[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Bitcode / Writer / ValueEnumerator.cpp
blobd86db61ee1f4602e29613b9b4dea909711d03c1a
1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ValueEnumerator class.
11 //===----------------------------------------------------------------------===//
13 #include "ValueEnumerator.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/Config/llvm-config.h"
16 #include "llvm/IR/Argument.h"
17 #include "llvm/IR/BasicBlock.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/DebugInfoMetadata.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/GlobalAlias.h"
23 #include "llvm/IR/GlobalIFunc.h"
24 #include "llvm/IR/GlobalObject.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Use.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/IR/ValueSymbolTable.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <algorithm>
43 #include <cstddef>
44 #include <iterator>
45 #include <tuple>
47 using namespace llvm;
49 namespace {
51 struct OrderMap {
52 DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
53 unsigned LastGlobalConstantID = 0;
54 unsigned LastGlobalValueID = 0;
56 OrderMap() = default;
58 bool isGlobalConstant(unsigned ID) const {
59 return ID <= LastGlobalConstantID;
62 bool isGlobalValue(unsigned ID) const {
63 return ID <= LastGlobalValueID && !isGlobalConstant(ID);
66 unsigned size() const { return IDs.size(); }
67 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
69 std::pair<unsigned, bool> lookup(const Value *V) const {
70 return IDs.lookup(V);
73 void index(const Value *V) {
74 // Explicitly sequence get-size and insert-value operations to avoid UB.
75 unsigned ID = IDs.size() + 1;
76 IDs[V].first = ID;
80 } // end anonymous namespace
82 static void orderValue(const Value *V, OrderMap &OM) {
83 if (OM.lookup(V).first)
84 return;
86 if (const Constant *C = dyn_cast<Constant>(V)) {
87 if (C->getNumOperands() && !isa<GlobalValue>(C)) {
88 for (const Value *Op : C->operands())
89 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
90 orderValue(Op, OM);
91 if (auto *CE = dyn_cast<ConstantExpr>(C))
92 if (CE->getOpcode() == Instruction::ShuffleVector)
93 orderValue(CE->getShuffleMaskForBitcode(), OM);
97 // Note: we cannot cache this lookup above, since inserting into the map
98 // changes the map's size, and thus affects the other IDs.
99 OM.index(V);
102 static OrderMap orderModule(const Module &M) {
103 // This needs to match the order used by ValueEnumerator::ValueEnumerator()
104 // and ValueEnumerator::incorporateFunction().
105 OrderMap OM;
107 // In the reader, initializers of GlobalValues are set *after* all the
108 // globals have been read. Rather than awkwardly modeling this behaviour
109 // directly in predictValueUseListOrderImpl(), just assign IDs to
110 // initializers of GlobalValues before GlobalValues themselves to model this
111 // implicitly.
112 for (const GlobalVariable &G : M.globals())
113 if (G.hasInitializer())
114 if (!isa<GlobalValue>(G.getInitializer()))
115 orderValue(G.getInitializer(), OM);
116 for (const GlobalAlias &A : M.aliases())
117 if (!isa<GlobalValue>(A.getAliasee()))
118 orderValue(A.getAliasee(), OM);
119 for (const GlobalIFunc &I : M.ifuncs())
120 if (!isa<GlobalValue>(I.getResolver()))
121 orderValue(I.getResolver(), OM);
122 for (const Function &F : M) {
123 for (const Use &U : F.operands())
124 if (!isa<GlobalValue>(U.get()))
125 orderValue(U.get(), OM);
128 // As constants used in metadata operands are emitted as module-level
129 // constants, we must order them before other operands. Also, we must order
130 // these before global values, as these will be read before setting the
131 // global values' initializers. The latter matters for constants which have
132 // uses towards other constants that are used as initializers.
133 auto orderConstantValue = [&OM](const Value *V) {
134 if ((isa<Constant>(V) && !isa<GlobalValue>(V)) || isa<InlineAsm>(V))
135 orderValue(V, OM);
137 for (const Function &F : M) {
138 if (F.isDeclaration())
139 continue;
140 for (const BasicBlock &BB : F)
141 for (const Instruction &I : BB)
142 for (const Value *V : I.operands()) {
143 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
144 if (const auto *VAM =
145 dyn_cast<ValueAsMetadata>(MAV->getMetadata())) {
146 orderConstantValue(VAM->getValue());
147 } else if (const auto *AL =
148 dyn_cast<DIArgList>(MAV->getMetadata())) {
149 for (const auto *VAM : AL->getArgs())
150 orderConstantValue(VAM->getValue());
155 OM.LastGlobalConstantID = OM.size();
157 // Initializers of GlobalValues are processed in
158 // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather
159 // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
160 // by giving IDs in reverse order.
