[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / BranchFolding.cpp
blob65e7e92fe15213cf54ef3d9e8a726a9df7747e93
1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass forwards branches to unconditional branches to make them branch
10 // directly to the target block. This pass often results in dead MBB's, which
11 // it then removes.
13 // Note that this pass must be run after register allocation, it cannot handle
14 // SSA form. It also must handle virtual registers for targets that emit virtual
15 // ISA (e.g. NVPTX).
17 //===----------------------------------------------------------------------===//
19 #include "BranchFolding.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/ProfileSummaryInfo.h"
26 #include "llvm/CodeGen/Analysis.h"
27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
34 #include "llvm/CodeGen/MachineLoopInfo.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/MachineSizeOpts.h"
39 #include "llvm/CodeGen/MBFIWrapper.h"
40 #include "llvm/CodeGen/TargetInstrInfo.h"
41 #include "llvm/CodeGen/TargetOpcodes.h"
42 #include "llvm/CodeGen/TargetPassConfig.h"
43 #include "llvm/CodeGen/TargetRegisterInfo.h"
44 #include "llvm/CodeGen/TargetSubtargetInfo.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/MC/LaneBitmask.h"
50 #include "llvm/MC/MCRegisterInfo.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/BlockFrequency.h"
53 #include "llvm/Support/BranchProbability.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include <cassert>
60 #include <cstddef>
61 #include <iterator>
62 #include <numeric>
64 using namespace llvm;
66 #define DEBUG_TYPE "branch-folder"
68 STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
69 STATISTIC(NumBranchOpts, "Number of branches optimized");
70 STATISTIC(NumTailMerge , "Number of block tails merged");
71 STATISTIC(NumHoist , "Number of times common instructions are hoisted");
72 STATISTIC(NumTailCalls, "Number of tail calls optimized");
74 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
75 cl::init(cl::BOU_UNSET), cl::Hidden);
77 // Throttle for huge numbers of predecessors (compile speed problems)
78 static cl::opt<unsigned>
79 TailMergeThreshold("tail-merge-threshold",
80 cl::desc("Max number of predecessors to consider tail merging"),
81 cl::init(150), cl::Hidden);
83 // Heuristic for tail merging (and, inversely, tail duplication).
84 // TODO: This should be replaced with a target query.
85 static cl::opt<unsigned>
86 TailMergeSize("tail-merge-size",
87 cl::desc("Min number of instructions to consider tail merging"),
88 cl::init(3), cl::Hidden);
90 namespace {
92 /// BranchFolderPass - Wrap branch folder in a machine function pass.
93 class BranchFolderPass : public MachineFunctionPass {
94 public:
95 static char ID;
97 explicit BranchFolderPass(): MachineFunctionPass(ID) {}
99 bool runOnMachineFunction(MachineFunction &MF) override;
101 void getAnalysisUsage(AnalysisUsage &AU) const override {
102 AU.addRequired<MachineBlockFrequencyInfo>();
103 AU.addRequired<MachineBranchProbabilityInfo>();
104 AU.addRequired<ProfileSummaryInfoWrapperPass>();
105 AU.addRequired<TargetPassConfig>();
106 MachineFunctionPass::getAnalysisUsage(AU);
110 } // end anonymous namespace
112 char BranchFolderPass::ID = 0;
114 char &llvm::BranchFolderPassID = BranchFolderPass::ID;
116 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE,
117 "Control Flow Optimizer", false, false)
119 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
120 if (skipFunction(MF.getFunction()))
121 return false;
123 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
124 // TailMerge can create jump into if branches that make CFG irreducible for
125 // HW that requires structurized CFG.
126 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
127 PassConfig->getEnableTailMerge();
128 MBFIWrapper MBBFreqInfo(
129 getAnalysis<MachineBlockFrequencyInfo>());
130 BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo,
131 getAnalysis<MachineBranchProbabilityInfo>(),
132 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
133 return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(),
134 MF.getSubtarget().getRegisterInfo());
137 BranchFolder::BranchFolder(bool DefaultEnableTailMerge, bool CommonHoist,
138 MBFIWrapper &FreqInfo,
139 const MachineBranchProbabilityInfo &ProbInfo,
140 ProfileSummaryInfo *PSI, unsigned MinTailLength)
141 : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
142 MBBFreqInfo(FreqInfo), MBPI(ProbInfo), PSI(PSI) {
143 if (MinCommonTailLength == 0)
144 MinCommonTailLength = TailMergeSize;
145 switch (FlagEnableTailMerge) {
146 case cl::BOU_UNSET:
147 EnableTailMerge = DefaultEnableTailMerge;
148 break;
149 case cl::BOU_TRUE: EnableTailMerge = true; break;
150 case cl::BOU_FALSE: EnableTailMerge = false; break;
154 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
155 assert(MBB->pred_empty() && "MBB must be dead!");
156 LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
158 MachineFunction *MF = MBB->getParent();
159 // drop all successors.
