[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / AsmParser / LLParser.cpp
blobc24917cd7879e198c94a5d3436cb72c519042833
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the parser class for .ll files.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/IR/ValueSymbolTable.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/SaveAndRestore.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstring>
50 #include <iterator>
51 #include <vector>
53 using namespace llvm;
55 static std::string getTypeString(Type *T) {
56 std::string Result;
57 raw_string_ostream Tmp(Result);
58 Tmp << *T;
59 return Tmp.str();
62 /// Run: module ::= toplevelentity*
63 bool LLParser::Run(bool UpgradeDebugInfo,
64 DataLayoutCallbackTy DataLayoutCallback) {
65 // Prime the lexer.
66 Lex.Lex();
68 if (Context.shouldDiscardValueNames())
69 return error(
70 Lex.getLoc(),
71 "Can't read textual IR with a Context that discards named Values");
73 if (M) {
74 if (parseTargetDefinitions())
75 return true;
77 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
78 M->setDataLayout(*LayoutOverride);
81 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
82 validateEndOfIndex();
85 bool LLParser::parseStandaloneConstantValue(Constant *&C,
86 const SlotMapping *Slots) {
87 restoreParsingState(Slots);
88 Lex.Lex();
90 Type *Ty = nullptr;
91 if (parseType(Ty) || parseConstantValue(Ty, C))
92 return true;
93 if (Lex.getKind() != lltok::Eof)
94 return error(Lex.getLoc(), "expected end of string");
95 return false;
98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
99 const SlotMapping *Slots) {
100 restoreParsingState(Slots);
101 Lex.Lex();
103 Read = 0;
104 SMLoc Start = Lex.getLoc();
105 Ty = nullptr;
106 if (parseType(Ty))
107 return true;
108 SMLoc End = Lex.getLoc();
109 Read = End.getPointer() - Start.getPointer();
111 return false;
114 void LLParser::restoreParsingState(const SlotMapping *Slots) {
115 if (!Slots)
116 return;
117 NumberedVals = Slots->GlobalValues;
118 NumberedMetadata = Slots->MetadataNodes;
119 for (const auto &I : Slots->NamedTypes)
120 NamedTypes.insert(
121 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
122 for (const auto &I : Slots->Types)
123 NumberedTypes.insert(
124 std::make_pair(I.first, std::make_pair(I.second, LocTy())));
127 /// validateEndOfModule - Do final validity and sanity checks at the end of the
128 /// module.
129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
130 if (!M)
131 return false;
132 // Handle any function attribute group forward references.
133 for (const auto &RAG : ForwardRefAttrGroups) {
134 Value *V = RAG.first;
135 const std::vector<unsigned> &Attrs = RAG.second;
136 AttrBuilder B;
138 for (const auto &Attr : Attrs)
139 B.merge(NumberedAttrBuilders[Attr]);
141 if (Function *Fn = dyn_cast<Function>(V)) {
142 AttributeList AS = Fn->getAttributes();
143 AttrBuilder FnAttrs(AS.getFnAttrs());
144 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
146 FnAttrs.merge(B);
148 // If the alignment was parsed as an attribute, move to the alignment
149 // field.
150 if (FnAttrs.hasAlignmentAttr()) {
151 Fn->setAlignment(FnAttrs.getAlignment());
152 FnAttrs.removeAttribute(Attribute::Alignment);
155 AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs));
156 Fn->setAttributes(AS);
157 } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
158 AttributeList AS = CI->getAttributes();
159 AttrBuilder FnAttrs(AS.getFnAttrs());
160 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
161 FnAttrs.merge(B);
162 AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs));
163 CI->setAttributes(AS);
164 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
165 AttributeList AS = II->getAttributes();
166 AttrBuilder FnAttrs(AS.getFnAttrs());
167 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
168 FnAttrs.merge(B);
169 AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs));
170 II->setAttributes(AS);
171 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
172 AttributeList AS = CBI->getAttributes();
173 AttrBuilder FnAttrs(AS.getFnAttrs());
174 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
175 FnAttrs.merge(B);
176 AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs));
177 CBI->setAttributes(AS);
178 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
179 AttrBuilder Attrs(GV->getAttributes());
180 Attrs.merge(B);
181 GV->setAttributes(AttributeSet::get(Context,Attrs));
182 } else {
183 llvm_unreachable("invalid object with forward attribute group reference");
187 // If there are entries in ForwardRefBlockAddresses at this point, the
188 // function was never defined.
189 if (!ForwardRefBlockAddresses.empty())
190 return error(ForwardRefBlockAddresses.begin()->first.Loc,
191 "expected function name in blockaddress");
193 for (const auto &NT : NumberedTypes)
194 if (NT.second.second.isValid())
195 return error(NT.second.second,
196 "use of undefined type '%" + Twine(NT.first) + "'");
198 for (StringMap<std::pair<Type*, LocTy> >::iterator I =
199 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
200 if (I->second.second.isValid())
201 return error(I->second.second,
202 "use of undefined type named '" + I->getKey() + "'");
204 if (!ForwardRefComdats.empty())
205 return error(ForwardRefComdats.begin()->second,
206 "use of undefined comdat '$" +
207 ForwardRefComdats.begin()->first + "'");
209 if (!ForwardRefVals.empty())
210 return error(ForwardRefVals.begin()->second.second,
211 "use of undefined value '@" + ForwardRefVals.begin()->first +
212 "'");
214 if (!ForwardRefValIDs.empty())
215 return error(ForwardRefValIDs.begin()->second.second,
216 "use of undefined value '@" +
217 Twine(ForwardRefValIDs.begin()->first) + "'");
219 if (!ForwardRefMDNodes.empty())
220 return error(ForwardRefMDNodes.begin()->second.second,
221 "use of undefined metadata '!" +
222 Twine(ForwardRefMDNodes.begin()->first) + "'");
224 // Resolve metadata cycles.
225 for (auto &N : NumberedMetadata) {
226 if (N.second && !N.second->isResolved())
227 N.second->resolveCycles();
230 for (auto *Inst : InstsWithTBAATag) {
231 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
232 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
233 auto *UpgradedMD = UpgradeTBAANode(*MD);
234 if (MD != UpgradedMD)
235 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
238 // Look for intrinsic functions and CallInst that need to be upgraded
239 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
240 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
242 // Some types could be renamed during loading if several modules are
243 // loaded in the same LLVMContext (LTO scenario). In this case we should
244 // remangle intrinsics names as well.
245 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
246 Function *F = &*FI++;
247 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
248 F->replaceAllUsesWith(Remangled.getValue());
249 F->eraseFromParent();
253 if (UpgradeDebugInfo)
254 llvm::UpgradeDebugInfo(*M);
256 UpgradeModuleFlags(*M);
257 UpgradeSectionAttributes(*M);
259 if (!Slots)
260 return false;
261 // Initialize the slot mapping.
262 // Because by this point we've parsed and validated everything, we can "steal"
263 // the mapping from LLParser as it doesn't need it anymore.
264 Slots->GlobalValues = std::move(NumberedVals);
265 Slots->MetadataNodes = std::move(NumberedMetadata);
266 for (const auto &I : NamedTypes)
267 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
268 for (const auto &I : NumberedTypes)
269 Slots->Types.insert(std::make_pair(I.first, I.second.first));
271 return false;
274 /// Do final validity and sanity checks at the end of the index.
275 bool LLParser::validateEndOfIndex() {
276 if (!Index)
277 return false;
279 if (!ForwardRefValueInfos.empty())
280 return error(ForwardRefValueInfos.begin()->second.front().second,
281 "use of undefined summary '^" +
282 Twine(ForwardRefValueInfos.begin()->first) + "'");
284 if (!ForwardRefAliasees.empty())
285 return error(ForwardRefAliasees.begin()->second.front().second,
286 "use of undefined summary '^" +
287 Twine(ForwardRefAliasees.begin()->first) + "'");
289 if (!ForwardRefTypeIds.empty())
290 return error(ForwardRefTypeIds.begin()->second.front().second,
291 "use of undefined type id summary '^" +
292 Twine(ForwardRefTypeIds.begin()->first) + "'");
294 return false;
297 //===----------------------------------------------------------------------===//
298 // Top-Level Entities
299 //===----------------------------------------------------------------------===//
301 bool LLParser::parseTargetDefinitions() {
302 while (true) {
303 switch (Lex.getKind()) {
304 case lltok::kw_target:
305 if (parseTargetDefinition())
306 return true;
307 break;
308 case lltok::kw_source_filename:
309 if (parseSourceFileName())
310 return true;
311 break;
312 default:
313 return false;
318 bool LLParser::parseTopLevelEntities() {
319 // If there is no Module, then parse just the summary index entries.
320 if (!M) {
321 while (true) {
322 switch (Lex.getKind()) {
323 case lltok::Eof:
324 return false;
325 case lltok::SummaryID:
326 if (parseSummaryEntry())
327 return true;
328 break;
329 case lltok::kw_source_filename:
330 if (parseSourceFileName())
331 return true;
332 break;
333 default:
334 // Skip everything else
335 Lex.Lex();
339 while (true) {
340 switch (Lex.getKind()) {
341 default:
342 return tokError("expected top-level entity");
343 case lltok::Eof: return false;
344 case lltok::kw_declare:
345 if (parseDeclare())
346 return true;
347 break;
348 case lltok::kw_define:
349 if (parseDefine())
350 return true;
351 break;
352 case lltok::kw_module:
353 if (parseModuleAsm())
354 return true;
355 break;
356 case lltok::LocalVarID:
357 if (parseUnnamedType())
358 return true;
359 break;
360 case lltok::LocalVar:
361 if (parseNamedType())
362 return true;
363 break;
364 case lltok::GlobalID:
365 if (parseUnnamedGlobal())
366 return true;
367 break;
368 case lltok::GlobalVar:
369 if (parseNamedGlobal())
370 return true;
371 break;
372 case lltok::ComdatVar: if (parseComdat()) return true; break;
373 case lltok::exclaim:
374 if (parseStandaloneMetadata())
375 return true;
376 break;
377 case lltok::SummaryID:
378 if (parseSummaryEntry())
379 return true;
380 break;
381 case lltok::MetadataVar:
382 if (parseNamedMetadata())
383 return true;
384 break;
385 case lltok::kw_attributes:
386 if (parseUnnamedAttrGrp())
387 return true;
388 break;
389 case lltok::kw_uselistorder:
390 if (parseUseListOrder())
391 return true;
392 break;
393 case lltok::kw_uselistorder_bb:
394 if (parseUseListOrderBB())
395 return true;
396 break;
401 /// toplevelentity
402 /// ::= 'module' 'asm' STRINGCONSTANT
403 bool LLParser::parseModuleAsm() {
404 assert(Lex.getKind() == lltok::kw_module);
405 Lex.Lex();
407 std::string AsmStr;
408 if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
409 parseStringConstant(AsmStr))
410 return true;
412 M->appendModuleInlineAsm(AsmStr);
413 return false;
416 /// toplevelentity
417 /// ::= 'target' 'triple' '=' STRINGCONSTANT
418 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
419 bool LLParser::parseTargetDefinition() {
420 assert(Lex.getKind() == lltok::kw_target);
421 std::string Str;
422 switch (Lex.Lex()) {
423 default:
424 return tokError("unknown target property");
425 case lltok::kw_triple:
426 Lex.Lex();
427 if (parseToken(lltok::equal, "expected '=' after target triple") ||
428 parseStringConstant(Str))
429 return true;
430 M->setTargetTriple(Str);
431 return false;
432 case lltok::kw_datalayout:
433 Lex.Lex();
434 if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
435 parseStringConstant(Str))
436 return true;
437 M->setDataLayout(Str);
438 return false;
442 /// toplevelentity
443 /// ::= 'source_filename' '=' STRINGCONSTANT
444 bool LLParser::parseSourceFileName() {
445 assert(Lex.getKind() == lltok::kw_source_filename);
446 Lex.Lex();
447 if (parseToken(lltok::equal, "expected '=' after source_filename") ||
448 parseStringConstant(SourceFileName))
449 return true;
450 if (M)
451 M->setSourceFileName(SourceFileName);
452 return false;
455 /// parseUnnamedType:
456 /// ::= LocalVarID '=' 'type' type
457 bool LLParser::parseUnnamedType() {
458 LocTy TypeLoc = Lex.getLoc();
459 unsigned TypeID = Lex.getUIntVal();
460 Lex.Lex(); // eat LocalVarID;
462 if (parseToken(lltok::equal, "expected '=' after name") ||
463 parseToken(lltok::kw_type, "expected 'type' after '='"))
464 return true;
466 Type *Result = nullptr;
467 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
468 return true;
470 if (!isa<StructType>(Result)) {
471 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
472 if (Entry.first)
473 return error(TypeLoc, "non-struct types may not be recursive");
474 Entry.first = Result;
475 Entry.second = SMLoc();
478 return false;
481 /// toplevelentity
482 /// ::= LocalVar '=' 'type' type
483 bool LLParser::parseNamedType() {
484 std::string Name = Lex.getStrVal();
485 LocTy NameLoc = Lex.getLoc();
486 Lex.Lex(); // eat LocalVar.
488 if (parseToken(lltok::equal, "expected '=' after name") ||
489 parseToken(lltok::kw_type, "expected 'type' after name"))
490 return true;
492 Type *Result = nullptr;
493 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
494 return true;
496 if (!isa<StructType>(Result)) {
497 std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
498 if (Entry.first)
499 return error(NameLoc, "non-struct types may not be recursive");
500 Entry.first = Result;
501 Entry.second = SMLoc();
504 return false;
507 /// toplevelentity
508 /// ::= 'declare' FunctionHeader
509 bool LLParser::parseDeclare() {
510 assert(Lex.getKind() == lltok::kw_declare);
511 Lex.Lex();
513 std::vector<std::pair<unsigned, MDNode *>> MDs;
514 while (Lex.getKind() == lltok::MetadataVar) {
515 unsigned MDK;
516 MDNode *N;
517 if (parseMetadataAttachment(MDK, N))
518 return true;
519 MDs.push_back({MDK, N});
522 Function *F;
523 if (parseFunctionHeader(F, false))
524 return true;
525 for (auto &MD : MDs)
526 F->addMetadata(MD.first, *MD.second);
527 return false;
530 /// toplevelentity
531 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ...
532 bool LLParser::parseDefine() {
533 assert(Lex.getKind() == lltok::kw_define);
534 Lex.Lex();
536 Function *F;
537 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
538 parseFunctionBody(*F);
541 /// parseGlobalType
542 /// ::= 'constant'
543 /// ::= 'global'
544 bool LLParser::parseGlobalType(bool &IsConstant) {
545 if (Lex.getKind() == lltok::kw_constant)
546 IsConstant = true;
547 else if (Lex.getKind() == lltok::kw_global)
548 IsConstant = false;
549 else {
550 IsConstant = false;
551 return tokError("expected 'global' or 'constant'");
553 Lex.Lex();
554 return false;
557 bool LLParser::parseOptionalUnnamedAddr(
558 GlobalVariable::UnnamedAddr &UnnamedAddr) {
559 if (EatIfPresent(lltok::kw_unnamed_addr))
560 UnnamedAddr = GlobalValue::UnnamedAddr::Global;
561 else if (EatIfPresent(lltok::kw_local_unnamed_addr))
562 UnnamedAddr = GlobalValue::UnnamedAddr::Local;
563 else
564 UnnamedAddr = GlobalValue::UnnamedAddr::None;
565 return false;
568 /// parseUnnamedGlobal:
569 /// OptionalVisibility (ALIAS | IFUNC) ...
570 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
571 /// OptionalDLLStorageClass
572 /// ... -> global variable
573 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
574 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
575 /// OptionalVisibility
576 /// OptionalDLLStorageClass
577 /// ... -> global variable
578 bool LLParser::parseUnnamedGlobal() {
579 unsigned VarID = NumberedVals.size();
580 std::string Name;
581 LocTy NameLoc = Lex.getLoc();
583 // Handle the GlobalID form.
584 if (Lex.getKind() == lltok::GlobalID) {
585 if (Lex.getUIntVal() != VarID)
586 return error(Lex.getLoc(),
587 "variable expected to be numbered '%" + Twine(VarID) + "'");
588 Lex.Lex(); // eat GlobalID;
590 if (parseToken(lltok::equal, "expected '=' after name"))
591 return true;
594 bool HasLinkage;
595 unsigned Linkage, Visibility, DLLStorageClass;
596 bool DSOLocal;
597 GlobalVariable::ThreadLocalMode TLM;
598 GlobalVariable::UnnamedAddr UnnamedAddr;
599 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
600 DSOLocal) ||
601 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
602 return true;
604 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
605 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
606 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
608 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
609 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
612 /// parseNamedGlobal:
613 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
614 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
615 /// OptionalVisibility OptionalDLLStorageClass
616 /// ... -> global variable
617 bool LLParser::parseNamedGlobal() {
618 assert(Lex.getKind() == lltok::GlobalVar);
619 LocTy NameLoc = Lex.getLoc();
620 std::string Name = Lex.getStrVal();
621 Lex.Lex();
623 bool HasLinkage;
624 unsigned Linkage, Visibility, DLLStorageClass;
625 bool DSOLocal;
626 GlobalVariable::ThreadLocalMode TLM;
627 GlobalVariable::UnnamedAddr UnnamedAddr;
628 if (parseToken(lltok::equal, "expected '=' in global variable") ||
629 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
630 DSOLocal) ||
631 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
632 return true;
634 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
635 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
636 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
638 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
639 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
642 bool LLParser::parseComdat() {
643 assert(Lex.getKind() == lltok::ComdatVar);
644 std::string Name = Lex.getStrVal();
645 LocTy NameLoc = Lex.getLoc();
646 Lex.Lex();
648 if (parseToken(lltok::equal, "expected '=' here"))
649 return true;
651 if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
652 return tokError("expected comdat type");
654 Comdat::SelectionKind SK;
655 switch (Lex.getKind()) {
656 default:
657 return tokError("unknown selection kind");
658 case lltok::kw_any:
659 SK = Comdat::Any;
660 break;
661 case lltok::kw_exactmatch:
662 SK = Comdat::ExactMatch;
663 break;
664 case lltok::kw_largest:
665 SK = Comdat::Largest;
666 break;
667 case lltok::kw_nodeduplicate:
668 SK = Comdat::NoDeduplicate;
669 break;
670 case lltok::kw_samesize:
671 SK = Comdat::SameSize;
672 break;
674 Lex.Lex();
676 // See if the comdat was forward referenced, if so, use the comdat.
677 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
678 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
679 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
680 return error(NameLoc, "redefinition of comdat '$" + Name + "'");
682 Comdat *C;
683 if (I != ComdatSymTab.end())
684 C = &I->second;
685 else
686 C = M->getOrInsertComdat(Name);
687 C->setSelectionKind(SK);
689 return false;
692 // MDString:
693 // ::= '!' STRINGCONSTANT
694 bool LLParser::parseMDString(MDString *&Result) {
695 std::string Str;
696 if (parseStringConstant(Str))
697 return true;
698 Result = MDString::get(Context, Str);
699 return false;
702 // MDNode:
703 // ::= '!' MDNodeNumber
704 bool LLParser::parseMDNodeID(MDNode *&Result) {
705 // !{ ..., !42, ... }
706 LocTy IDLoc = Lex.getLoc();
707 unsigned MID = 0;
708 if (parseUInt32(MID))
709 return true;
711 // If not a forward reference, just return it now.
712 if (NumberedMetadata.count(MID)) {
713 Result = NumberedMetadata[MID];
714 return false;
717 // Otherwise, create MDNode forward reference.
718 auto &FwdRef = ForwardRefMDNodes[MID];
719 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
721 Result = FwdRef.first.get();
722 NumberedMetadata[MID].reset(Result);
723 return false;
726 /// parseNamedMetadata:
727 /// !foo = !{ !1, !2 }
728 bool LLParser::parseNamedMetadata() {
729 assert(Lex.getKind() == lltok::MetadataVar);
730 std::string Name = Lex.getStrVal();
731 Lex.Lex();
733 if (parseToken(lltok::equal, "expected '=' here") ||
734 parseToken(lltok::exclaim, "Expected '!' here") ||
735 parseToken(lltok::lbrace, "Expected '{' here"))
736 return true;
738 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
739 if (Lex.getKind() != lltok::rbrace)
740 do {
741 MDNode *N = nullptr;
742 // parse DIExpressions inline as a special case. They are still MDNodes,
743 // so they can still appear in named metadata. Remove this logic if they
744 // become plain Metadata.
745 if (Lex.getKind() == lltok::MetadataVar &&
746 Lex.getStrVal() == "DIExpression") {
747 if (parseDIExpression(N, /*IsDistinct=*/false))
748 return true;
749 // DIArgLists should only appear inline in a function, as they may
750 // contain LocalAsMetadata arguments which require a function context.
751 } else if (Lex.getKind() == lltok::MetadataVar &&
752 Lex.getStrVal() == "DIArgList") {
753 return tokError("found DIArgList outside of function");
754 } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
755 parseMDNodeID(N)) {
756 return true;
758 NMD->addOperand(N);
759 } while (EatIfPresent(lltok::comma));
761 return parseToken(lltok::rbrace, "expected end of metadata node");
764 /// parseStandaloneMetadata:
765 /// !42 = !{...}
766 bool LLParser::parseStandaloneMetadata() {
767 assert(Lex.getKind() == lltok::exclaim);
768 Lex.Lex();
769 unsigned MetadataID = 0;
771 MDNode *Init;
772 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
773 return true;
775 // Detect common error, from old metadata syntax.
776 if (Lex.getKind() == lltok::Type)
777 return tokError("unexpected type in metadata definition");
779 bool IsDistinct = EatIfPresent(lltok::kw_distinct);
780 if (Lex.getKind() == lltok::MetadataVar) {
781 if (parseSpecializedMDNode(Init, IsDistinct))
782 return true;
783 } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
784 parseMDTuple(Init, IsDistinct))
785 return true;
787 // See if this was forward referenced, if so, handle it.
788 auto FI = ForwardRefMDNodes.find(MetadataID);
789 if (FI != ForwardRefMDNodes.end()) {
790 FI->second.first->replaceAllUsesWith(Init);
791 ForwardRefMDNodes.erase(FI);
793 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
794 } else {
795 if (NumberedMetadata.count(MetadataID))
796 return tokError("Metadata id is already used");
797 NumberedMetadata[MetadataID].reset(Init);
800 return false;
803 // Skips a single module summary entry.
804 bool LLParser::skipModuleSummaryEntry() {
805 // Each module summary entry consists of a tag for the entry
806 // type, followed by a colon, then the fields which may be surrounded by
807 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
808 // support is in place we will look for the tokens corresponding to the
809 // expected tags.
810 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
811 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
812 Lex.getKind() != lltok::kw_blockcount)
813 return tokError(
814 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
815 "start of summary entry");
816 if (Lex.getKind() == lltok::kw_flags)
817 return parseSummaryIndexFlags();
818 if (Lex.getKind() == lltok::kw_blockcount)
819 return parseBlockCount();
820 Lex.Lex();
821 if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
822 parseToken(lltok::lparen, "expected '(' at start of summary entry"))
823 return true;
824 // Now walk through the parenthesized entry, until the number of open
825 // parentheses goes back down to 0 (the first '(' was parsed above).
826 unsigned NumOpenParen = 1;
827 do {
828 switch (Lex.getKind()) {
829 case lltok::lparen:
830 NumOpenParen++;
831 break;
832 case lltok::rparen:
833 NumOpenParen--;
834 break;
835 case lltok::Eof:
836 return tokError("found end of file while parsing summary entry");
837 default:
838 // Skip everything in between parentheses.
839 break;
841 Lex.Lex();
842 } while (NumOpenParen > 0);
843 return false;
846 /// SummaryEntry
847 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
848 bool LLParser::parseSummaryEntry() {
849 assert(Lex.getKind() == lltok::SummaryID);
850 unsigned SummaryID = Lex.getUIntVal();
852 // For summary entries, colons should be treated as distinct tokens,
853 // not an indication of the end of a label token.
854 Lex.setIgnoreColonInIdentifiers(true);
856 Lex.Lex();
857 if (parseToken(lltok::equal, "expected '=' here"))
858 return true;
860 // If we don't have an index object, skip the summary entry.
861 if (!Index)
862 return skipModuleSummaryEntry();
864 bool result = false;
865 switch (Lex.getKind()) {
866 case lltok::kw_gv:
867 result = parseGVEntry(SummaryID);
868 break;
869 case lltok::kw_module:
870 result = parseModuleEntry(SummaryID);
871 break;
872 case lltok::kw_typeid:
873 result = parseTypeIdEntry(SummaryID);
874 break;
875 case lltok::kw_typeidCompatibleVTable:
876 result = parseTypeIdCompatibleVtableEntry(SummaryID);
877 break;
878 case lltok::kw_flags:
879 result = parseSummaryIndexFlags();
880 break;
881 case lltok::kw_blockcount:
882 result = parseBlockCount();
883 break;
884 default:
885 result = error(Lex.getLoc(), "unexpected summary kind");
886 break;
888 Lex.setIgnoreColonInIdentifiers(false);
889 return result;
892 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
893 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
894 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
897 // If there was an explicit dso_local, update GV. In the absence of an explicit
898 // dso_local we keep the default value.
899 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
900 if (DSOLocal)
901 GV.setDSOLocal(true);
904 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1,
905 Type *Ty2) {
906 std::string ErrString;
907 raw_string_ostream ErrOS(ErrString);
908 ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")";
909 return ErrOS.str();
912 /// parseIndirectSymbol:
913 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
914 /// OptionalVisibility OptionalDLLStorageClass
915 /// OptionalThreadLocal OptionalUnnamedAddr
916 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
918 /// IndirectSymbol
919 /// ::= TypeAndValue
921 /// IndirectSymbolAttr
922 /// ::= ',' 'partition' StringConstant
924 /// Everything through OptionalUnnamedAddr has already been parsed.
926 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
927 unsigned L, unsigned Visibility,
928 unsigned DLLStorageClass, bool DSOLocal,
929 GlobalVariable::ThreadLocalMode TLM,
930 GlobalVariable::UnnamedAddr UnnamedAddr) {
931 bool IsAlias;
932 if (Lex.getKind() == lltok::kw_alias)
933 IsAlias = true;
934 else if (Lex.getKind() == lltok::kw_ifunc)
935 IsAlias = false;
936 else
937 llvm_unreachable("Not an alias or ifunc!");
938 Lex.Lex();
940 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
942 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
943 return error(NameLoc, "invalid linkage type for alias");
945 if (!isValidVisibilityForLinkage(Visibility, L))
946 return error(NameLoc,
947 "symbol with local linkage must have default visibility");
949 Type *Ty;
950 LocTy ExplicitTypeLoc = Lex.getLoc();
951 if (parseType(Ty) ||
952 parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
953 return true;
955 Constant *Aliasee;
956 LocTy AliaseeLoc = Lex.getLoc();
957 if (Lex.getKind() != lltok::kw_bitcast &&
958 Lex.getKind() != lltok::kw_getelementptr &&
959 Lex.getKind() != lltok::kw_addrspacecast &&
960 Lex.getKind() != lltok::kw_inttoptr) {
961 if (parseGlobalTypeAndValue(Aliasee))
962 return true;
963 } else {
964 // The bitcast dest type is not present, it is implied by the dest type.
965 ValID ID;
966 if (parseValID(ID, /*PFS=*/nullptr))
967 return true;
968 if (ID.Kind != ValID::t_Constant)
969 return error(AliaseeLoc, "invalid aliasee");
970 Aliasee = ID.ConstantVal;
973 Type *AliaseeType = Aliasee->getType();
974 auto *PTy = dyn_cast<PointerType>(AliaseeType);
975 if (!PTy)
976 return error(AliaseeLoc, "An alias or ifunc must have pointer type");
977 unsigned AddrSpace = PTy->getAddressSpace();
979 if (IsAlias && !PTy->isOpaqueOrPointeeTypeMatches(Ty)) {
980 return error(
981 ExplicitTypeLoc,
982 typeComparisonErrorMessage(
983 "explicit pointee type doesn't match operand's pointee type", Ty,
984 PTy->getElementType()));
987 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) {
988 return error(ExplicitTypeLoc,
989 "explicit pointee type should be a function type");
992 GlobalValue *GVal = nullptr;
994 // See if the alias was forward referenced, if so, prepare to replace the
995 // forward reference.
996 if (!Name.empty()) {
997 auto I = ForwardRefVals.find(Name);
998 if (I != ForwardRefVals.end()) {
999 GVal = I->second.first;
1000 ForwardRefVals.erase(Name);
1001 } else if (M->getNamedValue(Name)) {
1002 return error(NameLoc, "redefinition of global '@" + Name + "'");
1004 } else {
1005 auto I = ForwardRefValIDs.find(NumberedVals.size());
1006 if (I != ForwardRefValIDs.end()) {
1007 GVal = I->second.first;
1008 ForwardRefValIDs.erase(I);
1012 // Okay, create the alias but do not insert it into the module yet.
1013 std::unique_ptr<GlobalIndirectSymbol> GA;
1014 if (IsAlias)
1015 GA.reset(GlobalAlias::create(Ty, AddrSpace,
1016 (GlobalValue::LinkageTypes)Linkage, Name,
1017 Aliasee, /*Parent*/ nullptr));
1018 else
1019 GA.reset(GlobalIFunc::create(Ty, AddrSpace,
1020 (GlobalValue::LinkageTypes)Linkage, Name,
1021 Aliasee, /*Parent*/ nullptr));
1022 GA->setThreadLocalMode(TLM);
1023 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1024 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1025 GA->setUnnamedAddr(UnnamedAddr);
1026 maybeSetDSOLocal(DSOLocal, *GA);
1028 // At this point we've parsed everything except for the IndirectSymbolAttrs.
1029 // Now parse them if there are any.
1030 while (Lex.getKind() == lltok::comma) {
1031 Lex.Lex();
1033 if (Lex.getKind() == lltok::kw_partition) {
1034 Lex.Lex();
1035 GA->setPartition(Lex.getStrVal());
1036 if (parseToken(lltok::StringConstant, "expected partition string"))
1037 return true;
1038 } else {
1039 return tokError("unknown alias or ifunc property!");
1043 if (Name.empty())
1044 NumberedVals.push_back(GA.get());
1046 if (GVal) {
1047 // Verify that types agree.
1048 if (GVal->getType() != GA->getType())
1049 return error(
1050 ExplicitTypeLoc,
1051 "forward reference and definition of alias have different types");
1053 // If they agree, just RAUW the old value with the alias and remove the
1054 // forward ref info.
1055 GVal->replaceAllUsesWith(GA.get());
1056 GVal->eraseFromParent();
1059 // Insert into the module, we know its name won't collide now.
1060 if (IsAlias)
1061 M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1062 else
1063 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1064 assert(GA->getName() == Name && "Should not be a name conflict!");
1066 // The module owns this now
1067 GA.release();
1069 return false;
1072 /// parseGlobal
1073 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1074 /// OptionalVisibility OptionalDLLStorageClass
1075 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1076 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1077 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1078 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1079 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1080 /// Const OptionalAttrs
1082 /// Everything up to and including OptionalUnnamedAddr has been parsed
1083 /// already.
1085 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1086 unsigned Linkage, bool HasLinkage,
1087 unsigned Visibility, unsigned DLLStorageClass,
1088 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1089 GlobalVariable::UnnamedAddr UnnamedAddr) {
1090 if (!isValidVisibilityForLinkage(Visibility, Linkage))
1091 return error(NameLoc,
1092 "symbol with local linkage must have default visibility");
1094 unsigned AddrSpace;
1095 bool IsConstant, IsExternallyInitialized;
1096 LocTy IsExternallyInitializedLoc;
1097 LocTy TyLoc;
1099 Type *Ty = nullptr;
1100 if (parseOptionalAddrSpace(AddrSpace) ||
1101 parseOptionalToken(lltok::kw_externally_initialized,
1102 IsExternallyInitialized,
1103 &IsExternallyInitializedLoc) ||
1104 parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1105 return true;
1107 // If the linkage is specified and is external, then no initializer is
1108 // present.
1109 Constant *Init = nullptr;
1110 if (!HasLinkage ||
1111 !GlobalValue::isValidDeclarationLinkage(
1112 (GlobalValue::LinkageTypes)Linkage)) {
1113 if (parseGlobalValue(Ty, Init))
1114 return true;
1117 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1118 return error(TyLoc, "invalid type for global variable");
1120 GlobalValue *GVal = nullptr;
1122 // See if the global was forward referenced, if so, use the global.
1123 if (!Name.empty()) {
1124 auto I = ForwardRefVals.find(Name);
1125 if (I != ForwardRefVals.end()) {
1126 GVal = I->second.first;
1127 ForwardRefVals.erase(I);
1128 } else if (M->getNamedValue(Name)) {
1129 return error(NameLoc, "redefinition of global '@" + Name + "'");
1131 } else {
1132 auto I = ForwardRefValIDs.find(NumberedVals.size());
1133 if (I != ForwardRefValIDs.end()) {
1134 GVal = I->second.first;
1135 ForwardRefValIDs.erase(I);
1139 GlobalVariable *GV = new GlobalVariable(
1140 *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1141 GlobalVariable::NotThreadLocal, AddrSpace);
1143 if (Name.empty())
1144 NumberedVals.push_back(GV);
1146 // Set the parsed properties on the global.
1147 if (Init)
1148 GV->setInitializer(Init);
1149 GV->setConstant(IsConstant);
1150 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1151 maybeSetDSOLocal(DSOLocal, *GV);
1152 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1153 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1154 GV->setExternallyInitialized(IsExternallyInitialized);
1155 GV->setThreadLocalMode(TLM);
1156 GV->setUnnamedAddr(UnnamedAddr);
1158 if (GVal) {
1159 if (!GVal->getType()->isOpaque() && GVal->getValueType() != Ty)
1160 return error(
1161 TyLoc,
1162 "forward reference and definition of global have different types");
1164 GVal->replaceAllUsesWith(GV);
1165 GVal->eraseFromParent();
1168 // parse attributes on the global.