162 // Since GlobalValues never reference each other directly (just through
163 // initializers), their relative IDs only matter for determining order of
164 // uses in their initializers.
165 for (const Function &F : M)
166 orderValue(&F, OM);
167 for (const GlobalAlias &A : M.aliases())
168 orderValue(&A, OM);
169 for (const GlobalIFunc &I : M.ifuncs())
170 orderValue(&I, OM);
171 for (const GlobalVariable &G : M.globals())
172 orderValue(&G, OM);
173 OM.LastGlobalValueID = OM.size();
175 for (const Function &F : M) {
176 if (F.isDeclaration())
177 continue;
178 // Here we need to match the union of ValueEnumerator::incorporateFunction()
179 // and WriteFunction(). Basic blocks are implicitly declared before
180 // anything else (by declaring their size).
181 for (const BasicBlock &BB : F)
182 orderValue(&BB, OM);
183 for (const Argument &A : F.args())
184 orderValue(&A, OM);
185 for (const BasicBlock &BB : F)
186 for (const Instruction &I : BB) {
187 for (const Value *Op : I.operands())
188 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
189 isa<InlineAsm>(*Op))
190 orderValue(Op, OM);
191 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
192 orderValue(SVI->getShuffleMaskForBitcode(), OM);
194 for (const BasicBlock &BB : F)
195 for (const Instruction &I : BB)
196 orderValue(&I, OM);
198 return OM;
201 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
202 unsigned ID, const OrderMap &OM,
203 UseListOrderStack &Stack) {
204 // Predict use-list order for this one.
205 using Entry = std::pair<const Use *, unsigned>;
206 SmallVector<Entry, 64> List;
207 for (const Use &U : V->uses())
208 // Check if this user will be serialized.
209 if (OM.lookup(U.getUser()).first)
210 List.push_back(std::make_pair(&U, List.size()));
212 if (List.size() < 2)
213 // We may have lost some users.
214 return;
216 bool IsGlobalValue = OM.isGlobalValue(ID);
217 llvm::sort(List, [&](const Entry &L, const Entry &R) {
218 const Use *LU = L.first;
219 const Use *RU = R.first;
220 if (LU == RU)
221 return false;
223 auto LID = OM.lookup(LU->getUser()).first;
224 auto RID = OM.lookup(RU->getUser()).first;
226 // Global values are processed in reverse order.
228 // Moreover, initializers of GlobalValues are set *after* all the globals
229 // have been read (despite having earlier IDs). Rather than awkwardly
230 // modeling this behaviour here, orderModule() has assigned IDs to
231 // initializers of GlobalValues before GlobalValues themselves.
232 if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
233 return LID < RID;
235 // If ID is 4, then expect: 7 6 5 1 2 3.
236 if (LID < RID) {
237 if (RID <= ID)
238 if (!IsGlobalValue) // GlobalValue uses don't get reversed.
239 return true;
240 return false;
242 if (RID < LID) {
243 if (LID <= ID)
244 if (!IsGlobalValue) // GlobalValue uses don't get reversed.
245 return false;
246 return true;
249 // LID and RID are equal, so we have different operands of the same user.
250 // Assume operands are added in order for all instructions.
251 if (LID <= ID)
252 if (!IsGlobalValue) // GlobalValue uses don't get reversed.
253 return LU->getOperandNo() < RU->getOperandNo();
254 return LU->getOperandNo() > RU->getOperandNo();
257 if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) {
258 return L.second < R.second;
260 // Order is already correct.
261 return;
263 // Store the shuffle.
264 Stack.emplace_back(V, F, List.size());
265 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
266 for (size_t I = 0, E = List.size(); I != E; ++I)
267 Stack.back().Shuffle[I] = List[I].second;
270 static void predictValueUseListOrder(const Value *V, const Function *F,
271 OrderMap &OM, UseListOrderStack &Stack) {
272 auto &IDPair = OM[V];
273 assert(IDPair.first && "Unmapped value");
274 if (IDPair.second)
275 // Already predicted.
276 return;
278 // Do the actual prediction.
279 IDPair.second = true;
280 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
281 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
283 // Recursive descent into constants.
284 if (const Constant *C = dyn_cast<Constant>(V)) {
285 if (C->getNumOperands()) { // Visit GlobalValues.
286 for (const Value *Op : C->operands())
287 if (isa<Constant>(Op)) // Visit GlobalValues.
288 predictValueUseListOrder(Op, F, OM, Stack);
289 if (auto *CE = dyn_cast<ConstantExpr>(C))
290 if (CE->getOpcode() == Instruction::ShuffleVector)
291 predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM,
292 Stack);
297 static UseListOrderStack predictUseListOrder(const Module &M) {
298 OrderMap OM = orderModule(M);
300 // Use-list orders need to be serialized after all the users have been added
301 // to a value, or else the shuffles will be incomplete. Store them per
302 // function in a stack.