160 while (!MBB->succ_empty())
161 MBB->removeSuccessor(MBB->succ_end()-1);
163 // Avoid matching if this pointer gets reused.
164 TriedMerging.erase(MBB);
166 // Update call site info.
167 for (const MachineInstr &MI : *MBB)
168 if (MI.shouldUpdateCallSiteInfo())
169 MF->eraseCallSiteInfo(&MI);
171 // Remove the block.
172 MF->erase(MBB);
173 EHScopeMembership.erase(MBB);
174 if (MLI)
175 MLI->removeBlock(MBB);
178 bool BranchFolder::OptimizeFunction(MachineFunction &MF,
179 const TargetInstrInfo *tii,
180 const TargetRegisterInfo *tri,
181 MachineLoopInfo *mli, bool AfterPlacement) {
182 if (!tii) return false;
184 TriedMerging.clear();
186 MachineRegisterInfo &MRI = MF.getRegInfo();
187 AfterBlockPlacement = AfterPlacement;
188 TII = tii;
189 TRI = tri;
190 MLI = mli;
191 this->MRI = &MRI;
193 UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF);
194 if (!UpdateLiveIns)
195 MRI.invalidateLiveness();
197 bool MadeChange = false;
199 // Recalculate EH scope membership.
200 EHScopeMembership = getEHScopeMembership(MF);
202 bool MadeChangeThisIteration = true;
203 while (MadeChangeThisIteration) {
204 MadeChangeThisIteration = TailMergeBlocks(MF);
205 // No need to clean up if tail merging does not change anything after the
206 // block placement.
207 if (!AfterBlockPlacement || MadeChangeThisIteration)
208 MadeChangeThisIteration |= OptimizeBranches(MF);
209 if (EnableHoistCommonCode)
210 MadeChangeThisIteration |= HoistCommonCode(MF);
211 MadeChange |= MadeChangeThisIteration;
214 // See if any jump tables have become dead as the code generator
215 // did its thing.
216 MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
217 if (!JTI)
218 return MadeChange;
220 // Walk the function to find jump tables that are live.
221 BitVector JTIsLive(JTI->getJumpTables().size());
222 for (const MachineBasicBlock &BB : MF) {
223 for (const MachineInstr &I : BB)
224 for (const MachineOperand &Op : I.operands()) {
225 if (!Op.isJTI()) continue;
227 // Remember that this JT is live.
228 JTIsLive.set(Op.getIndex());
232 // Finally, remove dead jump tables. This happens when the
233 // indirect jump was unreachable (and thus deleted).
234 for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
235 if (!JTIsLive.test(i)) {
236 JTI->RemoveJumpTable(i);
237 MadeChange = true;
240 return MadeChange;
243 //===----------------------------------------------------------------------===//
244 // Tail Merging of Blocks
245 //===----------------------------------------------------------------------===//
247 /// HashMachineInstr - Compute a hash value for MI and its operands.
248 static unsigned HashMachineInstr(const MachineInstr &MI) {
249 unsigned Hash = MI.getOpcode();
250 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
251 const MachineOperand &Op = MI.getOperand(i);
253 // Merge in bits from the operand if easy. We can't use MachineOperand's
254 // hash_code here because it's not deterministic and we sort by hash value
255 // later.
256 unsigned OperandHash = 0;
257 switch (Op.getType()) {
258 case MachineOperand::MO_Register:
259 OperandHash = Op.getReg();
260 break;
261 case MachineOperand::MO_Immediate:
262 OperandHash = Op.getImm();
263 break;
264 case MachineOperand::MO_MachineBasicBlock:
265 OperandHash = Op.getMBB()->getNumber();
266 break;
267 case MachineOperand::MO_FrameIndex:
268 case MachineOperand::MO_ConstantPoolIndex:
269 case MachineOperand::MO_JumpTableIndex:
270 OperandHash = Op.getIndex();
271 break;
272 case MachineOperand::MO_GlobalAddress:
273 case MachineOperand::MO_ExternalSymbol:
274 // Global address / external symbol are too hard, don't bother, but do
275 // pull in the offset.
