[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Analysis / SyncDependenceAnalysis.cpp
blob59582cd3a198191baa7d242c3cc93388e61f63f4
1 //===--- SyncDependenceAnalysis.cpp - Compute Control Divergence Effects --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an algorithm that returns for a divergent branch
10 // the set of basic blocks whose phi nodes become divergent due to divergent
11 // control. These are the blocks that are reachable by two disjoint paths from
12 // the branch or loop exits that have a reaching path that is disjoint from a
13 // path to the loop latch.
15 // The SyncDependenceAnalysis is used in the DivergenceAnalysis to model
16 // control-induced divergence in phi nodes.
18 // -- Summary --
19 // The SyncDependenceAnalysis lazily computes sync dependences [3].
20 // The analysis evaluates the disjoint path criterion [2] by a reduction
21 // to SSA construction. The SSA construction algorithm is implemented as
22 // a simple data-flow analysis [1].
24 // [1] "A Simple, Fast Dominance Algorithm", SPI '01, Cooper, Harvey and Kennedy
25 // [2] "Efficiently Computing Static Single Assignment Form
26 // and the Control Dependence Graph", TOPLAS '91,
27 // Cytron, Ferrante, Rosen, Wegman and Zadeck
28 // [3] "Improving Performance of OpenCL on CPUs", CC '12, Karrenberg and Hack
29 // [4] "Divergence Analysis", TOPLAS '13, Sampaio, Souza, Collange and Pereira
31 // -- Sync dependence --
32 // Sync dependence [4] characterizes the control flow aspect of the
33 // propagation of branch divergence. For example,
35 // %cond = icmp slt i32 %tid, 10
36 // br i1 %cond, label %then, label %else
37 // then:
38 // br label %merge
39 // else:
40 // br label %merge
41 // merge:
42 // %a = phi i32 [ 0, %then ], [ 1, %else ]
44 // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
45 // because %tid is not on its use-def chains, %a is sync dependent on %tid
46 // because the branch "br i1 %cond" depends on %tid and affects which value %a
47 // is assigned to.
49 // -- Reduction to SSA construction --
50 // There are two disjoint paths from A to X, if a certain variant of SSA
51 // construction places a phi node in X under the following set-up scheme [2].
53 // This variant of SSA construction ignores incoming undef values.
54 // That is paths from the entry without a definition do not result in
55 // phi nodes.
57 // entry
58 // / \
59 // A \
60 // / \ Y
61 // B C /
62 // \ / \ /
63 // D E
64 // \ /
65 // F
66 // Assume that A contains a divergent branch. We are interested
67 // in the set of all blocks where each block is reachable from A
68 // via two disjoint paths. This would be the set {D, F} in this
69 // case.
70 // To generally reduce this query to SSA construction we introduce
71 // a virtual variable x and assign to x different values in each
72 // successor block of A.
73 // entry
74 // / \
75 // A \
76 // / \ Y
77 // x = 0 x = 1 /
78 // \ / \ /
79 // D E
80 // \ /
81 // F
82 // Our flavor of SSA construction for x will construct the following
83 // entry
84 // / \
85 // A \
86 // / \ Y
87 // x0 = 0 x1 = 1 /
88 // \ / \ /
89 // x2=phi E
90 // \ /
91 // x3=phi
92 // The blocks D and F contain phi nodes and are thus each reachable
93 // by two disjoins paths from A.
95 // -- Remarks --
96 // In case of loop exits we need to check the disjoint path criterion for loops
97 // [2]. To this end, we check whether the definition of x differs between the
98 // loop exit and the loop header (_after_ SSA construction).
100 //===----------------------------------------------------------------------===//
101 #include "llvm/Analysis/SyncDependenceAnalysis.h"
102 #include "llvm/ADT/PostOrderIterator.h"
103 #include "llvm/ADT/SmallPtrSet.h"
104 #include "llvm/Analysis/PostDominators.h"
105 #include "llvm/IR/BasicBlock.h"
106 #include "llvm/IR/CFG.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
110 #include <functional>
111 #include <stack>
112 #include <unordered_set>
114 #define DEBUG_TYPE "sync-dependence"
116 // The SDA algorithm operates on a modified CFG - we modify the edges leaving
117 // loop headers as follows:
119 // * We remove all edges leaving all loop headers.
120 // * We add additional edges from the loop headers to their exit blocks.
122 // The modification is virtual, that is whenever we visit a loop header we
123 // pretend it had different successors.