304 // Aside from function order, the order of values doesn't matter much here.
305 UseListOrderStack Stack;
307 // We want to visit the functions backward now so we can list function-local
308 // constants in the last Function they're used in. Module-level constants
309 // have already been visited above.
310 for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
311 const Function &F = *I;
312 if (F.isDeclaration())
313 continue;
314 for (const BasicBlock &BB : F)
315 predictValueUseListOrder(&BB, &F, OM, Stack);
316 for (const Argument &A : F.args())
317 predictValueUseListOrder(&A, &F, OM, Stack);
318 for (const BasicBlock &BB : F)
319 for (const Instruction &I : BB) {
320 for (const Value *Op : I.operands())
321 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
322 predictValueUseListOrder(Op, &F, OM, Stack);
323 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
324 predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM,
325 Stack);
327 for (const BasicBlock &BB : F)
328 for (const Instruction &I : BB)
329 predictValueUseListOrder(&I, &F, OM, Stack);
332 // Visit globals last, since the module-level use-list block will be seen
333 // before the function bodies are processed.
334 for (const GlobalVariable &G : M.globals())
335 predictValueUseListOrder(&G, nullptr, OM, Stack);
336 for (const Function &F : M)
337 predictValueUseListOrder(&F, nullptr, OM, Stack);
338 for (const GlobalAlias &A : M.aliases())
339 predictValueUseListOrder(&A, nullptr, OM, Stack);
340 for (const GlobalIFunc &I : M.ifuncs())
341 predictValueUseListOrder(&I, nullptr, OM, Stack);
342 for (const GlobalVariable &G : M.globals())
343 if (G.hasInitializer())
344 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
345 for (const GlobalAlias &A : M.aliases())
346 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
347 for (const GlobalIFunc &I : M.ifuncs())
348 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
349 for (const Function &F : M) {
350 for (const Use &U : F.operands())
351 predictValueUseListOrder(U.get(), nullptr, OM, Stack);
354 return Stack;
357 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
358 return V.first->getType()->isIntOrIntVectorTy();
361 ValueEnumerator::ValueEnumerator(const Module &M,
362 bool ShouldPreserveUseListOrder)
363 : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
364 if (ShouldPreserveUseListOrder)
365 UseListOrders = predictUseListOrder(M);
367 // Enumerate the global variables.
368 for (const GlobalVariable &GV : M.globals()) {
369 EnumerateValue(&GV);
370 EnumerateType(GV.getValueType());
373 // Enumerate the functions.
374 for (const Function & F : M) {
375 EnumerateValue(&F);
376 EnumerateType(F.getValueType());
377 EnumerateAttributes(F.getAttributes());
380 // Enumerate the aliases.
381 for (const GlobalAlias &GA : M.aliases()) {
382 EnumerateValue(&GA);
383 EnumerateType(GA.getValueType());
386 // Enumerate the ifuncs.
387 for (const GlobalIFunc &GIF : M.ifuncs())
388 EnumerateValue(&GIF);
390 // Remember what is the cutoff between globalvalue's and other constants.
391 unsigned FirstConstant = Values.size();
393 // Enumerate the global variable initializers and attributes.
394 for (const GlobalVariable &GV : M.globals()) {
395 if (GV.hasInitializer())
396 EnumerateValue(GV.getInitializer());
397 if (GV.hasAttributes())
398 EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex));
401 // Enumerate the aliasees.
402 for (const GlobalAlias &GA : M.aliases())
403 EnumerateValue(GA.getAliasee());
405 // Enumerate the ifunc resolvers.
406 for (const GlobalIFunc &GIF : M.ifuncs())
407 EnumerateValue(GIF.getResolver());
409 // Enumerate any optional Function data.
410 for (const Function &F : M)
411 for (const Use &U : F.operands())
412 EnumerateValue(U.get());
414 // Enumerate the metadata type.
416 // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
417 // only encodes the metadata type when it's used as a value.
418 EnumerateType(Type::getMetadataTy(M.getContext()));
420 // Insert constants and metadata that are named at module level into the slot
421 // pool so that the module symbol table can refer to them...
422 EnumerateValueSymbolTable(M.getValueSymbolTable());
423 EnumerateNamedMetadata(M);
425 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
426 for (const GlobalVariable &GV : M.globals()) {
427 MDs.clear();
428 GV.getAllMetadata(MDs);
429 for (const auto &I : MDs)
430 // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
431 // to write metadata to the global variable's own metadata block
432 // (PR28134).
433 EnumerateMetadata(nullptr, I.second);
436 // Enumerate types used by function bodies and argument lists.
437 for (const Function &F : M) {
438 for (const Argument &A : F.args())
439 EnumerateType(A.getType());
441 // Enumerate metadata attached to this function.
