
2410 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
2411 assert(getEffectiveSCEVType(Ops
[i
]->getType()) == ETy
&&
2412 "SCEVAddExpr operand types don't match!");
2413 unsigned NumPtrs
= count_if(
2414 Ops
, [](const SCEV
*Op
) { return Op
->getType()->isPointerTy(); });
2415 assert(NumPtrs
<= 1 && "add has at most one pointer operand");
2418 // Sort by complexity, this groups all similar expression types together.
2419 GroupByComplexity(Ops
, &LI
, DT
);
2421 // If there are any constants, fold them together.
2423 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
2425 assert(Idx
< Ops
.size());
2426 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
2427 // We found two constants, fold them together!
2428 Ops
[0] = getConstant(LHSC
->getAPInt() + RHSC
->getAPInt());
2429 if (Ops
.size() == 2) return Ops
[0];
2430 Ops
.erase(Ops
.begin()+1); // Erase the folded element
2431 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
2434 // If we are left with a constant zero being added, strip it off.
2435 if (LHSC
->getValue()->isZero()) {
2436 Ops
.erase(Ops
.begin());
2440 if (Ops
.size() == 1) return Ops
[0];
2443 // Delay expensive flag strengthening until necessary.
2444 auto ComputeFlags
= [this, OrigFlags
](const ArrayRef
<const SCEV
*> Ops
) {
2445 return StrengthenNoWrapFlags(this, scAddExpr
, Ops
, OrigFlags
);
2448 // Limit recursion calls depth.
2449 if (Depth
> MaxArithDepth
|| hasHugeExpression(Ops
))
2450 return getOrCreateAddExpr(Ops
, ComputeFlags(Ops
));
2452 if (SCEV
*S
= std::get
<0>(findExistingSCEVInCache(scAddExpr
, Ops
))) {
2453 // Don't strengthen flags if we have no new information.
2454 SCEVAddExpr
*Add
= static_cast<SCEVAddExpr
*>(S
);
2455 if (Add
->getNoWrapFlags(OrigFlags
) != OrigFlags
)
2456 Add
->setNoWrapFlags(ComputeFlags(Ops
));
2460 // Okay, check to see if the same value occurs in the operand list more than
2461 // once. If so, merge them together into an multiply expression. Since we
2462 // sorted the list, these values are required to be adjacent.
2463 Type
*Ty
= Ops
[0]->getType();
2464 bool FoundMatch
= false;
2465 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
-1; ++i
)
2466 if (Ops
[i
] == Ops
[i
+1]) { // X + Y + Y --> X + Y*2
2467 // Scan ahead to count how many equal operands there are.
2469 while (i
+Count
!= e
&& Ops
[i
+Count
] == Ops
[i
])
2471 // Merge the values into a multiply.
2472 const SCEV
*Scale
= getConstant(Ty
, Count
);
2473 const SCEV
*Mul
= getMulExpr(Scale
, Ops
[i
], SCEV::FlagAnyWrap
, Depth
+ 1);
2474 if (Ops
.size() == Count
)
2477 Ops
.erase(Ops
.begin()+i
+1, Ops
.begin()+i
+Count
);
2478 --i
; e
-= Count
- 1;
2482 return getAddExpr(Ops
, OrigFlags
, Depth
+ 1);
2484 // Check for truncates. If all the operands are truncated from the same
2485 // type, see if factoring out the truncate would permit the result to be
2486 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2487 // if the contents of the resulting outer trunc fold to something simple.
2488 auto FindTruncSrcType
= [&]() -> Type
* {
2489 // We're ultimately looking to fold an addrec of truncs and muls of only
2490 // constants and truncs, so if we find any other types of SCEV
2491 // as operands of the addrec then we bail and return nullptr here.
2492 // Otherwise, we return the type of the operand of a trunc that we find.
2493 if (auto *T
= dyn_cast
<SCEVTruncateExpr
>(Ops
[Idx
]))
2494 return T
->getOperand()->getType();
2495 if (const auto *Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[Idx
])) {
2496 const auto *LastOp
= Mul
->getOperand(Mul
->getNumOperands() - 1);
2497 if (const auto *T
= dyn_cast
<SCEVTruncateExpr
>(LastOp
))
2498 return T
->getOperand()->getType();
2502 if (auto *SrcType
= FindTruncSrcType()) {
2503 SmallVector
<const SCEV
*, 8> LargeOps
;
2505 // Check all the operands to see if they can be represented in the
2506 // source type of the truncate.
2507 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
2508 if (const SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(Ops
[i
])) {
2509 if (T
->getOperand()->getType() != SrcType
) {
2513 LargeOps
.push_back(T
->getOperand());
2514 } else if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Ops
[i
])) {
2515 LargeOps
.push_back(getAnyExtendExpr(C
, SrcType
));
2516 } else if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(Ops
[i
])) {
2517 SmallVector
<const SCEV
*, 8> LargeMulOps
;
2518 for (unsigned j
= 0, f
= M
->getNumOperands(); j
!= f
&& Ok
; ++j
) {
2519 if (const SCEVTruncateExpr
*T
=
2520 dyn_cast
<SCEVTruncateExpr
>(M
->getOperand(j
))) {
2521 if (T
->getOperand()->getType() != SrcType
) {
2525 LargeMulOps
.push_back(T
->getOperand());
2526 } else if (const auto *C
= dyn_cast
<SCEVConstant
>(M
->getOperand(j
))) {
2527 LargeMulOps
.push_back(getAnyExtendExpr(C
, SrcType
));
2534 LargeOps
.push_back(getMulExpr(LargeMulOps
, SCEV::FlagAnyWrap
, Depth
+ 1));
2541 // Evaluate the expression in the larger type.
2542 const SCEV
*Fold
= getAddExpr(LargeOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2543 // If it folds to something simple, use it. Otherwise, don't.
2544 if (isa
<SCEVConstant
>(Fold
) || isa
<SCEVUnknown
>(Fold
))
2545 return getTruncateExpr(Fold
, Ty
);
2549 if (Ops
.size() == 2) {
2550 // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2551 // C2 can be folded in a way that allows retaining wrapping flags of (X +
2553 const SCEV
*A
= Ops
[0];
2554 const SCEV
*B
= Ops
[1];
2555 auto *AddExpr
= dyn_cast
<SCEVAddExpr
>(B
);
2556 auto *C
= dyn_cast
<SCEVConstant
>(A
);
2557 if (AddExpr
&& C
&& isa
<SCEVConstant
>(AddExpr
->getOperand(0))) {
2558 auto C1
= cast
<SCEVConstant
>(AddExpr
->getOperand(0))->getAPInt();
2559 auto C2
= C
->getAPInt();
2560 SCEV::NoWrapFlags PreservedFlags
= SCEV::FlagAnyWrap
;
2562 APInt ConstAdd
= C1
+ C2
;
2563 auto AddFlags
= AddExpr
->getNoWrapFlags();
2564 // Adding a smaller constant is NUW if the original AddExpr was NUW.
2565 if (ScalarEvolution::maskFlags(AddFlags
, SCEV::FlagNUW
) ==
2569 ScalarEvolution::setFlags(PreservedFlags
, SCEV::FlagNUW
);
2572 // Adding a constant with the same sign and small magnitude is NSW, if the
2573 // original AddExpr was NSW.
2574 if (ScalarEvolution::maskFlags(AddFlags
, SCEV::FlagNSW
) ==
2576 C1
.isSignBitSet() == ConstAdd
.isSignBitSet() &&
2577 ConstAdd
.abs().ule(C1
.abs())) {
2579 ScalarEvolution::setFlags(PreservedFlags
, SCEV::FlagNSW
);
2582 if (PreservedFlags
!= SCEV::FlagAnyWrap
) {
2583 SmallVector
<const SCEV
*, 4> NewOps(AddExpr
->op_begin(),
2585 NewOps
[0] = getConstant(ConstAdd
);
2586 return getAddExpr(NewOps
, PreservedFlags
);
2591 // Skip past any other cast SCEVs.
2592 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddExpr
)
2595 // If there are add operands they would be next.
2596 if (Idx
< Ops
.size()) {
2597 bool DeletedAdd
= false;
2598 // If the original flags and all inlined SCEVAddExprs are NUW, use the
2599 // common NUW flag for expression after inlining. Other flags cannot be
2600 // preserved, because they may depend on the original order of operations.
2601 SCEV::NoWrapFlags CommonFlags
= maskFlags(OrigFlags
, SCEV::FlagNUW
);
2602 while (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[Idx
])) {
2603 if (Ops
.size() > AddOpsInlineThreshold
||
2604 Add
->getNumOperands() > AddOpsInlineThreshold
)
2606 // If we have an add, expand the add operands onto the end of the operands
2608 Ops
.erase(Ops
.begin()+Idx
);
2609 Ops
.append(Add
->op_begin(), Add
->op_end());
2611 CommonFlags
= maskFlags(CommonFlags
, Add
->getNoWrapFlags());
2614 // If we deleted at least one add, we added operands to the end of the list,
2615 // and they are not necessarily sorted. Recurse to resort and resimplify
2616 // any operands we just acquired.
2618 return getAddExpr(Ops
, CommonFlags
, Depth
+ 1);
2621 // Skip over the add expression until we get to a multiply.
2622 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scMulExpr
)
2625 // Check to see if there are any folding opportunities present with
2626 // operands multiplied by constant values.
2627 if (Idx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[Idx
])) {
2628 uint64_t BitWidth
= getTypeSizeInBits(Ty
);
2629 DenseMap
<const SCEV
*, APInt
> M
;
2630 SmallVector
<const SCEV
*, 8> NewOps
;
2631 APInt
AccumulatedConstant(BitWidth
, 0);
2632 if (CollectAddOperandsWithScales(M
, NewOps
, AccumulatedConstant
,
2633 Ops
.data(), Ops
.size(),
2634 APInt(BitWidth
, 1), *this)) {
2635 struct APIntCompare
{
2636 bool operator()(const APInt
&LHS
, const APInt
&RHS
) const {
2637 return LHS
.ult(RHS
);
2641 // Some interesting folding opportunity is present, so its worthwhile to
2642 // re-generate the operands list. Group the operands by constant scale,
2643 // to avoid multiplying by the same constant scale multiple times.
2644 std::map
<APInt
, SmallVector
<const SCEV
*, 4>, APIntCompare
> MulOpLists
;
2645 for (const SCEV
*NewOp
: NewOps
)
2646 MulOpLists
[M
.find(NewOp
)->second
].push_back(NewOp
);
2647 // Re-generate the operands list.
2649 if (AccumulatedConstant
!= 0)
2650 Ops
.push_back(getConstant(AccumulatedConstant
));
2651 for (auto &MulOp
: MulOpLists
) {
2652 if (MulOp
.first
== 1) {
2653 Ops
.push_back(getAddExpr(MulOp
.second
, SCEV::FlagAnyWrap
, Depth
+ 1));
2654 } else if (MulOp
.first
!= 0) {
2655 Ops
.push_back(getMulExpr(
2656 getConstant(MulOp
.first
),
2657 getAddExpr(MulOp
.second
, SCEV::FlagAnyWrap
, Depth
+ 1),
2658 SCEV::FlagAnyWrap
, Depth
+ 1));
2663 if (Ops
.size() == 1)
2665 return getAddExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
2669 // If we are adding something to a multiply expression, make sure the
2670 // something is not already an operand of the multiply. If so, merge it into
2672 for (; Idx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[Idx
]); ++Idx
) {
2673 const SCEVMulExpr
*Mul
= cast
<SCEVMulExpr
>(Ops
[Idx
]);
2674 for (unsigned MulOp
= 0, e
= Mul
->getNumOperands(); MulOp
!= e
; ++MulOp
) {
2675 const SCEV
*MulOpSCEV
= Mul
->getOperand(MulOp
);
2676 if (isa
<SCEVConstant
>(MulOpSCEV
))
2678 for (unsigned AddOp
= 0, e
= Ops
.size(); AddOp
!= e
; ++AddOp
)
2679 if (MulOpSCEV
== Ops
[AddOp
]) {
2680 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
2681 const SCEV
*InnerMul
= Mul
->getOperand(MulOp
== 0);
2682 if (Mul
->getNumOperands() != 2) {
2683 // If the multiply has more than two operands, we must get the
2685 SmallVector
<const SCEV
*, 4> MulOps(Mul
->op_begin(),
2686 Mul
->op_begin()+MulOp
);
2687 MulOps
.append(Mul
->op_begin()+MulOp
+1, Mul
->op_end());
2688 InnerMul
= getMulExpr(MulOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2690 SmallVector
<const SCEV
*, 2> TwoOps
= {getOne(Ty
), InnerMul
};
2691 const SCEV
*AddOne
= getAddExpr(TwoOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2692 const SCEV
*OuterMul
= getMulExpr(AddOne
, MulOpSCEV
,
2693 SCEV::FlagAnyWrap
, Depth
+ 1);
2694 if (Ops
.size() == 2) return OuterMul
;
2696 Ops
.erase(Ops
.begin()+AddOp
);
2697 Ops
.erase(Ops
.begin()+Idx
-1);
2699 Ops
.erase(Ops
.begin()+Idx
);
2700 Ops
.erase(Ops
.begin()+AddOp
-1);
2702 Ops
.push_back(OuterMul
);
2703 return getAddExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
2706 // Check this multiply against other multiplies being added together.
2707 for (unsigned OtherMulIdx
= Idx
+1;
2708 OtherMulIdx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[OtherMulIdx
]);
2710 const SCEVMulExpr
*OtherMul
= cast
<SCEVMulExpr
>(Ops
[OtherMulIdx
]);
2711 // If MulOp occurs in OtherMul, we can fold the two multiplies
2713 for (unsigned OMulOp
= 0, e
= OtherMul
->getNumOperands();
2714 OMulOp
!= e
; ++OMulOp
)
2715 if (OtherMul
->getOperand(OMulOp
) == MulOpSCEV
) {
2716 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2717 const SCEV
*InnerMul1
= Mul
->getOperand(MulOp
== 0);
2718 if (Mul
->getNumOperands() != 2) {
2719 SmallVector
<const SCEV
*, 4> MulOps(Mul
->op_begin(),
2720 Mul
->op_begin()+MulOp
);
2721 MulOps
.append(Mul
->op_begin()+MulOp
+1, Mul
->op_end());
2722 InnerMul1
= getMulExpr(MulOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2724 const SCEV
*InnerMul2
= OtherMul
->getOperand(OMulOp
== 0);
2725 if (OtherMul
->getNumOperands() != 2) {
2726 SmallVector
<const SCEV
*, 4> MulOps(OtherMul
->op_begin(),
2727 OtherMul
->op_begin()+OMulOp
);
2728 MulOps
.append(OtherMul
->op_begin()+OMulOp
+1, OtherMul
->op_end());
2729 InnerMul2
= getMulExpr(MulOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2731 SmallVector
<const SCEV
*, 2> TwoOps
= {InnerMul1
, InnerMul2
};
2732 const SCEV
*InnerMulSum
=
2733 getAddExpr(TwoOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2734 const SCEV
*OuterMul
= getMulExpr(MulOpSCEV
, InnerMulSum
,
2735 SCEV::FlagAnyWrap
, Depth
+ 1);
2736 if (Ops
.size() == 2) return OuterMul
;
2737 Ops
.erase(Ops
.begin()+Idx
);
2738 Ops
.erase(Ops
.begin()+OtherMulIdx
-1);
2739 Ops
.push_back(OuterMul
);
2740 return getAddExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
2746 // If there are any add recurrences in the operands list, see if any other
2747 // added values are loop invariant. If so, we can fold them into the
2749 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddRecExpr
)
2752 // Scan over all recurrences, trying to fold loop invariants into them.
2753 for (; Idx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[Idx
]); ++Idx
) {
2754 // Scan all of the other operands to this add and add them to the vector if
2755 // they are loop invariant w.r.t. the recurrence.
2756 SmallVector
<const SCEV
*, 8> LIOps
;
2757 const SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(Ops
[Idx
]);
2758 const Loop
*AddRecLoop
= AddRec
->getLoop();
2759 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
2760 if (isAvailableAtLoopEntry(Ops
[i
], AddRecLoop
)) {
2761 LIOps
.push_back(Ops
[i
]);
2762 Ops
.erase(Ops
.begin()+i
);
2766 // If we found some loop invariants, fold them into the recurrence.
2767 if (!LIOps
.empty()) {
2768 // Compute nowrap flags for the addition of the loop-invariant ops and
2769 // the addrec. Temporarily push it as an operand for that purpose.
2770 LIOps
.push_back(AddRec
);
2771 SCEV::NoWrapFlags Flags
= ComputeFlags(LIOps
);
2774 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
2775 LIOps
.push_back(AddRec
->getStart());
2777 SmallVector
<const SCEV
*, 4> AddRecOps(AddRec
->operands());
2778 // This follows from the fact that the no-wrap flags on the outer add
2779 // expression are applicable on the 0th iteration, when the add recurrence
2780 // will be equal to its start value.
2781 AddRecOps
[0] = getAddExpr(LIOps
, Flags
, Depth
+ 1);
2783 // Build the new addrec. Propagate the NUW and NSW flags if both the
2784 // outer add and the inner addrec are guaranteed to have no overflow.
2785 // Always propagate NW.
2786 Flags
= AddRec
->getNoWrapFlags(setFlags(Flags
, SCEV::FlagNW
));
2787 const SCEV
*NewRec
= getAddRecExpr(AddRecOps
, AddRecLoop
, Flags
);
2789 // If all of the other operands were loop invariant, we are done.
2790 if (Ops
.size() == 1) return NewRec
;
2792 // Otherwise, add the folded AddRec by the non-invariant parts.
2793 for (unsigned i
= 0;; ++i
)
2794 if (Ops
[i
] == AddRec
) {
2798 return getAddExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
2801 // Okay, if there weren't any loop invariants to be folded, check to see if
2802 // there are multiple AddRec's with the same loop induction variable being
2803 // added together. If so, we can fold them.
2804 for (unsigned OtherIdx
= Idx
+1;
2805 OtherIdx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
2807 // We expect the AddRecExpr's to be sorted in reverse dominance order,
2808 // so that the 1st found AddRecExpr is dominated by all others.
2809 assert(DT
.dominates(
2810 cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
])->getLoop()->getHeader(),
2811 AddRec
->getLoop()->getHeader()) &&
2812 "AddRecExprs are not sorted in reverse dominance order?");
2813 if (AddRecLoop
== cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
])->getLoop()) {
2814 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2815 SmallVector
<const SCEV
*, 4> AddRecOps(AddRec
->operands());
2816 for (; OtherIdx
!= Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
2818 const auto *OtherAddRec
= cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
2819 if (OtherAddRec
->getLoop() == AddRecLoop
) {
2820 for (unsigned i
= 0, e
= OtherAddRec
->getNumOperands();
2822 if (i
>= AddRecOps
.size()) {
2823 AddRecOps
.append(OtherAddRec
->op_begin()+i
,
2824 OtherAddRec
->op_end());
2827 SmallVector
<const SCEV
*, 2> TwoOps
= {
2828 AddRecOps
[i
], OtherAddRec
->getOperand(i
)};
2829 AddRecOps
[i
] = getAddExpr(TwoOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2831 Ops
.erase(Ops
.begin() + OtherIdx
); --OtherIdx
;
2834 // Step size has changed, so we cannot guarantee no self-wraparound.
2835 Ops
[Idx
] = getAddRecExpr(AddRecOps
, AddRecLoop
, SCEV::FlagAnyWrap
);
2836 return getAddExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
2840 // Otherwise couldn't fold anything into this recurrence. Move onto the
2844 // Okay, it looks like we really DO need an add expr. Check to see if we
2845 // already have one, otherwise create a new one.
2846 return getOrCreateAddExpr(Ops
, ComputeFlags(Ops
));
2850 ScalarEvolution::getOrCreateAddExpr(ArrayRef
<const SCEV
*> Ops
,
2851 SCEV::NoWrapFlags Flags
) {
2852 FoldingSetNodeID ID
;
2853 ID
.AddInteger(scAddExpr
);
2854 for (const SCEV
*Op
: Ops
)
2858 static_cast<SCEVAddExpr
*>(UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
));
2860 const SCEV
**O
= SCEVAllocator
.Allocate
<const SCEV
*>(Ops
.size());
2861 std::uninitialized_copy(Ops
.begin(), Ops
.end(), O
);
2862 S
= new (SCEVAllocator
)
2863 SCEVAddExpr(ID
.Intern(SCEVAllocator
), O
, Ops
.size());
2864 UniqueSCEVs
.InsertNode(S
, IP
);
2865 addToLoopUseLists(S
);
2867 S
->setNoWrapFlags(Flags
);
2872 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef
<const SCEV
*> Ops
,
2873 const Loop
*L
, SCEV::NoWrapFlags Flags
) {
2874 FoldingSetNodeID ID
;
2875 ID
.AddInteger(scAddRecExpr
);
2876 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
2877 ID
.AddPointer(Ops
[i
]);
2881 static_cast<SCEVAddRecExpr
*>(UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
));
2883 const SCEV
**O
= SCEVAllocator
.Allocate
<const SCEV
*>(Ops
.size());
2884 std::uninitialized_copy(Ops
.begin(), Ops
.end(), O
);
2885 S
= new (SCEVAllocator
)
2886 SCEVAddRecExpr(ID
.Intern(SCEVAllocator
), O
, Ops
.size(), L
);
2887 UniqueSCEVs
.InsertNode(S
, IP
);
2888 addToLoopUseLists(S
);
2890 setNoWrapFlags(S
, Flags
);
2895 ScalarEvolution::getOrCreateMulExpr(ArrayRef
<const SCEV
*> Ops
,
2896 SCEV::NoWrapFlags Flags
) {
2897 FoldingSetNodeID ID
;
2898 ID
.AddInteger(scMulExpr
);
2899 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
2900 ID
.AddPointer(Ops
[i
]);
2903 static_cast<SCEVMulExpr
*>(UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
));
2905 const SCEV
**O
= SCEVAllocator
.Allocate
<const SCEV
*>(Ops
.size());
2906 std::uninitialized_copy(Ops
.begin(), Ops
.end(), O
);
2907 S
= new (SCEVAllocator
) SCEVMulExpr(ID
.Intern(SCEVAllocator
),
2909 UniqueSCEVs
.InsertNode(S
, IP
);
2910 addToLoopUseLists(S
);
2912 S
->setNoWrapFlags(Flags
);
2916 static uint64_t umul_ov(uint64_t i
, uint64_t j
, bool &Overflow
) {
2918 if (j
> 1 && k
/ j
!= i
) Overflow
= true;
2922 /// Compute the result of "n choose k", the binomial coefficient. If an
2923 /// intermediate computation overflows, Overflow will be set and the return will
2924 /// be garbage. Overflow is not cleared on absence of overflow.
2925 static uint64_t Choose(uint64_t n
, uint64_t k
, bool &Overflow
) {
2926 // We use the multiplicative formula:
2927 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2928 // At each iteration, we take the n-th term of the numeral and divide by the
2929 // (k-n)th term of the denominator. This division will always produce an
2930 // integral result, and helps reduce the chance of overflow in the
2931 // intermediate computations. However, we can still overflow even when the
2932 // final result would fit.
2934 if (n
== 0 || n
== k
) return 1;
2935 if (k
> n
) return 0;
2941 for (uint64_t i
= 1; i
<= k
; ++i
) {
2942 r
= umul_ov(r
, n
-(i
-1), Overflow
);
2948 /// Determine if any of the operands in this SCEV are a constant or if
2949 /// any of the add or multiply expressions in this SCEV contain a constant.
2950 static bool containsConstantInAddMulChain(const SCEV
*StartExpr
) {
2951 struct FindConstantInAddMulChain
{
2952 bool FoundConstant
= false;
2954 bool follow(const SCEV
*S
) {
2955 FoundConstant
|= isa
<SCEVConstant
>(S
);
2956 return isa
<SCEVAddExpr
>(S
) || isa
<SCEVMulExpr
>(S
);
2959 bool isDone() const {
2960 return FoundConstant
;
2964 FindConstantInAddMulChain F
;
2965 SCEVTraversal
<FindConstantInAddMulChain
> ST(F
);
2966 ST
.visitAll(StartExpr
);
2967 return F
.FoundConstant
;
2970 /// Get a canonical multiply expression, or something simpler if possible.
2971 const SCEV
*ScalarEvolution::getMulExpr(SmallVectorImpl
<const SCEV
*> &Ops
,
2972 SCEV::NoWrapFlags OrigFlags
,
2974 assert(OrigFlags
== maskFlags(OrigFlags
, SCEV::FlagNUW
| SCEV::FlagNSW
) &&
2975 "only nuw or nsw allowed");
2976 assert(!Ops
.empty() && "Cannot get empty mul!");
2977 if (Ops
.size() == 1) return Ops
[0];
2979 Type
*ETy
= Ops
[0]->getType();
2980 assert(!ETy
->isPointerTy());
2981 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
2982 assert(Ops
[i
]->getType() == ETy
&&
2983 "SCEVMulExpr operand types don't match!");
2986 // Sort by complexity, this groups all similar expression types together.
2987 GroupByComplexity(Ops
, &LI
, DT
);
2989 // If there are any constants, fold them together.
2991 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
2993 assert(Idx
< Ops
.size());
2994 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
2995 // We found two constants, fold them together!
2996 Ops
[0] = getConstant(LHSC
->getAPInt() * RHSC
->getAPInt());
2997 if (Ops
.size() == 2) return Ops
[0];
2998 Ops
.erase(Ops
.begin()+1); // Erase the folded element
2999 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
3002 // If we have a multiply of zero, it will always be zero.
3003 if (LHSC
->getValue()->isZero())
3006 // If we are left with a constant one being multiplied, strip it off.
3007 if (LHSC
->getValue()->isOne()) {
3008 Ops
.erase(Ops
.begin());
3012 if (Ops
.size() == 1)
3016 // Delay expensive flag strengthening until necessary.
3017 auto ComputeFlags
= [this, OrigFlags
](const ArrayRef
<const SCEV
*> Ops
) {
3018 return StrengthenNoWrapFlags(this, scMulExpr
, Ops
, OrigFlags
);
3021 // Limit recursion calls depth.
3022 if (Depth
> MaxArithDepth
|| hasHugeExpression(Ops
))
3023 return getOrCreateMulExpr(Ops
, ComputeFlags(Ops
));
3025 if (SCEV
*S
= std::get
<0>(findExistingSCEVInCache(scMulExpr
, Ops
))) {
3026 // Don't strengthen flags if we have no new information.
3027 SCEVMulExpr
*Mul
= static_cast<SCEVMulExpr
*>(S
);
3028 if (Mul
->getNoWrapFlags(OrigFlags
) != OrigFlags
)
3029 Mul
->setNoWrapFlags(ComputeFlags(Ops
));
3033 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
3034 if (Ops
.size() == 2) {
3035 // C1*(C2+V) -> C1*C2 + C1*V
3036 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[1]))
3037 // If any of Add's ops are Adds or Muls with a constant, apply this
3038 // transformation as well.
3040 // TODO: There are some cases where this transformation is not
3041 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of
3042 // this transformation should be narrowed down.
3043 if (Add
->getNumOperands() == 2 && containsConstantInAddMulChain(Add
))
3044 return getAddExpr(getMulExpr(LHSC
, Add
->getOperand(0),
3045 SCEV::FlagAnyWrap
, Depth
+ 1),
3046 getMulExpr(LHSC
, Add
->getOperand(1),
3047 SCEV::FlagAnyWrap
, Depth
+ 1),
3048 SCEV::FlagAnyWrap
, Depth
+ 1);
3050 if (Ops
[0]->isAllOnesValue()) {
3051 // If we have a mul by -1 of an add, try distributing the -1 among the
3053 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[1])) {
3054 SmallVector
<const SCEV
*, 4> NewOps
;
3055 bool AnyFolded
= false;
3056 for (const SCEV
*AddOp
: Add
->operands()) {
3057 const SCEV
*Mul
= getMulExpr(Ops
[0], AddOp
, SCEV::FlagAnyWrap
,
3059 if (!isa
<SCEVMulExpr
>(Mul
)) AnyFolded
= true;
3060 NewOps
.push_back(Mul
);
3063 return getAddExpr(NewOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
3064 } else if (const auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(Ops
[1])) {
3065 // Negation preserves a recurrence's no self-wrap property.
3066 SmallVector
<const SCEV
*, 4> Operands
;
3067 for (const SCEV
*AddRecOp
: AddRec
->operands())
3068 Operands
.push_back(getMulExpr(Ops
[0], AddRecOp
, SCEV::FlagAnyWrap
,
3071 return getAddRecExpr(Operands
, AddRec
->getLoop(),
3072 AddRec
->getNoWrapFlags(SCEV::FlagNW
));
3078 // Skip over the add expression until we get to a multiply.
3079 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scMulExpr
)
3082 // If there are mul operands inline them all into this expression.
3083 if (Idx
< Ops
.size()) {
3084 bool DeletedMul
= false;
3085 while (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[Idx
])) {
3086 if (Ops
.size() > MulOpsInlineThreshold
)
3088 // If we have an mul, expand the mul operands onto the end of the
3090 Ops
.erase(Ops
.begin()+Idx
);
3091 Ops
.append(Mul
->op_begin(), Mul
->op_end());
3095 // If we deleted at least one mul, we added operands to the end of the
3096 // list, and they are not necessarily sorted. Recurse to resort and
3097 // resimplify any operands we just acquired.
3099 return getMulExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
3102 // If there are any add recurrences in the operands list, see if any other
3103 // added values are loop invariant. If so, we can fold them into the
3105 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddRecExpr
)
3108 // Scan over all recurrences, trying to fold loop invariants into them.
3109 for (; Idx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[Idx
]); ++Idx
) {
3110 // Scan all of the other operands to this mul and add them to the vector
3111 // if they are loop invariant w.r.t. the recurrence.
3112 SmallVector
<const SCEV
*, 8> LIOps
;
3113 const SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(Ops
[Idx
]);
3114 const Loop
*AddRecLoop
= AddRec
->getLoop();
3115 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
3116 if (isAvailableAtLoopEntry(Ops
[i
], AddRecLoop
)) {
3117 LIOps
.push_back(Ops
[i
]);
3118 Ops
.erase(Ops
.begin()+i
);
3122 // If we found some loop invariants, fold them into the recurrence.
3123 if (!LIOps
.empty()) {
3124 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
3125 SmallVector
<const SCEV
*, 4> NewOps
;
3126 NewOps
.reserve(AddRec
->getNumOperands());
3127 const SCEV
*Scale
= getMulExpr(LIOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
3128 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
)
3129 NewOps
.push_back(getMulExpr(Scale
, AddRec
->getOperand(i
),
3130 SCEV::FlagAnyWrap
, Depth
+ 1));
3132 // Build the new addrec. Propagate the NUW and NSW flags if both the
3133 // outer mul and the inner addrec are guaranteed to have no overflow.
3135 // No self-wrap cannot be guaranteed after changing the step size, but
3136 // will be inferred if either NUW or NSW is true.
3137 SCEV::NoWrapFlags Flags
= ComputeFlags({Scale
, AddRec
});
3138 const SCEV
*NewRec
= getAddRecExpr(
3139 NewOps
, AddRecLoop
, AddRec
->getNoWrapFlags(Flags
));
3141 // If all of the other operands were loop invariant, we are done.
3142 if (Ops
.size() == 1) return NewRec
;
3144 // Otherwise, multiply the folded AddRec by the non-invariant parts.
3145 for (unsigned i
= 0;; ++i
)
3146 if (Ops
[i
] == AddRec
) {
3150 return getMulExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
3153 // Okay, if there weren't any loop invariants to be folded, check to see
3154 // if there are multiple AddRec's with the same loop induction variable
3155 // being multiplied together. If so, we can fold them.
3157 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3158 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3159 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3160 // ]]],+,...up to x=2n}.
3161 // Note that the arguments to choose() are always integers with values
3162 // known at compile time, never SCEV objects.
3164 // The implementation avoids pointless extra computations when the two
3165 // addrec's are of different length (mathematically, it's equivalent to
3166 // an infinite stream of zeros on the right).
3167 bool OpsModified
= false;
3168 for (unsigned OtherIdx
= Idx
+1;
3169 OtherIdx
!= Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
3171 const SCEVAddRecExpr
*OtherAddRec
=
3172 dyn_cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
3173 if (!OtherAddRec
|| OtherAddRec
->getLoop() != AddRecLoop
)
3176 // Limit max number of arguments to avoid creation of unreasonably big
3177 // SCEVAddRecs with very complex operands.
3178 if (AddRec
->getNumOperands() + OtherAddRec
->getNumOperands() - 1 >
3179 MaxAddRecSize
|| hasHugeExpression({AddRec
, OtherAddRec
}))
3182 bool Overflow
= false;
3183 Type
*Ty
= AddRec
->getType();
3184 bool LargerThan64Bits
= getTypeSizeInBits(Ty
) > 64;
3185 SmallVector
<const SCEV
*, 7> AddRecOps
;
3186 for (int x
= 0, xe
= AddRec
->getNumOperands() +
3187 OtherAddRec
->getNumOperands() - 1; x
!= xe
&& !Overflow
; ++x
) {
3188 SmallVector
<const SCEV
*, 7> SumOps
;
3189 for (int y
= x
, ye
= 2*x
+1; y
!= ye
&& !Overflow
; ++y
) {
3190 uint64_t Coeff1
= Choose(x
, 2*x
- y
, Overflow
);
3191 for (int z
= std::max(y
-x
, y
-(int)AddRec
->getNumOperands()+1),
3192 ze
= std::min(x
+1, (int)OtherAddRec
->getNumOperands());
3193 z
< ze
&& !Overflow
; ++z
) {
3194 uint64_t Coeff2
= Choose(2*x
- y
, x
-z
, Overflow
);
3196 if (LargerThan64Bits
)
3197 Coeff
= umul_ov(Coeff1
, Coeff2
, Overflow
);
3199 Coeff
= Coeff1
*Coeff2
;
3200 const SCEV
*CoeffTerm
= getConstant(Ty
, Coeff
);
3201 const SCEV
*Term1
= AddRec
->getOperand(y
-z
);
3202 const SCEV
*Term2
= OtherAddRec
->getOperand(z
);
3203 SumOps
.push_back(getMulExpr(CoeffTerm
, Term1
, Term2
,
3204 SCEV::FlagAnyWrap
, Depth
+ 1));
3208 SumOps
.push_back(getZero(Ty
));
3209 AddRecOps
.push_back(getAddExpr(SumOps
, SCEV::FlagAnyWrap
, Depth
+ 1));
3212 const SCEV
*NewAddRec
= getAddRecExpr(AddRecOps
, AddRecLoop
,
3214 if (Ops
.size() == 2) return NewAddRec
;
3215 Ops
[Idx
] = NewAddRec
;
3216 Ops
.erase(Ops
.begin() + OtherIdx
); --OtherIdx
;
3218 AddRec
= dyn_cast
<SCEVAddRecExpr
>(NewAddRec
);
3224 return getMulExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
3226 // Otherwise couldn't fold anything into this recurrence. Move onto the
3230 // Okay, it looks like we really DO need an mul expr. Check to see if we
3231 // already have one, otherwise create a new one.
3232 return getOrCreateMulExpr(Ops
, ComputeFlags(Ops
));
3235 /// Represents an unsigned remainder expression based on unsigned division.
3236 const SCEV
*ScalarEvolution::getURemExpr(const SCEV
*LHS
,
3238 assert(getEffectiveSCEVType(LHS
->getType()) ==
3239 getEffectiveSCEVType(RHS
->getType()) &&
3240 "SCEVURemExpr operand types don't match!");
3242 // Short-circuit easy cases
3243 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
)) {
3244 // If constant is one, the result is trivial
3245 if (RHSC
->getValue()->isOne())
3246 return getZero(LHS
->getType()); // X urem 1 --> 0
3248 // If constant is a power of two, fold into a zext(trunc(LHS)).
3249 if (RHSC
->getAPInt().isPowerOf2()) {
3250 Type
*FullTy
= LHS
->getType();
3252 IntegerType::get(getContext(), RHSC
->getAPInt().logBase2());
3253 return getZeroExtendExpr(getTruncateExpr(LHS
, TruncTy
), FullTy
);
3257 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3258 const SCEV
*UDiv
= getUDivExpr(LHS
, RHS
);
3259 const SCEV
*Mult
= getMulExpr(UDiv
, RHS
, SCEV::FlagNUW
);
3260 return getMinusSCEV(LHS
, Mult
, SCEV::FlagNUW
);
3263 /// Get a canonical unsigned division expression, or something simpler if
3265 const SCEV
*ScalarEvolution::getUDivExpr(const SCEV
*LHS
,
3267 assert(!LHS
->getType()->isPointerTy() &&
3268 "SCEVUDivExpr operand can't be pointer!");
3269 assert(LHS
->getType() == RHS
->getType() &&
3270 "SCEVUDivExpr operand types don't match!");
3272 FoldingSetNodeID ID
;
3273 ID
.AddInteger(scUDivExpr
);
3277 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
))
3281 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(LHS
))
3282 if (LHSC
->getValue()->isZero())
3285 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
)) {
3286 if (RHSC
->getValue()->isOne())
3287 return LHS
; // X udiv 1 --> x
3288 // If the denominator is zero, the result of the udiv is undefined. Don't
3289 // try to analyze it, because the resolution chosen here may differ from
3290 // the resolution chosen in other parts of the compiler.
3291 if (!RHSC
->getValue()->isZero()) {
3292 // Determine if the division can be folded into the operands of
3294 // TODO: Generalize this to non-constants by using known-bits information.
3295 Type
*Ty
= LHS
->getType();
3296 unsigned LZ
= RHSC
->getAPInt().countLeadingZeros();
3297 unsigned MaxShiftAmt
= getTypeSizeInBits(Ty
) - LZ
- 1;
3298 // For non-power-of-two values, effectively round the value up to the
3299 // nearest power of two.
3300 if (!RHSC
->getAPInt().isPowerOf2())
3302 IntegerType
*ExtTy
=
3303 IntegerType::get(getContext(), getTypeSizeInBits(Ty
) + MaxShiftAmt
);
3304 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(LHS
))
3305 if (const SCEVConstant
*Step
=
3306 dyn_cast
<SCEVConstant
>(AR
->getStepRecurrence(*this))) {
3307 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3308 const APInt
&StepInt
= Step
->getAPInt();
3309 const APInt
&DivInt
= RHSC
->getAPInt();
3310 if (!StepInt
.urem(DivInt
) &&
3311 getZeroExtendExpr(AR
, ExtTy
) ==
3312 getAddRecExpr(getZeroExtendExpr(AR
->getStart(), ExtTy
),
3313 getZeroExtendExpr(Step
, ExtTy
),
3314 AR
->getLoop(), SCEV::FlagAnyWrap
)) {
3315 SmallVector
<const SCEV
*, 4> Operands
;
3316 for (const SCEV
*Op
: AR
->operands())
3317 Operands
.push_back(getUDivExpr(Op
, RHS
));
3318 return getAddRecExpr(Operands
, AR
->getLoop(), SCEV::FlagNW
);
3320 /// Get a canonical UDivExpr for a recurrence.
3321 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3322 // We can currently only fold X%N if X is constant.
3323 const SCEVConstant
*StartC
= dyn_cast
<SCEVConstant
>(AR
->getStart());
3324 if (StartC
&& !DivInt
.urem(StepInt
) &&
3325 getZeroExtendExpr(AR
, ExtTy
) ==
3326 getAddRecExpr(getZeroExtendExpr(AR
->getStart(), ExtTy
),
3327 getZeroExtendExpr(Step
, ExtTy
),
3328 AR
->getLoop(), SCEV::FlagAnyWrap
)) {
3329 const APInt
&StartInt
= StartC
->getAPInt();
3330 const APInt
&StartRem
= StartInt
.urem(StepInt
);
3331 if (StartRem
!= 0) {
3332 const SCEV
*NewLHS
=
3333 getAddRecExpr(getConstant(StartInt
- StartRem
), Step
,
3334 AR
->getLoop(), SCEV::FlagNW
);
3335 if (LHS
!= NewLHS
) {
3338 // Reset the ID to include the new LHS, and check if it is
3341 ID
.AddInteger(scUDivExpr
);
3345 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
))
3351 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3352 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(LHS
)) {
3353 SmallVector
<const SCEV
*, 4> Operands
;
3354 for (const SCEV
*Op
: M
->operands())
3355 Operands
.push_back(getZeroExtendExpr(Op
, ExtTy
));
3356 if (getZeroExtendExpr(M
, ExtTy
) == getMulExpr(Operands
))
3357 // Find an operand that's safely divisible.
3358 for (unsigned i
= 0, e
= M
->getNumOperands(); i
!= e
; ++i
) {
3359 const SCEV
*Op
= M
->getOperand(i
);
3360 const SCEV
*Div
= getUDivExpr(Op
, RHSC
);
3361 if (!isa
<SCEVUDivExpr
>(Div
) && getMulExpr(Div
, RHSC
) == Op
) {
3362 Operands
= SmallVector
<const SCEV
*, 4>(M
->operands());
3364 return getMulExpr(Operands
);
3369 // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3370 if (const SCEVUDivExpr
*OtherDiv
= dyn_cast
<SCEVUDivExpr
>(LHS
)) {
3371 if (auto *DivisorConstant
=
3372 dyn_cast
<SCEVConstant
>(OtherDiv
->getRHS())) {
3373 bool Overflow
= false;
3375 DivisorConstant
->getAPInt().umul_ov(RHSC
->getAPInt(), Overflow
);
3377 return getConstant(RHSC
->getType(), 0, false);
3379 return getUDivExpr(OtherDiv
->getLHS(), getConstant(NewRHS
));
3383 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3384 if (const SCEVAddExpr
*A
= dyn_cast
<SCEVAddExpr
>(LHS
)) {
3385 SmallVector
<const SCEV
*, 4> Operands
;
3386 for (const SCEV
*Op
: A
->operands())
3387 Operands
.push_back(getZeroExtendExpr(Op
, ExtTy
));
3388 if (getZeroExtendExpr(A
, ExtTy
) == getAddExpr(Operands
)) {
3390 for (unsigned i
= 0, e
= A
->getNumOperands(); i
!= e
; ++i
) {
3391 const SCEV
*Op
= getUDivExpr(A
->getOperand(i
), RHS
);
3392 if (isa
<SCEVUDivExpr
>(Op
) ||
3393 getMulExpr(Op
, RHS
) != A
->getOperand(i
))
3395 Operands
.push_back(Op
);
3397 if (Operands
.size() == A
->getNumOperands())
3398 return getAddExpr(Operands
);
3402 // Fold if both operands are constant.
3403 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(LHS
)) {
3404 Constant
*LHSCV
= LHSC
->getValue();
3405 Constant
*RHSCV
= RHSC
->getValue();
3406 return getConstant(cast
<ConstantInt
>(ConstantExpr::getUDiv(LHSCV
,
3412 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3413 // changes). Make sure we get a new one.
3415 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
3416 SCEV
*S
= new (SCEVAllocator
) SCEVUDivExpr(ID
.Intern(SCEVAllocator
),
3418 UniqueSCEVs
.InsertNode(S
, IP
);
3419 addToLoopUseLists(S
);
3423 static const APInt
gcd(const SCEVConstant
*C1
, const SCEVConstant
*C2
) {
3424 APInt A
= C1
->getAPInt().abs();
3425 APInt B
= C2
->getAPInt().abs();
3426 uint32_t ABW
= A
.getBitWidth();
3427 uint32_t BBW
= B
.getBitWidth();
3434 return APIntOps::GreatestCommonDivisor(std::move(A
), std::move(B
));
3437 /// Get a canonical unsigned division expression, or something simpler if
3438 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3439 /// can attempt to remove factors from the LHS and RHS. We can't do this when
3440 /// it's not exact because the udiv may be clearing bits.
3441 const SCEV
*ScalarEvolution::getUDivExactExpr(const SCEV
*LHS
,
3443 // TODO: we could try to find factors in all sorts of things, but for now we
3444 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3445 // end of this file for inspiration.
3447 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(LHS
);
3448 if (!Mul
|| !Mul
->hasNoUnsignedWrap())
3449 return getUDivExpr(LHS
, RHS
);
3451 if (const SCEVConstant
*RHSCst
= dyn_cast
<SCEVConstant
>(RHS
)) {
3452 // If the mulexpr multiplies by a constant, then that constant must be the
3453 // first element of the mulexpr.
3454 if (const auto *LHSCst
= dyn_cast
<SCEVConstant
>(Mul
->getOperand(0))) {
3455 if (LHSCst
== RHSCst
) {
3456 SmallVector
<const SCEV
*, 2> Operands(drop_begin(Mul
->operands()));
3457 return getMulExpr(Operands
);
3460 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3461 // that there's a factor provided by one of the other terms. We need to
3463 APInt Factor
= gcd(LHSCst
, RHSCst
);
3464 if (!Factor
.isIntN(1)) {
3466 cast
<SCEVConstant
>(getConstant(LHSCst
->getAPInt().udiv(Factor
)));
3468 cast
<SCEVConstant
>(getConstant(RHSCst
->getAPInt().udiv(Factor
)));
3469 SmallVector
<const SCEV
*, 2> Operands
;
3470 Operands
.push_back(LHSCst
);
3471 Operands
.append(Mul
->op_begin() + 1, Mul
->op_end());
3472 LHS
= getMulExpr(Operands
);
3474 Mul
= dyn_cast
<SCEVMulExpr
>(LHS
);
3476 return getUDivExactExpr(LHS
, RHS
);
3481 for (int i
= 0, e
= Mul
->getNumOperands(); i
!= e
; ++i
) {
3482 if (Mul
->getOperand(i
) == RHS
) {
3483 SmallVector
<const SCEV
*, 2> Operands
;
3484 Operands
.append(Mul
->op_begin(), Mul
->op_begin() + i
);
3485 Operands
.append(Mul
->op_begin() + i
+ 1, Mul
->op_end());
3486 return getMulExpr(Operands
);
3490 return getUDivExpr(LHS
, RHS
);
3493 /// Get an add recurrence expression for the specified loop. Simplify the
3494 /// expression as much as possible.
3495 const SCEV
*ScalarEvolution::getAddRecExpr(const SCEV
*Start
, const SCEV
*Step
,
3497 SCEV::NoWrapFlags Flags
) {
3498 SmallVector
<const SCEV
*, 4> Operands
;
3499 Operands
.push_back(Start
);
3500 if (const SCEVAddRecExpr
*StepChrec
= dyn_cast
<SCEVAddRecExpr
>(Step
))
3501 if (StepChrec
->getLoop() == L
) {
3502 Operands
.append(StepChrec
->op_begin(), StepChrec
->op_end());
3503 return getAddRecExpr(Operands
, L
, maskFlags(Flags
, SCEV::FlagNW
));
3506 Operands
.push_back(Step
);
3507 return getAddRecExpr(Operands
, L
, Flags
);
3510 /// Get an add recurrence expression for the specified loop. Simplify the
3511 /// expression as much as possible.
3513 ScalarEvolution::getAddRecExpr(SmallVectorImpl
<const SCEV
*> &Operands
,
3514 const Loop
*L
, SCEV::NoWrapFlags Flags
) {
3515 if (Operands
.size() == 1) return Operands
[0];
3517 Type
*ETy
= getEffectiveSCEVType(Operands
[0]->getType());
3518 for (unsigned i
= 1, e
= Operands
.size(); i
!= e
; ++i
) {
3519 assert(getEffectiveSCEVType(Operands
[i
]->getType()) == ETy
&&
3520 "SCEVAddRecExpr operand types don't match!");
3521 assert(!Operands
[i
]->getType()->isPointerTy() && "Step must be integer");
3523 for (unsigned i
= 0, e
= Operands
.size(); i
!= e
; ++i
)
3524 assert(isLoopInvariant(Operands
[i
], L
) &&
3525 "SCEVAddRecExpr operand is not loop-invariant!");
3528 if (Operands
.back()->isZero()) {
3529 Operands
.pop_back();
3530 return getAddRecExpr(Operands
, L
, SCEV::FlagAnyWrap
); // {X,+,0} --> X
3533 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3534 // use that information to infer NUW and NSW flags. However, computing a
3535 // BE count requires calling getAddRecExpr, so we may not yet have a
3536 // meaningful BE count at this point (and if we don't, we'd be stuck
3537 // with a SCEVCouldNotCompute as the cached BE count).
3539 Flags
= StrengthenNoWrapFlags(this, scAddRecExpr
, Operands
, Flags
);
3541 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3542 if (const SCEVAddRecExpr
*NestedAR
= dyn_cast
<SCEVAddRecExpr
>(Operands
[0])) {
3543 const Loop
*NestedLoop
= NestedAR
->getLoop();
3544 if (L
->contains(NestedLoop
)
3545 ? (L
->getLoopDepth() < NestedLoop
->getLoopDepth())
3546 : (!NestedLoop
->contains(L
) &&
3547 DT
.dominates(L
->getHeader(), NestedLoop
->getHeader()))) {
3548 SmallVector
<const SCEV
*, 4> NestedOperands(NestedAR
->operands());
3549 Operands
[0] = NestedAR
->getStart();
3550 // AddRecs require their operands be loop-invariant with respect to their
3551 // loops. Don't perform this transformation if it would break this
3553 bool AllInvariant
= all_of(
3554 Operands
, [&](const SCEV
*Op
) { return isLoopInvariant(Op
, L
); });
3557 // Create a recurrence for the outer loop with the same step size.
3559 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3560 // inner recurrence has the same property.
3561 SCEV::NoWrapFlags OuterFlags
=
3562 maskFlags(Flags
, SCEV::FlagNW
| NestedAR
->getNoWrapFlags());
3564 NestedOperands
[0] = getAddRecExpr(Operands
, L
, OuterFlags
);
3565 AllInvariant
= all_of(NestedOperands
, [&](const SCEV
*Op
) {
3566 return isLoopInvariant(Op
, NestedLoop
);
3570 // Ok, both add recurrences are valid after the transformation.
3572 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3573 // the outer recurrence has the same property.
3574 SCEV::NoWrapFlags InnerFlags
=
3575 maskFlags(NestedAR
->getNoWrapFlags(), SCEV::FlagNW
| Flags
);
3576 return getAddRecExpr(NestedOperands
, NestedLoop
, InnerFlags
);
3579 // Reset Operands to its original state.
3580 Operands
[0] = NestedAR
;
3584 // Okay, it looks like we really DO need an addrec expr. Check to see if we
3585 // already have one, otherwise create a new one.
3586 return getOrCreateAddRecExpr(Operands
, L
, Flags
);
3590 ScalarEvolution::getGEPExpr(GEPOperator
*GEP
,
3591 const SmallVectorImpl
<const SCEV
*> &IndexExprs
) {
3592 const SCEV
*BaseExpr
= getSCEV(GEP
->getPointerOperand());
3593 // getSCEV(Base)->getType() has the same address space as Base->getType()
3594 // because SCEV::getType() preserves the address space.
3595 Type
*IntIdxTy
= getEffectiveSCEVType(BaseExpr
->getType());
3596 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3597 // instruction to its SCEV, because the Instruction may be guarded by control
3598 // flow and the no-overflow bits may not be valid for the expression in any
3599 // context. This can be fixed similarly to how these flags are handled for
3601 SCEV::NoWrapFlags OffsetWrap
=
3602 GEP
->isInBounds() ? SCEV::FlagNSW
: SCEV::FlagAnyWrap
;
3604 Type
*CurTy
= GEP
->getType();
3605 bool FirstIter
= true;
3606 SmallVector
<const SCEV
*, 4> Offsets
;
3607 for (const SCEV
*IndexExpr
: IndexExprs
) {
3608 // Compute the (potentially symbolic) offset in bytes for this index.
3609 if (StructType
*STy
= dyn_cast
<StructType
>(CurTy
)) {
3610 // For a struct, add the member offset.
3611 ConstantInt
*Index
= cast
<SCEVConstant
>(IndexExpr
)->getValue();
3612 unsigned FieldNo
= Index
->getZExtValue();
3613 const SCEV
*FieldOffset
= getOffsetOfExpr(IntIdxTy
, STy
, FieldNo
);
3614 Offsets
.push_back(FieldOffset
);
3616 // Update CurTy to the type of the field at Index.
3617 CurTy
= STy
->getTypeAtIndex(Index
);
3619 // Update CurTy to its element type.
3621 assert(isa
<PointerType
>(CurTy
) &&
3622 "The first index of a GEP indexes a pointer");
3623 CurTy
= GEP
->getSourceElementType();
3626 CurTy
= GetElementPtrInst::getTypeAtIndex(CurTy
, (uint64_t)0);
3628 // For an array, add the element offset, explicitly scaled.
3629 const SCEV
*ElementSize
= getSizeOfExpr(IntIdxTy
, CurTy
);
3630 // Getelementptr indices are signed.
3631 IndexExpr
= getTruncateOrSignExtend(IndexExpr
, IntIdxTy
);
3633 // Multiply the index by the element size to compute the element offset.
3634 const SCEV
*LocalOffset
= getMulExpr(IndexExpr
, ElementSize
, OffsetWrap
);
3635 Offsets
.push_back(LocalOffset
);
3639 // Handle degenerate case of GEP without offsets.
3640 if (Offsets
.empty())
3643 // Add the offsets together, assuming nsw if inbounds.
3644 const SCEV
*Offset
= getAddExpr(Offsets
, OffsetWrap
);
3645 // Add the base address and the offset. We cannot use the nsw flag, as the
3646 // base address is unsigned. However, if we know that the offset is
3647 // non-negative, we can use nuw.
3648 SCEV::NoWrapFlags BaseWrap
= GEP
->isInBounds() && isKnownNonNegative(Offset
)
3649 ? SCEV::FlagNUW
: SCEV::FlagAnyWrap
;
3650 auto *GEPExpr
= getAddExpr(BaseExpr
, Offset
, BaseWrap
);
3651 assert(BaseExpr
->getType() == GEPExpr
->getType() &&
3652 "GEP should not change type mid-flight.");
3656 std::tuple
<SCEV
*, FoldingSetNodeID
, void *>
3657 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType
,
3658 ArrayRef
<const SCEV
*> Ops
) {
3659 FoldingSetNodeID ID
;
3661 ID
.AddInteger(SCEVType
);
3662 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
3663 ID
.AddPointer(Ops
[i
]);
3664 return std::tuple
<SCEV
*, FoldingSetNodeID
, void *>(
3665 UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
), std::move(ID
), IP
);
3668 const SCEV
*ScalarEvolution::getAbsExpr(const SCEV
*Op
, bool IsNSW
) {
3669 SCEV::NoWrapFlags Flags
= IsNSW
? SCEV::FlagNSW
: SCEV::FlagAnyWrap
;
3670 return getSMaxExpr(Op
, getNegativeSCEV(Op
, Flags
));
3673 const SCEV
*ScalarEvolution::getMinMaxExpr(SCEVTypes Kind
,
3674 SmallVectorImpl
<const SCEV
*> &Ops
) {
3675 assert(!Ops
.empty() && "Cannot get empty (u|s)(min|max)!");
3676 if (Ops
.size() == 1) return Ops
[0];
3678 Type
*ETy
= getEffectiveSCEVType(Ops
[0]->getType());
3679 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
) {
3680 assert(getEffectiveSCEVType(Ops
[i
]->getType()) == ETy
&&
3681 "Operand types don't match!");
3682 assert(Ops
[0]->getType()->isPointerTy() ==
3683 Ops
[i
]->getType()->isPointerTy() &&
3684 "min/max should be consistently pointerish");
3688 bool IsSigned
= Kind
== scSMaxExpr
|| Kind
== scSMinExpr
;
3689 bool IsMax
= Kind
== scSMaxExpr
|| Kind
== scUMaxExpr
;
3691 // Sort by complexity, this groups all similar expression types together.
3692 GroupByComplexity(Ops
, &LI
, DT
);
3694 // Check if we have created the same expression before.
3695 if (const SCEV
*S
= std::get
<0>(findExistingSCEVInCache(Kind
, Ops
))) {
3699 // If there are any constants, fold them together.
3701 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
3703 assert(Idx
< Ops
.size());
3704 auto FoldOp
= [&](const APInt
&LHS
, const APInt
&RHS
) {
3705 if (Kind
== scSMaxExpr
)
3706 return APIntOps::smax(LHS
, RHS
);
3707 else if (Kind
== scSMinExpr
)
3708 return APIntOps::smin(LHS
, RHS
);
3709 else if (Kind
== scUMaxExpr
)
3710 return APIntOps::umax(LHS
, RHS
);
3711 else if (Kind
== scUMinExpr
)
3712 return APIntOps::umin(LHS
, RHS
);
3713 llvm_unreachable("Unknown SCEV min/max opcode");
3716 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
3717 // We found two constants, fold them together!
3718 ConstantInt
*Fold
= ConstantInt::get(
3719 getContext(), FoldOp(LHSC
->getAPInt(), RHSC
->getAPInt()));
3720 Ops
[0] = getConstant(Fold
);
3721 Ops
.erase(Ops
.begin()+1); // Erase the folded element
3722 if (Ops
.size() == 1) return Ops
[0];
3723 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
3726 bool IsMinV
= LHSC
->getValue()->isMinValue(IsSigned
);
3727 bool IsMaxV
= LHSC
->getValue()->isMaxValue(IsSigned
);
3729 if (IsMax
? IsMinV
: IsMaxV
) {
3730 // If we are left with a constant minimum(/maximum)-int, strip it off.
3731 Ops
.erase(Ops
.begin());
3733 } else if (IsMax
? IsMaxV
: IsMinV
) {
3734 // If we have a max(/min) with a constant maximum(/minimum)-int,
3735 // it will always be the extremum.
3739 if (Ops
.size() == 1) return Ops
[0];
3742 // Find the first operation of the same kind
3743 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < Kind
)
3746 // Check to see if one of the operands is of the same kind. If so, expand its
3747 // operands onto our operand list, and recurse to simplify.
3748 if (Idx
< Ops
.size()) {
3749 bool DeletedAny
= false;
3750 while (Ops
[Idx
]->getSCEVType() == Kind
) {
3751 const SCEVMinMaxExpr
*SMME
= cast
<SCEVMinMaxExpr
>(Ops
[Idx
]);
3752 Ops
.erase(Ops
.begin()+Idx
);
3753 Ops
.append(SMME
->op_begin(), SMME
->op_end());
3758 return getMinMaxExpr(Kind
, Ops
);
3761 // Okay, check to see if the same value occurs in the operand list twice. If
3762 // so, delete one. Since we sorted the list, these values are required to
3764 llvm::CmpInst::Predicate GEPred
=
3765 IsSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
;
3766 llvm::CmpInst::Predicate LEPred
=
3767 IsSigned
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
3768 llvm::CmpInst::Predicate FirstPred
= IsMax
? GEPred
: LEPred
;
3769 llvm::CmpInst::Predicate SecondPred
= IsMax
? LEPred
: GEPred
;
3770 for (unsigned i
= 0, e
= Ops
.size() - 1; i
!= e
; ++i
) {
3771 if (Ops
[i
] == Ops
[i
+ 1] ||
3772 isKnownViaNonRecursiveReasoning(FirstPred
, Ops
[i
], Ops
[i
+ 1])) {
3773 // X op Y op Y --> X op Y
3774 // X op Y --> X, if we know X, Y are ordered appropriately
3775 Ops
.erase(Ops
.begin() + i
+ 1, Ops
.begin() + i
+ 2);
3778 } else if (isKnownViaNonRecursiveReasoning(SecondPred
, Ops
[i
],
3780 // X op Y --> Y, if we know X, Y are ordered appropriately
3781 Ops
.erase(Ops
.begin() + i
, Ops
.begin() + i
+ 1);
3787 if (Ops
.size() == 1) return Ops
[0];
3789 assert(!Ops
.empty() && "Reduced smax down to nothing!");
3791 // Okay, it looks like we really DO need an expr. Check to see if we
3792 // already have one, otherwise create a new one.