1169 while (Lex.getKind() == lltok::comma) {
1170 Lex.Lex();
1172 if (Lex.getKind() == lltok::kw_section) {
1173 Lex.Lex();
1174 GV->setSection(Lex.getStrVal());
1175 if (parseToken(lltok::StringConstant, "expected global section string"))
1176 return true;
1177 } else if (Lex.getKind() == lltok::kw_partition) {
1178 Lex.Lex();
1179 GV->setPartition(Lex.getStrVal());
1180 if (parseToken(lltok::StringConstant, "expected partition string"))
1181 return true;
1182 } else if (Lex.getKind() == lltok::kw_align) {
1183 MaybeAlign Alignment;
1184 if (parseOptionalAlignment(Alignment))
1185 return true;
1186 GV->setAlignment(Alignment);
1187 } else if (Lex.getKind() == lltok::MetadataVar) {
1188 if (parseGlobalObjectMetadataAttachment(*GV))
1189 return true;
1190 } else {
1191 Comdat *C;
1192 if (parseOptionalComdat(Name, C))
1193 return true;
1194 if (C)
1195 GV->setComdat(C);
1196 else
1197 return tokError("unknown global variable property!");
1201 AttrBuilder Attrs;
1202 LocTy BuiltinLoc;
1203 std::vector<unsigned> FwdRefAttrGrps;
1204 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1205 return true;
1206 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1207 GV->setAttributes(AttributeSet::get(Context, Attrs));
1208 ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1211 return false;
1214 /// parseUnnamedAttrGrp
1215 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1216 bool LLParser::parseUnnamedAttrGrp() {
1217 assert(Lex.getKind() == lltok::kw_attributes);
1218 LocTy AttrGrpLoc = Lex.getLoc();
1219 Lex.Lex();
1221 if (Lex.getKind() != lltok::AttrGrpID)
1222 return tokError("expected attribute group id");
1224 unsigned VarID = Lex.getUIntVal();
1225 std::vector<unsigned> unused;
1226 LocTy BuiltinLoc;
1227 Lex.Lex();
1229 if (parseToken(lltok::equal, "expected '=' here") ||
1230 parseToken(lltok::lbrace, "expected '{' here") ||
1231 parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1232 BuiltinLoc) ||
1233 parseToken(lltok::rbrace, "expected end of attribute group"))
1234 return true;
1236 if (!NumberedAttrBuilders[VarID].hasAttributes())
1237 return error(AttrGrpLoc, "attribute group has no attributes");
1239 return false;
1242 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) {
1243 switch (Kind) {
1244 #define GET_ATTR_NAMES
1245 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
1246 case lltok::kw_##DISPLAY_NAME: \
1247 return Attribute::ENUM_NAME;
1248 #include "llvm/IR/Attributes.inc"
1249 default:
1250 return Attribute::None;
1254 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B,
1255 bool InAttrGroup) {
1256 if (Attribute::isTypeAttrKind(Attr))
1257 return parseRequiredTypeAttr(B, Lex.getKind(), Attr);
1259 switch (Attr) {
1260 case Attribute::Alignment: {
1261 MaybeAlign Alignment;
1262 if (InAttrGroup) {
1263 uint32_t Value = 0;
1264 Lex.Lex();
1265 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1266 return true;
1267 Alignment = Align(Value);
1268 } else {
1269 if (parseOptionalAlignment(Alignment, true))
1270 return true;
1272 B.addAlignmentAttr(Alignment);
1273 return false;
1275 case Attribute::StackAlignment: {
1276 unsigned Alignment;
1277 if (InAttrGroup) {
1278 Lex.Lex();
1279 if (parseToken(lltok::equal, "expected '=' here") ||
1280 parseUInt32(Alignment))
1281 return true;
1282 } else {
1283 if (parseOptionalStackAlignment(Alignment))
1284 return true;
1286 B.addStackAlignmentAttr(Alignment);
1287 return false;
1289 case Attribute::AllocSize: {
1290 unsigned ElemSizeArg;
1291 Optional<unsigned> NumElemsArg;
1292 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1293 return true;
1294 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1295 return false;
1297 case Attribute::VScaleRange: {
1298 unsigned MinValue, MaxValue;
1299 if (parseVScaleRangeArguments(MinValue, MaxValue))
1300 return true;
1301 B.addVScaleRangeAttr(MinValue, MaxValue);
1302 return false;
1304 case Attribute::Dereferenceable: {
1305 uint64_t Bytes;
1306 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1307 return true;
1308 B.addDereferenceableAttr(Bytes);
1309 return false;
1311 case Attribute::DereferenceableOrNull: {
1312 uint64_t Bytes;
1313 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1314 return true;
1315 B.addDereferenceableOrNullAttr(Bytes);
1316 return false;
1318 default:
1319 B.addAttribute(Attr);
1320 Lex.Lex();
1321 return false;
1325 /// parseFnAttributeValuePairs
1326 /// ::= <attr> | <attr> '=' <value>
1327 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1328 std::vector<unsigned> &FwdRefAttrGrps,
1329 bool InAttrGrp, LocTy &BuiltinLoc) {
1330 bool HaveError = false;
1332 B.clear();
1334 while (true) {
1335 lltok::Kind Token = Lex.getKind();
1336 if (Token == lltok::rbrace)
1337 return HaveError; // Finished.
1339 if (Token == lltok::StringConstant) {
1340 if (parseStringAttribute(B))
1341 return true;
1342 continue;
1345 if (Token == lltok::AttrGrpID) {
1346 // Allow a function to reference an attribute group:
1348 // define void @foo() #1 { ... }
1349 if (InAttrGrp) {
1350 HaveError |= error(
1351 Lex.getLoc(),
1352 "cannot have an attribute group reference in an attribute group");
1353 } else {
1354 // Save the reference to the attribute group. We'll fill it in later.
1355 FwdRefAttrGrps.push_back(Lex.getUIntVal());
1357 Lex.Lex();
1358 continue;
1361 SMLoc Loc = Lex.getLoc();
1362 if (Token == lltok::kw_builtin)
1363 BuiltinLoc = Loc;
1365 Attribute::AttrKind Attr = tokenToAttribute(Token);
1366 if (Attr == Attribute::None) {
1367 if (!InAttrGrp)
1368 return HaveError;
1369 return error(Lex.getLoc(), "unterminated attribute group");
1372 if (parseEnumAttribute(Attr, B, InAttrGrp))
1373 return true;
1375 // As a hack, we allow function alignment to be initially parsed as an
1376 // attribute on a function declaration/definition or added to an attribute
1377 // group and later moved to the alignment field.
1378 if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment)
1379 HaveError |= error(Loc, "this attribute does not apply to functions");
1383 //===----------------------------------------------------------------------===//
1384 // GlobalValue Reference/Resolution Routines.
1385 //===----------------------------------------------------------------------===//
1387 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1388 // For opaque pointers, the used global type does not matter. We will later
1389 // RAUW it with a global/function of the correct type.
1390 if (PTy->isOpaque())
1391 return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
1392 GlobalValue::ExternalWeakLinkage, nullptr, "",
1393 nullptr, GlobalVariable::NotThreadLocal,
1394 PTy->getAddressSpace());
1396 if (auto *FT = dyn_cast<FunctionType>(PTy->getPointerElementType()))
1397 return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1398 PTy->getAddressSpace(), "", M);
1399 else
1400 return new GlobalVariable(*M, PTy->getPointerElementType(), false,
1401 GlobalValue::ExternalWeakLinkage, nullptr, "",
1402 nullptr, GlobalVariable::NotThreadLocal,
1403 PTy->getAddressSpace());
1406 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1407 Value *Val, bool IsCall) {
1408 Type *ValTy = Val->getType();
1409 if (ValTy == Ty)
1410 return Val;
1411 // For calls, we also allow opaque pointers.
1412 if (IsCall && ValTy == PointerType::get(Ty->getContext(),
1413 Ty->getPointerAddressSpace()))
1414 return Val;
1415 if (Ty->isLabelTy())
1416 error(Loc, "'" + Name + "' is not a basic block");
1417 else
1418 error(Loc, "'" + Name + "' defined with type '" +
1419 getTypeString(Val->getType()) + "' but expected '" +
1420 getTypeString(Ty) + "'");
1421 return nullptr;
1424 /// getGlobalVal - Get a value with the specified name or ID, creating a
1425 /// forward reference record if needed. This can return null if the value
1426 /// exists but does not have the right type.
1427 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1428 LocTy Loc, bool IsCall) {
1429 PointerType *PTy = dyn_cast<PointerType>(Ty);
1430 if (!PTy) {
1431 error(Loc, "global variable reference must have pointer type");
1432 return nullptr;
1435 // Look this name up in the normal function symbol table.
1436 GlobalValue *Val =
1437 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1439 // If this is a forward reference for the value, see if we already created a
1440 // forward ref record.
1441 if (!Val) {
1442 auto I = ForwardRefVals.find(Name);
1443 if (I != ForwardRefVals.end())
1444 Val = I->second.first;
1447 // If we have the value in the symbol table or fwd-ref table, return it.
1448 if (Val)
1449 return cast_or_null<GlobalValue>(
1450 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1452 // Otherwise, create a new forward reference for this value and remember it.
1453 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1454 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1455 return FwdVal;
1458 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1459 bool IsCall) {
1460 PointerType *PTy = dyn_cast<PointerType>(Ty);
1461 if (!PTy) {
1462 error(Loc, "global variable reference must have pointer type");
1463 return nullptr;
1466 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1468 // If this is a forward reference for the value, see if we already created a
1469 // forward ref record.
1470 if (!Val) {
1471 auto I = ForwardRefValIDs.find(ID);
1472 if (I != ForwardRefValIDs.end())
1473 Val = I->second.first;
1476 // If we have the value in the symbol table or fwd-ref table, return it.
1477 if (Val)
1478 return cast_or_null<GlobalValue>(
1479 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1481 // Otherwise, create a new forward reference for this value and remember it.
1482 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1483 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1484 return FwdVal;
1487 //===----------------------------------------------------------------------===//
1488 // Comdat Reference/Resolution Routines.
1489 //===----------------------------------------------------------------------===//
1491 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1492 // Look this name up in the comdat symbol table.
1493 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1494 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1495 if (I != ComdatSymTab.end())
1496 return &I->second;
1498 // Otherwise, create a new forward reference for this value and remember it.
1499 Comdat *C = M->getOrInsertComdat(Name);
1500 ForwardRefComdats[Name] = Loc;
1501 return C;
1504 //===----------------------------------------------------------------------===//
1505 // Helper Routines.
1506 //===----------------------------------------------------------------------===//
1508 /// parseToken - If the current token has the specified kind, eat it and return
1509 /// success. Otherwise, emit the specified error and return failure.
1510 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1511 if (Lex.getKind() != T)
1512 return tokError(ErrMsg);
1513 Lex.Lex();
1514 return false;
1517 /// parseStringConstant
1518 /// ::= StringConstant
1519 bool LLParser::parseStringConstant(std::string &Result) {
1520 if (Lex.getKind() != lltok::StringConstant)
1521 return tokError("expected string constant");
1522 Result = Lex.getStrVal();
1523 Lex.Lex();
1524 return false;
1527 /// parseUInt32
1528 /// ::= uint32
1529 bool LLParser::parseUInt32(uint32_t &Val) {
1530 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1531 return tokError("expected integer");
1532 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1533 if (Val64 != unsigned(Val64))
1534 return tokError("expected 32-bit integer (too large)");
1535 Val = Val64;
1536 Lex.Lex();
1537 return false;
1540 /// parseUInt64
1541 /// ::= uint64
1542 bool LLParser::parseUInt64(uint64_t &Val) {
1543 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1544 return tokError("expected integer");
1545 Val = Lex.getAPSIntVal().getLimitedValue();
1546 Lex.Lex();
1547 return false;
1550 /// parseTLSModel
1551 /// := 'localdynamic'
1552 /// := 'initialexec'
1553 /// := 'localexec'
1554 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1555 switch (Lex.getKind()) {
1556 default:
1557 return tokError("expected localdynamic, initialexec or localexec");
1558 case lltok::kw_localdynamic:
1559 TLM = GlobalVariable::LocalDynamicTLSModel;
1560 break;
1561 case lltok::kw_initialexec:
1562 TLM = GlobalVariable::InitialExecTLSModel;
1563 break;
1564 case lltok::kw_localexec:
1565 TLM = GlobalVariable::LocalExecTLSModel;
1566 break;
1569 Lex.Lex();
1570 return false;
1573 /// parseOptionalThreadLocal
1574 /// := /*empty*/
1575 /// := 'thread_local'
1576 /// := 'thread_local' '(' tlsmodel ')'
1577 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1578 TLM = GlobalVariable::NotThreadLocal;
1579 if (!EatIfPresent(lltok::kw_thread_local))
1580 return false;
1582 TLM = GlobalVariable::GeneralDynamicTLSModel;
1583 if (Lex.getKind() == lltok::lparen) {
1584 Lex.Lex();
1585 return parseTLSModel(TLM) ||
1586 parseToken(lltok::rparen, "expected ')' after thread local model");
1588 return false;
1591 /// parseOptionalAddrSpace
1592 /// := /*empty*/
1593 /// := 'addrspace' '(' uint32 ')'
1594 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1595 AddrSpace = DefaultAS;
1596 if (!EatIfPresent(lltok::kw_addrspace))
1597 return false;
1598 return parseToken(lltok::lparen, "expected '(' in address space") ||
1599 parseUInt32(AddrSpace) ||
1600 parseToken(lltok::rparen, "expected ')' in address space");
1603 /// parseStringAttribute
1604 /// := StringConstant
1605 /// := StringConstant '=' StringConstant
1606 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1607 std::string Attr = Lex.getStrVal();
1608 Lex.Lex();
1609 std::string Val;
1610 if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1611 return true;
1612 B.addAttribute(Attr, Val);
1613 return false;
1616 /// Parse a potentially empty list of parameter or return attributes.
1617 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) {
1618 bool HaveError = false;
1620 B.clear();
1622 while (true) {
1623 lltok::Kind Token = Lex.getKind();
1624 if (Token == lltok::StringConstant) {
1625 if (parseStringAttribute(B))
1626 return true;
1627 continue;
1630 SMLoc Loc = Lex.getLoc();
1631 Attribute::AttrKind Attr = tokenToAttribute(Token);
1632 if (Attr == Attribute::None)
1633 return HaveError;
1635 if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false))
1636 return true;
1638 if (IsParam && !Attribute::canUseAsParamAttr(Attr))
1639 HaveError |= error(Loc, "this attribute does not apply to parameters");
1640 if (!IsParam && !Attribute::canUseAsRetAttr(Attr))
1641 HaveError |= error(Loc, "this attribute does not apply to return values");
1645 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1646 HasLinkage = true;
1647 switch (Kind) {
1648 default:
1649 HasLinkage = false;
1650 return GlobalValue::ExternalLinkage;
1651 case lltok::kw_private:
1652 return GlobalValue::PrivateLinkage;
1653 case lltok::kw_internal:
1654 return GlobalValue::InternalLinkage;
1655 case lltok::kw_weak:
1656 return GlobalValue::WeakAnyLinkage;
1657 case lltok::kw_weak_odr:
1658 return GlobalValue::WeakODRLinkage;
1659 case lltok::kw_linkonce:
1660 return GlobalValue::LinkOnceAnyLinkage;
1661 case lltok::kw_linkonce_odr:
1662 return GlobalValue::LinkOnceODRLinkage;
1663 case lltok::kw_available_externally:
1664 return GlobalValue::AvailableExternallyLinkage;
1665 case lltok::kw_appending:
1666 return GlobalValue::AppendingLinkage;
1667 case lltok::kw_common:
1668 return GlobalValue::CommonLinkage;
1669 case lltok::kw_extern_weak:
1670 return GlobalValue::ExternalWeakLinkage;
1671 case lltok::kw_external:
1672 return GlobalValue::ExternalLinkage;
1676 /// parseOptionalLinkage
1677 /// ::= /*empty*/
1678 /// ::= 'private'
1679 /// ::= 'internal'
1680 /// ::= 'weak'
1681 /// ::= 'weak_odr'
1682 /// ::= 'linkonce'
1683 /// ::= 'linkonce_odr'
1684 /// ::= 'available_externally'
1685 /// ::= 'appending'
1686 /// ::= 'common'
1687 /// ::= 'extern_weak'
1688 /// ::= 'external'
1689 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1690 unsigned &Visibility,
1691 unsigned &DLLStorageClass, bool &DSOLocal) {
1692 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1693 if (HasLinkage)
1694 Lex.Lex();
1695 parseOptionalDSOLocal(DSOLocal);
1696 parseOptionalVisibility(Visibility);
1697 parseOptionalDLLStorageClass(DLLStorageClass);
1699 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1700 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1703 return false;
1706 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
1707 switch (Lex.getKind()) {
1708 default:
1709 DSOLocal = false;
1710 break;
1711 case lltok::kw_dso_local:
1712 DSOLocal = true;
1713 Lex.Lex();
1714 break;
1715 case lltok::kw_dso_preemptable:
1716 DSOLocal = false;
1717 Lex.Lex();
1718 break;
1722 /// parseOptionalVisibility
1723 /// ::= /*empty*/
1724 /// ::= 'default'
1725 /// ::= 'hidden'
1726 /// ::= 'protected'
1728 void LLParser::parseOptionalVisibility(unsigned &Res) {
1729 switch (Lex.getKind()) {
1730 default:
1731 Res = GlobalValue::DefaultVisibility;
1732 return;
1733 case lltok::kw_default:
1734 Res = GlobalValue::DefaultVisibility;
1735 break;
1736 case lltok::kw_hidden:
1737 Res = GlobalValue::HiddenVisibility;
1738 break;
1739 case lltok::kw_protected:
1740 Res = GlobalValue::ProtectedVisibility;
1741 break;
1743 Lex.Lex();
1746 /// parseOptionalDLLStorageClass
1747 /// ::= /*empty*/
1748 /// ::= 'dllimport'
1749 /// ::= 'dllexport'
1751 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
1752 switch (Lex.getKind()) {
1753 default:
1754 Res = GlobalValue::DefaultStorageClass;
1755 return;
1756 case lltok::kw_dllimport:
1757 Res = GlobalValue::DLLImportStorageClass;
1758 break;
1759 case lltok::kw_dllexport:
1760 Res = GlobalValue::DLLExportStorageClass;
1761 break;
1763 Lex.Lex();
1766 /// parseOptionalCallingConv
1767 /// ::= /*empty*/
1768 /// ::= 'ccc'
1769 /// ::= 'fastcc'
1770 /// ::= 'intel_ocl_bicc'
1771 /// ::= 'coldcc'
1772 /// ::= 'cfguard_checkcc'
1773 /// ::= 'x86_stdcallcc'
1774 /// ::= 'x86_fastcallcc'
1775 /// ::= 'x86_thiscallcc'
1776 /// ::= 'x86_vectorcallcc'
1777 /// ::= 'arm_apcscc'
1778 /// ::= 'arm_aapcscc'
1779 /// ::= 'arm_aapcs_vfpcc'
1780 /// ::= 'aarch64_vector_pcs'
1781 /// ::= 'aarch64_sve_vector_pcs'
1782 /// ::= 'msp430_intrcc'
1783 /// ::= 'avr_intrcc'
1784 /// ::= 'avr_signalcc'
1785 /// ::= 'ptx_kernel'
1786 /// ::= 'ptx_device'
1787 /// ::= 'spir_func'
1788 /// ::= 'spir_kernel'
1789 /// ::= 'x86_64_sysvcc'
1790 /// ::= 'win64cc'
1791 /// ::= 'webkit_jscc'
1792 /// ::= 'anyregcc'
1793 /// ::= 'preserve_mostcc'
1794 /// ::= 'preserve_allcc'
1795 /// ::= 'ghccc'
1796 /// ::= 'swiftcc'
1797 /// ::= 'swifttailcc'
1798 /// ::= 'x86_intrcc'
1799 /// ::= 'hhvmcc'
1800 /// ::= 'hhvm_ccc'
1801 /// ::= 'cxx_fast_tlscc'
1802 /// ::= 'amdgpu_vs'
1803 /// ::= 'amdgpu_ls'
1804 /// ::= 'amdgpu_hs'
1805 /// ::= 'amdgpu_es'
1806 /// ::= 'amdgpu_gs'
1807 /// ::= 'amdgpu_ps'
1808 /// ::= 'amdgpu_cs'
1809 /// ::= 'amdgpu_kernel'
1810 /// ::= 'tailcc'
1811 /// ::= 'cc' UINT
1813 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
1814 switch (Lex.getKind()) {
1815 default: CC = CallingConv::C; return false;
1816 case lltok::kw_ccc: CC = CallingConv::C; break;
1817 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
1818 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
1819 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
1820 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
1821 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1822 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break;
1823 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1824 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1825 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
1826 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
1827 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1828 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1829 case lltok::kw_aarch64_sve_vector_pcs:
1830 CC = CallingConv::AArch64_SVE_VectorCall;
1831 break;
1832 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
1833 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break;
1834 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break;
1835 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break;
1836 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break;
1837 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break;
1838 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
1839 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1840 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break;
1841 case lltok::kw_win64cc: CC = CallingConv::Win64; break;
1842 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break;
1843 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break;
1844 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1845 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1846 case lltok::kw_ghccc: CC = CallingConv::GHC; break;
1847 case lltok::kw_swiftcc: CC = CallingConv::Swift; break;
1848 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break;
1849 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break;
1850 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break;
1851 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break;
1852 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1853 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break;
1854 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break;
1855 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break;
1856 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break;
1857 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break;
1858 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break;
1859 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break;
1860 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break;
1861 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break;
1862 case lltok::kw_tailcc: CC = CallingConv::Tail; break;
1863 case lltok::kw_cc: {
1864 Lex.Lex();
1865 return parseUInt32(CC);
1869 Lex.Lex();
1870 return false;
1873 /// parseMetadataAttachment
1874 /// ::= !dbg !42
1875 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1876 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1878 std::string Name = Lex.getStrVal();
1879 Kind = M->getMDKindID(Name);
1880 Lex.Lex();
1882 return parseMDNode(MD);
1885 /// parseInstructionMetadata
1886 /// ::= !dbg !42 (',' !dbg !57)*
1887 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
1888 do {
1889 if (Lex.getKind() != lltok::MetadataVar)
1890 return tokError("expected metadata after comma");
1892 unsigned MDK;
1893 MDNode *N;
1894 if (parseMetadataAttachment(MDK, N))
1895 return true;
1897 Inst.setMetadata(MDK, N);
1898 if (MDK == LLVMContext::MD_tbaa)
1899 InstsWithTBAATag.push_back(&Inst);
1901 // If this is the end of the list, we're done.
1902 } while (EatIfPresent(lltok::comma));
1903 return false;
1906 /// parseGlobalObjectMetadataAttachment
1907 /// ::= !dbg !57
1908 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1909 unsigned MDK;
1910 MDNode *N;
1911 if (parseMetadataAttachment(MDK, N))
1912 return true;
1914 GO.addMetadata(MDK, *N);
1915 return false;
1918 /// parseOptionalFunctionMetadata
1919 /// ::= (!dbg !57)*
1920 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
1921 while (Lex.getKind() == lltok::MetadataVar)
1922 if (parseGlobalObjectMetadataAttachment(F))
1923 return true;
1924 return false;
1927 /// parseOptionalAlignment
1928 /// ::= /* empty */
1929 /// ::= 'align' 4
1930 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
1931 Alignment = None;
1932 if (!EatIfPresent(lltok::kw_align))
1933 return false;
1934 LocTy AlignLoc = Lex.getLoc();
1935 uint32_t Value = 0;
1937 LocTy ParenLoc = Lex.getLoc();
1938 bool HaveParens = false;
1939 if (AllowParens) {
1940 if (EatIfPresent(lltok::lparen))
1941 HaveParens = true;
1944 if (parseUInt32(Value))
1945 return true;
1947 if (HaveParens && !EatIfPresent(lltok::rparen))
1948 return error(ParenLoc, "expected ')'");
1950 if (!isPowerOf2_32(Value))
1951 return error(AlignLoc, "alignment is not a power of two");
1952 if (Value > Value::MaximumAlignment)
1953 return error(AlignLoc, "huge alignments are not supported yet");
1954 Alignment = Align(Value);
1955 return false;
1958 /// parseOptionalDerefAttrBytes
1959 /// ::= /* empty */
1960 /// ::= AttrKind '(' 4 ')'
1962 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1963 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1964 uint64_t &Bytes) {
1965 assert((AttrKind == lltok::kw_dereferenceable ||
1966 AttrKind == lltok::kw_dereferenceable_or_null) &&
1967 "contract!");
1969 Bytes = 0;
1970 if (!EatIfPresent(AttrKind))
1971 return false;
1972 LocTy ParenLoc = Lex.getLoc();
1973 if (!EatIfPresent(lltok::lparen))
1974 return error(ParenLoc, "expected '('");
1975 LocTy DerefLoc = Lex.getLoc();
1976 if (parseUInt64(Bytes))
1977 return true;
1978 ParenLoc = Lex.getLoc();
1979 if (!EatIfPresent(lltok::rparen))
1980 return error(ParenLoc, "expected ')'");
1981 if (!Bytes)
1982 return error(DerefLoc, "dereferenceable bytes must be non-zero");
1983 return false;
1986 /// parseOptionalCommaAlign
1987 /// ::=
1988 /// ::= ',' align 4
1990 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1991 /// end.
1992 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
1993 bool &AteExtraComma) {
1994 AteExtraComma = false;
1995 while (EatIfPresent(lltok::comma)) {
1996 // Metadata at the end is an early exit.
1997 if (Lex.getKind() == lltok::MetadataVar) {
1998 AteExtraComma = true;
1999 return false;
2002 if (Lex.getKind() != lltok::kw_align)
2003 return error(Lex.getLoc(), "expected metadata or 'align'");
2005 if (parseOptionalAlignment(Alignment))
2006 return true;
2009 return false;
2012 /// parseOptionalCommaAddrSpace
2013 /// ::=
2014 /// ::= ',' addrspace(1)
2016 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2017 /// end.
2018 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2019 bool &AteExtraComma) {
2020 AteExtraComma = false;
2021 while (EatIfPresent(lltok::comma)) {
2022 // Metadata at the end is an early exit.
2023 if (Lex.getKind() == lltok::MetadataVar) {
2024 AteExtraComma = true;
2025 return false;
2028 Loc = Lex.getLoc();
2029 if (Lex.getKind() != lltok::kw_addrspace)
2030 return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2032 if (parseOptionalAddrSpace(AddrSpace))
2033 return true;
2036 return false;
2039 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2040 Optional<unsigned> &HowManyArg) {
2041 Lex.Lex();
2043 auto StartParen = Lex.getLoc();
2044 if (!EatIfPresent(lltok::lparen))
2045 return error(StartParen, "expected '('");
2047 if (parseUInt32(BaseSizeArg))
2048 return true;
2050 if (EatIfPresent(lltok::comma)) {
2051 auto HowManyAt = Lex.getLoc();
2052 unsigned HowMany;
2053 if (parseUInt32(HowMany))
2054 return true;
2055 if (HowMany == BaseSizeArg)
2056 return error(HowManyAt,
2057 "'allocsize' indices can't refer to the same parameter");
2058 HowManyArg = HowMany;
2059 } else
2060 HowManyArg = None;
2062 auto EndParen = Lex.getLoc();
2063 if (!EatIfPresent(lltok::rparen))
2064 return error(EndParen, "expected ')'");
2065 return false;
2068 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2069 unsigned &MaxValue) {
2070 Lex.Lex();
2072 auto StartParen = Lex.getLoc();
2073 if (!EatIfPresent(lltok::lparen))
2074 return error(StartParen, "expected '('");
2076 if (parseUInt32(MinValue))
2077 return true;
2079 if (EatIfPresent(lltok::comma)) {
2080 if (parseUInt32(MaxValue))
2081 return true;
2082 } else
2083 MaxValue = MinValue;
2085 auto EndParen = Lex.getLoc();
2086 if (!EatIfPresent(lltok::rparen))
2087 return error(EndParen, "expected ')'");
2088 return false;
2091 /// parseScopeAndOrdering
2092 /// if isAtomic: ::= SyncScope? AtomicOrdering
2093 /// else: ::=
2095 /// This sets Scope and Ordering to the parsed values.
2096 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2097 AtomicOrdering &Ordering) {
2098 if (!IsAtomic)
2099 return false;
2101 return parseScope(SSID) || parseOrdering(Ordering);
2104 /// parseScope
2105 /// ::= syncscope("singlethread" | "<target scope>")?
2107 /// This sets synchronization scope ID to the ID of the parsed value.
2108 bool LLParser::parseScope(SyncScope::ID &SSID) {
2109 SSID = SyncScope::System;
2110 if (EatIfPresent(lltok::kw_syncscope)) {
2111 auto StartParenAt = Lex.getLoc();
2112 if (!EatIfPresent(lltok::lparen))
2113 return error(StartParenAt, "Expected '(' in syncscope");
2115 std::string SSN;
2116 auto SSNAt = Lex.getLoc();
2117 if (parseStringConstant(SSN))
2118 return error(SSNAt, "Expected synchronization scope name");
2120 auto EndParenAt = Lex.getLoc();
2121 if (!EatIfPresent(lltok::rparen))
2122 return error(EndParenAt, "Expected ')' in syncscope");
2124 SSID = Context.getOrInsertSyncScopeID(SSN);
2127 return false;
2130 /// parseOrdering
2131 /// ::= AtomicOrdering
2133 /// This sets Ordering to the parsed value.
2134 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2135 switch (Lex.getKind()) {
2136 default:
2137 return tokError("Expected ordering on atomic instruction");
2138 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2139 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2140 // Not specified yet:
2141 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2142 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2143 case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2144 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2145 case lltok::kw_seq_cst:
2146 Ordering = AtomicOrdering::SequentiallyConsistent;
2147 break;
2149 Lex.Lex();
2150 return false;
2153 /// parseOptionalStackAlignment
2154 /// ::= /* empty */
2155 /// ::= 'alignstack' '(' 4 ')'
2156 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2157 Alignment = 0;
2158 if (!EatIfPresent(lltok::kw_alignstack))
2159 return false;
2160 LocTy ParenLoc = Lex.getLoc();
2161 if (!EatIfPresent(lltok::lparen))
2162 return error(ParenLoc, "expected '('");
2163 LocTy AlignLoc = Lex.getLoc();
2164 if (parseUInt32(Alignment))
2165 return true;
2166 ParenLoc = Lex.getLoc();
2167 if (!EatIfPresent(lltok::rparen))
2168 return error(ParenLoc, "expected ')'");
2169 if (!isPowerOf2_32(Alignment))
2170 return error(AlignLoc, "stack alignment is not a power of two");
2171 return false;
2174 /// parseIndexList - This parses the index list for an insert/extractvalue
2175 /// instruction. This sets AteExtraComma in the case where we eat an extra
2176 /// comma at the end of the line and find that it is followed by metadata.
2177 /// Clients that don't allow metadata can call the version of this function that
2178 /// only takes one argument.
2180 /// parseIndexList
2181 /// ::= (',' uint32)+
2183 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2184 bool &AteExtraComma) {
2185 AteExtraComma = false;
2187 if (Lex.getKind() != lltok::comma)
2188 return tokError("expected ',' as start of index list");
2190 while (EatIfPresent(lltok::comma)) {
2191 if (Lex.getKind() == lltok::MetadataVar) {
2192 if (Indices.empty())
2193 return tokError("expected index");
2194 AteExtraComma = true;
2195 return false;
2197 unsigned Idx = 0;
2198 if (parseUInt32(Idx))
2199 return true;
2200 Indices.push_back(Idx);
2203 return false;
2206 //===----------------------------------------------------------------------===//
2207 // Type Parsing.
2208 //===----------------------------------------------------------------------===//
2210 /// parseType - parse a type.
2211 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2212 SMLoc TypeLoc = Lex.getLoc();
2213 switch (Lex.getKind()) {
2214 default:
2215 return tokError(Msg);
2216 case lltok::Type:
2217 // Type ::= 'float' | 'void' (etc)
2218 Result = Lex.getTyVal();
2219 Lex.Lex();
2220 break;
2221 case lltok::lbrace:
2222 // Type ::= StructType
2223 if (parseAnonStructType(Result, false))
2224 return true;
2225 break;
2226 case lltok::lsquare:
2227 // Type ::= '[' ... ']'
2228 Lex.Lex(); // eat the lsquare.
2229 if (parseArrayVectorType(Result, false))
2230 return true;
2231 break;
2232 case lltok::less: // Either vector or packed struct.
2233 // Type ::= '<' ... '>'
2234 Lex.Lex();
2235 if (Lex.getKind() == lltok::lbrace) {
2236 if (parseAnonStructType(Result, true) ||
2237 parseToken(lltok::greater, "expected '>' at end of packed struct"))
2238 return true;
2239 } else if (parseArrayVectorType(Result, true))
2240 return true;
2241 break;
2242 case lltok::LocalVar: {
2243 // Type ::= %foo
2244 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2246 // If the type hasn't been defined yet, create a forward definition and
2247 // remember where that forward def'n was seen (in case it never is defined).
2248 if (!Entry.first) {
2249 Entry.first = StructType::create(Context, Lex.getStrVal());
2250 Entry.second = Lex.getLoc();
2252 Result = Entry.first;
2253 Lex.Lex();
2254 break;
2257 case lltok::LocalVarID: {
2258 // Type ::= %4
2259 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2261 // If the type hasn't been defined yet, create a forward definition and
2262 // remember where that forward def'n was seen (in case it never is defined).
2263 if (!Entry.first) {
2264 Entry.first = StructType::create(Context);
2265 Entry.second = Lex.getLoc();
2267 Result = Entry.first;
2268 Lex.Lex();
2269 break;
2273 // Handle (explicit) opaque pointer types (not --force-opaque-pointers).
2275 // Type ::= ptr ('addrspace' '(' uint32 ')')?
2276 if (Result->isOpaquePointerTy()) {
2277 unsigned AddrSpace;
2278 if (parseOptionalAddrSpace(AddrSpace))
2279 return true;
2280 Result = PointerType::get(getContext(), AddrSpace);
2282 // Give a nice error for 'ptr*'.
2283 if (Lex.getKind() == lltok::star)
2284 return tokError("ptr* is invalid - use ptr instead");
2286 // Fall through to parsing the type suffixes only if this 'ptr' is a
2287 // function return. Otherwise, return success, implicitly rejecting other
2288 // suffixes.
2289 if (Lex.getKind() != lltok::lparen)
2290 return false;
2293 // parse the type suffixes.
2294 while (true) {
2295 switch (Lex.getKind()) {
2296 // End of type.
2297 default:
2298 if (!AllowVoid && Result->isVoidTy())
2299 return error(TypeLoc, "void type only allowed for function results");
2300 return false;
2302 // Type ::= Type '*'
2303 case lltok::star:
2304 if (Result->isLabelTy())
2305 return tokError("basic block pointers are invalid");
2306 if (Result->isVoidTy())
2307 return tokError("pointers to void are invalid - use i8* instead");
2308 if (!PointerType::isValidElementType(Result))
2309 return tokError("pointer to this type is invalid");
2310 Result = PointerType::getUnqual(Result);
2311 Lex.Lex();
2312 break;
2314 // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2315 case lltok::kw_addrspace: {
2316 if (Result->isLabelTy())
2317 return tokError("basic block pointers are invalid");
2318 if (Result->isVoidTy())
2319 return tokError("pointers to void are invalid; use i8* instead");
2320 if (!PointerType::isValidElementType(Result))
2321 return tokError("pointer to this type is invalid");
2322 unsigned AddrSpace;
2323 if (parseOptionalAddrSpace(AddrSpace) ||
2324 parseToken(lltok::star, "expected '*' in address space"))
2325 return true;
2327 Result = PointerType::get(Result, AddrSpace);
2328 break;
2331 /// Types '(' ArgTypeListI ')' OptFuncAttrs
2332 case lltok::lparen:
2333 if (parseFunctionType(Result))
2334 return true;
2335 break;
2340 /// parseParameterList
2341 /// ::= '(' ')'
2342 /// ::= '(' Arg (',' Arg)* ')'
2343 /// Arg
2344 /// ::= Type OptionalAttributes Value OptionalAttributes
2345 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2346 PerFunctionState &PFS, bool IsMustTailCall,
2347 bool InVarArgsFunc) {
2348 if (parseToken(lltok::lparen, "expected '(' in call"))
2349 return true;
2351 while (Lex.getKind() != lltok::rparen) {
2352 // If this isn't the first argument, we need a comma.
2353 if (!ArgList.empty() &&
2354 parseToken(lltok::comma, "expected ',' in argument list"))
2355 return true;
2357 // parse an ellipsis if this is a musttail call in a variadic function.
2358 if (Lex.getKind() == lltok::dotdotdot) {
2359 const char *Msg = "unexpected ellipsis in argument list for ";
2360 if (!IsMustTailCall)
2361 return tokError(Twine(Msg) + "non-musttail call");
2362 if (!InVarArgsFunc)
2363 return tokError(Twine(Msg) + "musttail call in non-varargs function");
2364 Lex.Lex(); // Lex the '...', it is purely for readability.
2365 return parseToken(lltok::rparen, "expected ')' at end of argument list");
2368 // parse the argument.
2369 LocTy ArgLoc;
2370 Type *ArgTy = nullptr;
2371 AttrBuilder ArgAttrs;
2372 Value *V;
2373 if (parseType(ArgTy, ArgLoc))
2374 return true;
2376 if (ArgTy->isMetadataTy()) {
2377 if (parseMetadataAsValue(V, PFS))
2378 return true;
2379 } else {
2380 // Otherwise, handle normal operands.