124 namespace {
125 using namespace llvm;
127 // Custom Post-Order Traveral
129 // We cannot use the vanilla (R)PO computation of LLVM because:
130 // * We (virtually) modify the CFG.
131 // * We want a loop-compact block enumeration, that is the numbers assigned by
132 // the traveral to the blocks of a loop are an interval.
133 using POCB = std::function<void(const BasicBlock &)>;
134 using VisitedSet = std::set<const BasicBlock *>;
135 using BlockStack = std::vector<const BasicBlock *>;
137 // forward
138 static void computeLoopPO(const LoopInfo &LI, Loop &Loop, POCB CallBack,
139 VisitedSet &Finalized);
141 // for a nested region (top-level loop or nested loop)
142 static void computeStackPO(BlockStack &Stack, const LoopInfo &LI, Loop *Loop,
143 POCB CallBack, VisitedSet &Finalized) {
144 const auto *LoopHeader = Loop ? Loop->getHeader() : nullptr;
145 while (!Stack.empty()) {
146 const auto *NextBB = Stack.back();
148 auto *NestedLoop = LI.getLoopFor(NextBB);
149 bool IsNestedLoop = NestedLoop != Loop;
151 // Treat the loop as a node
152 if (IsNestedLoop) {
153 SmallVector<BasicBlock *, 3> NestedExits;
154 NestedLoop->getUniqueExitBlocks(NestedExits);
155 bool PushedNodes = false;
156 for (const auto *NestedExitBB : NestedExits) {
157 if (NestedExitBB == LoopHeader)
158 continue;
159 if (Loop && !Loop->contains(NestedExitBB))
160 continue;
161 if (Finalized.count(NestedExitBB))
162 continue;
163 PushedNodes = true;
164 Stack.push_back(NestedExitBB);
166 if (!PushedNodes) {
167 // All loop exits finalized -> finish this node
168 Stack.pop_back();
169 computeLoopPO(LI, *NestedLoop, CallBack, Finalized);
171 continue;
174 // DAG-style
175 bool PushedNodes = false;
176 for (const auto *SuccBB : successors(NextBB)) {
177 if (SuccBB == LoopHeader)
178 continue;
179 if (Loop && !Loop->contains(SuccBB))
180 continue;
181 if (Finalized.count(SuccBB))
182 continue;
183 PushedNodes = true;
184 Stack.push_back(SuccBB);
186 if (!PushedNodes) {
187 // Never push nodes twice
188 Stack.pop_back();
189 if (!Finalized.insert(NextBB).second)
190 continue;
191 CallBack(*NextBB);
196 static void computeTopLevelPO(Function &F, const LoopInfo &LI, POCB CallBack) {
197 VisitedSet Finalized;
198 BlockStack Stack;
199 Stack.reserve(24); // FIXME made-up number
200 Stack.push_back(&F.getEntryBlock());
201 computeStackPO(Stack, LI, nullptr, CallBack, Finalized);
204 static void computeLoopPO(const LoopInfo &LI, Loop &Loop, POCB CallBack,
205 VisitedSet &Finalized) {
206 /// Call CallBack on all loop blocks.
207 std::vector<const BasicBlock *> Stack;
208 const auto *LoopHeader = Loop.getHeader();
210 // Visit the header last
211 Finalized.insert(LoopHeader);
212 CallBack(*LoopHeader);
214 // Initialize with immediate successors
215 for (const auto *BB : successors(LoopHeader)) {
216 if (!Loop.contains(BB))
217 continue;
218 if (BB == LoopHeader)
219 continue;
220 Stack.push_back(BB);
223 // Compute PO inside region
224 computeStackPO(Stack, LI, &Loop, CallBack, Finalized);
227 } // namespace
229 namespace llvm {
231 ControlDivergenceDesc SyncDependenceAnalysis::EmptyDivergenceDesc;
233 SyncDependenceAnalysis::SyncDependenceAnalysis(const DominatorTree &DT,
234 const PostDominatorTree &PDT,
235 const LoopInfo &LI)
236 : DT(DT), PDT(PDT), LI(LI) {
237 computeTopLevelPO(*DT.getRoot()->getParent(), LI,
238 [&](const BasicBlock &BB) { LoopPO.appendBlock(BB); });
241 SyncDependenceAnalysis::~SyncDependenceAnalysis() {}
243 // divergence propagator for reducible CFGs
244 struct DivergencePropagator {
245 const ModifiedPO &LoopPOT;
246 const DominatorTree &DT;
247 const PostDominatorTree &PDT;
248 const LoopInfo &LI;
249 const BasicBlock &DivTermBlock;
251 // * if BlockLabels[IndexOf(B)] == C then C is the dominating definition at
252 // block B
253 // * if BlockLabels[IndexOf(B)] ~ undef then we haven't seen B yet
254 // * if BlockLabels[IndexOf(B)] == B then B is a join point of disjoint paths
255 // from X or B is an immediate successor of X (initial value).