3793 const SCEV
*ExistingSCEV
;
3794 FoldingSetNodeID ID
;
3796 std::tie(ExistingSCEV
, ID
, IP
) = findExistingSCEVInCache(Kind
, Ops
);
3798 return ExistingSCEV
;
3799 const SCEV
**O
= SCEVAllocator
.Allocate
<const SCEV
*>(Ops
.size());
3800 std::uninitialized_copy(Ops
.begin(), Ops
.end(), O
);
3801 SCEV
*S
= new (SCEVAllocator
)
3802 SCEVMinMaxExpr(ID
.Intern(SCEVAllocator
), Kind
, O
, Ops
.size());
3804 UniqueSCEVs
.InsertNode(S
, IP
);
3805 addToLoopUseLists(S
);
3809 const SCEV
*ScalarEvolution::getSMaxExpr(const SCEV
*LHS
, const SCEV
*RHS
) {
3810 SmallVector
<const SCEV
*, 2> Ops
= {LHS
, RHS
};
3811 return getSMaxExpr(Ops
);
3814 const SCEV
*ScalarEvolution::getSMaxExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
3815 return getMinMaxExpr(scSMaxExpr
, Ops
);
3818 const SCEV
*ScalarEvolution::getUMaxExpr(const SCEV
*LHS
, const SCEV
*RHS
) {
3819 SmallVector
<const SCEV
*, 2> Ops
= {LHS
, RHS
};
3820 return getUMaxExpr(Ops
);
3823 const SCEV
*ScalarEvolution::getUMaxExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
3824 return getMinMaxExpr(scUMaxExpr
, Ops
);
3827 const SCEV
*ScalarEvolution::getSMinExpr(const SCEV
*LHS
,
3829 SmallVector
<const SCEV
*, 2> Ops
= { LHS
, RHS
};
3830 return getSMinExpr(Ops
);
3833 const SCEV
*ScalarEvolution::getSMinExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
3834 return getMinMaxExpr(scSMinExpr
, Ops
);
3837 const SCEV
*ScalarEvolution::getUMinExpr(const SCEV
*LHS
,
3839 SmallVector
<const SCEV
*, 2> Ops
= { LHS
, RHS
};
3840 return getUMinExpr(Ops
);
3843 const SCEV
*ScalarEvolution::getUMinExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
3844 return getMinMaxExpr(scUMinExpr
, Ops
);
3848 ScalarEvolution::getSizeOfScalableVectorExpr(Type
*IntTy
,
3849 ScalableVectorType
*ScalableTy
) {
3850 Constant
*NullPtr
= Constant::getNullValue(ScalableTy
->getPointerTo());
3851 Constant
*One
= ConstantInt::get(IntTy
, 1);
3852 Constant
*GEP
= ConstantExpr::getGetElementPtr(ScalableTy
, NullPtr
, One
);
3853 // Note that the expression we created is the final expression, we don't
3854 // want to simplify it any further Also, if we call a normal getSCEV(),
3855 // we'll end up in an endless recursion. So just create an SCEVUnknown.
3856 return getUnknown(ConstantExpr::getPtrToInt(GEP
, IntTy
));
3859 const SCEV
*ScalarEvolution::getSizeOfExpr(Type
*IntTy
, Type
*AllocTy
) {
3860 if (auto *ScalableAllocTy
= dyn_cast
<ScalableVectorType
>(AllocTy
))
3861 return getSizeOfScalableVectorExpr(IntTy
, ScalableAllocTy
);
3862 // We can bypass creating a target-independent constant expression and then
3863 // folding it back into a ConstantInt. This is just a compile-time
3865 return getConstant(IntTy
, getDataLayout().getTypeAllocSize(AllocTy
));
3868 const SCEV
*ScalarEvolution::getStoreSizeOfExpr(Type
*IntTy
, Type
*StoreTy
) {
3869 if (auto *ScalableStoreTy
= dyn_cast
<ScalableVectorType
>(StoreTy
))
3870 return getSizeOfScalableVectorExpr(IntTy
, ScalableStoreTy
);
3871 // We can bypass creating a target-independent constant expression and then
3872 // folding it back into a ConstantInt. This is just a compile-time
3874 return getConstant(IntTy
, getDataLayout().getTypeStoreSize(StoreTy
));
3877 const SCEV
*ScalarEvolution::getOffsetOfExpr(Type
*IntTy
,
3880 // We can bypass creating a target-independent constant expression and then
3881 // folding it back into a ConstantInt. This is just a compile-time
3884 IntTy
, getDataLayout().getStructLayout(STy
)->getElementOffset(FieldNo
));
3887 const SCEV
*ScalarEvolution::getUnknown(Value
*V
) {
3888 // Don't attempt to do anything other than create a SCEVUnknown object
3889 // here. createSCEV only calls getUnknown after checking for all other
3890 // interesting possibilities, and any other code that calls getUnknown
3891 // is doing so in order to hide a value from SCEV canonicalization.
3893 FoldingSetNodeID ID
;
3894 ID
.AddInteger(scUnknown
);
3897 if (SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) {
3898 assert(cast
<SCEVUnknown
>(S
)->getValue() == V
&&
3899 "Stale SCEVUnknown in uniquing map!");
3902 SCEV
*S
= new (SCEVAllocator
) SCEVUnknown(ID
.Intern(SCEVAllocator
), V
, this,
3904 FirstUnknown
= cast
<SCEVUnknown
>(S
);
3905 UniqueSCEVs
.InsertNode(S
, IP
);
3909 //===----------------------------------------------------------------------===//
3910 // Basic SCEV Analysis and PHI Idiom Recognition Code
3913 /// Test if values of the given type are analyzable within the SCEV
3914 /// framework. This primarily includes integer types, and it can optionally
3915 /// include pointer types if the ScalarEvolution class has access to
3916 /// target-specific information.
3917 bool ScalarEvolution::isSCEVable(Type
*Ty
) const {
3918 // Integers and pointers are always SCEVable.
3919 return Ty
->isIntOrPtrTy();
3922 /// Return the size in bits of the specified type, for which isSCEVable must
3924 uint64_t ScalarEvolution::getTypeSizeInBits(Type
*Ty
) const {
3925 assert(isSCEVable(Ty
) && "Type is not SCEVable!");
3926 if (Ty
->isPointerTy())
3927 return getDataLayout().getIndexTypeSizeInBits(Ty
);
3928 return getDataLayout().getTypeSizeInBits(Ty
);
3931 /// Return a type with the same bitwidth as the given type and which represents
3932 /// how SCEV will treat the given type, for which isSCEVable must return
3933 /// true. For pointer types, this is the pointer index sized integer type.
3934 Type
*ScalarEvolution::getEffectiveSCEVType(Type
*Ty
) const {
3935 assert(isSCEVable(Ty
) && "Type is not SCEVable!");
3937 if (Ty
->isIntegerTy())
3940 // The only other support type is pointer.
3941 assert(Ty
->isPointerTy() && "Unexpected non-pointer non-integer type!");
3942 return getDataLayout().getIndexType(Ty
);
3945 Type
*ScalarEvolution::getWiderType(Type
*T1
, Type
*T2
) const {
3946 return getTypeSizeInBits(T1
) >= getTypeSizeInBits(T2
) ? T1
: T2
;
3949 const SCEV
*ScalarEvolution::getCouldNotCompute() {
3950 return CouldNotCompute
.get();
3953 bool ScalarEvolution::checkValidity(const SCEV
*S
) const {
3954 bool ContainsNulls
= SCEVExprContains(S
, [](const SCEV
*S
) {
3955 auto *SU
= dyn_cast
<SCEVUnknown
>(S
);
3956 return SU
&& SU
->getValue() == nullptr;
3959 return !ContainsNulls
;
3962 bool ScalarEvolution::containsAddRecurrence(const SCEV
*S
) {
3963 HasRecMapType::iterator I
= HasRecMap
.find(S
);
3964 if (I
!= HasRecMap
.end())
3968 SCEVExprContains(S
, [](const SCEV
*S
) { return isa
<SCEVAddRecExpr
>(S
); });
3969 HasRecMap
.insert({S
, FoundAddRec
});
3973 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3974 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3975 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3976 static std::pair
<const SCEV
*, ConstantInt
*> splitAddExpr(const SCEV
*S
) {
3977 const auto *Add
= dyn_cast
<SCEVAddExpr
>(S
);
3979 return {S
, nullptr};
3981 if (Add
->getNumOperands() != 2)
3982 return {S
, nullptr};
3984 auto *ConstOp
= dyn_cast
<SCEVConstant
>(Add
->getOperand(0));
3986 return {S
, nullptr};
3988 return {Add
->getOperand(1), ConstOp
->getValue()};
3991 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3992 /// by the value and offset from any ValueOffsetPair in the set.
3993 ScalarEvolution::ValueOffsetPairSetVector
*
3994 ScalarEvolution::getSCEVValues(const SCEV
*S
) {
3995 ExprValueMapType::iterator SI
= ExprValueMap
.find_as(S
);
3996 if (SI
== ExprValueMap
.end())
3999 if (VerifySCEVMap
) {
4000 // Check there is no dangling Value in the set returned.
4001 for (const auto &VE
: SI
->second
)
4002 assert(ValueExprMap
.count(VE
.first
));
4008 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4009 /// cannot be used separately. eraseValueFromMap should be used to remove
4010 /// V from ValueExprMap and ExprValueMap at the same time.
4011 void ScalarEvolution::eraseValueFromMap(Value
*V
) {
4012 ValueExprMapType::iterator I
= ValueExprMap
.find_as(V
);
4013 if (I
!= ValueExprMap
.end()) {
4014 const SCEV
*S
= I
->second
;
4015 // Remove {V, 0} from the set of ExprValueMap[S]
4016 if (auto *SV
= getSCEVValues(S
))
4017 SV
->remove({V
, nullptr});
4019 // Remove {V, Offset} from the set of ExprValueMap[Stripped]
4020 const SCEV
*Stripped
;
4021 ConstantInt
*Offset
;
4022 std::tie(Stripped
, Offset
) = splitAddExpr(S
);
4023 if (Offset
!= nullptr) {
4024 if (auto *SV
= getSCEVValues(Stripped
))
4025 SV
->remove({V
, Offset
});
4027 ValueExprMap
.erase(V
);
4031 /// Check whether value has nuw/nsw/exact set but SCEV does not.
4032 /// TODO: In reality it is better to check the poison recursively
4033 /// but this is better than nothing.
4034 static bool SCEVLostPoisonFlags(const SCEV
*S
, const Value
*V
) {
4035 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
4036 if (isa
<OverflowingBinaryOperator
>(I
)) {
4037 if (auto *NS
= dyn_cast
<SCEVNAryExpr
>(S
)) {
4038 if (I
->hasNoSignedWrap() && !NS
->hasNoSignedWrap())
4040 if (I
->hasNoUnsignedWrap() && !NS
->hasNoUnsignedWrap())
4043 } else if (isa
<PossiblyExactOperator
>(I
) && I
->isExact())
4049 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4050 /// create a new one.
4051 const SCEV
*ScalarEvolution::getSCEV(Value
*V
) {
4052 assert(isSCEVable(V
->getType()) && "Value is not SCEVable!");
4054 const SCEV
*S
= getExistingSCEV(V
);
4057 // During PHI resolution, it is possible to create two SCEVs for the same
4058 // V, so it is needed to double check whether V->S is inserted into
4059 // ValueExprMap before insert S->{V, 0} into ExprValueMap.
4060 std::pair
<ValueExprMapType::iterator
, bool> Pair
=
4061 ValueExprMap
.insert({SCEVCallbackVH(V
, this), S
});
4062 if (Pair
.second
&& !SCEVLostPoisonFlags(S
, V
)) {
4063 ExprValueMap
[S
].insert({V
, nullptr});
4065 // If S == Stripped + Offset, add Stripped -> {V, Offset} into
4067 const SCEV
*Stripped
= S
;
4068 ConstantInt
*Offset
= nullptr;
4069 std::tie(Stripped
, Offset
) = splitAddExpr(S
);
4070 // If stripped is SCEVUnknown, don't bother to save
4071 // Stripped -> {V, offset}. It doesn't simplify and sometimes even
4072 // increase the complexity of the expansion code.
4073 // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
4074 // because it may generate add/sub instead of GEP in SCEV expansion.
4075 if (Offset
!= nullptr && !isa
<SCEVUnknown
>(Stripped
) &&
4076 !isa
<GetElementPtrInst
>(V
))
4077 ExprValueMap
[Stripped
].insert({V
, Offset
});
4083 const SCEV
*ScalarEvolution::getExistingSCEV(Value
*V
) {
4084 assert(isSCEVable(V
->getType()) && "Value is not SCEVable!");
4086 ValueExprMapType::iterator I
= ValueExprMap
.find_as(V
);
4087 if (I
!= ValueExprMap
.end()) {
4088 const SCEV
*S
= I
->second
;
4089 if (checkValidity(S
))
4091 eraseValueFromMap(V
);
4092 forgetMemoizedResults(S
);
4097 /// Return a SCEV corresponding to -V = -1*V
4098 const SCEV
*ScalarEvolution::getNegativeSCEV(const SCEV
*V
,
4099 SCEV::NoWrapFlags Flags
) {
4100 if (const SCEVConstant
*VC
= dyn_cast
<SCEVConstant
>(V
))
4102 cast
<ConstantInt
>(ConstantExpr::getNeg(VC
->getValue())));
4104 Type
*Ty
= V
->getType();
4105 Ty
= getEffectiveSCEVType(Ty
);
4106 return getMulExpr(V
, getMinusOne(Ty
), Flags
);
4109 /// If Expr computes ~A, return A else return nullptr
4110 static const SCEV
*MatchNotExpr(const SCEV
*Expr
) {
4111 const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Expr
);
4112 if (!Add
|| Add
->getNumOperands() != 2 ||
4113 !Add
->getOperand(0)->isAllOnesValue())
4116 const SCEVMulExpr
*AddRHS
= dyn_cast
<SCEVMulExpr
>(Add
->getOperand(1));
4117 if (!AddRHS
|| AddRHS
->getNumOperands() != 2 ||
4118 !AddRHS
->getOperand(0)->isAllOnesValue())
4121 return AddRHS
->getOperand(1);
4124 /// Return a SCEV corresponding to ~V = -1-V
4125 const SCEV
*ScalarEvolution::getNotSCEV(const SCEV
*V
) {
4126 if (const SCEVConstant
*VC
= dyn_cast
<SCEVConstant
>(V
))
4128 cast
<ConstantInt
>(ConstantExpr::getNot(VC
->getValue())));
4130 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4131 if (const SCEVMinMaxExpr
*MME
= dyn_cast
<SCEVMinMaxExpr
>(V
)) {
4132 auto MatchMinMaxNegation
= [&](const SCEVMinMaxExpr
*MME
) {
4133 SmallVector
<const SCEV
*, 2> MatchedOperands
;
4134 for (const SCEV
*Operand
: MME
->operands()) {
4135 const SCEV
*Matched
= MatchNotExpr(Operand
);
4137 return (const SCEV
*)nullptr;
4138 MatchedOperands
.push_back(Matched
);
4140 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME
->getSCEVType()),
4143 if (const SCEV
*Replaced
= MatchMinMaxNegation(MME
))
4147 Type
*Ty
= V
->getType();
4148 Ty
= getEffectiveSCEVType(Ty
);
4149 return getMinusSCEV(getMinusOne(Ty
), V
);
4152 /// Compute an expression equivalent to S - getPointerBase(S).
4153 static const SCEV
*removePointerBase(ScalarEvolution
*SE
, const SCEV
*P
) {
4154 assert(P
->getType()->isPointerTy());
4156 if (auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(P
)) {
4157 // The base of an AddRec is the first operand.
4158 SmallVector
<const SCEV
*> Ops
{AddRec
->operands()};
4159 Ops
[0] = removePointerBase(SE
, Ops
[0]);
4160 // Don't try to transfer nowrap flags for now. We could in some cases
4161 // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4162 return SE
->getAddRecExpr(Ops
, AddRec
->getLoop(), SCEV::FlagAnyWrap
);
4164 if (auto *Add
= dyn_cast
<SCEVAddExpr
>(P
)) {
4165 // The base of an Add is the pointer operand.
4166 SmallVector
<const SCEV
*> Ops
{Add
->operands()};
4167 const SCEV
**PtrOp
= nullptr;
4168 for (const SCEV
*&AddOp
: Ops
) {
4169 if (AddOp
->getType()->isPointerTy()) {
4170 // If we find an Add with multiple pointer operands, treat it as a
4171 // pointer base to be consistent with getPointerBase. Eventually
4172 // we should be able to assert this is impossible.
4174 return SE
->getZero(P
->getType());
4178 *PtrOp
= removePointerBase(SE
, *PtrOp
);
4179 // Don't try to transfer nowrap flags for now. We could in some cases
4180 // (for example, if the pointer operand of the Add is a SCEVUnknown).
4181 return SE
->getAddExpr(Ops
);
4183 // Any other expression must be a pointer base.
4184 return SE
->getZero(P
->getType());
4187 const SCEV
*ScalarEvolution::getMinusSCEV(const SCEV
*LHS
, const SCEV
*RHS
,
4188 SCEV::NoWrapFlags Flags
,
4190 // Fast path: X - X --> 0.
4192 return getZero(LHS
->getType());
4194 // If we subtract two pointers with different pointer bases, bail.
4195 // Eventually, we're going to add an assertion to getMulExpr that we
4196 // can't multiply by a pointer.
4197 if (RHS
->getType()->isPointerTy()) {
4198 if (!LHS
->getType()->isPointerTy() ||
4199 getPointerBase(LHS
) != getPointerBase(RHS
))
4200 return getCouldNotCompute();
4201 LHS
= removePointerBase(this, LHS
);
4202 RHS
= removePointerBase(this, RHS
);
4205 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4206 // makes it so that we cannot make much use of NUW.
4207 auto AddFlags
= SCEV::FlagAnyWrap
;
4208 const bool RHSIsNotMinSigned
=
4209 !getSignedRangeMin(RHS
).isMinSignedValue();
4210 if (maskFlags(Flags
, SCEV::FlagNSW
) == SCEV::FlagNSW
) {
4211 // Let M be the minimum representable signed value. Then (-1)*RHS
4212 // signed-wraps if and only if RHS is M. That can happen even for
4213 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4214 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4215 // (-1)*RHS, we need to prove that RHS != M.
4217 // If LHS is non-negative and we know that LHS - RHS does not
4218 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4219 // either by proving that RHS > M or that LHS >= 0.
4220 if (RHSIsNotMinSigned
|| isKnownNonNegative(LHS
)) {
4221 AddFlags
= SCEV::FlagNSW
;
4225 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4226 // RHS is NSW and LHS >= 0.
4228 // The difficulty here is that the NSW flag may have been proven
4229 // relative to a loop that is to be found in a recurrence in LHS and
4230 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4231 // larger scope than intended.
4232 auto NegFlags
= RHSIsNotMinSigned
? SCEV::FlagNSW
: SCEV::FlagAnyWrap
;
4234 return getAddExpr(LHS
, getNegativeSCEV(RHS
, NegFlags
), AddFlags
, Depth
);
4237 const SCEV
*ScalarEvolution::getTruncateOrZeroExtend(const SCEV
*V
, Type
*Ty
,
4239 Type
*SrcTy
= V
->getType();
4240 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4241 "Cannot truncate or zero extend with non-integer arguments!");
4242 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4243 return V
; // No conversion
4244 if (getTypeSizeInBits(SrcTy
) > getTypeSizeInBits(Ty
))
4245 return getTruncateExpr(V
, Ty
, Depth
);
4246 return getZeroExtendExpr(V
, Ty
, Depth
);
4249 const SCEV
*ScalarEvolution::getTruncateOrSignExtend(const SCEV
*V
, Type
*Ty
,
4251 Type
*SrcTy
= V
->getType();
4252 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4253 "Cannot truncate or zero extend with non-integer arguments!");
4254 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4255 return V
; // No conversion
4256 if (getTypeSizeInBits(SrcTy
) > getTypeSizeInBits(Ty
))
4257 return getTruncateExpr(V
, Ty
, Depth
);
4258 return getSignExtendExpr(V
, Ty
, Depth
);
4262 ScalarEvolution::getNoopOrZeroExtend(const SCEV
*V
, Type
*Ty
) {
4263 Type
*SrcTy
= V
->getType();
4264 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4265 "Cannot noop or zero extend with non-integer arguments!");
4266 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
4267 "getNoopOrZeroExtend cannot truncate!");
4268 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4269 return V
; // No conversion
4270 return getZeroExtendExpr(V
, Ty
);
4274 ScalarEvolution::getNoopOrSignExtend(const SCEV
*V
, Type
*Ty
) {
4275 Type
*SrcTy
= V
->getType();
4276 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4277 "Cannot noop or sign extend with non-integer arguments!");
4278 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
4279 "getNoopOrSignExtend cannot truncate!");
4280 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4281 return V
; // No conversion
4282 return getSignExtendExpr(V
, Ty
);
4286 ScalarEvolution::getNoopOrAnyExtend(const SCEV
*V
, Type
*Ty
) {
4287 Type
*SrcTy
= V
->getType();
4288 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4289 "Cannot noop or any extend with non-integer arguments!");
4290 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
4291 "getNoopOrAnyExtend cannot truncate!");
4292 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4293 return V
; // No conversion
4294 return getAnyExtendExpr(V
, Ty
);
4298 ScalarEvolution::getTruncateOrNoop(const SCEV
*V
, Type
*Ty
) {
4299 Type
*SrcTy
= V
->getType();
4300 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4301 "Cannot truncate or noop with non-integer arguments!");
4302 assert(getTypeSizeInBits(SrcTy
) >= getTypeSizeInBits(Ty
) &&
4303 "getTruncateOrNoop cannot extend!");
4304 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4305 return V
; // No conversion
4306 return getTruncateExpr(V
, Ty
);
4309 const SCEV
*ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV
*LHS
,
4311 const SCEV
*PromotedLHS
= LHS
;
4312 const SCEV
*PromotedRHS
= RHS
;
4314 if (getTypeSizeInBits(LHS
->getType()) > getTypeSizeInBits(RHS
->getType()))
4315 PromotedRHS
= getZeroExtendExpr(RHS
, LHS
->getType());
4317 PromotedLHS
= getNoopOrZeroExtend(LHS
, RHS
->getType());
4319 return getUMaxExpr(PromotedLHS
, PromotedRHS
);
4322 const SCEV
*ScalarEvolution::getUMinFromMismatchedTypes(const SCEV
*LHS
,
4324 SmallVector
<const SCEV
*, 2> Ops
= { LHS
, RHS
};
4325 return getUMinFromMismatchedTypes(Ops
);
4328 const SCEV
*ScalarEvolution::getUMinFromMismatchedTypes(
4329 SmallVectorImpl
<const SCEV
*> &Ops
) {
4330 assert(!Ops
.empty() && "At least one operand must be!");
4332 if (Ops
.size() == 1)
4335 // Find the max type first.
4336 Type
*MaxType
= nullptr;
4339 MaxType
= getWiderType(MaxType
, S
->getType());
4341 MaxType
= S
->getType();
4342 assert(MaxType
&& "Failed to find maximum type!");
4344 // Extend all ops to max type.
4345 SmallVector
<const SCEV
*, 2> PromotedOps
;
4347 PromotedOps
.push_back(getNoopOrZeroExtend(S
, MaxType
));
4350 return getUMinExpr(PromotedOps
);
4353 const SCEV
*ScalarEvolution::getPointerBase(const SCEV
*V
) {
4354 // A pointer operand may evaluate to a nonpointer expression, such as null.
4355 if (!V
->getType()->isPointerTy())
4359 if (auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(V
)) {
4360 V
= AddRec
->getStart();
4361 } else if (auto *Add
= dyn_cast
<SCEVAddExpr
>(V
)) {
4362 const SCEV
*PtrOp
= nullptr;
4363 for (const SCEV
*AddOp
: Add
->operands()) {
4364 if (AddOp
->getType()->isPointerTy()) {
4365 // Cannot find the base of an expression with multiple pointer ops.
4371 if (!PtrOp
) // All operands were non-pointer.
4374 } else // Not something we can look further into.
4379 /// Push users of the given Instruction onto the given Worklist.
4381 PushDefUseChildren(Instruction
*I
,
4382 SmallVectorImpl
<Instruction
*> &Worklist
) {
4383 // Push the def-use children onto the Worklist stack.
4384 for (User
*U
: I
->users())
4385 Worklist
.push_back(cast
<Instruction
>(U
));
4388 void ScalarEvolution::forgetSymbolicName(Instruction
*PN
, const SCEV
*SymName
) {
4389 SmallVector
<Instruction
*, 16> Worklist
;
4390 PushDefUseChildren(PN
, Worklist
);
4392 SmallPtrSet
<Instruction
*, 8> Visited
;
4394 while (!Worklist
.empty()) {
4395 Instruction
*I
= Worklist
.pop_back_val();
4396 if (!Visited
.insert(I
).second
)
4399 auto It
= ValueExprMap
.find_as(static_cast<Value
*>(I
));
4400 if (It
!= ValueExprMap
.end()) {
4401 const SCEV
*Old
= It
->second
;
4403 // Short-circuit the def-use traversal if the symbolic name
4404 // ceases to appear in expressions.
4405 if (Old
!= SymName
&& !hasOperand(Old
, SymName
))
4408 // SCEVUnknown for a PHI either means that it has an unrecognized
4409 // structure, it's a PHI that's in the progress of being computed
4410 // by createNodeForPHI, or it's a single-value PHI. In the first case,
4411 // additional loop trip count information isn't going to change anything.
4412 // In the second case, createNodeForPHI will perform the necessary
4413 // updates on its own when it gets to that point. In the third, we do
4414 // want to forget the SCEVUnknown.
4415 if (!isa
<PHINode
>(I
) ||
4416 !isa
<SCEVUnknown
>(Old
) ||
4417 (I
!= PN
&& Old
== SymName
)) {
4418 eraseValueFromMap(It
->first
);
4419 forgetMemoizedResults(Old
);
4423 PushDefUseChildren(I
, Worklist
);
4429 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4430 /// expression in case its Loop is L. If it is not L then
4431 /// if IgnoreOtherLoops is true then use AddRec itself
4432 /// otherwise rewrite cannot be done.
4433 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4434 class SCEVInitRewriter
: public SCEVRewriteVisitor
<SCEVInitRewriter
> {
4436 static const SCEV
*rewrite(const SCEV
*S
, const Loop
*L
, ScalarEvolution
&SE
,
4437 bool IgnoreOtherLoops
= true) {
4438 SCEVInitRewriter
Rewriter(L
, SE
);
4439 const SCEV
*Result
= Rewriter
.visit(S
);
4440 if (Rewriter
.hasSeenLoopVariantSCEVUnknown())
4441 return SE
.getCouldNotCompute();
4442 return Rewriter
.hasSeenOtherLoops() && !IgnoreOtherLoops
4443 ? SE
.getCouldNotCompute()
4447 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
4448 if (!SE
.isLoopInvariant(Expr
, L
))
4449 SeenLoopVariantSCEVUnknown
= true;
4453 const SCEV
*visitAddRecExpr(const SCEVAddRecExpr
*Expr
) {
4454 // Only re-write AddRecExprs for this loop.
4455 if (Expr
->getLoop() == L
)
4456 return Expr
->getStart();
4457 SeenOtherLoops
= true;
4461 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown
; }
4463 bool hasSeenOtherLoops() { return SeenOtherLoops
; }
4466 explicit SCEVInitRewriter(const Loop
*L
, ScalarEvolution
&SE
)
4467 : SCEVRewriteVisitor(SE
), L(L
) {}
4470 bool SeenLoopVariantSCEVUnknown
= false;
4471 bool SeenOtherLoops
= false;
4474 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4475 /// increment expression in case its Loop is L. If it is not L then
4476 /// use AddRec itself.
4477 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4478 class SCEVPostIncRewriter
: public SCEVRewriteVisitor
<SCEVPostIncRewriter
> {
4480 static const SCEV
*rewrite(const SCEV
*S
, const Loop
*L
, ScalarEvolution
&SE
) {
4481 SCEVPostIncRewriter
Rewriter(L
, SE
);
4482 const SCEV
*Result
= Rewriter
.visit(S
);
4483 return Rewriter
.hasSeenLoopVariantSCEVUnknown()
4484 ? SE
.getCouldNotCompute()
4488 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
4489 if (!SE
.isLoopInvariant(Expr
, L
))
4490 SeenLoopVariantSCEVUnknown
= true;
4494 const SCEV
*visitAddRecExpr(const SCEVAddRecExpr
*Expr
) {
4495 // Only re-write AddRecExprs for this loop.
4496 if (Expr
->getLoop() == L
)
4497 return Expr
->getPostIncExpr(SE
);
4498 SeenOtherLoops
= true;
4502 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown
; }
4504 bool hasSeenOtherLoops() { return SeenOtherLoops
; }
4507 explicit SCEVPostIncRewriter(const Loop
*L
, ScalarEvolution
&SE
)
4508 : SCEVRewriteVisitor(SE
), L(L
) {}
4511 bool SeenLoopVariantSCEVUnknown
= false;
4512 bool SeenOtherLoops
= false;
4515 /// This class evaluates the compare condition by matching it against the
4516 /// condition of loop latch. If there is a match we assume a true value
4517 /// for the condition while building SCEV nodes.
4518 class SCEVBackedgeConditionFolder
4519 : public SCEVRewriteVisitor
<SCEVBackedgeConditionFolder
> {
4521 static const SCEV
*rewrite(const SCEV
*S
, const Loop
*L
,
4522 ScalarEvolution
&SE
) {
4523 bool IsPosBECond
= false;
4524 Value
*BECond
= nullptr;
4525 if (BasicBlock
*Latch
= L
->getLoopLatch()) {
4526 BranchInst
*BI
= dyn_cast
<BranchInst
>(Latch
->getTerminator());
4527 if (BI
&& BI
->isConditional()) {
4528 assert(BI
->getSuccessor(0) != BI
->getSuccessor(1) &&
4529 "Both outgoing branches should not target same header!");
4530 BECond
= BI
->getCondition();
4531 IsPosBECond
= BI
->getSuccessor(0) == L
->getHeader();
4536 SCEVBackedgeConditionFolder
Rewriter(L
, BECond
, IsPosBECond
, SE
);
4537 return Rewriter
.visit(S
);
4540 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
4541 const SCEV
*Result
= Expr
;
4542 bool InvariantF
= SE
.isLoopInvariant(Expr
, L
);
4545 Instruction
*I
= cast
<Instruction
>(Expr
->getValue());
4546 switch (I
->getOpcode()) {
4547 case Instruction::Select
: {
4548 SelectInst
*SI
= cast
<SelectInst
>(I
);
4549 Optional
<const SCEV
*> Res
=
4550 compareWithBackedgeCondition(SI
->getCondition());
4551 if (Res
.hasValue()) {
4552 bool IsOne
= cast
<SCEVConstant
>(Res
.getValue())->getValue()->isOne();
4553 Result
= SE
.getSCEV(IsOne
? SI
->getTrueValue() : SI
->getFalseValue());
4558 Optional
<const SCEV
*> Res
= compareWithBackedgeCondition(I
);
4560 Result
= Res
.getValue();
4569 explicit SCEVBackedgeConditionFolder(const Loop
*L
, Value
*BECond
,
4570 bool IsPosBECond
, ScalarEvolution
&SE
)
4571 : SCEVRewriteVisitor(SE
), L(L
), BackedgeCond(BECond
),
4572 IsPositiveBECond(IsPosBECond
) {}
4574 Optional
<const SCEV
*> compareWithBackedgeCondition(Value
*IC
);
4577 /// Loop back condition.
4578 Value
*BackedgeCond
= nullptr;
4579 /// Set to true if loop back is on positive branch condition.
4580 bool IsPositiveBECond
;
4583 Optional
<const SCEV
*>
4584 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value
*IC
) {
4586 // If value matches the backedge condition for loop latch,
4587 // then return a constant evolution node based on loopback
4589 if (BackedgeCond
== IC
)
4590 return IsPositiveBECond
? SE
.getOne(Type::getInt1Ty(SE
.getContext()))
4591 : SE
.getZero(Type::getInt1Ty(SE
.getContext()));
4595 class SCEVShiftRewriter
: public SCEVRewriteVisitor
<SCEVShiftRewriter
> {
4597 static const SCEV
*rewrite(const SCEV
*S
, const Loop
*L
,
4598 ScalarEvolution
&SE
) {
4599 SCEVShiftRewriter
Rewriter(L
, SE
);
4600 const SCEV
*Result
= Rewriter
.visit(S
);
4601 return Rewriter
.isValid() ? Result
: SE
.getCouldNotCompute();
4604 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
4605 // Only allow AddRecExprs for this loop.
4606 if (!SE
.isLoopInvariant(Expr
, L
))
4611 const SCEV
*visitAddRecExpr(const SCEVAddRecExpr
*Expr
) {
4612 if (Expr
->getLoop() == L
&& Expr
->isAffine())
4613 return SE
.getMinusSCEV(Expr
, Expr
->getStepRecurrence(SE
));
4618 bool isValid() { return Valid
; }
4621 explicit SCEVShiftRewriter(const Loop
*L
, ScalarEvolution
&SE
)
4622 : SCEVRewriteVisitor(SE
), L(L
) {}
4628 } // end anonymous namespace
4631 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr
*AR
) {
4632 if (!AR
->isAffine())
4633 return SCEV::FlagAnyWrap
;
4635 using OBO
= OverflowingBinaryOperator
;
4637 SCEV::NoWrapFlags Result
= SCEV::FlagAnyWrap
;
4639 if (!AR
->hasNoSignedWrap()) {
4640 ConstantRange AddRecRange
= getSignedRange(AR
);
4641 ConstantRange IncRange
= getSignedRange(AR
->getStepRecurrence(*this));
4643 auto NSWRegion
= ConstantRange::makeGuaranteedNoWrapRegion(
4644 Instruction::Add
, IncRange
, OBO::NoSignedWrap
);
4645 if (NSWRegion
.contains(AddRecRange
))
4646 Result
= ScalarEvolution::setFlags(Result
, SCEV::FlagNSW
);
4649 if (!AR
->hasNoUnsignedWrap()) {
4650 ConstantRange AddRecRange
= getUnsignedRange(AR
);
4651 ConstantRange IncRange
= getUnsignedRange(AR
->getStepRecurrence(*this));
4653 auto NUWRegion
= ConstantRange::makeGuaranteedNoWrapRegion(
4654 Instruction::Add
, IncRange
, OBO::NoUnsignedWrap
);
4655 if (NUWRegion
.contains(AddRecRange
))
4656 Result
= ScalarEvolution::setFlags(Result
, SCEV::FlagNUW
);
4663 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr
*AR
) {
4664 SCEV::NoWrapFlags Result
= AR
->getNoWrapFlags();
4666 if (AR
->hasNoSignedWrap())
4669 if (!AR
->isAffine())
4672 const SCEV
*Step
= AR
->getStepRecurrence(*this);
4673 const Loop
*L
= AR
->getLoop();
4675 // Check whether the backedge-taken count is SCEVCouldNotCompute.
4676 // Note that this serves two purposes: It filters out loops that are
4677 // simply not analyzable, and it covers the case where this code is
4678 // being called from within backedge-taken count analysis, such that
4679 // attempting to ask for the backedge-taken count would likely result
4680 // in infinite recursion. In the later case, the analysis code will
4681 // cope with a conservative value, and it will take care to purge
4682 // that value once it has finished.
4683 const SCEV
*MaxBECount
= getConstantMaxBackedgeTakenCount(L
);
4685 // Normally, in the cases we can prove no-overflow via a
4686 // backedge guarding condition, we can also compute a backedge
4687 // taken count for the loop. The exceptions are assumptions and
4688 // guards present in the loop -- SCEV is not great at exploiting
4689 // these to compute max backedge taken counts, but can still use
4690 // these to prove lack of overflow. Use this fact to avoid
4691 // doing extra work that may not pay off.
4693 if (isa
<SCEVCouldNotCompute
>(MaxBECount
) && !HasGuards
&&
4694 AC
.assumptions().empty())
4697 // If the backedge is guarded by a comparison with the pre-inc value the
4698 // addrec is safe. Also, if the entry is guarded by a comparison with the
4699 // start value and the backedge is guarded by a comparison with the post-inc
4700 // value, the addrec is safe.
4701 ICmpInst::Predicate Pred
;
4702 const SCEV
*OverflowLimit
=
4703 getSignedOverflowLimitForStep(Step
, &Pred
, this);
4704 if (OverflowLimit
&&
4705 (isLoopBackedgeGuardedByCond(L
, Pred
, AR
, OverflowLimit
) ||
4706 isKnownOnEveryIteration(Pred
, AR
, OverflowLimit
))) {
4707 Result
= setFlags(Result
, SCEV::FlagNSW
);
4712 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr
*AR
) {
4713 SCEV::NoWrapFlags Result
= AR
->getNoWrapFlags();
4715 if (AR
->hasNoUnsignedWrap())
4718 if (!AR
->isAffine())
4721 const SCEV
*Step
= AR
->getStepRecurrence(*this);
4722 unsigned BitWidth
= getTypeSizeInBits(AR
->getType());
4723 const Loop
*L
= AR
->getLoop();
4725 // Check whether the backedge-taken count is SCEVCouldNotCompute.
4726 // Note that this serves two purposes: It filters out loops that are
4727 // simply not analyzable, and it covers the case where this code is
4728 // being called from within backedge-taken count analysis, such that
4729 // attempting to ask for the backedge-taken count would likely result
4730 // in infinite recursion. In the later case, the analysis code will
4731 // cope with a conservative value, and it will take care to purge
4732 // that value once it has finished.
4733 const SCEV
*MaxBECount
= getConstantMaxBackedgeTakenCount(L
);
4735 // Normally, in the cases we can prove no-overflow via a
4736 // backedge guarding condition, we can also compute a backedge
4737 // taken count for the loop. The exceptions are assumptions and
4738 // guards present in the loop -- SCEV is not great at exploiting
4739 // these to compute max backedge taken counts, but can still use
4740 // these to prove lack of overflow. Use this fact to avoid
4741 // doing extra work that may not pay off.
4743 if (isa
<SCEVCouldNotCompute
>(MaxBECount
) && !HasGuards
&&
4744 AC
.assumptions().empty())
4747 // If the backedge is guarded by a comparison with the pre-inc value the
4748 // addrec is safe. Also, if the entry is guarded by a comparison with the
4749 // start value and the backedge is guarded by a comparison with the post-inc
4750 // value, the addrec is safe.
4751 if (isKnownPositive(Step
)) {
4752 const SCEV
*N
= getConstant(APInt::getMinValue(BitWidth
) -
4753 getUnsignedRangeMax(Step
));
4754 if (isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_ULT
, AR
, N
) ||
4755 isKnownOnEveryIteration(ICmpInst::ICMP_ULT
, AR
, N
)) {
4756 Result
= setFlags(Result
, SCEV::FlagNUW
);
4765 /// Represents an abstract binary operation. This may exist as a
4766 /// normal instruction or constant expression, or may have been
4767 /// derived from an expression tree.
4775 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4776 /// constant expression.
4777 Operator
*Op
= nullptr;
4779 explicit BinaryOp(Operator
*Op
)
4780 : Opcode(Op
->getOpcode()), LHS(Op
->getOperand(0)), RHS(Op
->getOperand(1)),
4782 if (auto *OBO
= dyn_cast
<OverflowingBinaryOperator
>(Op
)) {
4783 IsNSW
= OBO
->hasNoSignedWrap();
4784 IsNUW
= OBO
->hasNoUnsignedWrap();
4788 explicit BinaryOp(unsigned Opcode
, Value
*LHS
, Value
*RHS
, bool IsNSW
= false,
4790 : Opcode(Opcode
), LHS(LHS
), RHS(RHS
), IsNSW(IsNSW
), IsNUW(IsNUW
) {}
4793 } // end anonymous namespace
4795 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4796 static Optional
<BinaryOp
> MatchBinaryOp(Value
*V
, DominatorTree
&DT
) {
4797 auto *Op
= dyn_cast
<Operator
>(V
);
4801 // Implementation detail: all the cleverness here should happen without
4802 // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4803 // SCEV expressions when possible, and we should not break that.
4805 switch (Op
->getOpcode()) {
4806 case Instruction::Add
:
4807 case Instruction::Sub
:
4808 case Instruction::Mul
:
4809 case Instruction::UDiv
:
4810 case Instruction::URem
:
4811 case Instruction::And
:
4812 case Instruction::Or
:
4813 case Instruction::AShr
:
4814 case Instruction::Shl
:
4815 return BinaryOp(Op
);
4817 case Instruction::Xor
:
4818 if (auto *RHSC
= dyn_cast
<ConstantInt
>(Op
->getOperand(1)))
4819 // If the RHS of the xor is a signmask, then this is just an add.
4820 // Instcombine turns add of signmask into xor as a strength reduction step.
4821 if (RHSC
->getValue().isSignMask())
4822 return BinaryOp(Instruction::Add
, Op
->getOperand(0), Op
->getOperand(1));
4823 return BinaryOp(Op
);
4825 case Instruction::LShr
:
4826 // Turn logical shift right of a constant into a unsigned divide.
4827 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(Op
->getOperand(1))) {
4828 uint32_t BitWidth
= cast
<IntegerType
>(Op
->getType())->getBitWidth();
4830 // If the shift count is not less than the bitwidth, the result of
4831 // the shift is undefined. Don't try to analyze it, because the
4832 // resolution chosen here may differ from the resolution chosen in
4833 // other parts of the compiler.
4834 if (SA
->getValue().ult(BitWidth
)) {
4836 ConstantInt::get(SA
->getContext(),
4837 APInt::getOneBitSet(BitWidth
, SA
->getZExtValue()));
4838 return BinaryOp(Instruction::UDiv
, Op
->getOperand(0), X
);
4841 return BinaryOp(Op
);
4843 case Instruction::ExtractValue
: {
4844 auto *EVI
= cast
<ExtractValueInst
>(Op
);
4845 if (EVI
->getNumIndices() != 1 || EVI
->getIndices()[0] != 0)
4848 auto *WO
= dyn_cast
<WithOverflowInst
>(EVI
->getAggregateOperand());
4852 Instruction::BinaryOps BinOp
= WO
->getBinaryOp();
4853 bool Signed
= WO
->isSigned();
4854 // TODO: Should add nuw/nsw flags for mul as well.
4855 if (BinOp
== Instruction::Mul
|| !isOverflowIntrinsicNoWrap(WO
, DT
))
4856 return BinaryOp(BinOp
, WO
->getLHS(), WO
->getRHS());
4858 // Now that we know that all uses of the arithmetic-result component of
4859 // CI are guarded by the overflow check, we can go ahead and pretend
4860 // that the arithmetic is non-overflowing.
4861 return BinaryOp(BinOp
, WO
->getLHS(), WO
->getRHS(),
4862 /* IsNSW = */ Signed
, /* IsNUW = */ !Signed
);
4869 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4870 // semantics as a Sub, return a binary sub expression.
4871 if (auto *II
= dyn_cast
<IntrinsicInst
>(V
))
4872 if (II
->getIntrinsicID() == Intrinsic::loop_decrement_reg
)
4873 return BinaryOp(Instruction::Sub
, II
->getOperand(0), II
->getOperand(1));
4878 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4879 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4880 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4881 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4882 /// follows one of the following patterns:
4883 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4884 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4885 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4886 /// we return the type of the truncation operation, and indicate whether the
4887 /// truncated type should be treated as signed/unsigned by setting
4888 /// \p Signed to true/false, respectively.
4889 static Type
*isSimpleCastedPHI(const SCEV
*Op
, const SCEVUnknown
*SymbolicPHI
,
4890 bool &Signed
, ScalarEvolution
&SE
) {
4891 // The case where Op == SymbolicPHI (that is, with no type conversions on
4892 // the way) is handled by the regular add recurrence creating logic and
4893 // would have already been triggered in createAddRecForPHI. Reaching it here
4894 // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4895 // because one of the other operands of the SCEVAddExpr updating this PHI is
4898 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4899 // this case predicates that allow us to prove that Op == SymbolicPHI will
4901 if (Op
== SymbolicPHI
)
4904 unsigned SourceBits
= SE
.getTypeSizeInBits(SymbolicPHI
->getType());
4905 unsigned NewBits
= SE
.getTypeSizeInBits(Op
->getType());
4906 if (SourceBits
!= NewBits
)
4909 const SCEVSignExtendExpr
*SExt
= dyn_cast
<SCEVSignExtendExpr
>(Op
);
4910 const SCEVZeroExtendExpr
*ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(Op
);
4913 const SCEVTruncateExpr
*Trunc
=
4914 SExt
? dyn_cast
<SCEVTruncateExpr
>(SExt
->getOperand())
4915 : dyn_cast
<SCEVTruncateExpr
>(ZExt
->getOperand());
4918 const SCEV
*X
= Trunc
->getOperand();
4919 if (X
!= SymbolicPHI
)
4921 Signed
= SExt
!= nullptr;
4922 return Trunc
->getType();
4925 static const Loop
*isIntegerLoopHeaderPHI(const PHINode
*PN
, LoopInfo
&LI
) {
4926 if (!PN
->getType()->isIntegerTy())
4928 const Loop
*L
= LI
.getLoopFor(PN
->getParent());
4929 if (!L
|| L
->getHeader() != PN
->getParent())
4934 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4935 // computation that updates the phi follows the following pattern:
4936 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4937 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4938 // If so, try to see if it can be rewritten as an AddRecExpr under some
4939 // Predicates. If successful, return them as a pair. Also cache the results
4942 // Example usage scenario:
4943 // Say the Rewriter is called for the following SCEV:
4944 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4946 // %X = phi i64 (%Start, %BEValue)
4947 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4948 // and call this function with %SymbolicPHI = %X.
4950 // The analysis will find that the value coming around the backedge has
4951 // the following SCEV:
4952 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4953 // Upon concluding that this matches the desired pattern, the function
4954 // will return the pair {NewAddRec, SmallPredsVec} where:
4955 // NewAddRec = {%Start,+,%Step}
4956 // SmallPredsVec = {P1, P2, P3} as follows:
4957 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4958 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4959 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4960 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4961 // under the predicates {P1,P2,P3}.
4962 // This predicated rewrite will be cached in PredicatedSCEVRewrites:
4963 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4967 // 1) Extend the Induction descriptor to also support inductions that involve
4968 // casts: When needed (namely, when we are called in the context of the
4969 // vectorizer induction analysis), a Set of cast instructions will be
4970 // populated by this method, and provided back to isInductionPHI. This is
4971 // needed to allow the vectorizer to properly record them to be ignored by
4972 // the cost model and to avoid vectorizing them (otherwise these casts,
4973 // which are redundant under the runtime overflow checks, will be
4974 // vectorized, which can be costly).
4976 // 2) Support additional induction/PHISCEV patterns: We also want to support
4977 // inductions where the sext-trunc / zext-trunc operations (partly) occur
4978 // after the induction update operation (the induction increment):
4980 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4981 // which correspond to a phi->add->trunc->sext/zext->phi update chain.
4983 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4984 // which correspond to a phi->trunc->add->sext/zext->phi update chain.
4986 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4987 Optional
<std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>>>
4988 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown
*SymbolicPHI
) {
4989 SmallVector
<const SCEVPredicate
*, 3> Predicates
;
4991 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4992 // return an AddRec expression under some predicate.
4994 auto *PN
= cast
<PHINode
>(SymbolicPHI
->getValue());
4995 const Loop
*L
= isIntegerLoopHeaderPHI(PN
, LI
);
4996 assert(L
&& "Expecting an integer loop header phi");
4998 // The loop may have multiple entrances or multiple exits; we can analyze
4999 // this phi as an addrec if it has a unique entry value and a unique
5001 Value
*BEValueV
= nullptr, *StartValueV
= nullptr;
5002 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
5003 Value
*V
= PN
->getIncomingValue(i
);
5004 if (L
->contains(PN
->getIncomingBlock(i
))) {
5007 } else if (BEValueV
!= V
) {
5011 } else if (!StartValueV
) {
5013 } else if (StartValueV
!= V
) {
5014 StartValueV
= nullptr;
5018 if (!BEValueV
|| !StartValueV
)
5021 const SCEV
*BEValue
= getSCEV(BEValueV
);
5023 // If the value coming around the backedge is an add with the symbolic
5024 // value we just inserted, possibly with casts that we can ignore under
5025 // an appropriate runtime guard, then we found a simple induction variable!
5026 const auto *Add
= dyn_cast
<SCEVAddExpr
>(BEValue
);
5030 // If there is a single occurrence of the symbolic value, possibly
5031 // casted, replace it with a recurrence.
5032 unsigned FoundIndex
= Add
->getNumOperands();
5033 Type
*TruncTy
= nullptr;
5035 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
5037 isSimpleCastedPHI(Add
->getOperand(i
), SymbolicPHI
, Signed
, *this)))
5038 if (FoundIndex
== e
) {
5043 if (FoundIndex
== Add
->getNumOperands())
5046 // Create an add with everything but the specified operand.
5047 SmallVector
<const SCEV
*, 8> Ops
;
5048 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
5049 if (i
!= FoundIndex
)
5050 Ops
.push_back(Add
->getOperand(i
));
5051 const SCEV
*Accum
= getAddExpr(Ops
);
5053 // The runtime checks will not be valid if the step amount is
5054 // varying inside the loop.
5055 if (!isLoopInvariant(Accum
, L
))
5058 // *** Part2: Create the predicates
5060 // Analysis was successful: we have a phi-with-cast pattern for which we
5061 // can return an AddRec expression under the following predicates:
5063 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5064 // fits within the truncated type (does not overflow) for i = 0 to n-1.
5065 // P2: An Equal predicate that guarantees that
5066 // Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5067 // P3: An Equal predicate that guarantees that
5068 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5070 // As we next prove, the above predicates guarantee that:
5071 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5074 // More formally, we want to prove that:
5075 // Expr(i+1) = Start + (i+1) * Accum
5076 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5079 // 1) Expr(0) = Start
5080 // 2) Expr(1) = Start + Accum
5081 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5082 // 3) Induction hypothesis (step i):
5083 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5087 // = Start + (i+1)*Accum
5088 // = (Start + i*Accum) + Accum
5089 // = Expr(i) + Accum
5090 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5093 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5095 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5096 // + (Ext ix (Trunc iy (Accum) to ix) to iy)
5097 // + Accum :: from P3
5099 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5100 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5102 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5103 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5105 // By induction, the same applies to all iterations 1<=i<n:
5108 // Create a truncated addrec for which we will add a no overflow check (P1).
5109 const SCEV
*StartVal
= getSCEV(StartValueV
);
5110 const SCEV
*PHISCEV
=
5111 getAddRecExpr(getTruncateExpr(StartVal
, TruncTy
),
5112 getTruncateExpr(Accum
, TruncTy
), L
, SCEV::FlagAnyWrap
);
5114 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5115 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5116 // will be constant.
5118 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5120 if (const auto *AR
= dyn_cast
<SCEVAddRecExpr
>(PHISCEV
)) {
5121 SCEVWrapPredicate::IncrementWrapFlags AddedFlags
=
5122 Signed
? SCEVWrapPredicate::IncrementNSSW
5123 : SCEVWrapPredicate::IncrementNUSW
;
5124 const SCEVPredicate
*AddRecPred
= getWrapPredicate(AR
, AddedFlags
);
5125 Predicates
.push_back(AddRecPred
);
5128 // Create the Equal Predicates P2,P3:
5130 // It is possible that the predicates P2 and/or P3 are computable at
5131 // compile time due to StartVal and/or Accum being constants.
5132 // If either one is, then we can check that now and escape if either P2
5135 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5136 // for each of StartVal and Accum
5137 auto getExtendedExpr
= [&](const SCEV
*Expr
,
5138 bool CreateSignExtend
) -> const SCEV
* {
5139 assert(isLoopInvariant(Expr
, L
) && "Expr is expected to be invariant");
5140 const SCEV
*TruncatedExpr
= getTruncateExpr(Expr
, TruncTy
);
5141 const SCEV
*ExtendedExpr
=
5142 CreateSignExtend
? getSignExtendExpr(TruncatedExpr
, Expr
->getType())
5143 : getZeroExtendExpr(TruncatedExpr
, Expr
->getType());
5144 return ExtendedExpr
;
5148 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5149 // = getExtendedExpr(Expr)
5150 // Determine whether the predicate P: Expr == ExtendedExpr
5151 // is known to be false at compile time
5152 auto PredIsKnownFalse
= [&](const SCEV
*Expr
,
5153 const SCEV
*ExtendedExpr
) -> bool {
5154 return Expr
!= ExtendedExpr
&&
5155 isKnownPredicate(ICmpInst::ICMP_NE
, Expr
, ExtendedExpr
);
5158 const SCEV
*StartExtended
= getExtendedExpr(StartVal
, Signed
);
5159 if (PredIsKnownFalse(StartVal
, StartExtended
)) {
5160 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5164 // The Step is always Signed (because the overflow checks are either
5166 const SCEV
*AccumExtended
= getExtendedExpr(Accum
, /*CreateSignExtend=*/true);
5167 if (PredIsKnownFalse(Accum
, AccumExtended
)) {
5168 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5172 auto AppendPredicate
= [&](const SCEV
*Expr
,
5173 const SCEV
*ExtendedExpr
) -> void {
5174 if (Expr
!= ExtendedExpr
&&
5175 !isKnownPredicate(ICmpInst::ICMP_EQ
, Expr
, ExtendedExpr
)) {
5176 const SCEVPredicate
*Pred
= getEqualPredicate(Expr
, ExtendedExpr
);
5177 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred
);
5178 Predicates
.push_back(Pred
);
5182 AppendPredicate(StartVal
, StartExtended
);
5183 AppendPredicate(Accum
, AccumExtended
);
5185 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5186 // which the casts had been folded away. The caller can rewrite SymbolicPHI
5187 // into NewAR if it will also add the runtime overflow checks specified in
5189 auto *NewAR
= getAddRecExpr(StartVal
, Accum
, L
, SCEV::FlagAnyWrap
);
5191 std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>> PredRewrite
=
5192 std::make_pair(NewAR
, Predicates
);
5193 // Remember the result of the analysis for this SCEV at this locayyytion.
5194 PredicatedSCEVRewrites
[{SymbolicPHI
, L
}] = PredRewrite
;
5198 Optional
<std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>>>
5199 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown
*SymbolicPHI
) {
5200 auto *PN
= cast
<PHINode
>(SymbolicPHI
->getValue());
5201 const Loop
*L
= isIntegerLoopHeaderPHI(PN
, LI
);
5205 // Check to see if we already analyzed this PHI.
5206 auto I
= PredicatedSCEVRewrites
.find({SymbolicPHI
, L
});
5207 if (I
!= PredicatedSCEVRewrites
.end()) {
5208 std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>> Rewrite
=
5210 // Analysis was done before and failed to create an AddRec:
5211 if (Rewrite
.first
== SymbolicPHI
)
5213 // Analysis was done before and succeeded to create an AddRec under
5215 assert(isa
<SCEVAddRecExpr
>(Rewrite
.first
) && "Expected an AddRec");
5216 assert(!(Rewrite
.second
).empty() && "Expected to find Predicates");
5220 Optional
<std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>>>
5221 Rewrite
= createAddRecFromPHIWithCastsImpl(SymbolicPHI
);
5223 // Record in the cache that the analysis failed
5225 SmallVector
<const SCEVPredicate
*, 3> Predicates
;
5226 PredicatedSCEVRewrites
[{SymbolicPHI
, L
}] = {SymbolicPHI
, Predicates
};
5233 // FIXME: This utility is currently required because the Rewriter currently
5234 // does not rewrite this expression:
5235 // {0, +, (sext ix (trunc iy to ix) to iy)}
5236 // into {0, +, %step},
5237 // even when the following Equal predicate exists:
5238 // "%step == (sext ix (trunc iy to ix) to iy)".
5239 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5240 const SCEVAddRecExpr
*AR1
, const SCEVAddRecExpr
*AR2
) const {
5244 auto areExprsEqual
= [&](const SCEV
*Expr1
, const SCEV
*Expr2
) -> bool {
5245 if (Expr1
!= Expr2
&& !Preds
.implies(SE
.getEqualPredicate(Expr1
, Expr2
)) &&
5246 !Preds
.implies(SE
.getEqualPredicate(Expr2
, Expr1
)))
5251 if (!areExprsEqual(AR1
->getStart(), AR2
->getStart()) ||
5252 !areExprsEqual(AR1
->getStepRecurrence(SE
), AR2
->getStepRecurrence(SE
)))
5257 /// A helper function for createAddRecFromPHI to handle simple cases.
5259 /// This function tries to find an AddRec expression for the simplest (yet most
5260 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5261 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5262 /// technique for finding the AddRec expression.
5263 const SCEV
*ScalarEvolution::createSimpleAffineAddRec(PHINode
*PN
,
5265 Value
*StartValueV
) {
5266 const Loop
*L
= LI
.getLoopFor(PN
->getParent());
5267 assert(L
&& L
->getHeader() == PN
->getParent());
5268 assert(BEValueV
&& StartValueV
);
5270 auto BO
= MatchBinaryOp(BEValueV
, DT
);
5274 if (BO
->Opcode
!= Instruction::Add
)
5277 const SCEV
*Accum
= nullptr;
5278 if (BO
->LHS
== PN
&& L
->isLoopInvariant(BO
->RHS
))
5279 Accum
= getSCEV(BO
->RHS
);
5280 else if (BO
->RHS
== PN
&& L
->isLoopInvariant(BO
->LHS
))
5281 Accum
= getSCEV(BO
->LHS
);
5286 SCEV::NoWrapFlags Flags
= SCEV::FlagAnyWrap
;
5288 Flags
= setFlags(Flags
, SCEV::FlagNUW
);
5290 Flags
= setFlags(Flags
, SCEV::FlagNSW
);
5292 const SCEV
*StartVal
= getSCEV(StartValueV
);
5293 const SCEV
*PHISCEV
= getAddRecExpr(StartVal
, Accum
, L
, Flags
);
5295 ValueExprMap
[SCEVCallbackVH(PN
, this)] = PHISCEV
;
5297 // We can add Flags to the post-inc expression only if we
5298 // know that it is *undefined behavior* for BEValueV to
5300 if (auto *BEInst
= dyn_cast
<Instruction
>(BEValueV
))
5301 if (isLoopInvariant(Accum
, L
) && isAddRecNeverPoison(BEInst
, L
))
5302 (void)getAddRecExpr(getAddExpr(StartVal
, Accum
), Accum
, L
, Flags
);
5307 const SCEV
*ScalarEvolution::createAddRecFromPHI(PHINode
*PN
) {
5308 const Loop
*L
= LI
.getLoopFor(PN
->getParent());
5309 if (!L
|| L
->getHeader() != PN
->getParent())
5312 // The loop may have multiple entrances or multiple exits; we can analyze
5313 // this phi as an addrec if it has a unique entry value and a unique
5315 Value
*BEValueV
= nullptr, *StartValueV
= nullptr;
5316 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
5317 Value
*V
= PN
->getIncomingValue(i
);
5318 if (L
->contains(PN
->getIncomingBlock(i
))) {
5321 } else if (BEValueV
!= V
) {
5325 } else if (!StartValueV
) {
5327 } else if (StartValueV
!= V
) {
5328 StartValueV
= nullptr;
5332 if (!BEValueV
|| !StartValueV
)
5335 assert(ValueExprMap
.find_as(PN
) == ValueExprMap
.end() &&
5336 "PHI node already processed?");
5338 // First, try to find AddRec expression without creating a fictituos symbolic
5340 if (auto *S
= createSimpleAffineAddRec(PN
, BEValueV
, StartValueV
))
5343 // Handle PHI node value symbolically.
5344 const SCEV
*SymbolicName
= getUnknown(PN
);
5345 ValueExprMap
.insert({SCEVCallbackVH(PN
, this), SymbolicName
});
5347 // Using this symbolic name for the PHI, analyze the value coming around
5349 const SCEV
*BEValue
= getSCEV(BEValueV
);
5351 // NOTE: If BEValue is loop invariant, we know that the PHI node just
5352 // has a special value for the first iteration of the loop.
5354 // If the value coming around the backedge is an add with the symbolic
5355 // value we just inserted, then we found a simple induction variable!
5356 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(BEValue
)) {
5357 // If there is a single occurrence of the symbolic value, replace it
5358 // with a recurrence.
5359 unsigned FoundIndex
= Add
->getNumOperands();
5360 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
5361 if (Add
->getOperand(i
) == SymbolicName
)
5362 if (FoundIndex
== e
) {
5367 if (FoundIndex
!= Add
->getNumOperands()) {
5368 // Create an add with everything but the specified operand.