2381 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2382 return true;
2384 ArgList.push_back(ParamInfo(
2385 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2388 if (IsMustTailCall && InVarArgsFunc)
2389 return tokError("expected '...' at end of argument list for musttail call "
2390 "in varargs function");
2392 Lex.Lex(); // Lex the ')'.
2393 return false;
2396 /// parseRequiredTypeAttr
2397 /// ::= attrname(<ty>)
2398 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken,
2399 Attribute::AttrKind AttrKind) {
2400 Type *Ty = nullptr;
2401 if (!EatIfPresent(AttrToken))
2402 return true;
2403 if (!EatIfPresent(lltok::lparen))
2404 return error(Lex.getLoc(), "expected '('");
2405 if (parseType(Ty))
2406 return true;
2407 if (!EatIfPresent(lltok::rparen))
2408 return error(Lex.getLoc(), "expected ')'");
2410 B.addTypeAttr(AttrKind, Ty);
2411 return false;
2414 /// parseOptionalOperandBundles
2415 /// ::= /*empty*/
2416 /// ::= '[' OperandBundle [, OperandBundle ]* ']'
2418 /// OperandBundle
2419 /// ::= bundle-tag '(' ')'
2420 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2422 /// bundle-tag ::= String Constant
2423 bool LLParser::parseOptionalOperandBundles(
2424 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2425 LocTy BeginLoc = Lex.getLoc();
2426 if (!EatIfPresent(lltok::lsquare))
2427 return false;
2429 while (Lex.getKind() != lltok::rsquare) {
2430 // If this isn't the first operand bundle, we need a comma.
2431 if (!BundleList.empty() &&
2432 parseToken(lltok::comma, "expected ',' in input list"))
2433 return true;
2435 std::string Tag;
2436 if (parseStringConstant(Tag))
2437 return true;
2439 if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2440 return true;
2442 std::vector<Value *> Inputs;
2443 while (Lex.getKind() != lltok::rparen) {
2444 // If this isn't the first input, we need a comma.
2445 if (!Inputs.empty() &&
2446 parseToken(lltok::comma, "expected ',' in input list"))
2447 return true;
2449 Type *Ty = nullptr;
2450 Value *Input = nullptr;
2451 if (parseType(Ty) || parseValue(Ty, Input, PFS))
2452 return true;
2453 Inputs.push_back(Input);
2456 BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2458 Lex.Lex(); // Lex the ')'.
2461 if (BundleList.empty())
2462 return error(BeginLoc, "operand bundle set must not be empty");
2464 Lex.Lex(); // Lex the ']'.
2465 return false;
2468 /// parseArgumentList - parse the argument list for a function type or function
2469 /// prototype.
2470 /// ::= '(' ArgTypeListI ')'
2471 /// ArgTypeListI
2472 /// ::= /*empty*/
2473 /// ::= '...'
2474 /// ::= ArgTypeList ',' '...'
2475 /// ::= ArgType (',' ArgType)*
2477 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2478 bool &IsVarArg) {
2479 unsigned CurValID = 0;
2480 IsVarArg = false;
2481 assert(Lex.getKind() == lltok::lparen);
2482 Lex.Lex(); // eat the (.
2484 if (Lex.getKind() == lltok::rparen) {
2485 // empty
2486 } else if (Lex.getKind() == lltok::dotdotdot) {
2487 IsVarArg = true;
2488 Lex.Lex();
2489 } else {
2490 LocTy TypeLoc = Lex.getLoc();
2491 Type *ArgTy = nullptr;
2492 AttrBuilder Attrs;
2493 std::string Name;
2495 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2496 return true;
2498 if (ArgTy->isVoidTy())
2499 return error(TypeLoc, "argument can not have void type");
2501 if (Lex.getKind() == lltok::LocalVar) {
2502 Name = Lex.getStrVal();
2503 Lex.Lex();
2504 } else if (Lex.getKind() == lltok::LocalVarID) {
2505 if (Lex.getUIntVal() != CurValID)
2506 return error(TypeLoc, "argument expected to be numbered '%" +
2507 Twine(CurValID) + "'");
2508 ++CurValID;
2509 Lex.Lex();
2512 if (!FunctionType::isValidArgumentType(ArgTy))
2513 return error(TypeLoc, "invalid type for function argument");
2515 ArgList.emplace_back(TypeLoc, ArgTy,
2516 AttributeSet::get(ArgTy->getContext(), Attrs),
2517 std::move(Name));
2519 while (EatIfPresent(lltok::comma)) {
2520 // Handle ... at end of arg list.
2521 if (EatIfPresent(lltok::dotdotdot)) {
2522 IsVarArg = true;
2523 break;
2526 // Otherwise must be an argument type.
2527 TypeLoc = Lex.getLoc();
2528 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2529 return true;
2531 if (ArgTy->isVoidTy())
2532 return error(TypeLoc, "argument can not have void type");
2534 if (Lex.getKind() == lltok::LocalVar) {
2535 Name = Lex.getStrVal();
2536 Lex.Lex();
2537 } else {
2538 if (Lex.getKind() == lltok::LocalVarID) {
2539 if (Lex.getUIntVal() != CurValID)
2540 return error(TypeLoc, "argument expected to be numbered '%" +
2541 Twine(CurValID) + "'");
2542 Lex.Lex();
2544 ++CurValID;
2545 Name = "";
2548 if (!ArgTy->isFirstClassType())
2549 return error(TypeLoc, "invalid type for function argument");
2551 ArgList.emplace_back(TypeLoc, ArgTy,
2552 AttributeSet::get(ArgTy->getContext(), Attrs),
2553 std::move(Name));
2557 return parseToken(lltok::rparen, "expected ')' at end of argument list");
2560 /// parseFunctionType
2561 /// ::= Type ArgumentList OptionalAttrs
2562 bool LLParser::parseFunctionType(Type *&Result) {
2563 assert(Lex.getKind() == lltok::lparen);
2565 if (!FunctionType::isValidReturnType(Result))
2566 return tokError("invalid function return type");
2568 SmallVector<ArgInfo, 8> ArgList;
2569 bool IsVarArg;
2570 if (parseArgumentList(ArgList, IsVarArg))
2571 return true;
2573 // Reject names on the arguments lists.
2574 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2575 if (!ArgList[i].Name.empty())
2576 return error(ArgList[i].Loc, "argument name invalid in function type");
2577 if (ArgList[i].Attrs.hasAttributes())
2578 return error(ArgList[i].Loc,
2579 "argument attributes invalid in function type");
2582 SmallVector<Type*, 16> ArgListTy;
2583 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2584 ArgListTy.push_back(ArgList[i].Ty);
2586 Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2587 return false;
2590 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2591 /// other structs.
2592 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2593 SmallVector<Type*, 8> Elts;
2594 if (parseStructBody(Elts))
2595 return true;
2597 Result = StructType::get(Context, Elts, Packed);
2598 return false;
2601 /// parseStructDefinition - parse a struct in a 'type' definition.
2602 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2603 std::pair<Type *, LocTy> &Entry,
2604 Type *&ResultTy) {
2605 // If the type was already defined, diagnose the redefinition.
2606 if (Entry.first && !Entry.second.isValid())
2607 return error(TypeLoc, "redefinition of type");
2609 // If we have opaque, just return without filling in the definition for the
2610 // struct. This counts as a definition as far as the .ll file goes.
2611 if (EatIfPresent(lltok::kw_opaque)) {
2612 // This type is being defined, so clear the location to indicate this.
2613 Entry.second = SMLoc();
2615 // If this type number has never been uttered, create it.
2616 if (!Entry.first)
2617 Entry.first = StructType::create(Context, Name);
2618 ResultTy = Entry.first;
2619 return false;
2622 // If the type starts with '<', then it is either a packed struct or a vector.
2623 bool isPacked = EatIfPresent(lltok::less);
2625 // If we don't have a struct, then we have a random type alias, which we
2626 // accept for compatibility with old files. These types are not allowed to be
2627 // forward referenced and not allowed to be recursive.
2628 if (Lex.getKind() != lltok::lbrace) {
2629 if (Entry.first)
2630 return error(TypeLoc, "forward references to non-struct type");
2632 ResultTy = nullptr;
2633 if (isPacked)
2634 return parseArrayVectorType(ResultTy, true);
2635 return parseType(ResultTy);
2638 // This type is being defined, so clear the location to indicate this.
2639 Entry.second = SMLoc();
2641 // If this type number has never been uttered, create it.
2642 if (!Entry.first)
2643 Entry.first = StructType::create(Context, Name);
2645 StructType *STy = cast<StructType>(Entry.first);
2647 SmallVector<Type*, 8> Body;
2648 if (parseStructBody(Body) ||
2649 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2650 return true;
2652 STy->setBody(Body, isPacked);
2653 ResultTy = STy;
2654 return false;
2657 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere.
2658 /// StructType
2659 /// ::= '{' '}'
2660 /// ::= '{' Type (',' Type)* '}'
2661 /// ::= '<' '{' '}' '>'
2662 /// ::= '<' '{' Type (',' Type)* '}' '>'
2663 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2664 assert(Lex.getKind() == lltok::lbrace);
2665 Lex.Lex(); // Consume the '{'
2667 // Handle the empty struct.
2668 if (EatIfPresent(lltok::rbrace))
2669 return false;
2671 LocTy EltTyLoc = Lex.getLoc();
2672 Type *Ty = nullptr;
2673 if (parseType(Ty))
2674 return true;
2675 Body.push_back(Ty);
2677 if (!StructType::isValidElementType(Ty))
2678 return error(EltTyLoc, "invalid element type for struct");
2680 while (EatIfPresent(lltok::comma)) {
2681 EltTyLoc = Lex.getLoc();
2682 if (parseType(Ty))
2683 return true;
2685 if (!StructType::isValidElementType(Ty))
2686 return error(EltTyLoc, "invalid element type for struct");
2688 Body.push_back(Ty);
2691 return parseToken(lltok::rbrace, "expected '}' at end of struct");
2694 /// parseArrayVectorType - parse an array or vector type, assuming the first
2695 /// token has already been consumed.
2696 /// Type
2697 /// ::= '[' APSINTVAL 'x' Types ']'
2698 /// ::= '<' APSINTVAL 'x' Types '>'
2699 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2700 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
2701 bool Scalable = false;
2703 if (IsVector && Lex.getKind() == lltok::kw_vscale) {
2704 Lex.Lex(); // consume the 'vscale'
2705 if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
2706 return true;
2708 Scalable = true;
2711 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2712 Lex.getAPSIntVal().getBitWidth() > 64)
2713 return tokError("expected number in address space");
2715 LocTy SizeLoc = Lex.getLoc();
2716 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2717 Lex.Lex();
2719 if (parseToken(lltok::kw_x, "expected 'x' after element count"))
2720 return true;
2722 LocTy TypeLoc = Lex.getLoc();
2723 Type *EltTy = nullptr;
2724 if (parseType(EltTy))
2725 return true;
2727 if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
2728 "expected end of sequential type"))
2729 return true;
2731 if (IsVector) {
2732 if (Size == 0)
2733 return error(SizeLoc, "zero element vector is illegal");
2734 if ((unsigned)Size != Size)
2735 return error(SizeLoc, "size too large for vector");
2736 if (!VectorType::isValidElementType(EltTy))
2737 return error(TypeLoc, "invalid vector element type");
2738 Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2739 } else {
2740 if (!ArrayType::isValidElementType(EltTy))
2741 return error(TypeLoc, "invalid array element type");
2742 Result = ArrayType::get(EltTy, Size);
2744 return false;
2747 //===----------------------------------------------------------------------===//
2748 // Function Semantic Analysis.
2749 //===----------------------------------------------------------------------===//
2751 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2752 int functionNumber)
2753 : P(p), F(f), FunctionNumber(functionNumber) {
2755 // Insert unnamed arguments into the NumberedVals list.
2756 for (Argument &A : F.args())
2757 if (!A.hasName())
2758 NumberedVals.push_back(&A);
2761 LLParser::PerFunctionState::~PerFunctionState() {
2762 // If there were any forward referenced non-basicblock values, delete them.
2764 for (const auto &P : ForwardRefVals) {
2765 if (isa<BasicBlock>(P.second.first))
2766 continue;
2767 P.second.first->replaceAllUsesWith(
2768 UndefValue::get(P.second.first->getType()));
2769 P.second.first->deleteValue();
2772 for (const auto &P : ForwardRefValIDs) {
2773 if (isa<BasicBlock>(P.second.first))
2774 continue;
2775 P.second.first->replaceAllUsesWith(
2776 UndefValue::get(P.second.first->getType()));
2777 P.second.first->deleteValue();
2781 bool LLParser::PerFunctionState::finishFunction() {
2782 if (!ForwardRefVals.empty())
2783 return P.error(ForwardRefVals.begin()->second.second,
2784 "use of undefined value '%" + ForwardRefVals.begin()->first +
2785 "'");
2786 if (!ForwardRefValIDs.empty())
2787 return P.error(ForwardRefValIDs.begin()->second.second,
2788 "use of undefined value '%" +
2789 Twine(ForwardRefValIDs.begin()->first) + "'");
2790 return false;
2793 /// getVal - Get a value with the specified name or ID, creating a
2794 /// forward reference record if needed. This can return null if the value
2795 /// exists but does not have the right type.
2796 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
2797 LocTy Loc, bool IsCall) {
2798 // Look this name up in the normal function symbol table.
2799 Value *Val = F.getValueSymbolTable()->lookup(Name);
2801 // If this is a forward reference for the value, see if we already created a
2802 // forward ref record.
2803 if (!Val) {
2804 auto I = ForwardRefVals.find(Name);
2805 if (I != ForwardRefVals.end())
2806 Val = I->second.first;
2809 // If we have the value in the symbol table or fwd-ref table, return it.
2810 if (Val)
2811 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2813 // Don't make placeholders with invalid type.
2814 if (!Ty->isFirstClassType()) {
2815 P.error(Loc, "invalid use of a non-first-class type");
2816 return nullptr;
2819 // Otherwise, create a new forward reference for this value and remember it.
2820 Value *FwdVal;
2821 if (Ty->isLabelTy()) {
2822 FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2823 } else {
2824 FwdVal = new Argument(Ty, Name);
2827 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2828 return FwdVal;
2831 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc,
2832 bool IsCall) {
2833 // Look this name up in the normal function symbol table.
2834 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2836 // If this is a forward reference for the value, see if we already created a
2837 // forward ref record.
2838 if (!Val) {
2839 auto I = ForwardRefValIDs.find(ID);
2840 if (I != ForwardRefValIDs.end())
2841 Val = I->second.first;
2844 // If we have the value in the symbol table or fwd-ref table, return it.
2845 if (Val)
2846 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2848 if (!Ty->isFirstClassType()) {
2849 P.error(Loc, "invalid use of a non-first-class type");
2850 return nullptr;
2853 // Otherwise, create a new forward reference for this value and remember it.
2854 Value *FwdVal;
2855 if (Ty->isLabelTy()) {
2856 FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2857 } else {
2858 FwdVal = new Argument(Ty);
2861 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2862 return FwdVal;
2865 /// setInstName - After an instruction is parsed and inserted into its
2866 /// basic block, this installs its name.
2867 bool LLParser::PerFunctionState::setInstName(int NameID,
2868 const std::string &NameStr,
2869 LocTy NameLoc, Instruction *Inst) {
2870 // If this instruction has void type, it cannot have a name or ID specified.
2871 if (Inst->getType()->isVoidTy()) {
2872 if (NameID != -1 || !NameStr.empty())
2873 return P.error(NameLoc, "instructions returning void cannot have a name");
2874 return false;
2877 // If this was a numbered instruction, verify that the instruction is the
2878 // expected value and resolve any forward references.
2879 if (NameStr.empty()) {
2880 // If neither a name nor an ID was specified, just use the next ID.
2881 if (NameID == -1)
2882 NameID = NumberedVals.size();
2884 if (unsigned(NameID) != NumberedVals.size())
2885 return P.error(NameLoc, "instruction expected to be numbered '%" +
2886 Twine(NumberedVals.size()) + "'");
2888 auto FI = ForwardRefValIDs.find(NameID);
2889 if (FI != ForwardRefValIDs.end()) {
2890 Value *Sentinel = FI->second.first;
2891 if (Sentinel->getType() != Inst->getType())
2892 return P.error(NameLoc, "instruction forward referenced with type '" +
2893 getTypeString(FI->second.first->getType()) +
2894 "'");
2896 Sentinel->replaceAllUsesWith(Inst);
2897 Sentinel->deleteValue();
2898 ForwardRefValIDs.erase(FI);
2901 NumberedVals.push_back(Inst);
2902 return false;
2905 // Otherwise, the instruction had a name. Resolve forward refs and set it.
2906 auto FI = ForwardRefVals.find(NameStr);
2907 if (FI != ForwardRefVals.end()) {
2908 Value *Sentinel = FI->second.first;
2909 if (Sentinel->getType() != Inst->getType())
2910 return P.error(NameLoc, "instruction forward referenced with type '" +
2911 getTypeString(FI->second.first->getType()) +
2912 "'");
2914 Sentinel->replaceAllUsesWith(Inst);
2915 Sentinel->deleteValue();
2916 ForwardRefVals.erase(FI);
2919 // Set the name on the instruction.
2920 Inst->setName(NameStr);
2922 if (Inst->getName() != NameStr)
2923 return P.error(NameLoc, "multiple definition of local value named '" +
2924 NameStr + "'");
2925 return false;
2928 /// getBB - Get a basic block with the specified name or ID, creating a
2929 /// forward reference record if needed.
2930 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
2931 LocTy Loc) {
2932 return dyn_cast_or_null<BasicBlock>(
2933 getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2936 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
2937 return dyn_cast_or_null<BasicBlock>(
2938 getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2941 /// defineBB - Define the specified basic block, which is either named or
2942 /// unnamed. If there is an error, this returns null otherwise it returns
2943 /// the block being defined.
2944 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
2945 int NameID, LocTy Loc) {
2946 BasicBlock *BB;
2947 if (Name.empty()) {
2948 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
2949 P.error(Loc, "label expected to be numbered '" +
2950 Twine(NumberedVals.size()) + "'");
2951 return nullptr;
2953 BB = getBB(NumberedVals.size(), Loc);
2954 if (!BB) {
2955 P.error(Loc, "unable to create block numbered '" +
2956 Twine(NumberedVals.size()) + "'");
2957 return nullptr;
2959 } else {
2960 BB = getBB(Name, Loc);
2961 if (!BB) {
2962 P.error(Loc, "unable to create block named '" + Name + "'");
2963 return nullptr;
2967 // Move the block to the end of the function. Forward ref'd blocks are
2968 // inserted wherever they happen to be referenced.
2969 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2971 // Remove the block from forward ref sets.
2972 if (Name.empty()) {
2973 ForwardRefValIDs.erase(NumberedVals.size());
2974 NumberedVals.push_back(BB);
2975 } else {
2976 // BB forward references are already in the function symbol table.
2977 ForwardRefVals.erase(Name);
2980 return BB;
2983 //===----------------------------------------------------------------------===//
2984 // Constants.
2985 //===----------------------------------------------------------------------===//
2987 /// parseValID - parse an abstract value that doesn't necessarily have a
2988 /// type implied. For example, if we parse "4" we don't know what integer type
2989 /// it has. The value will later be combined with its type and checked for
2990 /// sanity. PFS is used to convert function-local operands of metadata (since
2991 /// metadata operands are not just parsed here but also converted to values).
2992 /// PFS can be null when we are not parsing metadata values inside a function.
2993 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
2994 ID.Loc = Lex.getLoc();
2995 switch (Lex.getKind()) {
2996 default:
2997 return tokError("expected value token");
2998 case lltok::GlobalID: // @42
2999 ID.UIntVal = Lex.getUIntVal();
3000 ID.Kind = ValID::t_GlobalID;
3001 break;
3002 case lltok::GlobalVar: // @foo
3003 ID.StrVal = Lex.getStrVal();
3004 ID.Kind = ValID::t_GlobalName;
3005 break;
3006 case lltok::LocalVarID: // %42
3007 ID.UIntVal = Lex.getUIntVal();
3008 ID.Kind = ValID::t_LocalID;
3009 break;
3010 case lltok::LocalVar: // %foo
3011 ID.StrVal = Lex.getStrVal();
3012 ID.Kind = ValID::t_LocalName;
3013 break;
3014 case lltok::APSInt:
3015 ID.APSIntVal = Lex.getAPSIntVal();
3016 ID.Kind = ValID::t_APSInt;
3017 break;
3018 case lltok::APFloat:
3019 ID.APFloatVal = Lex.getAPFloatVal();
3020 ID.Kind = ValID::t_APFloat;
3021 break;
3022 case lltok::kw_true:
3023 ID.ConstantVal = ConstantInt::getTrue(Context);
3024 ID.Kind = ValID::t_Constant;
3025 break;
3026 case lltok::kw_false:
3027 ID.ConstantVal = ConstantInt::getFalse(Context);
3028 ID.Kind = ValID::t_Constant;
3029 break;
3030 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3031 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3032 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3033 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3034 case lltok::kw_none: ID.Kind = ValID::t_None; break;
3036 case lltok::lbrace: {
3037 // ValID ::= '{' ConstVector '}'
3038 Lex.Lex();
3039 SmallVector<Constant*, 16> Elts;
3040 if (parseGlobalValueVector(Elts) ||
3041 parseToken(lltok::rbrace, "expected end of struct constant"))
3042 return true;
3044 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3045 ID.UIntVal = Elts.size();
3046 memcpy(ID.ConstantStructElts.get(), Elts.data(),
3047 Elts.size() * sizeof(Elts[0]));
3048 ID.Kind = ValID::t_ConstantStruct;
3049 return false;
3051 case lltok::less: {
3052 // ValID ::= '<' ConstVector '>' --> Vector.
3053 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3054 Lex.Lex();
3055 bool isPackedStruct = EatIfPresent(lltok::lbrace);
3057 SmallVector<Constant*, 16> Elts;
3058 LocTy FirstEltLoc = Lex.getLoc();
3059 if (parseGlobalValueVector(Elts) ||
3060 (isPackedStruct &&
3061 parseToken(lltok::rbrace, "expected end of packed struct")) ||
3062 parseToken(lltok::greater, "expected end of constant"))
3063 return true;
3065 if (isPackedStruct) {
3066 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3067 memcpy(ID.ConstantStructElts.get(), Elts.data(),
3068 Elts.size() * sizeof(Elts[0]));
3069 ID.UIntVal = Elts.size();
3070 ID.Kind = ValID::t_PackedConstantStruct;
3071 return false;
3074 if (Elts.empty())
3075 return error(ID.Loc, "constant vector must not be empty");
3077 if (!Elts[0]->getType()->isIntegerTy() &&
3078 !Elts[0]->getType()->isFloatingPointTy() &&
3079 !Elts[0]->getType()->isPointerTy())
3080 return error(
3081 FirstEltLoc,
3082 "vector elements must have integer, pointer or floating point type");
3084 // Verify that all the vector elements have the same type.
3085 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3086 if (Elts[i]->getType() != Elts[0]->getType())
3087 return error(FirstEltLoc, "vector element #" + Twine(i) +
3088 " is not of type '" +
3089 getTypeString(Elts[0]->getType()));
3091 ID.ConstantVal = ConstantVector::get(Elts);
3092 ID.Kind = ValID::t_Constant;
3093 return false;
3095 case lltok::lsquare: { // Array Constant
3096 Lex.Lex();
3097 SmallVector<Constant*, 16> Elts;
3098 LocTy FirstEltLoc = Lex.getLoc();
3099 if (parseGlobalValueVector(Elts) ||
3100 parseToken(lltok::rsquare, "expected end of array constant"))
3101 return true;
3103 // Handle empty element.
3104 if (Elts.empty()) {
3105 // Use undef instead of an array because it's inconvenient to determine
3106 // the element type at this point, there being no elements to examine.
3107 ID.Kind = ValID::t_EmptyArray;
3108 return false;
3111 if (!Elts[0]->getType()->isFirstClassType())
3112 return error(FirstEltLoc, "invalid array element type: " +
3113 getTypeString(Elts[0]->getType()));
3115 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3117 // Verify all elements are correct type!
3118 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3119 if (Elts[i]->getType() != Elts[0]->getType())
3120 return error(FirstEltLoc, "array element #" + Twine(i) +
3121 " is not of type '" +
3122 getTypeString(Elts[0]->getType()));
3125 ID.ConstantVal = ConstantArray::get(ATy, Elts);
3126 ID.Kind = ValID::t_Constant;
3127 return false;
3129 case lltok::kw_c: // c "foo"
3130 Lex.Lex();
3131 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3132 false);
3133 if (parseToken(lltok::StringConstant, "expected string"))
3134 return true;
3135 ID.Kind = ValID::t_Constant;
3136 return false;
3138 case lltok::kw_asm: {
3139 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3140 // STRINGCONSTANT
3141 bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3142 Lex.Lex();
3143 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3144 parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3145 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3146 parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3147 parseStringConstant(ID.StrVal) ||
3148 parseToken(lltok::comma, "expected comma in inline asm expression") ||
3149 parseToken(lltok::StringConstant, "expected constraint string"))
3150 return true;
3151 ID.StrVal2 = Lex.getStrVal();
3152 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3153 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3154 ID.Kind = ValID::t_InlineAsm;
3155 return false;
3158 case lltok::kw_blockaddress: {
3159 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3160 Lex.Lex();
3162 ValID Fn, Label;
3164 if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3165 parseValID(Fn, PFS) ||
3166 parseToken(lltok::comma,
3167 "expected comma in block address expression") ||
3168 parseValID(Label, PFS) ||
3169 parseToken(lltok::rparen, "expected ')' in block address expression"))
3170 return true;
3172 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3173 return error(Fn.Loc, "expected function name in blockaddress");
3174 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3175 return error(Label.Loc, "expected basic block name in blockaddress");
3177 // Try to find the function (but skip it if it's forward-referenced).
3178 GlobalValue *GV = nullptr;
3179 if (Fn.Kind == ValID::t_GlobalID) {
3180 if (Fn.UIntVal < NumberedVals.size())
3181 GV = NumberedVals[Fn.UIntVal];
3182 } else if (!ForwardRefVals.count(Fn.StrVal)) {
3183 GV = M->getNamedValue(Fn.StrVal);
3185 Function *F = nullptr;
3186 if (GV) {
3187 // Confirm that it's actually a function with a definition.
3188 if (!isa<Function>(GV))
3189 return error(Fn.Loc, "expected function name in blockaddress");
3190 F = cast<Function>(GV);
3191 if (F->isDeclaration())
3192 return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3195 if (!F) {
3196 // Make a global variable as a placeholder for this reference.
3197 GlobalValue *&FwdRef =
3198 ForwardRefBlockAddresses.insert(std::make_pair(
3199 std::move(Fn),
3200 std::map<ValID, GlobalValue *>()))
3201 .first->second.insert(std::make_pair(std::move(Label), nullptr))
3202 .first->second;
3203 if (!FwdRef) {
3204 unsigned FwdDeclAS;
3205 if (ExpectedTy) {
3206 // If we know the type that the blockaddress is being assigned to,
3207 // we can use the address space of that type.
3208 if (!ExpectedTy->isPointerTy())
3209 return error(ID.Loc,
3210 "type of blockaddress must be a pointer and not '" +
3211 getTypeString(ExpectedTy) + "'");
3212 FwdDeclAS = ExpectedTy->getPointerAddressSpace();
3213 } else if (PFS) {
3214 // Otherwise, we default the address space of the current function.
3215 FwdDeclAS = PFS->getFunction().getAddressSpace();
3216 } else {
3217 llvm_unreachable("Unknown address space for blockaddress");
3219 FwdRef = new GlobalVariable(
3220 *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
3221 nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
3224 ID.ConstantVal = FwdRef;
3225 ID.Kind = ValID::t_Constant;
3226 return false;
3229 // We found the function; now find the basic block. Don't use PFS, since we
3230 // might be inside a constant expression.
3231 BasicBlock *BB;
3232 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3233 if (Label.Kind == ValID::t_LocalID)
3234 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3235 else
3236 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3237 if (!BB)
3238 return error(Label.Loc, "referenced value is not a basic block");
3239 } else {
3240 if (Label.Kind == ValID::t_LocalID)
3241 return error(Label.Loc, "cannot take address of numeric label after "
3242 "the function is defined");
3243 BB = dyn_cast_or_null<BasicBlock>(
3244 F->getValueSymbolTable()->lookup(Label.StrVal));
3245 if (!BB)
3246 return error(Label.Loc, "referenced value is not a basic block");
3249 ID.ConstantVal = BlockAddress::get(F, BB);
3250 ID.Kind = ValID::t_Constant;
3251 return false;
3254 case lltok::kw_dso_local_equivalent: {
3255 // ValID ::= 'dso_local_equivalent' @foo
3256 Lex.Lex();
3258 ValID Fn;
3260 if (parseValID(Fn, PFS))
3261 return true;
3263 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3264 return error(Fn.Loc,
3265 "expected global value name in dso_local_equivalent");
3267 // Try to find the function (but skip it if it's forward-referenced).
3268 GlobalValue *GV = nullptr;
3269 if (Fn.Kind == ValID::t_GlobalID) {
3270 if (Fn.UIntVal < NumberedVals.size())
3271 GV = NumberedVals[Fn.UIntVal];
3272 } else if (!ForwardRefVals.count(Fn.StrVal)) {
3273 GV = M->getNamedValue(Fn.StrVal);
3276 assert(GV && "Could not find a corresponding global variable");
3278 if (!GV->getValueType()->isFunctionTy())
3279 return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3280 "in dso_local_equivalent");
3282 ID.ConstantVal = DSOLocalEquivalent::get(GV);
3283 ID.Kind = ValID::t_Constant;
3284 return false;
3287 case lltok::kw_trunc:
3288 case lltok::kw_zext:
3289 case lltok::kw_sext:
3290 case lltok::kw_fptrunc:
3291 case lltok::kw_fpext:
3292 case lltok::kw_bitcast:
3293 case lltok::kw_addrspacecast:
3294 case lltok::kw_uitofp:
3295 case lltok::kw_sitofp:
3296 case lltok::kw_fptoui:
3297 case lltok::kw_fptosi:
3298 case lltok::kw_inttoptr:
3299 case lltok::kw_ptrtoint: {
3300 unsigned Opc = Lex.getUIntVal();
3301 Type *DestTy = nullptr;
3302 Constant *SrcVal;
3303 Lex.Lex();
3304 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3305 parseGlobalTypeAndValue(SrcVal) ||
3306 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3307 parseType(DestTy) ||
3308 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3309 return true;
3310 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3311 return error(ID.Loc, "invalid cast opcode for cast from '" +
3312 getTypeString(SrcVal->getType()) + "' to '" +
3313 getTypeString(DestTy) + "'");
3314 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3315 SrcVal, DestTy);
3316 ID.Kind = ValID::t_Constant;
3317 return false;
3319 case lltok::kw_extractvalue: {
3320 Lex.Lex();
3321 Constant *Val;
3322 SmallVector<unsigned, 4> Indices;
3323 if (parseToken(lltok::lparen,
3324 "expected '(' in extractvalue constantexpr") ||
3325 parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3326 parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3327 return true;
3329 if (!Val->getType()->isAggregateType())
3330 return error(ID.Loc, "extractvalue operand must be aggregate type");
3331 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3332 return error(ID.Loc, "invalid indices for extractvalue");
3333 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3334 ID.Kind = ValID::t_Constant;
3335 return false;
3337 case lltok::kw_insertvalue: {
3338 Lex.Lex();
3339 Constant *Val0, *Val1;
3340 SmallVector<unsigned, 4> Indices;
3341 if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3342 parseGlobalTypeAndValue(Val0) ||
3343 parseToken(lltok::comma,
3344 "expected comma in insertvalue constantexpr") ||
3345 parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3346 parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3347 return true;
3348 if (!Val0->getType()->isAggregateType())
3349 return error(ID.Loc, "insertvalue operand must be aggregate type");
3350 Type *IndexedType =
3351 ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3352 if (!IndexedType)
3353 return error(ID.Loc, "invalid indices for insertvalue");
3354 if (IndexedType != Val1->getType())
3355 return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3356 getTypeString(Val1->getType()) +
3357 "' instead of '" + getTypeString(IndexedType) +
3358 "'");
3359 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3360 ID.Kind = ValID::t_Constant;
3361 return false;
3363 case lltok::kw_icmp:
3364 case lltok::kw_fcmp: {
3365 unsigned PredVal, Opc = Lex.getUIntVal();
3366 Constant *Val0, *Val1;
3367 Lex.Lex();
3368 if (parseCmpPredicate(PredVal, Opc) ||
3369 parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3370 parseGlobalTypeAndValue(Val0) ||
3371 parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3372 parseGlobalTypeAndValue(Val1) ||
3373 parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3374 return true;
3376 if (Val0->getType() != Val1->getType())
3377 return error(ID.Loc, "compare operands must have the same type");
3379 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3381 if (Opc == Instruction::FCmp) {
3382 if (!Val0->getType()->isFPOrFPVectorTy())
3383 return error(ID.Loc, "fcmp requires floating point operands");
3384 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3385 } else {
3386 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3387 if (!Val0->getType()->isIntOrIntVectorTy() &&
3388 !Val0->getType()->isPtrOrPtrVectorTy())
3389 return error(ID.Loc, "icmp requires pointer or integer operands");
3390 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3392 ID.Kind = ValID::t_Constant;
3393 return false;
3396 // Unary Operators.
3397 case lltok::kw_fneg: {
3398 unsigned Opc = Lex.getUIntVal();
3399 Constant *Val;
3400 Lex.Lex();
3401 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3402 parseGlobalTypeAndValue(Val) ||
3403 parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3404 return true;
3406 // Check that the type is valid for the operator.
3407 switch (Opc) {
3408 case Instruction::FNeg:
3409 if (!Val->getType()->isFPOrFPVectorTy())
3410 return error(ID.Loc, "constexpr requires fp operands");
3411 break;
3412 default: llvm_unreachable("Unknown unary operator!");
3414 unsigned Flags = 0;
3415 Constant *C = ConstantExpr::get(Opc, Val, Flags);
3416 ID.ConstantVal = C;
3417 ID.Kind = ValID::t_Constant;
3418 return false;
3420 // Binary Operators.
3421 case lltok::kw_add:
3422 case lltok::kw_fadd:
3423 case lltok::kw_sub:
3424 case lltok::kw_fsub:
3425 case lltok::kw_mul:
3426 case lltok::kw_fmul:
3427 case lltok::kw_udiv:
3428 case lltok::kw_sdiv:
3429 case lltok::kw_fdiv:
3430 case lltok::kw_urem:
3431 case lltok::kw_srem:
3432 case lltok::kw_frem:
3433 case lltok::kw_shl:
3434 case lltok::kw_lshr:
3435 case lltok::kw_ashr: {
3436 bool NUW = false;
3437 bool NSW = false;
3438 bool Exact = false;
3439 unsigned Opc = Lex.getUIntVal();
3440 Constant *Val0, *Val1;
3441 Lex.Lex();
3442 if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3443 Opc == Instruction::Mul || Opc == Instruction::Shl) {
3444 if (EatIfPresent(lltok::kw_nuw))
3445 NUW = true;
3446 if (EatIfPresent(lltok::kw_nsw)) {
3447 NSW = true;
3448 if (EatIfPresent(lltok::kw_nuw))
3449 NUW = true;
3451 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3452 Opc == Instruction::LShr || Opc == Instruction::AShr) {
3453 if (EatIfPresent(lltok::kw_exact))
3454 Exact = true;
3456 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3457 parseGlobalTypeAndValue(Val0) ||
3458 parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3459 parseGlobalTypeAndValue(Val1) ||
3460 parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3461 return true;
3462 if (Val0->getType() != Val1->getType())
3463 return error(ID.Loc, "operands of constexpr must have same type");
3464 // Check that the type is valid for the operator.