256 using BlockLabelVec = std::vector<const BasicBlock *>;
257 BlockLabelVec BlockLabels;
258 // divergent join and loop exit descriptor.
259 std::unique_ptr<ControlDivergenceDesc> DivDesc;
261 DivergencePropagator(const ModifiedPO &LoopPOT, const DominatorTree &DT,
262 const PostDominatorTree &PDT, const LoopInfo &LI,
263 const BasicBlock &DivTermBlock)
264 : LoopPOT(LoopPOT), DT(DT), PDT(PDT), LI(LI), DivTermBlock(DivTermBlock),
265 BlockLabels(LoopPOT.size(), nullptr),
266 DivDesc(new ControlDivergenceDesc) {}
268 void printDefs(raw_ostream &Out) {
269 Out << "Propagator::BlockLabels {\n";
270 for (int BlockIdx = (int)BlockLabels.size() - 1; BlockIdx > 0; --BlockIdx) {
271 const auto *Label = BlockLabels[BlockIdx];
272 Out << LoopPOT.getBlockAt(BlockIdx)->getName().str() << "(" << BlockIdx
273 << ") : ";
274 if (!Label) {
275 Out << "<null>\n";
276 } else {
277 Out << Label->getName() << "\n";
280 Out << "}\n";
283 // Push a definition (\p PushedLabel) to \p SuccBlock and return whether this
284 // causes a divergent join.
285 bool computeJoin(const BasicBlock &SuccBlock, const BasicBlock &PushedLabel) {
286 auto SuccIdx = LoopPOT.getIndexOf(SuccBlock);
288 // unset or same reaching label
289 const auto *OldLabel = BlockLabels[SuccIdx];
290 if (!OldLabel || (OldLabel == &PushedLabel)) {
291 BlockLabels[SuccIdx] = &PushedLabel;
292 return false;
295 // Update the definition
296 BlockLabels[SuccIdx] = &SuccBlock;
297 return true;
300 // visiting a virtual loop exit edge from the loop header --> temporal
301 // divergence on join
302 bool visitLoopExitEdge(const BasicBlock &ExitBlock,
303 const BasicBlock &DefBlock, bool FromParentLoop) {
304 // Pushing from a non-parent loop cannot cause temporal divergence.
305 if (!FromParentLoop)
306 return visitEdge(ExitBlock, DefBlock);
308 if (!computeJoin(ExitBlock, DefBlock))
309 return false;
311 // Identified a divergent loop exit
312 DivDesc->LoopDivBlocks.insert(&ExitBlock);
313 LLVM_DEBUG(dbgs() << "\tDivergent loop exit: " << ExitBlock.getName()
314 << "\n");
315 return true;
318 // process \p SuccBlock with reaching definition \p DefBlock
319 bool visitEdge(const BasicBlock &SuccBlock, const BasicBlock &DefBlock) {
320 if (!computeJoin(SuccBlock, DefBlock))
321 return false;
323 // Divergent, disjoint paths join.