5369 SmallVector
<const SCEV
*, 8> Ops
;
5370 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
5371 if (i
!= FoundIndex
)
5372 Ops
.push_back(SCEVBackedgeConditionFolder::rewrite(Add
->getOperand(i
),
5374 const SCEV
*Accum
= getAddExpr(Ops
);
5376 // This is not a valid addrec if the step amount is varying each
5377 // loop iteration, but is not itself an addrec in this loop.
5378 if (isLoopInvariant(Accum
, L
) ||
5379 (isa
<SCEVAddRecExpr
>(Accum
) &&
5380 cast
<SCEVAddRecExpr
>(Accum
)->getLoop() == L
)) {
5381 SCEV::NoWrapFlags Flags
= SCEV::FlagAnyWrap
;
5383 if (auto BO
= MatchBinaryOp(BEValueV
, DT
)) {
5384 if (BO
->Opcode
== Instruction::Add
&& BO
->LHS
== PN
) {
5386 Flags
= setFlags(Flags
, SCEV::FlagNUW
);
5388 Flags
= setFlags(Flags
, SCEV::FlagNSW
);
5390 } else if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(BEValueV
)) {
5391 // If the increment is an inbounds GEP, then we know the address
5392 // space cannot be wrapped around. We cannot make any guarantee
5393 // about signed or unsigned overflow because pointers are
5394 // unsigned but we may have a negative index from the base
5395 // pointer. We can guarantee that no unsigned wrap occurs if the
5396 // indices form a positive value.
5397 if (GEP
->isInBounds() && GEP
->getOperand(0) == PN
) {
5398 Flags
= setFlags(Flags
, SCEV::FlagNW
);
5400 const SCEV
*Ptr
= getSCEV(GEP
->getPointerOperand());
5401 if (isKnownPositive(getMinusSCEV(getSCEV(GEP
), Ptr
)))
5402 Flags
= setFlags(Flags
, SCEV::FlagNUW
);
5405 // We cannot transfer nuw and nsw flags from subtraction
5406 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5410 const SCEV
*StartVal
= getSCEV(StartValueV
);
5411 const SCEV
*PHISCEV
= getAddRecExpr(StartVal
, Accum
, L
, Flags
);
5413 // Okay, for the entire analysis of this edge we assumed the PHI
5414 // to be symbolic. We now need to go back and purge all of the
5415 // entries for the scalars that use the symbolic expression.
5416 forgetSymbolicName(PN
, SymbolicName
);
5417 ValueExprMap
[SCEVCallbackVH(PN
, this)] = PHISCEV
;
5419 // We can add Flags to the post-inc expression only if we
5420 // know that it is *undefined behavior* for BEValueV to
5422 if (auto *BEInst
= dyn_cast
<Instruction
>(BEValueV
))
5423 if (isLoopInvariant(Accum
, L
) && isAddRecNeverPoison(BEInst
, L
))
5424 (void)getAddRecExpr(getAddExpr(StartVal
, Accum
), Accum
, L
, Flags
);
5430 // Otherwise, this could be a loop like this:
5431 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
5432 // In this case, j = {1,+,1} and BEValue is j.
5433 // Because the other in-value of i (0) fits the evolution of BEValue
5434 // i really is an addrec evolution.
5436 // We can generalize this saying that i is the shifted value of BEValue
5437 // by one iteration:
5438 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
5439 const SCEV
*Shifted
= SCEVShiftRewriter::rewrite(BEValue
, L
, *this);
5440 const SCEV
*Start
= SCEVInitRewriter::rewrite(Shifted
, L
, *this, false);
5441 if (Shifted
!= getCouldNotCompute() &&
5442 Start
!= getCouldNotCompute()) {
5443 const SCEV
*StartVal
= getSCEV(StartValueV
);
5444 if (Start
== StartVal
) {
5445 // Okay, for the entire analysis of this edge we assumed the PHI
5446 // to be symbolic. We now need to go back and purge all of the
5447 // entries for the scalars that use the symbolic expression.
5448 forgetSymbolicName(PN
, SymbolicName
);
5449 ValueExprMap
[SCEVCallbackVH(PN
, this)] = Shifted
;
5455 // Remove the temporary PHI node SCEV that has been inserted while intending
5456 // to create an AddRecExpr for this PHI node. We can not keep this temporary
5457 // as it will prevent later (possibly simpler) SCEV expressions to be added
5458 // to the ValueExprMap.
5459 eraseValueFromMap(PN
);
5464 // Checks if the SCEV S is available at BB. S is considered available at BB
5465 // if S can be materialized at BB without introducing a fault.
5466 static bool IsAvailableOnEntry(const Loop
*L
, DominatorTree
&DT
, const SCEV
*S
,
5468 struct CheckAvailable
{
5469 bool TraversalDone
= false;
5470 bool Available
= true;
5472 const Loop
*L
= nullptr; // The loop BB is in (can be nullptr)
5473 BasicBlock
*BB
= nullptr;
5476 CheckAvailable(const Loop
*L
, BasicBlock
*BB
, DominatorTree
&DT
)
5477 : L(L
), BB(BB
), DT(DT
) {}
5479 bool setUnavailable() {
5480 TraversalDone
= true;
5485 bool follow(const SCEV
*S
) {
5486 switch (S
->getSCEVType()) {
5498 // These expressions are available if their operand(s) is/are.
5501 case scAddRecExpr
: {
5502 // We allow add recurrences that are on the loop BB is in, or some
5503 // outer loop. This guarantees availability because the value of the
5504 // add recurrence at BB is simply the "current" value of the induction
5505 // variable. We can relax this in the future; for instance an add
5506 // recurrence on a sibling dominating loop is also available at BB.
5507 const auto *ARLoop
= cast
<SCEVAddRecExpr
>(S
)->getLoop();
5508 if (L
&& (ARLoop
== L
|| ARLoop
->contains(L
)))
5511 return setUnavailable();
5515 // For SCEVUnknown, we check for simple dominance.
5516 const auto *SU
= cast
<SCEVUnknown
>(S
);
5517 Value
*V
= SU
->getValue();
5519 if (isa
<Argument
>(V
))
5522 if (isa
<Instruction
>(V
) && DT
.dominates(cast
<Instruction
>(V
), BB
))
5525 return setUnavailable();
5529 case scCouldNotCompute
:
5530 // We do not try to smart about these at all.
5531 return setUnavailable();
5533 llvm_unreachable("Unknown SCEV kind!");
5536 bool isDone() { return TraversalDone
; }
5539 CheckAvailable
CA(L
, BB
, DT
);
5540 SCEVTraversal
<CheckAvailable
> ST(CA
);
5543 return CA
.Available
;
5546 // Try to match a control flow sequence that branches out at BI and merges back
5547 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
5549 static bool BrPHIToSelect(DominatorTree
&DT
, BranchInst
*BI
, PHINode
*Merge
,
5550 Value
*&C
, Value
*&LHS
, Value
*&RHS
) {
5551 C
= BI
->getCondition();
5553 BasicBlockEdge
LeftEdge(BI
->getParent(), BI
->getSuccessor(0));
5554 BasicBlockEdge
RightEdge(BI
->getParent(), BI
->getSuccessor(1));
5556 if (!LeftEdge
.isSingleEdge())
5559 assert(RightEdge
.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5561 Use
&LeftUse
= Merge
->getOperandUse(0);
5562 Use
&RightUse
= Merge
->getOperandUse(1);
5564 if (DT
.dominates(LeftEdge
, LeftUse
) && DT
.dominates(RightEdge
, RightUse
)) {
5570 if (DT
.dominates(LeftEdge
, RightUse
) && DT
.dominates(RightEdge
, LeftUse
)) {
5579 const SCEV
*ScalarEvolution::createNodeFromSelectLikePHI(PHINode
*PN
) {
5581 [&](BasicBlock
*BB
) { return DT
.isReachableFromEntry(BB
); };
5582 if (PN
->getNumIncomingValues() == 2 && all_of(PN
->blocks(), IsReachable
)) {
5583 const Loop
*L
= LI
.getLoopFor(PN
->getParent());
5585 // We don't want to break LCSSA, even in a SCEV expression tree.
5586 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
5587 if (LI
.getLoopFor(PN
->getIncomingBlock(i
)) != L
)
5592 // br %cond, label %left, label %right
5598 // V = phi [ %x, %left ], [ %y, %right ]
5600 // as "select %cond, %x, %y"
5602 BasicBlock
*IDom
= DT
[PN
->getParent()]->getIDom()->getBlock();
5603 assert(IDom
&& "At least the entry block should dominate PN");
5605 auto *BI
= dyn_cast
<BranchInst
>(IDom
->getTerminator());
5606 Value
*Cond
= nullptr, *LHS
= nullptr, *RHS
= nullptr;
5608 if (BI
&& BI
->isConditional() &&
5609 BrPHIToSelect(DT
, BI
, PN
, Cond
, LHS
, RHS
) &&
5610 IsAvailableOnEntry(L
, DT
, getSCEV(LHS
), PN
->getParent()) &&
5611 IsAvailableOnEntry(L
, DT
, getSCEV(RHS
), PN
->getParent()))
5612 return createNodeForSelectOrPHI(PN
, Cond
, LHS
, RHS
);
5618 const SCEV
*ScalarEvolution::createNodeForPHI(PHINode
*PN
) {
5619 if (const SCEV
*S
= createAddRecFromPHI(PN
))
5622 if (const SCEV
*S
= createNodeFromSelectLikePHI(PN
))
5625 // If the PHI has a single incoming value, follow that value, unless the
5626 // PHI's incoming blocks are in a different loop, in which case doing so
5627 // risks breaking LCSSA form. Instcombine would normally zap these, but
5628 // it doesn't have DominatorTree information, so it may miss cases.
5629 if (Value
*V
= SimplifyInstruction(PN
, {getDataLayout(), &TLI
, &DT
, &AC
}))
5630 if (LI
.replacementPreservesLCSSAForm(PN
, V
))
5633 // If it's not a loop phi, we can't handle it yet.
5634 return getUnknown(PN
);
5637 const SCEV
*ScalarEvolution::createNodeForSelectOrPHI(Instruction
*I
,
5641 // Handle "constant" branch or select. This can occur for instance when a
5642 // loop pass transforms an inner loop and moves on to process the outer loop.
5643 if (auto *CI
= dyn_cast
<ConstantInt
>(Cond
))
5644 return getSCEV(CI
->isOne() ? TrueVal
: FalseVal
);
5646 // Try to match some simple smax or umax patterns.
5647 auto *ICI
= dyn_cast
<ICmpInst
>(Cond
);
5649 return getUnknown(I
);
5651 Value
*LHS
= ICI
->getOperand(0);
5652 Value
*RHS
= ICI
->getOperand(1);
5654 switch (ICI
->getPredicate()) {
5655 case ICmpInst::ICMP_SLT
:
5656 case ICmpInst::ICMP_SLE
:
5657 case ICmpInst::ICMP_ULT
:
5658 case ICmpInst::ICMP_ULE
:
5659 std::swap(LHS
, RHS
);
5661 case ICmpInst::ICMP_SGT
:
5662 case ICmpInst::ICMP_SGE
:
5663 case ICmpInst::ICMP_UGT
:
5664 case ICmpInst::ICMP_UGE
:
5665 // a > b ? a+x : b+x -> max(a, b)+x
5666 // a > b ? b+x : a+x -> min(a, b)+x
5667 if (getTypeSizeInBits(LHS
->getType()) <= getTypeSizeInBits(I
->getType())) {
5668 bool Signed
= ICI
->isSigned();
5669 const SCEV
*LA
= getSCEV(TrueVal
);
5670 const SCEV
*RA
= getSCEV(FalseVal
);
5671 const SCEV
*LS
= getSCEV(LHS
);
5672 const SCEV
*RS
= getSCEV(RHS
);
5673 if (LA
->getType()->isPointerTy()) {
5674 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
5675 // Need to make sure we can't produce weird expressions involving
5676 // negated pointers.
5677 if (LA
== LS
&& RA
== RS
)
5678 return Signed
? getSMaxExpr(LS
, RS
) : getUMaxExpr(LS
, RS
);
5679 if (LA
== RS
&& RA
== LS
)
5680 return Signed
? getSMinExpr(LS
, RS
) : getUMinExpr(LS
, RS
);
5682 auto CoerceOperand
= [&](const SCEV
*Op
) -> const SCEV
* {
5683 if (Op
->getType()->isPointerTy()) {
5684 Op
= getLosslessPtrToIntExpr(Op
);
5685 if (isa
<SCEVCouldNotCompute
>(Op
))
5689 Op
= getNoopOrSignExtend(Op
, I
->getType());
5691 Op
= getNoopOrZeroExtend(Op
, I
->getType());
5694 LS
= CoerceOperand(LS
);
5695 RS
= CoerceOperand(RS
);
5696 if (isa
<SCEVCouldNotCompute
>(LS
) || isa
<SCEVCouldNotCompute
>(RS
))
5698 const SCEV
*LDiff
= getMinusSCEV(LA
, LS
);
5699 const SCEV
*RDiff
= getMinusSCEV(RA
, RS
);
5701 return getAddExpr(Signed
? getSMaxExpr(LS
, RS
) : getUMaxExpr(LS
, RS
),
5703 LDiff
= getMinusSCEV(LA
, RS
);
5704 RDiff
= getMinusSCEV(RA
, LS
);
5706 return getAddExpr(Signed
? getSMinExpr(LS
, RS
) : getUMinExpr(LS
, RS
),
5710 case ICmpInst::ICMP_NE
:
5711 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
5712 if (getTypeSizeInBits(LHS
->getType()) <= getTypeSizeInBits(I
->getType()) &&
5713 isa
<ConstantInt
>(RHS
) && cast
<ConstantInt
>(RHS
)->isZero()) {
5714 const SCEV
*One
= getOne(I
->getType());
5715 const SCEV
*LS
= getNoopOrZeroExtend(getSCEV(LHS
), I
->getType());
5716 const SCEV
*LA
= getSCEV(TrueVal
);
5717 const SCEV
*RA
= getSCEV(FalseVal
);
5718 const SCEV
*LDiff
= getMinusSCEV(LA
, LS
);
5719 const SCEV
*RDiff
= getMinusSCEV(RA
, One
);
5721 return getAddExpr(getUMaxExpr(One
, LS
), LDiff
);
5724 case ICmpInst::ICMP_EQ
:
5725 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
5726 if (getTypeSizeInBits(LHS
->getType()) <= getTypeSizeInBits(I
->getType()) &&
5727 isa
<ConstantInt
>(RHS
) && cast
<ConstantInt
>(RHS
)->isZero()) {
5728 const SCEV
*One
= getOne(I
->getType());
5729 const SCEV
*LS
= getNoopOrZeroExtend(getSCEV(LHS
), I
->getType());
5730 const SCEV
*LA
= getSCEV(TrueVal
);
5731 const SCEV
*RA
= getSCEV(FalseVal
);
5732 const SCEV
*LDiff
= getMinusSCEV(LA
, One
);
5733 const SCEV
*RDiff
= getMinusSCEV(RA
, LS
);
5735 return getAddExpr(getUMaxExpr(One
, LS
), LDiff
);
5742 return getUnknown(I
);
5745 /// Expand GEP instructions into add and multiply operations. This allows them
5746 /// to be analyzed by regular SCEV code.
5747 const SCEV
*ScalarEvolution::createNodeForGEP(GEPOperator
*GEP
) {
5748 // Don't attempt to analyze GEPs over unsized objects.
5749 if (!GEP
->getSourceElementType()->isSized())
5750 return getUnknown(GEP
);
5752 SmallVector
<const SCEV
*, 4> IndexExprs
;
5753 for (Value
*Index
: GEP
->indices())
5754 IndexExprs
.push_back(getSCEV(Index
));
5755 return getGEPExpr(GEP
, IndexExprs
);
5758 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV
*S
) {
5759 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
))
5760 return C
->getAPInt().countTrailingZeros();
5762 if (const SCEVPtrToIntExpr
*I
= dyn_cast
<SCEVPtrToIntExpr
>(S
))
5763 return GetMinTrailingZeros(I
->getOperand());
5765 if (const SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(S
))
5766 return std::min(GetMinTrailingZeros(T
->getOperand()),
5767 (uint32_t)getTypeSizeInBits(T
->getType()));
5769 if (const SCEVZeroExtendExpr
*E
= dyn_cast
<SCEVZeroExtendExpr
>(S
)) {
5770 uint32_t OpRes
= GetMinTrailingZeros(E
->getOperand());
5771 return OpRes
== getTypeSizeInBits(E
->getOperand()->getType())
5772 ? getTypeSizeInBits(E
->getType())
5776 if (const SCEVSignExtendExpr
*E
= dyn_cast
<SCEVSignExtendExpr
>(S
)) {
5777 uint32_t OpRes
= GetMinTrailingZeros(E
->getOperand());
5778 return OpRes
== getTypeSizeInBits(E
->getOperand()->getType())
5779 ? getTypeSizeInBits(E
->getType())
5783 if (const SCEVAddExpr
*A
= dyn_cast
<SCEVAddExpr
>(S
)) {
5784 // The result is the min of all operands results.
5785 uint32_t MinOpRes
= GetMinTrailingZeros(A
->getOperand(0));
5786 for (unsigned i
= 1, e
= A
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
5787 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(A
->getOperand(i
)));
5791 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(S
)) {
5792 // The result is the sum of all operands results.
5793 uint32_t SumOpRes
= GetMinTrailingZeros(M
->getOperand(0));
5794 uint32_t BitWidth
= getTypeSizeInBits(M
->getType());
5795 for (unsigned i
= 1, e
= M
->getNumOperands();
5796 SumOpRes
!= BitWidth
&& i
!= e
; ++i
)
5798 std::min(SumOpRes
+ GetMinTrailingZeros(M
->getOperand(i
)), BitWidth
);
5802 if (const SCEVAddRecExpr
*A
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
5803 // The result is the min of all operands results.
5804 uint32_t MinOpRes
= GetMinTrailingZeros(A
->getOperand(0));
5805 for (unsigned i
= 1, e
= A
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
5806 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(A
->getOperand(i
)));
5810 if (const SCEVSMaxExpr
*M
= dyn_cast
<SCEVSMaxExpr
>(S
)) {
5811 // The result is the min of all operands results.
5812 uint32_t MinOpRes
= GetMinTrailingZeros(M
->getOperand(0));
5813 for (unsigned i
= 1, e
= M
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
5814 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(M
->getOperand(i
)));
5818 if (const SCEVUMaxExpr
*M
= dyn_cast
<SCEVUMaxExpr
>(S
)) {
5819 // The result is the min of all operands results.
5820 uint32_t MinOpRes
= GetMinTrailingZeros(M
->getOperand(0));
5821 for (unsigned i
= 1, e
= M
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
5822 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(M
->getOperand(i
)));
5826 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
5827 // For a SCEVUnknown, ask ValueTracking.
5828 KnownBits Known
= computeKnownBits(U
->getValue(), getDataLayout(), 0, &AC
, nullptr, &DT
);
5829 return Known
.countMinTrailingZeros();
5836 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV
*S
) {
5837 auto I
= MinTrailingZerosCache
.find(S
);
5838 if (I
!= MinTrailingZerosCache
.end())
5841 uint32_t Result
= GetMinTrailingZerosImpl(S
);
5842 auto InsertPair
= MinTrailingZerosCache
.insert({S
, Result
});
5843 assert(InsertPair
.second
&& "Should insert a new key");
5844 return InsertPair
.first
->second
;
5847 /// Helper method to assign a range to V from metadata present in the IR.
5848 static Optional
<ConstantRange
> GetRangeFromMetadata(Value
*V
) {
5849 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
5850 if (MDNode
*MD
= I
->getMetadata(LLVMContext::MD_range
))
5851 return getConstantRangeFromMetadata(*MD
);
5856 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr
*AddRec
,
5857 SCEV::NoWrapFlags Flags
) {
5858 if (AddRec
->getNoWrapFlags(Flags
) != Flags
) {
5859 AddRec
->setNoWrapFlags(Flags
);
5860 UnsignedRanges
.erase(AddRec
);
5861 SignedRanges
.erase(AddRec
);
5865 ConstantRange
ScalarEvolution::
5866 getRangeForUnknownRecurrence(const SCEVUnknown
*U
) {
5867 const DataLayout
&DL
= getDataLayout();
5869 unsigned BitWidth
= getTypeSizeInBits(U
->getType());
5870 const ConstantRange
FullSet(BitWidth
, /*isFullSet=*/true);
5872 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
5873 // use information about the trip count to improve our available range. Note
5874 // that the trip count independent cases are already handled by known bits.
5875 // WARNING: The definition of recurrence used here is subtly different than
5876 // the one used by AddRec (and thus most of this file). Step is allowed to
5877 // be arbitrarily loop varying here, where AddRec allows only loop invariant
5878 // and other addrecs in the same loop (for non-affine addrecs). The code
5879 // below intentionally handles the case where step is not loop invariant.
5880 auto *P
= dyn_cast
<PHINode
>(U
->getValue());
5884 // Make sure that no Phi input comes from an unreachable block. Otherwise,
5885 // even the values that are not available in these blocks may come from them,
5886 // and this leads to false-positive recurrence test.
5887 for (auto *Pred
: predecessors(P
->getParent()))
5888 if (!DT
.isReachableFromEntry(Pred
))
5892 Value
*Start
, *Step
;
5893 if (!matchSimpleRecurrence(P
, BO
, Start
, Step
))
5896 // If we found a recurrence in reachable code, we must be in a loop. Note
5897 // that BO might be in some subloop of L, and that's completely okay.
5898 auto *L
= LI
.getLoopFor(P
->getParent());
5899 assert(L
&& L
->getHeader() == P
->getParent());
5900 if (!L
->contains(BO
->getParent()))
5901 // NOTE: This bailout should be an assert instead. However, asserting
5902 // the condition here exposes a case where LoopFusion is querying SCEV
5903 // with malformed loop information during the midst of the transform.
5904 // There doesn't appear to be an obvious fix, so for the moment bailout
5905 // until the caller issue can be fixed. PR49566 tracks the bug.
5908 // TODO: Extend to other opcodes such as mul, and div
5909 switch (BO
->getOpcode()) {
5912 case Instruction::AShr
:
5913 case Instruction::LShr
:
5914 case Instruction::Shl
:
5918 if (BO
->getOperand(0) != P
)
5919 // TODO: Handle the power function forms some day.
5922 unsigned TC
= getSmallConstantMaxTripCount(L
);
5923 if (!TC
|| TC
>= BitWidth
)
5926 auto KnownStart
= computeKnownBits(Start
, DL
, 0, &AC
, nullptr, &DT
);
5927 auto KnownStep
= computeKnownBits(Step
, DL
, 0, &AC
, nullptr, &DT
);
5928 assert(KnownStart
.getBitWidth() == BitWidth
&&
5929 KnownStep
.getBitWidth() == BitWidth
);
5931 // Compute total shift amount, being careful of overflow and bitwidths.
5932 auto MaxShiftAmt
= KnownStep
.getMaxValue();
5933 APInt
TCAP(BitWidth
, TC
-1);
5934 bool Overflow
= false;
5935 auto TotalShift
= MaxShiftAmt
.umul_ov(TCAP
, Overflow
);
5939 switch (BO
->getOpcode()) {
5941 llvm_unreachable("filtered out above");
5942 case Instruction::AShr
: {
5943 // For each ashr, three cases:
5944 // shift = 0 => unchanged value
5945 // saturation => 0 or -1
5946 // other => a value closer to zero (of the same sign)
5947 // Thus, the end value is closer to zero than the start.
5948 auto KnownEnd
= KnownBits::ashr(KnownStart
,
5949 KnownBits::makeConstant(TotalShift
));
5950 if (KnownStart
.isNonNegative())
5951 // Analogous to lshr (simply not yet canonicalized)
5952 return ConstantRange::getNonEmpty(KnownEnd
.getMinValue(),
5953 KnownStart
.getMaxValue() + 1);
5954 if (KnownStart
.isNegative())
5955 // End >=u Start && End <=s Start
5956 return ConstantRange::getNonEmpty(KnownStart
.getMinValue(),
5957 KnownEnd
.getMaxValue() + 1);
5960 case Instruction::LShr
: {
5961 // For each lshr, three cases:
5962 // shift = 0 => unchanged value
5964 // other => a smaller positive number
5965 // Thus, the low end of the unsigned range is the last value produced.
5966 auto KnownEnd
= KnownBits::lshr(KnownStart
,
5967 KnownBits::makeConstant(TotalShift
));
5968 return ConstantRange::getNonEmpty(KnownEnd
.getMinValue(),
5969 KnownStart
.getMaxValue() + 1);
5971 case Instruction::Shl
: {
5972 // Iff no bits are shifted out, value increases on every shift.
5973 auto KnownEnd
= KnownBits::shl(KnownStart
,
5974 KnownBits::makeConstant(TotalShift
));
5975 if (TotalShift
.ult(KnownStart
.countMinLeadingZeros()))
5976 return ConstantRange(KnownStart
.getMinValue(),
5977 KnownEnd
.getMaxValue() + 1);
5984 /// Determine the range for a particular SCEV. If SignHint is
5985 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5986 /// with a "cleaner" unsigned (resp. signed) representation.
5987 const ConstantRange
&
5988 ScalarEvolution::getRangeRef(const SCEV
*S
,
5989 ScalarEvolution::RangeSignHint SignHint
) {
5990 DenseMap
<const SCEV
*, ConstantRange
> &Cache
=
5991 SignHint
== ScalarEvolution::HINT_RANGE_UNSIGNED
? UnsignedRanges
5993 ConstantRange::PreferredRangeType RangeType
=
5994 SignHint
== ScalarEvolution::HINT_RANGE_UNSIGNED
5995 ? ConstantRange::Unsigned
: ConstantRange::Signed
;
5997 // See if we've computed this range already.
5998 DenseMap
<const SCEV
*, ConstantRange
>::iterator I
= Cache
.find(S
);
5999 if (I
!= Cache
.end())
6002 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
))
6003 return setRange(C
, SignHint
, ConstantRange(C
->getAPInt()));
6005 unsigned BitWidth
= getTypeSizeInBits(S
->getType());
6006 ConstantRange
ConservativeResult(BitWidth
, /*isFullSet=*/true);
6007 using OBO
= OverflowingBinaryOperator
;
6009 // If the value has known zeros, the maximum value will have those known zeros
6011 uint32_t TZ
= GetMinTrailingZeros(S
);
6013 if (SignHint
== ScalarEvolution::HINT_RANGE_UNSIGNED
)
6014 ConservativeResult
=
6015 ConstantRange(APInt::getMinValue(BitWidth
),
6016 APInt::getMaxValue(BitWidth
).lshr(TZ
).shl(TZ
) + 1);
6018 ConservativeResult
= ConstantRange(
6019 APInt::getSignedMinValue(BitWidth
),
6020 APInt::getSignedMaxValue(BitWidth
).ashr(TZ
).shl(TZ
) + 1);
6023 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
6024 ConstantRange X
= getRangeRef(Add
->getOperand(0), SignHint
);
6025 unsigned WrapType
= OBO::AnyWrap
;
6026 if (Add
->hasNoSignedWrap())
6027 WrapType
|= OBO::NoSignedWrap
;
6028 if (Add
->hasNoUnsignedWrap())
6029 WrapType
|= OBO::NoUnsignedWrap
;
6030 for (unsigned i
= 1, e
= Add
->getNumOperands(); i
!= e
; ++i
)
6031 X
= X
.addWithNoWrap(getRangeRef(Add
->getOperand(i
), SignHint
),
6032 WrapType
, RangeType
);
6033 return setRange(Add
, SignHint
,
6034 ConservativeResult
.intersectWith(X
, RangeType
));
6037 if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(S
)) {
6038 ConstantRange X
= getRangeRef(Mul
->getOperand(0), SignHint
);
6039 for (unsigned i
= 1, e
= Mul
->getNumOperands(); i
!= e
; ++i
)
6040 X
= X
.multiply(getRangeRef(Mul
->getOperand(i
), SignHint
));
6041 return setRange(Mul
, SignHint
,
6042 ConservativeResult
.intersectWith(X
, RangeType
));
6045 if (const SCEVSMaxExpr
*SMax
= dyn_cast
<SCEVSMaxExpr
>(S
)) {
6046 ConstantRange X
= getRangeRef(SMax
->getOperand(0), SignHint
);
6047 for (unsigned i
= 1, e
= SMax
->getNumOperands(); i
!= e
; ++i
)
6048 X
= X
.smax(getRangeRef(SMax
->getOperand(i
), SignHint
));
6049 return setRange(SMax
, SignHint
,
6050 ConservativeResult
.intersectWith(X
, RangeType
));
6053 if (const SCEVUMaxExpr
*UMax
= dyn_cast
<SCEVUMaxExpr
>(S
)) {
6054 ConstantRange X
= getRangeRef(UMax
->getOperand(0), SignHint
);
6055 for (unsigned i
= 1, e
= UMax
->getNumOperands(); i
!= e
; ++i
)
6056 X
= X
.umax(getRangeRef(UMax
->getOperand(i
), SignHint
));
6057 return setRange(UMax
, SignHint
,
6058 ConservativeResult
.intersectWith(X
, RangeType
));
6061 if (const SCEVSMinExpr
*SMin
= dyn_cast
<SCEVSMinExpr
>(S
)) {
6062 ConstantRange X
= getRangeRef(SMin
->getOperand(0), SignHint
);
6063 for (unsigned i
= 1, e
= SMin
->getNumOperands(); i
!= e
; ++i
)
6064 X
= X
.smin(getRangeRef(SMin
->getOperand(i
), SignHint
));
6065 return setRange(SMin
, SignHint
,
6066 ConservativeResult
.intersectWith(X
, RangeType
));
6069 if (const SCEVUMinExpr
*UMin
= dyn_cast
<SCEVUMinExpr
>(S
)) {
6070 ConstantRange X
= getRangeRef(UMin
->getOperand(0), SignHint
);
6071 for (unsigned i
= 1, e
= UMin
->getNumOperands(); i
!= e
; ++i
)
6072 X
= X
.umin(getRangeRef(UMin
->getOperand(i
), SignHint
));
6073 return setRange(UMin
, SignHint
,
6074 ConservativeResult
.intersectWith(X
, RangeType
));
6077 if (const SCEVUDivExpr
*UDiv
= dyn_cast
<SCEVUDivExpr
>(S
)) {
6078 ConstantRange X
= getRangeRef(UDiv
->getLHS(), SignHint
);
6079 ConstantRange Y
= getRangeRef(UDiv
->getRHS(), SignHint
);
6080 return setRange(UDiv
, SignHint
,
6081 ConservativeResult
.intersectWith(X
.udiv(Y
), RangeType
));
6084 if (const SCEVZeroExtendExpr
*ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(S
)) {
6085 ConstantRange X
= getRangeRef(ZExt
->getOperand(), SignHint
);
6086 return setRange(ZExt
, SignHint
,
6087 ConservativeResult
.intersectWith(X
.zeroExtend(BitWidth
),
6091 if (const SCEVSignExtendExpr
*SExt
= dyn_cast
<SCEVSignExtendExpr
>(S
)) {
6092 ConstantRange X
= getRangeRef(SExt
->getOperand(), SignHint
);
6093 return setRange(SExt
, SignHint
,
6094 ConservativeResult
.intersectWith(X
.signExtend(BitWidth
),
6098 if (const SCEVPtrToIntExpr
*PtrToInt
= dyn_cast
<SCEVPtrToIntExpr
>(S
)) {
6099 ConstantRange X
= getRangeRef(PtrToInt
->getOperand(), SignHint
);
6100 return setRange(PtrToInt
, SignHint
, X
);
6103 if (const SCEVTruncateExpr
*Trunc
= dyn_cast
<SCEVTruncateExpr
>(S
)) {
6104 ConstantRange X
= getRangeRef(Trunc
->getOperand(), SignHint
);
6105 return setRange(Trunc
, SignHint
,
6106 ConservativeResult
.intersectWith(X
.truncate(BitWidth
),
6110 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
6111 // If there's no unsigned wrap, the value will never be less than its
6113 if (AddRec
->hasNoUnsignedWrap()) {
6114 APInt UnsignedMinValue
= getUnsignedRangeMin(AddRec
->getStart());
6115 if (!UnsignedMinValue
.isNullValue())
6116 ConservativeResult
= ConservativeResult
.intersectWith(
6117 ConstantRange(UnsignedMinValue
, APInt(BitWidth
, 0)), RangeType
);
6120 // If there's no signed wrap, and all the operands except initial value have
6121 // the same sign or zero, the value won't ever be:
6122 // 1: smaller than initial value if operands are non negative,
6123 // 2: bigger than initial value if operands are non positive.
6124 // For both cases, value can not cross signed min/max boundary.
6125 if (AddRec
->hasNoSignedWrap()) {
6126 bool AllNonNeg
= true;
6127 bool AllNonPos
= true;
6128 for (unsigned i
= 1, e
= AddRec
->getNumOperands(); i
!= e
; ++i
) {
6129 if (!isKnownNonNegative(AddRec
->getOperand(i
)))
6131 if (!isKnownNonPositive(AddRec
->getOperand(i
)))
6135 ConservativeResult
= ConservativeResult
.intersectWith(
6136 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec
->getStart()),
6137 APInt::getSignedMinValue(BitWidth
)),
6140 ConservativeResult
= ConservativeResult
.intersectWith(
6141 ConstantRange::getNonEmpty(
6142 APInt::getSignedMinValue(BitWidth
),
6143 getSignedRangeMax(AddRec
->getStart()) + 1),
6147 // TODO: non-affine addrec
6148 if (AddRec
->isAffine()) {
6149 const SCEV
*MaxBECount
= getConstantMaxBackedgeTakenCount(AddRec
->getLoop());
6150 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
) &&
6151 getTypeSizeInBits(MaxBECount
->getType()) <= BitWidth
) {
6152 auto RangeFromAffine
= getRangeForAffineAR(
6153 AddRec
->getStart(), AddRec
->getStepRecurrence(*this), MaxBECount
,
6155 ConservativeResult
=
6156 ConservativeResult
.intersectWith(RangeFromAffine
, RangeType
);
6158 auto RangeFromFactoring
= getRangeViaFactoring(
6159 AddRec
->getStart(), AddRec
->getStepRecurrence(*this), MaxBECount
,
6161 ConservativeResult
=
6162 ConservativeResult
.intersectWith(RangeFromFactoring
, RangeType
);
6165 // Now try symbolic BE count and more powerful methods.
6166 if (UseExpensiveRangeSharpening
) {
6167 const SCEV
*SymbolicMaxBECount
=
6168 getSymbolicMaxBackedgeTakenCount(AddRec
->getLoop());
6169 if (!isa
<SCEVCouldNotCompute
>(SymbolicMaxBECount
) &&
6170 getTypeSizeInBits(MaxBECount
->getType()) <= BitWidth
&&
6171 AddRec
->hasNoSelfWrap()) {
6172 auto RangeFromAffineNew
= getRangeForAffineNoSelfWrappingAR(
6173 AddRec
, SymbolicMaxBECount
, BitWidth
, SignHint
);
6174 ConservativeResult
=
6175 ConservativeResult
.intersectWith(RangeFromAffineNew
, RangeType
);
6180 return setRange(AddRec
, SignHint
, std::move(ConservativeResult
));
6183 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
6185 // Check if the IR explicitly contains !range metadata.
6186 Optional
<ConstantRange
> MDRange
= GetRangeFromMetadata(U
->getValue());
6187 if (MDRange
.hasValue())
6188 ConservativeResult
= ConservativeResult
.intersectWith(MDRange
.getValue(),
6191 // Use facts about recurrences in the underlying IR. Note that add
6192 // recurrences are AddRecExprs and thus don't hit this path. This
6193 // primarily handles shift recurrences.
6194 auto CR
= getRangeForUnknownRecurrence(U
);
6195 ConservativeResult
= ConservativeResult
.intersectWith(CR
);
6197 // See if ValueTracking can give us a useful range.
6198 const DataLayout
&DL
= getDataLayout();
6199 KnownBits Known
= computeKnownBits(U
->getValue(), DL
, 0, &AC
, nullptr, &DT
);
6200 if (Known
.getBitWidth() != BitWidth
)
6201 Known
= Known
.zextOrTrunc(BitWidth
);
6203 // ValueTracking may be able to compute a tighter result for the number of
6204 // sign bits than for the value of those sign bits.
6205 unsigned NS
= ComputeNumSignBits(U
->getValue(), DL
, 0, &AC
, nullptr, &DT
);
6206 if (U
->getType()->isPointerTy()) {
6207 // If the pointer size is larger than the index size type, this can cause
6208 // NS to be larger than BitWidth. So compensate for this.
6209 unsigned ptrSize
= DL
.getPointerTypeSizeInBits(U
->getType());
6210 int ptrIdxDiff
= ptrSize
- BitWidth
;
6211 if (ptrIdxDiff
> 0 && ptrSize
> BitWidth
&& NS
> (unsigned)ptrIdxDiff
)
6216 // If we know any of the sign bits, we know all of the sign bits.
6217 if (!Known
.Zero
.getHiBits(NS
).isNullValue())
6218 Known
.Zero
.setHighBits(NS
);
6219 if (!Known
.One
.getHiBits(NS
).isNullValue())
6220 Known
.One
.setHighBits(NS
);
6223 if (Known
.getMinValue() != Known
.getMaxValue() + 1)
6224 ConservativeResult
= ConservativeResult
.intersectWith(
6225 ConstantRange(Known
.getMinValue(), Known
.getMaxValue() + 1),
6228 ConservativeResult
= ConservativeResult
.intersectWith(
6229 ConstantRange(APInt::getSignedMinValue(BitWidth
).ashr(NS
- 1),
6230 APInt::getSignedMaxValue(BitWidth
).ashr(NS
- 1) + 1),
6233 // A range of Phi is a subset of union of all ranges of its input.
6234 if (const PHINode
*Phi
= dyn_cast
<PHINode
>(U
->getValue())) {
6235 // Make sure that we do not run over cycled Phis.
6236 if (PendingPhiRanges
.insert(Phi
).second
) {
6237 ConstantRange
RangeFromOps(BitWidth
, /*isFullSet=*/false);
6238 for (auto &Op
: Phi
->operands()) {
6239 auto OpRange
= getRangeRef(getSCEV(Op
), SignHint
);
6240 RangeFromOps
= RangeFromOps
.unionWith(OpRange
);
6241 // No point to continue if we already have a full set.
6242 if (RangeFromOps
.isFullSet())
6245 ConservativeResult
=
6246 ConservativeResult
.intersectWith(RangeFromOps
, RangeType
);
6247 bool Erased
= PendingPhiRanges
.erase(Phi
);
6248 assert(Erased
&& "Failed to erase Phi properly?");
6253 return setRange(U
, SignHint
, std::move(ConservativeResult
));
6256 return setRange(S
, SignHint
, std::move(ConservativeResult
));
6259 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6260 // values that the expression can take. Initially, the expression has a value
6261 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6262 // argument defines if we treat Step as signed or unsigned.
6263 static ConstantRange
getRangeForAffineARHelper(APInt Step
,
6264 const ConstantRange
&StartRange
,
6265 const APInt
&MaxBECount
,
6266 unsigned BitWidth
, bool Signed
) {
6267 // If either Step or MaxBECount is 0, then the expression won't change, and we
6268 // just need to return the initial range.
6269 if (Step
== 0 || MaxBECount
== 0)
6272 // If we don't know anything about the initial value (i.e. StartRange is
6273 // FullRange), then we don't know anything about the final range either.
6274 // Return FullRange.
6275 if (StartRange
.isFullSet())
6276 return ConstantRange::getFull(BitWidth
);
6278 // If Step is signed and negative, then we use its absolute value, but we also
6279 // note that we're moving in the opposite direction.
6280 bool Descending
= Signed
&& Step
.isNegative();
6283 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6284 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6285 // This equations hold true due to the well-defined wrap-around behavior of
6289 // Check if Offset is more than full span of BitWidth. If it is, the
6290 // expression is guaranteed to overflow.
6291 if (APInt::getMaxValue(StartRange
.getBitWidth()).udiv(Step
).ult(MaxBECount
))
6292 return ConstantRange::getFull(BitWidth
);
6294 // Offset is by how much the expression can change. Checks above guarantee no
6296 APInt Offset
= Step
* MaxBECount
;
6298 // Minimum value of the final range will match the minimal value of StartRange
6299 // if the expression is increasing and will be decreased by Offset otherwise.
6300 // Maximum value of the final range will match the maximal value of StartRange
6301 // if the expression is decreasing and will be increased by Offset otherwise.
6302 APInt StartLower
= StartRange
.getLower();
6303 APInt StartUpper
= StartRange
.getUpper() - 1;
6304 APInt MovedBoundary
= Descending
? (StartLower
- std::move(Offset
))
6305 : (StartUpper
+ std::move(Offset
));
6307 // It's possible that the new minimum/maximum value will fall into the initial
6308 // range (due to wrap around). This means that the expression can take any
6309 // value in this bitwidth, and we have to return full range.
6310 if (StartRange
.contains(MovedBoundary
))
6311 return ConstantRange::getFull(BitWidth
);
6314 Descending
? std::move(MovedBoundary
) : std::move(StartLower
);
6316 Descending
? std::move(StartUpper
) : std::move(MovedBoundary
);
6319 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6320 return ConstantRange::getNonEmpty(std::move(NewLower
), std::move(NewUpper
));
6323 ConstantRange
ScalarEvolution::getRangeForAffineAR(const SCEV
*Start
,
6325 const SCEV
*MaxBECount
,
6326 unsigned BitWidth
) {
6327 assert(!isa
<SCEVCouldNotCompute
>(MaxBECount
) &&
6328 getTypeSizeInBits(MaxBECount
->getType()) <= BitWidth
&&
6331 MaxBECount
= getNoopOrZeroExtend(MaxBECount
, Start
->getType());
6332 APInt MaxBECountValue
= getUnsignedRangeMax(MaxBECount
);
6334 // First, consider step signed.
6335 ConstantRange StartSRange
= getSignedRange(Start
);
6336 ConstantRange StepSRange
= getSignedRange(Step
);
6338 // If Step can be both positive and negative, we need to find ranges for the
6339 // maximum absolute step values in both directions and union them.
6341 getRangeForAffineARHelper(StepSRange
.getSignedMin(), StartSRange
,
6342 MaxBECountValue
, BitWidth
, /* Signed = */ true);
6343 SR
= SR
.unionWith(getRangeForAffineARHelper(StepSRange
.getSignedMax(),
6344 StartSRange
, MaxBECountValue
,
6345 BitWidth
, /* Signed = */ true));
6347 // Next, consider step unsigned.
6348 ConstantRange UR
= getRangeForAffineARHelper(
6349 getUnsignedRangeMax(Step
), getUnsignedRange(Start
),
6350 MaxBECountValue
, BitWidth
, /* Signed = */ false);
6352 // Finally, intersect signed and unsigned ranges.
6353 return SR
.intersectWith(UR
, ConstantRange::Smallest
);
6356 ConstantRange
ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6357 const SCEVAddRecExpr
*AddRec
, const SCEV
*MaxBECount
, unsigned BitWidth
,
6358 ScalarEvolution::RangeSignHint SignHint
) {
6359 assert(AddRec
->isAffine() && "Non-affine AddRecs are not suppored!\n");
6360 assert(AddRec
->hasNoSelfWrap() &&
6361 "This only works for non-self-wrapping AddRecs!");
6362 const bool IsSigned
= SignHint
== HINT_RANGE_SIGNED
;
6363 const SCEV
*Step
= AddRec
->getStepRecurrence(*this);
6364 // Only deal with constant step to save compile time.
6365 if (!isa
<SCEVConstant
>(Step
))
6366 return ConstantRange::getFull(BitWidth
);
6367 // Let's make sure that we can prove that we do not self-wrap during
6368 // MaxBECount iterations. We need this because MaxBECount is a maximum
6369 // iteration count estimate, and we might infer nw from some exit for which we
6370 // do not know max exit count (or any other side reasoning).
6371 // TODO: Turn into assert at some point.
6372 if (getTypeSizeInBits(MaxBECount
->getType()) >
6373 getTypeSizeInBits(AddRec
->getType()))
6374 return ConstantRange::getFull(BitWidth
);
6375 MaxBECount
= getNoopOrZeroExtend(MaxBECount
, AddRec
->getType());
6376 const SCEV
*RangeWidth
= getMinusOne(AddRec
->getType());
6377 const SCEV
*StepAbs
= getUMinExpr(Step
, getNegativeSCEV(Step
));
6378 const SCEV
*MaxItersWithoutWrap
= getUDivExpr(RangeWidth
, StepAbs
);
6379 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE
, MaxBECount
,
6380 MaxItersWithoutWrap
))
6381 return ConstantRange::getFull(BitWidth
);
6383 ICmpInst::Predicate LEPred
=
6384 IsSigned
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
6385 ICmpInst::Predicate GEPred
=
6386 IsSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
;
6387 const SCEV
*End
= AddRec
->evaluateAtIteration(MaxBECount
, *this);
6389 // We know that there is no self-wrap. Let's take Start and End values and
6390 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6391 // the iteration. They either lie inside the range [Min(Start, End),
6392 // Max(Start, End)] or outside it:
6394 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax;
6395 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax;
6397 // No self wrap flag guarantees that the intermediate values cannot be BOTH
6398 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6399 // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6400 // Start <= End and step is positive, or Start >= End and step is negative.
6401 const SCEV
*Start
= AddRec
->getStart();
6402 ConstantRange StartRange
= getRangeRef(Start
, SignHint
);
6403 ConstantRange EndRange
= getRangeRef(End
, SignHint
);
6404 ConstantRange RangeBetween
= StartRange
.unionWith(EndRange
);
6405 // If they already cover full iteration space, we will know nothing useful
6406 // even if we prove what we want to prove.
6407 if (RangeBetween
.isFullSet())
6408 return RangeBetween
;
6409 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6410 bool IsWrappedSet
= IsSigned
? RangeBetween
.isSignWrappedSet()
6411 : RangeBetween
.isWrappedSet();
6413 return ConstantRange::getFull(BitWidth
);
6415 if (isKnownPositive(Step
) &&
6416 isKnownPredicateViaConstantRanges(LEPred
, Start
, End
))
6417 return RangeBetween
;
6418 else if (isKnownNegative(Step
) &&
6419 isKnownPredicateViaConstantRanges(GEPred
, Start
, End
))
6420 return RangeBetween
;
6421 return ConstantRange::getFull(BitWidth
);
6424 ConstantRange
ScalarEvolution::getRangeViaFactoring(const SCEV
*Start
,
6426 const SCEV
*MaxBECount
,
6427 unsigned BitWidth
) {
6428 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6429 // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6431 struct SelectPattern
{
6432 Value
*Condition
= nullptr;
6436 explicit SelectPattern(ScalarEvolution
&SE
, unsigned BitWidth
,
6438 Optional
<unsigned> CastOp
;
6439 APInt
Offset(BitWidth
, 0);
6441 assert(SE
.getTypeSizeInBits(S
->getType()) == BitWidth
&&
6444 // Peel off a constant offset:
6445 if (auto *SA
= dyn_cast
<SCEVAddExpr
>(S
)) {
6446 // In the future we could consider being smarter here and handle
6447 // {Start+Step,+,Step} too.
6448 if (SA
->getNumOperands() != 2 || !isa
<SCEVConstant
>(SA
->getOperand(0)))
6451 Offset
= cast
<SCEVConstant
>(SA
->getOperand(0))->getAPInt();
6452 S
= SA
->getOperand(1);
6455 // Peel off a cast operation
6456 if (auto *SCast
= dyn_cast
<SCEVIntegralCastExpr
>(S
)) {
6457 CastOp
= SCast
->getSCEVType();
6458 S
= SCast
->getOperand();
6461 using namespace llvm::PatternMatch
;
6463 auto *SU
= dyn_cast
<SCEVUnknown
>(S
);
6464 const APInt
*TrueVal
, *FalseVal
;
6466 !match(SU
->getValue(), m_Select(m_Value(Condition
), m_APInt(TrueVal
),
6467 m_APInt(FalseVal
)))) {
6468 Condition
= nullptr;
6472 TrueValue
= *TrueVal
;
6473 FalseValue
= *FalseVal
;
6475 // Re-apply the cast we peeled off earlier
6476 if (CastOp
.hasValue())
6479 llvm_unreachable("Unknown SCEV cast type!");
6482 TrueValue
= TrueValue
.trunc(BitWidth
);
6483 FalseValue
= FalseValue
.trunc(BitWidth
);
6486 TrueValue
= TrueValue
.zext(BitWidth
);
6487 FalseValue
= FalseValue
.zext(BitWidth
);
6490 TrueValue
= TrueValue
.sext(BitWidth
);
6491 FalseValue
= FalseValue
.sext(BitWidth
);
6495 // Re-apply the constant offset we peeled off earlier
6496 TrueValue
+= Offset
;
6497 FalseValue
+= Offset
;
6500 bool isRecognized() { return Condition
!= nullptr; }
6503 SelectPattern
StartPattern(*this, BitWidth
, Start
);
6504 if (!StartPattern
.isRecognized())
6505 return ConstantRange::getFull(BitWidth
);
6507 SelectPattern
StepPattern(*this, BitWidth
, Step
);
6508 if (!StepPattern
.isRecognized())
6509 return ConstantRange::getFull(BitWidth
);
6511 if (StartPattern
.Condition
!= StepPattern
.Condition
) {
6512 // We don't handle this case today; but we could, by considering four
6513 // possibilities below instead of two. I'm not sure if there are cases where
6514 // that will help over what getRange already does, though.
6515 return ConstantRange::getFull(BitWidth
);
6518 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6519 // construct arbitrary general SCEV expressions here. This function is called
6520 // from deep in the call stack, and calling getSCEV (on a sext instruction,
6521 // say) can end up caching a suboptimal value.
6523 // FIXME: without the explicit `this` receiver below, MSVC errors out with
6524 // C2352 and C2512 (otherwise it isn't needed).
6526 const SCEV
*TrueStart
= this->getConstant(StartPattern
.TrueValue
);
6527 const SCEV
*TrueStep
= this->getConstant(StepPattern
.TrueValue
);
6528 const SCEV
*FalseStart
= this->getConstant(StartPattern
.FalseValue
);
6529 const SCEV
*FalseStep
= this->getConstant(StepPattern
.FalseValue
);
6531 ConstantRange TrueRange
=
6532 this->getRangeForAffineAR(TrueStart
, TrueStep
, MaxBECount
, BitWidth
);
6533 ConstantRange FalseRange
=
6534 this->getRangeForAffineAR(FalseStart
, FalseStep
, MaxBECount
, BitWidth
);
6536 return TrueRange
.unionWith(FalseRange
);
6539 SCEV::NoWrapFlags
ScalarEvolution::getNoWrapFlagsFromUB(const Value
*V
) {
6540 if (isa
<ConstantExpr
>(V
)) return SCEV::FlagAnyWrap
;
6541 const BinaryOperator
*BinOp
= cast
<BinaryOperator
>(V
);
6543 // Return early if there are no flags to propagate to the SCEV.
6544 SCEV::NoWrapFlags Flags
= SCEV::FlagAnyWrap
;
6545 if (BinOp
->hasNoUnsignedWrap())
6546 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNUW
);
6547 if (BinOp
->hasNoSignedWrap())
6548 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNSW
);
6549 if (Flags
== SCEV::FlagAnyWrap
)
6550 return SCEV::FlagAnyWrap
;
6552 return isSCEVExprNeverPoison(BinOp
) ? Flags
: SCEV::FlagAnyWrap
;
6555 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction
*I
) {
6556 // Here we check that I is in the header of the innermost loop containing I,
6557 // since we only deal with instructions in the loop header. The actual loop we
6558 // need to check later will come from an add recurrence, but getting that
6559 // requires computing the SCEV of the operands, which can be expensive. This
6560 // check we can do cheaply to rule out some cases early.
6561 Loop
*InnermostContainingLoop
= LI
.getLoopFor(I
->getParent());
6562 if (InnermostContainingLoop
== nullptr ||
6563 InnermostContainingLoop
->getHeader() != I
->getParent())
6566 // Only proceed if we can prove that I does not yield poison.
6567 if (!programUndefinedIfPoison(I
))
6570 // At this point we know that if I is executed, then it does not wrap
6571 // according to at least one of NSW or NUW. If I is not executed, then we do
6572 // not know if the calculation that I represents would wrap. Multiple
6573 // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6574 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6575 // derived from other instructions that map to the same SCEV. We cannot make
6576 // that guarantee for cases where I is not executed. So we need to find the
6577 // loop that I is considered in relation to and prove that I is executed for
6578 // every iteration of that loop. That implies that the value that I
6579 // calculates does not wrap anywhere in the loop, so then we can apply the
6580 // flags to the SCEV.
6582 // We check isLoopInvariant to disambiguate in case we are adding recurrences
6583 // from different loops, so that we know which loop to prove that I is
6585 for (unsigned OpIndex
= 0; OpIndex
< I
->getNumOperands(); ++OpIndex
) {
6586 // I could be an extractvalue from a call to an overflow intrinsic.
6587 // TODO: We can do better here in some cases.
6588 if (!isSCEVable(I
->getOperand(OpIndex
)->getType()))
6590 const SCEV
*Op
= getSCEV(I
->getOperand(OpIndex
));
6591 if (auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(Op
)) {
6592 bool AllOtherOpsLoopInvariant
= true;
6593 for (unsigned OtherOpIndex
= 0; OtherOpIndex
< I
->getNumOperands();
6595 if (OtherOpIndex
!= OpIndex
) {
6596 const SCEV
*OtherOp
= getSCEV(I
->getOperand(OtherOpIndex
));
6597 if (!isLoopInvariant(OtherOp
, AddRec
->getLoop())) {
6598 AllOtherOpsLoopInvariant
= false;
6603 if (AllOtherOpsLoopInvariant
&&
6604 isGuaranteedToExecuteForEveryIteration(I
, AddRec
->getLoop()))
6611 bool ScalarEvolution::isAddRecNeverPoison(const Instruction
*I
, const Loop
*L
) {
6612 // If we know that \c I can never be poison period, then that's enough.
6613 if (isSCEVExprNeverPoison(I
))
6616 // For an add recurrence specifically, we assume that infinite loops without
6617 // side effects are undefined behavior, and then reason as follows:
6619 // If the add recurrence is poison in any iteration, it is poison on all
6620 // future iterations (since incrementing poison yields poison). If the result
6621 // of the add recurrence is fed into the loop latch condition and the loop
6622 // does not contain any throws or exiting blocks other than the latch, we now
6623 // have the ability to "choose" whether the backedge is taken or not (by
6624 // choosing a sufficiently evil value for the poison feeding into the branch)
6625 // for every iteration including and after the one in which \p I first became
6626 // poison. There are two possibilities (let's call the iteration in which \p
6627 // I first became poison as K):
6629 // 1. In the set of iterations including and after K, the loop body executes
6630 // no side effects. In this case executing the backege an infinte number
6631 // of times will yield undefined behavior.
6633 // 2. In the set of iterations including and after K, the loop body executes
6634 // at least one side effect. In this case, that specific instance of side
6635 // effect is control dependent on poison, which also yields undefined
6638 auto *ExitingBB
= L
->getExitingBlock();
6639 auto *LatchBB
= L
->getLoopLatch();
6640 if (!ExitingBB
|| !LatchBB
|| ExitingBB
!= LatchBB
)
6643 SmallPtrSet
<const Instruction
*, 16> Pushed
;
6644 SmallVector
<const Instruction
*, 8> PoisonStack
;
6646 // We start by assuming \c I, the post-inc add recurrence, is poison. Only
6647 // things that are known to be poison under that assumption go on the
6650 PoisonStack
.push_back(I
);
6652 bool LatchControlDependentOnPoison
= false;
6653 while (!PoisonStack
.empty() && !LatchControlDependentOnPoison
) {
6654 const Instruction
*Poison
= PoisonStack
.pop_back_val();
6656 for (auto *PoisonUser
: Poison
->users()) {
6657 if (propagatesPoison(cast
<Operator
>(PoisonUser
))) {
6658 if (Pushed
.insert(cast
<Instruction
>(PoisonUser
)).second
)
6659 PoisonStack
.push_back(cast
<Instruction
>(PoisonUser
));
6660 } else if (auto *BI
= dyn_cast
<BranchInst
>(PoisonUser
)) {
6661 assert(BI
->isConditional() && "Only possibility!");
6662 if (BI
->getParent() == LatchBB
) {
6663 LatchControlDependentOnPoison
= true;
6670 return LatchControlDependentOnPoison
&& loopHasNoAbnormalExits(L
);
6673 ScalarEvolution::LoopProperties
6674 ScalarEvolution::getLoopProperties(const Loop
*L
) {
6675 using LoopProperties
= ScalarEvolution::LoopProperties
;
6677 auto Itr
= LoopPropertiesCache
.find(L
);
6678 if (Itr
== LoopPropertiesCache
.end()) {
6679 auto HasSideEffects
= [](Instruction
*I
) {
6680 if (auto *SI
= dyn_cast
<StoreInst
>(I
))
6681 return !SI
->isSimple();
6683 return I
->mayThrow() || I
->mayWriteToMemory();
6686 LoopProperties LP
= {/* HasNoAbnormalExits */ true,
6687 /*HasNoSideEffects*/ true};
6689 for (auto *BB
: L
->getBlocks())
6690 for (auto &I
: *BB
) {
6691 if (!isGuaranteedToTransferExecutionToSuccessor(&I
))
6692 LP
.HasNoAbnormalExits
= false;
6693 if (HasSideEffects(&I
))
6694 LP
.HasNoSideEffects
= false;
6695 if (!LP
.HasNoAbnormalExits
&& !LP
.HasNoSideEffects
)
6696 break; // We're already as pessimistic as we can get.
6699 auto InsertPair
= LoopPropertiesCache
.insert({L
, LP
});
6700 assert(InsertPair
.second
&& "We just checked!");
6701 Itr
= InsertPair
.first
;
6707 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop
*L
) {
6708 // A mustprogress loop without side effects must be finite.
6709 // TODO: The check used here is very conservative. It's only *specific*
6710 // side effects which are well defined in infinite loops.
6711 return isMustProgress(L
) && loopHasNoSideEffects(L
);
6714 const SCEV
*ScalarEvolution::createSCEV(Value
*V
) {
6715 if (!isSCEVable(V
->getType()))
6716 return getUnknown(V
);
6718 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
6719 // Don't attempt to analyze instructions in blocks that aren't
6720 // reachable. Such instructions don't matter, and they aren't required
6721 // to obey basic rules for definitions dominating uses which this
6722 // analysis depends on.
6723 if (!DT
.isReachableFromEntry(I
->getParent()))
6724 return getUnknown(UndefValue::get(V
->getType()));
6725 } else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
))
6726 return getConstant(CI
);
6727 else if (GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
))
6728 return GA
->isInterposable() ? getUnknown(V
) : getSCEV(GA
->getAliasee());
6729 else if (!isa
<ConstantExpr
>(V
))
6730 return getUnknown(V
);
6732 Operator
*U
= cast
<Operator
>(V
);
6733 if (auto BO
= MatchBinaryOp(U
, DT
)) {
6734 switch (BO
->Opcode
) {
6735 case Instruction::Add
: {
6736 // The simple thing to do would be to just call getSCEV on both operands
6737 // and call getAddExpr with the result. However if we're looking at a
6738 // bunch of things all added together, this can be quite inefficient,
6739 // because it leads to N-1 getAddExpr calls for N ultimate operands.
6740 // Instead, gather up all the operands and make a single getAddExpr call.
6741 // LLVM IR canonical form means we need only traverse the left operands.
6742 SmallVector
<const SCEV
*, 4> AddOps
;
6745 if (auto *OpSCEV
= getExistingSCEV(BO
->Op
)) {
6746 AddOps
.push_back(OpSCEV
);
6750 // If a NUW or NSW flag can be applied to the SCEV for this
6751 // addition, then compute the SCEV for this addition by itself
6752 // with a separate call to getAddExpr. We need to do that
6753 // instead of pushing the operands of the addition onto AddOps,
6754 // since the flags are only known to apply to this particular
6755 // addition - they may not apply to other additions that can be
6756 // formed with operands from AddOps.