3465 switch (Opc) {
3466 case Instruction::Add:
3467 case Instruction::Sub:
3468 case Instruction::Mul:
3469 case Instruction::UDiv:
3470 case Instruction::SDiv:
3471 case Instruction::URem:
3472 case Instruction::SRem:
3473 case Instruction::Shl:
3474 case Instruction::AShr:
3475 case Instruction::LShr:
3476 if (!Val0->getType()->isIntOrIntVectorTy())
3477 return error(ID.Loc, "constexpr requires integer operands");
3478 break;
3479 case Instruction::FAdd:
3480 case Instruction::FSub:
3481 case Instruction::FMul:
3482 case Instruction::FDiv:
3483 case Instruction::FRem:
3484 if (!Val0->getType()->isFPOrFPVectorTy())
3485 return error(ID.Loc, "constexpr requires fp operands");
3486 break;
3487 default: llvm_unreachable("Unknown binary operator!");
3489 unsigned Flags = 0;
3490 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3491 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
3492 if (Exact) Flags |= PossiblyExactOperator::IsExact;
3493 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3494 ID.ConstantVal = C;
3495 ID.Kind = ValID::t_Constant;
3496 return false;
3499 // Logical Operations
3500 case lltok::kw_and:
3501 case lltok::kw_or:
3502 case lltok::kw_xor: {
3503 unsigned Opc = Lex.getUIntVal();
3504 Constant *Val0, *Val1;
3505 Lex.Lex();
3506 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3507 parseGlobalTypeAndValue(Val0) ||
3508 parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3509 parseGlobalTypeAndValue(Val1) ||
3510 parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3511 return true;
3512 if (Val0->getType() != Val1->getType())
3513 return error(ID.Loc, "operands of constexpr must have same type");
3514 if (!Val0->getType()->isIntOrIntVectorTy())
3515 return error(ID.Loc,
3516 "constexpr requires integer or integer vector operands");
3517 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3518 ID.Kind = ValID::t_Constant;
3519 return false;
3522 case lltok::kw_getelementptr:
3523 case lltok::kw_shufflevector:
3524 case lltok::kw_insertelement:
3525 case lltok::kw_extractelement:
3526 case lltok::kw_select: {
3527 unsigned Opc = Lex.getUIntVal();
3528 SmallVector<Constant*, 16> Elts;
3529 bool InBounds = false;
3530 Type *Ty;
3531 Lex.Lex();
3533 if (Opc == Instruction::GetElementPtr)
3534 InBounds = EatIfPresent(lltok::kw_inbounds);
3536 if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3537 return true;
3539 LocTy ExplicitTypeLoc = Lex.getLoc();
3540 if (Opc == Instruction::GetElementPtr) {
3541 if (parseType(Ty) ||
3542 parseToken(lltok::comma, "expected comma after getelementptr's type"))
3543 return true;
3546 Optional<unsigned> InRangeOp;
3547 if (parseGlobalValueVector(
3548 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3549 parseToken(lltok::rparen, "expected ')' in constantexpr"))
3550 return true;
3552 if (Opc == Instruction::GetElementPtr) {
3553 if (Elts.size() == 0 ||
3554 !Elts[0]->getType()->isPtrOrPtrVectorTy())
3555 return error(ID.Loc, "base of getelementptr must be a pointer");
3557 Type *BaseType = Elts[0]->getType();
3558 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3559 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
3560 return error(
3561 ExplicitTypeLoc,
3562 typeComparisonErrorMessage(
3563 "explicit pointee type doesn't match operand's pointee type",
3564 Ty, BasePointerType->getElementType()));
3567 unsigned GEPWidth =
3568 BaseType->isVectorTy()
3569 ? cast<FixedVectorType>(BaseType)->getNumElements()
3570 : 0;
3572 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3573 for (Constant *Val : Indices) {
3574 Type *ValTy = Val->getType();
3575 if (!ValTy->isIntOrIntVectorTy())
3576 return error(ID.Loc, "getelementptr index must be an integer");
3577 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3578 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3579 if (GEPWidth && (ValNumEl != GEPWidth))
3580 return error(
3581 ID.Loc,
3582 "getelementptr vector index has a wrong number of elements");
3583 // GEPWidth may have been unknown because the base is a scalar,
3584 // but it is known now.
3585 GEPWidth = ValNumEl;
3589 SmallPtrSet<Type*, 4> Visited;
3590 if (!Indices.empty() && !Ty->isSized(&Visited))
3591 return error(ID.Loc, "base element of getelementptr must be sized");
3593 if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3594 return error(ID.Loc, "invalid getelementptr indices");
3596 if (InRangeOp) {
3597 if (*InRangeOp == 0)
3598 return error(ID.Loc,
3599 "inrange keyword may not appear on pointer operand");
3600 --*InRangeOp;
3603 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3604 InBounds, InRangeOp);
3605 } else if (Opc == Instruction::Select) {
3606 if (Elts.size() != 3)
3607 return error(ID.Loc, "expected three operands to select");
3608 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3609 Elts[2]))
3610 return error(ID.Loc, Reason);
3611 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3612 } else if (Opc == Instruction::ShuffleVector) {
3613 if (Elts.size() != 3)
3614 return error(ID.Loc, "expected three operands to shufflevector");
3615 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3616 return error(ID.Loc, "invalid operands to shufflevector");
3617 SmallVector<int, 16> Mask;
3618 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3619 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3620 } else if (Opc == Instruction::ExtractElement) {
3621 if (Elts.size() != 2)
3622 return error(ID.Loc, "expected two operands to extractelement");
3623 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3624 return error(ID.Loc, "invalid extractelement operands");
3625 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3626 } else {
3627 assert(Opc == Instruction::InsertElement && "Unknown opcode");
3628 if (Elts.size() != 3)
3629 return error(ID.Loc, "expected three operands to insertelement");
3630 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3631 return error(ID.Loc, "invalid insertelement operands");
3632 ID.ConstantVal =
3633 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3636 ID.Kind = ValID::t_Constant;
3637 return false;
3641 Lex.Lex();
3642 return false;
3645 /// parseGlobalValue - parse a global value with the specified type.
3646 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3647 C = nullptr;
3648 ValID ID;
3649 Value *V = nullptr;
3650 bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
3651 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3652 if (V && !(C = dyn_cast<Constant>(V)))
3653 return error(ID.Loc, "global values must be constants");
3654 return Parsed;
3657 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3658 Type *Ty = nullptr;
3659 return parseType(Ty) || parseGlobalValue(Ty, V);
3662 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3663 C = nullptr;
3665 LocTy KwLoc = Lex.getLoc();
3666 if (!EatIfPresent(lltok::kw_comdat))
3667 return false;
3669 if (EatIfPresent(lltok::lparen)) {
3670 if (Lex.getKind() != lltok::ComdatVar)
3671 return tokError("expected comdat variable");
3672 C = getComdat(Lex.getStrVal(), Lex.getLoc());
3673 Lex.Lex();
3674 if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3675 return true;
3676 } else {
3677 if (GlobalName.empty())
3678 return tokError("comdat cannot be unnamed");
3679 C = getComdat(std::string(GlobalName), KwLoc);
3682 return false;
3685 /// parseGlobalValueVector
3686 /// ::= /*empty*/
3687 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3688 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3689 Optional<unsigned> *InRangeOp) {
3690 // Empty list.
3691 if (Lex.getKind() == lltok::rbrace ||
3692 Lex.getKind() == lltok::rsquare ||
3693 Lex.getKind() == lltok::greater ||
3694 Lex.getKind() == lltok::rparen)
3695 return false;
3697 do {
3698 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3699 *InRangeOp = Elts.size();
3701 Constant *C;
3702 if (parseGlobalTypeAndValue(C))
3703 return true;
3704 Elts.push_back(C);
3705 } while (EatIfPresent(lltok::comma));
3707 return false;
3710 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
3711 SmallVector<Metadata *, 16> Elts;
3712 if (parseMDNodeVector(Elts))
3713 return true;
3715 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3716 return false;
3719 /// MDNode:
3720 /// ::= !{ ... }
3721 /// ::= !7
3722 /// ::= !DILocation(...)
3723 bool LLParser::parseMDNode(MDNode *&N) {
3724 if (Lex.getKind() == lltok::MetadataVar)
3725 return parseSpecializedMDNode(N);
3727 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
3730 bool LLParser::parseMDNodeTail(MDNode *&N) {
3731 // !{ ... }
3732 if (Lex.getKind() == lltok::lbrace)
3733 return parseMDTuple(N);
3735 // !42
3736 return parseMDNodeID(N);
3739 namespace {
3741 /// Structure to represent an optional metadata field.
3742 template <class FieldTy> struct MDFieldImpl {
3743 typedef MDFieldImpl ImplTy;
3744 FieldTy Val;
3745 bool Seen;
3747 void assign(FieldTy Val) {
3748 Seen = true;
3749 this->Val = std::move(Val);
3752 explicit MDFieldImpl(FieldTy Default)
3753 : Val(std::move(Default)), Seen(false) {}
3756 /// Structure to represent an optional metadata field that
3757 /// can be of either type (A or B) and encapsulates the
3758 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3759 /// to reimplement the specifics for representing each Field.
3760 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3761 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3762 FieldTypeA A;
3763 FieldTypeB B;
3764 bool Seen;
3766 enum {
3767 IsInvalid = 0,
3768 IsTypeA = 1,
3769 IsTypeB = 2
3770 } WhatIs;
3772 void assign(FieldTypeA A) {
3773 Seen = true;
3774 this->A = std::move(A);
3775 WhatIs = IsTypeA;
3778 void assign(FieldTypeB B) {
3779 Seen = true;
3780 this->B = std::move(B);
3781 WhatIs = IsTypeB;
3784 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3785 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3786 WhatIs(IsInvalid) {}
3789 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3790 uint64_t Max;
3792 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3793 : ImplTy(Default), Max(Max) {}
3796 struct LineField : public MDUnsignedField {
3797 LineField() : MDUnsignedField(0, UINT32_MAX) {}
3800 struct ColumnField : public MDUnsignedField {
3801 ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3804 struct DwarfTagField : public MDUnsignedField {
3805 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3806 DwarfTagField(dwarf::Tag DefaultTag)
3807 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3810 struct DwarfMacinfoTypeField : public MDUnsignedField {
3811 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3812 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3813 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3816 struct DwarfAttEncodingField : public MDUnsignedField {
3817 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3820 struct DwarfVirtualityField : public MDUnsignedField {
3821 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3824 struct DwarfLangField : public MDUnsignedField {
3825 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3828 struct DwarfCCField : public MDUnsignedField {
3829 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3832 struct EmissionKindField : public MDUnsignedField {
3833 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3836 struct NameTableKindField : public MDUnsignedField {
3837 NameTableKindField()
3838 : MDUnsignedField(
3839 0, (unsigned)
3840 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3843 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3844 DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3847 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3848 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3851 struct MDAPSIntField : public MDFieldImpl<APSInt> {
3852 MDAPSIntField() : ImplTy(APSInt()) {}
3855 struct MDSignedField : public MDFieldImpl<int64_t> {
3856 int64_t Min;
3857 int64_t Max;
3859 MDSignedField(int64_t Default = 0)
3860 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3861 MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3862 : ImplTy(Default), Min(Min), Max(Max) {}
3865 struct MDBoolField : public MDFieldImpl<bool> {
3866 MDBoolField(bool Default = false) : ImplTy(Default) {}
3869 struct MDField : public MDFieldImpl<Metadata *> {
3870 bool AllowNull;
3872 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3875 struct MDStringField : public MDFieldImpl<MDString *> {
3876 bool AllowEmpty;
3877 MDStringField(bool AllowEmpty = true)
3878 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3881 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3882 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3885 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3886 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3889 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3890 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3891 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3893 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3894 bool AllowNull = true)
3895 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3897 bool isMDSignedField() const { return WhatIs == IsTypeA; }
3898 bool isMDField() const { return WhatIs == IsTypeB; }
3899 int64_t getMDSignedValue() const {
3900 assert(isMDSignedField() && "Wrong field type");
3901 return A.Val;
3903 Metadata *getMDFieldValue() const {
3904 assert(isMDField() && "Wrong field type");
3905 return B.Val;
3909 } // end anonymous namespace
3911 namespace llvm {
3913 template <>
3914 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
3915 if (Lex.getKind() != lltok::APSInt)
3916 return tokError("expected integer");
3918 Result.assign(Lex.getAPSIntVal());
3919 Lex.Lex();
3920 return false;
3923 template <>
3924 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
3925 MDUnsignedField &Result) {
3926 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3927 return tokError("expected unsigned integer");
3929 auto &U = Lex.getAPSIntVal();
3930 if (U.ugt(Result.Max))
3931 return tokError("value for '" + Name + "' too large, limit is " +
3932 Twine(Result.Max));
3933 Result.assign(U.getZExtValue());
3934 assert(Result.Val <= Result.Max && "Expected value in range");
3935 Lex.Lex();
3936 return false;
3939 template <>
3940 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3941 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3943 template <>
3944 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3945 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3948 template <>
3949 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3950 if (Lex.getKind() == lltok::APSInt)
3951 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3953 if (Lex.getKind() != lltok::DwarfTag)
3954 return tokError("expected DWARF tag");
3956 unsigned Tag = dwarf::getTag(Lex.getStrVal());
3957 if (Tag == dwarf::DW_TAG_invalid)
3958 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3959 assert(Tag <= Result.Max && "Expected valid DWARF tag");
3961 Result.assign(Tag);
3962 Lex.Lex();
3963 return false;
3966 template <>
3967 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
3968 DwarfMacinfoTypeField &Result) {
3969 if (Lex.getKind() == lltok::APSInt)
3970 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3972 if (Lex.getKind() != lltok::DwarfMacinfo)
3973 return tokError("expected DWARF macinfo type");
3975 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3976 if (Macinfo == dwarf::DW_MACINFO_invalid)
3977 return tokError("invalid DWARF macinfo type" + Twine(" '") +
3978 Lex.getStrVal() + "'");
3979 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3981 Result.assign(Macinfo);
3982 Lex.Lex();
3983 return false;
3986 template <>
3987 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
3988 DwarfVirtualityField &Result) {
3989 if (Lex.getKind() == lltok::APSInt)
3990 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3992 if (Lex.getKind() != lltok::DwarfVirtuality)
3993 return tokError("expected DWARF virtuality code");
3995 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3996 if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3997 return tokError("invalid DWARF virtuality code" + Twine(" '") +
3998 Lex.getStrVal() + "'");
3999 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4000 Result.assign(Virtuality);
4001 Lex.Lex();
4002 return false;
4005 template <>
4006 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4007 if (Lex.getKind() == lltok::APSInt)
4008 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4010 if (Lex.getKind() != lltok::DwarfLang)
4011 return tokError("expected DWARF language");
4013 unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4014 if (!Lang)
4015 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4016 "'");
4017 assert(Lang <= Result.Max && "Expected valid DWARF language");
4018 Result.assign(Lang);
4019 Lex.Lex();
4020 return false;
4023 template <>
4024 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4025 if (Lex.getKind() == lltok::APSInt)
4026 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4028 if (Lex.getKind() != lltok::DwarfCC)
4029 return tokError("expected DWARF calling convention");
4031 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4032 if (!CC)
4033 return tokError("invalid DWARF calling convention" + Twine(" '") +
4034 Lex.getStrVal() + "'");
4035 assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4036 Result.assign(CC);
4037 Lex.Lex();
4038 return false;
4041 template <>
4042 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4043 EmissionKindField &Result) {
4044 if (Lex.getKind() == lltok::APSInt)
4045 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4047 if (Lex.getKind() != lltok::EmissionKind)
4048 return tokError("expected emission kind");
4050 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4051 if (!Kind)
4052 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4053 "'");
4054 assert(*Kind <= Result.Max && "Expected valid emission kind");
4055 Result.assign(*Kind);
4056 Lex.Lex();
4057 return false;
4060 template <>
4061 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4062 NameTableKindField &Result) {
4063 if (Lex.getKind() == lltok::APSInt)
4064 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4066 if (Lex.getKind() != lltok::NameTableKind)
4067 return tokError("expected nameTable kind");
4069 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4070 if (!Kind)
4071 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4072 "'");
4073 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4074 Result.assign((unsigned)*Kind);
4075 Lex.Lex();
4076 return false;
4079 template <>
4080 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4081 DwarfAttEncodingField &Result) {
4082 if (Lex.getKind() == lltok::APSInt)
4083 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4085 if (Lex.getKind() != lltok::DwarfAttEncoding)
4086 return tokError("expected DWARF type attribute encoding");
4088 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4089 if (!Encoding)
4090 return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4091 Lex.getStrVal() + "'");
4092 assert(Encoding <= Result.Max && "Expected valid DWARF language");
4093 Result.assign(Encoding);
4094 Lex.Lex();
4095 return false;
4098 /// DIFlagField
4099 /// ::= uint32
4100 /// ::= DIFlagVector
4101 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4102 template <>
4103 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4105 // parser for a single flag.
4106 auto parseFlag = [&](DINode::DIFlags &Val) {
4107 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4108 uint32_t TempVal = static_cast<uint32_t>(Val);
4109 bool Res = parseUInt32(TempVal);
4110 Val = static_cast<DINode::DIFlags>(TempVal);
4111 return Res;
4114 if (Lex.getKind() != lltok::DIFlag)
4115 return tokError("expected debug info flag");
4117 Val = DINode::getFlag(Lex.getStrVal());
4118 if (!Val)
4119 return tokError(Twine("invalid debug info flag flag '") +
4120 Lex.getStrVal() + "'");
4121 Lex.Lex();
4122 return false;
4125 // parse the flags and combine them together.
4126 DINode::DIFlags Combined = DINode::FlagZero;
4127 do {
4128 DINode::DIFlags Val;
4129 if (parseFlag(Val))
4130 return true;
4131 Combined |= Val;
4132 } while (EatIfPresent(lltok::bar));
4134 Result.assign(Combined);
4135 return false;
4138 /// DISPFlagField
4139 /// ::= uint32
4140 /// ::= DISPFlagVector
4141 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32
4142 template <>
4143 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4145 // parser for a single flag.
4146 auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4147 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4148 uint32_t TempVal = static_cast<uint32_t>(Val);
4149 bool Res = parseUInt32(TempVal);
4150 Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4151 return Res;
4154 if (Lex.getKind() != lltok::DISPFlag)
4155 return tokError("expected debug info flag");
4157 Val = DISubprogram::getFlag(Lex.getStrVal());
4158 if (!Val)
4159 return tokError(Twine("invalid subprogram debug info flag '") +
4160 Lex.getStrVal() + "'");
4161 Lex.Lex();
4162 return false;
4165 // parse the flags and combine them together.
4166 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4167 do {
4168 DISubprogram::DISPFlags Val;
4169 if (parseFlag(Val))
4170 return true;
4171 Combined |= Val;
4172 } while (EatIfPresent(lltok::bar));
4174 Result.assign(Combined);
4175 return false;
4178 template <>
4179 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4180 if (Lex.getKind() != lltok::APSInt)
4181 return tokError("expected signed integer");
4183 auto &S = Lex.getAPSIntVal();
4184 if (S < Result.Min)
4185 return tokError("value for '" + Name + "' too small, limit is " +
4186 Twine(Result.Min));
4187 if (S > Result.Max)
4188 return tokError("value for '" + Name + "' too large, limit is " +
4189 Twine(Result.Max));
4190 Result.assign(S.getExtValue());
4191 assert(Result.Val >= Result.Min && "Expected value in range");
4192 assert(Result.Val <= Result.Max && "Expected value in range");
4193 Lex.Lex();
4194 return false;
4197 template <>
4198 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4199 switch (Lex.getKind()) {
4200 default:
4201 return tokError("expected 'true' or 'false'");
4202 case lltok::kw_true:
4203 Result.assign(true);
4204 break;
4205 case lltok::kw_false:
4206 Result.assign(false);
4207 break;
4209 Lex.Lex();
4210 return false;
4213 template <>
4214 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4215 if (Lex.getKind() == lltok::kw_null) {
4216 if (!Result.AllowNull)
4217 return tokError("'" + Name + "' cannot be null");
4218 Lex.Lex();
4219 Result.assign(nullptr);
4220 return false;
4223 Metadata *MD;
4224 if (parseMetadata(MD, nullptr))
4225 return true;
4227 Result.assign(MD);
4228 return false;
4231 template <>
4232 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4233 MDSignedOrMDField &Result) {
4234 // Try to parse a signed int.
4235 if (Lex.getKind() == lltok::APSInt) {
4236 MDSignedField Res = Result.A;
4237 if (!parseMDField(Loc, Name, Res)) {
4238 Result.assign(Res);
4239 return false;
4241 return true;
4244 // Otherwise, try to parse as an MDField.
4245 MDField Res = Result.B;
4246 if (!parseMDField(Loc, Name, Res)) {
4247 Result.assign(Res);
4248 return false;
4251 return true;
4254 template <>
4255 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4256 LocTy ValueLoc = Lex.getLoc();
4257 std::string S;
4258 if (parseStringConstant(S))
4259 return true;
4261 if (!Result.AllowEmpty && S.empty())
4262 return error(ValueLoc, "'" + Name + "' cannot be empty");
4264 Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4265 return false;
4268 template <>
4269 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4270 SmallVector<Metadata *, 4> MDs;
4271 if (parseMDNodeVector(MDs))
4272 return true;
4274 Result.assign(std::move(MDs));
4275 return false;
4278 template <>
4279 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4280 ChecksumKindField &Result) {
4281 Optional<DIFile::ChecksumKind> CSKind =
4282 DIFile::getChecksumKind(Lex.getStrVal());
4284 if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4285 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4286 "'");
4288 Result.assign(*CSKind);
4289 Lex.Lex();
4290 return false;
4293 } // end namespace llvm
4295 template <class ParserTy>
4296 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4297 do {
4298 if (Lex.getKind() != lltok::LabelStr)
4299 return tokError("expected field label here");
4301 if (ParseField())
4302 return true;
4303 } while (EatIfPresent(lltok::comma));
4305 return false;
4308 template <class ParserTy>
4309 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4310 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4311 Lex.Lex();
4313 if (parseToken(lltok::lparen, "expected '(' here"))
4314 return true;
4315 if (Lex.getKind() != lltok::rparen)
4316 if (parseMDFieldsImplBody(ParseField))
4317 return true;
4319 ClosingLoc = Lex.getLoc();
4320 return parseToken(lltok::rparen, "expected ')' here");
4323 template <class FieldTy>
4324 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4325 if (Result.Seen)
4326 return tokError("field '" + Name + "' cannot be specified more than once");
4328 LocTy Loc = Lex.getLoc();
4329 Lex.Lex();
4330 return parseMDField(Loc, Name, Result);
4333 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4334 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4336 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
4337 if (Lex.getStrVal() == #CLASS) \
4338 return parse##CLASS(N, IsDistinct);
4339 #include "llvm/IR/Metadata.def"
4341 return tokError("expected metadata type");
4344 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4345 #define NOP_FIELD(NAME, TYPE, INIT)
4346 #define REQUIRE_FIELD(NAME, TYPE, INIT) \
4347 if (!NAME.Seen) \
4348 return error(ClosingLoc, "missing required field '" #NAME "'");
4349 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \
4350 if (Lex.getStrVal() == #NAME) \
4351 return parseMDField(#NAME, NAME);
4352 #define PARSE_MD_FIELDS() \
4353 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \
4354 do { \
4355 LocTy ClosingLoc; \
4356 if (parseMDFieldsImpl( \
4357 [&]() -> bool { \
4358 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \
4359 return tokError(Twine("invalid field '") + Lex.getStrVal() + \
4360 "'"); \
4361 }, \
4362 ClosingLoc)) \
4363 return true; \
4364 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \
4365 } while (false)
4366 #define GET_OR_DISTINCT(CLASS, ARGS) \
4367 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4369 /// parseDILocationFields:
4370 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4371 /// isImplicitCode: true)
4372 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4373 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4374 OPTIONAL(line, LineField, ); \
4375 OPTIONAL(column, ColumnField, ); \
4376 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4377 OPTIONAL(inlinedAt, MDField, ); \
4378 OPTIONAL(isImplicitCode, MDBoolField, (false));
4379 PARSE_MD_FIELDS();
4380 #undef VISIT_MD_FIELDS
4382 Result =
4383 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4384 inlinedAt.Val, isImplicitCode.Val));
4385 return false;
4388 /// parseGenericDINode:
4389 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4390 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4391 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4392 REQUIRED(tag, DwarfTagField, ); \
4393 OPTIONAL(header, MDStringField, ); \
4394 OPTIONAL(operands, MDFieldList, );
4395 PARSE_MD_FIELDS();
4396 #undef VISIT_MD_FIELDS
4398 Result = GET_OR_DISTINCT(GenericDINode,
4399 (Context, tag.Val, header.Val, operands.Val));
4400 return false;
4403 /// parseDISubrange:
4404 /// ::= !DISubrange(count: 30, lowerBound: 2)
4405 /// ::= !DISubrange(count: !node, lowerBound: 2)
4406 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4407 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4408 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4409 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \
4410 OPTIONAL(lowerBound, MDSignedOrMDField, ); \
4411 OPTIONAL(upperBound, MDSignedOrMDField, ); \
4412 OPTIONAL(stride, MDSignedOrMDField, );
4413 PARSE_MD_FIELDS();
4414 #undef VISIT_MD_FIELDS
4416 Metadata *Count = nullptr;
4417 Metadata *LowerBound = nullptr;
4418 Metadata *UpperBound = nullptr;
4419 Metadata *Stride = nullptr;
4421 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4422 if (Bound.isMDSignedField())
4423 return ConstantAsMetadata::get(ConstantInt::getSigned(
4424 Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4425 if (Bound.isMDField())
4426 return Bound.getMDFieldValue();
4427 return nullptr;
4430 Count = convToMetadata(count);
4431 LowerBound = convToMetadata(lowerBound);
4432 UpperBound = convToMetadata(upperBound);
4433 Stride = convToMetadata(stride);
4435 Result = GET_OR_DISTINCT(DISubrange,
4436 (Context, Count, LowerBound, UpperBound, Stride));
4438 return false;
4441 /// parseDIGenericSubrange:
4442 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4443 /// !node3)
4444 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4445 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4446 OPTIONAL(count, MDSignedOrMDField, ); \
4447 OPTIONAL(lowerBound, MDSignedOrMDField, ); \
4448 OPTIONAL(upperBound, MDSignedOrMDField, ); \
4449 OPTIONAL(stride, MDSignedOrMDField, );
4450 PARSE_MD_FIELDS();
4451 #undef VISIT_MD_FIELDS
4453 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4454 if (Bound.isMDSignedField())
4455 return DIExpression::get(
4456 Context, {dwarf::DW_OP_consts,
4457 static_cast<uint64_t>(Bound.getMDSignedValue())});
4458 if (Bound.isMDField())
4459 return Bound.getMDFieldValue();
4460 return nullptr;
4463 Metadata *Count = ConvToMetadata(count);
4464 Metadata *LowerBound = ConvToMetadata(lowerBound);
4465 Metadata *UpperBound = ConvToMetadata(upperBound);
4466 Metadata *Stride = ConvToMetadata(stride);
4468 Result = GET_OR_DISTINCT(DIGenericSubrange,
4469 (Context, Count, LowerBound, UpperBound, Stride));
4471 return false;
4474 /// parseDIEnumerator:
4475 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4476 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4477 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4478 REQUIRED(name, MDStringField, ); \
4479 REQUIRED(value, MDAPSIntField, ); \
4480 OPTIONAL(isUnsigned, MDBoolField, (false));
4481 PARSE_MD_FIELDS();
4482 #undef VISIT_MD_FIELDS
4484 if (isUnsigned.Val && value.Val.isNegative())
4485 return tokError("unsigned enumerator with negative value");
4487 APSInt Value(value.Val);
4488 // Add a leading zero so that unsigned values with the msb set are not
4489 // mistaken for negative values when used for signed enumerators.
4490 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4491 Value = Value.zext(Value.getBitWidth() + 1);
4493 Result =
4494 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4496 return false;
4499 /// parseDIBasicType:
4500 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4501 /// encoding: DW_ATE_encoding, flags: 0)
4502 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4503 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4504 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \
4505 OPTIONAL(name, MDStringField, ); \
4506 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4507 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4508 OPTIONAL(encoding, DwarfAttEncodingField, ); \
4509 OPTIONAL(flags, DIFlagField, );
4510 PARSE_MD_FIELDS();
4511 #undef VISIT_MD_FIELDS
4513 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4514 align.Val, encoding.Val, flags.Val));
4515 return false;
4518 /// parseDIStringType:
4519 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4520 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4521 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4522 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \
4523 OPTIONAL(name, MDStringField, ); \
4524 OPTIONAL(stringLength, MDField, ); \
4525 OPTIONAL(stringLengthExpression, MDField, ); \
4526 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4527 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4528 OPTIONAL(encoding, DwarfAttEncodingField, );
4529 PARSE_MD_FIELDS();
4530 #undef VISIT_MD_FIELDS
4532 Result = GET_OR_DISTINCT(DIStringType,
4533 (Context, tag.Val, name.Val, stringLength.Val,
4534 stringLengthExpression.Val, size.Val, align.Val,
4535 encoding.Val));
4536 return false;
4539 /// parseDIDerivedType:
4540 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4541 /// line: 7, scope: !1, baseType: !2, size: 32,
4542 /// align: 32, offset: 0, flags: 0, extraData: !3,
4543 /// dwarfAddressSpace: 3)
4544 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4545 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4546 REQUIRED(tag, DwarfTagField, ); \
4547 OPTIONAL(name, MDStringField, ); \
4548 OPTIONAL(file, MDField, ); \
4549 OPTIONAL(line, LineField, ); \
4550 OPTIONAL(scope, MDField, ); \
4551 REQUIRED(baseType, MDField, ); \
4552 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4553 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4554 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4555 OPTIONAL(flags, DIFlagField, ); \
4556 OPTIONAL(extraData, MDField, ); \
4557 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); \
4558 OPTIONAL(annotations, MDField, );
4559 PARSE_MD_FIELDS();
4560 #undef VISIT_MD_FIELDS
4562 Optional<unsigned> DWARFAddressSpace;
4563 if (dwarfAddressSpace.Val != UINT32_MAX)
4564 DWARFAddressSpace = dwarfAddressSpace.Val;
4566 Result = GET_OR_DISTINCT(DIDerivedType,
4567 (Context, tag.Val, name.Val, file.Val, line.Val,
4568 scope.Val, baseType.Val, size.Val, align.Val,
4569 offset.Val, DWARFAddressSpace, flags.Val,
4570 extraData.Val, annotations.Val));
4571 return false;
4574 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4575 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4576 REQUIRED(tag, DwarfTagField, ); \
4577 OPTIONAL(name, MDStringField, ); \
4578 OPTIONAL(file, MDField, ); \
4579 OPTIONAL(line, LineField, ); \
4580 OPTIONAL(scope, MDField, ); \
4581 OPTIONAL(baseType, MDField, ); \
4582 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4583 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4584 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4585 OPTIONAL(flags, DIFlagField, ); \
4586 OPTIONAL(elements, MDField, ); \
4587 OPTIONAL(runtimeLang, DwarfLangField, ); \
4588 OPTIONAL(vtableHolder, MDField, ); \
4589 OPTIONAL(templateParams, MDField, ); \
4590 OPTIONAL(identifier, MDStringField, ); \
4591 OPTIONAL(discriminator, MDField, ); \
4592 OPTIONAL(dataLocation, MDField, ); \
4593 OPTIONAL(associated, MDField, ); \
4594 OPTIONAL(allocated, MDField, ); \
4595 OPTIONAL(rank, MDSignedOrMDField, ); \
4596 OPTIONAL(annotations, MDField, );
4597 PARSE_MD_FIELDS();
4598 #undef VISIT_MD_FIELDS
4600 Metadata *Rank = nullptr;
4601 if (rank.isMDSignedField())
4602 Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4603 Type::getInt64Ty(Context), rank.getMDSignedValue()));
4604 else if (rank.isMDField())
4605 Rank = rank.getMDFieldValue();
4607 // If this has an identifier try to build an ODR type.
4608 if (identifier.Val)
4609 if (auto *CT = DICompositeType::buildODRType(
4610 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4611 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4612 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4613 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4614 Rank, annotations.Val)) {
4615 Result = CT;
4616 return false;
4619 // Create a new node, and save it in the context if it belongs in the type
4620 // map.
4621 Result = GET_OR_DISTINCT(
4622 DICompositeType,
4623 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4624 size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4625 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4626 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank,
4627 annotations.Val));
4628 return false;
4631 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4632 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4633 OPTIONAL(flags, DIFlagField, ); \
4634 OPTIONAL(cc, DwarfCCField, ); \
4635 REQUIRED(types, MDField, );
4636 PARSE_MD_FIELDS();
4637 #undef VISIT_MD_FIELDS
4639 Result = GET_OR_DISTINCT(DISubroutineType,
4640 (Context, flags.Val, cc.Val, types.Val));
4641 return false;
4644 /// parseDIFileType:
4645 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4646 /// checksumkind: CSK_MD5,
4647 /// checksum: "000102030405060708090a0b0c0d0e0f",
4648 /// source: "source file contents")
4649 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4650 // The default constructed value for checksumkind is required, but will never
4651 // be used, as the parser checks if the field was actually Seen before using
4652 // the Val.
4653 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4654 REQUIRED(filename, MDStringField, ); \
4655 REQUIRED(directory, MDStringField, ); \
4656 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \
4657 OPTIONAL(checksum, MDStringField, ); \
4658 OPTIONAL(source, MDStringField, );
4659 PARSE_MD_FIELDS();
4660 #undef VISIT_MD_FIELDS
4662 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4663 if (checksumkind.Seen && checksum.Seen)
4664 OptChecksum.emplace(checksumkind.Val, checksum.Val);
4665 else if (checksumkind.Seen || checksum.Seen)
4666 return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4668 Optional<MDString *> OptSource;
4669 if (source.Seen)
4670 OptSource = source.Val;
4671 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4672 OptChecksum, OptSource));
4673 return false;
4676 /// parseDICompileUnit:
4677 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4678 /// isOptimized: true, flags: "-O2", runtimeVersion: 1,
4679 /// splitDebugFilename: "abc.debug",
4680 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4681 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4682 /// sysroot: "/", sdk: "MacOSX.sdk")
4683 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4684 if (!IsDistinct)
4685 return Lex.Error("missing 'distinct', required for !DICompileUnit");
4687 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4688 REQUIRED(language, DwarfLangField, ); \
4689 REQUIRED(file, MDField, (/* AllowNull */ false)); \
4690 OPTIONAL(producer, MDStringField, ); \
4691 OPTIONAL(isOptimized, MDBoolField, ); \
4692 OPTIONAL(flags, MDStringField, ); \
4693 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \
4694 OPTIONAL(splitDebugFilename, MDStringField, ); \
4695 OPTIONAL(emissionKind, EmissionKindField, ); \
4696 OPTIONAL(enums, MDField, ); \
4697 OPTIONAL(retainedTypes, MDField, ); \
4698 OPTIONAL(globals, MDField, ); \
4699 OPTIONAL(imports, MDField, ); \
4700 OPTIONAL(macros, MDField, ); \
4701 OPTIONAL(dwoId, MDUnsignedField, ); \
4702 OPTIONAL(splitDebugInlining, MDBoolField, = true); \
4703 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \
4704 OPTIONAL(nameTableKind, NameTableKindField, ); \
4705 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \
4706 OPTIONAL(sysroot, MDStringField, ); \
4707 OPTIONAL(sdk, MDStringField, );
4708 PARSE_MD_FIELDS();
4709 #undef VISIT_MD_FIELDS
4711 Result = DICompileUnit::getDistinct(
4712 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4713 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4714 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4715 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4716 rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4717 return false;
4720 /// parseDISubprogram:
4721 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4722 /// file: !1, line: 7, type: !2, isLocal: false,
4723 /// isDefinition: true, scopeLine: 8, containingType: !3,
4724 /// virtuality: DW_VIRTUALTIY_pure_virtual,
4725 /// virtualIndex: 10, thisAdjustment: 4, flags: 11,
4726 /// spFlags: 10, isOptimized: false, templateParams: !4,
4727 /// declaration: !5, retainedNodes: !6, thrownTypes: !7)
4728 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
4729 auto Loc = Lex.getLoc();
4730 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4731 OPTIONAL(scope, MDField, ); \
4732 OPTIONAL(name, MDStringField, ); \
4733 OPTIONAL(linkageName, MDStringField, ); \
4734 OPTIONAL(file, MDField, ); \
4735 OPTIONAL(line, LineField, ); \
4736 OPTIONAL(type, MDField, ); \
4737 OPTIONAL(isLocal, MDBoolField, ); \
4738 OPTIONAL(isDefinition, MDBoolField, (true)); \
4739 OPTIONAL(scopeLine, LineField, ); \
4740 OPTIONAL(containingType, MDField, ); \
4741 OPTIONAL(virtuality, DwarfVirtualityField, ); \
4742 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \
4743 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \
4744 OPTIONAL(flags, DIFlagField, ); \
4745 OPTIONAL(spFlags, DISPFlagField, ); \
4746 OPTIONAL(isOptimized, MDBoolField, ); \
4747 OPTIONAL(unit, MDField, ); \
4748 OPTIONAL(templateParams, MDField, ); \
4749 OPTIONAL(declaration, MDField, ); \
4750 OPTIONAL(retainedNodes, MDField, ); \
4751 OPTIONAL(thrownTypes, MDField, );
4752 PARSE_MD_FIELDS();
4753 #undef VISIT_MD_FIELDS
4755 // An explicit spFlags field takes precedence over individual fields in
4756 // older IR versions.