442 MDs.clear();
443 F.getAllMetadata(MDs);
444 for (const auto &I : MDs)
445 EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
447 for (const BasicBlock &BB : F)
448 for (const Instruction &I : BB) {
449 for (const Use &Op : I.operands()) {
450 auto *MD = dyn_cast<MetadataAsValue>(&Op);
451 if (!MD) {
452 EnumerateOperandType(Op);
453 continue;
456 // Local metadata is enumerated during function-incorporation, but
457 // any ConstantAsMetadata arguments in a DIArgList should be examined
458 // now.
459 if (isa<LocalAsMetadata>(MD->getMetadata()))
460 continue;
461 if (auto *AL = dyn_cast<DIArgList>(MD->getMetadata())) {
462 for (auto *VAM : AL->getArgs())
463 if (isa<ConstantAsMetadata>(VAM))
464 EnumerateMetadata(&F, VAM);
465 continue;
468 EnumerateMetadata(&F, MD->getMetadata());
470 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
471 EnumerateType(SVI->getShuffleMaskForBitcode()->getType());
472 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I))
473 EnumerateType(GEP->getSourceElementType());
474 if (auto *AI = dyn_cast<AllocaInst>(&I))
475 EnumerateType(AI->getAllocatedType());
476 EnumerateType(I.getType());
477 if (const auto *Call = dyn_cast<CallBase>(&I)) {
478 EnumerateAttributes(Call->getAttributes());
479 EnumerateType(Call->getFunctionType());
482 // Enumerate metadata attached with this instruction.
483 MDs.clear();
484 I.getAllMetadataOtherThanDebugLoc(MDs);
485 for (unsigned i = 0, e = MDs.size(); i != e; ++i)
486 EnumerateMetadata(&F, MDs[i].second);
488 // Don't enumerate the location directly -- it has a special record
489 // type -- but enumerate its operands.
490 if (DILocation *L = I.getDebugLoc())
491 for (const Metadata *Op : L->operands())
492 EnumerateMetadata(&F, Op);
496 // Optimize constant ordering.
497 OptimizeConstants(FirstConstant, Values.size());
499 // Organize metadata ordering.
500 organizeMetadata();
503 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
504 InstructionMapType::const_iterator I = InstructionMap.find(Inst);
505 assert(I != InstructionMap.end() && "Instruction is not mapped!");
506 return I->second;
509 unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
510 unsigned ComdatID = Comdats.idFor(C);
511 assert(ComdatID && "Comdat not found!");
512 return ComdatID;
515 void ValueEnumerator::setInstructionID(const Instruction *I) {
516 InstructionMap[I] = InstructionCount++;
519 unsigned ValueEnumerator::getValueID(const Value *V) const {
520 if (auto *MD = dyn_cast<MetadataAsValue>(V))
521 return getMetadataID(MD->getMetadata());
523 ValueMapType::const_iterator I = ValueMap.find(V);
524 assert(I != ValueMap.end() && "Value not in slotcalculator!");
525 return I->second-1;
528 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
529 LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
530 print(dbgs(), ValueMap, "Default");
531 dbgs() << '\n';
532 print(dbgs(), MetadataMap, "MetaData");
533 dbgs() << '\n';
535 #endif
537 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
538 const char *Name) const {
539 OS << "Map Name: " << Name << "\n";
540 OS << "Size: " << Map.size() << "\n";
541 for (ValueMapType::const_iterator I = Map.begin(),
542 E = Map.end(); I != E; ++I) {
543 const Value *V = I->first;
544 if (V->hasName())
545 OS << "Value: " << V->getName();
546 else
547 OS << "Value: [null]\n";
548 V->print(errs());
549 errs() << '\n';
551 OS << " Uses(" << V->getNumUses() << "):";
552 for (const Use &U : V->uses()) {
553 if (&U != &*V->use_begin())
554 OS << ",";
555 if(U->hasName())
556 OS << " " << U->getName();
557 else
558 OS << " [null]";
561 OS << "\n\n";
565 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
566 const char *Name) const {
567 OS << "Map Name: " << Name << "\n";
568 OS << "Size: " << Map.size() << "\n";
569 for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
570 const Metadata *MD = I->first;
571 OS << "Metadata: slot = " << I->second.ID << "\n";
572 OS << "Metadata: function = " << I->second.F << "\n";
573 MD->print(OS);
574 OS << "\n";
578 /// OptimizeConstants - Reorder constant pool for denser encoding.
579 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
580 if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
582 if (ShouldPreserveUseListOrder)
583 // Optimizing constants makes the use-list order difficult to predict.
584 // Disable it for now when trying to preserve the order.
585 return;
587 std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
588 [this](const std::pair<const Value *, unsigned> &LHS,
589 const std::pair<const Value *, unsigned> &RHS) {
590 // Sort by plane.