6757 const SCEV
*RHS
= getSCEV(BO
->RHS
);
6758 SCEV::NoWrapFlags Flags
= getNoWrapFlagsFromUB(BO
->Op
);
6759 if (Flags
!= SCEV::FlagAnyWrap
) {
6760 const SCEV
*LHS
= getSCEV(BO
->LHS
);
6761 if (BO
->Opcode
== Instruction::Sub
)
6762 AddOps
.push_back(getMinusSCEV(LHS
, RHS
, Flags
));
6764 AddOps
.push_back(getAddExpr(LHS
, RHS
, Flags
));
6769 if (BO
->Opcode
== Instruction::Sub
)
6770 AddOps
.push_back(getNegativeSCEV(getSCEV(BO
->RHS
)));
6772 AddOps
.push_back(getSCEV(BO
->RHS
));
6774 auto NewBO
= MatchBinaryOp(BO
->LHS
, DT
);
6775 if (!NewBO
|| (NewBO
->Opcode
!= Instruction::Add
&&
6776 NewBO
->Opcode
!= Instruction::Sub
)) {
6777 AddOps
.push_back(getSCEV(BO
->LHS
));
6783 return getAddExpr(AddOps
);
6786 case Instruction::Mul
: {
6787 SmallVector
<const SCEV
*, 4> MulOps
;
6790 if (auto *OpSCEV
= getExistingSCEV(BO
->Op
)) {
6791 MulOps
.push_back(OpSCEV
);
6795 SCEV::NoWrapFlags Flags
= getNoWrapFlagsFromUB(BO
->Op
);
6796 if (Flags
!= SCEV::FlagAnyWrap
) {
6798 getMulExpr(getSCEV(BO
->LHS
), getSCEV(BO
->RHS
), Flags
));
6803 MulOps
.push_back(getSCEV(BO
->RHS
));
6804 auto NewBO
= MatchBinaryOp(BO
->LHS
, DT
);
6805 if (!NewBO
|| NewBO
->Opcode
!= Instruction::Mul
) {
6806 MulOps
.push_back(getSCEV(BO
->LHS
));
6812 return getMulExpr(MulOps
);
6814 case Instruction::UDiv
:
6815 return getUDivExpr(getSCEV(BO
->LHS
), getSCEV(BO
->RHS
));
6816 case Instruction::URem
:
6817 return getURemExpr(getSCEV(BO
->LHS
), getSCEV(BO
->RHS
));
6818 case Instruction::Sub
: {
6819 SCEV::NoWrapFlags Flags
= SCEV::FlagAnyWrap
;
6821 Flags
= getNoWrapFlagsFromUB(BO
->Op
);
6822 return getMinusSCEV(getSCEV(BO
->LHS
), getSCEV(BO
->RHS
), Flags
);
6824 case Instruction::And
:
6825 // For an expression like x&255 that merely masks off the high bits,
6826 // use zext(trunc(x)) as the SCEV expression.
6827 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->RHS
)) {
6829 return getSCEV(BO
->RHS
);
6830 if (CI
->isMinusOne())
6831 return getSCEV(BO
->LHS
);
6832 const APInt
&A
= CI
->getValue();
6834 // Instcombine's ShrinkDemandedConstant may strip bits out of
6835 // constants, obscuring what would otherwise be a low-bits mask.
6836 // Use computeKnownBits to compute what ShrinkDemandedConstant
6837 // knew about to reconstruct a low-bits mask value.
6838 unsigned LZ
= A
.countLeadingZeros();
6839 unsigned TZ
= A
.countTrailingZeros();
6840 unsigned BitWidth
= A
.getBitWidth();
6841 KnownBits
Known(BitWidth
);
6842 computeKnownBits(BO
->LHS
, Known
, getDataLayout(),
6843 0, &AC
, nullptr, &DT
);
6845 APInt EffectiveMask
=
6846 APInt::getLowBitsSet(BitWidth
, BitWidth
- LZ
- TZ
).shl(TZ
);
6847 if ((LZ
!= 0 || TZ
!= 0) && !((~A
& ~Known
.Zero
) & EffectiveMask
)) {
6848 const SCEV
*MulCount
= getConstant(APInt::getOneBitSet(BitWidth
, TZ
));
6849 const SCEV
*LHS
= getSCEV(BO
->LHS
);
6850 const SCEV
*ShiftedLHS
= nullptr;
6851 if (auto *LHSMul
= dyn_cast
<SCEVMulExpr
>(LHS
)) {
6852 if (auto *OpC
= dyn_cast
<SCEVConstant
>(LHSMul
->getOperand(0))) {
6853 // For an expression like (x * 8) & 8, simplify the multiply.
6854 unsigned MulZeros
= OpC
->getAPInt().countTrailingZeros();
6855 unsigned GCD
= std::min(MulZeros
, TZ
);
6856 APInt DivAmt
= APInt::getOneBitSet(BitWidth
, TZ
- GCD
);
6857 SmallVector
<const SCEV
*, 4> MulOps
;
6858 MulOps
.push_back(getConstant(OpC
->getAPInt().lshr(GCD
)));
6859 MulOps
.append(LHSMul
->op_begin() + 1, LHSMul
->op_end());
6860 auto *NewMul
= getMulExpr(MulOps
, LHSMul
->getNoWrapFlags());
6861 ShiftedLHS
= getUDivExpr(NewMul
, getConstant(DivAmt
));
6865 ShiftedLHS
= getUDivExpr(LHS
, MulCount
);
6868 getTruncateExpr(ShiftedLHS
,
6869 IntegerType::get(getContext(), BitWidth
- LZ
- TZ
)),
6870 BO
->LHS
->getType()),
6876 case Instruction::Or
:
6877 // If the RHS of the Or is a constant, we may have something like:
6878 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
6879 // optimizations will transparently handle this case.
6881 // In order for this transformation to be safe, the LHS must be of the
6882 // form X*(2^n) and the Or constant must be less than 2^n.
6883 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->RHS
)) {
6884 const SCEV
*LHS
= getSCEV(BO
->LHS
);
6885 const APInt
&CIVal
= CI
->getValue();
6886 if (GetMinTrailingZeros(LHS
) >=
6887 (CIVal
.getBitWidth() - CIVal
.countLeadingZeros())) {
6888 // Build a plain add SCEV.
6889 return getAddExpr(LHS
, getSCEV(CI
),
6890 (SCEV::NoWrapFlags
)(SCEV::FlagNUW
| SCEV::FlagNSW
));
6895 case Instruction::Xor
:
6896 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->RHS
)) {
6897 // If the RHS of xor is -1, then this is a not operation.
6898 if (CI
->isMinusOne())
6899 return getNotSCEV(getSCEV(BO
->LHS
));
6901 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6902 // This is a variant of the check for xor with -1, and it handles
6903 // the case where instcombine has trimmed non-demanded bits out
6904 // of an xor with -1.
6905 if (auto *LBO
= dyn_cast
<BinaryOperator
>(BO
->LHS
))
6906 if (ConstantInt
*LCI
= dyn_cast
<ConstantInt
>(LBO
->getOperand(1)))
6907 if (LBO
->getOpcode() == Instruction::And
&&
6908 LCI
->getValue() == CI
->getValue())
6909 if (const SCEVZeroExtendExpr
*Z
=
6910 dyn_cast
<SCEVZeroExtendExpr
>(getSCEV(BO
->LHS
))) {
6911 Type
*UTy
= BO
->LHS
->getType();
6912 const SCEV
*Z0
= Z
->getOperand();
6913 Type
*Z0Ty
= Z0
->getType();
6914 unsigned Z0TySize
= getTypeSizeInBits(Z0Ty
);
6916 // If C is a low-bits mask, the zero extend is serving to
6917 // mask off the high bits. Complement the operand and
6918 // re-apply the zext.
6919 if (CI
->getValue().isMask(Z0TySize
))
6920 return getZeroExtendExpr(getNotSCEV(Z0
), UTy
);
6922 // If C is a single bit, it may be in the sign-bit position
6923 // before the zero-extend. In this case, represent the xor
6924 // using an add, which is equivalent, and re-apply the zext.
6925 APInt Trunc
= CI
->getValue().trunc(Z0TySize
);
6926 if (Trunc
.zext(getTypeSizeInBits(UTy
)) == CI
->getValue() &&
6928 return getZeroExtendExpr(getAddExpr(Z0
, getConstant(Trunc
)),
6934 case Instruction::Shl
:
6935 // Turn shift left of a constant amount into a multiply.
6936 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(BO
->RHS
)) {
6937 uint32_t BitWidth
= cast
<IntegerType
>(SA
->getType())->getBitWidth();
6939 // If the shift count is not less than the bitwidth, the result of
6940 // the shift is undefined. Don't try to analyze it, because the
6941 // resolution chosen here may differ from the resolution chosen in
6942 // other parts of the compiler.
6943 if (SA
->getValue().uge(BitWidth
))
6946 // We can safely preserve the nuw flag in all cases. It's also safe to
6947 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6948 // requires special handling. It can be preserved as long as we're not
6949 // left shifting by bitwidth - 1.
6950 auto Flags
= SCEV::FlagAnyWrap
;
6952 auto MulFlags
= getNoWrapFlagsFromUB(BO
->Op
);
6953 if ((MulFlags
& SCEV::FlagNSW
) &&
6954 ((MulFlags
& SCEV::FlagNUW
) || SA
->getValue().ult(BitWidth
- 1)))
6955 Flags
= (SCEV::NoWrapFlags
)(Flags
| SCEV::FlagNSW
);
6956 if (MulFlags
& SCEV::FlagNUW
)
6957 Flags
= (SCEV::NoWrapFlags
)(Flags
| SCEV::FlagNUW
);
6960 Constant
*X
= ConstantInt::get(
6961 getContext(), APInt::getOneBitSet(BitWidth
, SA
->getZExtValue()));
6962 return getMulExpr(getSCEV(BO
->LHS
), getSCEV(X
), Flags
);
6966 case Instruction::AShr
: {
6967 // AShr X, C, where C is a constant.
6968 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->RHS
);
6972 Type
*OuterTy
= BO
->LHS
->getType();
6973 uint64_t BitWidth
= getTypeSizeInBits(OuterTy
);
6974 // If the shift count is not less than the bitwidth, the result of
6975 // the shift is undefined. Don't try to analyze it, because the
6976 // resolution chosen here may differ from the resolution chosen in
6977 // other parts of the compiler.
6978 if (CI
->getValue().uge(BitWidth
))
6982 return getSCEV(BO
->LHS
); // shift by zero --> noop
6984 uint64_t AShrAmt
= CI
->getZExtValue();
6985 Type
*TruncTy
= IntegerType::get(getContext(), BitWidth
- AShrAmt
);
6987 Operator
*L
= dyn_cast
<Operator
>(BO
->LHS
);
6988 if (L
&& L
->getOpcode() == Instruction::Shl
) {
6991 // Both n and m are constant.
6993 const SCEV
*ShlOp0SCEV
= getSCEV(L
->getOperand(0));
6994 if (L
->getOperand(1) == BO
->RHS
)
6995 // For a two-shift sext-inreg, i.e. n = m,
6996 // use sext(trunc(x)) as the SCEV expression.
6997 return getSignExtendExpr(
6998 getTruncateExpr(ShlOp0SCEV
, TruncTy
), OuterTy
);
7000 ConstantInt
*ShlAmtCI
= dyn_cast
<ConstantInt
>(L
->getOperand(1));
7001 if (ShlAmtCI
&& ShlAmtCI
->getValue().ult(BitWidth
)) {
7002 uint64_t ShlAmt
= ShlAmtCI
->getZExtValue();
7003 if (ShlAmt
> AShrAmt
) {
7004 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7005 // expression. We already checked that ShlAmt < BitWidth, so
7006 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7007 // ShlAmt - AShrAmt < Amt.
7008 APInt Mul
= APInt::getOneBitSet(BitWidth
- AShrAmt
,
7010 return getSignExtendExpr(
7011 getMulExpr(getTruncateExpr(ShlOp0SCEV
, TruncTy
),
7012 getConstant(Mul
)), OuterTy
);
7021 switch (U
->getOpcode()) {
7022 case Instruction::Trunc
:
7023 return getTruncateExpr(getSCEV(U
->getOperand(0)), U
->getType());
7025 case Instruction::ZExt
:
7026 return getZeroExtendExpr(getSCEV(U
->getOperand(0)), U
->getType());
7028 case Instruction::SExt
:
7029 if (auto BO
= MatchBinaryOp(U
->getOperand(0), DT
)) {
7030 // The NSW flag of a subtract does not always survive the conversion to
7031 // A + (-1)*B. By pushing sign extension onto its operands we are much
7032 // more likely to preserve NSW and allow later AddRec optimisations.
7034 // NOTE: This is effectively duplicating this logic from getSignExtend:
7035 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
7036 // but by that point the NSW information has potentially been lost.
7037 if (BO
->Opcode
== Instruction::Sub
&& BO
->IsNSW
) {
7038 Type
*Ty
= U
->getType();
7039 auto *V1
= getSignExtendExpr(getSCEV(BO
->LHS
), Ty
);
7040 auto *V2
= getSignExtendExpr(getSCEV(BO
->RHS
), Ty
);
7041 return getMinusSCEV(V1
, V2
, SCEV::FlagNSW
);
7044 return getSignExtendExpr(getSCEV(U
->getOperand(0)), U
->getType());
7046 case Instruction::BitCast
:
7047 // BitCasts are no-op casts so we just eliminate the cast.
7048 if (isSCEVable(U
->getType()) && isSCEVable(U
->getOperand(0)->getType()))
7049 return getSCEV(U
->getOperand(0));
7052 case Instruction::PtrToInt
: {
7053 // Pointer to integer cast is straight-forward, so do model it.
7054 const SCEV
*Op
= getSCEV(U
->getOperand(0));
7055 Type
*DstIntTy
= U
->getType();
7056 // But only if effective SCEV (integer) type is wide enough to represent
7057 // all possible pointer values.
7058 const SCEV
*IntOp
= getPtrToIntExpr(Op
, DstIntTy
);
7059 if (isa
<SCEVCouldNotCompute
>(IntOp
))
7060 return getUnknown(V
);
7063 case Instruction::IntToPtr
:
7064 // Just don't deal with inttoptr casts.
7065 return getUnknown(V
);
7067 case Instruction::SDiv
:
7068 // If both operands are non-negative, this is just an udiv.
7069 if (isKnownNonNegative(getSCEV(U
->getOperand(0))) &&
7070 isKnownNonNegative(getSCEV(U
->getOperand(1))))
7071 return getUDivExpr(getSCEV(U
->getOperand(0)), getSCEV(U
->getOperand(1)));
7074 case Instruction::SRem
:
7075 // If both operands are non-negative, this is just an urem.
7076 if (isKnownNonNegative(getSCEV(U
->getOperand(0))) &&
7077 isKnownNonNegative(getSCEV(U
->getOperand(1))))
7078 return getURemExpr(getSCEV(U
->getOperand(0)), getSCEV(U
->getOperand(1)));
7081 case Instruction::GetElementPtr
:
7082 return createNodeForGEP(cast
<GEPOperator
>(U
));
7084 case Instruction::PHI
:
7085 return createNodeForPHI(cast
<PHINode
>(U
));
7087 case Instruction::Select
:
7088 // U can also be a select constant expr, which let fall through. Since
7089 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
7090 // constant expressions cannot have instructions as operands, we'd have
7091 // returned getUnknown for a select constant expressions anyway.
7092 if (isa
<Instruction
>(U
))
7093 return createNodeForSelectOrPHI(cast
<Instruction
>(U
), U
->getOperand(0),
7094 U
->getOperand(1), U
->getOperand(2));
7097 case Instruction::Call
:
7098 case Instruction::Invoke
:
7099 if (Value
*RV
= cast
<CallBase
>(U
)->getReturnedArgOperand())
7102 if (auto *II
= dyn_cast
<IntrinsicInst
>(U
)) {
7103 switch (II
->getIntrinsicID()) {
7104 case Intrinsic::abs
:
7106 getSCEV(II
->getArgOperand(0)),
7107 /*IsNSW=*/cast
<ConstantInt
>(II
->getArgOperand(1))->isOne());
7108 case Intrinsic::umax
:
7109 return getUMaxExpr(getSCEV(II
->getArgOperand(0)),
7110 getSCEV(II
->getArgOperand(1)));
7111 case Intrinsic::umin
:
7112 return getUMinExpr(getSCEV(II
->getArgOperand(0)),
7113 getSCEV(II
->getArgOperand(1)));
7114 case Intrinsic::smax
:
7115 return getSMaxExpr(getSCEV(II
->getArgOperand(0)),
7116 getSCEV(II
->getArgOperand(1)));
7117 case Intrinsic::smin
:
7118 return getSMinExpr(getSCEV(II
->getArgOperand(0)),
7119 getSCEV(II
->getArgOperand(1)));
7120 case Intrinsic::usub_sat
: {
7121 const SCEV
*X
= getSCEV(II
->getArgOperand(0));
7122 const SCEV
*Y
= getSCEV(II
->getArgOperand(1));
7123 const SCEV
*ClampedY
= getUMinExpr(X
, Y
);
7124 return getMinusSCEV(X
, ClampedY
, SCEV::FlagNUW
);
7126 case Intrinsic::uadd_sat
: {
7127 const SCEV
*X
= getSCEV(II
->getArgOperand(0));
7128 const SCEV
*Y
= getSCEV(II
->getArgOperand(1));
7129 const SCEV
*ClampedX
= getUMinExpr(X
, getNotSCEV(Y
));
7130 return getAddExpr(ClampedX
, Y
, SCEV::FlagNUW
);
7132 case Intrinsic::start_loop_iterations
:
7133 // A start_loop_iterations is just equivalent to the first operand for
7135 return getSCEV(II
->getArgOperand(0));
7143 return getUnknown(V
);
7146 //===----------------------------------------------------------------------===//
7147 // Iteration Count Computation Code
7150 const SCEV
*ScalarEvolution::getTripCountFromExitCount(const SCEV
*ExitCount
) {
7151 // Get the trip count from the BE count by adding 1. Overflow, results
7152 // in zero which means "unknown".
7153 return getAddExpr(ExitCount
, getOne(ExitCount
->getType()));
7156 static unsigned getConstantTripCount(const SCEVConstant
*ExitCount
) {
7160 ConstantInt
*ExitConst
= ExitCount
->getValue();
7162 // Guard against huge trip counts.
7163 if (ExitConst
->getValue().getActiveBits() > 32)
7166 // In case of integer overflow, this returns 0, which is correct.
7167 return ((unsigned)ExitConst
->getZExtValue()) + 1;
7170 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop
*L
) {
7171 auto *ExitCount
= dyn_cast
<SCEVConstant
>(getBackedgeTakenCount(L
, Exact
));
7172 return getConstantTripCount(ExitCount
);
7176 ScalarEvolution::getSmallConstantTripCount(const Loop
*L
,
7177 const BasicBlock
*ExitingBlock
) {
7178 assert(ExitingBlock
&& "Must pass a non-null exiting block!");
7179 assert(L
->isLoopExiting(ExitingBlock
) &&
7180 "Exiting block must actually branch out of the loop!");
7181 const SCEVConstant
*ExitCount
=
7182 dyn_cast
<SCEVConstant
>(getExitCount(L
, ExitingBlock
));
7183 return getConstantTripCount(ExitCount
);
7186 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop
*L
) {
7187 const auto *MaxExitCount
=
7188 dyn_cast
<SCEVConstant
>(getConstantMaxBackedgeTakenCount(L
));
7189 return getConstantTripCount(MaxExitCount
);
7192 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop
*L
) {
7193 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
7194 L
->getExitingBlocks(ExitingBlocks
);
7196 Optional
<unsigned> Res
= None
;
7197 for (auto *ExitingBB
: ExitingBlocks
) {
7198 unsigned Multiple
= getSmallConstantTripMultiple(L
, ExitingBB
);
7201 Res
= (unsigned)GreatestCommonDivisor64(*Res
, Multiple
);
7203 return Res
.getValueOr(1);
7206 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop
*L
,
7207 const SCEV
*ExitCount
) {
7208 if (ExitCount
== getCouldNotCompute())
7211 // Get the trip count
7212 const SCEV
*TCExpr
= getTripCountFromExitCount(ExitCount
);
7214 const SCEVConstant
*TC
= dyn_cast
<SCEVConstant
>(TCExpr
);
7216 // Attempt to factor more general cases. Returns the greatest power of
7217 // two divisor. If overflow happens, the trip count expression is still
7218 // divisible by the greatest power of 2 divisor returned.
7219 return 1U << std::min((uint32_t)31,
7220 GetMinTrailingZeros(applyLoopGuards(TCExpr
, L
)));
7222 ConstantInt
*Result
= TC
->getValue();
7224 // Guard against huge trip counts (this requires checking
7225 // for zero to handle the case where the trip count == -1 and the
7227 if (!Result
|| Result
->getValue().getActiveBits() > 32 ||
7228 Result
->getValue().getActiveBits() == 0)
7231 return (unsigned)Result
->getZExtValue();
7234 /// Returns the largest constant divisor of the trip count of this loop as a
7235 /// normal unsigned value, if possible. This means that the actual trip count is
7236 /// always a multiple of the returned value (don't forget the trip count could
7237 /// very well be zero as well!).
7239 /// Returns 1 if the trip count is unknown or not guaranteed to be the
7240 /// multiple of a constant (which is also the case if the trip count is simply
7241 /// constant, use getSmallConstantTripCount for that case), Will also return 1
7242 /// if the trip count is very large (>= 2^32).
7244 /// As explained in the comments for getSmallConstantTripCount, this assumes
7245 /// that control exits the loop via ExitingBlock.
7247 ScalarEvolution::getSmallConstantTripMultiple(const Loop
*L
,
7248 const BasicBlock
*ExitingBlock
) {
7249 assert(ExitingBlock
&& "Must pass a non-null exiting block!");
7250 assert(L
->isLoopExiting(ExitingBlock
) &&
7251 "Exiting block must actually branch out of the loop!");
7252 const SCEV
*ExitCount
= getExitCount(L
, ExitingBlock
);
7253 return getSmallConstantTripMultiple(L
, ExitCount
);
7256 const SCEV
*ScalarEvolution::getExitCount(const Loop
*L
,
7257 const BasicBlock
*ExitingBlock
,
7258 ExitCountKind Kind
) {
7261 case SymbolicMaximum
:
7262 return getBackedgeTakenInfo(L
).getExact(ExitingBlock
, this);
7263 case ConstantMaximum
:
7264 return getBackedgeTakenInfo(L
).getConstantMax(ExitingBlock
, this);
7266 llvm_unreachable("Invalid ExitCountKind!");
7270 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop
*L
,
7271 SCEVUnionPredicate
&Preds
) {
7272 return getPredicatedBackedgeTakenInfo(L
).getExact(L
, this, &Preds
);
7275 const SCEV
*ScalarEvolution::getBackedgeTakenCount(const Loop
*L
,
7276 ExitCountKind Kind
) {
7279 return getBackedgeTakenInfo(L
).getExact(L
, this);
7280 case ConstantMaximum
:
7281 return getBackedgeTakenInfo(L
).getConstantMax(this);
7282 case SymbolicMaximum
:
7283 return getBackedgeTakenInfo(L
).getSymbolicMax(L
, this);
7285 llvm_unreachable("Invalid ExitCountKind!");
7288 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop
*L
) {
7289 return getBackedgeTakenInfo(L
).isConstantMaxOrZero(this);
7292 /// Push PHI nodes in the header of the given loop onto the given Worklist.
7294 PushLoopPHIs(const Loop
*L
, SmallVectorImpl
<Instruction
*> &Worklist
) {
7295 BasicBlock
*Header
= L
->getHeader();
7297 // Push all Loop-header PHIs onto the Worklist stack.
7298 for (PHINode
&PN
: Header
->phis())
7299 Worklist
.push_back(&PN
);
7302 const ScalarEvolution::BackedgeTakenInfo
&
7303 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop
*L
) {
7304 auto &BTI
= getBackedgeTakenInfo(L
);
7305 if (BTI
.hasFullInfo())
7308 auto Pair
= PredicatedBackedgeTakenCounts
.insert({L
, BackedgeTakenInfo()});
7311 return Pair
.first
->second
;
7313 BackedgeTakenInfo Result
=
7314 computeBackedgeTakenCount(L
, /*AllowPredicates=*/true);
7316 return PredicatedBackedgeTakenCounts
.find(L
)->second
= std::move(Result
);
7319 ScalarEvolution::BackedgeTakenInfo
&
7320 ScalarEvolution::getBackedgeTakenInfo(const Loop
*L
) {
7321 // Initially insert an invalid entry for this loop. If the insertion
7322 // succeeds, proceed to actually compute a backedge-taken count and
7323 // update the value. The temporary CouldNotCompute value tells SCEV
7324 // code elsewhere that it shouldn't attempt to request a new
7325 // backedge-taken count, which could result in infinite recursion.
7326 std::pair
<DenseMap
<const Loop
*, BackedgeTakenInfo
>::iterator
, bool> Pair
=
7327 BackedgeTakenCounts
.insert({L
, BackedgeTakenInfo()});
7329 return Pair
.first
->second
;
7331 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
7332 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
7333 // must be cleared in this scope.
7334 BackedgeTakenInfo Result
= computeBackedgeTakenCount(L
);
7336 // In product build, there are no usage of statistic.
7337 (void)NumTripCountsComputed
;
7338 (void)NumTripCountsNotComputed
;
7339 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
7340 const SCEV
*BEExact
= Result
.getExact(L
, this);
7341 if (BEExact
!= getCouldNotCompute()) {
7342 assert(isLoopInvariant(BEExact
, L
) &&
7343 isLoopInvariant(Result
.getConstantMax(this), L
) &&
7344 "Computed backedge-taken count isn't loop invariant for loop!");
7345 ++NumTripCountsComputed
;
7346 } else if (Result
.getConstantMax(this) == getCouldNotCompute() &&
7347 isa
<PHINode
>(L
->getHeader()->begin())) {
7348 // Only count loops that have phi nodes as not being computable.
7349 ++NumTripCountsNotComputed
;
7351 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
7353 // Now that we know more about the trip count for this loop, forget any
7354 // existing SCEV values for PHI nodes in this loop since they are only
7355 // conservative estimates made without the benefit of trip count
7356 // information. This is similar to the code in forgetLoop, except that
7357 // it handles SCEVUnknown PHI nodes specially.
7358 if (Result
.hasAnyInfo()) {
7359 SmallVector
<Instruction
*, 16> Worklist
;
7360 PushLoopPHIs(L
, Worklist
);
7362 SmallPtrSet
<Instruction
*, 8> Discovered
;
7363 while (!Worklist
.empty()) {
7364 Instruction
*I
= Worklist
.pop_back_val();
7366 ValueExprMapType::iterator It
=
7367 ValueExprMap
.find_as(static_cast<Value
*>(I
));
7368 if (It
!= ValueExprMap
.end()) {
7369 const SCEV
*Old
= It
->second
;
7371 // SCEVUnknown for a PHI either means that it has an unrecognized
7372 // structure, or it's a PHI that's in the progress of being computed
7373 // by createNodeForPHI. In the former case, additional loop trip
7374 // count information isn't going to change anything. In the later
7375 // case, createNodeForPHI will perform the necessary updates on its
7376 // own when it gets to that point.
7377 if (!isa
<PHINode
>(I
) || !isa
<SCEVUnknown
>(Old
)) {
7378 eraseValueFromMap(It
->first
);
7379 forgetMemoizedResults(Old
);
7381 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
7382 ConstantEvolutionLoopExitValue
.erase(PN
);
7385 // Since we don't need to invalidate anything for correctness and we're
7386 // only invalidating to make SCEV's results more precise, we get to stop
7387 // early to avoid invalidating too much. This is especially important in
7390 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
7398 // where both loop0 and loop1's backedge taken count uses the SCEV
7399 // expression for %v. If we don't have the early stop below then in cases
7400 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
7401 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
7402 // count for loop1, effectively nullifying SCEV's trip count cache.
7403 for (auto *U
: I
->users())
7404 if (auto *I
= dyn_cast
<Instruction
>(U
)) {
7405 auto *LoopForUser
= LI
.getLoopFor(I
->getParent());
7406 if (LoopForUser
&& L
->contains(LoopForUser
) &&
7407 Discovered
.insert(I
).second
)
7408 Worklist
.push_back(I
);
7413 // Re-lookup the insert position, since the call to
7414 // computeBackedgeTakenCount above could result in a
7415 // recusive call to getBackedgeTakenInfo (on a different
7416 // loop), which would invalidate the iterator computed
7418 return BackedgeTakenCounts
.find(L
)->second
= std::move(Result
);
7421 void ScalarEvolution::forgetAllLoops() {
7422 // This method is intended to forget all info about loops. It should
7423 // invalidate caches as if the following happened:
7424 // - The trip counts of all loops have changed arbitrarily
7425 // - Every llvm::Value has been updated in place to produce a different
7427 BackedgeTakenCounts
.clear();
7428 PredicatedBackedgeTakenCounts
.clear();
7429 LoopPropertiesCache
.clear();
7430 ConstantEvolutionLoopExitValue
.clear();
7431 ValueExprMap
.clear();
7432 ValuesAtScopes
.clear();
7433 LoopDispositions
.clear();
7434 BlockDispositions
.clear();
7435 UnsignedRanges
.clear();
7436 SignedRanges
.clear();
7437 ExprValueMap
.clear();
7439 MinTrailingZerosCache
.clear();
7440 PredicatedSCEVRewrites
.clear();
7443 void ScalarEvolution::forgetLoop(const Loop
*L
) {
7444 SmallVector
<const Loop
*, 16> LoopWorklist(1, L
);
7445 SmallVector
<Instruction
*, 32> Worklist
;
7446 SmallPtrSet
<Instruction
*, 16> Visited
;
7448 // Iterate over all the loops and sub-loops to drop SCEV information.
7449 while (!LoopWorklist
.empty()) {
7450 auto *CurrL
= LoopWorklist
.pop_back_val();
7452 // Drop any stored trip count value.
7453 BackedgeTakenCounts
.erase(CurrL
);
7454 PredicatedBackedgeTakenCounts
.erase(CurrL
);
7456 // Drop information about predicated SCEV rewrites for this loop.
7457 for (auto I
= PredicatedSCEVRewrites
.begin();
7458 I
!= PredicatedSCEVRewrites
.end();) {
7459 std::pair
<const SCEV
*, const Loop
*> Entry
= I
->first
;
7460 if (Entry
.second
== CurrL
)
7461 PredicatedSCEVRewrites
.erase(I
++);
7466 auto LoopUsersItr
= LoopUsers
.find(CurrL
);
7467 if (LoopUsersItr
!= LoopUsers
.end()) {
7468 for (auto *S
: LoopUsersItr
->second
)
7469 forgetMemoizedResults(S
);
7470 LoopUsers
.erase(LoopUsersItr
);
7473 // Drop information about expressions based on loop-header PHIs.
7474 PushLoopPHIs(CurrL
, Worklist
);
7476 while (!Worklist
.empty()) {
7477 Instruction
*I
= Worklist
.pop_back_val();
7478 if (!Visited
.insert(I
).second
)
7481 ValueExprMapType::iterator It
=
7482 ValueExprMap
.find_as(static_cast<Value
*>(I
));
7483 if (It
!= ValueExprMap
.end()) {
7484 eraseValueFromMap(It
->first
);
7485 forgetMemoizedResults(It
->second
);
7486 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
7487 ConstantEvolutionLoopExitValue
.erase(PN
);
7490 PushDefUseChildren(I
, Worklist
);
7493 LoopPropertiesCache
.erase(CurrL
);
7494 // Forget all contained loops too, to avoid dangling entries in the
7495 // ValuesAtScopes map.
7496 LoopWorklist
.append(CurrL
->begin(), CurrL
->end());
7500 void ScalarEvolution::forgetTopmostLoop(const Loop
*L
) {
7501 while (Loop
*Parent
= L
->getParentLoop())
7506 void ScalarEvolution::forgetValue(Value
*V
) {
7507 Instruction
*I
= dyn_cast
<Instruction
>(V
);
7510 // Drop information about expressions based on loop-header PHIs.
7511 SmallVector
<Instruction
*, 16> Worklist
;
7512 Worklist
.push_back(I
);
7514 SmallPtrSet
<Instruction
*, 8> Visited
;
7515 while (!Worklist
.empty()) {
7516 I
= Worklist
.pop_back_val();
7517 if (!Visited
.insert(I
).second
)
7520 ValueExprMapType::iterator It
=
7521 ValueExprMap
.find_as(static_cast<Value
*>(I
));
7522 if (It
!= ValueExprMap
.end()) {
7523 eraseValueFromMap(It
->first
);
7524 forgetMemoizedResults(It
->second
);
7525 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
7526 ConstantEvolutionLoopExitValue
.erase(PN
);
7529 PushDefUseChildren(I
, Worklist
);
7533 void ScalarEvolution::forgetLoopDispositions(const Loop
*L
) {
7534 LoopDispositions
.clear();
7537 /// Get the exact loop backedge taken count considering all loop exits. A
7538 /// computable result can only be returned for loops with all exiting blocks
7539 /// dominating the latch. howFarToZero assumes that the limit of each loop test
7540 /// is never skipped. This is a valid assumption as long as the loop exits via
7541 /// that test. For precise results, it is the caller's responsibility to specify
7542 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
7544 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop
*L
, ScalarEvolution
*SE
,
7545 SCEVUnionPredicate
*Preds
) const {
7546 // If any exits were not computable, the loop is not computable.
7547 if (!isComplete() || ExitNotTaken
.empty())
7548 return SE
->getCouldNotCompute();
7550 const BasicBlock
*Latch
= L
->getLoopLatch();
7551 // All exiting blocks we have collected must dominate the only backedge.
7553 return SE
->getCouldNotCompute();
7555 // All exiting blocks we have gathered dominate loop's latch, so exact trip
7556 // count is simply a minimum out of all these calculated exit counts.
7557 SmallVector
<const SCEV
*, 2> Ops
;
7558 for (auto &ENT
: ExitNotTaken
) {
7559 const SCEV
*BECount
= ENT
.ExactNotTaken
;
7560 assert(BECount
!= SE
->getCouldNotCompute() && "Bad exit SCEV!");
7561 assert(SE
->DT
.dominates(ENT
.ExitingBlock
, Latch
) &&
7562 "We should only have known counts for exiting blocks that dominate "
7565 Ops
.push_back(BECount
);
7567 if (Preds
&& !ENT
.hasAlwaysTruePredicate())
7568 Preds
->add(ENT
.Predicate
.get());
7570 assert((Preds
|| ENT
.hasAlwaysTruePredicate()) &&
7571 "Predicate should be always true!");
7574 return SE
->getUMinFromMismatchedTypes(Ops
);
7577 /// Get the exact not taken count for this loop exit.
7579 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock
*ExitingBlock
,
7580 ScalarEvolution
*SE
) const {
7581 for (auto &ENT
: ExitNotTaken
)
7582 if (ENT
.ExitingBlock
== ExitingBlock
&& ENT
.hasAlwaysTruePredicate())
7583 return ENT
.ExactNotTaken
;
7585 return SE
->getCouldNotCompute();
7588 const SCEV
*ScalarEvolution::BackedgeTakenInfo::getConstantMax(
7589 const BasicBlock
*ExitingBlock
, ScalarEvolution
*SE
) const {
7590 for (auto &ENT
: ExitNotTaken
)
7591 if (ENT
.ExitingBlock
== ExitingBlock
&& ENT
.hasAlwaysTruePredicate())
7592 return ENT
.MaxNotTaken
;
7594 return SE
->getCouldNotCompute();
7597 /// getConstantMax - Get the constant max backedge taken count for the loop.
7599 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution
*SE
) const {
7600 auto PredicateNotAlwaysTrue
= [](const ExitNotTakenInfo
&ENT
) {
7601 return !ENT
.hasAlwaysTruePredicate();
7604 if (any_of(ExitNotTaken
, PredicateNotAlwaysTrue
) || !getConstantMax())
7605 return SE
->getCouldNotCompute();
7607 assert((isa
<SCEVCouldNotCompute
>(getConstantMax()) ||
7608 isa
<SCEVConstant
>(getConstantMax())) &&
7609 "No point in having a non-constant max backedge taken count!");
7610 return getConstantMax();
7614 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop
*L
,
7615 ScalarEvolution
*SE
) {
7617 SymbolicMax
= SE
->computeSymbolicMaxBackedgeTakenCount(L
);
7621 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
7622 ScalarEvolution
*SE
) const {
7623 auto PredicateNotAlwaysTrue
= [](const ExitNotTakenInfo
&ENT
) {
7624 return !ENT
.hasAlwaysTruePredicate();
7626 return MaxOrZero
&& !any_of(ExitNotTaken
, PredicateNotAlwaysTrue
);
7629 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV
*S
) const {
7630 return Operands
.contains(S
);
7633 ScalarEvolution::ExitLimit::ExitLimit(const SCEV
*E
)
7634 : ExitLimit(E
, E
, false, None
) {
7637 ScalarEvolution::ExitLimit::ExitLimit(
7638 const SCEV
*E
, const SCEV
*M
, bool MaxOrZero
,
7639 ArrayRef
<const SmallPtrSetImpl
<const SCEVPredicate
*> *> PredSetList
)
7640 : ExactNotTaken(E
), MaxNotTaken(M
), MaxOrZero(MaxOrZero
) {
7641 assert((isa
<SCEVCouldNotCompute
>(ExactNotTaken
) ||
7642 !isa
<SCEVCouldNotCompute
>(MaxNotTaken
)) &&
7643 "Exact is not allowed to be less precise than Max");
7644 assert((isa
<SCEVCouldNotCompute
>(MaxNotTaken
) ||
7645 isa
<SCEVConstant
>(MaxNotTaken
)) &&
7646 "No point in having a non-constant max backedge taken count!");
7647 for (auto *PredSet
: PredSetList
)
7648 for (auto *P
: *PredSet
)
7650 assert((isa
<SCEVCouldNotCompute
>(E
) || !E
->getType()->isPointerTy()) &&
7651 "Backedge count should be int");
7652 assert((isa
<SCEVCouldNotCompute
>(M
) || !M
->getType()->isPointerTy()) &&
7653 "Max backedge count should be int");
7656 ScalarEvolution::ExitLimit::ExitLimit(
7657 const SCEV
*E
, const SCEV
*M
, bool MaxOrZero
,
7658 const SmallPtrSetImpl
<const SCEVPredicate
*> &PredSet
)
7659 : ExitLimit(E
, M
, MaxOrZero
, {&PredSet
}) {
7662 ScalarEvolution::ExitLimit::ExitLimit(const SCEV
*E
, const SCEV
*M
,
7664 : ExitLimit(E
, M
, MaxOrZero
, None
) {
7667 class SCEVRecordOperands
{
7668 SmallPtrSetImpl
<const SCEV
*> &Operands
;
7671 SCEVRecordOperands(SmallPtrSetImpl
<const SCEV
*> &Operands
)
7672 : Operands(Operands
) {}
7673 bool follow(const SCEV
*S
) {
7677 bool isDone() { return false; }
7680 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7681 /// computable exit into a persistent ExitNotTakenInfo array.
7682 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7683 ArrayRef
<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo
> ExitCounts
,
7684 bool IsComplete
, const SCEV
*ConstantMax
, bool MaxOrZero
)
7685 : ConstantMax(ConstantMax
), IsComplete(IsComplete
), MaxOrZero(MaxOrZero
) {
7686 using EdgeExitInfo
= ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo
;
7688 ExitNotTaken
.reserve(ExitCounts
.size());
7690 ExitCounts
.begin(), ExitCounts
.end(), std::back_inserter(ExitNotTaken
),
7691 [&](const EdgeExitInfo
&EEI
) {
7692 BasicBlock
*ExitBB
= EEI
.first
;
7693 const ExitLimit
&EL
= EEI
.second
;
7694 if (EL
.Predicates
.empty())
7695 return ExitNotTakenInfo(ExitBB
, EL
.ExactNotTaken
, EL
.MaxNotTaken
,
7698 std::unique_ptr
<SCEVUnionPredicate
> Predicate(new SCEVUnionPredicate
);
7699 for (auto *Pred
: EL
.Predicates
)
7700 Predicate
->add(Pred
);
7702 return ExitNotTakenInfo(ExitBB
, EL
.ExactNotTaken
, EL
.MaxNotTaken
,
7703 std::move(Predicate
));
7705 assert((isa
<SCEVCouldNotCompute
>(ConstantMax
) ||
7706 isa
<SCEVConstant
>(ConstantMax
)) &&
7707 "No point in having a non-constant max backedge taken count!");
7709 SCEVRecordOperands
RecordOperands(Operands
);
7710 SCEVTraversal
<SCEVRecordOperands
> ST(RecordOperands
);
7711 if (!isa
<SCEVCouldNotCompute
>(ConstantMax
))
7712 ST
.visitAll(ConstantMax
);
7713 for (auto &ENT
: ExitNotTaken
)
7714 if (!isa
<SCEVCouldNotCompute
>(ENT
.ExactNotTaken
))
7715 ST
.visitAll(ENT
.ExactNotTaken
);
7718 /// Compute the number of times the backedge of the specified loop will execute.
7719 ScalarEvolution::BackedgeTakenInfo
7720 ScalarEvolution::computeBackedgeTakenCount(const Loop
*L
,
7721 bool AllowPredicates
) {
7722 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
7723 L
->getExitingBlocks(ExitingBlocks
);
7725 using EdgeExitInfo
= ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo
;
7727 SmallVector
<EdgeExitInfo
, 4> ExitCounts
;
7728 bool CouldComputeBECount
= true;
7729 BasicBlock
*Latch
= L
->getLoopLatch(); // may be NULL.
7730 const SCEV
*MustExitMaxBECount
= nullptr;
7731 const SCEV
*MayExitMaxBECount
= nullptr;
7732 bool MustExitMaxOrZero
= false;
7734 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7735 // and compute maxBECount.
7736 // Do a union of all the predicates here.
7737 for (unsigned i
= 0, e
= ExitingBlocks
.size(); i
!= e
; ++i
) {
7738 BasicBlock
*ExitBB
= ExitingBlocks
[i
];
7740 // We canonicalize untaken exits to br (constant), ignore them so that
7741 // proving an exit untaken doesn't negatively impact our ability to reason
7742 // about the loop as whole.
7743 if (auto *BI
= dyn_cast
<BranchInst
>(ExitBB
->getTerminator()))
7744 if (auto *CI
= dyn_cast
<ConstantInt
>(BI
->getCondition())) {
7745 bool ExitIfTrue
= !L
->contains(BI
->getSuccessor(0));
7746 if ((ExitIfTrue
&& CI
->isZero()) || (!ExitIfTrue
&& CI
->isOne()))
7750 ExitLimit EL
= computeExitLimit(L
, ExitBB
, AllowPredicates
);
7752 assert((AllowPredicates
|| EL
.Predicates
.empty()) &&
7753 "Predicated exit limit when predicates are not allowed!");
7755 // 1. For each exit that can be computed, add an entry to ExitCounts.
7756 // CouldComputeBECount is true only if all exits can be computed.
7757 if (EL
.ExactNotTaken
== getCouldNotCompute())
7758 // We couldn't compute an exact value for this exit, so
7759 // we won't be able to compute an exact value for the loop.
7760 CouldComputeBECount
= false;
7762 ExitCounts
.emplace_back(ExitBB
, EL
);
7764 // 2. Derive the loop's MaxBECount from each exit's max number of
7765 // non-exiting iterations. Partition the loop exits into two kinds:
7766 // LoopMustExits and LoopMayExits.
7768 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7769 // is a LoopMayExit. If any computable LoopMustExit is found, then
7770 // MaxBECount is the minimum EL.MaxNotTaken of computable
7771 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7772 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7773 // computable EL.MaxNotTaken.
7774 if (EL
.MaxNotTaken
!= getCouldNotCompute() && Latch
&&
7775 DT
.dominates(ExitBB
, Latch
)) {
7776 if (!MustExitMaxBECount
) {
7777 MustExitMaxBECount
= EL
.MaxNotTaken
;
7778 MustExitMaxOrZero
= EL
.MaxOrZero
;
7780 MustExitMaxBECount
=
7781 getUMinFromMismatchedTypes(MustExitMaxBECount
, EL
.MaxNotTaken
);
7783 } else if (MayExitMaxBECount
!= getCouldNotCompute()) {
7784 if (!MayExitMaxBECount
|| EL
.MaxNotTaken
== getCouldNotCompute())
7785 MayExitMaxBECount
= EL
.MaxNotTaken
;
7788 getUMaxFromMismatchedTypes(MayExitMaxBECount
, EL
.MaxNotTaken
);
7792 const SCEV
*MaxBECount
= MustExitMaxBECount
? MustExitMaxBECount
:
7793 (MayExitMaxBECount
? MayExitMaxBECount
: getCouldNotCompute());
7794 // The loop backedge will be taken the maximum or zero times if there's
7795 // a single exit that must be taken the maximum or zero times.
7796 bool MaxOrZero
= (MustExitMaxOrZero
&& ExitingBlocks
.size() == 1);
7797 return BackedgeTakenInfo(std::move(ExitCounts
), CouldComputeBECount
,
7798 MaxBECount
, MaxOrZero
);
7801 ScalarEvolution::ExitLimit
7802 ScalarEvolution::computeExitLimit(const Loop
*L
, BasicBlock
*ExitingBlock
,
7803 bool AllowPredicates
) {
7804 assert(L
->contains(ExitingBlock
) && "Exit count for non-loop block?");
7805 // If our exiting block does not dominate the latch, then its connection with
7806 // loop's exit limit may be far from trivial.
7807 const BasicBlock
*Latch
= L
->getLoopLatch();
7808 if (!Latch
|| !DT
.dominates(ExitingBlock
, Latch
))
7809 return getCouldNotCompute();
7811 bool IsOnlyExit
= (L
->getExitingBlock() != nullptr);
7812 Instruction
*Term
= ExitingBlock
->getTerminator();
7813 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(Term
)) {
7814 assert(BI
->isConditional() && "If unconditional, it can't be in loop!");
7815 bool ExitIfTrue
= !L
->contains(BI
->getSuccessor(0));
7816 assert(ExitIfTrue
== L
->contains(BI
->getSuccessor(1)) &&
7817 "It should have one successor in loop and one exit block!");
7818 // Proceed to the next level to examine the exit condition expression.
7819 return computeExitLimitFromCond(
7820 L
, BI
->getCondition(), ExitIfTrue
,
7821 /*ControlsExit=*/IsOnlyExit
, AllowPredicates
);
7824 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(Term
)) {
7825 // For switch, make sure that there is a single exit from the loop.
7826 BasicBlock
*Exit
= nullptr;
7827 for (auto *SBB
: successors(ExitingBlock
))
7828 if (!L
->contains(SBB
)) {
7829 if (Exit
) // Multiple exit successors.
7830 return getCouldNotCompute();
7833 assert(Exit
&& "Exiting block must have at least one exit");
7834 return computeExitLimitFromSingleExitSwitch(L
, SI
, Exit
,
7835 /*ControlsExit=*/IsOnlyExit
);
7838 return getCouldNotCompute();
7841 ScalarEvolution::ExitLimit
ScalarEvolution::computeExitLimitFromCond(
7842 const Loop
*L
, Value
*ExitCond
, bool ExitIfTrue
,
7843 bool ControlsExit
, bool AllowPredicates
) {
7844 ScalarEvolution::ExitLimitCacheTy
Cache(L
, ExitIfTrue
, AllowPredicates
);
7845 return computeExitLimitFromCondCached(Cache
, L
, ExitCond
, ExitIfTrue
,
7846 ControlsExit
, AllowPredicates
);
7849 Optional
<ScalarEvolution::ExitLimit
>
7850 ScalarEvolution::ExitLimitCache::find(const Loop
*L
, Value
*ExitCond
,
7851 bool ExitIfTrue
, bool ControlsExit
,
7852 bool AllowPredicates
) {
7854 (void)this->ExitIfTrue
;
7855 (void)this->AllowPredicates
;
7857 assert(this->L
== L
&& this->ExitIfTrue
== ExitIfTrue
&&
7858 this->AllowPredicates
== AllowPredicates
&&
7859 "Variance in assumed invariant key components!");
7860 auto Itr
= TripCountMap
.find({ExitCond
, ControlsExit
});
7861 if (Itr
== TripCountMap
.end())
7866 void ScalarEvolution::ExitLimitCache::insert(const Loop
*L
, Value
*ExitCond
,
7869 bool AllowPredicates
,
7870 const ExitLimit
&EL
) {
7871 assert(this->L
== L
&& this->ExitIfTrue
== ExitIfTrue
&&
7872 this->AllowPredicates
== AllowPredicates
&&
7873 "Variance in assumed invariant key components!");
7875 auto InsertResult
= TripCountMap
.insert({{ExitCond
, ControlsExit
}, EL
});
7876 assert(InsertResult
.second
&& "Expected successful insertion!");
7881 ScalarEvolution::ExitLimit
ScalarEvolution::computeExitLimitFromCondCached(
7882 ExitLimitCacheTy
&Cache
, const Loop
*L
, Value
*ExitCond
, bool ExitIfTrue
,
7883 bool ControlsExit
, bool AllowPredicates
) {
7886 Cache
.find(L
, ExitCond
, ExitIfTrue
, ControlsExit
, AllowPredicates
))
7889 ExitLimit EL
= computeExitLimitFromCondImpl(Cache
, L
, ExitCond
, ExitIfTrue
,
7890 ControlsExit
, AllowPredicates
);
7891 Cache
.insert(L
, ExitCond
, ExitIfTrue
, ControlsExit
, AllowPredicates
, EL
);
7895 ScalarEvolution::ExitLimit
ScalarEvolution::computeExitLimitFromCondImpl(
7896 ExitLimitCacheTy
&Cache
, const Loop
*L
, Value
*ExitCond
, bool ExitIfTrue
,
7897 bool ControlsExit
, bool AllowPredicates
) {
7898 // Handle BinOp conditions (And, Or).
7899 if (auto LimitFromBinOp
= computeExitLimitFromCondFromBinOp(
7900 Cache
, L
, ExitCond
, ExitIfTrue
, ControlsExit
, AllowPredicates
))
7901 return *LimitFromBinOp
;
7903 // With an icmp, it may be feasible to compute an exact backedge-taken count.
7904 // Proceed to the next level to examine the icmp.
7905 if (ICmpInst
*ExitCondICmp
= dyn_cast
<ICmpInst
>(ExitCond
)) {
7907 computeExitLimitFromICmp(L
, ExitCondICmp
, ExitIfTrue
, ControlsExit
);
7908 if (EL
.hasFullInfo() || !AllowPredicates
)
7911 // Try again, but use SCEV predicates this time.
7912 return computeExitLimitFromICmp(L
, ExitCondICmp
, ExitIfTrue
, ControlsExit
,
7913 /*AllowPredicates=*/true);
7916 // Check for a constant condition. These are normally stripped out by
7917 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7918 // preserve the CFG and is temporarily leaving constant conditions
7920 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(ExitCond
)) {
7921 if (ExitIfTrue
== !CI
->getZExtValue())
7922 // The backedge is always taken.
7923 return getCouldNotCompute();
7925 // The backedge is never taken.
7926 return getZero(CI
->getType());
7929 // If it's not an integer or pointer comparison then compute it the hard way.
7930 return computeExitCountExhaustively(L
, ExitCond
, ExitIfTrue
);
7933 Optional
<ScalarEvolution::ExitLimit
>
7934 ScalarEvolution::computeExitLimitFromCondFromBinOp(
7935 ExitLimitCacheTy
&Cache
, const Loop
*L
, Value
*ExitCond
, bool ExitIfTrue
,
7936 bool ControlsExit
, bool AllowPredicates
) {
7937 // Check if the controlling expression for this loop is an And or Or.
7940 if (match(ExitCond
, m_LogicalAnd(m_Value(Op0
), m_Value(Op1
))))
7942 else if (match(ExitCond
, m_LogicalOr(m_Value(Op0
), m_Value(Op1
))))
7947 // EitherMayExit is true in these two cases:
7948 // br (and Op0 Op1), loop, exit
7949 // br (or Op0 Op1), exit, loop
7950 bool EitherMayExit
= IsAnd
^ ExitIfTrue
;
7951 ExitLimit EL0
= computeExitLimitFromCondCached(Cache
, L
, Op0
, ExitIfTrue
,
7952 ControlsExit
&& !EitherMayExit
,
7954 ExitLimit EL1
= computeExitLimitFromCondCached(Cache
, L
, Op1
, ExitIfTrue
,
7955 ControlsExit
&& !EitherMayExit
,
7958 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
7959 const Constant
*NeutralElement
= ConstantInt::get(ExitCond
->getType(), IsAnd
);
7960 if (isa
<ConstantInt
>(Op1
))
7961 return Op1
== NeutralElement
? EL0
: EL1
;
7962 if (isa
<ConstantInt
>(Op0
))
7963 return Op0
== NeutralElement
? EL1
: EL0
;
7965 const SCEV
*BECount
= getCouldNotCompute();
7966 const SCEV
*MaxBECount
= getCouldNotCompute();
7967 if (EitherMayExit
) {
7968 // Both conditions must be same for the loop to continue executing.
7969 // Choose the less conservative count.
7970 // If ExitCond is a short-circuit form (select), using
7971 // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general.
7972 // To see the detailed examples, please see
7973 // test/Analysis/ScalarEvolution/exit-count-select.ll
7974 bool PoisonSafe
= isa
<BinaryOperator
>(ExitCond
);
7976 // Even if ExitCond is select, we can safely derive BECount using both
7977 // EL0 and EL1 in these cases:
7978 // (1) EL0.ExactNotTaken is non-zero
7979 // (2) EL1.ExactNotTaken is non-poison
7980 // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and
7981 // it cannot be umin(0, ..))
7982 // The PoisonSafe assignment below is simplified and the assertion after
7983 // BECount calculation fully guarantees the condition (3).
7984 PoisonSafe
= isa
<SCEVConstant
>(EL0
.ExactNotTaken
) ||
7985 isa
<SCEVConstant
>(EL1
.ExactNotTaken
);
7986 if (EL0
.ExactNotTaken
!= getCouldNotCompute() &&
7987 EL1
.ExactNotTaken
!= getCouldNotCompute() && PoisonSafe
) {
7989 getUMinFromMismatchedTypes(EL0
.ExactNotTaken
, EL1
.ExactNotTaken
);
7991 // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form,
7992 // it should have been simplified to zero (see the condition (3) above)
7993 assert(!isa
<BinaryOperator
>(ExitCond
) || !EL0
.ExactNotTaken
->isZero() ||
7996 if (EL0
.MaxNotTaken
== getCouldNotCompute())
7997 MaxBECount
= EL1
.MaxNotTaken
;
7998 else if (EL1
.MaxNotTaken
== getCouldNotCompute())
7999 MaxBECount
= EL0
.MaxNotTaken
;
8001 MaxBECount
= getUMinFromMismatchedTypes(EL0
.MaxNotTaken
, EL1
.MaxNotTaken
);
8003 // Both conditions must be same at the same time for the loop to exit.
8004 // For now, be conservative.
8005 if (EL0
.ExactNotTaken
== EL1
.ExactNotTaken
)
8006 BECount
= EL0
.ExactNotTaken
;
8009 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
8010 // to be more aggressive when computing BECount than when computing
8011 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and
8012 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
8014 if (isa
<SCEVCouldNotCompute
>(MaxBECount
) &&
8015 !isa
<SCEVCouldNotCompute
>(BECount
))
8016 MaxBECount
= getConstant(getUnsignedRangeMax(BECount
));
8018 return ExitLimit(BECount
, MaxBECount
, false,
8019 { &EL0
.Predicates
, &EL1
.Predicates
});
8022 ScalarEvolution::ExitLimit
8023 ScalarEvolution::computeExitLimitFromICmp(const Loop
*L
,
8027 bool AllowPredicates
) {
8028 // If the condition was exit on true, convert the condition to exit on false
8029 ICmpInst::Predicate Pred
;
8031 Pred
= ExitCond
->getPredicate();
8033 Pred
= ExitCond
->getInversePredicate();
8034 const ICmpInst::Predicate OriginalPred
= Pred
;
8036 // Handle common loops like: for (X = "string"; *X; ++X)
8037 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(ExitCond
->getOperand(0)))
8038 if (Constant
*RHS
= dyn_cast
<Constant
>(ExitCond
->getOperand(1))) {
8040 computeLoadConstantCompareExitLimit(LI
, RHS
, L
, Pred
);
8041 if (ItCnt
.hasAnyInfo())
8045 const SCEV
*LHS
= getSCEV(ExitCond
->getOperand(0));
8046 const SCEV
*RHS
= getSCEV(ExitCond
->getOperand(1));
8048 // Try to evaluate any dependencies out of the loop.
8049 LHS
= getSCEVAtScope(LHS
, L
);
8050 RHS
= getSCEVAtScope(RHS
, L
);
8052 // At this point, we would like to compute how many iterations of the
8053 // loop the predicate will return true for these inputs.
8054 if (isLoopInvariant(LHS
, L
) && !isLoopInvariant(RHS
, L
)) {
8055 // If there is a loop-invariant, force it into the RHS.
8056 std::swap(LHS
, RHS
);
8057 Pred
= ICmpInst::getSwappedPredicate(Pred
);
8060 // Simplify the operands before analyzing them.
8061 (void)SimplifyICmpOperands(Pred
, LHS
, RHS
);
8063 // If we have a comparison of a chrec against a constant, try to use value
8064 // ranges to answer this query.
8065 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
))
8066 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(LHS
))
8067 if (AddRec
->getLoop() == L
) {
8068 // Form the constant range.
8069 ConstantRange CompRange
=
8070 ConstantRange::makeExactICmpRegion(Pred
, RHSC
->getAPInt());
8072 const SCEV
*Ret
= AddRec
->getNumIterationsInRange(CompRange
, *this);
8073 if (!isa
<SCEVCouldNotCompute
>(Ret
)) return Ret
;
8077 case ICmpInst::ICMP_NE
: { // while (X != Y)
8078 // Convert to: while (X-Y != 0)
8079 if (LHS
->getType()->isPointerTy()) {
8080 LHS
= getLosslessPtrToIntExpr(LHS
);
8081 if (isa
<SCEVCouldNotCompute
>(LHS
))
8084 if (RHS
->getType()->isPointerTy()) {
8085 RHS
= getLosslessPtrToIntExpr(RHS
);
8086 if (isa
<SCEVCouldNotCompute
>(RHS
))
8089 ExitLimit EL
= howFarToZero(getMinusSCEV(LHS
, RHS
), L
, ControlsExit
,
8091 if (EL
.hasAnyInfo()) return EL
;
8094 case ICmpInst::ICMP_EQ
: { // while (X == Y)
8095 // Convert to: while (X-Y == 0)
8096 if (LHS
->getType()->isPointerTy()) {
8097 LHS
= getLosslessPtrToIntExpr(LHS
);
8098 if (isa
<SCEVCouldNotCompute
>(LHS
))
8101 if (RHS
->getType()->isPointerTy()) {
8102 RHS
= getLosslessPtrToIntExpr(RHS
);
8103 if (isa
<SCEVCouldNotCompute
>(RHS
))
8106 ExitLimit EL
= howFarToNonZero(getMinusSCEV(LHS
, RHS
), L
);
8107 if (EL
.hasAnyInfo()) return EL
;
8110 case ICmpInst::ICMP_SLT
:
8111 case ICmpInst::ICMP_ULT
: { // while (X < Y)
8112 bool IsSigned
= Pred
== ICmpInst::ICMP_SLT
;
8113 ExitLimit EL
= howManyLessThans(LHS
, RHS
, L
, IsSigned
, ControlsExit
,
8115 if (EL
.hasAnyInfo()) return EL
;
8118 case ICmpInst::ICMP_SGT
:
8119 case ICmpInst::ICMP_UGT
: { // while (X > Y)
8120 bool IsSigned
= Pred
== ICmpInst::ICMP_SGT
;
8122 howManyGreaterThans(LHS
, RHS
, L
, IsSigned
, ControlsExit
,
8124 if (EL
.hasAnyInfo()) return EL
;
8131 auto *ExhaustiveCount
=
8132 computeExitCountExhaustively(L
, ExitCond
, ExitIfTrue
);
8134 if (!isa
<SCEVCouldNotCompute
>(ExhaustiveCount
))
8135 return ExhaustiveCount
;
8137 return computeShiftCompareExitLimit(ExitCond
->getOperand(0),
8138 ExitCond
->getOperand(1), L
, OriginalPred
);
8141 ScalarEvolution::ExitLimit
8142 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop
*L
,
8144 BasicBlock
*ExitingBlock
,
8145 bool ControlsExit
) {
8146 assert(!L
->contains(ExitingBlock
) && "Not an exiting block!");
8148 // Give up if the exit is the default dest of a switch.