4757 DISubprogram::DISPFlags SPFlags =
4758 spFlags.Seen ? spFlags.Val
4759 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4760 isOptimized.Val, virtuality.Val);
4761 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4762 return Lex.Error(
4763 Loc,
4764 "missing 'distinct', required for !DISubprogram that is a Definition");
4765 Result = GET_OR_DISTINCT(
4766 DISubprogram,
4767 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4768 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4769 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4770 declaration.Val, retainedNodes.Val, thrownTypes.Val));
4771 return false;
4774 /// parseDILexicalBlock:
4775 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4776 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4777 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4778 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4779 OPTIONAL(file, MDField, ); \
4780 OPTIONAL(line, LineField, ); \
4781 OPTIONAL(column, ColumnField, );
4782 PARSE_MD_FIELDS();
4783 #undef VISIT_MD_FIELDS
4785 Result = GET_OR_DISTINCT(
4786 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4787 return false;
4790 /// parseDILexicalBlockFile:
4791 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4792 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4793 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4794 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4795 OPTIONAL(file, MDField, ); \
4796 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4797 PARSE_MD_FIELDS();
4798 #undef VISIT_MD_FIELDS
4800 Result = GET_OR_DISTINCT(DILexicalBlockFile,
4801 (Context, scope.Val, file.Val, discriminator.Val));
4802 return false;
4805 /// parseDICommonBlock:
4806 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4807 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4808 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4809 REQUIRED(scope, MDField, ); \
4810 OPTIONAL(declaration, MDField, ); \
4811 OPTIONAL(name, MDStringField, ); \
4812 OPTIONAL(file, MDField, ); \
4813 OPTIONAL(line, LineField, );
4814 PARSE_MD_FIELDS();
4815 #undef VISIT_MD_FIELDS
4817 Result = GET_OR_DISTINCT(DICommonBlock,
4818 (Context, scope.Val, declaration.Val, name.Val,
4819 file.Val, line.Val));
4820 return false;
4823 /// parseDINamespace:
4824 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4825 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
4826 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4827 REQUIRED(scope, MDField, ); \
4828 OPTIONAL(name, MDStringField, ); \
4829 OPTIONAL(exportSymbols, MDBoolField, );
4830 PARSE_MD_FIELDS();
4831 #undef VISIT_MD_FIELDS
4833 Result = GET_OR_DISTINCT(DINamespace,
4834 (Context, scope.Val, name.Val, exportSymbols.Val));
4835 return false;
4838 /// parseDIMacro:
4839 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
4840 /// "SomeValue")
4841 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
4842 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4843 REQUIRED(type, DwarfMacinfoTypeField, ); \
4844 OPTIONAL(line, LineField, ); \
4845 REQUIRED(name, MDStringField, ); \
4846 OPTIONAL(value, MDStringField, );
4847 PARSE_MD_FIELDS();
4848 #undef VISIT_MD_FIELDS
4850 Result = GET_OR_DISTINCT(DIMacro,
4851 (Context, type.Val, line.Val, name.Val, value.Val));
4852 return false;
4855 /// parseDIMacroFile:
4856 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4857 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4858 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4859 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \
4860 OPTIONAL(line, LineField, ); \
4861 REQUIRED(file, MDField, ); \
4862 OPTIONAL(nodes, MDField, );
4863 PARSE_MD_FIELDS();
4864 #undef VISIT_MD_FIELDS
4866 Result = GET_OR_DISTINCT(DIMacroFile,
4867 (Context, type.Val, line.Val, file.Val, nodes.Val));
4868 return false;
4871 /// parseDIModule:
4872 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
4873 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
4874 /// file: !1, line: 4, isDecl: false)
4875 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
4876 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4877 REQUIRED(scope, MDField, ); \
4878 REQUIRED(name, MDStringField, ); \
4879 OPTIONAL(configMacros, MDStringField, ); \
4880 OPTIONAL(includePath, MDStringField, ); \
4881 OPTIONAL(apinotes, MDStringField, ); \
4882 OPTIONAL(file, MDField, ); \
4883 OPTIONAL(line, LineField, ); \
4884 OPTIONAL(isDecl, MDBoolField, );
4885 PARSE_MD_FIELDS();
4886 #undef VISIT_MD_FIELDS
4888 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
4889 configMacros.Val, includePath.Val,
4890 apinotes.Val, line.Val, isDecl.Val));
4891 return false;
4894 /// parseDITemplateTypeParameter:
4895 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
4896 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4897 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4898 OPTIONAL(name, MDStringField, ); \
4899 REQUIRED(type, MDField, ); \
4900 OPTIONAL(defaulted, MDBoolField, );
4901 PARSE_MD_FIELDS();
4902 #undef VISIT_MD_FIELDS
4904 Result = GET_OR_DISTINCT(DITemplateTypeParameter,
4905 (Context, name.Val, type.Val, defaulted.Val));
4906 return false;
4909 /// parseDITemplateValueParameter:
4910 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4911 /// name: "V", type: !1, defaulted: false,
4912 /// value: i32 7)
4913 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4914 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4915 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \
4916 OPTIONAL(name, MDStringField, ); \
4917 OPTIONAL(type, MDField, ); \
4918 OPTIONAL(defaulted, MDBoolField, ); \
4919 REQUIRED(value, MDField, );
4921 PARSE_MD_FIELDS();
4922 #undef VISIT_MD_FIELDS
4924 Result = GET_OR_DISTINCT(
4925 DITemplateValueParameter,
4926 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
4927 return false;
4930 /// parseDIGlobalVariable:
4931 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4932 /// file: !1, line: 7, type: !2, isLocal: false,
4933 /// isDefinition: true, templateParams: !3,
4934 /// declaration: !4, align: 8)
4935 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4936 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4937 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \
4938 OPTIONAL(scope, MDField, ); \
4939 OPTIONAL(linkageName, MDStringField, ); \
4940 OPTIONAL(file, MDField, ); \
4941 OPTIONAL(line, LineField, ); \
4942 OPTIONAL(type, MDField, ); \
4943 OPTIONAL(isLocal, MDBoolField, ); \
4944 OPTIONAL(isDefinition, MDBoolField, (true)); \
4945 OPTIONAL(templateParams, MDField, ); \
4946 OPTIONAL(declaration, MDField, ); \
4947 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4948 PARSE_MD_FIELDS();
4949 #undef VISIT_MD_FIELDS
4951 Result =
4952 GET_OR_DISTINCT(DIGlobalVariable,
4953 (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4954 line.Val, type.Val, isLocal.Val, isDefinition.Val,
4955 declaration.Val, templateParams.Val, align.Val));
4956 return false;
4959 /// parseDILocalVariable:
4960 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4961 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4962 /// align: 8)
4963 /// ::= !DILocalVariable(scope: !0, name: "foo",
4964 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4965 /// align: 8)
4966 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4967 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4968 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4969 OPTIONAL(name, MDStringField, ); \
4970 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \
4971 OPTIONAL(file, MDField, ); \
4972 OPTIONAL(line, LineField, ); \
4973 OPTIONAL(type, MDField, ); \
4974 OPTIONAL(flags, DIFlagField, ); \
4975 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4976 PARSE_MD_FIELDS();
4977 #undef VISIT_MD_FIELDS
4979 Result = GET_OR_DISTINCT(DILocalVariable,
4980 (Context, scope.Val, name.Val, file.Val, line.Val,
4981 type.Val, arg.Val, flags.Val, align.Val));
4982 return false;
4985 /// parseDILabel:
4986 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4987 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
4988 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4989 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4990 REQUIRED(name, MDStringField, ); \
4991 REQUIRED(file, MDField, ); \
4992 REQUIRED(line, LineField, );
4993 PARSE_MD_FIELDS();
4994 #undef VISIT_MD_FIELDS
4996 Result = GET_OR_DISTINCT(DILabel,
4997 (Context, scope.Val, name.Val, file.Val, line.Val));
4998 return false;
5001 /// parseDIExpression:
5002 /// ::= !DIExpression(0, 7, -1)
5003 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5004 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5005 Lex.Lex();
5007 if (parseToken(lltok::lparen, "expected '(' here"))
5008 return true;
5010 SmallVector<uint64_t, 8> Elements;
5011 if (Lex.getKind() != lltok::rparen)
5012 do {
5013 if (Lex.getKind() == lltok::DwarfOp) {
5014 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5015 Lex.Lex();
5016 Elements.push_back(Op);
5017 continue;
5019 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5022 if (Lex.getKind() == lltok::DwarfAttEncoding) {
5023 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5024 Lex.Lex();
5025 Elements.push_back(Op);
5026 continue;
5028 return tokError(Twine("invalid DWARF attribute encoding '") +
5029 Lex.getStrVal() + "'");
5032 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5033 return tokError("expected unsigned integer");
5035 auto &U = Lex.getAPSIntVal();
5036 if (U.ugt(UINT64_MAX))
5037 return tokError("element too large, limit is " + Twine(UINT64_MAX));
5038 Elements.push_back(U.getZExtValue());
5039 Lex.Lex();
5040 } while (EatIfPresent(lltok::comma));
5042 if (parseToken(lltok::rparen, "expected ')' here"))
5043 return true;
5045 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5046 return false;
5049 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5050 return parseDIArgList(Result, IsDistinct, nullptr);
5052 /// ParseDIArgList:
5053 /// ::= !DIArgList(i32 7, i64 %0)
5054 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5055 PerFunctionState *PFS) {
5056 assert(PFS && "Expected valid function state");
5057 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5058 Lex.Lex();
5060 if (parseToken(lltok::lparen, "expected '(' here"))
5061 return true;
5063 SmallVector<ValueAsMetadata *, 4> Args;
5064 if (Lex.getKind() != lltok::rparen)
5065 do {
5066 Metadata *MD;
5067 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5068 return true;
5069 Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5070 } while (EatIfPresent(lltok::comma));
5072 if (parseToken(lltok::rparen, "expected ')' here"))
5073 return true;
5075 Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5076 return false;
5079 /// parseDIGlobalVariableExpression:
5080 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5081 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5082 bool IsDistinct) {
5083 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5084 REQUIRED(var, MDField, ); \
5085 REQUIRED(expr, MDField, );
5086 PARSE_MD_FIELDS();
5087 #undef VISIT_MD_FIELDS
5089 Result =
5090 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5091 return false;
5094 /// parseDIObjCProperty:
5095 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5096 /// getter: "getFoo", attributes: 7, type: !2)
5097 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5098 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5099 OPTIONAL(name, MDStringField, ); \
5100 OPTIONAL(file, MDField, ); \
5101 OPTIONAL(line, LineField, ); \
5102 OPTIONAL(setter, MDStringField, ); \
5103 OPTIONAL(getter, MDStringField, ); \
5104 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \
5105 OPTIONAL(type, MDField, );
5106 PARSE_MD_FIELDS();
5107 #undef VISIT_MD_FIELDS
5109 Result = GET_OR_DISTINCT(DIObjCProperty,
5110 (Context, name.Val, file.Val, line.Val, setter.Val,
5111 getter.Val, attributes.Val, type.Val));
5112 return false;
5115 /// parseDIImportedEntity:
5116 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5117 /// line: 7, name: "foo")
5118 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5119 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5120 REQUIRED(tag, DwarfTagField, ); \
5121 REQUIRED(scope, MDField, ); \
5122 OPTIONAL(entity, MDField, ); \
5123 OPTIONAL(file, MDField, ); \
5124 OPTIONAL(line, LineField, ); \
5125 OPTIONAL(name, MDStringField, );
5126 PARSE_MD_FIELDS();
5127 #undef VISIT_MD_FIELDS
5129 Result = GET_OR_DISTINCT(
5130 DIImportedEntity,
5131 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5132 return false;
5135 #undef PARSE_MD_FIELD
5136 #undef NOP_FIELD
5137 #undef REQUIRE_FIELD
5138 #undef DECLARE_FIELD
5140 /// parseMetadataAsValue
5141 /// ::= metadata i32 %local
5142 /// ::= metadata i32 @global
5143 /// ::= metadata i32 7
5144 /// ::= metadata !0
5145 /// ::= metadata !{...}
5146 /// ::= metadata !"string"
5147 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5148 // Note: the type 'metadata' has already been parsed.
5149 Metadata *MD;
5150 if (parseMetadata(MD, &PFS))
5151 return true;
5153 V = MetadataAsValue::get(Context, MD);
5154 return false;
5157 /// parseValueAsMetadata
5158 /// ::= i32 %local
5159 /// ::= i32 @global
5160 /// ::= i32 7
5161 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5162 PerFunctionState *PFS) {
5163 Type *Ty;
5164 LocTy Loc;
5165 if (parseType(Ty, TypeMsg, Loc))
5166 return true;
5167 if (Ty->isMetadataTy())
5168 return error(Loc, "invalid metadata-value-metadata roundtrip");
5170 Value *V;
5171 if (parseValue(Ty, V, PFS))
5172 return true;
5174 MD = ValueAsMetadata::get(V);
5175 return false;
5178 /// parseMetadata
5179 /// ::= i32 %local
5180 /// ::= i32 @global
5181 /// ::= i32 7
5182 /// ::= !42
5183 /// ::= !{...}
5184 /// ::= !"string"
5185 /// ::= !DILocation(...)
5186 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5187 if (Lex.getKind() == lltok::MetadataVar) {
5188 MDNode *N;
5189 // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5190 // so parsing this requires a Function State.
5191 if (Lex.getStrVal() == "DIArgList") {
5192 if (parseDIArgList(N, false, PFS))
5193 return true;
5194 } else if (parseSpecializedMDNode(N)) {
5195 return true;
5197 MD = N;
5198 return false;
5201 // ValueAsMetadata:
5202 // <type> <value>
5203 if (Lex.getKind() != lltok::exclaim)
5204 return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5206 // '!'.
5207 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5208 Lex.Lex();
5210 // MDString:
5211 // ::= '!' STRINGCONSTANT
5212 if (Lex.getKind() == lltok::StringConstant) {
5213 MDString *S;
5214 if (parseMDString(S))
5215 return true;
5216 MD = S;
5217 return false;
5220 // MDNode:
5221 // !{ ... }
5222 // !7
5223 MDNode *N;
5224 if (parseMDNodeTail(N))
5225 return true;
5226 MD = N;
5227 return false;
5230 //===----------------------------------------------------------------------===//
5231 // Function Parsing.
5232 //===----------------------------------------------------------------------===//
5234 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5235 PerFunctionState *PFS, bool IsCall) {
5236 if (Ty->isFunctionTy())
5237 return error(ID.Loc, "functions are not values, refer to them as pointers");
5239 switch (ID.Kind) {
5240 case ValID::t_LocalID:
5241 if (!PFS)
5242 return error(ID.Loc, "invalid use of function-local name");
5243 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5244 return V == nullptr;
5245 case ValID::t_LocalName:
5246 if (!PFS)
5247 return error(ID.Loc, "invalid use of function-local name");
5248 V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall);
5249 return V == nullptr;
5250 case ValID::t_InlineAsm: {
5251 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5252 return error(ID.Loc, "invalid type for inline asm constraint string");
5253 V = InlineAsm::get(
5254 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
5255 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
5256 return false;
5258 case ValID::t_GlobalName:
5259 V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5260 return V == nullptr;
5261 case ValID::t_GlobalID:
5262 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5263 return V == nullptr;
5264 case ValID::t_APSInt:
5265 if (!Ty->isIntegerTy())
5266 return error(ID.Loc, "integer constant must have integer type");
5267 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5268 V = ConstantInt::get(Context, ID.APSIntVal);
5269 return false;
5270 case ValID::t_APFloat:
5271 if (!Ty->isFloatingPointTy() ||
5272 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5273 return error(ID.Loc, "floating point constant invalid for type");
5275 // The lexer has no type info, so builds all half, bfloat, float, and double
5276 // FP constants as double. Fix this here. Long double does not need this.
5277 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5278 // Check for signaling before potentially converting and losing that info.
5279 bool IsSNAN = ID.APFloatVal.isSignaling();
5280 bool Ignored;
5281 if (Ty->isHalfTy())
5282 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5283 &Ignored);
5284 else if (Ty->isBFloatTy())
5285 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5286 &Ignored);
5287 else if (Ty->isFloatTy())
5288 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5289 &Ignored);
5290 if (IsSNAN) {
5291 // The convert call above may quiet an SNaN, so manufacture another
5292 // SNaN. The bitcast works because the payload (significand) parameter
5293 // is truncated to fit.
5294 APInt Payload = ID.APFloatVal.bitcastToAPInt();
5295 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5296 ID.APFloatVal.isNegative(), &Payload);
5299 V = ConstantFP::get(Context, ID.APFloatVal);
5301 if (V->getType() != Ty)
5302 return error(ID.Loc, "floating point constant does not have type '" +
5303 getTypeString(Ty) + "'");
5305 return false;
5306 case ValID::t_Null:
5307 if (!Ty->isPointerTy())
5308 return error(ID.Loc, "null must be a pointer type");
5309 V = ConstantPointerNull::get(cast<PointerType>(Ty));
5310 return false;
5311 case ValID::t_Undef:
5312 // FIXME: LabelTy should not be a first-class type.
5313 if (!Ty->isFirstClassType() || Ty->isLabelTy())
5314 return error(ID.Loc, "invalid type for undef constant");
5315 V = UndefValue::get(Ty);
5316 return false;
5317 case ValID::t_EmptyArray:
5318 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5319 return error(ID.Loc, "invalid empty array initializer");
5320 V = UndefValue::get(Ty);
5321 return false;
5322 case ValID::t_Zero:
5323 // FIXME: LabelTy should not be a first-class type.
5324 if (!Ty->isFirstClassType() || Ty->isLabelTy())
5325 return error(ID.Loc, "invalid type for null constant");
5326 V = Constant::getNullValue(Ty);
5327 return false;
5328 case ValID::t_None:
5329 if (!Ty->isTokenTy())
5330 return error(ID.Loc, "invalid type for none constant");
5331 V = Constant::getNullValue(Ty);
5332 return false;
5333 case ValID::t_Poison:
5334 // FIXME: LabelTy should not be a first-class type.
5335 if (!Ty->isFirstClassType() || Ty->isLabelTy())
5336 return error(ID.Loc, "invalid type for poison constant");
5337 V = PoisonValue::get(Ty);
5338 return false;
5339 case ValID::t_Constant:
5340 if (ID.ConstantVal->getType() != Ty)
5341 return error(ID.Loc, "constant expression type mismatch: got type '" +
5342 getTypeString(ID.ConstantVal->getType()) +
5343 "' but expected '" + getTypeString(Ty) + "'");
5344 V = ID.ConstantVal;
5345 return false;
5346 case ValID::t_ConstantStruct:
5347 case ValID::t_PackedConstantStruct:
5348 if (StructType *ST = dyn_cast<StructType>(Ty)) {
5349 if (ST->getNumElements() != ID.UIntVal)
5350 return error(ID.Loc,
5351 "initializer with struct type has wrong # elements");
5352 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5353 return error(ID.Loc, "packed'ness of initializer and type don't match");
5355 // Verify that the elements are compatible with the structtype.
5356 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5357 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5358 return error(
5359 ID.Loc,
5360 "element " + Twine(i) +
5361 " of struct initializer doesn't match struct element type");
5363 V = ConstantStruct::get(
5364 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5365 } else
5366 return error(ID.Loc, "constant expression type mismatch");
5367 return false;
5369 llvm_unreachable("Invalid ValID");
5372 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5373 C = nullptr;
5374 ValID ID;
5375 auto Loc = Lex.getLoc();
5376 if (parseValID(ID, /*PFS=*/nullptr))
5377 return true;
5378 switch (ID.Kind) {
5379 case ValID::t_APSInt:
5380 case ValID::t_APFloat:
5381 case ValID::t_Undef:
5382 case ValID::t_Constant:
5383 case ValID::t_ConstantStruct:
5384 case ValID::t_PackedConstantStruct: {
5385 Value *V;
5386 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5387 return true;
5388 assert(isa<Constant>(V) && "Expected a constant value");
5389 C = cast<Constant>(V);
5390 return false;
5392 case ValID::t_Null:
5393 C = Constant::getNullValue(Ty);
5394 return false;
5395 default:
5396 return error(Loc, "expected a constant value");
5400 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5401 V = nullptr;
5402 ValID ID;
5403 return parseValID(ID, PFS, Ty) ||
5404 convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5407 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5408 Type *Ty = nullptr;
5409 return parseType(Ty) || parseValue(Ty, V, PFS);
5412 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5413 PerFunctionState &PFS) {
5414 Value *V;
5415 Loc = Lex.getLoc();
5416 if (parseTypeAndValue(V, PFS))
5417 return true;
5418 if (!isa<BasicBlock>(V))
5419 return error(Loc, "expected a basic block");
5420 BB = cast<BasicBlock>(V);
5421 return false;
5424 /// FunctionHeader
5425 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5426 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5427 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5428 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5429 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5430 // parse the linkage.
5431 LocTy LinkageLoc = Lex.getLoc();
5432 unsigned Linkage;
5433 unsigned Visibility;
5434 unsigned DLLStorageClass;
5435 bool DSOLocal;
5436 AttrBuilder RetAttrs;
5437 unsigned CC;
5438 bool HasLinkage;
5439 Type *RetType = nullptr;
5440 LocTy RetTypeLoc = Lex.getLoc();
5441 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5442 DSOLocal) ||
5443 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5444 parseType(RetType, RetTypeLoc, true /*void allowed*/))
5445 return true;
5447 // Verify that the linkage is ok.
5448 switch ((GlobalValue::LinkageTypes)Linkage) {
5449 case GlobalValue::ExternalLinkage:
5450 break; // always ok.
5451 case GlobalValue::ExternalWeakLinkage:
5452 if (IsDefine)
5453 return error(LinkageLoc, "invalid linkage for function definition");
5454 break;
5455 case GlobalValue::PrivateLinkage:
5456 case GlobalValue::InternalLinkage:
5457 case GlobalValue::AvailableExternallyLinkage:
5458 case GlobalValue::LinkOnceAnyLinkage:
5459 case GlobalValue::LinkOnceODRLinkage:
5460 case GlobalValue::WeakAnyLinkage:
5461 case GlobalValue::WeakODRLinkage:
5462 if (!IsDefine)
5463 return error(LinkageLoc, "invalid linkage for function declaration");
5464 break;
5465 case GlobalValue::AppendingLinkage:
5466 case GlobalValue::CommonLinkage:
5467 return error(LinkageLoc, "invalid function linkage type");
5470 if (!isValidVisibilityForLinkage(Visibility, Linkage))
5471 return error(LinkageLoc,
5472 "symbol with local linkage must have default visibility");
5474 if (!FunctionType::isValidReturnType(RetType))
5475 return error(RetTypeLoc, "invalid function return type");
5477 LocTy NameLoc = Lex.getLoc();
5479 std::string FunctionName;
5480 if (Lex.getKind() == lltok::GlobalVar) {
5481 FunctionName = Lex.getStrVal();
5482 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
5483 unsigned NameID = Lex.getUIntVal();
5485 if (NameID != NumberedVals.size())
5486 return tokError("function expected to be numbered '%" +
5487 Twine(NumberedVals.size()) + "'");
5488 } else {
5489 return tokError("expected function name");
5492 Lex.Lex();
5494 if (Lex.getKind() != lltok::lparen)
5495 return tokError("expected '(' in function argument list");
5497 SmallVector<ArgInfo, 8> ArgList;
5498 bool IsVarArg;
5499 AttrBuilder FuncAttrs;
5500 std::vector<unsigned> FwdRefAttrGrps;
5501 LocTy BuiltinLoc;
5502 std::string Section;
5503 std::string Partition;
5504 MaybeAlign Alignment;
5505 std::string GC;
5506 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5507 unsigned AddrSpace = 0;
5508 Constant *Prefix = nullptr;
5509 Constant *Prologue = nullptr;
5510 Constant *PersonalityFn = nullptr;
5511 Comdat *C;
5513 if (parseArgumentList(ArgList, IsVarArg) ||
5514 parseOptionalUnnamedAddr(UnnamedAddr) ||
5515 parseOptionalProgramAddrSpace(AddrSpace) ||
5516 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5517 BuiltinLoc) ||
5518 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5519 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5520 parseOptionalComdat(FunctionName, C) ||
5521 parseOptionalAlignment(Alignment) ||
5522 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5523 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5524 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5525 (EatIfPresent(lltok::kw_personality) &&
5526 parseGlobalTypeAndValue(PersonalityFn)))
5527 return true;
5529 if (FuncAttrs.contains(Attribute::Builtin))
5530 return error(BuiltinLoc, "'builtin' attribute not valid on function");
5532 // If the alignment was parsed as an attribute, move to the alignment field.
5533 if (FuncAttrs.hasAlignmentAttr()) {
5534 Alignment = FuncAttrs.getAlignment();
5535 FuncAttrs.removeAttribute(Attribute::Alignment);
5538 // Okay, if we got here, the function is syntactically valid. Convert types
5539 // and do semantic checks.
5540 std::vector<Type*> ParamTypeList;
5541 SmallVector<AttributeSet, 8> Attrs;
5543 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5544 ParamTypeList.push_back(ArgList[i].Ty);
5545 Attrs.push_back(ArgList[i].Attrs);
5548 AttributeList PAL =
5549 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5550 AttributeSet::get(Context, RetAttrs), Attrs);
5552 if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy())
5553 return error(RetTypeLoc, "functions with 'sret' argument must return void");
5555 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5556 PointerType *PFT = PointerType::get(FT, AddrSpace);
5558 Fn = nullptr;
5559 GlobalValue *FwdFn = nullptr;
5560 if (!FunctionName.empty()) {
5561 // If this was a definition of a forward reference, remove the definition
5562 // from the forward reference table and fill in the forward ref.
5563 auto FRVI = ForwardRefVals.find(FunctionName);
5564 if (FRVI != ForwardRefVals.end()) {
5565 FwdFn = FRVI->second.first;
5566 if (!FwdFn->getType()->isOpaque()) {
5567 if (!FwdFn->getType()->getPointerElementType()->isFunctionTy())
5568 return error(FRVI->second.second, "invalid forward reference to "
5569 "function as global value!");
5570 if (FwdFn->getType() != PFT)
5571 return error(FRVI->second.second,
5572 "invalid forward reference to "
5573 "function '" +
5574 FunctionName +
5575 "' with wrong type: "
5576 "expected '" +
5577 getTypeString(PFT) + "' but was '" +
5578 getTypeString(FwdFn->getType()) + "'");
5580 ForwardRefVals.erase(FRVI);
5581 } else if ((Fn = M->getFunction(FunctionName))) {
5582 // Reject redefinitions.
5583 return error(NameLoc,
5584 "invalid redefinition of function '" + FunctionName + "'");
5585 } else if (M->getNamedValue(FunctionName)) {
5586 return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5589 } else {
5590 // If this is a definition of a forward referenced function, make sure the
5591 // types agree.
5592 auto I = ForwardRefValIDs.find(NumberedVals.size());
5593 if (I != ForwardRefValIDs.end()) {
5594 FwdFn = cast<Function>(I->second.first);
5595 if (!FwdFn->getType()->isOpaque() && FwdFn->getType() != PFT)
5596 return error(NameLoc, "type of definition and forward reference of '@" +
5597 Twine(NumberedVals.size()) +
5598 "' disagree: "
5599 "expected '" +
5600 getTypeString(PFT) + "' but was '" +
5601 getTypeString(FwdFn->getType()) + "'");
5602 ForwardRefValIDs.erase(I);
5606 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5607 FunctionName, M);
5609 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5611 if (FunctionName.empty())
5612 NumberedVals.push_back(Fn);
5614 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5615 maybeSetDSOLocal(DSOLocal, *Fn);
5616 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5617 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5618 Fn->setCallingConv(CC);
5619 Fn->setAttributes(PAL);
5620 Fn->setUnnamedAddr(UnnamedAddr);
5621 Fn->setAlignment(MaybeAlign(Alignment));
5622 Fn->setSection(Section);
5623 Fn->setPartition(Partition);
5624 Fn->setComdat(C);
5625 Fn->setPersonalityFn(PersonalityFn);
5626 if (!GC.empty()) Fn->setGC(GC);
5627 Fn->setPrefixData(Prefix);
5628 Fn->setPrologueData(Prologue);
5629 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5631 // Add all of the arguments we parsed to the function.
5632 Function::arg_iterator ArgIt = Fn->arg_begin();
5633 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5634 // If the argument has a name, insert it into the argument symbol table.
5635 if (ArgList[i].Name.empty()) continue;
5637 // Set the name, if it conflicted, it will be auto-renamed.
5638 ArgIt->setName(ArgList[i].Name);
5640 if (ArgIt->getName() != ArgList[i].Name)
5641 return error(ArgList[i].Loc,
5642 "redefinition of argument '%" + ArgList[i].Name + "'");
5645 if (FwdFn) {
5646 FwdFn->replaceAllUsesWith(Fn);
5647 FwdFn->eraseFromParent();
5650 if (IsDefine)
5651 return false;
5653 // Check the declaration has no block address forward references.
5654 ValID ID;
5655 if (FunctionName.empty()) {
5656 ID.Kind = ValID::t_GlobalID;
5657 ID.UIntVal = NumberedVals.size() - 1;
5658 } else {
5659 ID.Kind = ValID::t_GlobalName;
5660 ID.StrVal = FunctionName;
5662 auto Blocks = ForwardRefBlockAddresses.find(ID);
5663 if (Blocks != ForwardRefBlockAddresses.end())
5664 return error(Blocks->first.Loc,
5665 "cannot take blockaddress inside a declaration");
5666 return false;
5669 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5670 ValID ID;
5671 if (FunctionNumber == -1) {
5672 ID.Kind = ValID::t_GlobalName;
5673 ID.StrVal = std::string(F.getName());
5674 } else {
5675 ID.Kind = ValID::t_GlobalID;
5676 ID.UIntVal = FunctionNumber;
5679 auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5680 if (Blocks == P.ForwardRefBlockAddresses.end())
5681 return false;
5683 for (const auto &I : Blocks->second) {
5684 const ValID &BBID = I.first;
5685 GlobalValue *GV = I.second;
5687 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5688 "Expected local id or name");
5689 BasicBlock *BB;
5690 if (BBID.Kind == ValID::t_LocalName)
5691 BB = getBB(BBID.StrVal, BBID.Loc);
5692 else
5693 BB = getBB(BBID.UIntVal, BBID.Loc);
5694 if (!BB)
5695 return P.error(BBID.Loc, "referenced value is not a basic block");
5697 Value *ResolvedVal = BlockAddress::get(&F, BB);
5698 ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
5699 ResolvedVal, false);
5700 if (!ResolvedVal)
5701 return true;
5702 GV->replaceAllUsesWith(ResolvedVal);
5703 GV->eraseFromParent();
5706 P.ForwardRefBlockAddresses.erase(Blocks);
5707 return false;
5710 /// parseFunctionBody
5711 /// ::= '{' BasicBlock+ UseListOrderDirective* '}'
5712 bool LLParser::parseFunctionBody(Function &Fn) {
5713 if (Lex.getKind() != lltok::lbrace)
5714 return tokError("expected '{' in function body");
5715 Lex.Lex(); // eat the {.
5717 int FunctionNumber = -1;
5718 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5720 PerFunctionState PFS(*this, Fn, FunctionNumber);
5722 // Resolve block addresses and allow basic blocks to be forward-declared
5723 // within this function.
5724 if (PFS.resolveForwardRefBlockAddresses())
5725 return true;
5726 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5728 // We need at least one basic block.
5729 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5730 return tokError("function body requires at least one basic block");
5732 while (Lex.getKind() != lltok::rbrace &&
5733 Lex.getKind() != lltok::kw_uselistorder)
5734 if (parseBasicBlock(PFS))
5735 return true;
5737 while (Lex.getKind() != lltok::rbrace)
5738 if (parseUseListOrder(&PFS))
5739 return true;
5741 // Eat the }.
5742 Lex.Lex();
5744 // Verify function is ok.
5745 return PFS.finishFunction();
5748 /// parseBasicBlock
5749 /// ::= (LabelStr|LabelID)? Instruction*
5750 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
5751 // If this basic block starts out with a name, remember it.
5752 std::string Name;
5753 int NameID = -1;
5754 LocTy NameLoc = Lex.getLoc();
5755 if (Lex.getKind() == lltok::LabelStr) {
5756 Name = Lex.getStrVal();
5757 Lex.Lex();
5758 } else if (Lex.getKind() == lltok::LabelID) {
5759 NameID = Lex.getUIntVal();
5760 Lex.Lex();
5763 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
5764 if (!BB)
5765 return true;
5767 std::string NameStr;
5769 // parse the instructions in this block until we get a terminator.
5770 Instruction *Inst;
5771 do {
5772 // This instruction may have three possibilities for a name: a) none
5773 // specified, b) name specified "%foo =", c) number specified: "%4 =".
5774 LocTy NameLoc = Lex.getLoc();
5775 int NameID = -1;
5776 NameStr = "";
5778 if (Lex.getKind() == lltok::LocalVarID) {
5779 NameID = Lex.getUIntVal();
5780 Lex.Lex();
5781 if (parseToken(lltok::equal, "expected '=' after instruction id"))
5782 return true;
5783 } else if (Lex.getKind() == lltok::LocalVar) {
5784 NameStr = Lex.getStrVal();
5785 Lex.Lex();
5786 if (parseToken(lltok::equal, "expected '=' after instruction name"))
5787 return true;
5790 switch (parseInstruction(Inst, BB, PFS)) {
5791 default:
5792 llvm_unreachable("Unknown parseInstruction result!");
5793 case InstError: return true;
5794 case InstNormal:
5795 BB->getInstList().push_back(Inst);
5797 // With a normal result, we check to see if the instruction is followed by
5798 // a comma and metadata.
5799 if (EatIfPresent(lltok::comma))
5800 if (parseInstructionMetadata(*Inst))
5801 return true;
5802 break;
5803 case InstExtraComma:
5804 BB->getInstList().push_back(Inst);
5806 // If the instruction parser ate an extra comma at the end of it, it
5807 // *must* be followed by metadata.