324 DivDesc->JoinDivBlocks.insert(&SuccBlock);
325 LLVM_DEBUG(dbgs() << "\tDivergent join: " << SuccBlock.getName());
326 return true;
329 std::unique_ptr<ControlDivergenceDesc> computeJoinPoints() {
330 assert(DivDesc);
332 LLVM_DEBUG(dbgs() << "SDA:computeJoinPoints: " << DivTermBlock.getName()
333 << "\n");
335 const auto *DivBlockLoop = LI.getLoopFor(&DivTermBlock);
337 // Early stopping criterion
338 int FloorIdx = LoopPOT.size() - 1;
339 const BasicBlock *FloorLabel = nullptr;
341 // bootstrap with branch targets
342 int BlockIdx = 0;
344 for (const auto *SuccBlock : successors(&DivTermBlock)) {
345 auto SuccIdx = LoopPOT.getIndexOf(*SuccBlock);
346 BlockLabels[SuccIdx] = SuccBlock;
348 // Find the successor with the highest index to start with
349 BlockIdx = std::max<int>(BlockIdx, SuccIdx);
350 FloorIdx = std::min<int>(FloorIdx, SuccIdx);
352 // Identify immediate divergent loop exits
353 if (!DivBlockLoop)
354 continue;
356 const auto *BlockLoop = LI.getLoopFor(SuccBlock);
357 if (BlockLoop && DivBlockLoop->contains(BlockLoop))
358 continue;
359 DivDesc->LoopDivBlocks.insert(SuccBlock);
360 LLVM_DEBUG(dbgs() << "\tImmediate divergent loop exit: "
361 << SuccBlock->getName() << "\n");
364 // propagate definitions at the immediate successors of the node in RPO
365 for (; BlockIdx >= FloorIdx; --BlockIdx) {
366 LLVM_DEBUG(dbgs() << "Before next visit:\n"; printDefs(dbgs()));
368 // Any label available here
369 const auto *Label = BlockLabels[BlockIdx];
370 if (!Label)
371 continue;
373 // Ok. Get the block
374 const auto *Block = LoopPOT.getBlockAt(BlockIdx);
375 LLVM_DEBUG(dbgs() << "SDA::joins. visiting " << Block->getName() << "\n");
377 auto *BlockLoop = LI.getLoopFor(Block);
378 bool IsLoopHeader = BlockLoop && BlockLoop->getHeader() == Block;
379 bool CausedJoin = false;
380 int LoweredFloorIdx = FloorIdx;
381 if (IsLoopHeader) {
382 // Disconnect from immediate successors and propagate directly to loop
383 // exits.
384 SmallVector<BasicBlock *, 4> BlockLoopExits;
385 BlockLoop->getExitBlocks(BlockLoopExits);
387 bool IsParentLoop = BlockLoop->contains(&DivTermBlock);
388 for (const auto *BlockLoopExit : BlockLoopExits) {
389 CausedJoin |= visitLoopExitEdge(*BlockLoopExit, *Label, IsParentLoop);
390 LoweredFloorIdx = std::min<int>(LoweredFloorIdx,
391 LoopPOT.getIndexOf(*BlockLoopExit));
393 } else {
394 // Acyclic successor case
395 for (const auto *SuccBlock : successors(Block)) {
396 CausedJoin |= visitEdge(*SuccBlock, *Label);
397 LoweredFloorIdx =
398 std::min<int>(LoweredFloorIdx, LoopPOT.getIndexOf(*SuccBlock));
402 // Floor update
403 if (CausedJoin) {
404 // 1. Different labels pushed to successors
405 FloorIdx = LoweredFloorIdx;
406 } else if (FloorLabel != Label) {
407 // 2. No join caused BUT we pushed a label that is different than the
408 // last pushed label
409 FloorIdx = LoweredFloorIdx;
410 FloorLabel = Label;
414 LLVM_DEBUG(dbgs() << "SDA::joins. After propagation:\n"; printDefs(dbgs()));
416 return std::move(DivDesc);
420 #ifndef NDEBUG
421 static void printBlockSet(ConstBlockSet &Blocks, raw_ostream &Out) {
422 Out << "[";
423 ListSeparator LS;
424 for (const auto *BB : Blocks)
425 Out << LS << BB->getName();
426 Out << "]";
428 #endif
430 const ControlDivergenceDesc &
431 SyncDependenceAnalysis::getJoinBlocks(const Instruction &Term) {
432 // trivial case
433 if (Term.getNumSuccessors() <= 1) {
434 return EmptyDivergenceDesc;
437 // already available in cache?
438 auto ItCached = CachedControlDivDescs.find(&Term);
439 if (ItCached != CachedControlDivDescs.end())
440 return *ItCached->second;
442 // compute all join points
443 // Special handling of divergent loop exits is not needed for LCSSA
444 const auto &TermBlock = *Term.getParent();
445 DivergencePropagator Propagator(LoopPO, DT, PDT, LI, TermBlock);
446 auto DivDesc = Propagator.computeJoinPoints();
448 LLVM_DEBUG(dbgs() << "Result (" << Term.getParent()->getName() << "):\n";
449 dbgs() << "JoinDivBlocks: ";
450 printBlockSet(DivDesc->JoinDivBlocks, dbgs());
451 dbgs() << "\nLoopDivBlocks: ";
452 printBlockSet(DivDesc->LoopDivBlocks, dbgs()); dbgs() << "\n";);
454 auto ItInserted = CachedControlDivDescs.emplace(&Term, std::move(DivDesc));
455 assert(ItInserted.second);
456 return *ItInserted.first->second;
459 } // namespace llvm