591 if (LHS.first->getType() != RHS.first->getType())
592 return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
593 // Then by frequency.
594 return LHS.second > RHS.second;
597 // Ensure that integer and vector of integer constants are at the start of the
598 // constant pool. This is important so that GEP structure indices come before
599 // gep constant exprs.
600 std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
601 isIntOrIntVectorValue);
603 // Rebuild the modified portion of ValueMap.
604 for (; CstStart != CstEnd; ++CstStart)
605 ValueMap[Values[CstStart].first] = CstStart+1;
608 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
609 /// table into the values table.
610 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
611 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
612 VI != VE; ++VI)
613 EnumerateValue(VI->getValue());
616 /// Insert all of the values referenced by named metadata in the specified
617 /// module.
618 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
619 for (const auto &I : M.named_metadata())
620 EnumerateNamedMDNode(&I);
623 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
624 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
625 EnumerateMetadata(nullptr, MD->getOperand(i));
628 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
629 return F ? getValueID(F) + 1 : 0;
632 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
633 EnumerateMetadata(getMetadataFunctionID(F), MD);
636 void ValueEnumerator::EnumerateFunctionLocalMetadata(
637 const Function &F, const LocalAsMetadata *Local) {
638 EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
641 void ValueEnumerator::EnumerateFunctionLocalListMetadata(
642 const Function &F, const DIArgList *ArgList) {
643 EnumerateFunctionLocalListMetadata(getMetadataFunctionID(&F), ArgList);
646 void ValueEnumerator::dropFunctionFromMetadata(
647 MetadataMapType::value_type &FirstMD) {
648 SmallVector<const MDNode *, 64> Worklist;
649 auto push = [&Worklist](MetadataMapType::value_type &MD) {
650 auto &Entry = MD.second;
652 // Nothing to do if this metadata isn't tagged.
653 if (!Entry.F)
654 return;
656 // Drop the function tag.
657 Entry.F = 0;
659 // If this is has an ID and is an MDNode, then its operands have entries as
660 // well. We need to drop the function from them too.
661 if (Entry.ID)
662 if (auto *N = dyn_cast<MDNode>(MD.first))
663 Worklist.push_back(N);
665 push(FirstMD);
666 while (!Worklist.empty())
667 for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
668 if (!Op)
669 continue;
670 auto MD = MetadataMap.find(Op);
671 if (MD != MetadataMap.end())
672 push(*MD);
676 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
677 // It's vital for reader efficiency that uniqued subgraphs are done in
678 // post-order; it's expensive when their operands have forward references.
679 // If a distinct node is referenced from a uniqued node, it'll be delayed
680 // until the uniqued subgraph has been completely traversed.
681 SmallVector<const MDNode *, 32> DelayedDistinctNodes;
683 // Start by enumerating MD, and then work through its transitive operands in
684 // post-order. This requires a depth-first search.
685 SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
686 if (const MDNode *N = enumerateMetadataImpl(F, MD))
687 Worklist.push_back(std::make_pair(N, N->op_begin()));
689 while (!Worklist.empty()) {
690 const MDNode *N = Worklist.back().first;
692 // Enumerate operands until we hit a new node. We need to traverse these
693 // nodes' operands before visiting the rest of N's operands.
694 MDNode::op_iterator I = std::find_if(
695 Worklist.back().second, N->op_end(),
696 [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
697 if (I != N->op_end()) {
698 auto *Op = cast<MDNode>(*I);
699 Worklist.back().second = ++I;
701 // Delay traversing Op if it's a distinct node and N is uniqued.
702 if (Op->isDistinct() && !N->isDistinct())
703 DelayedDistinctNodes.push_back(Op);
704 else
705 Worklist.push_back(std::make_pair(Op, Op->op_begin()));
706 continue;
709 // All the operands have been visited. Now assign an ID.
710 Worklist.pop_back();
711 MDs.push_back(N);
712 MetadataMap[N].ID = MDs.size();
714 // Flush out any delayed distinct nodes; these are all the distinct nodes
715 // that are leaves in last uniqued subgraph.
716 if (Worklist.empty() || Worklist.back().first->isDistinct()) {
717 for (const MDNode *N : DelayedDistinctNodes)
718 Worklist.push_back(std::make_pair(N, N->op_begin()));
719 DelayedDistinctNodes.clear();
724 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
725 if (!MD)
726 return nullptr;
728 assert(
729 (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
730 "Invalid metadata kind");
732 auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
733 MDIndex &Entry = Insertion.first->second;
734 if (!Insertion.second) {
735 // Already mapped. If F doesn't match the function tag, drop it.
736 if (Entry.hasDifferentFunction(F))
737 dropFunctionFromMetadata(*Insertion.first);
738 return nullptr;
741 // Don't assign IDs to metadata nodes.