5808 if (parseInstructionMetadata(*Inst))
5809 return true;
5810 break;
5813 // Set the name on the instruction.
5814 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
5815 return true;
5816 } while (!Inst->isTerminator());
5818 return false;
5821 //===----------------------------------------------------------------------===//
5822 // Instruction Parsing.
5823 //===----------------------------------------------------------------------===//
5825 /// parseInstruction - parse one of the many different instructions.
5827 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
5828 PerFunctionState &PFS) {
5829 lltok::Kind Token = Lex.getKind();
5830 if (Token == lltok::Eof)
5831 return tokError("found end of file when expecting more instructions");
5832 LocTy Loc = Lex.getLoc();
5833 unsigned KeywordVal = Lex.getUIntVal();
5834 Lex.Lex(); // Eat the keyword.
5836 switch (Token) {
5837 default:
5838 return error(Loc, "expected instruction opcode");
5839 // Terminator Instructions.
5840 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5841 case lltok::kw_ret:
5842 return parseRet(Inst, BB, PFS);
5843 case lltok::kw_br:
5844 return parseBr(Inst, PFS);
5845 case lltok::kw_switch:
5846 return parseSwitch(Inst, PFS);
5847 case lltok::kw_indirectbr:
5848 return parseIndirectBr(Inst, PFS);
5849 case lltok::kw_invoke:
5850 return parseInvoke(Inst, PFS);
5851 case lltok::kw_resume:
5852 return parseResume(Inst, PFS);
5853 case lltok::kw_cleanupret:
5854 return parseCleanupRet(Inst, PFS);
5855 case lltok::kw_catchret:
5856 return parseCatchRet(Inst, PFS);
5857 case lltok::kw_catchswitch:
5858 return parseCatchSwitch(Inst, PFS);
5859 case lltok::kw_catchpad:
5860 return parseCatchPad(Inst, PFS);
5861 case lltok::kw_cleanuppad:
5862 return parseCleanupPad(Inst, PFS);
5863 case lltok::kw_callbr:
5864 return parseCallBr(Inst, PFS);
5865 // Unary Operators.
5866 case lltok::kw_fneg: {
5867 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5868 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
5869 if (Res != 0)
5870 return Res;
5871 if (FMF.any())
5872 Inst->setFastMathFlags(FMF);
5873 return false;
5875 // Binary Operators.
5876 case lltok::kw_add:
5877 case lltok::kw_sub:
5878 case lltok::kw_mul:
5879 case lltok::kw_shl: {
5880 bool NUW = EatIfPresent(lltok::kw_nuw);
5881 bool NSW = EatIfPresent(lltok::kw_nsw);
5882 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5884 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
5885 return true;
5887 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5888 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5889 return false;
5891 case lltok::kw_fadd:
5892 case lltok::kw_fsub:
5893 case lltok::kw_fmul:
5894 case lltok::kw_fdiv:
5895 case lltok::kw_frem: {
5896 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5897 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
5898 if (Res != 0)
5899 return Res;
5900 if (FMF.any())
5901 Inst->setFastMathFlags(FMF);
5902 return 0;
5905 case lltok::kw_sdiv:
5906 case lltok::kw_udiv:
5907 case lltok::kw_lshr:
5908 case lltok::kw_ashr: {
5909 bool Exact = EatIfPresent(lltok::kw_exact);
5911 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
5912 return true;
5913 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5914 return false;
5917 case lltok::kw_urem:
5918 case lltok::kw_srem:
5919 return parseArithmetic(Inst, PFS, KeywordVal,
5920 /*IsFP*/ false);
5921 case lltok::kw_and:
5922 case lltok::kw_or:
5923 case lltok::kw_xor:
5924 return parseLogical(Inst, PFS, KeywordVal);
5925 case lltok::kw_icmp:
5926 return parseCompare(Inst, PFS, KeywordVal);
5927 case lltok::kw_fcmp: {
5928 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5929 int Res = parseCompare(Inst, PFS, KeywordVal);
5930 if (Res != 0)
5931 return Res;
5932 if (FMF.any())
5933 Inst->setFastMathFlags(FMF);
5934 return 0;
5937 // Casts.
5938 case lltok::kw_trunc:
5939 case lltok::kw_zext:
5940 case lltok::kw_sext:
5941 case lltok::kw_fptrunc:
5942 case lltok::kw_fpext:
5943 case lltok::kw_bitcast:
5944 case lltok::kw_addrspacecast:
5945 case lltok::kw_uitofp:
5946 case lltok::kw_sitofp:
5947 case lltok::kw_fptoui:
5948 case lltok::kw_fptosi:
5949 case lltok::kw_inttoptr:
5950 case lltok::kw_ptrtoint:
5951 return parseCast(Inst, PFS, KeywordVal);
5952 // Other.
5953 case lltok::kw_select: {
5954 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5955 int Res = parseSelect(Inst, PFS);
5956 if (Res != 0)
5957 return Res;
5958 if (FMF.any()) {
5959 if (!isa<FPMathOperator>(Inst))
5960 return error(Loc, "fast-math-flags specified for select without "
5961 "floating-point scalar or vector return type");
5962 Inst->setFastMathFlags(FMF);
5964 return 0;
5966 case lltok::kw_va_arg:
5967 return parseVAArg(Inst, PFS);
5968 case lltok::kw_extractelement:
5969 return parseExtractElement(Inst, PFS);
5970 case lltok::kw_insertelement:
5971 return parseInsertElement(Inst, PFS);
5972 case lltok::kw_shufflevector:
5973 return parseShuffleVector(Inst, PFS);
5974 case lltok::kw_phi: {
5975 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5976 int Res = parsePHI(Inst, PFS);
5977 if (Res != 0)
5978 return Res;
5979 if (FMF.any()) {
5980 if (!isa<FPMathOperator>(Inst))
5981 return error(Loc, "fast-math-flags specified for phi without "
5982 "floating-point scalar or vector return type");
5983 Inst->setFastMathFlags(FMF);
5985 return 0;
5987 case lltok::kw_landingpad:
5988 return parseLandingPad(Inst, PFS);
5989 case lltok::kw_freeze:
5990 return parseFreeze(Inst, PFS);
5991 // Call.
5992 case lltok::kw_call:
5993 return parseCall(Inst, PFS, CallInst::TCK_None);
5994 case lltok::kw_tail:
5995 return parseCall(Inst, PFS, CallInst::TCK_Tail);
5996 case lltok::kw_musttail:
5997 return parseCall(Inst, PFS, CallInst::TCK_MustTail);
5998 case lltok::kw_notail:
5999 return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6000 // Memory.
6001 case lltok::kw_alloca:
6002 return parseAlloc(Inst, PFS);
6003 case lltok::kw_load:
6004 return parseLoad(Inst, PFS);
6005 case lltok::kw_store:
6006 return parseStore(Inst, PFS);
6007 case lltok::kw_cmpxchg:
6008 return parseCmpXchg(Inst, PFS);
6009 case lltok::kw_atomicrmw:
6010 return parseAtomicRMW(Inst, PFS);
6011 case lltok::kw_fence:
6012 return parseFence(Inst, PFS);
6013 case lltok::kw_getelementptr:
6014 return parseGetElementPtr(Inst, PFS);
6015 case lltok::kw_extractvalue:
6016 return parseExtractValue(Inst, PFS);
6017 case lltok::kw_insertvalue:
6018 return parseInsertValue(Inst, PFS);
6022 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6023 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6024 if (Opc == Instruction::FCmp) {
6025 switch (Lex.getKind()) {
6026 default:
6027 return tokError("expected fcmp predicate (e.g. 'oeq')");
6028 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6029 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6030 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6031 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6032 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6033 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6034 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6035 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6036 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6037 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6038 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6039 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6040 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6041 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6042 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6043 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6045 } else {
6046 switch (Lex.getKind()) {
6047 default:
6048 return tokError("expected icmp predicate (e.g. 'eq')");
6049 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
6050 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
6051 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6052 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6053 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6054 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6055 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6056 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6057 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6058 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6061 Lex.Lex();
6062 return false;
6065 //===----------------------------------------------------------------------===//
6066 // Terminator Instructions.
6067 //===----------------------------------------------------------------------===//
6069 /// parseRet - parse a return instruction.
6070 /// ::= 'ret' void (',' !dbg, !1)*
6071 /// ::= 'ret' TypeAndValue (',' !dbg, !1)*
6072 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6073 PerFunctionState &PFS) {
6074 SMLoc TypeLoc = Lex.getLoc();
6075 Type *Ty = nullptr;
6076 if (parseType(Ty, true /*void allowed*/))
6077 return true;
6079 Type *ResType = PFS.getFunction().getReturnType();
6081 if (Ty->isVoidTy()) {
6082 if (!ResType->isVoidTy())
6083 return error(TypeLoc, "value doesn't match function result type '" +
6084 getTypeString(ResType) + "'");
6086 Inst = ReturnInst::Create(Context);
6087 return false;
6090 Value *RV;
6091 if (parseValue(Ty, RV, PFS))
6092 return true;
6094 if (ResType != RV->getType())
6095 return error(TypeLoc, "value doesn't match function result type '" +
6096 getTypeString(ResType) + "'");
6098 Inst = ReturnInst::Create(Context, RV);
6099 return false;
6102 /// parseBr
6103 /// ::= 'br' TypeAndValue
6104 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6105 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6106 LocTy Loc, Loc2;
6107 Value *Op0;
6108 BasicBlock *Op1, *Op2;
6109 if (parseTypeAndValue(Op0, Loc, PFS))
6110 return true;
6112 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6113 Inst = BranchInst::Create(BB);
6114 return false;
6117 if (Op0->getType() != Type::getInt1Ty(Context))
6118 return error(Loc, "branch condition must have 'i1' type");
6120 if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6121 parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6122 parseToken(lltok::comma, "expected ',' after true destination") ||
6123 parseTypeAndBasicBlock(Op2, Loc2, PFS))
6124 return true;
6126 Inst = BranchInst::Create(Op1, Op2, Op0);
6127 return false;
6130 /// parseSwitch
6131 /// Instruction
6132 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6133 /// JumpTable
6134 /// ::= (TypeAndValue ',' TypeAndValue)*
6135 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6136 LocTy CondLoc, BBLoc;
6137 Value *Cond;
6138 BasicBlock *DefaultBB;
6139 if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6140 parseToken(lltok::comma, "expected ',' after switch condition") ||
6141 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6142 parseToken(lltok::lsquare, "expected '[' with switch table"))
6143 return true;
6145 if (!Cond->getType()->isIntegerTy())
6146 return error(CondLoc, "switch condition must have integer type");
6148 // parse the jump table pairs.
6149 SmallPtrSet<Value*, 32> SeenCases;
6150 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6151 while (Lex.getKind() != lltok::rsquare) {
6152 Value *Constant;
6153 BasicBlock *DestBB;
6155 if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6156 parseToken(lltok::comma, "expected ',' after case value") ||
6157 parseTypeAndBasicBlock(DestBB, PFS))
6158 return true;
6160 if (!SeenCases.insert(Constant).second)
6161 return error(CondLoc, "duplicate case value in switch");
6162 if (!isa<ConstantInt>(Constant))
6163 return error(CondLoc, "case value is not a constant integer");
6165 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6168 Lex.Lex(); // Eat the ']'.
6170 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6171 for (unsigned i = 0, e = Table.size(); i != e; ++i)
6172 SI->addCase(Table[i].first, Table[i].second);
6173 Inst = SI;
6174 return false;
6177 /// parseIndirectBr
6178 /// Instruction
6179 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6180 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6181 LocTy AddrLoc;
6182 Value *Address;
6183 if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6184 parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6185 parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6186 return true;
6188 if (!Address->getType()->isPointerTy())
6189 return error(AddrLoc, "indirectbr address must have pointer type");
6191 // parse the destination list.
6192 SmallVector<BasicBlock*, 16> DestList;
6194 if (Lex.getKind() != lltok::rsquare) {
6195 BasicBlock *DestBB;
6196 if (parseTypeAndBasicBlock(DestBB, PFS))
6197 return true;
6198 DestList.push_back(DestBB);
6200 while (EatIfPresent(lltok::comma)) {
6201 if (parseTypeAndBasicBlock(DestBB, PFS))
6202 return true;
6203 DestList.push_back(DestBB);
6207 if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6208 return true;
6210 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6211 for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6212 IBI->addDestination(DestList[i]);
6213 Inst = IBI;
6214 return false;
6217 /// parseInvoke
6218 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6219 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6220 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6221 LocTy CallLoc = Lex.getLoc();
6222 AttrBuilder RetAttrs, FnAttrs;
6223 std::vector<unsigned> FwdRefAttrGrps;
6224 LocTy NoBuiltinLoc;
6225 unsigned CC;
6226 unsigned InvokeAddrSpace;
6227 Type *RetType = nullptr;
6228 LocTy RetTypeLoc;
6229 ValID CalleeID;
6230 SmallVector<ParamInfo, 16> ArgList;
6231 SmallVector<OperandBundleDef, 2> BundleList;
6233 BasicBlock *NormalBB, *UnwindBB;
6234 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6235 parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6236 parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6237 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6238 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6239 NoBuiltinLoc) ||
6240 parseOptionalOperandBundles(BundleList, PFS) ||
6241 parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6242 parseTypeAndBasicBlock(NormalBB, PFS) ||
6243 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6244 parseTypeAndBasicBlock(UnwindBB, PFS))
6245 return true;
6247 // If RetType is a non-function pointer type, then this is the short syntax
6248 // for the call, which means that RetType is just the return type. Infer the
6249 // rest of the function argument types from the arguments that are present.
6250 FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6251 if (!Ty) {
6252 // Pull out the types of all of the arguments...
6253 std::vector<Type*> ParamTypes;
6254 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6255 ParamTypes.push_back(ArgList[i].V->getType());
6257 if (!FunctionType::isValidReturnType(RetType))
6258 return error(RetTypeLoc, "Invalid result type for LLVM function");
6260 Ty = FunctionType::get(RetType, ParamTypes, false);
6263 CalleeID.FTy = Ty;
6265 // Look up the callee.
6266 Value *Callee;
6267 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6268 Callee, &PFS, /*IsCall=*/true))
6269 return true;
6271 // Set up the Attribute for the function.
6272 SmallVector<Value *, 8> Args;
6273 SmallVector<AttributeSet, 8> ArgAttrs;
6275 // Loop through FunctionType's arguments and ensure they are specified
6276 // correctly. Also, gather any parameter attributes.
6277 FunctionType::param_iterator I = Ty->param_begin();
6278 FunctionType::param_iterator E = Ty->param_end();
6279 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6280 Type *ExpectedTy = nullptr;
6281 if (I != E) {
6282 ExpectedTy = *I++;
6283 } else if (!Ty->isVarArg()) {
6284 return error(ArgList[i].Loc, "too many arguments specified");
6287 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6288 return error(ArgList[i].Loc, "argument is not of expected type '" +
6289 getTypeString(ExpectedTy) + "'");
6290 Args.push_back(ArgList[i].V);
6291 ArgAttrs.push_back(ArgList[i].Attrs);
6294 if (I != E)
6295 return error(CallLoc, "not enough parameters specified for call");
6297 if (FnAttrs.hasAlignmentAttr())
6298 return error(CallLoc, "invoke instructions may not have an alignment");
6300 // Finish off the Attribute and check them
6301 AttributeList PAL =
6302 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6303 AttributeSet::get(Context, RetAttrs), ArgAttrs);
6305 InvokeInst *II =
6306 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6307 II->setCallingConv(CC);
6308 II->setAttributes(PAL);
6309 ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6310 Inst = II;
6311 return false;
6314 /// parseResume
6315 /// ::= 'resume' TypeAndValue
6316 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6317 Value *Exn; LocTy ExnLoc;
6318 if (parseTypeAndValue(Exn, ExnLoc, PFS))
6319 return true;
6321 ResumeInst *RI = ResumeInst::Create(Exn);
6322 Inst = RI;
6323 return false;
6326 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6327 PerFunctionState &PFS) {
6328 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6329 return true;
6331 while (Lex.getKind() != lltok::rsquare) {
6332 // If this isn't the first argument, we need a comma.
6333 if (!Args.empty() &&
6334 parseToken(lltok::comma, "expected ',' in argument list"))
6335 return true;
6337 // parse the argument.
6338 LocTy ArgLoc;
6339 Type *ArgTy = nullptr;
6340 if (parseType(ArgTy, ArgLoc))
6341 return true;
6343 Value *V;
6344 if (ArgTy->isMetadataTy()) {
6345 if (parseMetadataAsValue(V, PFS))
6346 return true;
6347 } else {
6348 if (parseValue(ArgTy, V, PFS))
6349 return true;
6351 Args.push_back(V);
6354 Lex.Lex(); // Lex the ']'.
6355 return false;
6358 /// parseCleanupRet
6359 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6360 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6361 Value *CleanupPad = nullptr;
6363 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6364 return true;
6366 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6367 return true;
6369 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6370 return true;
6372 BasicBlock *UnwindBB = nullptr;
6373 if (Lex.getKind() == lltok::kw_to) {
6374 Lex.Lex();
6375 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6376 return true;
6377 } else {
6378 if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6379 return true;
6383 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6384 return false;
6387 /// parseCatchRet
6388 /// ::= 'catchret' from Parent Value 'to' TypeAndValue
6389 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6390 Value *CatchPad = nullptr;
6392 if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6393 return true;
6395 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6396 return true;
6398 BasicBlock *BB;
6399 if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6400 parseTypeAndBasicBlock(BB, PFS))
6401 return true;
6403 Inst = CatchReturnInst::Create(CatchPad, BB);
6404 return false;
6407 /// parseCatchSwitch
6408 /// ::= 'catchswitch' within Parent
6409 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6410 Value *ParentPad;
6412 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6413 return true;
6415 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6416 Lex.getKind() != lltok::LocalVarID)
6417 return tokError("expected scope value for catchswitch");
6419 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6420 return true;
6422 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6423 return true;
6425 SmallVector<BasicBlock *, 32> Table;
6426 do {
6427 BasicBlock *DestBB;
6428 if (parseTypeAndBasicBlock(DestBB, PFS))
6429 return true;
6430 Table.push_back(DestBB);
6431 } while (EatIfPresent(lltok::comma));
6433 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6434 return true;
6436 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6437 return true;
6439 BasicBlock *UnwindBB = nullptr;
6440 if (EatIfPresent(lltok::kw_to)) {
6441 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6442 return true;
6443 } else {
6444 if (parseTypeAndBasicBlock(UnwindBB, PFS))
6445 return true;
6448 auto *CatchSwitch =
6449 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6450 for (BasicBlock *DestBB : Table)
6451 CatchSwitch->addHandler(DestBB);
6452 Inst = CatchSwitch;
6453 return false;
6456 /// parseCatchPad
6457 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6458 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6459 Value *CatchSwitch = nullptr;
6461 if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6462 return true;
6464 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6465 return tokError("expected scope value for catchpad");
6467 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6468 return true;
6470 SmallVector<Value *, 8> Args;
6471 if (parseExceptionArgs(Args, PFS))
6472 return true;
6474 Inst = CatchPadInst::Create(CatchSwitch, Args);
6475 return false;
6478 /// parseCleanupPad
6479 /// ::= 'cleanuppad' within Parent ParamList
6480 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6481 Value *ParentPad = nullptr;
6483 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6484 return true;
6486 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6487 Lex.getKind() != lltok::LocalVarID)
6488 return tokError("expected scope value for cleanuppad");
6490 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6491 return true;
6493 SmallVector<Value *, 8> Args;
6494 if (parseExceptionArgs(Args, PFS))
6495 return true;
6497 Inst = CleanupPadInst::Create(ParentPad, Args);
6498 return false;
6501 //===----------------------------------------------------------------------===//
6502 // Unary Operators.
6503 //===----------------------------------------------------------------------===//
6505 /// parseUnaryOp
6506 /// ::= UnaryOp TypeAndValue ',' Value
6508 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6509 /// operand is allowed.
6510 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6511 unsigned Opc, bool IsFP) {
6512 LocTy Loc; Value *LHS;
6513 if (parseTypeAndValue(LHS, Loc, PFS))
6514 return true;
6516 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6517 : LHS->getType()->isIntOrIntVectorTy();
6519 if (!Valid)
6520 return error(Loc, "invalid operand type for instruction");
6522 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6523 return false;
6526 /// parseCallBr
6527 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6528 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6529 /// '[' LabelList ']'
6530 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6531 LocTy CallLoc = Lex.getLoc();
6532 AttrBuilder RetAttrs, FnAttrs;
6533 std::vector<unsigned> FwdRefAttrGrps;
6534 LocTy NoBuiltinLoc;
6535 unsigned CC;
6536 Type *RetType = nullptr;
6537 LocTy RetTypeLoc;
6538 ValID CalleeID;
6539 SmallVector<ParamInfo, 16> ArgList;
6540 SmallVector<OperandBundleDef, 2> BundleList;
6542 BasicBlock *DefaultDest;
6543 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6544 parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6545 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6546 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6547 NoBuiltinLoc) ||
6548 parseOptionalOperandBundles(BundleList, PFS) ||
6549 parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6550 parseTypeAndBasicBlock(DefaultDest, PFS) ||
6551 parseToken(lltok::lsquare, "expected '[' in callbr"))
6552 return true;
6554 // parse the destination list.
6555 SmallVector<BasicBlock *, 16> IndirectDests;
6557 if (Lex.getKind() != lltok::rsquare) {
6558 BasicBlock *DestBB;
6559 if (parseTypeAndBasicBlock(DestBB, PFS))
6560 return true;
6561 IndirectDests.push_back(DestBB);
6563 while (EatIfPresent(lltok::comma)) {
6564 if (parseTypeAndBasicBlock(DestBB, PFS))
6565 return true;
6566 IndirectDests.push_back(DestBB);
6570 if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6571 return true;
6573 // If RetType is a non-function pointer type, then this is the short syntax
6574 // for the call, which means that RetType is just the return type. Infer the
6575 // rest of the function argument types from the arguments that are present.
6576 FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6577 if (!Ty) {
6578 // Pull out the types of all of the arguments...
6579 std::vector<Type *> ParamTypes;
6580 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6581 ParamTypes.push_back(ArgList[i].V->getType());
6583 if (!FunctionType::isValidReturnType(RetType))
6584 return error(RetTypeLoc, "Invalid result type for LLVM function");
6586 Ty = FunctionType::get(RetType, ParamTypes, false);
6589 CalleeID.FTy = Ty;
6591 // Look up the callee.
6592 Value *Callee;
6593 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6594 /*IsCall=*/true))
6595 return true;
6597 // Set up the Attribute for the function.
6598 SmallVector<Value *, 8> Args;
6599 SmallVector<AttributeSet, 8> ArgAttrs;
6601 // Loop through FunctionType's arguments and ensure they are specified
6602 // correctly. Also, gather any parameter attributes.
6603 FunctionType::param_iterator I = Ty->param_begin();
6604 FunctionType::param_iterator E = Ty->param_end();
6605 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6606 Type *ExpectedTy = nullptr;
6607 if (I != E) {
6608 ExpectedTy = *I++;
6609 } else if (!Ty->isVarArg()) {
6610 return error(ArgList[i].Loc, "too many arguments specified");
6613 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6614 return error(ArgList[i].Loc, "argument is not of expected type '" +
6615 getTypeString(ExpectedTy) + "'");
6616 Args.push_back(ArgList[i].V);
6617 ArgAttrs.push_back(ArgList[i].Attrs);
6620 if (I != E)
6621 return error(CallLoc, "not enough parameters specified for call");
6623 if (FnAttrs.hasAlignmentAttr())
6624 return error(CallLoc, "callbr instructions may not have an alignment");
6626 // Finish off the Attribute and check them
6627 AttributeList PAL =
6628 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6629 AttributeSet::get(Context, RetAttrs), ArgAttrs);
6631 CallBrInst *CBI =
6632 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6633 BundleList);
6634 CBI->setCallingConv(CC);
6635 CBI->setAttributes(PAL);
6636 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6637 Inst = CBI;
6638 return false;
6641 //===----------------------------------------------------------------------===//
6642 // Binary Operators.
6643 //===----------------------------------------------------------------------===//
6645 /// parseArithmetic
6646 /// ::= ArithmeticOps TypeAndValue ',' Value
6648 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6649 /// operand is allowed.
6650 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6651 unsigned Opc, bool IsFP) {
6652 LocTy Loc; Value *LHS, *RHS;
6653 if (parseTypeAndValue(LHS, Loc, PFS) ||
6654 parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6655 parseValue(LHS->getType(), RHS, PFS))
6656 return true;
6658 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6659 : LHS->getType()->isIntOrIntVectorTy();
6661 if (!Valid)
6662 return error(Loc, "invalid operand type for instruction");
6664 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6665 return false;
6668 /// parseLogical
6669 /// ::= ArithmeticOps TypeAndValue ',' Value {
6670 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6671 unsigned Opc) {
6672 LocTy Loc; Value *LHS, *RHS;
6673 if (parseTypeAndValue(LHS, Loc, PFS) ||
6674 parseToken(lltok::comma, "expected ',' in logical operation") ||
6675 parseValue(LHS->getType(), RHS, PFS))
6676 return true;
6678 if (!LHS->getType()->isIntOrIntVectorTy())
6679 return error(Loc,
6680 "instruction requires integer or integer vector operands");
6682 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6683 return false;
6686 /// parseCompare
6687 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
6688 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
6689 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
6690 unsigned Opc) {
6691 // parse the integer/fp comparison predicate.
6692 LocTy Loc;
6693 unsigned Pred;
6694 Value *LHS, *RHS;
6695 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
6696 parseToken(lltok::comma, "expected ',' after compare value") ||
6697 parseValue(LHS->getType(), RHS, PFS))
6698 return true;
6700 if (Opc == Instruction::FCmp) {
6701 if (!LHS->getType()->isFPOrFPVectorTy())
6702 return error(Loc, "fcmp requires floating point operands");
6703 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6704 } else {
6705 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6706 if (!LHS->getType()->isIntOrIntVectorTy() &&
6707 !LHS->getType()->isPtrOrPtrVectorTy())
6708 return error(Loc, "icmp requires integer operands");
6709 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6711 return false;
6714 //===----------------------------------------------------------------------===//
6715 // Other Instructions.
6716 //===----------------------------------------------------------------------===//
6718 /// parseCast
6719 /// ::= CastOpc TypeAndValue 'to' Type
6720 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
6721 unsigned Opc) {
6722 LocTy Loc;
6723 Value *Op;
6724 Type *DestTy = nullptr;
6725 if (parseTypeAndValue(Op, Loc, PFS) ||
6726 parseToken(lltok::kw_to, "expected 'to' after cast value") ||
6727 parseType(DestTy))
6728 return true;
6730 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6731 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6732 return error(Loc, "invalid cast opcode for cast from '" +
6733 getTypeString(Op->getType()) + "' to '" +
6734 getTypeString(DestTy) + "'");
6736 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6737 return false;
6740 /// parseSelect
6741 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6742 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6743 LocTy Loc;
6744 Value *Op0, *Op1, *Op2;
6745 if (parseTypeAndValue(Op0, Loc, PFS) ||
6746 parseToken(lltok::comma, "expected ',' after select condition") ||
6747 parseTypeAndValue(Op1, PFS) ||
6748 parseToken(lltok::comma, "expected ',' after select value") ||
6749 parseTypeAndValue(Op2, PFS))
6750 return true;
6752 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6753 return error(Loc, Reason);
6755 Inst = SelectInst::Create(Op0, Op1, Op2);
6756 return false;
6759 /// parseVAArg
6760 /// ::= 'va_arg' TypeAndValue ',' Type
6761 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
6762 Value *Op;
6763 Type *EltTy = nullptr;
6764 LocTy TypeLoc;
6765 if (parseTypeAndValue(Op, PFS) ||
6766 parseToken(lltok::comma, "expected ',' after vaarg operand") ||
6767 parseType(EltTy, TypeLoc))
6768 return true;
6770 if (!EltTy->isFirstClassType())
6771 return error(TypeLoc, "va_arg requires operand with first class type");
6773 Inst = new VAArgInst(Op, EltTy);
6774 return false;
6777 /// parseExtractElement
6778 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
6779 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6780 LocTy Loc;
6781 Value *Op0, *Op1;
6782 if (parseTypeAndValue(Op0, Loc, PFS) ||
6783 parseToken(lltok::comma, "expected ',' after extract value") ||
6784 parseTypeAndValue(Op1, PFS))
6785 return true;
6787 if (!ExtractElementInst::isValidOperands(Op0, Op1))
6788 return error(Loc, "invalid extractelement operands");
6790 Inst = ExtractElementInst::Create(Op0, Op1);
6791 return false;
6794 /// parseInsertElement
6795 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6796 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6797 LocTy Loc;
6798 Value *Op0, *Op1, *Op2;
6799 if (parseTypeAndValue(Op0, Loc, PFS) ||
6800 parseToken(lltok::comma, "expected ',' after insertelement value") ||
6801 parseTypeAndValue(Op1, PFS) ||
6802 parseToken(lltok::comma, "expected ',' after insertelement value") ||
6803 parseTypeAndValue(Op2, PFS))
6804 return true;
6806 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6807 return error(Loc, "invalid insertelement operands");
6809 Inst = InsertElementInst::Create(Op0, Op1, Op2);
6810 return false;
6813 /// parseShuffleVector
6814 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6815 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6816 LocTy Loc;
6817 Value *Op0, *Op1, *Op2;
6818 if (parseTypeAndValue(Op0, Loc, PFS) ||
6819 parseToken(lltok::comma, "expected ',' after shuffle mask") ||
6820 parseTypeAndValue(Op1, PFS) ||
6821 parseToken(lltok::comma, "expected ',' after shuffle value") ||
6822 parseTypeAndValue(Op2, PFS))
6823 return true;
6825 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6826 return error(Loc, "invalid shufflevector operands");
6828 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6829 return false;
6832 /// parsePHI
6833 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6834 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6835 Type *Ty = nullptr; LocTy TypeLoc;
6836 Value *Op0, *Op1;
6838 if (parseType(Ty, TypeLoc) ||
6839 parseToken(lltok::lsquare, "expected '[' in phi value list") ||
6840 parseValue(Ty, Op0, PFS) ||
6841 parseToken(lltok::comma, "expected ',' after insertelement value") ||
6842 parseValue(Type::getLabelTy(Context), Op1, PFS) ||
6843 parseToken(lltok::rsquare, "expected ']' in phi value list"))
6844 return true;
6846 bool AteExtraComma = false;
6847 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6849 while (true) {
6850 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6852 if (!EatIfPresent(lltok::comma))
6853 break;
6855 if (Lex.getKind() == lltok::MetadataVar) {
6856 AteExtraComma = true;
6857 break;
6860 if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
6861 parseValue(Ty, Op0, PFS) ||
6862 parseToken(lltok::comma, "expected ',' after insertelement value") ||
6863 parseValue(Type::getLabelTy(Context), Op1, PFS) ||
6864 parseToken(lltok::rsquare, "expected ']' in phi value list"))
6865 return true;
6868 if (!Ty->isFirstClassType())
6869 return error(TypeLoc, "phi node must have first class type");
6871 PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6872 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6873 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6874 Inst = PN;
6875 return AteExtraComma ? InstExtraComma : InstNormal;
6878 /// parseLandingPad
6879 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6880 /// Clause
6881 /// ::= 'catch' TypeAndValue
6882 /// ::= 'filter'
6883 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6884 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6885 Type *Ty = nullptr; LocTy TyLoc;
6887 if (parseType(Ty, TyLoc))
6888 return true;
6890 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6891 LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6893 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6894 LandingPadInst::ClauseType CT;
6895 if (EatIfPresent(lltok::kw_catch))
6896 CT = LandingPadInst::Catch;
6897 else if (EatIfPresent(lltok::kw_filter))
6898 CT = LandingPadInst::Filter;
6899 else
6900 return tokError("expected 'catch' or 'filter' clause type");
6902 Value *V;
6903 LocTy VLoc;
6904 if (parseTypeAndValue(V, VLoc, PFS))
6905 return true;
6907 // A 'catch' type expects a non-array constant. A filter clause expects an
6908 // array constant.
6909 if (CT == LandingPadInst::Catch) {
6910 if (isa<ArrayType>(V->getType()))
6911 error(VLoc, "'catch' clause has an invalid type");
6912 } else {
6913 if (!isa<ArrayType>(V->getType()))
6914 error(VLoc, "'filter' clause has an invalid type");
6917 Constant *CV = dyn_cast<Constant>(V);
6918 if (!CV)
6919 return error(VLoc, "clause argument must be a constant");
6920 LP->addClause(CV);
6923 Inst = LP.release();
6924 return false;
6927 /// parseFreeze
6928 /// ::= 'freeze' Type Value
6929 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
6930 LocTy Loc;
6931 Value *Op;
6932 if (parseTypeAndValue(Op, Loc, PFS))
6933 return true;
6935 Inst = new FreezeInst(Op);
6936 return false;
6939 /// parseCall
6940 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv
6941 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6942 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6943 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6944 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6945 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6946 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv
6947 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6948 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
6949 CallInst::TailCallKind TCK) {
6950 AttrBuilder RetAttrs, FnAttrs;
6951 std::vector<unsigned> FwdRefAttrGrps;
6952 LocTy BuiltinLoc;
6953 unsigned CallAddrSpace;
6954 unsigned CC;
6955 Type *RetType = nullptr;
6956 LocTy RetTypeLoc;
6957 ValID CalleeID;
6958 SmallVector<ParamInfo, 16> ArgList;
6959 SmallVector<OperandBundleDef, 2> BundleList;
6960 LocTy CallLoc = Lex.getLoc();
6962 if (TCK != CallInst::TCK_None &&
6963 parseToken(lltok::kw_call,
6964 "expected 'tail call', 'musttail call', or 'notail call'"))
6965 return true;
6967 FastMathFlags FMF = EatFastMathFlagsIfPresent();
6969 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6970 parseOptionalProgramAddrSpace(CallAddrSpace) ||
6971 parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6972 parseValID(CalleeID, &PFS) ||
6973 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6974 PFS.getFunction().isVarArg()) ||
6975 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6976 parseOptionalOperandBundles(BundleList, PFS))
6977 return true;
6979 // If RetType is a non-function pointer type, then this is the short syntax
6980 // for the call, which means that RetType is just the return type. Infer the
6981 // rest of the function argument types from the arguments that are present.
6982 FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6983 if (!Ty) {
6984 // Pull out the types of all of the arguments...
6985 std::vector<Type*> ParamTypes;
6986 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6987 ParamTypes.push_back(ArgList[i].V->getType());
6989 if (!FunctionType::isValidReturnType(RetType))
6990 return error(RetTypeLoc, "Invalid result type for LLVM function");
6992 Ty = FunctionType::get(RetType, ParamTypes, false);
6995 CalleeID.FTy = Ty;
6997 // Look up the callee.
6998 Value *Callee;
6999 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7000 &PFS, /*IsCall=*/true))
7001 return true;
7003 // Set up the Attribute for the function.
7004 SmallVector<AttributeSet, 8> Attrs;
7006 SmallVector<Value*, 8> Args;
7008 // Loop through FunctionType's arguments and ensure they are specified
7009 // correctly. Also, gather any parameter attributes.