8149 if (Switch
->getDefaultDest() == ExitingBlock
)
8150 return getCouldNotCompute();
8152 assert(L
->contains(Switch
->getDefaultDest()) &&
8153 "Default case must not exit the loop!");
8154 const SCEV
*LHS
= getSCEVAtScope(Switch
->getCondition(), L
);
8155 const SCEV
*RHS
= getConstant(Switch
->findCaseDest(ExitingBlock
));
8157 // while (X != Y) --> while (X-Y != 0)
8158 ExitLimit EL
= howFarToZero(getMinusSCEV(LHS
, RHS
), L
, ControlsExit
);
8159 if (EL
.hasAnyInfo())
8162 return getCouldNotCompute();
8165 static ConstantInt
*
8166 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr
*AddRec
, ConstantInt
*C
,
8167 ScalarEvolution
&SE
) {
8168 const SCEV
*InVal
= SE
.getConstant(C
);
8169 const SCEV
*Val
= AddRec
->evaluateAtIteration(InVal
, SE
);
8170 assert(isa
<SCEVConstant
>(Val
) &&
8171 "Evaluation of SCEV at constant didn't fold correctly?");
8172 return cast
<SCEVConstant
>(Val
)->getValue();
8175 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
8176 /// compute the backedge execution count.
8177 ScalarEvolution::ExitLimit
8178 ScalarEvolution::computeLoadConstantCompareExitLimit(
8182 ICmpInst::Predicate predicate
) {
8183 if (LI
->isVolatile()) return getCouldNotCompute();
8185 // Check to see if the loaded pointer is a getelementptr of a global.
8186 // TODO: Use SCEV instead of manually grubbing with GEPs.
8187 GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(LI
->getOperand(0));
8188 if (!GEP
) return getCouldNotCompute();
8190 // Make sure that it is really a constant global we are gepping, with an
8191 // initializer, and make sure the first IDX is really 0.
8192 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0));
8193 if (!GV
|| !GV
->isConstant() || !GV
->hasDefinitiveInitializer() ||
8194 GEP
->getNumOperands() < 3 || !isa
<Constant
>(GEP
->getOperand(1)) ||
8195 !cast
<Constant
>(GEP
->getOperand(1))->isNullValue())
8196 return getCouldNotCompute();
8198 // Okay, we allow one non-constant index into the GEP instruction.
8199 Value
*VarIdx
= nullptr;
8200 std::vector
<Constant
*> Indexes
;
8201 unsigned VarIdxNum
= 0;
8202 for (unsigned i
= 2, e
= GEP
->getNumOperands(); i
!= e
; ++i
)
8203 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
))) {
8204 Indexes
.push_back(CI
);
8205 } else if (!isa
<ConstantInt
>(GEP
->getOperand(i
))) {
8206 if (VarIdx
) return getCouldNotCompute(); // Multiple non-constant idx's.
8207 VarIdx
= GEP
->getOperand(i
);
8209 Indexes
.push_back(nullptr);
8212 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
8214 return getCouldNotCompute();
8216 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
8217 // Check to see if X is a loop variant variable value now.
8218 const SCEV
*Idx
= getSCEV(VarIdx
);
8219 Idx
= getSCEVAtScope(Idx
, L
);
8221 // We can only recognize very limited forms of loop index expressions, in
8222 // particular, only affine AddRec's like {C1,+,C2}<L>.
8223 const SCEVAddRecExpr
*IdxExpr
= dyn_cast
<SCEVAddRecExpr
>(Idx
);
8224 if (!IdxExpr
|| IdxExpr
->getLoop() != L
|| !IdxExpr
->isAffine() ||
8225 isLoopInvariant(IdxExpr
, L
) ||
8226 !isa
<SCEVConstant
>(IdxExpr
->getOperand(0)) ||
8227 !isa
<SCEVConstant
>(IdxExpr
->getOperand(1)))
8228 return getCouldNotCompute();
8230 unsigned MaxSteps
= MaxBruteForceIterations
;
8231 for (unsigned IterationNum
= 0; IterationNum
!= MaxSteps
; ++IterationNum
) {
8232 ConstantInt
*ItCst
= ConstantInt::get(
8233 cast
<IntegerType
>(IdxExpr
->getType()), IterationNum
);
8234 ConstantInt
*Val
= EvaluateConstantChrecAtConstant(IdxExpr
, ItCst
, *this);
8236 // Form the GEP offset.
8237 Indexes
[VarIdxNum
] = Val
;
8239 Constant
*Result
= ConstantFoldLoadThroughGEPIndices(GV
->getInitializer(),
8241 if (!Result
) break; // Cannot compute!
8243 // Evaluate the condition for this iteration.
8244 Result
= ConstantExpr::getICmp(predicate
, Result
, RHS
);
8245 if (!isa
<ConstantInt
>(Result
)) break; // Couldn't decide for sure
8246 if (cast
<ConstantInt
>(Result
)->getValue().isMinValue()) {
8247 ++NumArrayLenItCounts
;
8248 return getConstant(ItCst
); // Found terminating iteration!
8251 return getCouldNotCompute();
8254 ScalarEvolution::ExitLimit
ScalarEvolution::computeShiftCompareExitLimit(
8255 Value
*LHS
, Value
*RHSV
, const Loop
*L
, ICmpInst::Predicate Pred
) {
8256 ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(RHSV
);
8258 return getCouldNotCompute();
8260 const BasicBlock
*Latch
= L
->getLoopLatch();
8262 return getCouldNotCompute();
8264 const BasicBlock
*Predecessor
= L
->getLoopPredecessor();
8266 return getCouldNotCompute();
8268 // Return true if V is of the form "LHS `shift_op` <positive constant>".
8269 // Return LHS in OutLHS and shift_opt in OutOpCode.
8270 auto MatchPositiveShift
=
8271 [](Value
*V
, Value
*&OutLHS
, Instruction::BinaryOps
&OutOpCode
) {
8273 using namespace PatternMatch
;
8275 ConstantInt
*ShiftAmt
;
8276 if (match(V
, m_LShr(m_Value(OutLHS
), m_ConstantInt(ShiftAmt
))))
8277 OutOpCode
= Instruction::LShr
;
8278 else if (match(V
, m_AShr(m_Value(OutLHS
), m_ConstantInt(ShiftAmt
))))
8279 OutOpCode
= Instruction::AShr
;
8280 else if (match(V
, m_Shl(m_Value(OutLHS
), m_ConstantInt(ShiftAmt
))))
8281 OutOpCode
= Instruction::Shl
;
8285 return ShiftAmt
->getValue().isStrictlyPositive();
8288 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
8291 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
8292 // %iv.shifted = lshr i32 %iv, <positive constant>
8294 // Return true on a successful match. Return the corresponding PHI node (%iv
8295 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
8296 auto MatchShiftRecurrence
=
8297 [&](Value
*V
, PHINode
*&PNOut
, Instruction::BinaryOps
&OpCodeOut
) {
8298 Optional
<Instruction::BinaryOps
> PostShiftOpCode
;
8301 Instruction::BinaryOps OpC
;
8304 // If we encounter a shift instruction, "peel off" the shift operation,
8305 // and remember that we did so. Later when we inspect %iv's backedge
8306 // value, we will make sure that the backedge value uses the same
8309 // Note: the peeled shift operation does not have to be the same
8310 // instruction as the one feeding into the PHI's backedge value. We only
8311 // really care about it being the same *kind* of shift instruction --
8312 // that's all that is required for our later inferences to hold.
8313 if (MatchPositiveShift(LHS
, V
, OpC
)) {
8314 PostShiftOpCode
= OpC
;
8319 PNOut
= dyn_cast
<PHINode
>(LHS
);
8320 if (!PNOut
|| PNOut
->getParent() != L
->getHeader())
8323 Value
*BEValue
= PNOut
->getIncomingValueForBlock(Latch
);
8327 // The backedge value for the PHI node must be a shift by a positive
8329 MatchPositiveShift(BEValue
, OpLHS
, OpCodeOut
) &&
8331 // of the PHI node itself
8334 // and the kind of shift should be match the kind of shift we peeled
8336 (!PostShiftOpCode
.hasValue() || *PostShiftOpCode
== OpCodeOut
);
8340 Instruction::BinaryOps OpCode
;
8341 if (!MatchShiftRecurrence(LHS
, PN
, OpCode
))
8342 return getCouldNotCompute();
8344 const DataLayout
&DL
= getDataLayout();
8346 // The key rationale for this optimization is that for some kinds of shift
8347 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
8348 // within a finite number of iterations. If the condition guarding the
8349 // backedge (in the sense that the backedge is taken if the condition is true)
8350 // is false for the value the shift recurrence stabilizes to, then we know
8351 // that the backedge is taken only a finite number of times.
8353 ConstantInt
*StableValue
= nullptr;
8356 llvm_unreachable("Impossible case!");
8358 case Instruction::AShr
: {
8359 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
8360 // bitwidth(K) iterations.
8361 Value
*FirstValue
= PN
->getIncomingValueForBlock(Predecessor
);
8362 KnownBits Known
= computeKnownBits(FirstValue
, DL
, 0, &AC
,
8363 Predecessor
->getTerminator(), &DT
);
8364 auto *Ty
= cast
<IntegerType
>(RHS
->getType());
8365 if (Known
.isNonNegative())
8366 StableValue
= ConstantInt::get(Ty
, 0);
8367 else if (Known
.isNegative())
8368 StableValue
= ConstantInt::get(Ty
, -1, true);
8370 return getCouldNotCompute();
8374 case Instruction::LShr
:
8375 case Instruction::Shl
:
8376 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
8377 // stabilize to 0 in at most bitwidth(K) iterations.
8378 StableValue
= ConstantInt::get(cast
<IntegerType
>(RHS
->getType()), 0);
8383 ConstantFoldCompareInstOperands(Pred
, StableValue
, RHS
, DL
, &TLI
);
8384 assert(Result
->getType()->isIntegerTy(1) &&
8385 "Otherwise cannot be an operand to a branch instruction");
8387 if (Result
->isZeroValue()) {
8388 unsigned BitWidth
= getTypeSizeInBits(RHS
->getType());
8389 const SCEV
*UpperBound
=
8390 getConstant(getEffectiveSCEVType(RHS
->getType()), BitWidth
);
8391 return ExitLimit(getCouldNotCompute(), UpperBound
, false);
8394 return getCouldNotCompute();
8397 /// Return true if we can constant fold an instruction of the specified type,
8398 /// assuming that all operands were constants.
8399 static bool CanConstantFold(const Instruction
*I
) {
8400 if (isa
<BinaryOperator
>(I
) || isa
<CmpInst
>(I
) ||
8401 isa
<SelectInst
>(I
) || isa
<CastInst
>(I
) || isa
<GetElementPtrInst
>(I
) ||
8402 isa
<LoadInst
>(I
) || isa
<ExtractValueInst
>(I
))
8405 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
8406 if (const Function
*F
= CI
->getCalledFunction())
8407 return canConstantFoldCallTo(CI
, F
);
8411 /// Determine whether this instruction can constant evolve within this loop
8412 /// assuming its operands can all constant evolve.
8413 static bool canConstantEvolve(Instruction
*I
, const Loop
*L
) {
8414 // An instruction outside of the loop can't be derived from a loop PHI.
8415 if (!L
->contains(I
)) return false;
8417 if (isa
<PHINode
>(I
)) {
8418 // We don't currently keep track of the control flow needed to evaluate
8419 // PHIs, so we cannot handle PHIs inside of loops.
8420 return L
->getHeader() == I
->getParent();
8423 // If we won't be able to constant fold this expression even if the operands
8424 // are constants, bail early.
8425 return CanConstantFold(I
);
8428 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8429 /// recursing through each instruction operand until reaching a loop header phi.
8431 getConstantEvolvingPHIOperands(Instruction
*UseInst
, const Loop
*L
,
8432 DenseMap
<Instruction
*, PHINode
*> &PHIMap
,
8434 if (Depth
> MaxConstantEvolvingDepth
)
8437 // Otherwise, we can evaluate this instruction if all of its operands are
8438 // constant or derived from a PHI node themselves.
8439 PHINode
*PHI
= nullptr;
8440 for (Value
*Op
: UseInst
->operands()) {
8441 if (isa
<Constant
>(Op
)) continue;
8443 Instruction
*OpInst
= dyn_cast
<Instruction
>(Op
);
8444 if (!OpInst
|| !canConstantEvolve(OpInst
, L
)) return nullptr;
8446 PHINode
*P
= dyn_cast
<PHINode
>(OpInst
);
8448 // If this operand is already visited, reuse the prior result.
8449 // We may have P != PHI if this is the deepest point at which the
8450 // inconsistent paths meet.
8451 P
= PHIMap
.lookup(OpInst
);
8453 // Recurse and memoize the results, whether a phi is found or not.
8454 // This recursive call invalidates pointers into PHIMap.
8455 P
= getConstantEvolvingPHIOperands(OpInst
, L
, PHIMap
, Depth
+ 1);
8459 return nullptr; // Not evolving from PHI
8460 if (PHI
&& PHI
!= P
)
8461 return nullptr; // Evolving from multiple different PHIs.
8464 // This is a expression evolving from a constant PHI!
8468 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
8469 /// in the loop that V is derived from. We allow arbitrary operations along the
8470 /// way, but the operands of an operation must either be constants or a value
8471 /// derived from a constant PHI. If this expression does not fit with these
8472 /// constraints, return null.
8473 static PHINode
*getConstantEvolvingPHI(Value
*V
, const Loop
*L
) {
8474 Instruction
*I
= dyn_cast
<Instruction
>(V
);
8475 if (!I
|| !canConstantEvolve(I
, L
)) return nullptr;
8477 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
8480 // Record non-constant instructions contained by the loop.
8481 DenseMap
<Instruction
*, PHINode
*> PHIMap
;
8482 return getConstantEvolvingPHIOperands(I
, L
, PHIMap
, 0);
8485 /// EvaluateExpression - Given an expression that passes the
8486 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8487 /// in the loop has the value PHIVal. If we can't fold this expression for some
8488 /// reason, return null.
8489 static Constant
*EvaluateExpression(Value
*V
, const Loop
*L
,
8490 DenseMap
<Instruction
*, Constant
*> &Vals
,
8491 const DataLayout
&DL
,
8492 const TargetLibraryInfo
*TLI
) {
8493 // Convenient constant check, but redundant for recursive calls.
8494 if (Constant
*C
= dyn_cast
<Constant
>(V
)) return C
;
8495 Instruction
*I
= dyn_cast
<Instruction
>(V
);
8496 if (!I
) return nullptr;
8498 if (Constant
*C
= Vals
.lookup(I
)) return C
;
8500 // An instruction inside the loop depends on a value outside the loop that we
8501 // weren't given a mapping for, or a value such as a call inside the loop.
8502 if (!canConstantEvolve(I
, L
)) return nullptr;
8504 // An unmapped PHI can be due to a branch or another loop inside this loop,
8505 // or due to this not being the initial iteration through a loop where we
8506 // couldn't compute the evolution of this particular PHI last time.
8507 if (isa
<PHINode
>(I
)) return nullptr;
8509 std::vector
<Constant
*> Operands(I
->getNumOperands());
8511 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
8512 Instruction
*Operand
= dyn_cast
<Instruction
>(I
->getOperand(i
));
8514 Operands
[i
] = dyn_cast
<Constant
>(I
->getOperand(i
));
8515 if (!Operands
[i
]) return nullptr;
8518 Constant
*C
= EvaluateExpression(Operand
, L
, Vals
, DL
, TLI
);
8520 if (!C
) return nullptr;
8524 if (CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
8525 return ConstantFoldCompareInstOperands(CI
->getPredicate(), Operands
[0],
8526 Operands
[1], DL
, TLI
);
8527 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
8528 if (!LI
->isVolatile())
8529 return ConstantFoldLoadFromConstPtr(Operands
[0], LI
->getType(), DL
);
8531 return ConstantFoldInstOperands(I
, Operands
, DL
, TLI
);
8535 // If every incoming value to PN except the one for BB is a specific Constant,
8536 // return that, else return nullptr.
8537 static Constant
*getOtherIncomingValue(PHINode
*PN
, BasicBlock
*BB
) {
8538 Constant
*IncomingVal
= nullptr;
8540 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
8541 if (PN
->getIncomingBlock(i
) == BB
)
8544 auto *CurrentVal
= dyn_cast
<Constant
>(PN
->getIncomingValue(i
));
8548 if (IncomingVal
!= CurrentVal
) {
8551 IncomingVal
= CurrentVal
;
8558 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
8559 /// in the header of its containing loop, we know the loop executes a
8560 /// constant number of times, and the PHI node is just a recurrence
8561 /// involving constants, fold it.
8563 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode
*PN
,
8566 auto I
= ConstantEvolutionLoopExitValue
.find(PN
);
8567 if (I
!= ConstantEvolutionLoopExitValue
.end())
8570 if (BEs
.ugt(MaxBruteForceIterations
))
8571 return ConstantEvolutionLoopExitValue
[PN
] = nullptr; // Not going to evaluate it.
8573 Constant
*&RetVal
= ConstantEvolutionLoopExitValue
[PN
];
8575 DenseMap
<Instruction
*, Constant
*> CurrentIterVals
;
8576 BasicBlock
*Header
= L
->getHeader();
8577 assert(PN
->getParent() == Header
&& "Can't evaluate PHI not in loop header!");
8579 BasicBlock
*Latch
= L
->getLoopLatch();
8583 for (PHINode
&PHI
: Header
->phis()) {
8584 if (auto *StartCST
= getOtherIncomingValue(&PHI
, Latch
))
8585 CurrentIterVals
[&PHI
] = StartCST
;
8587 if (!CurrentIterVals
.count(PN
))
8588 return RetVal
= nullptr;
8590 Value
*BEValue
= PN
->getIncomingValueForBlock(Latch
);
8592 // Execute the loop symbolically to determine the exit value.
8593 assert(BEs
.getActiveBits() < CHAR_BIT
* sizeof(unsigned) &&
8594 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8596 unsigned NumIterations
= BEs
.getZExtValue(); // must be in range
8597 unsigned IterationNum
= 0;
8598 const DataLayout
&DL
= getDataLayout();
8599 for (; ; ++IterationNum
) {
8600 if (IterationNum
== NumIterations
)
8601 return RetVal
= CurrentIterVals
[PN
]; // Got exit value!
8603 // Compute the value of the PHIs for the next iteration.
8604 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8605 DenseMap
<Instruction
*, Constant
*> NextIterVals
;
8607 EvaluateExpression(BEValue
, L
, CurrentIterVals
, DL
, &TLI
);
8609 return nullptr; // Couldn't evaluate!
8610 NextIterVals
[PN
] = NextPHI
;
8612 bool StoppedEvolving
= NextPHI
== CurrentIterVals
[PN
];
8614 // Also evaluate the other PHI nodes. However, we don't get to stop if we
8615 // cease to be able to evaluate one of them or if they stop evolving,
8616 // because that doesn't necessarily prevent us from computing PN.
8617 SmallVector
<std::pair
<PHINode
*, Constant
*>, 8> PHIsToCompute
;
8618 for (const auto &I
: CurrentIterVals
) {
8619 PHINode
*PHI
= dyn_cast
<PHINode
>(I
.first
);
8620 if (!PHI
|| PHI
== PN
|| PHI
->getParent() != Header
) continue;
8621 PHIsToCompute
.emplace_back(PHI
, I
.second
);
8623 // We use two distinct loops because EvaluateExpression may invalidate any
8624 // iterators into CurrentIterVals.
8625 for (const auto &I
: PHIsToCompute
) {
8626 PHINode
*PHI
= I
.first
;
8627 Constant
*&NextPHI
= NextIterVals
[PHI
];
8628 if (!NextPHI
) { // Not already computed.
8629 Value
*BEValue
= PHI
->getIncomingValueForBlock(Latch
);
8630 NextPHI
= EvaluateExpression(BEValue
, L
, CurrentIterVals
, DL
, &TLI
);
8632 if (NextPHI
!= I
.second
)
8633 StoppedEvolving
= false;
8636 // If all entries in CurrentIterVals == NextIterVals then we can stop
8637 // iterating, the loop can't continue to change.
8638 if (StoppedEvolving
)
8639 return RetVal
= CurrentIterVals
[PN
];
8641 CurrentIterVals
.swap(NextIterVals
);
8645 const SCEV
*ScalarEvolution::computeExitCountExhaustively(const Loop
*L
,
8648 PHINode
*PN
= getConstantEvolvingPHI(Cond
, L
);
8649 if (!PN
) return getCouldNotCompute();
8651 // If the loop is canonicalized, the PHI will have exactly two entries.
8652 // That's the only form we support here.
8653 if (PN
->getNumIncomingValues() != 2) return getCouldNotCompute();
8655 DenseMap
<Instruction
*, Constant
*> CurrentIterVals
;
8656 BasicBlock
*Header
= L
->getHeader();
8657 assert(PN
->getParent() == Header
&& "Can't evaluate PHI not in loop header!");
8659 BasicBlock
*Latch
= L
->getLoopLatch();
8660 assert(Latch
&& "Should follow from NumIncomingValues == 2!");
8662 for (PHINode
&PHI
: Header
->phis()) {
8663 if (auto *StartCST
= getOtherIncomingValue(&PHI
, Latch
))
8664 CurrentIterVals
[&PHI
] = StartCST
;
8666 if (!CurrentIterVals
.count(PN
))
8667 return getCouldNotCompute();
8669 // Okay, we find a PHI node that defines the trip count of this loop. Execute
8670 // the loop symbolically to determine when the condition gets a value of
8672 unsigned MaxIterations
= MaxBruteForceIterations
; // Limit analysis.
8673 const DataLayout
&DL
= getDataLayout();
8674 for (unsigned IterationNum
= 0; IterationNum
!= MaxIterations
;++IterationNum
){
8675 auto *CondVal
= dyn_cast_or_null
<ConstantInt
>(
8676 EvaluateExpression(Cond
, L
, CurrentIterVals
, DL
, &TLI
));
8678 // Couldn't symbolically evaluate.
8679 if (!CondVal
) return getCouldNotCompute();
8681 if (CondVal
->getValue() == uint64_t(ExitWhen
)) {
8682 ++NumBruteForceTripCountsComputed
;
8683 return getConstant(Type::getInt32Ty(getContext()), IterationNum
);
8686 // Update all the PHI nodes for the next iteration.
8687 DenseMap
<Instruction
*, Constant
*> NextIterVals
;
8689 // Create a list of which PHIs we need to compute. We want to do this before
8690 // calling EvaluateExpression on them because that may invalidate iterators
8691 // into CurrentIterVals.
8692 SmallVector
<PHINode
*, 8> PHIsToCompute
;
8693 for (const auto &I
: CurrentIterVals
) {
8694 PHINode
*PHI
= dyn_cast
<PHINode
>(I
.first
);
8695 if (!PHI
|| PHI
->getParent() != Header
) continue;
8696 PHIsToCompute
.push_back(PHI
);
8698 for (PHINode
*PHI
: PHIsToCompute
) {
8699 Constant
*&NextPHI
= NextIterVals
[PHI
];
8700 if (NextPHI
) continue; // Already computed!
8702 Value
*BEValue
= PHI
->getIncomingValueForBlock(Latch
);
8703 NextPHI
= EvaluateExpression(BEValue
, L
, CurrentIterVals
, DL
, &TLI
);
8705 CurrentIterVals
.swap(NextIterVals
);
8708 // Too many iterations were needed to evaluate.
8709 return getCouldNotCompute();
8712 const SCEV
*ScalarEvolution::getSCEVAtScope(const SCEV
*V
, const Loop
*L
) {
8713 SmallVector
<std::pair
<const Loop
*, const SCEV
*>, 2> &Values
=
8715 // Check to see if we've folded this expression at this loop before.
8716 for (auto &LS
: Values
)
8718 return LS
.second
? LS
.second
: V
;
8720 Values
.emplace_back(L
, nullptr);
8722 // Otherwise compute it.
8723 const SCEV
*C
= computeSCEVAtScope(V
, L
);
8724 for (auto &LS
: reverse(ValuesAtScopes
[V
]))
8725 if (LS
.first
== L
) {
8732 /// This builds up a Constant using the ConstantExpr interface. That way, we
8733 /// will return Constants for objects which aren't represented by a
8734 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8735 /// Returns NULL if the SCEV isn't representable as a Constant.
8736 static Constant
*BuildConstantFromSCEV(const SCEV
*V
) {
8737 switch (V
->getSCEVType()) {
8738 case scCouldNotCompute
:
8742 return cast
<SCEVConstant
>(V
)->getValue();
8744 return dyn_cast
<Constant
>(cast
<SCEVUnknown
>(V
)->getValue());
8745 case scSignExtend
: {
8746 const SCEVSignExtendExpr
*SS
= cast
<SCEVSignExtendExpr
>(V
);
8747 if (Constant
*CastOp
= BuildConstantFromSCEV(SS
->getOperand()))
8748 return ConstantExpr::getSExt(CastOp
, SS
->getType());
8751 case scZeroExtend
: {
8752 const SCEVZeroExtendExpr
*SZ
= cast
<SCEVZeroExtendExpr
>(V
);
8753 if (Constant
*CastOp
= BuildConstantFromSCEV(SZ
->getOperand()))
8754 return ConstantExpr::getZExt(CastOp
, SZ
->getType());
8758 const SCEVPtrToIntExpr
*P2I
= cast
<SCEVPtrToIntExpr
>(V
);
8759 if (Constant
*CastOp
= BuildConstantFromSCEV(P2I
->getOperand()))
8760 return ConstantExpr::getPtrToInt(CastOp
, P2I
->getType());
8765 const SCEVTruncateExpr
*ST
= cast
<SCEVTruncateExpr
>(V
);
8766 if (Constant
*CastOp
= BuildConstantFromSCEV(ST
->getOperand()))
8767 return ConstantExpr::getTrunc(CastOp
, ST
->getType());
8771 const SCEVAddExpr
*SA
= cast
<SCEVAddExpr
>(V
);
8772 if (Constant
*C
= BuildConstantFromSCEV(SA
->getOperand(0))) {
8773 if (PointerType
*PTy
= dyn_cast
<PointerType
>(C
->getType())) {
8774 unsigned AS
= PTy
->getAddressSpace();
8775 Type
*DestPtrTy
= Type::getInt8PtrTy(C
->getContext(), AS
);
8776 C
= ConstantExpr::getBitCast(C
, DestPtrTy
);
8778 for (unsigned i
= 1, e
= SA
->getNumOperands(); i
!= e
; ++i
) {
8779 Constant
*C2
= BuildConstantFromSCEV(SA
->getOperand(i
));
8784 if (!C
->getType()->isPointerTy() && C2
->getType()->isPointerTy()) {
8785 unsigned AS
= C2
->getType()->getPointerAddressSpace();
8787 Type
*DestPtrTy
= Type::getInt8PtrTy(C
->getContext(), AS
);
8788 // The offsets have been converted to bytes. We can add bytes to an
8789 // i8* by GEP with the byte count in the first index.
8790 C
= ConstantExpr::getBitCast(C
, DestPtrTy
);
8793 // Don't bother trying to sum two pointers. We probably can't
8794 // statically compute a load that results from it anyway.
8795 if (C2
->getType()->isPointerTy())
8798 if (C
->getType()->isPointerTy()) {
8799 C
= ConstantExpr::getGetElementPtr(Type::getInt8Ty(C
->getContext()),
8802 C
= ConstantExpr::getAdd(C
, C2
);
8810 const SCEVMulExpr
*SM
= cast
<SCEVMulExpr
>(V
);
8811 if (Constant
*C
= BuildConstantFromSCEV(SM
->getOperand(0))) {
8812 // Don't bother with pointers at all.
8813 if (C
->getType()->isPointerTy())
8815 for (unsigned i
= 1, e
= SM
->getNumOperands(); i
!= e
; ++i
) {
8816 Constant
*C2
= BuildConstantFromSCEV(SM
->getOperand(i
));
8817 if (!C2
|| C2
->getType()->isPointerTy())
8819 C
= ConstantExpr::getMul(C
, C2
);
8826 const SCEVUDivExpr
*SU
= cast
<SCEVUDivExpr
>(V
);
8827 if (Constant
*LHS
= BuildConstantFromSCEV(SU
->getLHS()))
8828 if (Constant
*RHS
= BuildConstantFromSCEV(SU
->getRHS()))
8829 if (LHS
->getType() == RHS
->getType())
8830 return ConstantExpr::getUDiv(LHS
, RHS
);
8837 return nullptr; // TODO: smax, umax, smin, umax.
8839 llvm_unreachable("Unknown SCEV kind!");
8842 const SCEV
*ScalarEvolution::computeSCEVAtScope(const SCEV
*V
, const Loop
*L
) {
8843 if (isa
<SCEVConstant
>(V
)) return V
;
8845 // If this instruction is evolved from a constant-evolving PHI, compute the
8846 // exit value from the loop without using SCEVs.
8847 if (const SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(V
)) {
8848 if (Instruction
*I
= dyn_cast
<Instruction
>(SU
->getValue())) {
8849 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
)) {
8850 const Loop
*CurrLoop
= this->LI
[I
->getParent()];
8851 // Looking for loop exit value.
8852 if (CurrLoop
&& CurrLoop
->getParentLoop() == L
&&
8853 PN
->getParent() == CurrLoop
->getHeader()) {
8854 // Okay, there is no closed form solution for the PHI node. Check
8855 // to see if the loop that contains it has a known backedge-taken
8856 // count. If so, we may be able to force computation of the exit
8858 const SCEV
*BackedgeTakenCount
= getBackedgeTakenCount(CurrLoop
);
8859 // This trivial case can show up in some degenerate cases where
8860 // the incoming IR has not yet been fully simplified.
8861 if (BackedgeTakenCount
->isZero()) {
8862 Value
*InitValue
= nullptr;
8863 bool MultipleInitValues
= false;
8864 for (unsigned i
= 0; i
< PN
->getNumIncomingValues(); i
++) {
8865 if (!CurrLoop
->contains(PN
->getIncomingBlock(i
))) {
8867 InitValue
= PN
->getIncomingValue(i
);
8868 else if (InitValue
!= PN
->getIncomingValue(i
)) {
8869 MultipleInitValues
= true;
8874 if (!MultipleInitValues
&& InitValue
)
8875 return getSCEV(InitValue
);
8877 // Do we have a loop invariant value flowing around the backedge
8878 // for a loop which must execute the backedge?
8879 if (!isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
) &&
8880 isKnownPositive(BackedgeTakenCount
) &&
8881 PN
->getNumIncomingValues() == 2) {
8883 unsigned InLoopPred
=
8884 CurrLoop
->contains(PN
->getIncomingBlock(0)) ? 0 : 1;
8885 Value
*BackedgeVal
= PN
->getIncomingValue(InLoopPred
);
8886 if (CurrLoop
->isLoopInvariant(BackedgeVal
))
8887 return getSCEV(BackedgeVal
);
8889 if (auto *BTCC
= dyn_cast
<SCEVConstant
>(BackedgeTakenCount
)) {
8890 // Okay, we know how many times the containing loop executes. If
8891 // this is a constant evolving PHI node, get the final value at
8892 // the specified iteration number.
8893 Constant
*RV
= getConstantEvolutionLoopExitValue(
8894 PN
, BTCC
->getAPInt(), CurrLoop
);
8895 if (RV
) return getSCEV(RV
);
8899 // If there is a single-input Phi, evaluate it at our scope. If we can
8900 // prove that this replacement does not break LCSSA form, use new value.
8901 if (PN
->getNumOperands() == 1) {
8902 const SCEV
*Input
= getSCEV(PN
->getOperand(0));
8903 const SCEV
*InputAtScope
= getSCEVAtScope(Input
, L
);
8904 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8905 // for the simplest case just support constants.
8906 if (isa
<SCEVConstant
>(InputAtScope
)) return InputAtScope
;
8910 // Okay, this is an expression that we cannot symbolically evaluate
8911 // into a SCEV. Check to see if it's possible to symbolically evaluate
8912 // the arguments into constants, and if so, try to constant propagate the
8913 // result. This is particularly useful for computing loop exit values.
8914 if (CanConstantFold(I
)) {
8915 SmallVector
<Constant
*, 4> Operands
;
8916 bool MadeImprovement
= false;
8917 for (Value
*Op
: I
->operands()) {
8918 if (Constant
*C
= dyn_cast
<Constant
>(Op
)) {
8919 Operands
.push_back(C
);
8923 // If any of the operands is non-constant and if they are
8924 // non-integer and non-pointer, don't even try to analyze them
8925 // with scev techniques.
8926 if (!isSCEVable(Op
->getType()))
8929 const SCEV
*OrigV
= getSCEV(Op
);
8930 const SCEV
*OpV
= getSCEVAtScope(OrigV
, L
);
8931 MadeImprovement
|= OrigV
!= OpV
;
8933 Constant
*C
= BuildConstantFromSCEV(OpV
);
8935 if (C
->getType() != Op
->getType())
8936 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
8940 Operands
.push_back(C
);
8943 // Check to see if getSCEVAtScope actually made an improvement.
8944 if (MadeImprovement
) {
8945 Constant
*C
= nullptr;
8946 const DataLayout
&DL
= getDataLayout();
8947 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
8948 C
= ConstantFoldCompareInstOperands(CI
->getPredicate(), Operands
[0],
8949 Operands
[1], DL
, &TLI
);
8950 else if (const LoadInst
*Load
= dyn_cast
<LoadInst
>(I
)) {
8951 if (!Load
->isVolatile())
8952 C
= ConstantFoldLoadFromConstPtr(Operands
[0], Load
->getType(),
8955 C
= ConstantFoldInstOperands(I
, Operands
, DL
, &TLI
);
8962 // This is some other type of SCEVUnknown, just return it.
8966 if (const SCEVCommutativeExpr
*Comm
= dyn_cast
<SCEVCommutativeExpr
>(V
)) {
8967 // Avoid performing the look-up in the common case where the specified
8968 // expression has no loop-variant portions.
8969 for (unsigned i
= 0, e
= Comm
->getNumOperands(); i
!= e
; ++i
) {
8970 const SCEV
*OpAtScope
= getSCEVAtScope(Comm
->getOperand(i
), L
);
8971 if (OpAtScope
!= Comm
->getOperand(i
)) {
8972 // Okay, at least one of these operands is loop variant but might be
8973 // foldable. Build a new instance of the folded commutative expression.
8974 SmallVector
<const SCEV
*, 8> NewOps(Comm
->op_begin(),
8975 Comm
->op_begin()+i
);
8976 NewOps
.push_back(OpAtScope
);
8978 for (++i
; i
!= e
; ++i
) {
8979 OpAtScope
= getSCEVAtScope(Comm
->getOperand(i
), L
);
8980 NewOps
.push_back(OpAtScope
);
8982 if (isa
<SCEVAddExpr
>(Comm
))
8983 return getAddExpr(NewOps
, Comm
->getNoWrapFlags());
8984 if (isa
<SCEVMulExpr
>(Comm
))
8985 return getMulExpr(NewOps
, Comm
->getNoWrapFlags());
8986 if (isa
<SCEVMinMaxExpr
>(Comm
))
8987 return getMinMaxExpr(Comm
->getSCEVType(), NewOps
);
8988 llvm_unreachable("Unknown commutative SCEV type!");
8991 // If we got here, all operands are loop invariant.
8995 if (const SCEVUDivExpr
*Div
= dyn_cast
<SCEVUDivExpr
>(V
)) {
8996 const SCEV
*LHS
= getSCEVAtScope(Div
->getLHS(), L
);
8997 const SCEV
*RHS
= getSCEVAtScope(Div
->getRHS(), L
);
8998 if (LHS
== Div
->getLHS() && RHS
== Div
->getRHS())
8999 return Div
; // must be loop invariant
9000 return getUDivExpr(LHS
, RHS
);
9003 // If this is a loop recurrence for a loop that does not contain L, then we
9004 // are dealing with the final value computed by the loop.
9005 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(V
)) {
9006 // First, attempt to evaluate each operand.
9007 // Avoid performing the look-up in the common case where the specified
9008 // expression has no loop-variant portions.
9009 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
) {
9010 const SCEV
*OpAtScope
= getSCEVAtScope(AddRec
->getOperand(i
), L
);
9011 if (OpAtScope
== AddRec
->getOperand(i
))
9014 // Okay, at least one of these operands is loop variant but might be
9015 // foldable. Build a new instance of the folded commutative expression.
9016 SmallVector
<const SCEV
*, 8> NewOps(AddRec
->op_begin(),
9017 AddRec
->op_begin()+i
);
9018 NewOps
.push_back(OpAtScope
);
9019 for (++i
; i
!= e
; ++i
)
9020 NewOps
.push_back(getSCEVAtScope(AddRec
->getOperand(i
), L
));
9022 const SCEV
*FoldedRec
=
9023 getAddRecExpr(NewOps
, AddRec
->getLoop(),
9024 AddRec
->getNoWrapFlags(SCEV::FlagNW
));
9025 AddRec
= dyn_cast
<SCEVAddRecExpr
>(FoldedRec
);
9026 // The addrec may be folded to a nonrecurrence, for example, if the
9027 // induction variable is multiplied by zero after constant folding. Go
9028 // ahead and return the folded value.
9034 // If the scope is outside the addrec's loop, evaluate it by using the
9035 // loop exit value of the addrec.
9036 if (!AddRec
->getLoop()->contains(L
)) {
9037 // To evaluate this recurrence, we need to know how many times the AddRec
9038 // loop iterates. Compute this now.
9039 const SCEV
*BackedgeTakenCount
= getBackedgeTakenCount(AddRec
->getLoop());
9040 if (BackedgeTakenCount
== getCouldNotCompute()) return AddRec
;
9042 // Then, evaluate the AddRec.
9043 return AddRec
->evaluateAtIteration(BackedgeTakenCount
, *this);
9049 if (const SCEVZeroExtendExpr
*Cast
= dyn_cast
<SCEVZeroExtendExpr
>(V
)) {
9050 const SCEV
*Op
= getSCEVAtScope(Cast
->getOperand(), L
);
9051 if (Op
== Cast
->getOperand())
9052 return Cast
; // must be loop invariant
9053 return getZeroExtendExpr(Op
, Cast
->getType());
9056 if (const SCEVSignExtendExpr
*Cast
= dyn_cast
<SCEVSignExtendExpr
>(V
)) {
9057 const SCEV
*Op
= getSCEVAtScope(Cast
->getOperand(), L
);
9058 if (Op
== Cast
->getOperand())
9059 return Cast
; // must be loop invariant
9060 return getSignExtendExpr(Op
, Cast
->getType());
9063 if (const SCEVTruncateExpr
*Cast
= dyn_cast
<SCEVTruncateExpr
>(V
)) {
9064 const SCEV
*Op
= getSCEVAtScope(Cast
->getOperand(), L
);
9065 if (Op
== Cast
->getOperand())
9066 return Cast
; // must be loop invariant
9067 return getTruncateExpr(Op
, Cast
->getType());
9070 if (const SCEVPtrToIntExpr
*Cast
= dyn_cast
<SCEVPtrToIntExpr
>(V
)) {
9071 const SCEV
*Op
= getSCEVAtScope(Cast
->getOperand(), L
);
9072 if (Op
== Cast
->getOperand())
9073 return Cast
; // must be loop invariant
9074 return getPtrToIntExpr(Op
, Cast
->getType());
9077 llvm_unreachable("Unknown SCEV type!");
9080 const SCEV
*ScalarEvolution::getSCEVAtScope(Value
*V
, const Loop
*L
) {
9081 return getSCEVAtScope(getSCEV(V
), L
);
9084 const SCEV
*ScalarEvolution::stripInjectiveFunctions(const SCEV
*S
) const {
9085 if (const SCEVZeroExtendExpr
*ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(S
))
9086 return stripInjectiveFunctions(ZExt
->getOperand());
9087 if (const SCEVSignExtendExpr
*SExt
= dyn_cast
<SCEVSignExtendExpr
>(S
))
9088 return stripInjectiveFunctions(SExt
->getOperand());
9092 /// Finds the minimum unsigned root of the following equation:
9094 /// A * X = B (mod N)
9096 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
9097 /// A and B isn't important.
9099 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
9100 static const SCEV
*SolveLinEquationWithOverflow(const APInt
&A
, const SCEV
*B
,
9101 ScalarEvolution
&SE
) {
9102 uint32_t BW
= A
.getBitWidth();
9103 assert(BW
== SE
.getTypeSizeInBits(B
->getType()));
9104 assert(A
!= 0 && "A must be non-zero.");
9108 // The gcd of A and N may have only one prime factor: 2. The number of
9109 // trailing zeros in A is its multiplicity
9110 uint32_t Mult2
= A
.countTrailingZeros();
9113 // 2. Check if B is divisible by D.
9115 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
9116 // is not less than multiplicity of this prime factor for D.
9117 if (SE
.GetMinTrailingZeros(B
) < Mult2
)
9118 return SE
.getCouldNotCompute();
9120 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
9123 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
9124 // (N / D) in general. The inverse itself always fits into BW bits, though,
9125 // so we immediately truncate it.
9126 APInt AD
= A
.lshr(Mult2
).zext(BW
+ 1); // AD = A / D
9127 APInt
Mod(BW
+ 1, 0);
9128 Mod
.setBit(BW
- Mult2
); // Mod = N / D
9129 APInt I
= AD
.multiplicativeInverse(Mod
).trunc(BW
);
9131 // 4. Compute the minimum unsigned root of the equation:
9132 // I * (B / D) mod (N / D)
9133 // To simplify the computation, we factor out the divide by D:
9134 // (I * B mod N) / D
9135 const SCEV
*D
= SE
.getConstant(APInt::getOneBitSet(BW
, Mult2
));
9136 return SE
.getUDivExactExpr(SE
.getMulExpr(B
, SE
.getConstant(I
)), D
);
9139 /// For a given quadratic addrec, generate coefficients of the corresponding
9140 /// quadratic equation, multiplied by a common value to ensure that they are
9142 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
9143 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
9144 /// were multiplied by, and BitWidth is the bit width of the original addrec
9146 /// This function returns None if the addrec coefficients are not compile-
9148 static Optional
<std::tuple
<APInt
, APInt
, APInt
, APInt
, unsigned>>
9149 GetQuadraticEquation(const SCEVAddRecExpr
*AddRec
) {
9150 assert(AddRec
->getNumOperands() == 3 && "This is not a quadratic chrec!");
9151 const SCEVConstant
*LC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(0));
9152 const SCEVConstant
*MC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(1));
9153 const SCEVConstant
*NC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(2));
9154 LLVM_DEBUG(dbgs() << __func__
<< ": analyzing quadratic addrec: "
9155 << *AddRec
<< '\n');
9157 // We currently can only solve this if the coefficients are constants.
9158 if (!LC
|| !MC
|| !NC
) {
9159 LLVM_DEBUG(dbgs() << __func__
<< ": coefficients are not constant\n");
9163 APInt L
= LC
->getAPInt();
9164 APInt M
= MC
->getAPInt();
9165 APInt N
= NC
->getAPInt();
9166 assert(!N
.isNullValue() && "This is not a quadratic addrec");
9168 unsigned BitWidth
= LC
->getAPInt().getBitWidth();
9169 unsigned NewWidth
= BitWidth
+ 1;
9170 LLVM_DEBUG(dbgs() << __func__
<< ": addrec coeff bw: "
9171 << BitWidth
<< '\n');
9172 // The sign-extension (as opposed to a zero-extension) here matches the
9173 // extension used in SolveQuadraticEquationWrap (with the same motivation).
9174 N
= N
.sext(NewWidth
);
9175 M
= M
.sext(NewWidth
);
9176 L
= L
.sext(NewWidth
);
9178 // The increments are M, M+N, M+2N, ..., so the accumulated values are
9179 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
9180 // L+M, L+2M+N, L+3M+3N, ...
9181 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
9183 // The equation Acc = 0 is then
9184 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0.
9185 // In a quadratic form it becomes:
9186 // N n^2 + (2M-N) n + 2L = 0.
9189 APInt B
= 2 * M
- A
;
9191 APInt T
= APInt(NewWidth
, 2);
9192 LLVM_DEBUG(dbgs() << __func__
<< ": equation " << A
<< "x^2 + " << B
9193 << "x + " << C
<< ", coeff bw: " << NewWidth
9194 << ", multiplied by " << T
<< '\n');
9195 return std::make_tuple(A
, B
, C
, T
, BitWidth
);
9198 /// Helper function to compare optional APInts:
9199 /// (a) if X and Y both exist, return min(X, Y),
9200 /// (b) if neither X nor Y exist, return None,
9201 /// (c) if exactly one of X and Y exists, return that value.
9202 static Optional
<APInt
> MinOptional(Optional
<APInt
> X
, Optional
<APInt
> Y
) {
9203 if (X
.hasValue() && Y
.hasValue()) {
9204 unsigned W
= std::max(X
->getBitWidth(), Y
->getBitWidth());
9205 APInt XW
= X
->sextOrSelf(W
);
9206 APInt YW
= Y
->sextOrSelf(W
);
9207 return XW
.slt(YW
) ? *X
: *Y
;
9209 if (!X
.hasValue() && !Y
.hasValue())
9211 return X
.hasValue() ? *X
: *Y
;
9214 /// Helper function to truncate an optional APInt to a given BitWidth.
9215 /// When solving addrec-related equations, it is preferable to return a value
9216 /// that has the same bit width as the original addrec's coefficients. If the
9217 /// solution fits in the original bit width, truncate it (except for i1).
9218 /// Returning a value of a different bit width may inhibit some optimizations.
9220 /// In general, a solution to a quadratic equation generated from an addrec
9221 /// may require BW+1 bits, where BW is the bit width of the addrec's
9222 /// coefficients. The reason is that the coefficients of the quadratic
9223 /// equation are BW+1 bits wide (to avoid truncation when converting from
9224 /// the addrec to the equation).
9225 static Optional
<APInt
> TruncIfPossible(Optional
<APInt
> X
, unsigned BitWidth
) {
9228 unsigned W
= X
->getBitWidth();
9229 if (BitWidth
> 1 && BitWidth
< W
&& X
->isIntN(BitWidth
))
9230 return X
->trunc(BitWidth
);
9234 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
9235 /// iterations. The values L, M, N are assumed to be signed, and they
9236 /// should all have the same bit widths.
9237 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
9238 /// where BW is the bit width of the addrec's coefficients.
9239 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
9240 /// returned as such, otherwise the bit width of the returned value may
9241 /// be greater than BW.
9243 /// This function returns None if
9244 /// (a) the addrec coefficients are not constant, or
9245 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
9246 /// like x^2 = 5, no integer solutions exist, in other cases an integer
9247 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it.
9248 static Optional
<APInt
>
9249 SolveQuadraticAddRecExact(const SCEVAddRecExpr
*AddRec
, ScalarEvolution
&SE
) {
9252 auto T
= GetQuadraticEquation(AddRec
);
9256 std::tie(A
, B
, C
, M
, BitWidth
) = *T
;
9257 LLVM_DEBUG(dbgs() << __func__
<< ": solving for unsigned overflow\n");
9258 Optional
<APInt
> X
= APIntOps::SolveQuadraticEquationWrap(A
, B
, C
, BitWidth
+1);
9262 ConstantInt
*CX
= ConstantInt::get(SE
.getContext(), *X
);
9263 ConstantInt
*V
= EvaluateConstantChrecAtConstant(AddRec
, CX
, SE
);
9267 return TruncIfPossible(X
, BitWidth
);
9270 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
9271 /// iterations. The values M, N are assumed to be signed, and they
9272 /// should all have the same bit widths.
9273 /// Find the least n such that c(n) does not belong to the given range,
9274 /// while c(n-1) does.
9276 /// This function returns None if
9277 /// (a) the addrec coefficients are not constant, or
9278 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
9279 /// bounds of the range.
9280 static Optional
<APInt
>
9281 SolveQuadraticAddRecRange(const SCEVAddRecExpr
*AddRec
,
9282 const ConstantRange
&Range
, ScalarEvolution
&SE
) {
9283 assert(AddRec
->getOperand(0)->isZero() &&
9284 "Starting value of addrec should be 0");
9285 LLVM_DEBUG(dbgs() << __func__
<< ": solving boundary crossing for range "
9286 << Range
<< ", addrec " << *AddRec
<< '\n');
9287 // This case is handled in getNumIterationsInRange. Here we can assume that
9288 // we start in the range.
9289 assert(Range
.contains(APInt(SE
.getTypeSizeInBits(AddRec
->getType()), 0)) &&
9290 "Addrec's initial value should be in range");
9294 auto T
= GetQuadraticEquation(AddRec
);
9298 // Be careful about the return value: there can be two reasons for not
9299 // returning an actual number. First, if no solutions to the equations
9300 // were found, and second, if the solutions don't leave the given range.
9301 // The first case means that the actual solution is "unknown", the second
9302 // means that it's known, but not valid. If the solution is unknown, we
9303 // cannot make any conclusions.
9304 // Return a pair: the optional solution and a flag indicating if the
9305 // solution was found.
9306 auto SolveForBoundary
= [&](APInt Bound
) -> std::pair
<Optional
<APInt
>,bool> {
9307 // Solve for signed overflow and unsigned overflow, pick the lower
9309 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
9310 << Bound
<< " (before multiplying by " << M
<< ")\n");
9311 Bound
*= M
; // The quadratic equation multiplier.
9313 Optional
<APInt
> SO
= None
;
9315 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9316 "signed overflow\n");
9317 SO
= APIntOps::SolveQuadraticEquationWrap(A
, B
, -Bound
, BitWidth
);
9319 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9320 "unsigned overflow\n");
9321 Optional
<APInt
> UO
= APIntOps::SolveQuadraticEquationWrap(A
, B
, -Bound
,
9324 auto LeavesRange
= [&] (const APInt
&X
) {
9325 ConstantInt
*C0
= ConstantInt::get(SE
.getContext(), X
);
9326 ConstantInt
*V0
= EvaluateConstantChrecAtConstant(AddRec
, C0
, SE
);
9327 if (Range
.contains(V0
->getValue()))
9329 // X should be at least 1, so X-1 is non-negative.
9330 ConstantInt
*C1
= ConstantInt::get(SE
.getContext(), X
-1);
9331 ConstantInt
*V1
= EvaluateConstantChrecAtConstant(AddRec
, C1
, SE
);
9332 if (Range
.contains(V1
->getValue()))
9337 // If SolveQuadraticEquationWrap returns None, it means that there can
9338 // be a solution, but the function failed to find it. We cannot treat it
9339 // as "no solution".
9340 if (!SO
.hasValue() || !UO
.hasValue())
9341 return { None
, false };
9343 // Check the smaller value first to see if it leaves the range.
9344 // At this point, both SO and UO must have values.
9345 Optional
<APInt
> Min
= MinOptional(SO
, UO
);
9346 if (LeavesRange(*Min
))
9347 return { Min
, true };
9348 Optional
<APInt
> Max
= Min
== SO
? UO
: SO
;
9349 if (LeavesRange(*Max
))
9350 return { Max
, true };
9352 // Solutions were found, but were eliminated, hence the "true".
9353 return { None
, true };
9356 std::tie(A
, B
, C
, M
, BitWidth
) = *T
;
9357 // Lower bound is inclusive, subtract 1 to represent the exiting value.
9358 APInt Lower
= Range
.getLower().sextOrSelf(A
.getBitWidth()) - 1;
9359 APInt Upper
= Range
.getUpper().sextOrSelf(A
.getBitWidth());
9360 auto SL
= SolveForBoundary(Lower
);
9361 auto SU
= SolveForBoundary(Upper
);
9362 // If any of the solutions was unknown, no meaninigful conclusions can
9364 if (!SL
.second
|| !SU
.second
)
9367 // Claim: The correct solution is not some value between Min and Max.
9369 // Justification: Assuming that Min and Max are different values, one of
9370 // them is when the first signed overflow happens, the other is when the
9371 // first unsigned overflow happens. Crossing the range boundary is only
9372 // possible via an overflow (treating 0 as a special case of it, modeling
9373 // an overflow as crossing k*2^W for some k).
9375 // The interesting case here is when Min was eliminated as an invalid
9376 // solution, but Max was not. The argument is that if there was another
9377 // overflow between Min and Max, it would also have been eliminated if
9378 // it was considered.
9380 // For a given boundary, it is possible to have two overflows of the same
9381 // type (signed/unsigned) without having the other type in between: this
9382 // can happen when the vertex of the parabola is between the iterations
9383 // corresponding to the overflows. This is only possible when the two
9384 // overflows cross k*2^W for the same k. In such case, if the second one
9385 // left the range (and was the first one to do so), the first overflow
9386 // would have to enter the range, which would mean that either we had left
9387 // the range before or that we started outside of it. Both of these cases
9388 // are contradictions.
9390 // Claim: In the case where SolveForBoundary returns None, the correct
9391 // solution is not some value between the Max for this boundary and the
9392 // Min of the other boundary.
9394 // Justification: Assume that we had such Max_A and Min_B corresponding
9395 // to range boundaries A and B and such that Max_A < Min_B. If there was
9396 // a solution between Max_A and Min_B, it would have to be caused by an
9397 // overflow corresponding to either A or B. It cannot correspond to B,
9398 // since Min_B is the first occurrence of such an overflow. If it
9399 // corresponded to A, it would have to be either a signed or an unsigned
9400 // overflow that is larger than both eliminated overflows for A. But
9401 // between the eliminated overflows and this overflow, the values would
9402 // cover the entire value space, thus crossing the other boundary, which
9403 // is a contradiction.
9405 return TruncIfPossible(MinOptional(SL
.first
, SU
.first
), BitWidth
);
9408 ScalarEvolution::ExitLimit
9409 ScalarEvolution::howFarToZero(const SCEV
*V
, const Loop
*L
, bool ControlsExit
,
9410 bool AllowPredicates
) {
9412 // This is only used for loops with a "x != y" exit test. The exit condition
9413 // is now expressed as a single expression, V = x-y. So the exit test is
9414 // effectively V != 0. We know and take advantage of the fact that this
9415 // expression only being used in a comparison by zero context.
9417 SmallPtrSet
<const SCEVPredicate
*, 4> Predicates
;
9418 // If the value is a constant
9419 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(V
)) {
9420 // If the value is already zero, the branch will execute zero times.
9421 if (C
->getValue()->isZero()) return C
;
9422 return getCouldNotCompute(); // Otherwise it will loop infinitely.
9425 const SCEVAddRecExpr
*AddRec
=
9426 dyn_cast
<SCEVAddRecExpr
>(stripInjectiveFunctions(V
));
9428 if (!AddRec
&& AllowPredicates
)
9429 // Try to make this an AddRec using runtime tests, in the first X
9430 // iterations of this loop, where X is the SCEV expression found by the
9432 AddRec
= convertSCEVToAddRecWithPredicates(V
, L
, Predicates
);
9434 if (!AddRec
|| AddRec
->getLoop() != L
)
9435 return getCouldNotCompute();
9437 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9438 // the quadratic equation to solve it.
9439 if (AddRec
->isQuadratic() && AddRec
->getType()->isIntegerTy()) {
9440 // We can only use this value if the chrec ends up with an exact zero
9441 // value at this index. When solving for "X*X != 5", for example, we
9442 // should not accept a root of 2.
9443 if (auto S
= SolveQuadraticAddRecExact(AddRec
, *this)) {
9444 const auto *R
= cast
<SCEVConstant
>(getConstant(S
.getValue()));
9445 return ExitLimit(R
, R
, false, Predicates
);
9447 return getCouldNotCompute();
9450 // Otherwise we can only handle this if it is affine.
9451 if (!AddRec
->isAffine())
9452 return getCouldNotCompute();
9454 // If this is an affine expression, the execution count of this branch is
9455 // the minimum unsigned root of the following equation:
9457 // Start + Step*N = 0 (mod 2^BW)
9461 // Step*N = -Start (mod 2^BW)
9463 // where BW is the common bit width of Start and Step.
9465 // Get the initial value for the loop.
9466 const SCEV
*Start
= getSCEVAtScope(AddRec
->getStart(), L
->getParentLoop());
9467 const SCEV
*Step
= getSCEVAtScope(AddRec
->getOperand(1), L
->getParentLoop());
9469 // For now we handle only constant steps.
9471 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9472 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9473 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9474 // We have not yet seen any such cases.
9475 const SCEVConstant
*StepC
= dyn_cast
<SCEVConstant
>(Step
);
9476 if (!StepC
|| StepC
->getValue()->isZero())
9477 return getCouldNotCompute();
9479 // For positive steps (counting up until unsigned overflow):
9480 // N = -Start/Step (as unsigned)
9481 // For negative steps (counting down to zero):
9483 // First compute the unsigned distance from zero in the direction of Step.
9484 bool CountDown
= StepC
->getAPInt().isNegative();
9485 const SCEV
*Distance
= CountDown
? Start
: getNegativeSCEV(Start
);
9487 // Handle unitary steps, which cannot wraparound.
9488 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9489 // N = Distance (as unsigned)
9490 if (StepC
->getValue()->isOne() || StepC
->getValue()->isMinusOne()) {
9491 APInt MaxBECount
= getUnsignedRangeMax(applyLoopGuards(Distance
, L
));
9492 APInt MaxBECountBase
= getUnsignedRangeMax(Distance
);
9493 if (MaxBECountBase
.ult(MaxBECount
))
9494 MaxBECount
= MaxBECountBase
;
9496 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9497 // we end up with a loop whose backedge-taken count is n - 1. Detect this
9498 // case, and see if we can improve the bound.
9500 // Explicitly handling this here is necessary because getUnsignedRange
9501 // isn't context-sensitive; it doesn't know that we only care about the
9502 // range inside the loop.
9503 const SCEV
*Zero
= getZero(Distance
->getType());
9504 const SCEV
*One
= getOne(Distance
->getType());
9505 const SCEV
*DistancePlusOne
= getAddExpr(Distance
, One
);
9506 if (isLoopEntryGuardedByCond(L
, ICmpInst::ICMP_NE
, DistancePlusOne
, Zero
)) {
9507 // If Distance + 1 doesn't overflow, we can compute the maximum distance
9508 // as "unsigned_max(Distance + 1) - 1".
9509 ConstantRange CR
= getUnsignedRange(DistancePlusOne
);
9510 MaxBECount
= APIntOps::umin(MaxBECount
, CR
.getUnsignedMax() - 1);
9512 return ExitLimit(Distance
, getConstant(MaxBECount
), false, Predicates
);
9515 // If the condition controls loop exit (the loop exits only if the expression
9516 // is true) and the addition is no-wrap we can use unsigned divide to
9517 // compute the backedge count. In this case, the step may not divide the
9518 // distance, but we don't care because if the condition is "missed" the loop
9519 // will have undefined behavior due to wrapping.
9520 if (ControlsExit
&& AddRec
->hasNoSelfWrap() &&
9521 loopHasNoAbnormalExits(AddRec
->getLoop())) {
9523 getUDivExpr(Distance
, CountDown
? getNegativeSCEV(Step
) : Step
);
9524 const SCEV
*Max
= getCouldNotCompute();
9525 if (Exact
!= getCouldNotCompute()) {
9526 APInt MaxInt
= getUnsignedRangeMax(applyLoopGuards(Exact
, L
));
9527 APInt BaseMaxInt
= getUnsignedRangeMax(Exact
);
9528 if (BaseMaxInt
.ult(MaxInt
))
9529 Max
= getConstant(BaseMaxInt
);
9531 Max
= getConstant(MaxInt
);
9533 return ExitLimit(Exact
, Max
, false, Predicates
);
9536 // Solve the general equation.
9537 const SCEV
*E
= SolveLinEquationWithOverflow(StepC
->getAPInt(),
9538 getNegativeSCEV(Start
), *this);
9539 const SCEV
*M
= E
== getCouldNotCompute()
9541 : getConstant(getUnsignedRangeMax(E
));
9542 return ExitLimit(E
, M
, false, Predicates
);
9545 ScalarEvolution::ExitLimit
9546 ScalarEvolution::howFarToNonZero(const SCEV
*V
, const Loop
*L
) {
9547 // Loops that look like: while (X == 0) are very strange indeed. We don't
9548 // handle them yet except for the trivial case. This could be expanded in the
9549 // future as needed.
9551 // If the value is a constant, check to see if it is known to be non-zero
9552 // already. If so, the backedge will execute zero times.