742 if (auto *N = dyn_cast<MDNode>(MD))
743 return N;
745 // Save the metadata.
746 MDs.push_back(MD);
747 Entry.ID = MDs.size();
749 // Enumerate the constant, if any.
750 if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
751 EnumerateValue(C->getValue());
753 return nullptr;
756 /// EnumerateFunctionLocalMetadata - Incorporate function-local metadata
757 /// information reachable from the metadata.
758 void ValueEnumerator::EnumerateFunctionLocalMetadata(
759 unsigned F, const LocalAsMetadata *Local) {
760 assert(F && "Expected a function");
762 // Check to see if it's already in!
763 MDIndex &Index = MetadataMap[Local];
764 if (Index.ID) {
765 assert(Index.F == F && "Expected the same function");
766 return;
769 MDs.push_back(Local);
770 Index.F = F;
771 Index.ID = MDs.size();
773 EnumerateValue(Local->getValue());
776 /// EnumerateFunctionLocalListMetadata - Incorporate function-local metadata
777 /// information reachable from the metadata.
778 void ValueEnumerator::EnumerateFunctionLocalListMetadata(
779 unsigned F, const DIArgList *ArgList) {
780 assert(F && "Expected a function");
782 // Check to see if it's already in!
783 MDIndex &Index = MetadataMap[ArgList];
784 if (Index.ID) {
785 assert(Index.F == F && "Expected the same function");
786 return;
789 for (ValueAsMetadata *VAM : ArgList->getArgs()) {
790 if (isa<LocalAsMetadata>(VAM)) {
791 assert(MetadataMap.count(VAM) &&
792 "LocalAsMetadata should be enumerated before DIArgList");
793 assert(MetadataMap[VAM].F == F &&
794 "Expected LocalAsMetadata in the same function");
795 } else {
796 assert(isa<ConstantAsMetadata>(VAM) &&
797 "Expected LocalAsMetadata or ConstantAsMetadata");
798 assert(ValueMap.count(VAM->getValue()) &&
799 "Constant should be enumerated beforeDIArgList");
800 EnumerateMetadata(F, VAM);
804 MDs.push_back(ArgList);
805 Index.F = F;
806 Index.ID = MDs.size();
809 static unsigned getMetadataTypeOrder(const Metadata *MD) {
810 // Strings are emitted in bulk and must come first.
811 if (isa<MDString>(MD))
812 return 0;
814 // ConstantAsMetadata doesn't reference anything. We may as well shuffle it
815 // to the front since we can detect it.
816 auto *N = dyn_cast<MDNode>(MD);
817 if (!N)
818 return 1;
820 // The reader is fast forward references for distinct node operands, but slow
821 // when uniqued operands are unresolved.
822 return N->isDistinct() ? 2 : 3;
825 void ValueEnumerator::organizeMetadata() {
826 assert(MetadataMap.size() == MDs.size() &&
827 "Metadata map and vector out of sync");
829 if (MDs.empty())
830 return;
832 // Copy out the index information from MetadataMap in order to choose a new
833 // order.
834 SmallVector<MDIndex, 64> Order;
835 Order.reserve(MetadataMap.size());
836 for (const Metadata *MD : MDs)
837 Order.push_back(MetadataMap.lookup(MD));
839 // Partition:
840 // - by function, then
841 // - by isa<MDString>
842 // and then sort by the original/current ID. Since the IDs are guaranteed to
843 // be unique, the result of std::sort will be deterministic. There's no need
844 // for std::stable_sort.
845 llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) {
846 return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
847 std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
850 // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
851 // and fix up MetadataMap.
852 std::vector<const Metadata *> OldMDs;
853 MDs.swap(OldMDs);
854 MDs.reserve(OldMDs.size());
855 for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
856 auto *MD = Order[I].get(OldMDs);
857 MDs.push_back(MD);
858 MetadataMap[MD].ID = I + 1;
859 if (isa<MDString>(MD))
860 ++NumMDStrings;
863 // Return early if there's nothing for the functions.
864 if (MDs.size() == Order.size())
865 return;
867 // Build the function metadata ranges.
868 MDRange R;
869 FunctionMDs.reserve(OldMDs.size());
870 unsigned PrevF = 0;
871 for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
872 ++I) {
873 unsigned F = Order[I].F;
874 if (!PrevF) {
875 PrevF = F;
876 } else if (PrevF != F) {
877 R.Last = FunctionMDs.size();
878 std::swap(R, FunctionMDInfo[PrevF]);
879 R.First = FunctionMDs.size();
881 ID = MDs.size();
882 PrevF = F;
885 auto *MD = Order[I].get(OldMDs);
886 FunctionMDs.push_back(MD);
887 MetadataMap[MD].ID = ++ID;
888 if (isa<MDString>(MD))
889 ++R.NumStrings;
891 R.Last = FunctionMDs.size();
892 FunctionMDInfo[PrevF] = R;
895 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
896 NumModuleMDs = MDs.size();
898 auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
899 NumMDStrings = R.NumStrings;
900 MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
901 FunctionMDs.begin() + R.Last);
904 void ValueEnumerator::EnumerateValue(const Value *V) {
905 assert(!V->getType()->isVoidTy() && "Can't insert void values!");
906 assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
908 // Check to see if it's already in!