7010 FunctionType::param_iterator I = Ty->param_begin();
7011 FunctionType::param_iterator E = Ty->param_end();
7012 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7013 Type *ExpectedTy = nullptr;
7014 if (I != E) {
7015 ExpectedTy = *I++;
7016 } else if (!Ty->isVarArg()) {
7017 return error(ArgList[i].Loc, "too many arguments specified");
7020 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7021 return error(ArgList[i].Loc, "argument is not of expected type '" +
7022 getTypeString(ExpectedTy) + "'");
7023 Args.push_back(ArgList[i].V);
7024 Attrs.push_back(ArgList[i].Attrs);
7027 if (I != E)
7028 return error(CallLoc, "not enough parameters specified for call");
7030 if (FnAttrs.hasAlignmentAttr())
7031 return error(CallLoc, "call instructions may not have an alignment");
7033 // Finish off the Attribute and check them
7034 AttributeList PAL =
7035 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7036 AttributeSet::get(Context, RetAttrs), Attrs);
7038 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7039 CI->setTailCallKind(TCK);
7040 CI->setCallingConv(CC);
7041 if (FMF.any()) {
7042 if (!isa<FPMathOperator>(CI)) {
7043 CI->deleteValue();
7044 return error(CallLoc, "fast-math-flags specified for call without "
7045 "floating-point scalar or vector return type");
7047 CI->setFastMathFlags(FMF);
7049 CI->setAttributes(PAL);
7050 ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7051 Inst = CI;
7052 return false;
7055 //===----------------------------------------------------------------------===//
7056 // Memory Instructions.
7057 //===----------------------------------------------------------------------===//
7059 /// parseAlloc
7060 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7061 /// (',' 'align' i32)? (',', 'addrspace(n))?
7062 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7063 Value *Size = nullptr;
7064 LocTy SizeLoc, TyLoc, ASLoc;
7065 MaybeAlign Alignment;
7066 unsigned AddrSpace = 0;
7067 Type *Ty = nullptr;
7069 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7070 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7072 if (parseType(Ty, TyLoc))
7073 return true;
7075 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7076 return error(TyLoc, "invalid type for alloca");
7078 bool AteExtraComma = false;
7079 if (EatIfPresent(lltok::comma)) {
7080 if (Lex.getKind() == lltok::kw_align) {
7081 if (parseOptionalAlignment(Alignment))
7082 return true;
7083 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7084 return true;
7085 } else if (Lex.getKind() == lltok::kw_addrspace) {
7086 ASLoc = Lex.getLoc();
7087 if (parseOptionalAddrSpace(AddrSpace))
7088 return true;
7089 } else if (Lex.getKind() == lltok::MetadataVar) {
7090 AteExtraComma = true;
7091 } else {
7092 if (parseTypeAndValue(Size, SizeLoc, PFS))
7093 return true;
7094 if (EatIfPresent(lltok::comma)) {
7095 if (Lex.getKind() == lltok::kw_align) {
7096 if (parseOptionalAlignment(Alignment))
7097 return true;
7098 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7099 return true;
7100 } else if (Lex.getKind() == lltok::kw_addrspace) {
7101 ASLoc = Lex.getLoc();
7102 if (parseOptionalAddrSpace(AddrSpace))
7103 return true;
7104 } else if (Lex.getKind() == lltok::MetadataVar) {
7105 AteExtraComma = true;
7111 if (Size && !Size->getType()->isIntegerTy())
7112 return error(SizeLoc, "element count must have integer type");
7114 SmallPtrSet<Type *, 4> Visited;
7115 if (!Alignment && !Ty->isSized(&Visited))
7116 return error(TyLoc, "Cannot allocate unsized type");
7117 if (!Alignment)
7118 Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7119 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7120 AI->setUsedWithInAlloca(IsInAlloca);
7121 AI->setSwiftError(IsSwiftError);
7122 Inst = AI;
7123 return AteExtraComma ? InstExtraComma : InstNormal;
7126 /// parseLoad
7127 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7128 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue
7129 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
7130 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7131 Value *Val; LocTy Loc;
7132 MaybeAlign Alignment;
7133 bool AteExtraComma = false;
7134 bool isAtomic = false;
7135 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7136 SyncScope::ID SSID = SyncScope::System;
7138 if (Lex.getKind() == lltok::kw_atomic) {
7139 isAtomic = true;
7140 Lex.Lex();
7143 bool isVolatile = false;
7144 if (Lex.getKind() == lltok::kw_volatile) {
7145 isVolatile = true;
7146 Lex.Lex();
7149 Type *Ty;
7150 LocTy ExplicitTypeLoc = Lex.getLoc();
7151 if (parseType(Ty) ||
7152 parseToken(lltok::comma, "expected comma after load's type") ||
7153 parseTypeAndValue(Val, Loc, PFS) ||
7154 parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7155 parseOptionalCommaAlign(Alignment, AteExtraComma))
7156 return true;
7158 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7159 return error(Loc, "load operand must be a pointer to a first class type");
7160 if (isAtomic && !Alignment)
7161 return error(Loc, "atomic load must have explicit non-zero alignment");
7162 if (Ordering == AtomicOrdering::Release ||
7163 Ordering == AtomicOrdering::AcquireRelease)
7164 return error(Loc, "atomic load cannot use Release ordering");
7166 if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) {
7167 return error(
7168 ExplicitTypeLoc,
7169 typeComparisonErrorMessage(
7170 "explicit pointee type doesn't match operand's pointee type", Ty,
7171 cast<PointerType>(Val->getType())->getElementType()));
7173 SmallPtrSet<Type *, 4> Visited;
7174 if (!Alignment && !Ty->isSized(&Visited))
7175 return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7176 if (!Alignment)
7177 Alignment = M->getDataLayout().getABITypeAlign(Ty);
7178 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7179 return AteExtraComma ? InstExtraComma : InstNormal;
7182 /// parseStore
7184 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7185 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7186 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
7187 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7188 Value *Val, *Ptr; LocTy Loc, PtrLoc;
7189 MaybeAlign Alignment;
7190 bool AteExtraComma = false;
7191 bool isAtomic = false;
7192 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7193 SyncScope::ID SSID = SyncScope::System;
7195 if (Lex.getKind() == lltok::kw_atomic) {
7196 isAtomic = true;
7197 Lex.Lex();
7200 bool isVolatile = false;
7201 if (Lex.getKind() == lltok::kw_volatile) {
7202 isVolatile = true;
7203 Lex.Lex();
7206 if (parseTypeAndValue(Val, Loc, PFS) ||
7207 parseToken(lltok::comma, "expected ',' after store operand") ||
7208 parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7209 parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7210 parseOptionalCommaAlign(Alignment, AteExtraComma))
7211 return true;
7213 if (!Ptr->getType()->isPointerTy())
7214 return error(PtrLoc, "store operand must be a pointer");
7215 if (!Val->getType()->isFirstClassType())
7216 return error(Loc, "store operand must be a first class value");
7217 if (!cast<PointerType>(Ptr->getType())
7218 ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7219 return error(Loc, "stored value and pointer type do not match");
7220 if (isAtomic && !Alignment)
7221 return error(Loc, "atomic store must have explicit non-zero alignment");
7222 if (Ordering == AtomicOrdering::Acquire ||
7223 Ordering == AtomicOrdering::AcquireRelease)
7224 return error(Loc, "atomic store cannot use Acquire ordering");
7225 SmallPtrSet<Type *, 4> Visited;
7226 if (!Alignment && !Val->getType()->isSized(&Visited))
7227 return error(Loc, "storing unsized types is not allowed");
7228 if (!Alignment)
7229 Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7231 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7232 return AteExtraComma ? InstExtraComma : InstNormal;
7235 /// parseCmpXchg
7236 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7237 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7238 /// 'Align'?
7239 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7240 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7241 bool AteExtraComma = false;
7242 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7243 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7244 SyncScope::ID SSID = SyncScope::System;
7245 bool isVolatile = false;
7246 bool isWeak = false;
7247 MaybeAlign Alignment;
7249 if (EatIfPresent(lltok::kw_weak))
7250 isWeak = true;
7252 if (EatIfPresent(lltok::kw_volatile))
7253 isVolatile = true;
7255 if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7256 parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7257 parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7258 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7259 parseTypeAndValue(New, NewLoc, PFS) ||
7260 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7261 parseOrdering(FailureOrdering) ||
7262 parseOptionalCommaAlign(Alignment, AteExtraComma))
7263 return true;
7265 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
7266 return tokError("invalid cmpxchg success ordering");
7267 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
7268 return tokError("invalid cmpxchg failure ordering");
7269 if (!Ptr->getType()->isPointerTy())
7270 return error(PtrLoc, "cmpxchg operand must be a pointer");
7271 if (!cast<PointerType>(Ptr->getType())
7272 ->isOpaqueOrPointeeTypeMatches(Cmp->getType()))
7273 return error(CmpLoc, "compare value and pointer type do not match");
7274 if (!cast<PointerType>(Ptr->getType())
7275 ->isOpaqueOrPointeeTypeMatches(New->getType()))
7276 return error(NewLoc, "new value and pointer type do not match");
7277 if (Cmp->getType() != New->getType())
7278 return error(NewLoc, "compare value and new value type do not match");
7279 if (!New->getType()->isFirstClassType())
7280 return error(NewLoc, "cmpxchg operand must be a first class value");
7282 const Align DefaultAlignment(
7283 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7284 Cmp->getType()));
7286 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7287 Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering,
7288 FailureOrdering, SSID);
7289 CXI->setVolatile(isVolatile);
7290 CXI->setWeak(isWeak);
7292 Inst = CXI;
7293 return AteExtraComma ? InstExtraComma : InstNormal;
7296 /// parseAtomicRMW
7297 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7298 /// 'singlethread'? AtomicOrdering
7299 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7300 Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7301 bool AteExtraComma = false;
7302 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7303 SyncScope::ID SSID = SyncScope::System;
7304 bool isVolatile = false;
7305 bool IsFP = false;
7306 AtomicRMWInst::BinOp Operation;
7307 MaybeAlign Alignment;
7309 if (EatIfPresent(lltok::kw_volatile))
7310 isVolatile = true;
7312 switch (Lex.getKind()) {
7313 default:
7314 return tokError("expected binary operation in atomicrmw");
7315 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7316 case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7317 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7318 case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7319 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7320 case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7321 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7322 case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7323 case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7324 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7325 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7326 case lltok::kw_fadd:
7327 Operation = AtomicRMWInst::FAdd;
7328 IsFP = true;
7329 break;
7330 case lltok::kw_fsub:
7331 Operation = AtomicRMWInst::FSub;
7332 IsFP = true;
7333 break;
7335 Lex.Lex(); // Eat the operation.
7337 if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7338 parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7339 parseTypeAndValue(Val, ValLoc, PFS) ||
7340 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7341 parseOptionalCommaAlign(Alignment, AteExtraComma))
7342 return true;
7344 if (Ordering == AtomicOrdering::Unordered)
7345 return tokError("atomicrmw cannot be unordered");
7346 if (!Ptr->getType()->isPointerTy())
7347 return error(PtrLoc, "atomicrmw operand must be a pointer");
7348 if (!cast<PointerType>(Ptr->getType())
7349 ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7350 return error(ValLoc, "atomicrmw value and pointer type do not match");
7352 if (Operation == AtomicRMWInst::Xchg) {
7353 if (!Val->getType()->isIntegerTy() &&
7354 !Val->getType()->isFloatingPointTy()) {
7355 return error(ValLoc,
7356 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7357 " operand must be an integer or floating point type");
7359 } else if (IsFP) {
7360 if (!Val->getType()->isFloatingPointTy()) {
7361 return error(ValLoc, "atomicrmw " +
7362 AtomicRMWInst::getOperationName(Operation) +
7363 " operand must be a floating point type");
7365 } else {
7366 if (!Val->getType()->isIntegerTy()) {
7367 return error(ValLoc, "atomicrmw " +
7368 AtomicRMWInst::getOperationName(Operation) +
7369 " operand must be an integer");
7373 unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7374 if (Size < 8 || (Size & (Size - 1)))
7375 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7376 " integer");
7377 const Align DefaultAlignment(
7378 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7379 Val->getType()));
7380 AtomicRMWInst *RMWI =
7381 new AtomicRMWInst(Operation, Ptr, Val,
7382 Alignment.getValueOr(DefaultAlignment), Ordering, SSID);
7383 RMWI->setVolatile(isVolatile);
7384 Inst = RMWI;
7385 return AteExtraComma ? InstExtraComma : InstNormal;
7388 /// parseFence
7389 /// ::= 'fence' 'singlethread'? AtomicOrdering
7390 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7391 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7392 SyncScope::ID SSID = SyncScope::System;
7393 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7394 return true;
7396 if (Ordering == AtomicOrdering::Unordered)
7397 return tokError("fence cannot be unordered");
7398 if (Ordering == AtomicOrdering::Monotonic)
7399 return tokError("fence cannot be monotonic");
7401 Inst = new FenceInst(Context, Ordering, SSID);
7402 return InstNormal;
7405 /// parseGetElementPtr
7406 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7407 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7408 Value *Ptr = nullptr;
7409 Value *Val = nullptr;
7410 LocTy Loc, EltLoc;
7412 bool InBounds = EatIfPresent(lltok::kw_inbounds);
7414 Type *Ty = nullptr;
7415 LocTy ExplicitTypeLoc = Lex.getLoc();
7416 if (parseType(Ty) ||
7417 parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7418 parseTypeAndValue(Ptr, Loc, PFS))
7419 return true;
7421 Type *BaseType = Ptr->getType();
7422 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7423 if (!BasePointerType)
7424 return error(Loc, "base of getelementptr must be a pointer");
7426 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
7427 return error(
7428 ExplicitTypeLoc,
7429 typeComparisonErrorMessage(
7430 "explicit pointee type doesn't match operand's pointee type", Ty,
7431 BasePointerType->getElementType()));
7434 SmallVector<Value*, 16> Indices;
7435 bool AteExtraComma = false;
7436 // GEP returns a vector of pointers if at least one of parameters is a vector.
7437 // All vector parameters should have the same vector width.
7438 ElementCount GEPWidth = BaseType->isVectorTy()
7439 ? cast<VectorType>(BaseType)->getElementCount()
7440 : ElementCount::getFixed(0);
7442 while (EatIfPresent(lltok::comma)) {
7443 if (Lex.getKind() == lltok::MetadataVar) {
7444 AteExtraComma = true;
7445 break;
7447 if (parseTypeAndValue(Val, EltLoc, PFS))
7448 return true;
7449 if (!Val->getType()->isIntOrIntVectorTy())
7450 return error(EltLoc, "getelementptr index must be an integer");
7452 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7453 ElementCount ValNumEl = ValVTy->getElementCount();
7454 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7455 return error(
7456 EltLoc,
7457 "getelementptr vector index has a wrong number of elements");
7458 GEPWidth = ValNumEl;
7460 Indices.push_back(Val);
7463 SmallPtrSet<Type*, 4> Visited;
7464 if (!Indices.empty() && !Ty->isSized(&Visited))
7465 return error(Loc, "base element of getelementptr must be sized");
7467 if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7468 return error(Loc, "invalid getelementptr indices");
7469 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7470 if (InBounds)
7471 cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7472 return AteExtraComma ? InstExtraComma : InstNormal;
7475 /// parseExtractValue
7476 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
7477 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7478 Value *Val; LocTy Loc;
7479 SmallVector<unsigned, 4> Indices;
7480 bool AteExtraComma;
7481 if (parseTypeAndValue(Val, Loc, PFS) ||
7482 parseIndexList(Indices, AteExtraComma))
7483 return true;
7485 if (!Val->getType()->isAggregateType())
7486 return error(Loc, "extractvalue operand must be aggregate type");
7488 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7489 return error(Loc, "invalid indices for extractvalue");
7490 Inst = ExtractValueInst::Create(Val, Indices);
7491 return AteExtraComma ? InstExtraComma : InstNormal;
7494 /// parseInsertValue
7495 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7496 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7497 Value *Val0, *Val1; LocTy Loc0, Loc1;
7498 SmallVector<unsigned, 4> Indices;
7499 bool AteExtraComma;
7500 if (parseTypeAndValue(Val0, Loc0, PFS) ||
7501 parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7502 parseTypeAndValue(Val1, Loc1, PFS) ||
7503 parseIndexList(Indices, AteExtraComma))
7504 return true;
7506 if (!Val0->getType()->isAggregateType())
7507 return error(Loc0, "insertvalue operand must be aggregate type");
7509 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7510 if (!IndexedType)
7511 return error(Loc0, "invalid indices for insertvalue");
7512 if (IndexedType != Val1->getType())
7513 return error(Loc1, "insertvalue operand and field disagree in type: '" +
7514 getTypeString(Val1->getType()) + "' instead of '" +
7515 getTypeString(IndexedType) + "'");
7516 Inst = InsertValueInst::Create(Val0, Val1, Indices);
7517 return AteExtraComma ? InstExtraComma : InstNormal;
7520 //===----------------------------------------------------------------------===//
7521 // Embedded metadata.
7522 //===----------------------------------------------------------------------===//
7524 /// parseMDNodeVector
7525 /// ::= { Element (',' Element)* }
7526 /// Element
7527 /// ::= 'null' | TypeAndValue
7528 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7529 if (parseToken(lltok::lbrace, "expected '{' here"))
7530 return true;
7532 // Check for an empty list.
7533 if (EatIfPresent(lltok::rbrace))
7534 return false;
7536 do {
7537 // Null is a special case since it is typeless.
7538 if (EatIfPresent(lltok::kw_null)) {
7539 Elts.push_back(nullptr);
7540 continue;
7543 Metadata *MD;
7544 if (parseMetadata(MD, nullptr))
7545 return true;
7546 Elts.push_back(MD);
7547 } while (EatIfPresent(lltok::comma));
7549 return parseToken(lltok::rbrace, "expected end of metadata node");
7552 //===----------------------------------------------------------------------===//
7553 // Use-list order directives.
7554 //===----------------------------------------------------------------------===//
7555 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7556 SMLoc Loc) {
7557 if (V->use_empty())
7558 return error(Loc, "value has no uses");
7560 unsigned NumUses = 0;
7561 SmallDenseMap<const Use *, unsigned, 16> Order;
7562 for (const Use &U : V->uses()) {
7563 if (++NumUses > Indexes.size())
7564 break;
7565 Order[&U] = Indexes[NumUses - 1];
7567 if (NumUses < 2)
7568 return error(Loc, "value only has one use");
7569 if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7570 return error(Loc,
7571 "wrong number of indexes, expected " + Twine(V->getNumUses()));
7573 V->sortUseList([&](const Use &L, const Use &R) {
7574 return Order.lookup(&L) < Order.lookup(&R);
7576 return false;
7579 /// parseUseListOrderIndexes
7580 /// ::= '{' uint32 (',' uint32)+ '}'
7581 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7582 SMLoc Loc = Lex.getLoc();
7583 if (parseToken(lltok::lbrace, "expected '{' here"))
7584 return true;
7585 if (Lex.getKind() == lltok::rbrace)
7586 return Lex.Error("expected non-empty list of uselistorder indexes");
7588 // Use Offset, Max, and IsOrdered to check consistency of indexes. The
7589 // indexes should be distinct numbers in the range [0, size-1], and should
7590 // not be in order.
7591 unsigned Offset = 0;
7592 unsigned Max = 0;
7593 bool IsOrdered = true;
7594 assert(Indexes.empty() && "Expected empty order vector");
7595 do {
7596 unsigned Index;
7597 if (parseUInt32(Index))
7598 return true;
7600 // Update consistency checks.
7601 Offset += Index - Indexes.size();
7602 Max = std::max(Max, Index);
7603 IsOrdered &= Index == Indexes.size();
7605 Indexes.push_back(Index);
7606 } while (EatIfPresent(lltok::comma));
7608 if (parseToken(lltok::rbrace, "expected '}' here"))
7609 return true;
7611 if (Indexes.size() < 2)
7612 return error(Loc, "expected >= 2 uselistorder indexes");
7613 if (Offset != 0 || Max >= Indexes.size())
7614 return error(Loc,
7615 "expected distinct uselistorder indexes in range [0, size)");
7616 if (IsOrdered)
7617 return error(Loc, "expected uselistorder indexes to change the order");
7619 return false;
7622 /// parseUseListOrder
7623 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7624 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7625 SMLoc Loc = Lex.getLoc();
7626 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7627 return true;
7629 Value *V;
7630 SmallVector<unsigned, 16> Indexes;
7631 if (parseTypeAndValue(V, PFS) ||
7632 parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7633 parseUseListOrderIndexes(Indexes))
7634 return true;
7636 return sortUseListOrder(V, Indexes, Loc);
7639 /// parseUseListOrderBB
7640 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7641 bool LLParser::parseUseListOrderBB() {
7642 assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7643 SMLoc Loc = Lex.getLoc();
7644 Lex.Lex();
7646 ValID Fn, Label;
7647 SmallVector<unsigned, 16> Indexes;
7648 if (parseValID(Fn, /*PFS=*/nullptr) ||
7649 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7650 parseValID(Label, /*PFS=*/nullptr) ||
7651 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7652 parseUseListOrderIndexes(Indexes))
7653 return true;
7655 // Check the function.
7656 GlobalValue *GV;
7657 if (Fn.Kind == ValID::t_GlobalName)
7658 GV = M->getNamedValue(Fn.StrVal);
7659 else if (Fn.Kind == ValID::t_GlobalID)
7660 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7661 else
7662 return error(Fn.Loc, "expected function name in uselistorder_bb");
7663 if (!GV)
7664 return error(Fn.Loc,
7665 "invalid function forward reference in uselistorder_bb");
7666 auto *F = dyn_cast<Function>(GV);
7667 if (!F)
7668 return error(Fn.Loc, "expected function name in uselistorder_bb");
7669 if (F->isDeclaration())
7670 return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7672 // Check the basic block.
7673 if (Label.Kind == ValID::t_LocalID)
7674 return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7675 if (Label.Kind != ValID::t_LocalName)
7676 return error(Label.Loc, "expected basic block name in uselistorder_bb");
7677 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7678 if (!V)
7679 return error(Label.Loc, "invalid basic block in uselistorder_bb");
7680 if (!isa<BasicBlock>(V))
7681 return error(Label.Loc, "expected basic block in uselistorder_bb");
7683 return sortUseListOrder(V, Indexes, Loc);
7686 /// ModuleEntry
7687 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7688 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7689 bool LLParser::parseModuleEntry(unsigned ID) {
7690 assert(Lex.getKind() == lltok::kw_module);
7691 Lex.Lex();
7693 std::string Path;
7694 if (parseToken(lltok::colon, "expected ':' here") ||
7695 parseToken(lltok::lparen, "expected '(' here") ||
7696 parseToken(lltok::kw_path, "expected 'path' here") ||
7697 parseToken(lltok::colon, "expected ':' here") ||
7698 parseStringConstant(Path) ||
7699 parseToken(lltok::comma, "expected ',' here") ||
7700 parseToken(lltok::kw_hash, "expected 'hash' here") ||
7701 parseToken(lltok::colon, "expected ':' here") ||
7702 parseToken(lltok::lparen, "expected '(' here"))
7703 return true;
7705 ModuleHash Hash;
7706 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
7707 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
7708 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
7709 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
7710 parseUInt32(Hash[4]))
7711 return true;
7713 if (parseToken(lltok::rparen, "expected ')' here") ||
7714 parseToken(lltok::rparen, "expected ')' here"))
7715 return true;
7717 auto ModuleEntry = Index->addModule(Path, ID, Hash);
7718 ModuleIdMap[ID] = ModuleEntry->first();
7720 return false;
7723 /// TypeIdEntry
7724 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7725 bool LLParser::parseTypeIdEntry(unsigned ID) {
7726 assert(Lex.getKind() == lltok::kw_typeid);
7727 Lex.Lex();
7729 std::string Name;
7730 if (parseToken(lltok::colon, "expected ':' here") ||
7731 parseToken(lltok::lparen, "expected '(' here") ||
7732 parseToken(lltok::kw_name, "expected 'name' here") ||
7733 parseToken(lltok::colon, "expected ':' here") ||
7734 parseStringConstant(Name))
7735 return true;
7737 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7738 if (parseToken(lltok::comma, "expected ',' here") ||
7739 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
7740 return true;
7742 // Check if this ID was forward referenced, and if so, update the
7743 // corresponding GUIDs.
7744 auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7745 if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7746 for (auto TIDRef : FwdRefTIDs->second) {
7747 assert(!*TIDRef.first &&
7748 "Forward referenced type id GUID expected to be 0");
7749 *TIDRef.first = GlobalValue::getGUID(Name);
7751 ForwardRefTypeIds.erase(FwdRefTIDs);
7754 return false;
7757 /// TypeIdSummary
7758 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7759 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
7760 if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
7761 parseToken(lltok::colon, "expected ':' here") ||
7762 parseToken(lltok::lparen, "expected '(' here") ||
7763 parseTypeTestResolution(TIS.TTRes))
7764 return true;
7766 if (EatIfPresent(lltok::comma)) {
7767 // Expect optional wpdResolutions field
7768 if (parseOptionalWpdResolutions(TIS.WPDRes))
7769 return true;
7772 if (parseToken(lltok::rparen, "expected ')' here"))
7773 return true;
7775 return false;
7778 static ValueInfo EmptyVI =
7779 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7781 /// TypeIdCompatibleVtableEntry
7782 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7783 /// TypeIdCompatibleVtableInfo
7784 /// ')'
7785 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
7786 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7787 Lex.Lex();
7789 std::string Name;
7790 if (parseToken(lltok::colon, "expected ':' here") ||
7791 parseToken(lltok::lparen, "expected '(' here") ||
7792 parseToken(lltok::kw_name, "expected 'name' here") ||
7793 parseToken(lltok::colon, "expected ':' here") ||
7794 parseStringConstant(Name))
7795 return true;
7797 TypeIdCompatibleVtableInfo &TI =
7798 Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7799 if (parseToken(lltok::comma, "expected ',' here") ||
7800 parseToken(lltok::kw_summary, "expected 'summary' here") ||
7801 parseToken(lltok::colon, "expected ':' here") ||
7802 parseToken(lltok::lparen, "expected '(' here"))
7803 return true;
7805 IdToIndexMapType IdToIndexMap;
7806 // parse each call edge
7807 do {
7808 uint64_t Offset;
7809 if (parseToken(lltok::lparen, "expected '(' here") ||
7810 parseToken(lltok::kw_offset, "expected 'offset' here") ||
7811 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
7812 parseToken(lltok::comma, "expected ',' here"))
7813 return true;
7815 LocTy Loc = Lex.getLoc();
7816 unsigned GVId;
7817 ValueInfo VI;
7818 if (parseGVReference(VI, GVId))
7819 return true;
7821 // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7822 // forward reference. We will save the location of the ValueInfo needing an
7823 // update, but can only do so once the std::vector is finalized.
7824 if (VI == EmptyVI)
7825 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7826 TI.push_back({Offset, VI});
7828 if (parseToken(lltok::rparen, "expected ')' in call"))
7829 return true;
7830 } while (EatIfPresent(lltok::comma));
7832 // Now that the TI vector is finalized, it is safe to save the locations
7833 // of any forward GV references that need updating later.
7834 for (auto I : IdToIndexMap) {
7835 auto &Infos = ForwardRefValueInfos[I.first];
7836 for (auto P : I.second) {
7837 assert(TI[P.first].VTableVI == EmptyVI &&
7838 "Forward referenced ValueInfo expected to be empty");
7839 Infos.emplace_back(&TI[P.first].VTableVI, P.second);
7843 if (parseToken(lltok::rparen, "expected ')' here") ||
7844 parseToken(lltok::rparen, "expected ')' here"))
7845 return true;
7847 // Check if this ID was forward referenced, and if so, update the
7848 // corresponding GUIDs.
7849 auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7850 if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7851 for (auto TIDRef : FwdRefTIDs->second) {
7852 assert(!*TIDRef.first &&
7853 "Forward referenced type id GUID expected to be 0");
7854 *TIDRef.first = GlobalValue::getGUID(Name);
7856 ForwardRefTypeIds.erase(FwdRefTIDs);
7859 return false;
7862 /// TypeTestResolution
7863 /// ::= 'typeTestRes' ':' '(' 'kind' ':'
7864 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7865 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7866 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7867 /// [',' 'inlinesBits' ':' UInt64]? ')'
7868 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
7869 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7870 parseToken(lltok::colon, "expected ':' here") ||
7871 parseToken(lltok::lparen, "expected '(' here") ||
7872 parseToken(lltok::kw_kind, "expected 'kind' here") ||
7873 parseToken(lltok::colon, "expected ':' here"))
7874 return true;
7876 switch (Lex.getKind()) {
7877 case lltok::kw_unknown:
7878 TTRes.TheKind = TypeTestResolution::Unknown;
7879 break;
7880 case lltok::kw_unsat:
7881 TTRes.TheKind = TypeTestResolution::Unsat;
7882 break;
7883 case lltok::kw_byteArray:
7884 TTRes.TheKind = TypeTestResolution::ByteArray;
7885 break;
7886 case lltok::kw_inline:
7887 TTRes.TheKind = TypeTestResolution::Inline;
7888 break;
7889 case lltok::kw_single:
7890 TTRes.TheKind = TypeTestResolution::Single;
7891 break;
7892 case lltok::kw_allOnes:
7893 TTRes.TheKind = TypeTestResolution::AllOnes;
7894 break;
7895 default:
7896 return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7898 Lex.Lex();
7900 if (parseToken(lltok::comma, "expected ',' here") ||
7901 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7902 parseToken(lltok::colon, "expected ':' here") ||
7903 parseUInt32(TTRes.SizeM1BitWidth))
7904 return true;
7906 // parse optional fields
7907 while (EatIfPresent(lltok::comma)) {
7908 switch (Lex.getKind()) {
7909 case lltok::kw_alignLog2:
7910 Lex.Lex();
7911 if (parseToken(lltok::colon, "expected ':'") ||
7912 parseUInt64(TTRes.AlignLog2))
7913 return true;
7914 break;
7915 case lltok::kw_sizeM1:
7916 Lex.Lex();
7917 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
7918 return true;
7919 break;
7920 case lltok::kw_bitMask: {
7921 unsigned Val;
7922 Lex.Lex();
7923 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
7924 return true;
7925 assert(Val <= 0xff);
7926 TTRes.BitMask = (uint8_t)Val;
7927 break;
7929 case lltok::kw_inlineBits:
7930 Lex.Lex();
7931 if (parseToken(lltok::colon, "expected ':'") ||
7932 parseUInt64(TTRes.InlineBits))
7933 return true;
7934 break;
7935 default:
7936 return error(Lex.getLoc(), "expected optional TypeTestResolution field");
7940 if (parseToken(lltok::rparen, "expected ')' here"))
7941 return true;
7943 return false;
7946 /// OptionalWpdResolutions
7947 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7948 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7949 bool LLParser::parseOptionalWpdResolutions(
7950 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7951 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7952 parseToken(lltok::colon, "expected ':' here") ||
7953 parseToken(lltok::lparen, "expected '(' here"))
7954 return true;
7956 do {
7957 uint64_t Offset;
7958 WholeProgramDevirtResolution WPDRes;
7959 if (parseToken(lltok::lparen, "expected '(' here") ||
7960 parseToken(lltok::kw_offset, "expected 'offset' here") ||
7961 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
7962 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
7963 parseToken(lltok::rparen, "expected ')' here"))
7964 return true;
7965 WPDResMap[Offset] = WPDRes;
7966 } while (EatIfPresent(lltok::comma));
7968 if (parseToken(lltok::rparen, "expected ')' here"))
7969 return true;
7971 return false;
7974 /// WpdRes
7975 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7976 /// [',' OptionalResByArg]? ')'
7977 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7978 /// ',' 'singleImplName' ':' STRINGCONSTANT ','
7979 /// [',' OptionalResByArg]? ')'
7980 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7981 /// [',' OptionalResByArg]? ')'
7982 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7983 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7984 parseToken(lltok::colon, "expected ':' here") ||
7985 parseToken(lltok::lparen, "expected '(' here") ||
7986 parseToken(lltok::kw_kind, "expected 'kind' here") ||
7987 parseToken(lltok::colon, "expected ':' here"))
7988 return true;
7990 switch (Lex.getKind()) {
7991 case lltok::kw_indir:
7992 WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7993 break;
7994 case lltok::kw_singleImpl:
7995 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7996 break;
7997 case lltok::kw_branchFunnel:
7998 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7999 break;
8000 default:
8001 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8003 Lex.Lex();
8005 // parse optional fields
8006 while (EatIfPresent(lltok::comma)) {
8007 switch (Lex.getKind()) {
8008 case lltok::kw_singleImplName:
8009 Lex.Lex();
8010 if (parseToken(lltok::colon, "expected ':' here") ||
8011 parseStringConstant(WPDRes.SingleImplName))
8012 return true;
8013 break;
8014 case lltok::kw_resByArg:
8015 if (parseOptionalResByArg(WPDRes.ResByArg))
8016 return true;
8017 break;
8018 default:
8019 return error(Lex.getLoc(),
8020 "expected optional WholeProgramDevirtResolution field");
8024 if (parseToken(lltok::rparen, "expected ')' here"))
8025 return true;
8027 return false;
8030 /// OptionalResByArg
8031 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8032 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8033 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8034 /// 'virtualConstProp' )
8035 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8036 /// [',' 'bit' ':' UInt32]? ')'
8037 bool LLParser::parseOptionalResByArg(
8038 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8039 &ResByArg) {
8040 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8041 parseToken(lltok::colon, "expected ':' here") ||
8042 parseToken(lltok::lparen, "expected '(' here"))
8043 return true;
8045 do {
8046 std::vector<uint64_t> Args;
8047 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8048 parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8049 parseToken(lltok::colon, "expected ':' here") ||
8050 parseToken(lltok::lparen, "expected '(' here") ||
8051 parseToken(lltok::kw_kind, "expected 'kind' here") ||
8052 parseToken(lltok::colon, "expected ':' here"))
8053 return true;
8055 WholeProgramDevirtResolution::ByArg ByArg;
8056 switch (Lex.getKind()) {
8057 case lltok::kw_indir:
8058 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8059 break;
8060 case lltok::kw_uniformRetVal:
8061 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8062 break;
8063 case lltok::kw_uniqueRetVal:
8064 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8065 break;
8066 case lltok::kw_virtualConstProp:
8067 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8068 break;
8069 default:
8070 return error(Lex.getLoc(),
8071 "unexpected WholeProgramDevirtResolution::ByArg kind");
8073 Lex.Lex();
8075 // parse optional fields
8076 while (EatIfPresent(lltok::comma)) {
8077 switch (Lex.getKind()) {
8078 case lltok::kw_info:
8079 Lex.Lex();
8080 if (parseToken(lltok::colon, "expected ':' here") ||
8081 parseUInt64(ByArg.Info))
8082 return true;
8083 break;
8084 case lltok::kw_byte:
8085 Lex.Lex();
8086 if (parseToken(lltok::colon, "expected ':' here") ||
8087 parseUInt32(ByArg.Byte))
8088 return true;
8089 break;
8090 case lltok::kw_bit:
8091 Lex.Lex();
8092 if (parseToken(lltok::colon, "expected ':' here") ||
8093 parseUInt32(ByArg.Bit))
8094 return true;
8095 break;
8096 default:
8097 return error(Lex.getLoc(),
8098 "expected optional whole program devirt field");
8102 if (parseToken(lltok::rparen, "expected ')' here"))
8103 return true;
8105 ResByArg[Args] = ByArg;
8106 } while (EatIfPresent(lltok::comma));
8108 if (parseToken(lltok::rparen, "expected ')' here"))
8109 return true;
8111 return false;
8114 /// OptionalResByArg
8115 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8116 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8117 if (parseToken(lltok::kw_args, "expected 'args' here") ||
8118 parseToken(lltok::colon, "expected ':' here") ||
8119 parseToken(lltok::lparen, "expected '(' here"))
8120 return true;
8122 do {
8123 uint64_t Val;
8124 if (parseUInt64(Val))
8125 return true;
8126 Args.push_back(Val);
8127 } while (EatIfPresent(lltok::comma));
8129 if (parseToken(lltok::rparen, "expected ')' here"))
8130 return true;
8132 return false;
8135 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8137 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8138 bool ReadOnly = Fwd->isReadOnly();
8139 bool WriteOnly = Fwd->isWriteOnly();
8140 assert(!(ReadOnly && WriteOnly));
8141 *Fwd = Resolved;
8142 if (ReadOnly)
8143 Fwd->setReadOnly();
8144 if (WriteOnly)
8145 Fwd->setWriteOnly();
8148 /// Stores the given Name/GUID and associated summary into the Index.