9553 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(V
)) {
9554 if (!C
->getValue()->isZero())
9555 return getZero(C
->getType());
9556 return getCouldNotCompute(); // Otherwise it will loop infinitely.
9559 // We could implement others, but I really doubt anyone writes loops like
9560 // this, and if they did, they would already be constant folded.
9561 return getCouldNotCompute();
9564 std::pair
<const BasicBlock
*, const BasicBlock
*>
9565 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock
*BB
)
9567 // If the block has a unique predecessor, then there is no path from the
9568 // predecessor to the block that does not go through the direct edge
9569 // from the predecessor to the block.
9570 if (const BasicBlock
*Pred
= BB
->getSinglePredecessor())
9573 // A loop's header is defined to be a block that dominates the loop.
9574 // If the header has a unique predecessor outside the loop, it must be
9575 // a block that has exactly one successor that can reach the loop.
9576 if (const Loop
*L
= LI
.getLoopFor(BB
))
9577 return {L
->getLoopPredecessor(), L
->getHeader()};
9579 return {nullptr, nullptr};
9582 /// SCEV structural equivalence is usually sufficient for testing whether two
9583 /// expressions are equal, however for the purposes of looking for a condition
9584 /// guarding a loop, it can be useful to be a little more general, since a
9585 /// front-end may have replicated the controlling expression.
9586 static bool HasSameValue(const SCEV
*A
, const SCEV
*B
) {
9587 // Quick check to see if they are the same SCEV.
9588 if (A
== B
) return true;
9590 auto ComputesEqualValues
= [](const Instruction
*A
, const Instruction
*B
) {
9591 // Not all instructions that are "identical" compute the same value. For
9592 // instance, two distinct alloca instructions allocating the same type are
9593 // identical and do not read memory; but compute distinct values.
9594 return A
->isIdenticalTo(B
) && (isa
<BinaryOperator
>(A
) || isa
<GetElementPtrInst
>(A
));
9597 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
9598 // two different instructions with the same value. Check for this case.
9599 if (const SCEVUnknown
*AU
= dyn_cast
<SCEVUnknown
>(A
))
9600 if (const SCEVUnknown
*BU
= dyn_cast
<SCEVUnknown
>(B
))
9601 if (const Instruction
*AI
= dyn_cast
<Instruction
>(AU
->getValue()))
9602 if (const Instruction
*BI
= dyn_cast
<Instruction
>(BU
->getValue()))
9603 if (ComputesEqualValues(AI
, BI
))
9606 // Otherwise assume they may have a different value.
9610 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate
&Pred
,
9611 const SCEV
*&LHS
, const SCEV
*&RHS
,
9613 bool Changed
= false;
9614 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9616 auto TrivialCase
= [&](bool TriviallyTrue
) {
9617 LHS
= RHS
= getConstant(ConstantInt::getFalse(getContext()));
9618 Pred
= TriviallyTrue
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
;
9621 // If we hit the max recursion limit bail out.
9625 // Canonicalize a constant to the right side.
9626 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(LHS
)) {
9627 // Check for both operands constant.
9628 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
)) {
9629 if (ConstantExpr::getICmp(Pred
,
9631 RHSC
->getValue())->isNullValue())
9632 return TrivialCase(false);
9634 return TrivialCase(true);
9636 // Otherwise swap the operands to put the constant on the right.
9637 std::swap(LHS
, RHS
);
9638 Pred
= ICmpInst::getSwappedPredicate(Pred
);
9642 // If we're comparing an addrec with a value which is loop-invariant in the
9643 // addrec's loop, put the addrec on the left. Also make a dominance check,
9644 // as both operands could be addrecs loop-invariant in each other's loop.
9645 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(RHS
)) {
9646 const Loop
*L
= AR
->getLoop();
9647 if (isLoopInvariant(LHS
, L
) && properlyDominates(LHS
, L
->getHeader())) {
9648 std::swap(LHS
, RHS
);
9649 Pred
= ICmpInst::getSwappedPredicate(Pred
);
9654 // If there's a constant operand, canonicalize comparisons with boundary
9655 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9656 if (const SCEVConstant
*RC
= dyn_cast
<SCEVConstant
>(RHS
)) {
9657 const APInt
&RA
= RC
->getAPInt();
9659 bool SimplifiedByConstantRange
= false;
9661 if (!ICmpInst::isEquality(Pred
)) {
9662 ConstantRange ExactCR
= ConstantRange::makeExactICmpRegion(Pred
, RA
);
9663 if (ExactCR
.isFullSet())
9664 return TrivialCase(true);
9665 else if (ExactCR
.isEmptySet())
9666 return TrivialCase(false);
9669 CmpInst::Predicate NewPred
;
9670 if (ExactCR
.getEquivalentICmp(NewPred
, NewRHS
) &&
9671 ICmpInst::isEquality(NewPred
)) {
9672 // We were able to convert an inequality to an equality.
9674 RHS
= getConstant(NewRHS
);
9675 Changed
= SimplifiedByConstantRange
= true;
9679 if (!SimplifiedByConstantRange
) {
9683 case ICmpInst::ICMP_EQ
:
9684 case ICmpInst::ICMP_NE
:
9685 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9687 if (const SCEVAddExpr
*AE
= dyn_cast
<SCEVAddExpr
>(LHS
))
9688 if (const SCEVMulExpr
*ME
=
9689 dyn_cast
<SCEVMulExpr
>(AE
->getOperand(0)))
9690 if (AE
->getNumOperands() == 2 && ME
->getNumOperands() == 2 &&
9691 ME
->getOperand(0)->isAllOnesValue()) {
9692 RHS
= AE
->getOperand(1);
9693 LHS
= ME
->getOperand(1);
9699 // The "Should have been caught earlier!" messages refer to the fact
9700 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9701 // should have fired on the corresponding cases, and canonicalized the
9702 // check to trivial case.
9704 case ICmpInst::ICMP_UGE
:
9705 assert(!RA
.isMinValue() && "Should have been caught earlier!");
9706 Pred
= ICmpInst::ICMP_UGT
;
9707 RHS
= getConstant(RA
- 1);
9710 case ICmpInst::ICMP_ULE
:
9711 assert(!RA
.isMaxValue() && "Should have been caught earlier!");
9712 Pred
= ICmpInst::ICMP_ULT
;
9713 RHS
= getConstant(RA
+ 1);
9716 case ICmpInst::ICMP_SGE
:
9717 assert(!RA
.isMinSignedValue() && "Should have been caught earlier!");
9718 Pred
= ICmpInst::ICMP_SGT
;
9719 RHS
= getConstant(RA
- 1);
9722 case ICmpInst::ICMP_SLE
:
9723 assert(!RA
.isMaxSignedValue() && "Should have been caught earlier!");
9724 Pred
= ICmpInst::ICMP_SLT
;
9725 RHS
= getConstant(RA
+ 1);
9732 // Check for obvious equality.
9733 if (HasSameValue(LHS
, RHS
)) {
9734 if (ICmpInst::isTrueWhenEqual(Pred
))
9735 return TrivialCase(true);
9736 if (ICmpInst::isFalseWhenEqual(Pred
))
9737 return TrivialCase(false);
9740 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9741 // adding or subtracting 1 from one of the operands.
9743 case ICmpInst::ICMP_SLE
:
9744 if (!getSignedRangeMax(RHS
).isMaxSignedValue()) {
9745 RHS
= getAddExpr(getConstant(RHS
->getType(), 1, true), RHS
,
9747 Pred
= ICmpInst::ICMP_SLT
;
9749 } else if (!getSignedRangeMin(LHS
).isMinSignedValue()) {
9750 LHS
= getAddExpr(getConstant(RHS
->getType(), (uint64_t)-1, true), LHS
,
9752 Pred
= ICmpInst::ICMP_SLT
;
9756 case ICmpInst::ICMP_SGE
:
9757 if (!getSignedRangeMin(RHS
).isMinSignedValue()) {
9758 RHS
= getAddExpr(getConstant(RHS
->getType(), (uint64_t)-1, true), RHS
,
9760 Pred
= ICmpInst::ICMP_SGT
;
9762 } else if (!getSignedRangeMax(LHS
).isMaxSignedValue()) {
9763 LHS
= getAddExpr(getConstant(RHS
->getType(), 1, true), LHS
,
9765 Pred
= ICmpInst::ICMP_SGT
;
9769 case ICmpInst::ICMP_ULE
:
9770 if (!getUnsignedRangeMax(RHS
).isMaxValue()) {
9771 RHS
= getAddExpr(getConstant(RHS
->getType(), 1, true), RHS
,
9773 Pred
= ICmpInst::ICMP_ULT
;
9775 } else if (!getUnsignedRangeMin(LHS
).isMinValue()) {
9776 LHS
= getAddExpr(getConstant(RHS
->getType(), (uint64_t)-1, true), LHS
);
9777 Pred
= ICmpInst::ICMP_ULT
;
9781 case ICmpInst::ICMP_UGE
:
9782 if (!getUnsignedRangeMin(RHS
).isMinValue()) {
9783 RHS
= getAddExpr(getConstant(RHS
->getType(), (uint64_t)-1, true), RHS
);
9784 Pred
= ICmpInst::ICMP_UGT
;
9786 } else if (!getUnsignedRangeMax(LHS
).isMaxValue()) {
9787 LHS
= getAddExpr(getConstant(RHS
->getType(), 1, true), LHS
,
9789 Pred
= ICmpInst::ICMP_UGT
;
9797 // TODO: More simplifications are possible here.
9799 // Recursively simplify until we either hit a recursion limit or nothing
9802 return SimplifyICmpOperands(Pred
, LHS
, RHS
, Depth
+1);
9807 bool ScalarEvolution::isKnownNegative(const SCEV
*S
) {
9808 return getSignedRangeMax(S
).isNegative();
9811 bool ScalarEvolution::isKnownPositive(const SCEV
*S
) {
9812 return getSignedRangeMin(S
).isStrictlyPositive();
9815 bool ScalarEvolution::isKnownNonNegative(const SCEV
*S
) {
9816 return !getSignedRangeMin(S
).isNegative();
9819 bool ScalarEvolution::isKnownNonPositive(const SCEV
*S
) {
9820 return !getSignedRangeMax(S
).isStrictlyPositive();
9823 bool ScalarEvolution::isKnownNonZero(const SCEV
*S
) {
9824 return getUnsignedRangeMin(S
) != 0;
9827 std::pair
<const SCEV
*, const SCEV
*>
9828 ScalarEvolution::SplitIntoInitAndPostInc(const Loop
*L
, const SCEV
*S
) {
9829 // Compute SCEV on entry of loop L.
9830 const SCEV
*Start
= SCEVInitRewriter::rewrite(S
, L
, *this);
9831 if (Start
== getCouldNotCompute())
9832 return { Start
, Start
};
9833 // Compute post increment SCEV for loop L.
9834 const SCEV
*PostInc
= SCEVPostIncRewriter::rewrite(S
, L
, *this);
9835 assert(PostInc
!= getCouldNotCompute() && "Unexpected could not compute");
9836 return { Start
, PostInc
};
9839 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred
,
9840 const SCEV
*LHS
, const SCEV
*RHS
) {
9841 // First collect all loops.
9842 SmallPtrSet
<const Loop
*, 8> LoopsUsed
;
9843 getUsedLoops(LHS
, LoopsUsed
);
9844 getUsedLoops(RHS
, LoopsUsed
);
9846 if (LoopsUsed
.empty())
9849 // Domination relationship must be a linear order on collected loops.
9851 for (auto *L1
: LoopsUsed
)
9852 for (auto *L2
: LoopsUsed
)
9853 assert((DT
.dominates(L1
->getHeader(), L2
->getHeader()) ||
9854 DT
.dominates(L2
->getHeader(), L1
->getHeader())) &&
9855 "Domination relationship is not a linear order");
9859 *std::max_element(LoopsUsed
.begin(), LoopsUsed
.end(),
9860 [&](const Loop
*L1
, const Loop
*L2
) {
9861 return DT
.properlyDominates(L1
->getHeader(), L2
->getHeader());
9864 // Get init and post increment value for LHS.
9865 auto SplitLHS
= SplitIntoInitAndPostInc(MDL
, LHS
);
9866 // if LHS contains unknown non-invariant SCEV then bail out.
9867 if (SplitLHS
.first
== getCouldNotCompute())
9869 assert (SplitLHS
.second
!= getCouldNotCompute() && "Unexpected CNC");
9870 // Get init and post increment value for RHS.
9871 auto SplitRHS
= SplitIntoInitAndPostInc(MDL
, RHS
);
9872 // if RHS contains unknown non-invariant SCEV then bail out.
9873 if (SplitRHS
.first
== getCouldNotCompute())
9875 assert (SplitRHS
.second
!= getCouldNotCompute() && "Unexpected CNC");
9876 // It is possible that init SCEV contains an invariant load but it does
9877 // not dominate MDL and is not available at MDL loop entry, so we should
9879 if (!isAvailableAtLoopEntry(SplitLHS
.first
, MDL
) ||
9880 !isAvailableAtLoopEntry(SplitRHS
.first
, MDL
))
9883 // It seems backedge guard check is faster than entry one so in some cases
9884 // it can speed up whole estimation by short circuit
9885 return isLoopBackedgeGuardedByCond(MDL
, Pred
, SplitLHS
.second
,
9887 isLoopEntryGuardedByCond(MDL
, Pred
, SplitLHS
.first
, SplitRHS
.first
);
9890 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred
,
9891 const SCEV
*LHS
, const SCEV
*RHS
) {
9892 // Canonicalize the inputs first.
9893 (void)SimplifyICmpOperands(Pred
, LHS
, RHS
);
9895 if (isKnownViaInduction(Pred
, LHS
, RHS
))
9898 if (isKnownPredicateViaSplitting(Pred
, LHS
, RHS
))
9901 // Otherwise see what can be done with some simple reasoning.
9902 return isKnownViaNonRecursiveReasoning(Pred
, LHS
, RHS
);
9905 Optional
<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred
,
9908 if (isKnownPredicate(Pred
, LHS
, RHS
))
9910 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred
), LHS
, RHS
))
9915 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred
,
9916 const SCEV
*LHS
, const SCEV
*RHS
,
9917 const Instruction
*Context
) {
9918 // TODO: Analyze guards and assumes from Context's block.
9919 return isKnownPredicate(Pred
, LHS
, RHS
) ||
9920 isBasicBlockEntryGuardedByCond(Context
->getParent(), Pred
, LHS
, RHS
);
9924 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred
, const SCEV
*LHS
,
9926 const Instruction
*Context
) {
9927 Optional
<bool> KnownWithoutContext
= evaluatePredicate(Pred
, LHS
, RHS
);
9928 if (KnownWithoutContext
)
9929 return KnownWithoutContext
;
9931 if (isBasicBlockEntryGuardedByCond(Context
->getParent(), Pred
, LHS
, RHS
))
9933 else if (isBasicBlockEntryGuardedByCond(Context
->getParent(),
9934 ICmpInst::getInversePredicate(Pred
),
9940 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred
,
9941 const SCEVAddRecExpr
*LHS
,
9943 const Loop
*L
= LHS
->getLoop();
9944 return isLoopEntryGuardedByCond(L
, Pred
, LHS
->getStart(), RHS
) &&
9945 isLoopBackedgeGuardedByCond(L
, Pred
, LHS
->getPostIncExpr(*this), RHS
);
9948 Optional
<ScalarEvolution::MonotonicPredicateType
>
9949 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr
*LHS
,
9950 ICmpInst::Predicate Pred
) {
9951 auto Result
= getMonotonicPredicateTypeImpl(LHS
, Pred
);
9954 // Verify an invariant: inverting the predicate should turn a monotonically
9955 // increasing change to a monotonically decreasing one, and vice versa.
9957 auto ResultSwapped
=
9958 getMonotonicPredicateTypeImpl(LHS
, ICmpInst::getSwappedPredicate(Pred
));
9960 assert(ResultSwapped
.hasValue() && "should be able to analyze both!");
9961 assert(ResultSwapped
.getValue() != Result
.getValue() &&
9962 "monotonicity should flip as we flip the predicate");
9969 Optional
<ScalarEvolution::MonotonicPredicateType
>
9970 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr
*LHS
,
9971 ICmpInst::Predicate Pred
) {
9972 // A zero step value for LHS means the induction variable is essentially a
9973 // loop invariant value. We don't really depend on the predicate actually
9974 // flipping from false to true (for increasing predicates, and the other way
9975 // around for decreasing predicates), all we care about is that *if* the
9976 // predicate changes then it only changes from false to true.
9978 // A zero step value in itself is not very useful, but there may be places
9979 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9980 // as general as possible.
9982 // Only handle LE/LT/GE/GT predicates.
9983 if (!ICmpInst::isRelational(Pred
))
9986 bool IsGreater
= ICmpInst::isGE(Pred
) || ICmpInst::isGT(Pred
);
9987 assert((IsGreater
|| ICmpInst::isLE(Pred
) || ICmpInst::isLT(Pred
)) &&
9988 "Should be greater or less!");
9990 // Check that AR does not wrap.
9991 if (ICmpInst::isUnsigned(Pred
)) {
9992 if (!LHS
->hasNoUnsignedWrap())
9994 return IsGreater
? MonotonicallyIncreasing
: MonotonicallyDecreasing
;
9996 assert(ICmpInst::isSigned(Pred
) &&
9997 "Relational predicate is either signed or unsigned!");
9998 if (!LHS
->hasNoSignedWrap())
10001 const SCEV
*Step
= LHS
->getStepRecurrence(*this);
10003 if (isKnownNonNegative(Step
))
10004 return IsGreater
? MonotonicallyIncreasing
: MonotonicallyDecreasing
;
10006 if (isKnownNonPositive(Step
))
10007 return !IsGreater
? MonotonicallyIncreasing
: MonotonicallyDecreasing
;
10013 Optional
<ScalarEvolution::LoopInvariantPredicate
>
10014 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred
,
10015 const SCEV
*LHS
, const SCEV
*RHS
,
10018 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10019 if (!isLoopInvariant(RHS
, L
)) {
10020 if (!isLoopInvariant(LHS
, L
))
10023 std::swap(LHS
, RHS
);
10024 Pred
= ICmpInst::getSwappedPredicate(Pred
);
10027 const SCEVAddRecExpr
*ArLHS
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
10028 if (!ArLHS
|| ArLHS
->getLoop() != L
)
10031 auto MonotonicType
= getMonotonicPredicateType(ArLHS
, Pred
);
10032 if (!MonotonicType
)
10034 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
10035 // true as the loop iterates, and the backedge is control dependent on
10036 // "ArLHS `Pred` RHS" == true then we can reason as follows:
10038 // * if the predicate was false in the first iteration then the predicate
10039 // is never evaluated again, since the loop exits without taking the
10041 // * if the predicate was true in the first iteration then it will
10042 // continue to be true for all future iterations since it is
10043 // monotonically increasing.
10045 // For both the above possibilities, we can replace the loop varying
10046 // predicate with its value on the first iteration of the loop (which is
10047 // loop invariant).
10049 // A similar reasoning applies for a monotonically decreasing predicate, by
10050 // replacing true with false and false with true in the above two bullets.
10051 bool Increasing
= *MonotonicType
== ScalarEvolution::MonotonicallyIncreasing
;
10052 auto P
= Increasing
? Pred
: ICmpInst::getInversePredicate(Pred
);
10054 if (!isLoopBackedgeGuardedByCond(L
, P
, LHS
, RHS
))
10057 return ScalarEvolution::LoopInvariantPredicate(Pred
, ArLHS
->getStart(), RHS
);
10060 Optional
<ScalarEvolution::LoopInvariantPredicate
>
10061 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
10062 ICmpInst::Predicate Pred
, const SCEV
*LHS
, const SCEV
*RHS
, const Loop
*L
,
10063 const Instruction
*Context
, const SCEV
*MaxIter
) {
10064 // Try to prove the following set of facts:
10065 // - The predicate is monotonic in the iteration space.
10066 // - If the check does not fail on the 1st iteration:
10067 // - No overflow will happen during first MaxIter iterations;
10068 // - It will not fail on the MaxIter'th iteration.
10069 // If the check does fail on the 1st iteration, we leave the loop and no
10070 // other checks matter.
10072 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10073 if (!isLoopInvariant(RHS
, L
)) {
10074 if (!isLoopInvariant(LHS
, L
))
10077 std::swap(LHS
, RHS
);
10078 Pred
= ICmpInst::getSwappedPredicate(Pred
);
10081 auto *AR
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
10082 if (!AR
|| AR
->getLoop() != L
)
10085 // The predicate must be relational (i.e. <, <=, >=, >).
10086 if (!ICmpInst::isRelational(Pred
))
10089 // TODO: Support steps other than +/- 1.
10090 const SCEV
*Step
= AR
->getStepRecurrence(*this);
10091 auto *One
= getOne(Step
->getType());
10092 auto *MinusOne
= getNegativeSCEV(One
);
10093 if (Step
!= One
&& Step
!= MinusOne
)
10096 // Type mismatch here means that MaxIter is potentially larger than max
10097 // unsigned value in start type, which mean we cannot prove no wrap for the
10099 if (AR
->getType() != MaxIter
->getType())
10102 // Value of IV on suggested last iteration.
10103 const SCEV
*Last
= AR
->evaluateAtIteration(MaxIter
, *this);
10104 // Does it still meet the requirement?
10105 if (!isLoopBackedgeGuardedByCond(L
, Pred
, Last
, RHS
))
10107 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
10108 // not exceed max unsigned value of this type), this effectively proves
10109 // that there is no wrap during the iteration. To prove that there is no
10110 // signed/unsigned wrap, we need to check that
10111 // Start <= Last for step = 1 or Start >= Last for step = -1.
10112 ICmpInst::Predicate NoOverflowPred
=
10113 CmpInst::isSigned(Pred
) ? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
10114 if (Step
== MinusOne
)
10115 NoOverflowPred
= CmpInst::getSwappedPredicate(NoOverflowPred
);
10116 const SCEV
*Start
= AR
->getStart();
10117 if (!isKnownPredicateAt(NoOverflowPred
, Start
, Last
, Context
))
10120 // Everything is fine.
10121 return ScalarEvolution::LoopInvariantPredicate(Pred
, Start
, RHS
);
10124 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
10125 ICmpInst::Predicate Pred
, const SCEV
*LHS
, const SCEV
*RHS
) {
10126 if (HasSameValue(LHS
, RHS
))
10127 return ICmpInst::isTrueWhenEqual(Pred
);
10129 // This code is split out from isKnownPredicate because it is called from
10130 // within isLoopEntryGuardedByCond.
10132 auto CheckRanges
= [&](const ConstantRange
&RangeLHS
,
10133 const ConstantRange
&RangeRHS
) {
10134 return RangeLHS
.icmp(Pred
, RangeRHS
);
10137 // The check at the top of the function catches the case where the values are
10138 // known to be equal.
10139 if (Pred
== CmpInst::ICMP_EQ
)
10142 if (Pred
== CmpInst::ICMP_NE
) {
10143 if (CheckRanges(getSignedRange(LHS
), getSignedRange(RHS
)) ||
10144 CheckRanges(getUnsignedRange(LHS
), getUnsignedRange(RHS
)))
10146 auto *Diff
= getMinusSCEV(LHS
, RHS
);
10147 return !isa
<SCEVCouldNotCompute
>(Diff
) && isKnownNonZero(Diff
);
10150 if (CmpInst::isSigned(Pred
))
10151 return CheckRanges(getSignedRange(LHS
), getSignedRange(RHS
));
10153 return CheckRanges(getUnsignedRange(LHS
), getUnsignedRange(RHS
));
10156 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred
,
10159 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
10160 // C1 and C2 are constant integers. If either X or Y are not add expressions,
10161 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
10162 // OutC1 and OutC2.
10163 auto MatchBinaryAddToConst
= [this](const SCEV
*X
, const SCEV
*Y
,
10164 APInt
&OutC1
, APInt
&OutC2
,
10165 SCEV::NoWrapFlags ExpectedFlags
) {
10166 const SCEV
*XNonConstOp
, *XConstOp
;
10167 const SCEV
*YNonConstOp
, *YConstOp
;
10168 SCEV::NoWrapFlags XFlagsPresent
;
10169 SCEV::NoWrapFlags YFlagsPresent
;
10171 if (!splitBinaryAdd(X
, XConstOp
, XNonConstOp
, XFlagsPresent
)) {
10172 XConstOp
= getZero(X
->getType());
10174 XFlagsPresent
= ExpectedFlags
;
10176 if (!isa
<SCEVConstant
>(XConstOp
) ||
10177 (XFlagsPresent
& ExpectedFlags
) != ExpectedFlags
)
10180 if (!splitBinaryAdd(Y
, YConstOp
, YNonConstOp
, YFlagsPresent
)) {
10181 YConstOp
= getZero(Y
->getType());
10183 YFlagsPresent
= ExpectedFlags
;
10186 if (!isa
<SCEVConstant
>(YConstOp
) ||
10187 (YFlagsPresent
& ExpectedFlags
) != ExpectedFlags
)
10190 if (YNonConstOp
!= XNonConstOp
)
10193 OutC1
= cast
<SCEVConstant
>(XConstOp
)->getAPInt();
10194 OutC2
= cast
<SCEVConstant
>(YConstOp
)->getAPInt();
10206 case ICmpInst::ICMP_SGE
:
10207 std::swap(LHS
, RHS
);
10209 case ICmpInst::ICMP_SLE
:
10210 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
10211 if (MatchBinaryAddToConst(LHS
, RHS
, C1
, C2
, SCEV::FlagNSW
) && C1
.sle(C2
))
10216 case ICmpInst::ICMP_SGT
:
10217 std::swap(LHS
, RHS
);
10219 case ICmpInst::ICMP_SLT
:
10220 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
10221 if (MatchBinaryAddToConst(LHS
, RHS
, C1
, C2
, SCEV::FlagNSW
) && C1
.slt(C2
))
10226 case ICmpInst::ICMP_UGE
:
10227 std::swap(LHS
, RHS
);
10229 case ICmpInst::ICMP_ULE
:
10230 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
10231 if (MatchBinaryAddToConst(RHS
, LHS
, C2
, C1
, SCEV::FlagNUW
) && C1
.ule(C2
))
10236 case ICmpInst::ICMP_UGT
:
10237 std::swap(LHS
, RHS
);
10239 case ICmpInst::ICMP_ULT
:
10240 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
10241 if (MatchBinaryAddToConst(RHS
, LHS
, C2
, C1
, SCEV::FlagNUW
) && C1
.ult(C2
))
10249 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred
,
10252 if (Pred
!= ICmpInst::ICMP_ULT
|| ProvingSplitPredicate
)
10255 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
10256 // the stack can result in exponential time complexity.
10257 SaveAndRestore
<bool> Restore(ProvingSplitPredicate
, true);
10259 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
10261 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
10262 // isKnownPredicate. isKnownPredicate is more powerful, but also more
10263 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
10264 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
10265 // use isKnownPredicate later if needed.
10266 return isKnownNonNegative(RHS
) &&
10267 isKnownPredicate(CmpInst::ICMP_SGE
, LHS
, getZero(LHS
->getType())) &&
10268 isKnownPredicate(CmpInst::ICMP_SLT
, LHS
, RHS
);
10271 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock
*BB
,
10272 ICmpInst::Predicate Pred
,
10273 const SCEV
*LHS
, const SCEV
*RHS
) {
10274 // No need to even try if we know the module has no guards.
10278 return any_of(*BB
, [&](const Instruction
&I
) {
10279 using namespace llvm::PatternMatch
;
10282 return match(&I
, m_Intrinsic
<Intrinsic::experimental_guard
>(
10283 m_Value(Condition
))) &&
10284 isImpliedCond(Pred
, LHS
, RHS
, Condition
, false);
10288 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
10289 /// protected by a conditional between LHS and RHS. This is used to
10290 /// to eliminate casts.
10292 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop
*L
,
10293 ICmpInst::Predicate Pred
,
10294 const SCEV
*LHS
, const SCEV
*RHS
) {
10295 // Interpret a null as meaning no loop, where there is obviously no guard
10296 // (interprocedural conditions notwithstanding).
10297 if (!L
) return true;
10300 assert(!verifyFunction(*L
->getHeader()->getParent(), &dbgs()) &&
10301 "This cannot be done on broken IR!");
10304 if (isKnownViaNonRecursiveReasoning(Pred
, LHS
, RHS
))
10307 BasicBlock
*Latch
= L
->getLoopLatch();
10311 BranchInst
*LoopContinuePredicate
=
10312 dyn_cast
<BranchInst
>(Latch
->getTerminator());
10313 if (LoopContinuePredicate
&& LoopContinuePredicate
->isConditional() &&
10314 isImpliedCond(Pred
, LHS
, RHS
,
10315 LoopContinuePredicate
->getCondition(),
10316 LoopContinuePredicate
->getSuccessor(0) != L
->getHeader()))
10319 // We don't want more than one activation of the following loops on the stack
10320 // -- that can lead to O(n!) time complexity.
10321 if (WalkingBEDominatingConds
)
10324 SaveAndRestore
<bool> ClearOnExit(WalkingBEDominatingConds
, true);
10326 // See if we can exploit a trip count to prove the predicate.
10327 const auto &BETakenInfo
= getBackedgeTakenInfo(L
);
10328 const SCEV
*LatchBECount
= BETakenInfo
.getExact(Latch
, this);
10329 if (LatchBECount
!= getCouldNotCompute()) {
10330 // We know that Latch branches back to the loop header exactly
10331 // LatchBECount times. This means the backdege condition at Latch is
10332 // equivalent to "{0,+,1} u< LatchBECount".
10333 Type
*Ty
= LatchBECount
->getType();
10334 auto NoWrapFlags
= SCEV::NoWrapFlags(SCEV::FlagNUW
| SCEV::FlagNW
);
10335 const SCEV
*LoopCounter
=
10336 getAddRecExpr(getZero(Ty
), getOne(Ty
), L
, NoWrapFlags
);
10337 if (isImpliedCond(Pred
, LHS
, RHS
, ICmpInst::ICMP_ULT
, LoopCounter
,
10342 // Check conditions due to any @llvm.assume intrinsics.
10343 for (auto &AssumeVH
: AC
.assumptions()) {
10346 auto *CI
= cast
<CallInst
>(AssumeVH
);
10347 if (!DT
.dominates(CI
, Latch
->getTerminator()))
10350 if (isImpliedCond(Pred
, LHS
, RHS
, CI
->getArgOperand(0), false))
10354 // If the loop is not reachable from the entry block, we risk running into an
10355 // infinite loop as we walk up into the dom tree. These loops do not matter
10356 // anyway, so we just return a conservative answer when we see them.
10357 if (!DT
.isReachableFromEntry(L
->getHeader()))
10360 if (isImpliedViaGuard(Latch
, Pred
, LHS
, RHS
))
10363 for (DomTreeNode
*DTN
= DT
[Latch
], *HeaderDTN
= DT
[L
->getHeader()];
10364 DTN
!= HeaderDTN
; DTN
= DTN
->getIDom()) {
10365 assert(DTN
&& "should reach the loop header before reaching the root!");
10367 BasicBlock
*BB
= DTN
->getBlock();
10368 if (isImpliedViaGuard(BB
, Pred
, LHS
, RHS
))
10371 BasicBlock
*PBB
= BB
->getSinglePredecessor();
10375 BranchInst
*ContinuePredicate
= dyn_cast
<BranchInst
>(PBB
->getTerminator());
10376 if (!ContinuePredicate
|| !ContinuePredicate
->isConditional())
10379 Value
*Condition
= ContinuePredicate
->getCondition();
10381 // If we have an edge `E` within the loop body that dominates the only
10382 // latch, the condition guarding `E` also guards the backedge. This
10383 // reasoning works only for loops with a single latch.
10385 BasicBlockEdge
DominatingEdge(PBB
, BB
);
10386 if (DominatingEdge
.isSingleEdge()) {
10387 // We're constructively (and conservatively) enumerating edges within the
10388 // loop body that dominate the latch. The dominator tree better agree
10389 // with us on this:
10390 assert(DT
.dominates(DominatingEdge
, Latch
) && "should be!");
10392 if (isImpliedCond(Pred
, LHS
, RHS
, Condition
,
10393 BB
!= ContinuePredicate
->getSuccessor(0)))
10401 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock
*BB
,
10402 ICmpInst::Predicate Pred
,
10406 assert(!verifyFunction(*BB
->getParent(), &dbgs()) &&
10407 "This cannot be done on broken IR!");
10409 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
10410 // the facts (a >= b && a != b) separately. A typical situation is when the
10411 // non-strict comparison is known from ranges and non-equality is known from
10412 // dominating predicates. If we are proving strict comparison, we always try
10413 // to prove non-equality and non-strict comparison separately.
10414 auto NonStrictPredicate
= ICmpInst::getNonStrictPredicate(Pred
);
10415 const bool ProvingStrictComparison
= (Pred
!= NonStrictPredicate
);
10416 bool ProvedNonStrictComparison
= false;
10417 bool ProvedNonEquality
= false;
10419 auto SplitAndProve
=
10420 [&](std::function
<bool(ICmpInst::Predicate
)> Fn
) -> bool {
10421 if (!ProvedNonStrictComparison
)
10422 ProvedNonStrictComparison
= Fn(NonStrictPredicate
);
10423 if (!ProvedNonEquality
)
10424 ProvedNonEquality
= Fn(ICmpInst::ICMP_NE
);
10425 if (ProvedNonStrictComparison
&& ProvedNonEquality
)
10430 if (ProvingStrictComparison
) {
10431 auto ProofFn
= [&](ICmpInst::Predicate P
) {
10432 return isKnownViaNonRecursiveReasoning(P
, LHS
, RHS
);
10434 if (SplitAndProve(ProofFn
))
10438 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
10439 auto ProveViaGuard
= [&](const BasicBlock
*Block
) {
10440 if (isImpliedViaGuard(Block
, Pred
, LHS
, RHS
))
10442 if (ProvingStrictComparison
) {
10443 auto ProofFn
= [&](ICmpInst::Predicate P
) {
10444 return isImpliedViaGuard(Block
, P
, LHS
, RHS
);
10446 if (SplitAndProve(ProofFn
))
10452 // Try to prove (Pred, LHS, RHS) using isImpliedCond.
10453 auto ProveViaCond
= [&](const Value
*Condition
, bool Inverse
) {
10454 const Instruction
*Context
= &BB
->front();
10455 if (isImpliedCond(Pred
, LHS
, RHS
, Condition
, Inverse
, Context
))
10457 if (ProvingStrictComparison
) {
10458 auto ProofFn
= [&](ICmpInst::Predicate P
) {
10459 return isImpliedCond(P
, LHS
, RHS
, Condition
, Inverse
, Context
);
10461 if (SplitAndProve(ProofFn
))
10467 // Starting at the block's predecessor, climb up the predecessor chain, as long
10468 // as there are predecessors that can be found that have unique successors
10469 // leading to the original block.
10470 const Loop
*ContainingLoop
= LI
.getLoopFor(BB
);
10471 const BasicBlock
*PredBB
;
10472 if (ContainingLoop
&& ContainingLoop
->getHeader() == BB
)
10473 PredBB
= ContainingLoop
->getLoopPredecessor();
10475 PredBB
= BB
->getSinglePredecessor();
10476 for (std::pair
<const BasicBlock
*, const BasicBlock
*> Pair(PredBB
, BB
);
10477 Pair
.first
; Pair
= getPredecessorWithUniqueSuccessorForBB(Pair
.first
)) {
10478 if (ProveViaGuard(Pair
.first
))
10481 const BranchInst
*LoopEntryPredicate
=
10482 dyn_cast
<BranchInst
>(Pair
.first
->getTerminator());
10483 if (!LoopEntryPredicate
||
10484 LoopEntryPredicate
->isUnconditional())
10487 if (ProveViaCond(LoopEntryPredicate
->getCondition(),
10488 LoopEntryPredicate
->getSuccessor(0) != Pair
.second
))
10492 // Check conditions due to any @llvm.assume intrinsics.
10493 for (auto &AssumeVH
: AC
.assumptions()) {
10496 auto *CI
= cast
<CallInst
>(AssumeVH
);
10497 if (!DT
.dominates(CI
, BB
))
10500 if (ProveViaCond(CI
->getArgOperand(0), false))
10507 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop
*L
,
10508 ICmpInst::Predicate Pred
,
10511 // Interpret a null as meaning no loop, where there is obviously no guard
10512 // (interprocedural conditions notwithstanding).
10516 // Both LHS and RHS must be available at loop entry.
10517 assert(isAvailableAtLoopEntry(LHS
, L
) &&
10518 "LHS is not available at Loop Entry");
10519 assert(isAvailableAtLoopEntry(RHS
, L
) &&
10520 "RHS is not available at Loop Entry");
10522 if (isKnownViaNonRecursiveReasoning(Pred
, LHS
, RHS
))
10525 return isBasicBlockEntryGuardedByCond(L
->getHeader(), Pred
, LHS
, RHS
);
10528 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred
, const SCEV
*LHS
,
10530 const Value
*FoundCondValue
, bool Inverse
,
10531 const Instruction
*Context
) {
10532 // False conditions implies anything. Do not bother analyzing it further.
10533 if (FoundCondValue
==
10534 ConstantInt::getBool(FoundCondValue
->getContext(), Inverse
))
10537 if (!PendingLoopPredicates
.insert(FoundCondValue
).second
)
10541 make_scope_exit([&]() { PendingLoopPredicates
.erase(FoundCondValue
); });
10543 // Recursively handle And and Or conditions.
10544 const Value
*Op0
, *Op1
;
10545 if (match(FoundCondValue
, m_LogicalAnd(m_Value(Op0
), m_Value(Op1
)))) {
10547 return isImpliedCond(Pred
, LHS
, RHS
, Op0
, Inverse
, Context
) ||
10548 isImpliedCond(Pred
, LHS
, RHS
, Op1
, Inverse
, Context
);
10549 } else if (match(FoundCondValue
, m_LogicalOr(m_Value(Op0
), m_Value(Op1
)))) {
10551 return isImpliedCond(Pred
, LHS
, RHS
, Op0
, Inverse
, Context
) ||
10552 isImpliedCond(Pred
, LHS
, RHS
, Op1
, Inverse
, Context
);
10555 const ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(FoundCondValue
);
10556 if (!ICI
) return false;
10558 // Now that we found a conditional branch that dominates the loop or controls
10559 // the loop latch. Check to see if it is the comparison we are looking for.
10560 ICmpInst::Predicate FoundPred
;
10562 FoundPred
= ICI
->getInversePredicate();
10564 FoundPred
= ICI
->getPredicate();
10566 const SCEV
*FoundLHS
= getSCEV(ICI
->getOperand(0));
10567 const SCEV
*FoundRHS
= getSCEV(ICI
->getOperand(1));
10569 return isImpliedCond(Pred
, LHS
, RHS
, FoundPred
, FoundLHS
, FoundRHS
, Context
);
10572 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred
, const SCEV
*LHS
,
10574 ICmpInst::Predicate FoundPred
,
10575 const SCEV
*FoundLHS
, const SCEV
*FoundRHS
,
10576 const Instruction
*Context
) {
10577 // Balance the types.
10578 if (getTypeSizeInBits(LHS
->getType()) <
10579 getTypeSizeInBits(FoundLHS
->getType())) {
10580 // For unsigned and equality predicates, try to prove that both found
10581 // operands fit into narrow unsigned range. If so, try to prove facts in
10583 if (!CmpInst::isSigned(FoundPred
) && !FoundLHS
->getType()->isPointerTy()) {
10584 auto *NarrowType
= LHS
->getType();
10585 auto *WideType
= FoundLHS
->getType();
10586 auto BitWidth
= getTypeSizeInBits(NarrowType
);
10587 const SCEV
*MaxValue
= getZeroExtendExpr(
10588 getConstant(APInt::getMaxValue(BitWidth
)), WideType
);
10589 if (isKnownPredicate(ICmpInst::ICMP_ULE
, FoundLHS
, MaxValue
) &&
10590 isKnownPredicate(ICmpInst::ICMP_ULE
, FoundRHS
, MaxValue
)) {
10591 const SCEV
*TruncFoundLHS
= getTruncateExpr(FoundLHS
, NarrowType
);
10592 const SCEV
*TruncFoundRHS
= getTruncateExpr(FoundRHS
, NarrowType
);
10593 if (isImpliedCondBalancedTypes(Pred
, LHS
, RHS
, FoundPred
, TruncFoundLHS
,
10594 TruncFoundRHS
, Context
))
10599 if (LHS
->getType()->isPointerTy())
10601 if (CmpInst::isSigned(Pred
)) {
10602 LHS
= getSignExtendExpr(LHS
, FoundLHS
->getType());
10603 RHS
= getSignExtendExpr(RHS
, FoundLHS
->getType());
10605 LHS
= getZeroExtendExpr(LHS
, FoundLHS
->getType());
10606 RHS
= getZeroExtendExpr(RHS
, FoundLHS
->getType());
10608 } else if (getTypeSizeInBits(LHS
->getType()) >
10609 getTypeSizeInBits(FoundLHS
->getType())) {
10610 if (FoundLHS
->getType()->isPointerTy())
10612 if (CmpInst::isSigned(FoundPred
)) {
10613 FoundLHS
= getSignExtendExpr(FoundLHS
, LHS
->getType());
10614 FoundRHS
= getSignExtendExpr(FoundRHS
, LHS
->getType());
10616 FoundLHS
= getZeroExtendExpr(FoundLHS
, LHS
->getType());
10617 FoundRHS
= getZeroExtendExpr(FoundRHS
, LHS
->getType());
10620 return isImpliedCondBalancedTypes(Pred
, LHS
, RHS
, FoundPred
, FoundLHS
,
10621 FoundRHS
, Context
);
10624 bool ScalarEvolution::isImpliedCondBalancedTypes(
10625 ICmpInst::Predicate Pred
, const SCEV
*LHS
, const SCEV
*RHS
,
10626 ICmpInst::Predicate FoundPred
, const SCEV
*FoundLHS
, const SCEV
*FoundRHS
,
10627 const Instruction
*Context
) {
10628 assert(getTypeSizeInBits(LHS
->getType()) ==
10629 getTypeSizeInBits(FoundLHS
->getType()) &&
10630 "Types should be balanced!");
10631 // Canonicalize the query to match the way instcombine will have
10632 // canonicalized the comparison.
10633 if (SimplifyICmpOperands(Pred
, LHS
, RHS
))
10635 return CmpInst::isTrueWhenEqual(Pred
);
10636 if (SimplifyICmpOperands(FoundPred
, FoundLHS
, FoundRHS
))
10637 if (FoundLHS
== FoundRHS
)
10638 return CmpInst::isFalseWhenEqual(FoundPred
);
10640 // Check to see if we can make the LHS or RHS match.
10641 if (LHS
== FoundRHS
|| RHS
== FoundLHS
) {
10642 if (isa
<SCEVConstant
>(RHS
)) {
10643 std::swap(FoundLHS
, FoundRHS
);
10644 FoundPred
= ICmpInst::getSwappedPredicate(FoundPred
);
10646 std::swap(LHS
, RHS
);
10647 Pred
= ICmpInst::getSwappedPredicate(Pred
);
10651 // Check whether the found predicate is the same as the desired predicate.
10652 if (FoundPred
== Pred
)
10653 return isImpliedCondOperands(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
, Context
);
10655 // Check whether swapping the found predicate makes it the same as the
10656 // desired predicate.
10657 if (ICmpInst::getSwappedPredicate(FoundPred
) == Pred
) {
10658 // We can write the implication
10659 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS
10660 // using one of the following ways:
10661 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS
10662 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS
10663 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS
10664 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS
10665 // Forms 1. and 2. require swapping the operands of one condition. Don't
10666 // do this if it would break canonical constant/addrec ordering.
10667 if (!isa
<SCEVConstant
>(RHS
) && !isa
<SCEVAddRecExpr
>(LHS
))
10668 return isImpliedCondOperands(FoundPred
, RHS
, LHS
, FoundLHS
, FoundRHS
,
10670 if (!isa
<SCEVConstant
>(FoundRHS
) && !isa
<SCEVAddRecExpr
>(FoundLHS
))
10671 return isImpliedCondOperands(Pred
, LHS
, RHS
, FoundRHS
, FoundLHS
, Context
);
10673 // Don't try to getNotSCEV pointers.
10674 if (LHS
->getType()->isPointerTy() || FoundLHS
->getType()->isPointerTy())
10677 // There's no clear preference between forms 3. and 4., try both.
10678 return isImpliedCondOperands(FoundPred
, getNotSCEV(LHS
), getNotSCEV(RHS
),
10679 FoundLHS
, FoundRHS
, Context
) ||
10680 isImpliedCondOperands(Pred
, LHS
, RHS
, getNotSCEV(FoundLHS
),
10681 getNotSCEV(FoundRHS
), Context
);
10684 // Unsigned comparison is the same as signed comparison when both the operands
10685 // are non-negative.
10686 if (CmpInst::isUnsigned(FoundPred
) &&
10687 CmpInst::getSignedPredicate(FoundPred
) == Pred
&&
10688 isKnownNonNegative(FoundLHS
) && isKnownNonNegative(FoundRHS
))
10689 return isImpliedCondOperands(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
, Context
);
10691 // Check if we can make progress by sharpening ranges.
10692 if (FoundPred
== ICmpInst::ICMP_NE
&&
10693 (isa
<SCEVConstant
>(FoundLHS
) || isa
<SCEVConstant
>(FoundRHS
))) {
10695 const SCEVConstant
*C
= nullptr;
10696 const SCEV
*V
= nullptr;
10698 if (isa
<SCEVConstant
>(FoundLHS
)) {
10699 C
= cast
<SCEVConstant
>(FoundLHS
);
10702 C
= cast
<SCEVConstant
>(FoundRHS
);
10706 // The guarding predicate tells us that C != V. If the known range
10707 // of V is [C, t), we can sharpen the range to [C + 1, t). The
10708 // range we consider has to correspond to same signedness as the
10709 // predicate we're interested in folding.
10711 APInt Min
= ICmpInst::isSigned(Pred
) ?
10712 getSignedRangeMin(V
) : getUnsignedRangeMin(V
);
10714 if (Min
== C
->getAPInt()) {
10715 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
10716 // This is true even if (Min + 1) wraps around -- in case of
10717 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
10719 APInt SharperMin
= Min
+ 1;
10722 case ICmpInst::ICMP_SGE
:
10723 case ICmpInst::ICMP_UGE
:
10724 // We know V `Pred` SharperMin. If this implies LHS `Pred`
10725 // RHS, we're done.
10726 if (isImpliedCondOperands(Pred
, LHS
, RHS
, V
, getConstant(SharperMin
),
10731 case ICmpInst::ICMP_SGT
:
10732 case ICmpInst::ICMP_UGT
:
10733 // We know from the range information that (V `Pred` Min ||
10734 // V == Min). We know from the guarding condition that !(V
10735 // == Min). This gives us
10737 // V `Pred` Min || V == Min && !(V == Min)
10740 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
10742 if (isImpliedCondOperands(Pred
, LHS
, RHS
, V
, getConstant(Min
),
10747 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
10748 case ICmpInst::ICMP_SLE
:
10749 case ICmpInst::ICMP_ULE
:
10750 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred
), RHS
,
10751 LHS
, V
, getConstant(SharperMin
), Context
))
10755 case ICmpInst::ICMP_SLT
:
10756 case ICmpInst::ICMP_ULT
:
10757 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred
), RHS
,
10758 LHS
, V
, getConstant(Min
), Context
))
10769 // Check whether the actual condition is beyond sufficient.
10770 if (FoundPred
== ICmpInst::ICMP_EQ
)
10771 if (ICmpInst::isTrueWhenEqual(Pred
))
10772 if (isImpliedCondOperands(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
, Context
))
10774 if (Pred
== ICmpInst::ICMP_NE
)
10775 if (!ICmpInst::isTrueWhenEqual(FoundPred
))
10776 if (isImpliedCondOperands(FoundPred
, LHS
, RHS
, FoundLHS
, FoundRHS
,
10780 // Otherwise assume the worst.
10784 bool ScalarEvolution::splitBinaryAdd(const SCEV
*Expr
,
10785 const SCEV
*&L
, const SCEV
*&R
,
10786 SCEV::NoWrapFlags
&Flags
) {
10787 const auto *AE
= dyn_cast
<SCEVAddExpr
>(Expr
);
10788 if (!AE
|| AE
->getNumOperands() != 2)
10791 L
= AE
->getOperand(0);
10792 R
= AE
->getOperand(1);
10793 Flags
= AE
->getNoWrapFlags();
10797 Optional
<APInt
> ScalarEvolution::computeConstantDifference(const SCEV
*More
,
10798 const SCEV
*Less
) {
10799 // We avoid subtracting expressions here because this function is usually
10800 // fairly deep in the call stack (i.e. is called many times).
10804 return APInt(getTypeSizeInBits(More
->getType()), 0);
10806 if (isa
<SCEVAddRecExpr
>(Less
) && isa
<SCEVAddRecExpr
>(More
)) {
10807 const auto *LAR
= cast
<SCEVAddRecExpr
>(Less
);
10808 const auto *MAR
= cast
<SCEVAddRecExpr
>(More
);
10810 if (LAR
->getLoop() != MAR
->getLoop())
10813 // We look at affine expressions only; not for correctness but to keep
10814 // getStepRecurrence cheap.
10815 if (!LAR
->isAffine() || !MAR
->isAffine())
10818 if (LAR
->getStepRecurrence(*this) != MAR
->getStepRecurrence(*this))
10821 Less
= LAR
->getStart();
10822 More
= MAR
->getStart();
10827 if (isa
<SCEVConstant
>(Less
) && isa
<SCEVConstant
>(More
)) {
10828 const auto &M
= cast
<SCEVConstant
>(More
)->getAPInt();
10829 const auto &L
= cast
<SCEVConstant
>(Less
)->getAPInt();
10833 SCEV::NoWrapFlags Flags
;
10834 const SCEV
*LLess
= nullptr, *RLess
= nullptr;
10835 const SCEV
*LMore
= nullptr, *RMore
= nullptr;
10836 const SCEVConstant
*C1
= nullptr, *C2
= nullptr;
10837 // Compare (X + C1) vs X.
10838 if (splitBinaryAdd(Less
, LLess
, RLess
, Flags
))
10839 if ((C1
= dyn_cast
<SCEVConstant
>(LLess
)))
10841 return -(C1
->getAPInt());
10843 // Compare X vs (X + C2).
10844 if (splitBinaryAdd(More
, LMore
, RMore
, Flags
))
10845 if ((C2
= dyn_cast
<SCEVConstant
>(LMore
)))
10847 return C2
->getAPInt();
10849 // Compare (X + C1) vs (X + C2).
10850 if (C1
&& C2
&& RLess
== RMore
)
10851 return C2
->getAPInt() - C1
->getAPInt();
10856 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
10857 ICmpInst::Predicate Pred
, const SCEV
*LHS
, const SCEV
*RHS
,
10858 const SCEV
*FoundLHS
, const SCEV
*FoundRHS
, const Instruction
*Context
) {
10859 // Try to recognize the following pattern:
10864 // FoundLHS = {Start,+,W}
10865 // context_bb: // Basic block from the same loop
10866 // known(Pred, FoundLHS, FoundRHS)
10868 // If some predicate is known in the context of a loop, it is also known on
10869 // each iteration of this loop, including the first iteration. Therefore, in
10870 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
10871 // prove the original pred using this fact.
10874 const BasicBlock
*ContextBB
= Context
->getParent();
10875 // Make sure AR varies in the context block.
10876 if (auto *AR
= dyn_cast
<SCEVAddRecExpr
>(FoundLHS
)) {
10877 const Loop
*L
= AR
->getLoop();
10878 // Make sure that context belongs to the loop and executes on 1st iteration
10879 // (if it ever executes at all).
10880 if (!L
->contains(ContextBB
) || !DT
.dominates(ContextBB
, L
->getLoopLatch()))
10882 if (!isAvailableAtLoopEntry(FoundRHS
, AR
->getLoop()))
10884 return isImpliedCondOperands(Pred
, LHS
, RHS
, AR
->getStart(), FoundRHS
);
10887 if (auto *AR
= dyn_cast
<SCEVAddRecExpr
>(FoundRHS
)) {
10888 const Loop
*L
= AR
->getLoop();
10889 // Make sure that context belongs to the loop and executes on 1st iteration
10890 // (if it ever executes at all).
10891 if (!L
->contains(ContextBB
) || !DT
.dominates(ContextBB
, L
->getLoopLatch()))
10893 if (!isAvailableAtLoopEntry(FoundLHS
, AR
->getLoop()))
10895 return isImpliedCondOperands(Pred
, LHS
, RHS
, FoundLHS
, AR
->getStart());
10901 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
10902 ICmpInst::Predicate Pred
, const SCEV
*LHS
, const SCEV
*RHS
,
10903 const SCEV
*FoundLHS
, const SCEV
*FoundRHS
) {
10904 if (Pred
!= CmpInst::ICMP_SLT
&& Pred
!= CmpInst::ICMP_ULT
)
10907 const auto *AddRecLHS
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
10911 const auto *AddRecFoundLHS
= dyn_cast
<SCEVAddRecExpr
>(FoundLHS
);
10912 if (!AddRecFoundLHS
)
10915 // We'd like to let SCEV reason about control dependencies, so we constrain
10916 // both the inequalities to be about add recurrences on the same loop. This
10917 // way we can use isLoopEntryGuardedByCond later.
10919 const Loop
*L
= AddRecFoundLHS
->getLoop();
10920 if (L
!= AddRecLHS
->getLoop())
10923 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
10925 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
10928 // Informal proof for (2), assuming (1) [*]:
10930 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
10934 // FoundLHS s< FoundRHS s< INT_MIN - C
10935 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
10936 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
10937 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
10938 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
10939 // <=> FoundLHS + C s< FoundRHS + C
10941 // [*]: (1) can be proved by ruling out overflow.
10943 // [**]: This can be proved by analyzing all the four possibilities:
10944 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
10945 // (A s>= 0, B s>= 0).
10948 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10949 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
10950 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
10951 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
10952 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10955 Optional
<APInt
> LDiff
= computeConstantDifference(LHS
, FoundLHS
);
10956 Optional
<APInt
> RDiff
= computeConstantDifference(RHS
, FoundRHS
);
10957 if (!LDiff
|| !RDiff
|| *LDiff
!= *RDiff
)
10960 if (LDiff
->isMinValue())
10963 APInt FoundRHSLimit
;
10965 if (Pred
== CmpInst::ICMP_ULT
) {
10966 FoundRHSLimit
= -(*RDiff
);
10968 assert(Pred
== CmpInst::ICMP_SLT
&& "Checked above!");
10969 FoundRHSLimit
= APInt::getSignedMinValue(getTypeSizeInBits(RHS
->getType())) - *RDiff
;
10972 // Try to prove (1) or (2), as needed.
10973 return isAvailableAtLoopEntry(FoundRHS
, L
) &&
10974 isLoopEntryGuardedByCond(L
, Pred
, FoundRHS
,
10975 getConstant(FoundRHSLimit
));
10978 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred
,
10979 const SCEV
*LHS
, const SCEV
*RHS
,
10980 const SCEV
*FoundLHS
,
10981 const SCEV
*FoundRHS
, unsigned Depth
) {
10982 const PHINode
*LPhi
= nullptr, *RPhi
= nullptr;
10984 auto ClearOnExit
= make_scope_exit([&]() {
10986 bool Erased
= PendingMerges
.erase(LPhi
);
10987 assert(Erased
&& "Failed to erase LPhi!");
10991 bool Erased
= PendingMerges
.erase(RPhi
);
10992 assert(Erased
&& "Failed to erase RPhi!");
10997 // Find respective Phis and check that they are not being pending.
10998 if (const SCEVUnknown
*LU
= dyn_cast
<SCEVUnknown
>(LHS
))
10999 if (auto *Phi
= dyn_cast
<PHINode
>(LU
->getValue())) {
11000 if (!PendingMerges
.insert(Phi
).second
)
11004 if (const SCEVUnknown
*RU
= dyn_cast
<SCEVUnknown
>(RHS
))
11005 if (auto *Phi
= dyn_cast
<PHINode
>(RU
->getValue())) {
11006 // If we detect a loop of Phi nodes being processed by this method, for
11009 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
11010 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
11012 // we don't want to deal with a case that complex, so return conservative
11014 if (!PendingMerges
.insert(Phi
).second
)
11019 // If none of LHS, RHS is a Phi, nothing to do here.
11020 if (!LPhi
&& !RPhi
)
11023 // If there is a SCEVUnknown Phi we are interested in, make it left.
11025 std::swap(LHS
, RHS
);
11026 std::swap(FoundLHS
, FoundRHS
);
11027 std::swap(LPhi
, RPhi
);
11028 Pred
= ICmpInst::getSwappedPredicate(Pred
);
11031 assert(LPhi
&& "LPhi should definitely be a SCEVUnknown Phi!");
11032 const BasicBlock
*LBB
= LPhi
->getParent();
11033 const SCEVAddRecExpr
*RAR
= dyn_cast
<SCEVAddRecExpr
>(RHS
);
11035 auto ProvedEasily
= [&](const SCEV
*S1
, const SCEV
*S2
) {
11036 return isKnownViaNonRecursiveReasoning(Pred
, S1
, S2
) ||
11037 isImpliedCondOperandsViaRanges(Pred
, S1
, S2
, FoundLHS
, FoundRHS
) ||
11038 isImpliedViaOperations(Pred
, S1
, S2
, FoundLHS
, FoundRHS
, Depth
);
11041 if (RPhi
&& RPhi
->getParent() == LBB
) {
11042 // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
11043 // If we compare two Phis from the same block, and for each entry block
11044 // the predicate is true for incoming values from this block, then the
11045 // predicate is also true for the Phis.
11046 for (const BasicBlock
*IncBB
: predecessors(LBB
)) {
11047 const SCEV
*L
= getSCEV(LPhi
->getIncomingValueForBlock(IncBB
));
11048 const SCEV
*R
= getSCEV(RPhi
->getIncomingValueForBlock(IncBB
));
11049 if (!ProvedEasily(L
, R
))
11052 } else if (RAR
&& RAR
->getLoop()->getHeader() == LBB
) {
11053 // Case two: RHS is also a Phi from the same basic block, and it is an
11054 // AddRec. It means that there is a loop which has both AddRec and Unknown
11055 // PHIs, for it we can compare incoming values of AddRec from above the loop
11056 // and latch with their respective incoming values of LPhi.
11057 // TODO: Generalize to handle loops with many inputs in a header.
11058 if (LPhi
->getNumIncomingValues() != 2) return false;
11060 auto *RLoop
= RAR
->getLoop();
11061 auto *Predecessor
= RLoop
->getLoopPredecessor();
11062 assert(Predecessor
&& "Loop with AddRec with no predecessor?");
11063 const SCEV
*L1
= getSCEV(LPhi
->getIncomingValueForBlock(Predecessor
));
11064 if (!ProvedEasily(L1
, RAR
->getStart()))
11066 auto *Latch
= RLoop
->getLoopLatch();
11067 assert(Latch
&& "Loop with AddRec with no latch?");
11068 const SCEV
*L2
= getSCEV(LPhi
->getIncomingValueForBlock(Latch
));
11069 if (!ProvedEasily(L2
, RAR
->getPostIncExpr(*this)))
11072 // In all other cases go over inputs of LHS and compare each of them to RHS,
11073 // the predicate is true for (LHS, RHS) if it is true for all such pairs.
11074 // At this point RHS is either a non-Phi, or it is a Phi from some block
11075 // different from LBB.
11076 for (const BasicBlock
*IncBB
: predecessors(LBB
)) {
11077 // Check that RHS is available in this block.
11078 if (!dominates(RHS
, IncBB
))
11080 const SCEV
*L
= getSCEV(LPhi
->getIncomingValueForBlock(IncBB
));
11081 // Make sure L does not refer to a value from a potentially previous
11082 // iteration of a loop.