909 unsigned &ValueID = ValueMap[V];
910 if (ValueID) {
911 // Increment use count.
912 Values[ValueID-1].second++;
913 return;
916 if (auto *GO = dyn_cast<GlobalObject>(V))
917 if (const Comdat *C = GO->getComdat())
918 Comdats.insert(C);
920 // Enumerate the type of this value.
921 EnumerateType(V->getType());
923 if (const Constant *C = dyn_cast<Constant>(V)) {
924 if (isa<GlobalValue>(C)) {
925 // Initializers for globals are handled explicitly elsewhere.
926 } else if (C->getNumOperands()) {
927 // If a constant has operands, enumerate them. This makes sure that if a
928 // constant has uses (for example an array of const ints), that they are
929 // inserted also.
931 // We prefer to enumerate them with values before we enumerate the user
932 // itself. This makes it more likely that we can avoid forward references
933 // in the reader. We know that there can be no cycles in the constants
934 // graph that don't go through a global variable.
935 for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
936 I != E; ++I)
937 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
938 EnumerateValue(*I);
939 if (auto *CE = dyn_cast<ConstantExpr>(C))
940 if (CE->getOpcode() == Instruction::ShuffleVector)
941 EnumerateValue(CE->getShuffleMaskForBitcode());
943 // Finally, add the value. Doing this could make the ValueID reference be
944 // dangling, don't reuse it.
945 Values.push_back(std::make_pair(V, 1U));
946 ValueMap[V] = Values.size();
947 return;
951 // Add the value.
952 Values.push_back(std::make_pair(V, 1U));
953 ValueID = Values.size();
957 void ValueEnumerator::EnumerateType(Type *Ty) {
958 unsigned *TypeID = &TypeMap[Ty];
960 // We've already seen this type.
961 if (*TypeID)
962 return;
964 // If it is a non-anonymous struct, mark the type as being visited so that we
965 // don't recursively visit it. This is safe because we allow forward
966 // references of these in the bitcode reader.
967 if (StructType *STy = dyn_cast<StructType>(Ty))
968 if (!STy->isLiteral())
969 *TypeID = ~0U;
971 // Enumerate all of the subtypes before we enumerate this type. This ensures
972 // that the type will be enumerated in an order that can be directly built.
973 for (Type *SubTy : Ty->subtypes())
974 EnumerateType(SubTy);
976 // Refresh the TypeID pointer in case the table rehashed.
977 TypeID = &TypeMap[Ty];
979 // Check to see if we got the pointer another way. This can happen when
980 // enumerating recursive types that hit the base case deeper than they start.
982 // If this is actually a struct that we are treating as forward ref'able,
983 // then emit the definition now that all of its contents are available.
984 if (*TypeID && *TypeID != ~0U)
985 return;
987 // Add this type now that its contents are all happily enumerated.
988 Types.push_back(Ty);
990 *TypeID = Types.size();
993 // Enumerate the types for the specified value. If the value is a constant,
994 // walk through it, enumerating the types of the constant.
995 void ValueEnumerator::EnumerateOperandType(const Value *V) {
996 EnumerateType(V->getType());
998 assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
1000 const Constant *C = dyn_cast<Constant>(V);
1001 if (!C)
1002 return;
1004 // If this constant is already enumerated, ignore it, we know its type must
1005 // be enumerated.
1006 if (ValueMap.count(C))
1007 return;
1009 // This constant may have operands, make sure to enumerate the types in
1010 // them.
1011 for (const Value *Op : C->operands()) {
1012 // Don't enumerate basic blocks here, this happens as operands to
1013 // blockaddress.
1014 if (isa<BasicBlock>(Op))
1015 continue;
1017 EnumerateOperandType(Op);
1019 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1020 if (CE->getOpcode() == Instruction::ShuffleVector)
1021 EnumerateOperandType(CE->getShuffleMaskForBitcode());
1022 if (CE->getOpcode() == Instruction::GetElementPtr)
1023 EnumerateType(cast<GEPOperator>(CE)->getSourceElementType());
1027 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) {
1028 if (PAL.isEmpty()) return; // null is always 0.
1030 // Do a lookup.
1031 unsigned &Entry = AttributeListMap[PAL];
1032 if (Entry == 0) {
1033 // Never saw this before, add it.
1034 AttributeLists.push_back(PAL);
1035 Entry = AttributeLists.size();
1038 // Do lookups for all attribute groups.