8149 /// Also updates any forward references to the associated entry ID.
8150 void LLParser::addGlobalValueToIndex(
8151 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8152 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8153 // First create the ValueInfo utilizing the Name or GUID.
8154 ValueInfo VI;
8155 if (GUID != 0) {
8156 assert(Name.empty());
8157 VI = Index->getOrInsertValueInfo(GUID);
8158 } else {
8159 assert(!Name.empty());
8160 if (M) {
8161 auto *GV = M->getNamedValue(Name);
8162 assert(GV);
8163 VI = Index->getOrInsertValueInfo(GV);
8164 } else {
8165 assert(
8166 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8167 "Need a source_filename to compute GUID for local");
8168 GUID = GlobalValue::getGUID(
8169 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8170 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8174 // Resolve forward references from calls/refs
8175 auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8176 if (FwdRefVIs != ForwardRefValueInfos.end()) {
8177 for (auto VIRef : FwdRefVIs->second) {
8178 assert(VIRef.first->getRef() == FwdVIRef &&
8179 "Forward referenced ValueInfo expected to be empty");
8180 resolveFwdRef(VIRef.first, VI);
8182 ForwardRefValueInfos.erase(FwdRefVIs);
8185 // Resolve forward references from aliases
8186 auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8187 if (FwdRefAliasees != ForwardRefAliasees.end()) {
8188 for (auto AliaseeRef : FwdRefAliasees->second) {
8189 assert(!AliaseeRef.first->hasAliasee() &&
8190 "Forward referencing alias already has aliasee");
8191 assert(Summary && "Aliasee must be a definition");
8192 AliaseeRef.first->setAliasee(VI, Summary.get());
8194 ForwardRefAliasees.erase(FwdRefAliasees);
8197 // Add the summary if one was provided.
8198 if (Summary)
8199 Index->addGlobalValueSummary(VI, std::move(Summary));
8201 // Save the associated ValueInfo for use in later references by ID.
8202 if (ID == NumberedValueInfos.size())
8203 NumberedValueInfos.push_back(VI);
8204 else {
8205 // Handle non-continuous numbers (to make test simplification easier).
8206 if (ID > NumberedValueInfos.size())
8207 NumberedValueInfos.resize(ID + 1);
8208 NumberedValueInfos[ID] = VI;
8212 /// parseSummaryIndexFlags
8213 /// ::= 'flags' ':' UInt64
8214 bool LLParser::parseSummaryIndexFlags() {
8215 assert(Lex.getKind() == lltok::kw_flags);
8216 Lex.Lex();
8218 if (parseToken(lltok::colon, "expected ':' here"))
8219 return true;
8220 uint64_t Flags;
8221 if (parseUInt64(Flags))
8222 return true;
8223 if (Index)
8224 Index->setFlags(Flags);
8225 return false;
8228 /// parseBlockCount
8229 /// ::= 'blockcount' ':' UInt64
8230 bool LLParser::parseBlockCount() {
8231 assert(Lex.getKind() == lltok::kw_blockcount);
8232 Lex.Lex();
8234 if (parseToken(lltok::colon, "expected ':' here"))
8235 return true;
8236 uint64_t BlockCount;
8237 if (parseUInt64(BlockCount))
8238 return true;
8239 if (Index)
8240 Index->setBlockCount(BlockCount);
8241 return false;
8244 /// parseGVEntry
8245 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8246 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8247 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8248 bool LLParser::parseGVEntry(unsigned ID) {
8249 assert(Lex.getKind() == lltok::kw_gv);
8250 Lex.Lex();
8252 if (parseToken(lltok::colon, "expected ':' here") ||
8253 parseToken(lltok::lparen, "expected '(' here"))
8254 return true;
8256 std::string Name;
8257 GlobalValue::GUID GUID = 0;
8258 switch (Lex.getKind()) {
8259 case lltok::kw_name:
8260 Lex.Lex();
8261 if (parseToken(lltok::colon, "expected ':' here") ||
8262 parseStringConstant(Name))
8263 return true;
8264 // Can't create GUID/ValueInfo until we have the linkage.
8265 break;
8266 case lltok::kw_guid:
8267 Lex.Lex();
8268 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8269 return true;
8270 break;
8271 default:
8272 return error(Lex.getLoc(), "expected name or guid tag");
8275 if (!EatIfPresent(lltok::comma)) {
8276 // No summaries. Wrap up.
8277 if (parseToken(lltok::rparen, "expected ')' here"))
8278 return true;
8279 // This was created for a call to an external or indirect target.
8280 // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8281 // created for indirect calls with VP. A Name with no GUID came from
8282 // an external definition. We pass ExternalLinkage since that is only
8283 // used when the GUID must be computed from Name, and in that case
8284 // the symbol must have external linkage.
8285 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8286 nullptr);
8287 return false;
8290 // Have a list of summaries
8291 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8292 parseToken(lltok::colon, "expected ':' here") ||
8293 parseToken(lltok::lparen, "expected '(' here"))
8294 return true;
8295 do {
8296 switch (Lex.getKind()) {
8297 case lltok::kw_function:
8298 if (parseFunctionSummary(Name, GUID, ID))
8299 return true;
8300 break;
8301 case lltok::kw_variable:
8302 if (parseVariableSummary(Name, GUID, ID))
8303 return true;
8304 break;
8305 case lltok::kw_alias:
8306 if (parseAliasSummary(Name, GUID, ID))
8307 return true;
8308 break;
8309 default:
8310 return error(Lex.getLoc(), "expected summary type");
8312 } while (EatIfPresent(lltok::comma));
8314 if (parseToken(lltok::rparen, "expected ')' here") ||
8315 parseToken(lltok::rparen, "expected ')' here"))
8316 return true;
8318 return false;
8321 /// FunctionSummary
8322 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8323 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8324 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8325 /// [',' OptionalRefs]? ')'
8326 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8327 unsigned ID) {
8328 assert(Lex.getKind() == lltok::kw_function);
8329 Lex.Lex();
8331 StringRef ModulePath;
8332 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8333 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8334 /*NotEligibleToImport=*/false,
8335 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8336 unsigned InstCount;
8337 std::vector<FunctionSummary::EdgeTy> Calls;
8338 FunctionSummary::TypeIdInfo TypeIdInfo;
8339 std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8340 std::vector<ValueInfo> Refs;
8341 // Default is all-zeros (conservative values).
8342 FunctionSummary::FFlags FFlags = {};
8343 if (parseToken(lltok::colon, "expected ':' here") ||
8344 parseToken(lltok::lparen, "expected '(' here") ||
8345 parseModuleReference(ModulePath) ||
8346 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8347 parseToken(lltok::comma, "expected ',' here") ||
8348 parseToken(lltok::kw_insts, "expected 'insts' here") ||
8349 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8350 return true;
8352 // parse optional fields
8353 while (EatIfPresent(lltok::comma)) {
8354 switch (Lex.getKind()) {
8355 case lltok::kw_funcFlags:
8356 if (parseOptionalFFlags(FFlags))
8357 return true;
8358 break;
8359 case lltok::kw_calls:
8360 if (parseOptionalCalls(Calls))
8361 return true;
8362 break;
8363 case lltok::kw_typeIdInfo:
8364 if (parseOptionalTypeIdInfo(TypeIdInfo))
8365 return true;
8366 break;
8367 case lltok::kw_refs:
8368 if (parseOptionalRefs(Refs))
8369 return true;
8370 break;
8371 case lltok::kw_params:
8372 if (parseOptionalParamAccesses(ParamAccesses))
8373 return true;
8374 break;
8375 default:
8376 return error(Lex.getLoc(), "expected optional function summary field");
8380 if (parseToken(lltok::rparen, "expected ')' here"))
8381 return true;
8383 auto FS = std::make_unique<FunctionSummary>(
8384 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8385 std::move(Calls), std::move(TypeIdInfo.TypeTests),
8386 std::move(TypeIdInfo.TypeTestAssumeVCalls),
8387 std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8388 std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8389 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8390 std::move(ParamAccesses));
8392 FS->setModulePath(ModulePath);
8394 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8395 ID, std::move(FS));
8397 return false;
8400 /// VariableSummary
8401 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8402 /// [',' OptionalRefs]? ')'
8403 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8404 unsigned ID) {
8405 assert(Lex.getKind() == lltok::kw_variable);
8406 Lex.Lex();
8408 StringRef ModulePath;
8409 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8410 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8411 /*NotEligibleToImport=*/false,
8412 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8413 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8414 /* WriteOnly */ false,
8415 /* Constant */ false,
8416 GlobalObject::VCallVisibilityPublic);
8417 std::vector<ValueInfo> Refs;
8418 VTableFuncList VTableFuncs;
8419 if (parseToken(lltok::colon, "expected ':' here") ||
8420 parseToken(lltok::lparen, "expected '(' here") ||
8421 parseModuleReference(ModulePath) ||
8422 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8423 parseToken(lltok::comma, "expected ',' here") ||
8424 parseGVarFlags(GVarFlags))
8425 return true;
8427 // parse optional fields
8428 while (EatIfPresent(lltok::comma)) {
8429 switch (Lex.getKind()) {
8430 case lltok::kw_vTableFuncs:
8431 if (parseOptionalVTableFuncs(VTableFuncs))
8432 return true;
8433 break;
8434 case lltok::kw_refs:
8435 if (parseOptionalRefs(Refs))
8436 return true;
8437 break;
8438 default:
8439 return error(Lex.getLoc(), "expected optional variable summary field");
8443 if (parseToken(lltok::rparen, "expected ')' here"))
8444 return true;
8446 auto GS =
8447 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8449 GS->setModulePath(ModulePath);
8450 GS->setVTableFuncs(std::move(VTableFuncs));
8452 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8453 ID, std::move(GS));
8455 return false;
8458 /// AliasSummary
8459 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8460 /// 'aliasee' ':' GVReference ')'
8461 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8462 unsigned ID) {
8463 assert(Lex.getKind() == lltok::kw_alias);
8464 LocTy Loc = Lex.getLoc();
8465 Lex.Lex();
8467 StringRef ModulePath;
8468 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8469 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8470 /*NotEligibleToImport=*/false,
8471 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8472 if (parseToken(lltok::colon, "expected ':' here") ||
8473 parseToken(lltok::lparen, "expected '(' here") ||
8474 parseModuleReference(ModulePath) ||
8475 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8476 parseToken(lltok::comma, "expected ',' here") ||
8477 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8478 parseToken(lltok::colon, "expected ':' here"))
8479 return true;
8481 ValueInfo AliaseeVI;
8482 unsigned GVId;
8483 if (parseGVReference(AliaseeVI, GVId))
8484 return true;
8486 if (parseToken(lltok::rparen, "expected ')' here"))
8487 return true;
8489 auto AS = std::make_unique<AliasSummary>(GVFlags);
8491 AS->setModulePath(ModulePath);
8493 // Record forward reference if the aliasee is not parsed yet.
8494 if (AliaseeVI.getRef() == FwdVIRef) {
8495 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8496 } else {
8497 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8498 assert(Summary && "Aliasee must be a definition");
8499 AS->setAliasee(AliaseeVI, Summary);
8502 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8503 ID, std::move(AS));
8505 return false;
8508 /// Flag
8509 /// ::= [0|1]
8510 bool LLParser::parseFlag(unsigned &Val) {
8511 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8512 return tokError("expected integer");
8513 Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8514 Lex.Lex();
8515 return false;
8518 /// OptionalFFlags
8519 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8520 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8521 /// [',' 'returnDoesNotAlias' ':' Flag]? ')'
8522 /// [',' 'noInline' ':' Flag]? ')'
8523 /// [',' 'alwaysInline' ':' Flag]? ')'
8525 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8526 assert(Lex.getKind() == lltok::kw_funcFlags);
8527 Lex.Lex();
8529 if (parseToken(lltok::colon, "expected ':' in funcFlags") |
8530 parseToken(lltok::lparen, "expected '(' in funcFlags"))
8531 return true;
8533 do {
8534 unsigned Val = 0;
8535 switch (Lex.getKind()) {
8536 case lltok::kw_readNone:
8537 Lex.Lex();
8538 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8539 return true;
8540 FFlags.ReadNone = Val;
8541 break;
8542 case lltok::kw_readOnly:
8543 Lex.Lex();
8544 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8545 return true;
8546 FFlags.ReadOnly = Val;
8547 break;
8548 case lltok::kw_noRecurse:
8549 Lex.Lex();
8550 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8551 return true;
8552 FFlags.NoRecurse = Val;
8553 break;
8554 case lltok::kw_returnDoesNotAlias:
8555 Lex.Lex();
8556 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8557 return true;
8558 FFlags.ReturnDoesNotAlias = Val;
8559 break;
8560 case lltok::kw_noInline:
8561 Lex.Lex();
8562 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8563 return true;
8564 FFlags.NoInline = Val;
8565 break;
8566 case lltok::kw_alwaysInline:
8567 Lex.Lex();
8568 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8569 return true;
8570 FFlags.AlwaysInline = Val;
8571 break;
8572 default:
8573 return error(Lex.getLoc(), "expected function flag type");
8575 } while (EatIfPresent(lltok::comma));
8577 if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8578 return true;
8580 return false;
8583 /// OptionalCalls
8584 /// := 'calls' ':' '(' Call [',' Call]* ')'
8585 /// Call ::= '(' 'callee' ':' GVReference
8586 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8587 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8588 assert(Lex.getKind() == lltok::kw_calls);
8589 Lex.Lex();
8591 if (parseToken(lltok::colon, "expected ':' in calls") |
8592 parseToken(lltok::lparen, "expected '(' in calls"))
8593 return true;
8595 IdToIndexMapType IdToIndexMap;
8596 // parse each call edge
8597 do {
8598 ValueInfo VI;
8599 if (parseToken(lltok::lparen, "expected '(' in call") ||
8600 parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8601 parseToken(lltok::colon, "expected ':'"))
8602 return true;
8604 LocTy Loc = Lex.getLoc();
8605 unsigned GVId;
8606 if (parseGVReference(VI, GVId))
8607 return true;
8609 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8610 unsigned RelBF = 0;
8611 if (EatIfPresent(lltok::comma)) {
8612 // Expect either hotness or relbf
8613 if (EatIfPresent(lltok::kw_hotness)) {
8614 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8615 return true;
8616 } else {
8617 if (parseToken(lltok::kw_relbf, "expected relbf") ||
8618 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8619 return true;
8622 // Keep track of the Call array index needing a forward reference.
8623 // We will save the location of the ValueInfo needing an update, but
8624 // can only do so once the std::vector is finalized.
8625 if (VI.getRef() == FwdVIRef)
8626 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8627 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8629 if (parseToken(lltok::rparen, "expected ')' in call"))
8630 return true;
8631 } while (EatIfPresent(lltok::comma));
8633 // Now that the Calls vector is finalized, it is safe to save the locations
8634 // of any forward GV references that need updating later.
8635 for (auto I : IdToIndexMap) {
8636 auto &Infos = ForwardRefValueInfos[I.first];
8637 for (auto P : I.second) {
8638 assert(Calls[P.first].first.getRef() == FwdVIRef &&
8639 "Forward referenced ValueInfo expected to be empty");
8640 Infos.emplace_back(&Calls[P.first].first, P.second);
8644 if (parseToken(lltok::rparen, "expected ')' in calls"))
8645 return true;
8647 return false;
8650 /// Hotness
8651 /// := ('unknown'|'cold'|'none'|'hot'|'critical')
8652 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8653 switch (Lex.getKind()) {
8654 case lltok::kw_unknown:
8655 Hotness = CalleeInfo::HotnessType::Unknown;
8656 break;
8657 case lltok::kw_cold:
8658 Hotness = CalleeInfo::HotnessType::Cold;
8659 break;
8660 case lltok::kw_none:
8661 Hotness = CalleeInfo::HotnessType::None;
8662 break;
8663 case lltok::kw_hot:
8664 Hotness = CalleeInfo::HotnessType::Hot;
8665 break;
8666 case lltok::kw_critical:
8667 Hotness = CalleeInfo::HotnessType::Critical;
8668 break;
8669 default:
8670 return error(Lex.getLoc(), "invalid call edge hotness");
8672 Lex.Lex();
8673 return false;
8676 /// OptionalVTableFuncs
8677 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8678 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8679 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8680 assert(Lex.getKind() == lltok::kw_vTableFuncs);
8681 Lex.Lex();
8683 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") |
8684 parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8685 return true;
8687 IdToIndexMapType IdToIndexMap;
8688 // parse each virtual function pair
8689 do {
8690 ValueInfo VI;
8691 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8692 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8693 parseToken(lltok::colon, "expected ':'"))
8694 return true;
8696 LocTy Loc = Lex.getLoc();
8697 unsigned GVId;
8698 if (parseGVReference(VI, GVId))
8699 return true;
8701 uint64_t Offset;
8702 if (parseToken(lltok::comma, "expected comma") ||
8703 parseToken(lltok::kw_offset, "expected offset") ||
8704 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
8705 return true;
8707 // Keep track of the VTableFuncs array index needing a forward reference.
8708 // We will save the location of the ValueInfo needing an update, but
8709 // can only do so once the std::vector is finalized.
8710 if (VI == EmptyVI)
8711 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8712 VTableFuncs.push_back({VI, Offset});
8714 if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
8715 return true;
8716 } while (EatIfPresent(lltok::comma));
8718 // Now that the VTableFuncs vector is finalized, it is safe to save the
8719 // locations of any forward GV references that need updating later.
8720 for (auto I : IdToIndexMap) {
8721 auto &Infos = ForwardRefValueInfos[I.first];
8722 for (auto P : I.second) {
8723 assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8724 "Forward referenced ValueInfo expected to be empty");
8725 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
8729 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8730 return true;
8732 return false;
8735 /// ParamNo := 'param' ':' UInt64
8736 bool LLParser::parseParamNo(uint64_t &ParamNo) {
8737 if (parseToken(lltok::kw_param, "expected 'param' here") ||
8738 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
8739 return true;
8740 return false;
8743 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
8744 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
8745 APSInt Lower;
8746 APSInt Upper;
8747 auto ParseAPSInt = [&](APSInt &Val) {
8748 if (Lex.getKind() != lltok::APSInt)
8749 return tokError("expected integer");
8750 Val = Lex.getAPSIntVal();
8751 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
8752 Val.setIsSigned(true);
8753 Lex.Lex();
8754 return false;
8756 if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
8757 parseToken(lltok::colon, "expected ':' here") ||
8758 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
8759 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
8760 parseToken(lltok::rsquare, "expected ']' here"))
8761 return true;
8763 ++Upper;
8764 Range =
8765 (Lower == Upper && !Lower.isMaxValue())
8766 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
8767 : ConstantRange(Lower, Upper);
8769 return false;
8772 /// ParamAccessCall
8773 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
8774 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
8775 IdLocListType &IdLocList) {
8776 if (parseToken(lltok::lparen, "expected '(' here") ||
8777 parseToken(lltok::kw_callee, "expected 'callee' here") ||
8778 parseToken(lltok::colon, "expected ':' here"))
8779 return true;
8781 unsigned GVId;
8782 ValueInfo VI;
8783 LocTy Loc = Lex.getLoc();
8784 if (parseGVReference(VI, GVId))
8785 return true;
8787 Call.Callee = VI;
8788 IdLocList.emplace_back(GVId, Loc);
8790 if (parseToken(lltok::comma, "expected ',' here") ||
8791 parseParamNo(Call.ParamNo) ||
8792 parseToken(lltok::comma, "expected ',' here") ||
8793 parseParamAccessOffset(Call.Offsets))
8794 return true;
8796 if (parseToken(lltok::rparen, "expected ')' here"))
8797 return true;
8799 return false;
8802 /// ParamAccess
8803 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
8804 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
8805 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
8806 IdLocListType &IdLocList) {
8807 if (parseToken(lltok::lparen, "expected '(' here") ||
8808 parseParamNo(Param.ParamNo) ||
8809 parseToken(lltok::comma, "expected ',' here") ||
8810 parseParamAccessOffset(Param.Use))
8811 return true;
8813 if (EatIfPresent(lltok::comma)) {
8814 if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
8815 parseToken(lltok::colon, "expected ':' here") ||
8816 parseToken(lltok::lparen, "expected '(' here"))
8817 return true;
8818 do {
8819 FunctionSummary::ParamAccess::Call Call;
8820 if (parseParamAccessCall(Call, IdLocList))
8821 return true;
8822 Param.Calls.push_back(Call);
8823 } while (EatIfPresent(lltok::comma));
8825 if (parseToken(lltok::rparen, "expected ')' here"))
8826 return true;
8829 if (parseToken(lltok::rparen, "expected ')' here"))
8830 return true;
8832 return false;
8835 /// OptionalParamAccesses
8836 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
8837 bool LLParser::parseOptionalParamAccesses(
8838 std::vector<FunctionSummary::ParamAccess> &Params) {
8839 assert(Lex.getKind() == lltok::kw_params);
8840 Lex.Lex();
8842 if (parseToken(lltok::colon, "expected ':' here") ||
8843 parseToken(lltok::lparen, "expected '(' here"))
8844 return true;
8846 IdLocListType VContexts;
8847 size_t CallsNum = 0;
8848 do {
8849 FunctionSummary::ParamAccess ParamAccess;
8850 if (parseParamAccess(ParamAccess, VContexts))
8851 return true;
8852 CallsNum += ParamAccess.Calls.size();
8853 assert(VContexts.size() == CallsNum);
8854 (void)CallsNum;
8855 Params.emplace_back(std::move(ParamAccess));
8856 } while (EatIfPresent(lltok::comma));
8858 if (parseToken(lltok::rparen, "expected ')' here"))
8859 return true;
8861 // Now that the Params is finalized, it is safe to save the locations
8862 // of any forward GV references that need updating later.
8863 IdLocListType::const_iterator ItContext = VContexts.begin();
8864 for (auto &PA : Params) {
8865 for (auto &C : PA.Calls) {
8866 if (C.Callee.getRef() == FwdVIRef)
8867 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
8868 ItContext->second);
8869 ++ItContext;
8872 assert(ItContext == VContexts.end());
8874 return false;
8877 /// OptionalRefs
8878 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8879 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
8880 assert(Lex.getKind() == lltok::kw_refs);
8881 Lex.Lex();
8883 if (parseToken(lltok::colon, "expected ':' in refs") ||
8884 parseToken(lltok::lparen, "expected '(' in refs"))
8885 return true;
8887 struct ValueContext {
8888 ValueInfo VI;
8889 unsigned GVId;
8890 LocTy Loc;
8892 std::vector<ValueContext> VContexts;
8893 // parse each ref edge
8894 do {
8895 ValueContext VC;
8896 VC.Loc = Lex.getLoc();
8897 if (parseGVReference(VC.VI, VC.GVId))
8898 return true;
8899 VContexts.push_back(VC);
8900 } while (EatIfPresent(lltok::comma));
8902 // Sort value contexts so that ones with writeonly
8903 // and readonly ValueInfo are at the end of VContexts vector.
8904 // See FunctionSummary::specialRefCounts()
8905 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8906 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8909 IdToIndexMapType IdToIndexMap;
8910 for (auto &VC : VContexts) {
8911 // Keep track of the Refs array index needing a forward reference.
8912 // We will save the location of the ValueInfo needing an update, but
8913 // can only do so once the std::vector is finalized.
8914 if (VC.VI.getRef() == FwdVIRef)
8915 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8916 Refs.push_back(VC.VI);
8919 // Now that the Refs vector is finalized, it is safe to save the locations
8920 // of any forward GV references that need updating later.
8921 for (auto I : IdToIndexMap) {
8922 auto &Infos = ForwardRefValueInfos[I.first];
8923 for (auto P : I.second) {
8924 assert(Refs[P.first].getRef() == FwdVIRef &&
8925 "Forward referenced ValueInfo expected to be empty");
8926 Infos.emplace_back(&Refs[P.first], P.second);
8930 if (parseToken(lltok::rparen, "expected ')' in refs"))
8931 return true;
8933 return false;
8936 /// OptionalTypeIdInfo
8937 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8938 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]?
8939 /// [',' TypeCheckedLoadConstVCalls]? ')'
8940 bool LLParser::parseOptionalTypeIdInfo(
8941 FunctionSummary::TypeIdInfo &TypeIdInfo) {
8942 assert(Lex.getKind() == lltok::kw_typeIdInfo);
8943 Lex.Lex();
8945 if (parseToken(lltok::colon, "expected ':' here") ||
8946 parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8947 return true;
8949 do {
8950 switch (Lex.getKind()) {
8951 case lltok::kw_typeTests:
8952 if (parseTypeTests(TypeIdInfo.TypeTests))
8953 return true;
8954 break;
8955 case lltok::kw_typeTestAssumeVCalls:
8956 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8957 TypeIdInfo.TypeTestAssumeVCalls))
8958 return true;
8959 break;
8960 case lltok::kw_typeCheckedLoadVCalls:
8961 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8962 TypeIdInfo.TypeCheckedLoadVCalls))
8963 return true;
8964 break;
8965 case lltok::kw_typeTestAssumeConstVCalls:
8966 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8967 TypeIdInfo.TypeTestAssumeConstVCalls))
8968 return true;
8969 break;
8970 case lltok::kw_typeCheckedLoadConstVCalls:
8971 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8972 TypeIdInfo.TypeCheckedLoadConstVCalls))
8973 return true;
8974 break;
8975 default:
8976 return error(Lex.getLoc(), "invalid typeIdInfo list type");
8978 } while (EatIfPresent(lltok::comma));
8980 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8981 return true;
8983 return false;
8986 /// TypeTests
8987 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8988 /// [',' (SummaryID | UInt64)]* ')'
8989 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8990 assert(Lex.getKind() == lltok::kw_typeTests);
8991 Lex.Lex();
8993 if (parseToken(lltok::colon, "expected ':' here") ||
8994 parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8995 return true;
8997 IdToIndexMapType IdToIndexMap;
8998 do {
8999 GlobalValue::GUID GUID = 0;
9000 if (Lex.getKind() == lltok::SummaryID) {
9001 unsigned ID = Lex.getUIntVal();
9002 LocTy Loc = Lex.getLoc();
9003 // Keep track of the TypeTests array index needing a forward reference.
9004 // We will save the location of the GUID needing an update, but
9005 // can only do so once the std::vector is finalized.
9006 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9007 Lex.Lex();
9008 } else if (parseUInt64(GUID))
9009 return true;
9010 TypeTests.push_back(GUID);
9011 } while (EatIfPresent(lltok::comma));
9013 // Now that the TypeTests vector is finalized, it is safe to save the
9014 // locations of any forward GV references that need updating later.
9015 for (auto I : IdToIndexMap) {
9016 auto &Ids = ForwardRefTypeIds[I.first];
9017 for (auto P : I.second) {
9018 assert(TypeTests[P.first] == 0 &&
9019 "Forward referenced type id GUID expected to be 0");
9020 Ids.emplace_back(&TypeTests[P.first], P.second);
9024 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9025 return true;
9027 return false;
9030 /// VFuncIdList
9031 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9032 bool LLParser::parseVFuncIdList(
9033 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9034 assert(Lex.getKind() == Kind);
9035 Lex.Lex();
9037 if (parseToken(lltok::colon, "expected ':' here") ||
9038 parseToken(lltok::lparen, "expected '(' here"))
9039 return true;
9041 IdToIndexMapType IdToIndexMap;
9042 do {
9043 FunctionSummary::VFuncId VFuncId;
9044 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9045 return true;
9046 VFuncIdList.push_back(VFuncId);
9047 } while (EatIfPresent(lltok::comma));
9049 if (parseToken(lltok::rparen, "expected ')' here"))
9050 return true;
9052 // Now that the VFuncIdList vector is finalized, it is safe to save the
9053 // locations of any forward GV references that need updating later.
9054 for (auto I : IdToIndexMap) {
9055 auto &Ids = ForwardRefTypeIds[I.first];
9056 for (auto P : I.second) {
9057 assert(VFuncIdList[P.first].GUID == 0 &&
9058 "Forward referenced type id GUID expected to be 0");
9059 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9063 return false;
9066 /// ConstVCallList
9067 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9068 bool LLParser::parseConstVCallList(
9069 lltok::Kind Kind,
9070 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9071 assert(Lex.getKind() == Kind);
9072 Lex.Lex();
9074 if (parseToken(lltok::colon, "expected ':' here") ||
9075 parseToken(lltok::lparen, "expected '(' here"))
9076 return true;
9078 IdToIndexMapType IdToIndexMap;
9079 do {
9080 FunctionSummary::ConstVCall ConstVCall;
9081 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9082 return true;
9083 ConstVCallList.push_back(ConstVCall);
9084 } while (EatIfPresent(lltok::comma));
9086 if (parseToken(lltok::rparen, "expected ')' here"))
9087 return true;
9089 // Now that the ConstVCallList vector is finalized, it is safe to save the
9090 // locations of any forward GV references that need updating later.
9091 for (auto I : IdToIndexMap) {
9092 auto &Ids = ForwardRefTypeIds[I.first];
9093 for (auto P : I.second) {
9094 assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9095 "Forward referenced type id GUID expected to be 0");
9096 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9100 return false;
9103 /// ConstVCall
9104 /// ::= '(' VFuncId ',' Args ')'
9105 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9106 IdToIndexMapType &IdToIndexMap, unsigned Index) {
9107 if (parseToken(lltok::lparen, "expected '(' here") ||
9108 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9109 return true;
9111 if (EatIfPresent(lltok::comma))
9112 if (parseArgs(ConstVCall.Args))
9113 return true;
9115 if (parseToken(lltok::rparen, "expected ')' here"))
9116 return true;
9118 return false;
9121 /// VFuncId
9122 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9123 /// 'offset' ':' UInt64 ')'
9124 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9125 IdToIndexMapType &IdToIndexMap, unsigned Index) {
9126 assert(Lex.getKind() == lltok::kw_vFuncId);
9127 Lex.Lex();
9129 if (parseToken(lltok::colon, "expected ':' here") ||
9130 parseToken(lltok::lparen, "expected '(' here"))
9131 return true;
9133 if (Lex.getKind() == lltok::SummaryID) {
9134 VFuncId.GUID = 0;
9135 unsigned ID = Lex.getUIntVal();
9136 LocTy Loc = Lex.getLoc();
9137 // Keep track of the array index needing a forward reference.
9138 // We will save the location of the GUID needing an update, but
9139 // can only do so once the caller's std::vector is finalized.
9140 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9141 Lex.Lex();
9142 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9143 parseToken(lltok::colon, "expected ':' here") ||
9144 parseUInt64(VFuncId.GUID))
9145 return true;
9147 if (parseToken(lltok::comma, "expected ',' here") ||
9148 parseToken(lltok::kw_offset, "expected 'offset' here") ||
9149 parseToken(lltok::colon, "expected ':' here") ||
9150 parseUInt64(VFuncId.Offset) ||
9151 parseToken(lltok::rparen, "expected ')' here"))
9152 return true;
9154 return false;
9157 /// GVFlags
9158 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9159 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9160 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9161 /// 'canAutoHide' ':' Flag ',' ')'
9162 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9163 assert(Lex.getKind() == lltok::kw_flags);
9164 Lex.Lex();
9166 if (parseToken(lltok::colon, "expected ':' here") ||
9167 parseToken(lltok::lparen, "expected '(' here"))
9168 return true;
9170 do {
9171 unsigned Flag = 0;
9172 switch (Lex.getKind()) {
9173 case lltok::kw_linkage:
9174 Lex.Lex();
9175 if (parseToken(lltok::colon, "expected ':'"))
9176 return true;
9177 bool HasLinkage;
9178 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9179 assert(HasLinkage && "Linkage not optional in summary entry");
9180 Lex.Lex();
9181 break;
9182 case lltok::kw_visibility:
9183 Lex.Lex();
9184 if (parseToken(lltok::colon, "expected ':'"))
9185 return true;
9186 parseOptionalVisibility(Flag);
9187 GVFlags.Visibility = Flag;
9188 break;
9189 case lltok::kw_notEligibleToImport:
9190 Lex.Lex();
9191 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9192 return true;
9193 GVFlags.NotEligibleToImport = Flag;
9194 break;
9195 case lltok::kw_live:
9196 Lex.Lex();
9197 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9198 return true;
9199 GVFlags.Live = Flag;
9200 break;
9201 case lltok::kw_dsoLocal:
9202 Lex.Lex();
9203 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9204 return true;
9205 GVFlags.DSOLocal = Flag;
9206 break;
9207 case lltok::kw_canAutoHide:
9208 Lex.Lex();
9209 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9210 return true;
9211 GVFlags.CanAutoHide = Flag;
9212 break;
9213 default:
9214 return error(Lex.getLoc(), "expected gv flag type");
9216 } while (EatIfPresent(lltok::comma));
9218 if (parseToken(lltok::rparen, "expected ')' here"))
9219 return true;
9221 return false;
9224 /// GVarFlags
9225 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9226 /// ',' 'writeonly' ':' Flag
9227 /// ',' 'constant' ':' Flag ')'
9228 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9229 assert(Lex.getKind() == lltok::kw_varFlags);
9230 Lex.Lex();
9232 if (parseToken(lltok::colon, "expected ':' here") ||
9233 parseToken(lltok::lparen, "expected '(' here"))
9234 return true;
9236 auto ParseRest = [this](unsigned int &Val) {
9237 Lex.Lex();
9238 if (parseToken(lltok::colon, "expected ':'"))
9239 return true;
9240 return parseFlag(Val);
9243 do {
9244 unsigned Flag = 0;
9245 switch (Lex.getKind()) {
9246 case lltok::kw_readonly:
9247 if (ParseRest(Flag))
9248 return true;
9249 GVarFlags.MaybeReadOnly = Flag;
9250 break;
9251 case lltok::kw_writeonly:
9252 if (ParseRest(Flag))
9253 return true;
9254 GVarFlags.MaybeWriteOnly = Flag;
9255 break;
9256 case lltok::kw_constant:
9257 if (ParseRest(Flag))
9258 return true;
9259 GVarFlags.Constant = Flag;
9260 break;
9261 case lltok::kw_vcall_visibility:
9262 if (ParseRest(Flag))
9263 return true;
9264 GVarFlags.VCallVisibility = Flag;
9265 break;
9266 default:
9267 return error(Lex.getLoc(), "expected gvar flag type");
9269 } while (EatIfPresent(lltok::comma));
9270 return parseToken(lltok::rparen, "expected ')' here");
9273 /// ModuleReference
9274 /// ::= 'module' ':' UInt
9275 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9276 // parse module id.
9277 if (parseToken(lltok::kw_module, "expected 'module' here") ||
9278 parseToken(lltok::colon, "expected ':' here") ||
9279 parseToken(lltok::SummaryID, "expected module ID"))
9280 return true;
9282 unsigned ModuleID = Lex.getUIntVal();
9283 auto I = ModuleIdMap.find(ModuleID);
9284 // We should have already parsed all module IDs
9285 assert(I != ModuleIdMap.end());
9286 ModulePath = I->second;
9287 return false;
9290 /// GVReference
9291 /// ::= SummaryID
9292 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9293 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9294 if (!ReadOnly)
9295 WriteOnly = EatIfPresent(lltok::kw_writeonly);
9296 if (parseToken(lltok::SummaryID, "expected GV ID"))
9297 return true;
9299 GVId = Lex.getUIntVal();
9300 // Check if we already have a VI for this GV
9301 if (GVId < NumberedValueInfos.size()) {
9302 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9303 VI = NumberedValueInfos[GVId];
9304 } else
9305 // We will create a forward reference to the stored location.
9306 VI = ValueInfo(false, FwdVIRef);
9308 if (ReadOnly)
9309 VI.setReadOnly();
9310 if (WriteOnly)
9311 VI.setWriteOnly();
9312 return false;