11083 if (!properlyDominates(L
, IncBB
))
11085 if (!ProvedEasily(L
, RHS
))
11092 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred
,
11093 const SCEV
*LHS
, const SCEV
*RHS
,
11094 const SCEV
*FoundLHS
,
11095 const SCEV
*FoundRHS
,
11096 const Instruction
*Context
) {
11097 if (isImpliedCondOperandsViaRanges(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
))
11100 if (isImpliedCondOperandsViaNoOverflow(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
))
11103 if (isImpliedCondOperandsViaAddRecStart(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
,
11107 return isImpliedCondOperandsHelper(Pred
, LHS
, RHS
,
11108 FoundLHS
, FoundRHS
);
11111 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
11112 template <typename MinMaxExprType
>
11113 static bool IsMinMaxConsistingOf(const SCEV
*MaybeMinMaxExpr
,
11114 const SCEV
*Candidate
) {
11115 const MinMaxExprType
*MinMaxExpr
= dyn_cast
<MinMaxExprType
>(MaybeMinMaxExpr
);
11119 return is_contained(MinMaxExpr
->operands(), Candidate
);
11122 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution
&SE
,
11123 ICmpInst::Predicate Pred
,
11124 const SCEV
*LHS
, const SCEV
*RHS
) {
11125 // If both sides are affine addrecs for the same loop, with equal
11126 // steps, and we know the recurrences don't wrap, then we only
11127 // need to check the predicate on the starting values.
11129 if (!ICmpInst::isRelational(Pred
))
11132 const SCEVAddRecExpr
*LAR
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
11135 const SCEVAddRecExpr
*RAR
= dyn_cast
<SCEVAddRecExpr
>(RHS
);
11138 if (LAR
->getLoop() != RAR
->getLoop())
11140 if (!LAR
->isAffine() || !RAR
->isAffine())
11143 if (LAR
->getStepRecurrence(SE
) != RAR
->getStepRecurrence(SE
))
11146 SCEV::NoWrapFlags NW
= ICmpInst::isSigned(Pred
) ?
11147 SCEV::FlagNSW
: SCEV::FlagNUW
;
11148 if (!LAR
->getNoWrapFlags(NW
) || !RAR
->getNoWrapFlags(NW
))
11151 return SE
.isKnownPredicate(Pred
, LAR
->getStart(), RAR
->getStart());
11154 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
11156 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution
&SE
,
11157 ICmpInst::Predicate Pred
,
11158 const SCEV
*LHS
, const SCEV
*RHS
) {
11163 case ICmpInst::ICMP_SGE
:
11164 std::swap(LHS
, RHS
);
11166 case ICmpInst::ICMP_SLE
:
11168 // min(A, ...) <= A
11169 IsMinMaxConsistingOf
<SCEVSMinExpr
>(LHS
, RHS
) ||
11170 // A <= max(A, ...)
11171 IsMinMaxConsistingOf
<SCEVSMaxExpr
>(RHS
, LHS
);
11173 case ICmpInst::ICMP_UGE
:
11174 std::swap(LHS
, RHS
);
11176 case ICmpInst::ICMP_ULE
:
11178 // min(A, ...) <= A
11179 IsMinMaxConsistingOf
<SCEVUMinExpr
>(LHS
, RHS
) ||
11180 // A <= max(A, ...)
11181 IsMinMaxConsistingOf
<SCEVUMaxExpr
>(RHS
, LHS
);
11184 llvm_unreachable("covered switch fell through?!");
11187 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred
,
11188 const SCEV
*LHS
, const SCEV
*RHS
,
11189 const SCEV
*FoundLHS
,
11190 const SCEV
*FoundRHS
,
11192 assert(getTypeSizeInBits(LHS
->getType()) ==
11193 getTypeSizeInBits(RHS
->getType()) &&
11194 "LHS and RHS have different sizes?");
11195 assert(getTypeSizeInBits(FoundLHS
->getType()) ==
11196 getTypeSizeInBits(FoundRHS
->getType()) &&
11197 "FoundLHS and FoundRHS have different sizes?");
11198 // We want to avoid hurting the compile time with analysis of too big trees.
11199 if (Depth
> MaxSCEVOperationsImplicationDepth
)
11202 // We only want to work with GT comparison so far.
11203 if (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_SLT
) {
11204 Pred
= CmpInst::getSwappedPredicate(Pred
);
11205 std::swap(LHS
, RHS
);
11206 std::swap(FoundLHS
, FoundRHS
);
11209 // For unsigned, try to reduce it to corresponding signed comparison.
11210 if (Pred
== ICmpInst::ICMP_UGT
)
11211 // We can replace unsigned predicate with its signed counterpart if all
11212 // involved values are non-negative.
11213 // TODO: We could have better support for unsigned.
11214 if (isKnownNonNegative(FoundLHS
) && isKnownNonNegative(FoundRHS
)) {
11215 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
11216 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
11217 // use this fact to prove that LHS and RHS are non-negative.
11218 const SCEV
*MinusOne
= getMinusOne(LHS
->getType());
11219 if (isImpliedCondOperands(ICmpInst::ICMP_SGT
, LHS
, MinusOne
, FoundLHS
,
11221 isImpliedCondOperands(ICmpInst::ICMP_SGT
, RHS
, MinusOne
, FoundLHS
,
11223 Pred
= ICmpInst::ICMP_SGT
;
11226 if (Pred
!= ICmpInst::ICMP_SGT
)
11229 auto GetOpFromSExt
= [&](const SCEV
*S
) {
11230 if (auto *Ext
= dyn_cast
<SCEVSignExtendExpr
>(S
))
11231 return Ext
->getOperand();
11232 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
11233 // the constant in some cases.
11237 // Acquire values from extensions.
11238 auto *OrigLHS
= LHS
;
11239 auto *OrigFoundLHS
= FoundLHS
;
11240 LHS
= GetOpFromSExt(LHS
);
11241 FoundLHS
= GetOpFromSExt(FoundLHS
);
11243 // Is the SGT predicate can be proved trivially or using the found context.
11244 auto IsSGTViaContext
= [&](const SCEV
*S1
, const SCEV
*S2
) {
11245 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT
, S1
, S2
) ||
11246 isImpliedViaOperations(ICmpInst::ICMP_SGT
, S1
, S2
, OrigFoundLHS
,
11247 FoundRHS
, Depth
+ 1);
11250 if (auto *LHSAddExpr
= dyn_cast
<SCEVAddExpr
>(LHS
)) {
11251 // We want to avoid creation of any new non-constant SCEV. Since we are
11252 // going to compare the operands to RHS, we should be certain that we don't
11253 // need any size extensions for this. So let's decline all cases when the
11254 // sizes of types of LHS and RHS do not match.
11255 // TODO: Maybe try to get RHS from sext to catch more cases?
11256 if (getTypeSizeInBits(LHS
->getType()) != getTypeSizeInBits(RHS
->getType()))
11259 // Should not overflow.
11260 if (!LHSAddExpr
->hasNoSignedWrap())
11263 auto *LL
= LHSAddExpr
->getOperand(0);
11264 auto *LR
= LHSAddExpr
->getOperand(1);
11265 auto *MinusOne
= getMinusOne(RHS
->getType());
11267 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
11268 auto IsSumGreaterThanRHS
= [&](const SCEV
*S1
, const SCEV
*S2
) {
11269 return IsSGTViaContext(S1
, MinusOne
) && IsSGTViaContext(S2
, RHS
);
11271 // Try to prove the following rule:
11272 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
11273 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
11274 if (IsSumGreaterThanRHS(LL
, LR
) || IsSumGreaterThanRHS(LR
, LL
))
11276 } else if (auto *LHSUnknownExpr
= dyn_cast
<SCEVUnknown
>(LHS
)) {
11278 // FIXME: Once we have SDiv implemented, we can get rid of this matching.
11280 using namespace llvm::PatternMatch
;
11282 if (match(LHSUnknownExpr
->getValue(), m_SDiv(m_Value(LL
), m_Value(LR
)))) {
11283 // Rules for division.
11284 // We are going to perform some comparisons with Denominator and its
11285 // derivative expressions. In general case, creating a SCEV for it may
11286 // lead to a complex analysis of the entire graph, and in particular it
11287 // can request trip count recalculation for the same loop. This would
11288 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
11289 // this, we only want to create SCEVs that are constants in this section.
11290 // So we bail if Denominator is not a constant.
11291 if (!isa
<ConstantInt
>(LR
))
11294 auto *Denominator
= cast
<SCEVConstant
>(getSCEV(LR
));
11296 // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
11297 // then a SCEV for the numerator already exists and matches with FoundLHS.
11298 auto *Numerator
= getExistingSCEV(LL
);
11299 if (!Numerator
|| Numerator
->getType() != FoundLHS
->getType())
11302 // Make sure that the numerator matches with FoundLHS and the denominator
11304 if (!HasSameValue(Numerator
, FoundLHS
) || !isKnownPositive(Denominator
))
11307 auto *DTy
= Denominator
->getType();
11308 auto *FRHSTy
= FoundRHS
->getType();
11309 if (DTy
->isPointerTy() != FRHSTy
->isPointerTy())
11310 // One of types is a pointer and another one is not. We cannot extend
11311 // them properly to a wider type, so let us just reject this case.
11312 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
11313 // to avoid this check.
11317 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
11318 auto *WTy
= getWiderType(DTy
, FRHSTy
);
11319 auto *DenominatorExt
= getNoopOrSignExtend(Denominator
, WTy
);
11320 auto *FoundRHSExt
= getNoopOrSignExtend(FoundRHS
, WTy
);
11322 // Try to prove the following rule:
11323 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
11324 // For example, given that FoundLHS > 2. It means that FoundLHS is at
11325 // least 3. If we divide it by Denominator < 4, we will have at least 1.
11326 auto *DenomMinusTwo
= getMinusSCEV(DenominatorExt
, getConstant(WTy
, 2));
11327 if (isKnownNonPositive(RHS
) &&
11328 IsSGTViaContext(FoundRHSExt
, DenomMinusTwo
))
11331 // Try to prove the following rule:
11332 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
11333 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
11334 // If we divide it by Denominator > 2, then:
11335 // 1. If FoundLHS is negative, then the result is 0.
11336 // 2. If FoundLHS is non-negative, then the result is non-negative.
11337 // Anyways, the result is non-negative.
11338 auto *MinusOne
= getMinusOne(WTy
);
11339 auto *NegDenomMinusOne
= getMinusSCEV(MinusOne
, DenominatorExt
);
11340 if (isKnownNegative(RHS
) &&
11341 IsSGTViaContext(FoundRHSExt
, NegDenomMinusOne
))
11346 // If our expression contained SCEVUnknown Phis, and we split it down and now
11347 // need to prove something for them, try to prove the predicate for every
11348 // possible incoming values of those Phis.
11349 if (isImpliedViaMerge(Pred
, OrigLHS
, RHS
, OrigFoundLHS
, FoundRHS
, Depth
+ 1))
11355 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred
,
11356 const SCEV
*LHS
, const SCEV
*RHS
) {
11357 // zext x u<= sext x, sext x s<= zext x
11359 case ICmpInst::ICMP_SGE
:
11360 std::swap(LHS
, RHS
);
11362 case ICmpInst::ICMP_SLE
: {
11363 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt.
11364 const SCEVSignExtendExpr
*SExt
= dyn_cast
<SCEVSignExtendExpr
>(LHS
);
11365 const SCEVZeroExtendExpr
*ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(RHS
);
11366 if (SExt
&& ZExt
&& SExt
->getOperand() == ZExt
->getOperand())
11370 case ICmpInst::ICMP_UGE
:
11371 std::swap(LHS
, RHS
);
11373 case ICmpInst::ICMP_ULE
: {
11374 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt.
11375 const SCEVZeroExtendExpr
*ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(LHS
);
11376 const SCEVSignExtendExpr
*SExt
= dyn_cast
<SCEVSignExtendExpr
>(RHS
);
11377 if (SExt
&& ZExt
&& SExt
->getOperand() == ZExt
->getOperand())
11388 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred
,
11389 const SCEV
*LHS
, const SCEV
*RHS
) {
11390 return isKnownPredicateExtendIdiom(Pred
, LHS
, RHS
) ||
11391 isKnownPredicateViaConstantRanges(Pred
, LHS
, RHS
) ||
11392 IsKnownPredicateViaMinOrMax(*this, Pred
, LHS
, RHS
) ||
11393 IsKnownPredicateViaAddRecStart(*this, Pred
, LHS
, RHS
) ||
11394 isKnownPredicateViaNoOverflow(Pred
, LHS
, RHS
);
11398 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred
,
11399 const SCEV
*LHS
, const SCEV
*RHS
,
11400 const SCEV
*FoundLHS
,
11401 const SCEV
*FoundRHS
) {
11403 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
11404 case ICmpInst::ICMP_EQ
:
11405 case ICmpInst::ICMP_NE
:
11406 if (HasSameValue(LHS
, FoundLHS
) && HasSameValue(RHS
, FoundRHS
))
11409 case ICmpInst::ICMP_SLT
:
11410 case ICmpInst::ICMP_SLE
:
11411 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE
, LHS
, FoundLHS
) &&
11412 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE
, RHS
, FoundRHS
))
11415 case ICmpInst::ICMP_SGT
:
11416 case ICmpInst::ICMP_SGE
:
11417 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE
, LHS
, FoundLHS
) &&
11418 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE
, RHS
, FoundRHS
))
11421 case ICmpInst::ICMP_ULT
:
11422 case ICmpInst::ICMP_ULE
:
11423 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE
, LHS
, FoundLHS
) &&
11424 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE
, RHS
, FoundRHS
))
11427 case ICmpInst::ICMP_UGT
:
11428 case ICmpInst::ICMP_UGE
:
11429 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE
, LHS
, FoundLHS
) &&
11430 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE
, RHS
, FoundRHS
))
11435 // Maybe it can be proved via operations?
11436 if (isImpliedViaOperations(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
))
11442 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred
,
11445 const SCEV
*FoundLHS
,
11446 const SCEV
*FoundRHS
) {
11447 if (!isa
<SCEVConstant
>(RHS
) || !isa
<SCEVConstant
>(FoundRHS
))
11448 // The restriction on `FoundRHS` be lifted easily -- it exists only to
11449 // reduce the compile time impact of this optimization.
11452 Optional
<APInt
> Addend
= computeConstantDifference(LHS
, FoundLHS
);
11456 const APInt
&ConstFoundRHS
= cast
<SCEVConstant
>(FoundRHS
)->getAPInt();
11458 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
11459 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
11460 ConstantRange FoundLHSRange
=
11461 ConstantRange::makeExactICmpRegion(Pred
, ConstFoundRHS
);
11463 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
11464 ConstantRange LHSRange
= FoundLHSRange
.add(ConstantRange(*Addend
));
11466 // We can also compute the range of values for `LHS` that satisfy the
11467 // consequent, "`LHS` `Pred` `RHS`":
11468 const APInt
&ConstRHS
= cast
<SCEVConstant
>(RHS
)->getAPInt();
11469 // The antecedent implies the consequent if every value of `LHS` that
11470 // satisfies the antecedent also satisfies the consequent.
11471 return LHSRange
.icmp(Pred
, ConstRHS
);
11474 bool ScalarEvolution::canIVOverflowOnLT(const SCEV
*RHS
, const SCEV
*Stride
,
11476 assert(isKnownPositive(Stride
) && "Positive stride expected!");
11478 unsigned BitWidth
= getTypeSizeInBits(RHS
->getType());
11479 const SCEV
*One
= getOne(Stride
->getType());
11482 APInt MaxRHS
= getSignedRangeMax(RHS
);
11483 APInt MaxValue
= APInt::getSignedMaxValue(BitWidth
);
11484 APInt MaxStrideMinusOne
= getSignedRangeMax(getMinusSCEV(Stride
, One
));
11486 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
11487 return (std::move(MaxValue
) - MaxStrideMinusOne
).slt(MaxRHS
);
11490 APInt MaxRHS
= getUnsignedRangeMax(RHS
);
11491 APInt MaxValue
= APInt::getMaxValue(BitWidth
);
11492 APInt MaxStrideMinusOne
= getUnsignedRangeMax(getMinusSCEV(Stride
, One
));
11494 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
11495 return (std::move(MaxValue
) - MaxStrideMinusOne
).ult(MaxRHS
);
11498 bool ScalarEvolution::canIVOverflowOnGT(const SCEV
*RHS
, const SCEV
*Stride
,
11501 unsigned BitWidth
= getTypeSizeInBits(RHS
->getType());
11502 const SCEV
*One
= getOne(Stride
->getType());
11505 APInt MinRHS
= getSignedRangeMin(RHS
);
11506 APInt MinValue
= APInt::getSignedMinValue(BitWidth
);
11507 APInt MaxStrideMinusOne
= getSignedRangeMax(getMinusSCEV(Stride
, One
));
11509 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
11510 return (std::move(MinValue
) + MaxStrideMinusOne
).sgt(MinRHS
);
11513 APInt MinRHS
= getUnsignedRangeMin(RHS
);
11514 APInt MinValue
= APInt::getMinValue(BitWidth
);
11515 APInt MaxStrideMinusOne
= getUnsignedRangeMax(getMinusSCEV(Stride
, One
));
11517 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
11518 return (std::move(MinValue
) + MaxStrideMinusOne
).ugt(MinRHS
);
11521 const SCEV
*ScalarEvolution::getUDivCeilSCEV(const SCEV
*N
, const SCEV
*D
) {
11522 // umin(N, 1) + floor((N - umin(N, 1)) / D)
11523 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
11524 // expression fixes the case of N=0.
11525 const SCEV
*MinNOne
= getUMinExpr(N
, getOne(N
->getType()));
11526 const SCEV
*NMinusOne
= getMinusSCEV(N
, MinNOne
);
11527 return getAddExpr(MinNOne
, getUDivExpr(NMinusOne
, D
));
11530 const SCEV
*ScalarEvolution::computeMaxBECountForLT(const SCEV
*Start
,
11531 const SCEV
*Stride
,
11535 // The logic in this function assumes we can represent a positive stride.
11536 // If we can't, the backedge-taken count must be zero.
11537 if (IsSigned
&& BitWidth
== 1)
11538 return getZero(Stride
->getType());
11540 // Calculate the maximum backedge count based on the range of values
11541 // permitted by Start, End, and Stride.
11543 IsSigned
? getSignedRangeMin(Start
) : getUnsignedRangeMin(Start
);
11546 IsSigned
? getSignedRangeMin(Stride
) : getUnsignedRangeMin(Stride
);
11548 // We assume either the stride is positive, or the backedge-taken count
11549 // is zero. So force StrideForMaxBECount to be at least one.
11550 APInt
One(BitWidth
, 1);
11551 APInt StrideForMaxBECount
= IsSigned
? APIntOps::smax(One
, MinStride
)
11552 : APIntOps::umax(One
, MinStride
);
11554 APInt MaxValue
= IsSigned
? APInt::getSignedMaxValue(BitWidth
)
11555 : APInt::getMaxValue(BitWidth
);
11556 APInt Limit
= MaxValue
- (StrideForMaxBECount
- 1);
11558 // Although End can be a MAX expression we estimate MaxEnd considering only
11559 // the case End = RHS of the loop termination condition. This is safe because
11560 // in the other case (End - Start) is zero, leading to a zero maximum backedge
11562 APInt MaxEnd
= IsSigned
? APIntOps::smin(getSignedRangeMax(End
), Limit
)
11563 : APIntOps::umin(getUnsignedRangeMax(End
), Limit
);
11565 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
11566 MaxEnd
= IsSigned
? APIntOps::smax(MaxEnd
, MinStart
)
11567 : APIntOps::umax(MaxEnd
, MinStart
);
11569 return getUDivCeilSCEV(getConstant(MaxEnd
- MinStart
) /* Delta */,
11570 getConstant(StrideForMaxBECount
) /* Step */);
11573 ScalarEvolution::ExitLimit
11574 ScalarEvolution::howManyLessThans(const SCEV
*LHS
, const SCEV
*RHS
,
11575 const Loop
*L
, bool IsSigned
,
11576 bool ControlsExit
, bool AllowPredicates
) {
11577 SmallPtrSet
<const SCEVPredicate
*, 4> Predicates
;
11579 const SCEVAddRecExpr
*IV
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
11580 bool PredicatedIV
= false;
11582 if (!IV
&& AllowPredicates
) {
11583 // Try to make this an AddRec using runtime tests, in the first X
11584 // iterations of this loop, where X is the SCEV expression found by the
11585 // algorithm below.
11586 IV
= convertSCEVToAddRecWithPredicates(LHS
, L
, Predicates
);
11587 PredicatedIV
= true;
11590 // Avoid weird loops
11591 if (!IV
|| IV
->getLoop() != L
|| !IV
->isAffine())
11592 return getCouldNotCompute();
11594 // A precondition of this method is that the condition being analyzed
11595 // reaches an exiting branch which dominates the latch. Given that, we can
11596 // assume that an increment which violates the nowrap specification and
11597 // produces poison must cause undefined behavior when the resulting poison
11598 // value is branched upon and thus we can conclude that the backedge is
11599 // taken no more often than would be required to produce that poison value.
11600 // Note that a well defined loop can exit on the iteration which violates
11601 // the nowrap specification if there is another exit (either explicit or
11602 // implicit/exceptional) which causes the loop to execute before the
11603 // exiting instruction we're analyzing would trigger UB.
11604 auto WrapType
= IsSigned
? SCEV::FlagNSW
: SCEV::FlagNUW
;
11605 bool NoWrap
= ControlsExit
&& IV
->getNoWrapFlags(WrapType
);
11606 ICmpInst::Predicate Cond
= IsSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
11608 const SCEV
*Stride
= IV
->getStepRecurrence(*this);
11610 bool PositiveStride
= isKnownPositive(Stride
);
11612 // Avoid negative or zero stride values.
11613 if (!PositiveStride
) {
11614 // We can compute the correct backedge taken count for loops with unknown
11615 // strides if we can prove that the loop is not an infinite loop with side
11616 // effects. Here's the loop structure we are trying to handle -
11622 // } while (i < end);
11624 // The backedge taken count for such loops is evaluated as -
11625 // (max(end, start + stride) - start - 1) /u stride
11627 // The additional preconditions that we need to check to prove correctness
11628 // of the above formula is as follows -
11630 // a) IV is either nuw or nsw depending upon signedness (indicated by the
11632 // b) loop is single exit with no side effects.
11635 // Precondition a) implies that if the stride is negative, this is a single
11636 // trip loop. The backedge taken count formula reduces to zero in this case.
11638 // Precondition b) implies that if rhs is invariant in L, then unknown
11639 // stride being zero means the backedge can't be taken without UB.
11641 // The positive stride case is the same as isKnownPositive(Stride) returning
11642 // true (original behavior of the function).
11644 // We want to make sure that the stride is truly unknown as there are edge
11645 // cases where ScalarEvolution propagates no wrap flags to the
11646 // post-increment/decrement IV even though the increment/decrement operation
11647 // itself is wrapping. The computed backedge taken count may be wrong in
11648 // such cases. This is prevented by checking that the stride is not known to
11649 // be either positive or non-positive. For example, no wrap flags are
11650 // propagated to the post-increment IV of this loop with a trip count of 2 -
11652 // unsigned char i;
11653 // for(i=127; i<128; i+=129)
11656 if (PredicatedIV
|| !NoWrap
|| isKnownNonPositive(Stride
) ||
11657 !loopIsFiniteByAssumption(L
))
11658 return getCouldNotCompute();
11660 if (!isKnownNonZero(Stride
)) {
11661 // If we have a step of zero, and RHS isn't invariant in L, we don't know
11662 // if it might eventually be greater than start and if so, on which
11663 // iteration. We can't even produce a useful upper bound.
11664 if (!isLoopInvariant(RHS
, L
))
11665 return getCouldNotCompute();
11667 // We allow a potentially zero stride, but we need to divide by stride
11668 // below. Since the loop can't be infinite and this check must control
11669 // the sole exit, we can infer the exit must be taken on the first
11670 // iteration (e.g. backedge count = 0) if the stride is zero. Given that,
11671 // we know the numerator in the divides below must be zero, so we can
11672 // pick an arbitrary non-zero value for the denominator (e.g. stride)
11673 // and produce the right result.
11674 // FIXME: Handle the case where Stride is poison?
11675 auto wouldZeroStrideBeUB
= [&]() {
11676 // Proof by contradiction. Suppose the stride were zero. If we can
11677 // prove that the backedge *is* taken on the first iteration, then since
11678 // we know this condition controls the sole exit, we must have an
11679 // infinite loop. We can't have a (well defined) infinite loop per
11680 // check just above.
11681 // Note: The (Start - Stride) term is used to get the start' term from
11682 // (start' + stride,+,stride). Remember that we only care about the
11683 // result of this expression when stride == 0 at runtime.
11684 auto *StartIfZero
= getMinusSCEV(IV
->getStart(), Stride
);
11685 return isLoopEntryGuardedByCond(L
, Cond
, StartIfZero
, RHS
);
11687 if (!wouldZeroStrideBeUB()) {
11688 Stride
= getUMaxExpr(Stride
, getOne(Stride
->getType()));
11691 } else if (!Stride
->isOne() && !NoWrap
) {
11692 auto isUBOnWrap
= [&]() {
11693 // Can we prove this loop *must* be UB if overflow of IV occurs?
11694 // Reasoning goes as follows:
11695 // * Suppose the IV did self wrap.
11696 // * If Stride evenly divides the iteration space, then once wrap
11697 // occurs, the loop must revisit the same values.
11698 // * We know that RHS is invariant, and that none of those values
11699 // caused this exit to be taken previously. Thus, this exit is
11700 // dynamically dead.
11701 // * If this is the sole exit, then a dead exit implies the loop
11702 // must be infinite if there are no abnormal exits.
11703 // * If the loop were infinite, then it must either not be mustprogress
11704 // or have side effects. Otherwise, it must be UB.
11705 // * It can't (by assumption), be UB so we have contradicted our
11706 // premise and can conclude the IV did not in fact self-wrap.
11707 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This
11708 // follows trivially from the fact that every (un)signed-wrapped, but
11709 // not self-wrapped value must be LT than the last value before
11710 // (un)signed wrap. Since we know that last value didn't exit, nor
11711 // will any smaller one.
11713 if (!isLoopInvariant(RHS
, L
))
11716 auto *StrideC
= dyn_cast
<SCEVConstant
>(Stride
);
11717 if (!StrideC
|| !StrideC
->getAPInt().isPowerOf2())
11720 if (!ControlsExit
|| !loopHasNoAbnormalExits(L
))
11723 return loopIsFiniteByAssumption(L
);
11726 // Avoid proven overflow cases: this will ensure that the backedge taken
11727 // count will not generate any unsigned overflow. Relaxed no-overflow
11728 // conditions exploit NoWrapFlags, allowing to optimize in presence of
11729 // undefined behaviors like the case of C language.
11730 if (canIVOverflowOnLT(RHS
, Stride
, IsSigned
) && !isUBOnWrap())
11731 return getCouldNotCompute();
11734 // On all paths just preceeding, we established the following invariant:
11735 // IV can be assumed not to overflow up to and including the exiting
11736 // iteration. We proved this in one of two ways:
11737 // 1) We can show overflow doesn't occur before the exiting iteration
11738 // 1a) canIVOverflowOnLT, and b) step of one
11739 // 2) We can show that if overflow occurs, the loop must execute UB
11740 // before any possible exit.
11741 // Note that we have not yet proved RHS invariant (in general).
11743 const SCEV
*Start
= IV
->getStart();
11745 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
11746 // Use integer-typed versions for actual computation.
11747 const SCEV
*OrigStart
= Start
;
11748 const SCEV
*OrigRHS
= RHS
;
11749 if (Start
->getType()->isPointerTy()) {
11750 Start
= getLosslessPtrToIntExpr(Start
);
11751 if (isa
<SCEVCouldNotCompute
>(Start
))
11754 if (RHS
->getType()->isPointerTy()) {
11755 RHS
= getLosslessPtrToIntExpr(RHS
);
11756 if (isa
<SCEVCouldNotCompute
>(RHS
))
11760 // When the RHS is not invariant, we do not know the end bound of the loop and
11761 // cannot calculate the ExactBECount needed by ExitLimit. However, we can
11762 // calculate the MaxBECount, given the start, stride and max value for the end
11763 // bound of the loop (RHS), and the fact that IV does not overflow (which is
11765 if (!isLoopInvariant(RHS
, L
)) {
11766 const SCEV
*MaxBECount
= computeMaxBECountForLT(
11767 Start
, Stride
, RHS
, getTypeSizeInBits(LHS
->getType()), IsSigned
);
11768 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount
,
11769 false /*MaxOrZero*/, Predicates
);
11772 // We use the expression (max(End,Start)-Start)/Stride to describe the
11773 // backedge count, as if the backedge is taken at least once max(End,Start)
11774 // is End and so the result is as above, and if not max(End,Start) is Start
11775 // so we get a backedge count of zero.
11776 const SCEV
*BECount
= nullptr;
11777 auto *StartMinusStride
= getMinusSCEV(OrigStart
, Stride
);
11778 // Can we prove (max(RHS,Start) > Start - Stride?
11779 if (isLoopEntryGuardedByCond(L
, Cond
, StartMinusStride
, Start
) &&
11780 isLoopEntryGuardedByCond(L
, Cond
, StartMinusStride
, RHS
)) {
11781 // In this case, we can use a refined formula for computing backedge taken
11782 // count. The general formula remains:
11783 // "End-Start /uceiling Stride" where "End = max(RHS,Start)"
11784 // We want to use the alternate formula:
11785 // "((End - 1) - (Start - Stride)) /u Stride"
11786 // Let's do a quick case analysis to show these are equivalent under
11787 // our precondition that max(RHS,Start) > Start - Stride.
11788 // * For RHS <= Start, the backedge-taken count must be zero.
11789 // "((End - 1) - (Start - Stride)) /u Stride" reduces to
11790 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
11791 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values
11792 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing
11793 // this to the stride of 1 case.
11794 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
11795 // "((End - 1) - (Start - Stride)) /u Stride" reduces to
11796 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
11797 // "((RHS - (Start - Stride) - 1) /u Stride".
11798 // Our preconditions trivially imply no overflow in that form.
11799 const SCEV
*MinusOne
= getMinusOne(Stride
->getType());
11800 const SCEV
*Numerator
=
11801 getMinusSCEV(getAddExpr(RHS
, MinusOne
), StartMinusStride
);
11802 if (!isa
<SCEVCouldNotCompute
>(Numerator
)) {
11803 BECount
= getUDivExpr(Numerator
, Stride
);
11807 const SCEV
*BECountIfBackedgeTaken
= nullptr;
11809 auto canProveRHSGreaterThanEqualStart
= [&]() {
11810 auto CondGE
= IsSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
;
11811 if (isLoopEntryGuardedByCond(L
, CondGE
, OrigRHS
, OrigStart
))
11814 // (RHS > Start - 1) implies RHS >= Start.
11815 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
11816 // "Start - 1" doesn't overflow.
11817 // * For signed comparison, if Start - 1 does overflow, it's equal
11818 // to INT_MAX, and "RHS >s INT_MAX" is trivially false.
11819 // * For unsigned comparison, if Start - 1 does overflow, it's equal
11820 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
11822 // FIXME: Should isLoopEntryGuardedByCond do this for us?
11823 auto CondGT
= IsSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
11824 auto *StartMinusOne
= getAddExpr(OrigStart
,
11825 getMinusOne(OrigStart
->getType()));
11826 return isLoopEntryGuardedByCond(L
, CondGT
, OrigRHS
, StartMinusOne
);
11829 // If we know that RHS >= Start in the context of loop, then we know that
11830 // max(RHS, Start) = RHS at this point.
11832 if (canProveRHSGreaterThanEqualStart()) {
11835 // If RHS < Start, the backedge will be taken zero times. So in
11836 // general, we can write the backedge-taken count as:
11838 // RHS >= Start ? ceil(RHS - Start) / Stride : 0
11840 // We convert it to the following to make it more convenient for SCEV:
11842 // ceil(max(RHS, Start) - Start) / Stride
11843 End
= IsSigned
? getSMaxExpr(RHS
, Start
) : getUMaxExpr(RHS
, Start
);
11845 // See what would happen if we assume the backedge is taken. This is
11846 // used to compute MaxBECount.
11847 BECountIfBackedgeTaken
= getUDivCeilSCEV(getMinusSCEV(RHS
, Start
), Stride
);
11850 // At this point, we know:
11852 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
11853 // 2. The index variable doesn't overflow.
11855 // Therefore, we know N exists such that
11856 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
11857 // doesn't overflow.
11859 // Using this information, try to prove whether the addition in
11860 // "(Start - End) + (Stride - 1)" has unsigned overflow.
11861 const SCEV
*One
= getOne(Stride
->getType());
11862 bool MayAddOverflow
= [&] {
11863 if (auto *StrideC
= dyn_cast
<SCEVConstant
>(Stride
)) {
11864 if (StrideC
->getAPInt().isPowerOf2()) {
11865 // Suppose Stride is a power of two, and Start/End are unsigned
11866 // integers. Let UMAX be the largest representable unsigned
11869 // By the preconditions of this function, we know
11870 // "(Start + Stride * N) >= End", and this doesn't overflow.
11873 // End <= (Start + Stride * N) <= UMAX
11875 // Subtracting Start from all the terms:
11877 // End - Start <= Stride * N <= UMAX - Start
11879 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore:
11881 // End - Start <= Stride * N <= UMAX
11883 // Stride * N is a multiple of Stride. Therefore,
11885 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
11887 // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
11888 // Therefore, UMAX mod Stride == Stride - 1. So we can write:
11890 // End - Start <= Stride * N <= UMAX - Stride - 1
11892 // Dropping the middle term:
11894 // End - Start <= UMAX - Stride - 1
11896 // Adding Stride - 1 to both sides:
11898 // (End - Start) + (Stride - 1) <= UMAX
11900 // In other words, the addition doesn't have unsigned overflow.
11902 // A similar proof works if we treat Start/End as signed values.
11903 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
11904 // use signed max instead of unsigned max. Note that we're trying
11905 // to prove a lack of unsigned overflow in either case.
11909 if (Start
== Stride
|| Start
== getMinusSCEV(Stride
, One
)) {
11910 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
11911 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
11912 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
11914 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
11920 const SCEV
*Delta
= getMinusSCEV(End
, Start
);
11921 if (!MayAddOverflow
) {
11922 // floor((D + (S - 1)) / S)
11923 // We prefer this formulation if it's legal because it's fewer operations.
11925 getUDivExpr(getAddExpr(Delta
, getMinusSCEV(Stride
, One
)), Stride
);
11927 BECount
= getUDivCeilSCEV(Delta
, Stride
);
11931 const SCEV
*MaxBECount
;
11932 bool MaxOrZero
= false;
11933 if (isa
<SCEVConstant
>(BECount
)) {
11934 MaxBECount
= BECount
;
11935 } else if (BECountIfBackedgeTaken
&&
11936 isa
<SCEVConstant
>(BECountIfBackedgeTaken
)) {
11937 // If we know exactly how many times the backedge will be taken if it's
11938 // taken at least once, then the backedge count will either be that or
11940 MaxBECount
= BECountIfBackedgeTaken
;
11943 MaxBECount
= computeMaxBECountForLT(
11944 Start
, Stride
, RHS
, getTypeSizeInBits(LHS
->getType()), IsSigned
);
11947 if (isa
<SCEVCouldNotCompute
>(MaxBECount
) &&
11948 !isa
<SCEVCouldNotCompute
>(BECount
))
11949 MaxBECount
= getConstant(getUnsignedRangeMax(BECount
));
11951 return ExitLimit(BECount
, MaxBECount
, MaxOrZero
, Predicates
);
11954 ScalarEvolution::ExitLimit
11955 ScalarEvolution::howManyGreaterThans(const SCEV
*LHS
, const SCEV
*RHS
,
11956 const Loop
*L
, bool IsSigned
,
11957 bool ControlsExit
, bool AllowPredicates
) {
11958 SmallPtrSet
<const SCEVPredicate
*, 4> Predicates
;
11959 // We handle only IV > Invariant
11960 if (!isLoopInvariant(RHS
, L
))
11961 return getCouldNotCompute();
11963 const SCEVAddRecExpr
*IV
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
11964 if (!IV
&& AllowPredicates
)
11965 // Try to make this an AddRec using runtime tests, in the first X
11966 // iterations of this loop, where X is the SCEV expression found by the
11967 // algorithm below.
11968 IV
= convertSCEVToAddRecWithPredicates(LHS
, L
, Predicates
);
11970 // Avoid weird loops
11971 if (!IV
|| IV
->getLoop() != L
|| !IV
->isAffine())
11972 return getCouldNotCompute();
11974 auto WrapType
= IsSigned
? SCEV::FlagNSW
: SCEV::FlagNUW
;
11975 bool NoWrap
= ControlsExit
&& IV
->getNoWrapFlags(WrapType
);
11976 ICmpInst::Predicate Cond
= IsSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
11978 const SCEV
*Stride
= getNegativeSCEV(IV
->getStepRecurrence(*this));
11980 // Avoid negative or zero stride values
11981 if (!isKnownPositive(Stride
))
11982 return getCouldNotCompute();
11984 // Avoid proven overflow cases: this will ensure that the backedge taken count
11985 // will not generate any unsigned overflow. Relaxed no-overflow conditions
11986 // exploit NoWrapFlags, allowing to optimize in presence of undefined
11987 // behaviors like the case of C language.
11988 if (!Stride
->isOne() && !NoWrap
)
11989 if (canIVOverflowOnGT(RHS
, Stride
, IsSigned
))
11990 return getCouldNotCompute();
11992 const SCEV
*Start
= IV
->getStart();
11993 const SCEV
*End
= RHS
;
11994 if (!isLoopEntryGuardedByCond(L
, Cond
, getAddExpr(Start
, Stride
), RHS
)) {
11995 // If we know that Start >= RHS in the context of loop, then we know that
11996 // min(RHS, Start) = RHS at this point.
11997 if (isLoopEntryGuardedByCond(
11998 L
, IsSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
, Start
, RHS
))
12001 End
= IsSigned
? getSMinExpr(RHS
, Start
) : getUMinExpr(RHS
, Start
);
12004 if (Start
->getType()->isPointerTy()) {
12005 Start
= getLosslessPtrToIntExpr(Start
);
12006 if (isa
<SCEVCouldNotCompute
>(Start
))
12009 if (End
->getType()->isPointerTy()) {
12010 End
= getLosslessPtrToIntExpr(End
);
12011 if (isa
<SCEVCouldNotCompute
>(End
))
12015 // Compute ((Start - End) + (Stride - 1)) / Stride.
12016 // FIXME: This can overflow. Holding off on fixing this for now;
12017 // howManyGreaterThans will hopefully be gone soon.
12018 const SCEV
*One
= getOne(Stride
->getType());
12019 const SCEV
*BECount
= getUDivExpr(
12020 getAddExpr(getMinusSCEV(Start
, End
), getMinusSCEV(Stride
, One
)), Stride
);
12022 APInt MaxStart
= IsSigned
? getSignedRangeMax(Start
)
12023 : getUnsignedRangeMax(Start
);
12025 APInt MinStride
= IsSigned
? getSignedRangeMin(Stride
)
12026 : getUnsignedRangeMin(Stride
);
12028 unsigned BitWidth
= getTypeSizeInBits(LHS
->getType());
12029 APInt Limit
= IsSigned
? APInt::getSignedMinValue(BitWidth
) + (MinStride
- 1)
12030 : APInt::getMinValue(BitWidth
) + (MinStride
- 1);
12032 // Although End can be a MIN expression we estimate MinEnd considering only
12033 // the case End = RHS. This is safe because in the other case (Start - End)
12034 // is zero, leading to a zero maximum backedge taken count.
12036 IsSigned
? APIntOps::smax(getSignedRangeMin(RHS
), Limit
)
12037 : APIntOps::umax(getUnsignedRangeMin(RHS
), Limit
);
12039 const SCEV
*MaxBECount
= isa
<SCEVConstant
>(BECount
)
12041 : getUDivCeilSCEV(getConstant(MaxStart
- MinEnd
),
12042 getConstant(MinStride
));
12044 if (isa
<SCEVCouldNotCompute
>(MaxBECount
))
12045 MaxBECount
= BECount
;
12047 return ExitLimit(BECount
, MaxBECount
, false, Predicates
);
12050 const SCEV
*SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange
&Range
,
12051 ScalarEvolution
&SE
) const {
12052 if (Range
.isFullSet()) // Infinite loop.
12053 return SE
.getCouldNotCompute();
12055 // If the start is a non-zero constant, shift the range to simplify things.
12056 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(getStart()))
12057 if (!SC
->getValue()->isZero()) {
12058 SmallVector
<const SCEV
*, 4> Operands(operands());
12059 Operands
[0] = SE
.getZero(SC
->getType());
12060 const SCEV
*Shifted
= SE
.getAddRecExpr(Operands
, getLoop(),
12061 getNoWrapFlags(FlagNW
));
12062 if (const auto *ShiftedAddRec
= dyn_cast
<SCEVAddRecExpr
>(Shifted
))
12063 return ShiftedAddRec
->getNumIterationsInRange(
12064 Range
.subtract(SC
->getAPInt()), SE
);
12065 // This is strange and shouldn't happen.
12066 return SE
.getCouldNotCompute();
12069 // The only time we can solve this is when we have all constant indices.
12070 // Otherwise, we cannot determine the overflow conditions.
12071 if (any_of(operands(), [](const SCEV
*Op
) { return !isa
<SCEVConstant
>(Op
); }))
12072 return SE
.getCouldNotCompute();
12074 // Okay at this point we know that all elements of the chrec are constants and
12075 // that the start element is zero.
12077 // First check to see if the range contains zero. If not, the first
12078 // iteration exits.
12079 unsigned BitWidth
= SE
.getTypeSizeInBits(getType());
12080 if (!Range
.contains(APInt(BitWidth
, 0)))
12081 return SE
.getZero(getType());
12084 // If this is an affine expression then we have this situation:
12085 // Solve {0,+,A} in Range === Ax in Range
12087 // We know that zero is in the range. If A is positive then we know that
12088 // the upper value of the range must be the first possible exit value.
12089 // If A is negative then the lower of the range is the last possible loop
12090 // value. Also note that we already checked for a full range.
12091 APInt A
= cast
<SCEVConstant
>(getOperand(1))->getAPInt();
12092 APInt End
= A
.sge(1) ? (Range
.getUpper() - 1) : Range
.getLower();
12094 // The exit value should be (End+A)/A.
12095 APInt ExitVal
= (End
+ A
).udiv(A
);
12096 ConstantInt
*ExitValue
= ConstantInt::get(SE
.getContext(), ExitVal
);
12098 // Evaluate at the exit value. If we really did fall out of the valid
12099 // range, then we computed our trip count, otherwise wrap around or other
12100 // things must have happened.
12101 ConstantInt
*Val
= EvaluateConstantChrecAtConstant(this, ExitValue
, SE
);
12102 if (Range
.contains(Val
->getValue()))
12103 return SE
.getCouldNotCompute(); // Something strange happened
12105 // Ensure that the previous value is in the range. This is a sanity check.
12106 assert(Range
.contains(
12107 EvaluateConstantChrecAtConstant(this,
12108 ConstantInt::get(SE
.getContext(), ExitVal
- 1), SE
)->getValue()) &&
12109 "Linear scev computation is off in a bad way!");
12110 return SE
.getConstant(ExitValue
);
12113 if (isQuadratic()) {
12114 if (auto S
= SolveQuadraticAddRecRange(this, Range
, SE
))
12115 return SE
.getConstant(S
.getValue());
12118 return SE
.getCouldNotCompute();
12121 const SCEVAddRecExpr
*
12122 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution
&SE
) const {
12123 assert(getNumOperands() > 1 && "AddRec with zero step?");
12124 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
12125 // but in this case we cannot guarantee that the value returned will be an
12126 // AddRec because SCEV does not have a fixed point where it stops
12127 // simplification: it is legal to return ({rec1} + {rec2}). For example, it
12128 // may happen if we reach arithmetic depth limit while simplifying. So we
12129 // construct the returned value explicitly.
12130 SmallVector
<const SCEV
*, 3> Ops
;
12131 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
12132 // (this + Step) is {A+B,+,B+C,+...,+,N}.
12133 for (unsigned i
= 0, e
= getNumOperands() - 1; i
< e
; ++i
)
12134 Ops
.push_back(SE
.getAddExpr(getOperand(i
), getOperand(i
+ 1)));
12135 // We know that the last operand is not a constant zero (otherwise it would
12136 // have been popped out earlier). This guarantees us that if the result has
12137 // the same last operand, then it will also not be popped out, meaning that
12138 // the returned value will be an AddRec.
12139 const SCEV
*Last
= getOperand(getNumOperands() - 1);
12140 assert(!Last
->isZero() && "Recurrency with zero step?");
12141 Ops
.push_back(Last
);
12142 return cast
<SCEVAddRecExpr
>(SE
.getAddRecExpr(Ops
, getLoop(),
12143 SCEV::FlagAnyWrap
));
12146 // Return true when S contains at least an undef value.
12147 static inline bool containsUndefs(const SCEV
*S
) {
12148 return SCEVExprContains(S
, [](const SCEV
*S
) {
12149 if (const auto *SU
= dyn_cast
<SCEVUnknown
>(S
))
12150 return isa
<UndefValue
>(SU
->getValue());
12157 // Collect all steps of SCEV expressions.
12158 struct SCEVCollectStrides
{
12159 ScalarEvolution
&SE
;
12160 SmallVectorImpl
<const SCEV
*> &Strides
;
12162 SCEVCollectStrides(ScalarEvolution
&SE
, SmallVectorImpl
<const SCEV
*> &S
)
12163 : SE(SE
), Strides(S
) {}
12165 bool follow(const SCEV
*S
) {
12166 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
))
12167 Strides
.push_back(AR
->getStepRecurrence(SE
));
12171 bool isDone() const { return false; }
12174 // Collect all SCEVUnknown and SCEVMulExpr expressions.
12175 struct SCEVCollectTerms
{
12176 SmallVectorImpl
<const SCEV
*> &Terms
;
12178 SCEVCollectTerms(SmallVectorImpl
<const SCEV
*> &T
) : Terms(T
) {}
12180 bool follow(const SCEV
*S
) {
12181 if (isa
<SCEVUnknown
>(S
) || isa
<SCEVMulExpr
>(S
) ||
12182 isa
<SCEVSignExtendExpr
>(S
)) {
12183 if (!containsUndefs(S
))
12184 Terms
.push_back(S
);
12186 // Stop recursion: once we collected a term, do not walk its operands.
12194 bool isDone() const { return false; }
12197 // Check if a SCEV contains an AddRecExpr.
12198 struct SCEVHasAddRec
{
12199 bool &ContainsAddRec
;
12201 SCEVHasAddRec(bool &ContainsAddRec
) : ContainsAddRec(ContainsAddRec
) {
12202 ContainsAddRec
= false;
12205 bool follow(const SCEV
*S
) {
12206 if (isa
<SCEVAddRecExpr
>(S
)) {
12207 ContainsAddRec
= true;
12209 // Stop recursion: once we collected a term, do not walk its operands.
12217 bool isDone() const { return false; }
12220 // Find factors that are multiplied with an expression that (possibly as a
12221 // subexpression) contains an AddRecExpr. In the expression:
12223 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
12225 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
12226 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
12227 // parameters as they form a product with an induction variable.
12229 // This collector expects all array size parameters to be in the same MulExpr.
12230 // It might be necessary to later add support for collecting parameters that are
12231 // spread over different nested MulExpr.
12232 struct SCEVCollectAddRecMultiplies
{
12233 SmallVectorImpl
<const SCEV
*> &Terms
;
12234 ScalarEvolution
&SE
;
12236 SCEVCollectAddRecMultiplies(SmallVectorImpl
<const SCEV
*> &T
, ScalarEvolution
&SE
)
12237 : Terms(T
), SE(SE
) {}
12239 bool follow(const SCEV
*S
) {
12240 if (auto *Mul
= dyn_cast
<SCEVMulExpr
>(S
)) {
12241 bool HasAddRec
= false;
12242 SmallVector
<const SCEV
*, 0> Operands
;
12243 for (auto Op
: Mul
->operands()) {
12244 const SCEVUnknown
*Unknown
= dyn_cast
<SCEVUnknown
>(Op
);
12245 if (Unknown
&& !isa
<CallInst
>(Unknown
->getValue())) {
12246 Operands
.push_back(Op
);
12247 } else if (Unknown
) {
12250 bool ContainsAddRec
= false;
12251 SCEVHasAddRec
ContiansAddRec(ContainsAddRec
);
12252 visitAll(Op
, ContiansAddRec
);
12253 HasAddRec
|= ContainsAddRec
;
12256 if (Operands
.size() == 0)
12262 Terms
.push_back(SE
.getMulExpr(Operands
));
12263 // Stop recursion: once we collected a term, do not walk its operands.
12271 bool isDone() const { return false; }
12274 } // end anonymous namespace
12276 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
12278 /// 1) The strides of AddRec expressions.
12279 /// 2) Unknowns that are multiplied with AddRec expressions.
12280 void ScalarEvolution::collectParametricTerms(const SCEV
*Expr
,
12281 SmallVectorImpl
<const SCEV
*> &Terms
) {
12282 SmallVector
<const SCEV
*, 4> Strides
;
12283 SCEVCollectStrides
StrideCollector(*this, Strides
);
12284 visitAll(Expr
, StrideCollector
);
12287 dbgs() << "Strides:\n";
12288 for (const SCEV
*S
: Strides
)
12289 dbgs() << *S
<< "\n";
12292 for (const SCEV
*S
: Strides
) {
12293 SCEVCollectTerms
TermCollector(Terms
);
12294 visitAll(S
, TermCollector
);
12298 dbgs() << "Terms:\n";
12299 for (const SCEV
*T
: Terms
)
12300 dbgs() << *T
<< "\n";
12303 SCEVCollectAddRecMultiplies
MulCollector(Terms
, *this);
12304 visitAll(Expr
, MulCollector
);
12307 static bool findArrayDimensionsRec(ScalarEvolution
&SE
,
12308 SmallVectorImpl
<const SCEV
*> &Terms
,
12309 SmallVectorImpl
<const SCEV
*> &Sizes
) {
12310 int Last
= Terms
.size() - 1;
12311 const SCEV
*Step
= Terms
[Last
];
12313 // End of recursion.
12315 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(Step
)) {
12316 SmallVector
<const SCEV
*, 2> Qs
;
12317 for (const SCEV
*Op
: M
->operands())
12318 if (!isa
<SCEVConstant
>(Op
))
12321 Step
= SE
.getMulExpr(Qs
);
12324 Sizes
.push_back(Step
);
12328 for (const SCEV
*&Term
: Terms
) {
12329 // Normalize the terms before the next call to findArrayDimensionsRec.
12331 SCEVDivision::divide(SE
, Term
, Step
, &Q
, &R
);
12333 // Bail out when GCD does not evenly divide one of the terms.
12340 // Remove all SCEVConstants.
12341 erase_if(Terms
, [](const SCEV
*E
) { return isa
<SCEVConstant
>(E
); });
12343 if (Terms
.size() > 0)
12344 if (!findArrayDimensionsRec(SE
, Terms
, Sizes
))
12347 Sizes
.push_back(Step
);
12351 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
12352 static inline bool containsParameters(SmallVectorImpl
<const SCEV
*> &Terms
) {
12353 for (const SCEV
*T
: Terms
)
12354 if (SCEVExprContains(T
, [](const SCEV
*S
) { return isa
<SCEVUnknown
>(S
); }))
12360 // Return the number of product terms in S.
12361 static inline int numberOfTerms(const SCEV
*S
) {
12362 if (const SCEVMulExpr
*Expr
= dyn_cast
<SCEVMulExpr
>(S
))
12363 return Expr
->getNumOperands();
12367 static const SCEV
*removeConstantFactors(ScalarEvolution
&SE
, const SCEV
*T
) {
12368 if (isa
<SCEVConstant
>(T
))
12371 if (isa
<SCEVUnknown
>(T
))
12374 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(T
)) {
12375 SmallVector
<const SCEV
*, 2> Factors
;
12376 for (const SCEV
*Op
: M
->operands())
12377 if (!isa
<SCEVConstant
>(Op
))
12378 Factors
.push_back(Op
);
12380 return SE
.getMulExpr(Factors
);
12386 /// Return the size of an element read or written by Inst.
12387 const SCEV
*ScalarEvolution::getElementSize(Instruction
*Inst
) {
12389 if (StoreInst
*Store
= dyn_cast
<StoreInst
>(Inst
))
12390 Ty
= Store
->getValueOperand()->getType();
12391 else if (LoadInst
*Load
= dyn_cast
<LoadInst
>(Inst
))
12392 Ty
= Load
->getType();
12396 Type
*ETy
= getEffectiveSCEVType(PointerType::getUnqual(Ty
));
12397 return getSizeOfExpr(ETy
, Ty
);
12400 void ScalarEvolution::findArrayDimensions(SmallVectorImpl
<const SCEV
*> &Terms
,
12401 SmallVectorImpl
<const SCEV
*> &Sizes
,
12402 const SCEV
*ElementSize
) {
12403 if (Terms
.size() < 1 || !ElementSize
)
12406 // Early return when Terms do not contain parameters: we do not delinearize
12407 // non parametric SCEVs.
12408 if (!containsParameters(Terms
))
12412 dbgs() << "Terms:\n";
12413 for (const SCEV
*T
: Terms
)
12414 dbgs() << *T
<< "\n";
12417 // Remove duplicates.
12418 array_pod_sort(Terms
.begin(), Terms
.end());
12419 Terms
.erase(std::unique(Terms
.begin(), Terms
.end()), Terms
.end());
12421 // Put larger terms first.
12422 llvm::sort(Terms
, [](const SCEV
*LHS
, const SCEV
*RHS
) {
12423 return numberOfTerms(LHS
) > numberOfTerms(RHS
);
12426 // Try to divide all terms by the element size. If term is not divisible by
12427 // element size, proceed with the original term.
12428 for (const SCEV
*&Term
: Terms
) {
12430 SCEVDivision::divide(*this, Term
, ElementSize
, &Q
, &R
);
12435 SmallVector
<const SCEV
*, 4> NewTerms
;
12437 // Remove constant factors.
12438 for (const SCEV
*T
: Terms
)
12439 if (const SCEV
*NewT
= removeConstantFactors(*this, T
))
12440 NewTerms
.push_back(NewT
);
12443 dbgs() << "Terms after sorting:\n";
12444 for (const SCEV
*T
: NewTerms
)
12445 dbgs() << *T
<< "\n";
12448 if (NewTerms
.empty() || !findArrayDimensionsRec(*this, NewTerms
, Sizes
)) {
12453 // The last element to be pushed into Sizes is the size of an element.
12454 Sizes
.push_back(ElementSize
);
12457 dbgs() << "Sizes:\n";
12458 for (const SCEV
*S
: Sizes
)
12459 dbgs() << *S
<< "\n";
12463 void ScalarEvolution::computeAccessFunctions(
12464 const SCEV
*Expr
, SmallVectorImpl
<const SCEV
*> &Subscripts
,
12465 SmallVectorImpl
<const SCEV
*> &Sizes
) {
12466 // Early exit in case this SCEV is not an affine multivariate function.
12470 if (auto *AR
= dyn_cast
<SCEVAddRecExpr
>(Expr
))
12471 if (!AR
->isAffine())
12474 const SCEV
*Res
= Expr
;
12475 int Last
= Sizes
.size() - 1;
12476 for (int i
= Last
; i
>= 0; i
--) {
12478 SCEVDivision::divide(*this, Res
, Sizes
[i
], &Q
, &R
);
12481 dbgs() << "Res: " << *Res
<< "\n";
12482 dbgs() << "Sizes[i]: " << *Sizes
[i
] << "\n";
12483 dbgs() << "Res divided by Sizes[i]:\n";
12484 dbgs() << "Quotient: " << *Q
<< "\n";
12485 dbgs() << "Remainder: " << *R
<< "\n";
12490 // Do not record the last subscript corresponding to the size of elements in
12494 // Bail out if the remainder is too complex.
12495 if (isa
<SCEVAddRecExpr
>(R
)) {
12496 Subscripts
.clear();
12504 // Record the access function for the current subscript.
12505 Subscripts
.push_back(R
);
12508 // Also push in last position the remainder of the last division: it will be
12509 // the access function of the innermost dimension.
12510 Subscripts
.push_back(Res
);
12512 std::reverse(Subscripts
.begin(), Subscripts
.end());
12515 dbgs() << "Subscripts:\n";
12516 for (const SCEV
*S
: Subscripts
)
12517 dbgs() << *S
<< "\n";
12521 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
12522 /// sizes of an array access. Returns the remainder of the delinearization that
12523 /// is the offset start of the array. The SCEV->delinearize algorithm computes
12524 /// the multiples of SCEV coefficients: that is a pattern matching of sub
12525 /// expressions in the stride and base of a SCEV corresponding to the
12526 /// computation of a GCD (greatest common divisor) of base and stride. When
12527 /// SCEV->delinearize fails, it returns the SCEV unchanged.
12529 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
12531 /// void foo(long n, long m, long o, double A[n][m][o]) {
12533 /// for (long i = 0; i < n; i++)
12534 /// for (long j = 0; j < m; j++)
12535 /// for (long k = 0; k < o; k++)
12536 /// A[i][j][k] = 1.0;
12539 /// the delinearization input is the following AddRec SCEV:
12541 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
12543 /// From this SCEV, we are able to say that the base offset of the access is %A
12544 /// because it appears as an offset that does not divide any of the strides in
12547 /// CHECK: Base offset: %A
12549 /// and then SCEV->delinearize determines the size of some of the dimensions of
12550 /// the array as these are the multiples by which the strides are happening:
12552 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
12554 /// Note that the outermost dimension remains of UnknownSize because there are
12555 /// no strides that would help identifying the size of the last dimension: when
12556 /// the array has been statically allocated, one could compute the size of that
12557 /// dimension by dividing the overall size of the array by the size of the known
12558 /// dimensions: %m * %o * 8.
12560 /// Finally delinearize provides the access functions for the array reference
12561 /// that does correspond to A[i][j][k] of the above C testcase:
12563 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
12565 /// The testcases are checking the output of a function pass:
12566 /// DelinearizationPass that walks through all loads and stores of a function
12567 /// asking for the SCEV of the memory access with respect to all enclosing
12568 /// loops, calling SCEV->delinearize on that and printing the results.
12569 void ScalarEvolution::delinearize(const SCEV
*Expr
,
12570 SmallVectorImpl
<const SCEV
*> &Subscripts
,
12571 SmallVectorImpl
<const SCEV
*> &Sizes
,
12572 const SCEV
*ElementSize
) {
12573 // First step: collect parametric terms.
12574 SmallVector
<const SCEV
*, 4> Terms
;
12575 collectParametricTerms(Expr
, Terms
);
12580 // Second step: find subscript sizes.
12581 findArrayDimensions(Terms
, Sizes
, ElementSize
);
12586 // Third step: compute the access functions for each subscript.
12587 computeAccessFunctions(Expr
, Subscripts
, Sizes
);
12589 if (Subscripts
.empty())
12593 dbgs() << "succeeded to delinearize " << *Expr
<< "\n";
12594 dbgs() << "ArrayDecl[UnknownSize]";
12595 for (const SCEV
*S
: Sizes
)
12596 dbgs() << "[" << *S
<< "]";
12598 dbgs() << "\nArrayRef";
12599 for (const SCEV
*S
: Subscripts
)
12600 dbgs() << "[" << *S
<< "]";
12605 bool ScalarEvolution::getIndexExpressionsFromGEP(
12606 const GetElementPtrInst
*GEP
, SmallVectorImpl
<const SCEV
*> &Subscripts
,
12607 SmallVectorImpl
<int> &Sizes
) {
12608 assert(Subscripts
.empty() && Sizes
.empty() &&
12609 "Expected output lists to be empty on entry to this function.");
12610 assert(GEP
&& "getIndexExpressionsFromGEP called with a null GEP");
12611 Type
*Ty
= nullptr;
12612 bool DroppedFirstDim
= false;
12613 for (unsigned i
= 1; i
< GEP
->getNumOperands(); i
++) {
12614 const SCEV
*Expr
= getSCEV(GEP
->getOperand(i
));
12616 Ty
= GEP
->getSourceElementType();
12617 if (auto *Const
= dyn_cast
<SCEVConstant
>(Expr
))
12618 if (Const
->getValue()->isZero()) {
12619 DroppedFirstDim
= true;
12622 Subscripts
.push_back(Expr
);
12626 auto *ArrayTy
= dyn_cast
<ArrayType
>(Ty
);
12628 Subscripts
.clear();
12633 Subscripts
.push_back(Expr
);
12634 if (!(DroppedFirstDim
&& i
== 2))
12635 Sizes
.push_back(ArrayTy
->getNumElements());
12637 Ty
= ArrayTy
->getElementType();
12639 return !Subscripts
.empty();
12642 //===----------------------------------------------------------------------===//
12643 // SCEVCallbackVH Class Implementation
12644 //===----------------------------------------------------------------------===//
12646 void ScalarEvolution::SCEVCallbackVH::deleted() {
12647 assert(SE
&& "SCEVCallbackVH called with a null ScalarEvolution!");
12648 if (PHINode
*PN
= dyn_cast
<PHINode
>(getValPtr()))
12649 SE
->ConstantEvolutionLoopExitValue
.erase(PN
);
12650 SE
->eraseValueFromMap(getValPtr());
12651 // this now dangles!