1039 for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) {
1040 AttributeSet AS = PAL.getAttributes(i);
1041 if (!AS.hasAttributes())
1042 continue;
1043 IndexAndAttrSet Pair = {i, AS};
1044 unsigned &Entry = AttributeGroupMap[Pair];
1045 if (Entry == 0) {
1046 AttributeGroups.push_back(Pair);
1047 Entry = AttributeGroups.size();
1049 for (Attribute Attr : AS) {
1050 if (Attr.isTypeAttribute())
1051 EnumerateType(Attr.getValueAsType());
1057 void ValueEnumerator::incorporateFunction(const Function &F) {
1058 InstructionCount = 0;
1059 NumModuleValues = Values.size();
1061 // Add global metadata to the function block. This doesn't include
1062 // LocalAsMetadata.
1063 incorporateFunctionMetadata(F);
1065 // Adding function arguments to the value table.
1066 for (const auto &I : F.args()) {
1067 EnumerateValue(&I);
1068 if (I.hasAttribute(Attribute::ByVal))
1069 EnumerateType(I.getParamByValType());
1070 else if (I.hasAttribute(Attribute::StructRet))
1071 EnumerateType(I.getParamStructRetType());
1072 else if (I.hasAttribute(Attribute::ByRef))
1073 EnumerateType(I.getParamByRefType());
1075 FirstFuncConstantID = Values.size();
1077 // Add all function-level constants to the value table.
1078 for (const BasicBlock &BB : F) {
1079 for (const Instruction &I : BB) {
1080 for (const Use &OI : I.operands()) {
1081 if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
1082 EnumerateValue(OI);
1084 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
1085 EnumerateValue(SVI->getShuffleMaskForBitcode());
1087 BasicBlocks.push_back(&BB);
1088 ValueMap[&BB] = BasicBlocks.size();
1091 // Optimize the constant layout.
1092 OptimizeConstants(FirstFuncConstantID, Values.size());
1094 // Add the function's parameter attributes so they are available for use in
1095 // the function's instruction.
1096 EnumerateAttributes(F.getAttributes());
1098 FirstInstID = Values.size();
1100 SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
1101 SmallVector<DIArgList *, 8> ArgListMDVector;
1102 // Add all of the instructions.
1103 for (const BasicBlock &BB : F) {
1104 for (const Instruction &I : BB) {
1105 for (const Use &OI : I.operands()) {
1106 if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) {
1107 if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) {
1108 // Enumerate metadata after the instructions they might refer to.
1109 FnLocalMDVector.push_back(Local);
1110 } else if (auto *ArgList = dyn_cast<DIArgList>(MD->getMetadata())) {
1111 ArgListMDVector.push_back(ArgList);
1112 for (ValueAsMetadata *VMD : ArgList->getArgs()) {
1113 if (auto *Local = dyn_cast<LocalAsMetadata>(VMD)) {
1114 // Enumerate metadata after the instructions they might refer
1115 // to.
1116 FnLocalMDVector.push_back(Local);
1123 if (!I.getType()->isVoidTy())
1124 EnumerateValue(&I);
1128 // Add all of the function-local metadata.
1129 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
1130 // At this point, every local values have been incorporated, we shouldn't
1131 // have a metadata operand that references a value that hasn't been seen.
1132 assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
1133 "Missing value for metadata operand");
1134 EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
1136 // DIArgList entries must come after function-local metadata, as it is not
1137 // possible to forward-reference them.
1138 for (const DIArgList *ArgList : ArgListMDVector)
1139 EnumerateFunctionLocalListMetadata(F, ArgList);
1142 void ValueEnumerator::purgeFunction() {
1143 /// Remove purged values from the ValueMap.
1144 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
1145 ValueMap.erase(Values[i].first);
1146 for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
1147 MetadataMap.erase(MDs[i]);
1148 for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
1149 ValueMap.erase(BasicBlocks[i]);
1151 Values.resize(NumModuleValues);
1152 MDs.resize(NumModuleMDs);
1153 BasicBlocks.clear();
1154 NumMDStrings = 0;
1157 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
1158 DenseMap<const BasicBlock*, unsigned> &IDMap) {
1159 unsigned Counter = 0;
1160 for (const BasicBlock &BB : *F)
1161 IDMap[&BB] = ++Counter;
1164 /// getGlobalBasicBlockID - This returns the function-specific ID for the
1165 /// specified basic block. This is relatively expensive information, so it
1166 /// should only be used by rare constructs such as address-of-label.
1167 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
1168 unsigned &Idx = GlobalBasicBlockIDs[BB];
1169 if (Idx != 0)
1170 return Idx-1;
1172 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
1173 return getGlobalBasicBlockID(BB);
1176 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
1177 return Log2_32_Ceil(getTypes().size() + 1);