12654 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value
*V
) {
12655 assert(SE
&& "SCEVCallbackVH called with a null ScalarEvolution!");
12657 // Forget all the expressions associated with users of the old value,
12658 // so that future queries will recompute the expressions using the new
12660 Value
*Old
= getValPtr();
12661 SmallVector
<User
*, 16> Worklist(Old
->users());
12662 SmallPtrSet
<User
*, 8> Visited
;
12663 while (!Worklist
.empty()) {
12664 User
*U
= Worklist
.pop_back_val();
12665 // Deleting the Old value will cause this to dangle. Postpone
12666 // that until everything else is done.
12669 if (!Visited
.insert(U
).second
)
12671 if (PHINode
*PN
= dyn_cast
<PHINode
>(U
))
12672 SE
->ConstantEvolutionLoopExitValue
.erase(PN
);
12673 SE
->eraseValueFromMap(U
);
12674 llvm::append_range(Worklist
, U
->users());
12676 // Delete the Old value.
12677 if (PHINode
*PN
= dyn_cast
<PHINode
>(Old
))
12678 SE
->ConstantEvolutionLoopExitValue
.erase(PN
);
12679 SE
->eraseValueFromMap(Old
);
12680 // this now dangles!
12683 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value
*V
, ScalarEvolution
*se
)
12684 : CallbackVH(V
), SE(se
) {}
12686 //===----------------------------------------------------------------------===//
12687 // ScalarEvolution Class Implementation
12688 //===----------------------------------------------------------------------===//
12690 ScalarEvolution::ScalarEvolution(Function
&F
, TargetLibraryInfo
&TLI
,
12691 AssumptionCache
&AC
, DominatorTree
&DT
,
12693 : F(F
), TLI(TLI
), AC(AC
), DT(DT
), LI(LI
),
12694 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
12695 LoopDispositions(64), BlockDispositions(64) {
12696 // To use guards for proving predicates, we need to scan every instruction in
12697 // relevant basic blocks, and not just terminators. Doing this is a waste of
12698 // time if the IR does not actually contain any calls to
12699 // @llvm.experimental.guard, so do a quick check and remember this beforehand.
12701 // This pessimizes the case where a pass that preserves ScalarEvolution wants
12702 // to _add_ guards to the module when there weren't any before, and wants
12703 // ScalarEvolution to optimize based on those guards. For now we prefer to be
12704 // efficient in lieu of being smart in that rather obscure case.
12706 auto *GuardDecl
= F
.getParent()->getFunction(
12707 Intrinsic::getName(Intrinsic::experimental_guard
));
12708 HasGuards
= GuardDecl
&& !GuardDecl
->use_empty();
12711 ScalarEvolution::ScalarEvolution(ScalarEvolution
&&Arg
)
12712 : F(Arg
.F
), HasGuards(Arg
.HasGuards
), TLI(Arg
.TLI
), AC(Arg
.AC
), DT(Arg
.DT
),
12713 LI(Arg
.LI
), CouldNotCompute(std::move(Arg
.CouldNotCompute
)),
12714 ValueExprMap(std::move(Arg
.ValueExprMap
)),
12715 PendingLoopPredicates(std::move(Arg
.PendingLoopPredicates
)),
12716 PendingPhiRanges(std::move(Arg
.PendingPhiRanges
)),
12717 PendingMerges(std::move(Arg
.PendingMerges
)),
12718 MinTrailingZerosCache(std::move(Arg
.MinTrailingZerosCache
)),
12719 BackedgeTakenCounts(std::move(Arg
.BackedgeTakenCounts
)),
12720 PredicatedBackedgeTakenCounts(
12721 std::move(Arg
.PredicatedBackedgeTakenCounts
)),
12722 ConstantEvolutionLoopExitValue(
12723 std::move(Arg
.ConstantEvolutionLoopExitValue
)),
12724 ValuesAtScopes(std::move(Arg
.ValuesAtScopes
)),
12725 LoopDispositions(std::move(Arg
.LoopDispositions
)),
12726 LoopPropertiesCache(std::move(Arg
.LoopPropertiesCache
)),
12727 BlockDispositions(std::move(Arg
.BlockDispositions
)),
12728 UnsignedRanges(std::move(Arg
.UnsignedRanges
)),
12729 SignedRanges(std::move(Arg
.SignedRanges
)),
12730 UniqueSCEVs(std::move(Arg
.UniqueSCEVs
)),
12731 UniquePreds(std::move(Arg
.UniquePreds
)),
12732 SCEVAllocator(std::move(Arg
.SCEVAllocator
)),
12733 LoopUsers(std::move(Arg
.LoopUsers
)),
12734 PredicatedSCEVRewrites(std::move(Arg
.PredicatedSCEVRewrites
)),
12735 FirstUnknown(Arg
.FirstUnknown
) {
12736 Arg
.FirstUnknown
= nullptr;
12739 ScalarEvolution::~ScalarEvolution() {
12740 // Iterate through all the SCEVUnknown instances and call their
12741 // destructors, so that they release their references to their values.
12742 for (SCEVUnknown
*U
= FirstUnknown
; U
;) {
12743 SCEVUnknown
*Tmp
= U
;
12745 Tmp
->~SCEVUnknown();
12747 FirstUnknown
= nullptr;
12749 ExprValueMap
.clear();
12750 ValueExprMap
.clear();
12752 BackedgeTakenCounts
.clear();
12753 PredicatedBackedgeTakenCounts
.clear();
12755 assert(PendingLoopPredicates
.empty() && "isImpliedCond garbage");
12756 assert(PendingPhiRanges
.empty() && "getRangeRef garbage");
12757 assert(PendingMerges
.empty() && "isImpliedViaMerge garbage");
12758 assert(!WalkingBEDominatingConds
&& "isLoopBackedgeGuardedByCond garbage!");
12759 assert(!ProvingSplitPredicate
&& "ProvingSplitPredicate garbage!");
12762 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop
*L
) {
12763 return !isa
<SCEVCouldNotCompute
>(getBackedgeTakenCount(L
));
12766 static void PrintLoopInfo(raw_ostream
&OS
, ScalarEvolution
*SE
,
12768 // Print all inner loops first
12770 PrintLoopInfo(OS
, SE
, I
);
12773 L
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
12776 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
12777 L
->getExitingBlocks(ExitingBlocks
);
12778 if (ExitingBlocks
.size() != 1)
12779 OS
<< "<multiple exits> ";
12781 if (SE
->hasLoopInvariantBackedgeTakenCount(L
))
12782 OS
<< "backedge-taken count is " << *SE
->getBackedgeTakenCount(L
) << "\n";
12784 OS
<< "Unpredictable backedge-taken count.\n";
12786 if (ExitingBlocks
.size() > 1)
12787 for (BasicBlock
*ExitingBlock
: ExitingBlocks
) {
12788 OS
<< " exit count for " << ExitingBlock
->getName() << ": "
12789 << *SE
->getExitCount(L
, ExitingBlock
) << "\n";
12793 L
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
12796 if (!isa
<SCEVCouldNotCompute
>(SE
->getConstantMaxBackedgeTakenCount(L
))) {
12797 OS
<< "max backedge-taken count is " << *SE
->getConstantMaxBackedgeTakenCount(L
);
12798 if (SE
->isBackedgeTakenCountMaxOrZero(L
))
12799 OS
<< ", actual taken count either this or zero.";
12801 OS
<< "Unpredictable max backedge-taken count. ";
12806 L
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
12809 SCEVUnionPredicate Pred
;
12810 auto PBT
= SE
->getPredicatedBackedgeTakenCount(L
, Pred
);
12811 if (!isa
<SCEVCouldNotCompute
>(PBT
)) {
12812 OS
<< "Predicated backedge-taken count is " << *PBT
<< "\n";
12813 OS
<< " Predicates:\n";
12816 OS
<< "Unpredictable predicated backedge-taken count. ";
12820 if (SE
->hasLoopInvariantBackedgeTakenCount(L
)) {
12822 L
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
12824 OS
<< "Trip multiple is " << SE
->getSmallConstantTripMultiple(L
) << "\n";
12828 static StringRef
loopDispositionToStr(ScalarEvolution::LoopDisposition LD
) {
12830 case ScalarEvolution::LoopVariant
:
12832 case ScalarEvolution::LoopInvariant
:
12833 return "Invariant";
12834 case ScalarEvolution::LoopComputable
:
12835 return "Computable";
12837 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
12840 void ScalarEvolution::print(raw_ostream
&OS
) const {
12841 // ScalarEvolution's implementation of the print method is to print
12842 // out SCEV values of all instructions that are interesting. Doing
12843 // this potentially causes it to create new SCEV objects though,
12844 // which technically conflicts with the const qualifier. This isn't
12845 // observable from outside the class though, so casting away the
12846 // const isn't dangerous.
12847 ScalarEvolution
&SE
= *const_cast<ScalarEvolution
*>(this);
12849 if (ClassifyExpressions
) {
12850 OS
<< "Classifying expressions for: ";
12851 F
.printAsOperand(OS
, /*PrintType=*/false);
12853 for (Instruction
&I
: instructions(F
))
12854 if (isSCEVable(I
.getType()) && !isa
<CmpInst
>(I
)) {
12857 const SCEV
*SV
= SE
.getSCEV(&I
);
12859 if (!isa
<SCEVCouldNotCompute
>(SV
)) {
12861 SE
.getUnsignedRange(SV
).print(OS
);
12863 SE
.getSignedRange(SV
).print(OS
);
12866 const Loop
*L
= LI
.getLoopFor(I
.getParent());
12868 const SCEV
*AtUse
= SE
.getSCEVAtScope(SV
, L
);
12872 if (!isa
<SCEVCouldNotCompute
>(AtUse
)) {
12874 SE
.getUnsignedRange(AtUse
).print(OS
);
12876 SE
.getSignedRange(AtUse
).print(OS
);
12881 OS
<< "\t\t" "Exits: ";
12882 const SCEV
*ExitValue
= SE
.getSCEVAtScope(SV
, L
->getParentLoop());
12883 if (!SE
.isLoopInvariant(ExitValue
, L
)) {
12884 OS
<< "<<Unknown>>";
12890 for (auto *Iter
= L
; Iter
; Iter
= Iter
->getParentLoop()) {
12892 OS
<< "\t\t" "LoopDispositions: { ";
12898 Iter
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
12899 OS
<< ": " << loopDispositionToStr(SE
.getLoopDisposition(SV
, Iter
));
12902 for (auto *InnerL
: depth_first(L
)) {
12906 OS
<< "\t\t" "LoopDispositions: { ";
12912 InnerL
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
12913 OS
<< ": " << loopDispositionToStr(SE
.getLoopDisposition(SV
, InnerL
));
12923 OS
<< "Determining loop execution counts for: ";
12924 F
.printAsOperand(OS
, /*PrintType=*/false);
12927 PrintLoopInfo(OS
, &SE
, I
);
12930 ScalarEvolution::LoopDisposition
12931 ScalarEvolution::getLoopDisposition(const SCEV
*S
, const Loop
*L
) {
12932 auto &Values
= LoopDispositions
[S
];
12933 for (auto &V
: Values
) {
12934 if (V
.getPointer() == L
)
12937 Values
.emplace_back(L
, LoopVariant
);
12938 LoopDisposition D
= computeLoopDisposition(S
, L
);
12939 auto &Values2
= LoopDispositions
[S
];
12940 for (auto &V
: make_range(Values2
.rbegin(), Values2
.rend())) {
12941 if (V
.getPointer() == L
) {
12949 ScalarEvolution::LoopDisposition
12950 ScalarEvolution::computeLoopDisposition(const SCEV
*S
, const Loop
*L
) {
12951 switch (S
->getSCEVType()) {
12953 return LoopInvariant
;
12958 return getLoopDisposition(cast
<SCEVCastExpr
>(S
)->getOperand(), L
);
12959 case scAddRecExpr
: {
12960 const SCEVAddRecExpr
*AR
= cast
<SCEVAddRecExpr
>(S
);
12962 // If L is the addrec's loop, it's computable.
12963 if (AR
->getLoop() == L
)
12964 return LoopComputable
;
12966 // Add recurrences are never invariant in the function-body (null loop).
12968 return LoopVariant
;
12970 // Everything that is not defined at loop entry is variant.
12971 if (DT
.dominates(L
->getHeader(), AR
->getLoop()->getHeader()))
12972 return LoopVariant
;
12973 assert(!L
->contains(AR
->getLoop()) && "Containing loop's header does not"
12974 " dominate the contained loop's header?");
12976 // This recurrence is invariant w.r.t. L if AR's loop contains L.
12977 if (AR
->getLoop()->contains(L
))
12978 return LoopInvariant
;
12980 // This recurrence is variant w.r.t. L if any of its operands
12982 for (auto *Op
: AR
->operands())
12983 if (!isLoopInvariant(Op
, L
))
12984 return LoopVariant
;
12986 // Otherwise it's loop-invariant.
12987 return LoopInvariant
;
12995 bool HasVarying
= false;
12996 for (auto *Op
: cast
<SCEVNAryExpr
>(S
)->operands()) {
12997 LoopDisposition D
= getLoopDisposition(Op
, L
);
12998 if (D
== LoopVariant
)
12999 return LoopVariant
;
13000 if (D
== LoopComputable
)
13003 return HasVarying
? LoopComputable
: LoopInvariant
;
13006 const SCEVUDivExpr
*UDiv
= cast
<SCEVUDivExpr
>(S
);
13007 LoopDisposition LD
= getLoopDisposition(UDiv
->getLHS(), L
);
13008 if (LD
== LoopVariant
)
13009 return LoopVariant
;
13010 LoopDisposition RD
= getLoopDisposition(UDiv
->getRHS(), L
);
13011 if (RD
== LoopVariant
)
13012 return LoopVariant
;
13013 return (LD
== LoopInvariant
&& RD
== LoopInvariant
) ?
13014 LoopInvariant
: LoopComputable
;
13017 // All non-instruction values are loop invariant. All instructions are loop
13018 // invariant if they are not contained in the specified loop.
13019 // Instructions are never considered invariant in the function body
13020 // (null loop) because they are defined within the "loop".
13021 if (auto *I
= dyn_cast
<Instruction
>(cast
<SCEVUnknown
>(S
)->getValue()))
13022 return (L
&& !L
->contains(I
)) ? LoopInvariant
: LoopVariant
;
13023 return LoopInvariant
;
13024 case scCouldNotCompute
:
13025 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13027 llvm_unreachable("Unknown SCEV kind!");
13030 bool ScalarEvolution::isLoopInvariant(const SCEV
*S
, const Loop
*L
) {
13031 return getLoopDisposition(S
, L
) == LoopInvariant
;
13034 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV
*S
, const Loop
*L
) {
13035 return getLoopDisposition(S
, L
) == LoopComputable
;
13038 ScalarEvolution::BlockDisposition
13039 ScalarEvolution::getBlockDisposition(const SCEV
*S
, const BasicBlock
*BB
) {
13040 auto &Values
= BlockDispositions
[S
];
13041 for (auto &V
: Values
) {
13042 if (V
.getPointer() == BB
)
13045 Values
.emplace_back(BB
, DoesNotDominateBlock
);
13046 BlockDisposition D
= computeBlockDisposition(S
, BB
);
13047 auto &Values2
= BlockDispositions
[S
];
13048 for (auto &V
: make_range(Values2
.rbegin(), Values2
.rend())) {
13049 if (V
.getPointer() == BB
) {
13057 ScalarEvolution::BlockDisposition
13058 ScalarEvolution::computeBlockDisposition(const SCEV
*S
, const BasicBlock
*BB
) {
13059 switch (S
->getSCEVType()) {
13061 return ProperlyDominatesBlock
;
13066 return getBlockDisposition(cast
<SCEVCastExpr
>(S
)->getOperand(), BB
);
13067 case scAddRecExpr
: {
13068 // This uses a "dominates" query instead of "properly dominates" query
13069 // to test for proper dominance too, because the instruction which
13070 // produces the addrec's value is a PHI, and a PHI effectively properly
13071 // dominates its entire containing block.
13072 const SCEVAddRecExpr
*AR
= cast
<SCEVAddRecExpr
>(S
);
13073 if (!DT
.dominates(AR
->getLoop()->getHeader(), BB
))
13074 return DoesNotDominateBlock
;
13076 // Fall through into SCEVNAryExpr handling.
13085 const SCEVNAryExpr
*NAry
= cast
<SCEVNAryExpr
>(S
);
13086 bool Proper
= true;
13087 for (const SCEV
*NAryOp
: NAry
->operands()) {
13088 BlockDisposition D
= getBlockDisposition(NAryOp
, BB
);
13089 if (D
== DoesNotDominateBlock
)
13090 return DoesNotDominateBlock
;
13091 if (D
== DominatesBlock
)
13094 return Proper
? ProperlyDominatesBlock
: DominatesBlock
;
13097 const SCEVUDivExpr
*UDiv
= cast
<SCEVUDivExpr
>(S
);
13098 const SCEV
*LHS
= UDiv
->getLHS(), *RHS
= UDiv
->getRHS();
13099 BlockDisposition LD
= getBlockDisposition(LHS
, BB
);
13100 if (LD
== DoesNotDominateBlock
)
13101 return DoesNotDominateBlock
;
13102 BlockDisposition RD
= getBlockDisposition(RHS
, BB
);
13103 if (RD
== DoesNotDominateBlock
)
13104 return DoesNotDominateBlock
;
13105 return (LD
== ProperlyDominatesBlock
&& RD
== ProperlyDominatesBlock
) ?
13106 ProperlyDominatesBlock
: DominatesBlock
;
13109 if (Instruction
*I
=
13110 dyn_cast
<Instruction
>(cast
<SCEVUnknown
>(S
)->getValue())) {
13111 if (I
->getParent() == BB
)
13112 return DominatesBlock
;
13113 if (DT
.properlyDominates(I
->getParent(), BB
))
13114 return ProperlyDominatesBlock
;
13115 return DoesNotDominateBlock
;
13117 return ProperlyDominatesBlock
;
13118 case scCouldNotCompute
:
13119 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13121 llvm_unreachable("Unknown SCEV kind!");
13124 bool ScalarEvolution::dominates(const SCEV
*S
, const BasicBlock
*BB
) {
13125 return getBlockDisposition(S
, BB
) >= DominatesBlock
;
13128 bool ScalarEvolution::properlyDominates(const SCEV
*S
, const BasicBlock
*BB
) {
13129 return getBlockDisposition(S
, BB
) == ProperlyDominatesBlock
;
13132 bool ScalarEvolution::hasOperand(const SCEV
*S
, const SCEV
*Op
) const {
13133 return SCEVExprContains(S
, [&](const SCEV
*Expr
) { return Expr
== Op
; });
13137 ScalarEvolution::forgetMemoizedResults(const SCEV
*S
) {
13138 ValuesAtScopes
.erase(S
);
13139 LoopDispositions
.erase(S
);
13140 BlockDispositions
.erase(S
);
13141 UnsignedRanges
.erase(S
);
13142 SignedRanges
.erase(S
);
13143 ExprValueMap
.erase(S
);
13144 HasRecMap
.erase(S
);
13145 MinTrailingZerosCache
.erase(S
);
13147 for (auto I
= PredicatedSCEVRewrites
.begin();
13148 I
!= PredicatedSCEVRewrites
.end();) {
13149 std::pair
<const SCEV
*, const Loop
*> Entry
= I
->first
;
13150 if (Entry
.first
== S
)
13151 PredicatedSCEVRewrites
.erase(I
++);
13156 auto RemoveSCEVFromBackedgeMap
=
13157 [S
](DenseMap
<const Loop
*, BackedgeTakenInfo
> &Map
) {
13158 for (auto I
= Map
.begin(), E
= Map
.end(); I
!= E
;) {
13159 BackedgeTakenInfo
&BEInfo
= I
->second
;
13160 if (BEInfo
.hasOperand(S
))
13167 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts
);
13168 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts
);
13172 ScalarEvolution::getUsedLoops(const SCEV
*S
,
13173 SmallPtrSetImpl
<const Loop
*> &LoopsUsed
) {
13174 struct FindUsedLoops
{
13175 FindUsedLoops(SmallPtrSetImpl
<const Loop
*> &LoopsUsed
)
13176 : LoopsUsed(LoopsUsed
) {}
13177 SmallPtrSetImpl
<const Loop
*> &LoopsUsed
;
13178 bool follow(const SCEV
*S
) {
13179 if (auto *AR
= dyn_cast
<SCEVAddRecExpr
>(S
))
13180 LoopsUsed
.insert(AR
->getLoop());
13184 bool isDone() const { return false; }
13187 FindUsedLoops
F(LoopsUsed
);
13188 SCEVTraversal
<FindUsedLoops
>(F
).visitAll(S
);
13191 void ScalarEvolution::addToLoopUseLists(const SCEV
*S
) {
13192 SmallPtrSet
<const Loop
*, 8> LoopsUsed
;
13193 getUsedLoops(S
, LoopsUsed
);
13194 for (auto *L
: LoopsUsed
)
13195 LoopUsers
[L
].push_back(S
);
13198 void ScalarEvolution::verify() const {
13199 ScalarEvolution
&SE
= *const_cast<ScalarEvolution
*>(this);
13200 ScalarEvolution
SE2(F
, TLI
, AC
, DT
, LI
);
13202 SmallVector
<Loop
*, 8> LoopStack(LI
.begin(), LI
.end());
13204 // Map's SCEV expressions from one ScalarEvolution "universe" to another.
13205 struct SCEVMapper
: public SCEVRewriteVisitor
<SCEVMapper
> {
13206 SCEVMapper(ScalarEvolution
&SE
) : SCEVRewriteVisitor
<SCEVMapper
>(SE
) {}
13208 const SCEV
*visitConstant(const SCEVConstant
*Constant
) {
13209 return SE
.getConstant(Constant
->getAPInt());
13212 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
13213 return SE
.getUnknown(Expr
->getValue());
13216 const SCEV
*visitCouldNotCompute(const SCEVCouldNotCompute
*Expr
) {
13217 return SE
.getCouldNotCompute();
13221 SCEVMapper
SCM(SE2
);
13223 while (!LoopStack
.empty()) {
13224 auto *L
= LoopStack
.pop_back_val();
13225 llvm::append_range(LoopStack
, *L
);
13227 auto *CurBECount
= SCM
.visit(
13228 const_cast<ScalarEvolution
*>(this)->getBackedgeTakenCount(L
));
13229 auto *NewBECount
= SE2
.getBackedgeTakenCount(L
);
13231 if (CurBECount
== SE2
.getCouldNotCompute() ||
13232 NewBECount
== SE2
.getCouldNotCompute()) {
13233 // NB! This situation is legal, but is very suspicious -- whatever pass
13234 // change the loop to make a trip count go from could not compute to
13235 // computable or vice-versa *should have* invalidated SCEV. However, we
13236 // choose not to assert here (for now) since we don't want false
13241 if (containsUndefs(CurBECount
) || containsUndefs(NewBECount
)) {
13242 // SCEV treats "undef" as an unknown but consistent value (i.e. it does
13243 // not propagate undef aggressively). This means we can (and do) fail
13244 // verification in cases where a transform makes the trip count of a loop
13245 // go from "undef" to "undef+1" (say). The transform is fine, since in
13246 // both cases the loop iterates "undef" times, but SCEV thinks we
13247 // increased the trip count of the loop by 1 incorrectly.
13251 if (SE
.getTypeSizeInBits(CurBECount
->getType()) >
13252 SE
.getTypeSizeInBits(NewBECount
->getType()))
13253 NewBECount
= SE2
.getZeroExtendExpr(NewBECount
, CurBECount
->getType());
13254 else if (SE
.getTypeSizeInBits(CurBECount
->getType()) <
13255 SE
.getTypeSizeInBits(NewBECount
->getType()))
13256 CurBECount
= SE2
.getZeroExtendExpr(CurBECount
, NewBECount
->getType());
13258 const SCEV
*Delta
= SE2
.getMinusSCEV(CurBECount
, NewBECount
);
13260 // Unless VerifySCEVStrict is set, we only compare constant deltas.
13261 if ((VerifySCEVStrict
|| isa
<SCEVConstant
>(Delta
)) && !Delta
->isZero()) {
13262 dbgs() << "Trip Count for " << *L
<< " Changed!\n";
13263 dbgs() << "Old: " << *CurBECount
<< "\n";
13264 dbgs() << "New: " << *NewBECount
<< "\n";
13265 dbgs() << "Delta: " << *Delta
<< "\n";
13270 // Collect all valid loops currently in LoopInfo.
13271 SmallPtrSet
<Loop
*, 32> ValidLoops
;
13272 SmallVector
<Loop
*, 32> Worklist(LI
.begin(), LI
.end());
13273 while (!Worklist
.empty()) {
13274 Loop
*L
= Worklist
.pop_back_val();
13275 if (ValidLoops
.contains(L
))
13277 ValidLoops
.insert(L
);
13278 Worklist
.append(L
->begin(), L
->end());
13280 // Check for SCEV expressions referencing invalid/deleted loops.
13281 for (auto &KV
: ValueExprMap
) {
13282 auto *AR
= dyn_cast
<SCEVAddRecExpr
>(KV
.second
);
13285 assert(ValidLoops
.contains(AR
->getLoop()) &&
13286 "AddRec references invalid loop");
13290 bool ScalarEvolution::invalidate(
13291 Function
&F
, const PreservedAnalyses
&PA
,
13292 FunctionAnalysisManager::Invalidator
&Inv
) {
13293 // Invalidate the ScalarEvolution object whenever it isn't preserved or one
13294 // of its dependencies is invalidated.
13295 auto PAC
= PA
.getChecker
<ScalarEvolutionAnalysis
>();
13296 return !(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Function
>>()) ||
13297 Inv
.invalidate
<AssumptionAnalysis
>(F
, PA
) ||
13298 Inv
.invalidate
<DominatorTreeAnalysis
>(F
, PA
) ||
13299 Inv
.invalidate
<LoopAnalysis
>(F
, PA
);
13302 AnalysisKey
ScalarEvolutionAnalysis::Key
;
13304 ScalarEvolution
ScalarEvolutionAnalysis::run(Function
&F
,
13305 FunctionAnalysisManager
&AM
) {
13306 return ScalarEvolution(F
, AM
.getResult
<TargetLibraryAnalysis
>(F
),
13307 AM
.getResult
<AssumptionAnalysis
>(F
),
13308 AM
.getResult
<DominatorTreeAnalysis
>(F
),
13309 AM
.getResult
<LoopAnalysis
>(F
));
13313 ScalarEvolutionVerifierPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
13314 AM
.getResult
<ScalarEvolutionAnalysis
>(F
).verify();
13315 return PreservedAnalyses::all();
13319 ScalarEvolutionPrinterPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
13320 // For compatibility with opt's -analyze feature under legacy pass manager
13321 // which was not ported to NPM. This keeps tests using
13322 // update_analyze_test_checks.py working.
13323 OS
<< "Printing analysis 'Scalar Evolution Analysis' for function '"
13324 << F
.getName() << "':\n";
13325 AM
.getResult
<ScalarEvolutionAnalysis
>(F
).print(OS
);
13326 return PreservedAnalyses::all();
13329 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass
, "scalar-evolution",
13330 "Scalar Evolution Analysis", false, true)
13331 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
13332 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
13333 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
13334 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
13335 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass
, "scalar-evolution",
13336 "Scalar Evolution Analysis", false, true)
13338 char ScalarEvolutionWrapperPass::ID
= 0;
13340 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID
) {
13341 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
13344 bool ScalarEvolutionWrapperPass::runOnFunction(Function
&F
) {
13345 SE
.reset(new ScalarEvolution(
13346 F
, getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
),
13347 getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
),
13348 getAnalysis
<DominatorTreeWrapperPass
>().getDomTree(),
13349 getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo()));
13353 void ScalarEvolutionWrapperPass::releaseMemory() { SE
.reset(); }
13355 void ScalarEvolutionWrapperPass::print(raw_ostream
&OS
, const Module
*) const {
13359 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
13366 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
13367 AU
.setPreservesAll();
13368 AU
.addRequiredTransitive
<AssumptionCacheTracker
>();
13369 AU
.addRequiredTransitive
<LoopInfoWrapperPass
>();
13370 AU
.addRequiredTransitive
<DominatorTreeWrapperPass
>();
13371 AU
.addRequiredTransitive
<TargetLibraryInfoWrapperPass
>();
13374 const SCEVPredicate
*ScalarEvolution::getEqualPredicate(const SCEV
*LHS
,
13376 FoldingSetNodeID ID
;
13377 assert(LHS
->getType() == RHS
->getType() &&
13378 "Type mismatch between LHS and RHS");
13379 // Unique this node based on the arguments
13380 ID
.AddInteger(SCEVPredicate::P_Equal
);
13381 ID
.AddPointer(LHS
);
13382 ID
.AddPointer(RHS
);
13383 void *IP
= nullptr;
13384 if (const auto *S
= UniquePreds
.FindNodeOrInsertPos(ID
, IP
))
13386 SCEVEqualPredicate
*Eq
= new (SCEVAllocator
)
13387 SCEVEqualPredicate(ID
.Intern(SCEVAllocator
), LHS
, RHS
);
13388 UniquePreds
.InsertNode(Eq
, IP
);
13392 const SCEVPredicate
*ScalarEvolution::getWrapPredicate(
13393 const SCEVAddRecExpr
*AR
,
13394 SCEVWrapPredicate::IncrementWrapFlags AddedFlags
) {
13395 FoldingSetNodeID ID
;
13396 // Unique this node based on the arguments
13397 ID
.AddInteger(SCEVPredicate::P_Wrap
);
13399 ID
.AddInteger(AddedFlags
);
13400 void *IP
= nullptr;
13401 if (const auto *S
= UniquePreds
.FindNodeOrInsertPos(ID
, IP
))
13403 auto *OF
= new (SCEVAllocator
)
13404 SCEVWrapPredicate(ID
.Intern(SCEVAllocator
), AR
, AddedFlags
);
13405 UniquePreds
.InsertNode(OF
, IP
);
13411 class SCEVPredicateRewriter
: public SCEVRewriteVisitor
<SCEVPredicateRewriter
> {
13414 /// Rewrites \p S in the context of a loop L and the SCEV predication
13415 /// infrastructure.
13417 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
13418 /// equivalences present in \p Pred.
13420 /// If \p NewPreds is non-null, rewrite is free to add further predicates to
13421 /// \p NewPreds such that the result will be an AddRecExpr.
13422 static const SCEV
*rewrite(const SCEV
*S
, const Loop
*L
, ScalarEvolution
&SE
,
13423 SmallPtrSetImpl
<const SCEVPredicate
*> *NewPreds
,
13424 SCEVUnionPredicate
*Pred
) {
13425 SCEVPredicateRewriter
Rewriter(L
, SE
, NewPreds
, Pred
);
13426 return Rewriter
.visit(S
);
13429 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
13431 auto ExprPreds
= Pred
->getPredicatesForExpr(Expr
);
13432 for (auto *Pred
: ExprPreds
)
13433 if (const auto *IPred
= dyn_cast
<SCEVEqualPredicate
>(Pred
))
13434 if (IPred
->getLHS() == Expr
)
13435 return IPred
->getRHS();
13437 return convertToAddRecWithPreds(Expr
);
13440 const SCEV
*visitZeroExtendExpr(const SCEVZeroExtendExpr
*Expr
) {
13441 const SCEV
*Operand
= visit(Expr
->getOperand());
13442 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Operand
);
13443 if (AR
&& AR
->getLoop() == L
&& AR
->isAffine()) {
13444 // This couldn't be folded because the operand didn't have the nuw
13445 // flag. Add the nusw flag as an assumption that we could make.
13446 const SCEV
*Step
= AR
->getStepRecurrence(SE
);
13447 Type
*Ty
= Expr
->getType();
13448 if (addOverflowAssumption(AR
, SCEVWrapPredicate::IncrementNUSW
))
13449 return SE
.getAddRecExpr(SE
.getZeroExtendExpr(AR
->getStart(), Ty
),
13450 SE
.getSignExtendExpr(Step
, Ty
), L
,
13451 AR
->getNoWrapFlags());
13453 return SE
.getZeroExtendExpr(Operand
, Expr
->getType());
13456 const SCEV
*visitSignExtendExpr(const SCEVSignExtendExpr
*Expr
) {
13457 const SCEV
*Operand
= visit(Expr
->getOperand());
13458 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Operand
);
13459 if (AR
&& AR
->getLoop() == L
&& AR
->isAffine()) {
13460 // This couldn't be folded because the operand didn't have the nsw
13461 // flag. Add the nssw flag as an assumption that we could make.
13462 const SCEV
*Step
= AR
->getStepRecurrence(SE
);
13463 Type
*Ty
= Expr
->getType();
13464 if (addOverflowAssumption(AR
, SCEVWrapPredicate::IncrementNSSW
))
13465 return SE
.getAddRecExpr(SE
.getSignExtendExpr(AR
->getStart(), Ty
),
13466 SE
.getSignExtendExpr(Step
, Ty
), L
,
13467 AR
->getNoWrapFlags());
13469 return SE
.getSignExtendExpr(Operand
, Expr
->getType());
13473 explicit SCEVPredicateRewriter(const Loop
*L
, ScalarEvolution
&SE
,
13474 SmallPtrSetImpl
<const SCEVPredicate
*> *NewPreds
,
13475 SCEVUnionPredicate
*Pred
)
13476 : SCEVRewriteVisitor(SE
), NewPreds(NewPreds
), Pred(Pred
), L(L
) {}
13478 bool addOverflowAssumption(const SCEVPredicate
*P
) {
13480 // Check if we've already made this assumption.
13481 return Pred
&& Pred
->implies(P
);
13483 NewPreds
->insert(P
);
13487 bool addOverflowAssumption(const SCEVAddRecExpr
*AR
,
13488 SCEVWrapPredicate::IncrementWrapFlags AddedFlags
) {
13489 auto *A
= SE
.getWrapPredicate(AR
, AddedFlags
);
13490 return addOverflowAssumption(A
);
13493 // If \p Expr represents a PHINode, we try to see if it can be represented
13494 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
13495 // to add this predicate as a runtime overflow check, we return the AddRec.
13496 // If \p Expr does not meet these conditions (is not a PHI node, or we
13497 // couldn't create an AddRec for it, or couldn't add the predicate), we just
13499 const SCEV
*convertToAddRecWithPreds(const SCEVUnknown
*Expr
) {
13500 if (!isa
<PHINode
>(Expr
->getValue()))
13502 Optional
<std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>>>
13503 PredicatedRewrite
= SE
.createAddRecFromPHIWithCasts(Expr
);
13504 if (!PredicatedRewrite
)
13506 for (auto *P
: PredicatedRewrite
->second
){
13507 // Wrap predicates from outer loops are not supported.
13508 if (auto *WP
= dyn_cast
<const SCEVWrapPredicate
>(P
)) {
13509 auto *AR
= cast
<const SCEVAddRecExpr
>(WP
->getExpr());
13510 if (L
!= AR
->getLoop())
13513 if (!addOverflowAssumption(P
))
13516 return PredicatedRewrite
->first
;
13519 SmallPtrSetImpl
<const SCEVPredicate
*> *NewPreds
;
13520 SCEVUnionPredicate
*Pred
;
13524 } // end anonymous namespace
13526 const SCEV
*ScalarEvolution::rewriteUsingPredicate(const SCEV
*S
, const Loop
*L
,
13527 SCEVUnionPredicate
&Preds
) {
13528 return SCEVPredicateRewriter::rewrite(S
, L
, *this, nullptr, &Preds
);
13531 const SCEVAddRecExpr
*ScalarEvolution::convertSCEVToAddRecWithPredicates(
13532 const SCEV
*S
, const Loop
*L
,
13533 SmallPtrSetImpl
<const SCEVPredicate
*> &Preds
) {
13534 SmallPtrSet
<const SCEVPredicate
*, 4> TransformPreds
;
13535 S
= SCEVPredicateRewriter::rewrite(S
, L
, *this, &TransformPreds
, nullptr);
13536 auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(S
);
13541 // Since the transformation was successful, we can now transfer the SCEV
13543 for (auto *P
: TransformPreds
)
13549 /// SCEV predicates
13550 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID
,
13551 SCEVPredicateKind Kind
)
13552 : FastID(ID
), Kind(Kind
) {}
13554 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID
,
13555 const SCEV
*LHS
, const SCEV
*RHS
)
13556 : SCEVPredicate(ID
, P_Equal
), LHS(LHS
), RHS(RHS
) {
13557 assert(LHS
->getType() == RHS
->getType() && "LHS and RHS types don't match");
13558 assert(LHS
!= RHS
&& "LHS and RHS are the same SCEV");
13561 bool SCEVEqualPredicate::implies(const SCEVPredicate
*N
) const {
13562 const auto *Op
= dyn_cast
<SCEVEqualPredicate
>(N
);
13567 return Op
->LHS
== LHS
&& Op
->RHS
== RHS
;
13570 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
13572 const SCEV
*SCEVEqualPredicate::getExpr() const { return LHS
; }
13574 void SCEVEqualPredicate::print(raw_ostream
&OS
, unsigned Depth
) const {
13575 OS
.indent(Depth
) << "Equal predicate: " << *LHS
<< " == " << *RHS
<< "\n";
13578 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID
,
13579 const SCEVAddRecExpr
*AR
,
13580 IncrementWrapFlags Flags
)
13581 : SCEVPredicate(ID
, P_Wrap
), AR(AR
), Flags(Flags
) {}
13583 const SCEV
*SCEVWrapPredicate::getExpr() const { return AR
; }
13585 bool SCEVWrapPredicate::implies(const SCEVPredicate
*N
) const {
13586 const auto *Op
= dyn_cast
<SCEVWrapPredicate
>(N
);
13588 return Op
&& Op
->AR
== AR
&& setFlags(Flags
, Op
->Flags
) == Flags
;
13591 bool SCEVWrapPredicate::isAlwaysTrue() const {
13592 SCEV::NoWrapFlags ScevFlags
= AR
->getNoWrapFlags();
13593 IncrementWrapFlags IFlags
= Flags
;
13595 if (ScalarEvolution::setFlags(ScevFlags
, SCEV::FlagNSW
) == ScevFlags
)
13596 IFlags
= clearFlags(IFlags
, IncrementNSSW
);
13598 return IFlags
== IncrementAnyWrap
;
13601 void SCEVWrapPredicate::print(raw_ostream
&OS
, unsigned Depth
) const {
13602 OS
.indent(Depth
) << *getExpr() << " Added Flags: ";
13603 if (SCEVWrapPredicate::IncrementNUSW
& getFlags())
13605 if (SCEVWrapPredicate::IncrementNSSW
& getFlags())
13610 SCEVWrapPredicate::IncrementWrapFlags
13611 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr
*AR
,
13612 ScalarEvolution
&SE
) {
13613 IncrementWrapFlags ImpliedFlags
= IncrementAnyWrap
;
13614 SCEV::NoWrapFlags StaticFlags
= AR
->getNoWrapFlags();
13616 // We can safely transfer the NSW flag as NSSW.
13617 if (ScalarEvolution::setFlags(StaticFlags
, SCEV::FlagNSW
) == StaticFlags
)
13618 ImpliedFlags
= IncrementNSSW
;
13620 if (ScalarEvolution::setFlags(StaticFlags
, SCEV::FlagNUW
) == StaticFlags
) {
13621 // If the increment is positive, the SCEV NUW flag will also imply the
13622 // WrapPredicate NUSW flag.
13623 if (const auto *Step
= dyn_cast
<SCEVConstant
>(AR
->getStepRecurrence(SE
)))
13624 if (Step
->getValue()->getValue().isNonNegative())
13625 ImpliedFlags
= setFlags(ImpliedFlags
, IncrementNUSW
);
13628 return ImpliedFlags
;
13631 /// Union predicates don't get cached so create a dummy set ID for it.
13632 SCEVUnionPredicate::SCEVUnionPredicate()
13633 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union
) {}
13635 bool SCEVUnionPredicate::isAlwaysTrue() const {
13636 return all_of(Preds
,
13637 [](const SCEVPredicate
*I
) { return I
->isAlwaysTrue(); });
13640 ArrayRef
<const SCEVPredicate
*>
13641 SCEVUnionPredicate::getPredicatesForExpr(const SCEV
*Expr
) {
13642 auto I
= SCEVToPreds
.find(Expr
);
13643 if (I
== SCEVToPreds
.end())
13644 return ArrayRef
<const SCEVPredicate
*>();
13648 bool SCEVUnionPredicate::implies(const SCEVPredicate
*N
) const {
13649 if (const auto *Set
= dyn_cast
<SCEVUnionPredicate
>(N
))
13650 return all_of(Set
->Preds
,
13651 [this](const SCEVPredicate
*I
) { return this->implies(I
); });
13653 auto ScevPredsIt
= SCEVToPreds
.find(N
->getExpr());
13654 if (ScevPredsIt
== SCEVToPreds
.end())
13656 auto &SCEVPreds
= ScevPredsIt
->second
;
13658 return any_of(SCEVPreds
,
13659 [N
](const SCEVPredicate
*I
) { return I
->implies(N
); });
13662 const SCEV
*SCEVUnionPredicate::getExpr() const { return nullptr; }
13664 void SCEVUnionPredicate::print(raw_ostream
&OS
, unsigned Depth
) const {
13665 for (auto Pred
: Preds
)
13666 Pred
->print(OS
, Depth
);
13669 void SCEVUnionPredicate::add(const SCEVPredicate
*N
) {
13670 if (const auto *Set
= dyn_cast
<SCEVUnionPredicate
>(N
)) {
13671 for (auto Pred
: Set
->Preds
)
13679 const SCEV
*Key
= N
->getExpr();
13680 assert(Key
&& "Only SCEVUnionPredicate doesn't have an "
13681 " associated expression!");
13683 SCEVToPreds
[Key
].push_back(N
);
13684 Preds
.push_back(N
);
13687 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution
&SE
,
13691 const SCEV
*PredicatedScalarEvolution::getSCEV(Value
*V
) {
13692 const SCEV
*Expr
= SE
.getSCEV(V
);
13693 RewriteEntry
&Entry
= RewriteMap
[Expr
];
13695 // If we already have an entry and the version matches, return it.
13696 if (Entry
.second
&& Generation
== Entry
.first
)
13697 return Entry
.second
;
13699 // We found an entry but it's stale. Rewrite the stale entry
13700 // according to the current predicate.
13702 Expr
= Entry
.second
;
13704 const SCEV
*NewSCEV
= SE
.rewriteUsingPredicate(Expr
, &L
, Preds
);
13705 Entry
= {Generation
, NewSCEV
};
13710 const SCEV
*PredicatedScalarEvolution::getBackedgeTakenCount() {
13711 if (!BackedgeCount
) {
13712 SCEVUnionPredicate BackedgePred
;
13713 BackedgeCount
= SE
.getPredicatedBackedgeTakenCount(&L
, BackedgePred
);
13714 addPredicate(BackedgePred
);
13716 return BackedgeCount
;
13719 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate
&Pred
) {
13720 if (Preds
.implies(&Pred
))
13723 updateGeneration();
13726 const SCEVUnionPredicate
&PredicatedScalarEvolution::getUnionPredicate() const {
13730 void PredicatedScalarEvolution::updateGeneration() {
13731 // If the generation number wrapped recompute everything.
13732 if (++Generation
== 0) {
13733 for (auto &II
: RewriteMap
) {
13734 const SCEV
*Rewritten
= II
.second
.second
;
13735 II
.second
= {Generation
, SE
.rewriteUsingPredicate(Rewritten
, &L
, Preds
)};
13740 void PredicatedScalarEvolution::setNoOverflow(
13741 Value
*V
, SCEVWrapPredicate::IncrementWrapFlags Flags
) {
13742 const SCEV
*Expr
= getSCEV(V
);
13743 const auto *AR
= cast
<SCEVAddRecExpr
>(Expr
);
13745 auto ImpliedFlags
= SCEVWrapPredicate::getImpliedFlags(AR
, SE
);
13747 // Clear the statically implied flags.
13748 Flags
= SCEVWrapPredicate::clearFlags(Flags
, ImpliedFlags
);
13749 addPredicate(*SE
.getWrapPredicate(AR
, Flags
));
13751 auto II
= FlagsMap
.insert({V
, Flags
});
13753 II
.first
->second
= SCEVWrapPredicate::setFlags(Flags
, II
.first
->second
);
13756 bool PredicatedScalarEvolution::hasNoOverflow(
13757 Value
*V
, SCEVWrapPredicate::IncrementWrapFlags Flags
) {
13758 const SCEV
*Expr
= getSCEV(V
);
13759 const auto *AR
= cast
<SCEVAddRecExpr
>(Expr
);
13761 Flags
= SCEVWrapPredicate::clearFlags(
13762 Flags
, SCEVWrapPredicate::getImpliedFlags(AR
, SE
));
13764 auto II
= FlagsMap
.find(V
);
13766 if (II
!= FlagsMap
.end())
13767 Flags
= SCEVWrapPredicate::clearFlags(Flags
, II
->second
);
13769 return Flags
== SCEVWrapPredicate::IncrementAnyWrap
;
13772 const SCEVAddRecExpr
*PredicatedScalarEvolution::getAsAddRec(Value
*V
) {
13773 const SCEV
*Expr
= this->getSCEV(V
);
13774 SmallPtrSet
<const SCEVPredicate
*, 4> NewPreds
;
13775 auto *New
= SE
.convertSCEVToAddRecWithPredicates(Expr
, &L
, NewPreds
);
13780 for (auto *P
: NewPreds
)
13783 updateGeneration();
13784 RewriteMap
[SE
.getSCEV(V
)] = {Generation
, New
};
13788 PredicatedScalarEvolution::PredicatedScalarEvolution(
13789 const PredicatedScalarEvolution
&Init
)
13790 : RewriteMap(Init
.RewriteMap
), SE(Init
.SE
), L(Init
.L
), Preds(Init
.Preds
),
13791 Generation(Init
.Generation
), BackedgeCount(Init
.BackedgeCount
) {
13792 for (auto I
: Init
.FlagsMap
)
13793 FlagsMap
.insert(I
);
13796 void PredicatedScalarEvolution::print(raw_ostream
&OS
, unsigned Depth
) const {
13798 for (auto *BB
: L
.getBlocks())
13799 for (auto &I
: *BB
) {
13800 if (!SE
.isSCEVable(I
.getType()))
13803 auto *Expr
= SE
.getSCEV(&I
);
13804 auto II
= RewriteMap
.find(Expr
);
13806 if (II
== RewriteMap
.end())
13809 // Don't print things that are not interesting.
13810 if (II
->second
.second
== Expr
)
13813 OS
.indent(Depth
) << "[PSE]" << I
<< ":\n";
13814 OS
.indent(Depth
+ 2) << *Expr
<< "\n";
13815 OS
.indent(Depth
+ 2) << "--> " << *II
->second
.second
<< "\n";
13819 // Match the mathematical pattern A - (A / B) * B, where A and B can be
13820 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
13821 // for URem with constant power-of-2 second operands.
13822 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
13823 // 4, A / B becomes X / 8).
13824 bool ScalarEvolution::matchURem(const SCEV
*Expr
, const SCEV
*&LHS
,
13825 const SCEV
*&RHS
) {
13826 // Try to match 'zext (trunc A to iB) to iY', which is used
13827 // for URem with constant power-of-2 second operands. Make sure the size of
13828 // the operand A matches the size of the whole expressions.
13829 if (const auto *ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(Expr
))
13830 if (const auto *Trunc
= dyn_cast
<SCEVTruncateExpr
>(ZExt
->getOperand(0))) {
13831 LHS
= Trunc
->getOperand();
13832 // Bail out if the type of the LHS is larger than the type of the
13833 // expression for now.
13834 if (getTypeSizeInBits(LHS
->getType()) >
13835 getTypeSizeInBits(Expr
->getType()))
13837 if (LHS
->getType() != Expr
->getType())
13838 LHS
= getZeroExtendExpr(LHS
, Expr
->getType());
13839 RHS
= getConstant(APInt(getTypeSizeInBits(Expr
->getType()), 1)
13840 << getTypeSizeInBits(Trunc
->getType()));
13843 const auto *Add
= dyn_cast
<SCEVAddExpr
>(Expr
);
13844 if (Add
== nullptr || Add
->getNumOperands() != 2)
13847 const SCEV
*A
= Add
->getOperand(1);
13848 const auto *Mul
= dyn_cast
<SCEVMulExpr
>(Add
->getOperand(0));
13850 if (Mul
== nullptr)
13853 const auto MatchURemWithDivisor
= [&](const SCEV
*B
) {
13854 // (SomeExpr + (-(SomeExpr / B) * B)).
13855 if (Expr
== getURemExpr(A
, B
)) {
13863 // (SomeExpr + (-1 * (SomeExpr / B) * B)).
13864 if (Mul
->getNumOperands() == 3 && isa
<SCEVConstant
>(Mul
->getOperand(0)))
13865 return MatchURemWithDivisor(Mul
->getOperand(1)) ||
13866 MatchURemWithDivisor(Mul
->getOperand(2));
13868 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
13869 if (Mul
->getNumOperands() == 2)
13870 return MatchURemWithDivisor(Mul
->getOperand(1)) ||
13871 MatchURemWithDivisor(Mul
->getOperand(0)) ||
13872 MatchURemWithDivisor(getNegativeSCEV(Mul
->getOperand(1))) ||
13873 MatchURemWithDivisor(getNegativeSCEV(Mul
->getOperand(0)));
13878 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop
*L
) {
13879 SmallVector
<BasicBlock
*, 16> ExitingBlocks
;
13880 L
->getExitingBlocks(ExitingBlocks
);
13882 // Form an expression for the maximum exit count possible for this loop. We
13883 // merge the max and exact information to approximate a version of
13884 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
13885 SmallVector
<const SCEV
*, 4> ExitCounts
;
13886 for (BasicBlock
*ExitingBB
: ExitingBlocks
) {
13887 const SCEV
*ExitCount
= getExitCount(L
, ExitingBB
);
13888 if (isa
<SCEVCouldNotCompute
>(ExitCount
))
13889 ExitCount
= getExitCount(L
, ExitingBB
,
13890 ScalarEvolution::ConstantMaximum
);
13891 if (!isa
<SCEVCouldNotCompute
>(ExitCount
)) {
13892 assert(DT
.dominates(ExitingBB
, L
->getLoopLatch()) &&
13893 "We should only have known counts for exiting blocks that "
13894 "dominate latch!");
13895 ExitCounts
.push_back(ExitCount
);
13898 if (ExitCounts
.empty())
13899 return getCouldNotCompute();
13900 return getUMinFromMismatchedTypes(ExitCounts
);
13903 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown
13904 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because
13905 /// we cannot guarantee that the replacement is loop invariant in the loop of
13907 class SCEVLoopGuardRewriter
: public SCEVRewriteVisitor
<SCEVLoopGuardRewriter
> {
13908 ValueToSCEVMapTy
&Map
;
13911 SCEVLoopGuardRewriter(ScalarEvolution
&SE
, ValueToSCEVMapTy
&M
)
13912 : SCEVRewriteVisitor(SE
), Map(M
) {}
13914 const SCEV
*visitAddRecExpr(const SCEVAddRecExpr
*Expr
) { return Expr
; }
13916 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
13917 auto I
= Map
.find(Expr
->getValue());
13918 if (I
== Map
.end())
13924 const SCEV
*ScalarEvolution::applyLoopGuards(const SCEV
*Expr
, const Loop
*L
) {
13925 auto CollectCondition
= [&](ICmpInst::Predicate Predicate
, const SCEV
*LHS
,
13926 const SCEV
*RHS
, ValueToSCEVMapTy
&RewriteMap
) {
13927 // If we have LHS == 0, check if LHS is computing a property of some unknown
13928 // SCEV %v which we can rewrite %v to express explicitly.
13929 const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
);
13930 if (Predicate
== CmpInst::ICMP_EQ
&& RHSC
&&
13931 RHSC
->getValue()->isNullValue()) {
13932 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
13933 // explicitly express that.
13934 const SCEV
*URemLHS
= nullptr;
13935 const SCEV
*URemRHS
= nullptr;
13936 if (matchURem(LHS
, URemLHS
, URemRHS
)) {
13937 if (const SCEVUnknown
*LHSUnknown
= dyn_cast
<SCEVUnknown
>(URemLHS
)) {
13938 Value
*V
= LHSUnknown
->getValue();
13940 getMulExpr(getUDivExpr(URemLHS
, URemRHS
), URemRHS
,
13941 (SCEV::NoWrapFlags
)(SCEV::FlagNUW
| SCEV::FlagNSW
));
13942 RewriteMap
[V
] = Multiple
;
13948 if (!isa
<SCEVUnknown
>(LHS
) && isa
<SCEVUnknown
>(RHS
)) {
13949 std::swap(LHS
, RHS
);
13950 Predicate
= CmpInst::getSwappedPredicate(Predicate
);
13953 // Check for a condition of the form (-C1 + X < C2). InstCombine will
13954 // create this form when combining two checks of the form (X u< C2 + C1) and
13956 auto MatchRangeCheckIdiom
= [this, Predicate
, LHS
, RHS
, &RewriteMap
]() {
13957 auto *AddExpr
= dyn_cast
<SCEVAddExpr
>(LHS
);
13958 if (!AddExpr
|| AddExpr
->getNumOperands() != 2)
13961 auto *C1
= dyn_cast
<SCEVConstant
>(AddExpr
->getOperand(0));
13962 auto *LHSUnknown
= dyn_cast
<SCEVUnknown
>(AddExpr
->getOperand(1));
13963 auto *C2
= dyn_cast
<SCEVConstant
>(RHS
);
13964 if (!C1
|| !C2
|| !LHSUnknown
)
13968 ConstantRange::makeExactICmpRegion(Predicate
, C2
->getAPInt())
13969 .sub(C1
->getAPInt());
13971 // Bail out, unless we have a non-wrapping, monotonic range.
13972 if (ExactRegion
.isWrappedSet() || ExactRegion
.isFullSet())
13974 auto I
= RewriteMap
.find(LHSUnknown
->getValue());
13975 const SCEV
*RewrittenLHS
= I
!= RewriteMap
.end() ? I
->second
: LHS
;
13976 RewriteMap
[LHSUnknown
->getValue()] = getUMaxExpr(
13977 getConstant(ExactRegion
.getUnsignedMin()),
13978 getUMinExpr(RewrittenLHS
, getConstant(ExactRegion
.getUnsignedMax())));
13981 if (MatchRangeCheckIdiom())
13984 // For now, limit to conditions that provide information about unknown
13985 // expressions. RHS also cannot contain add recurrences.
13986 auto *LHSUnknown
= dyn_cast
<SCEVUnknown
>(LHS
);
13987 if (!LHSUnknown
|| containsAddRecurrence(RHS
))
13990 // Check whether LHS has already been rewritten. In that case we want to
13991 // chain further rewrites onto the already rewritten value.
13992 auto I
= RewriteMap
.find(LHSUnknown
->getValue());
13993 const SCEV
*RewrittenLHS
= I
!= RewriteMap
.end() ? I
->second
: LHS
;
13994 const SCEV
*RewrittenRHS
= nullptr;
13995 switch (Predicate
) {
13996 case CmpInst::ICMP_ULT
:
13998 getUMinExpr(RewrittenLHS
, getMinusSCEV(RHS
, getOne(RHS
->getType())));
14000 case CmpInst::ICMP_SLT
:
14002 getSMinExpr(RewrittenLHS
, getMinusSCEV(RHS
, getOne(RHS
->getType())));
14004 case CmpInst::ICMP_ULE
:
14005 RewrittenRHS
= getUMinExpr(RewrittenLHS
, RHS
);
14007 case CmpInst::ICMP_SLE
:
14008 RewrittenRHS
= getSMinExpr(RewrittenLHS
, RHS
);
14010 case CmpInst::ICMP_UGT
:
14012 getUMaxExpr(RewrittenLHS
, getAddExpr(RHS
, getOne(RHS
->getType())));
14014 case CmpInst::ICMP_SGT
:
14016 getSMaxExpr(RewrittenLHS
, getAddExpr(RHS
, getOne(RHS
->getType())));
14018 case CmpInst::ICMP_UGE
:
14019 RewrittenRHS
= getUMaxExpr(RewrittenLHS
, RHS
);
14021 case CmpInst::ICMP_SGE
:
14022 RewrittenRHS
= getSMaxExpr(RewrittenLHS
, RHS
);
14024 case CmpInst::ICMP_EQ
:
14025 if (isa
<SCEVConstant
>(RHS
))
14026 RewrittenRHS
= RHS
;
14028 case CmpInst::ICMP_NE
:
14029 if (isa
<SCEVConstant
>(RHS
) &&
14030 cast
<SCEVConstant
>(RHS
)->getValue()->isNullValue())
14031 RewrittenRHS
= getUMaxExpr(RewrittenLHS
, getOne(RHS
->getType()));
14038 RewriteMap
[LHSUnknown
->getValue()] = RewrittenRHS
;
14040 // Starting at the loop predecessor, climb up the predecessor chain, as long
14041 // as there are predecessors that can be found that have unique successors
14042 // leading to the original header.
14043 // TODO: share this logic with isLoopEntryGuardedByCond.
14044 ValueToSCEVMapTy RewriteMap
;
14045 for (std::pair
<const BasicBlock
*, const BasicBlock
*> Pair(
14046 L
->getLoopPredecessor(), L
->getHeader());
14047 Pair
.first
; Pair
= getPredecessorWithUniqueSuccessorForBB(Pair
.first
)) {
14049 const BranchInst
*LoopEntryPredicate
=
14050 dyn_cast
<BranchInst
>(Pair
.first
->getTerminator());
14051 if (!LoopEntryPredicate
|| LoopEntryPredicate
->isUnconditional())
14054 bool EnterIfTrue
= LoopEntryPredicate
->getSuccessor(0) == Pair
.second
;
14055 SmallVector
<Value
*, 8> Worklist
;
14056 SmallPtrSet
<Value
*, 8> Visited
;
14057 Worklist
.push_back(LoopEntryPredicate
->getCondition());
14058 while (!Worklist
.empty()) {
14059 Value
*Cond
= Worklist
.pop_back_val();
14060 if (!Visited
.insert(Cond
).second
)
14063 if (auto *Cmp
= dyn_cast
<ICmpInst
>(Cond
)) {
14065 EnterIfTrue
? Cmp
->getPredicate() : Cmp
->getInversePredicate();
14066 CollectCondition(Predicate
, getSCEV(Cmp
->getOperand(0)),
14067 getSCEV(Cmp
->getOperand(1)), RewriteMap
);
14072 if (EnterIfTrue
? match(Cond
, m_LogicalAnd(m_Value(L
), m_Value(R
)))
14073 : match(Cond
, m_LogicalOr(m_Value(L
), m_Value(R
)))) {
14074 Worklist
.push_back(L
);
14075 Worklist
.push_back(R
);
14080 // Also collect information from assumptions dominating the loop.
14081 for (auto &AssumeVH
: AC
.assumptions()) {
14084 auto *AssumeI
= cast
<CallInst
>(AssumeVH
);
14085 auto *Cmp
= dyn_cast
<ICmpInst
>(AssumeI
->getOperand(0));
14086 if (!Cmp
|| !DT
.dominates(AssumeI
, L
->getHeader()))
14088 CollectCondition(Cmp
->getPredicate(), getSCEV(Cmp
->getOperand(0)),
14089 getSCEV(Cmp
->getOperand(1)), RewriteMap
);
14092 if (RewriteMap
.empty())
14094 SCEVLoopGuardRewriter
Rewriter(*this, RewriteMap
);
14095 return Rewriter
.visit(Expr
);