276 OperandHash = Op.getOffset();
277 break;
278 default:
279 break;
282 Hash += ((OperandHash << 3) | Op.getType()) << (i & 31);
284 return Hash;
287 /// HashEndOfMBB - Hash the last instruction in the MBB.
288 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) {
289 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(false);
290 if (I == MBB.end())
291 return 0;
293 return HashMachineInstr(*I);
296 /// Whether MI should be counted as an instruction when calculating common tail.
297 static bool countsAsInstruction(const MachineInstr &MI) {
298 return !(MI.isDebugInstr() || MI.isCFIInstruction());
301 /// Iterate backwards from the given iterator \p I, towards the beginning of the
302 /// block. If a MI satisfying 'countsAsInstruction' is found, return an iterator
303 /// pointing to that MI. If no such MI is found, return the end iterator.
304 static MachineBasicBlock::iterator
305 skipBackwardPastNonInstructions(MachineBasicBlock::iterator I,
306 MachineBasicBlock *MBB) {
307 while (I != MBB->begin()) {
308 --I;
309 if (countsAsInstruction(*I))
310 return I;
312 return MBB->end();
315 /// Given two machine basic blocks, return the number of instructions they
316 /// actually have in common together at their end. If a common tail is found (at
317 /// least by one instruction), then iterators for the first shared instruction
318 /// in each block are returned as well.
320 /// Non-instructions according to countsAsInstruction are ignored.
321 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
322 MachineBasicBlock *MBB2,
323 MachineBasicBlock::iterator &I1,
324 MachineBasicBlock::iterator &I2) {
325 MachineBasicBlock::iterator MBBI1 = MBB1->end();
326 MachineBasicBlock::iterator MBBI2 = MBB2->end();
328 unsigned TailLen = 0;
329 while (true) {
330 MBBI1 = skipBackwardPastNonInstructions(MBBI1, MBB1);
331 MBBI2 = skipBackwardPastNonInstructions(MBBI2, MBB2);
332 if (MBBI1 == MBB1->end() || MBBI2 == MBB2->end())
333 break;
334 if (!MBBI1->isIdenticalTo(*MBBI2) ||
335 // FIXME: This check is dubious. It's used to get around a problem where
336 // people incorrectly expect inline asm directives to remain in the same
337 // relative order. This is untenable because normal compiler
338 // optimizations (like this one) may reorder and/or merge these
339 // directives.
340 MBBI1->isInlineAsm()) {
341 break;
343 if (MBBI1->getFlag(MachineInstr::NoMerge) ||
344 MBBI2->getFlag(MachineInstr::NoMerge))
345 break;
346 ++TailLen;
347 I1 = MBBI1;
348 I2 = MBBI2;
351 return TailLen;
354 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
355 MachineBasicBlock &NewDest) {
356 if (UpdateLiveIns) {
357 // OldInst should always point to an instruction.
358 MachineBasicBlock &OldMBB = *OldInst->getParent();
359 LiveRegs.clear();
360 LiveRegs.addLiveOuts(OldMBB);
361 // Move backward to the place where will insert the jump.
362 MachineBasicBlock::iterator I = OldMBB.end();
363 do {
364 --I;
365 LiveRegs.stepBackward(*I);
366 } while (I != OldInst);
368 // Merging the tails may have switched some undef operand to non-undef ones.
369 // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
370 // register.
371 for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) {
372 // We computed the liveins with computeLiveIn earlier and should only see
373 // full registers:
374 assert(P.LaneMask == LaneBitmask::getAll() &&
375 "Can only handle full register.");
376 MCPhysReg Reg = P.PhysReg;
377 if (!LiveRegs.available(*MRI, Reg))
378 continue;
379 DebugLoc DL;
380 BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
384 TII->ReplaceTailWithBranchTo(OldInst, &NewDest);
385 ++NumTailMerge;
388 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
389 MachineBasicBlock::iterator BBI1,
390 const BasicBlock *BB) {
391 if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1))
392 return nullptr;
394 MachineFunction &MF = *CurMBB.getParent();
396 // Create the fall-through block.
397 MachineFunction::iterator MBBI = CurMBB.getIterator();
398 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB);
399 CurMBB.getParent()->insert(++MBBI, NewMBB);
401 // Move all the successors of this block to the specified block.
402 NewMBB->transferSuccessors(&CurMBB);
404 // Add an edge from CurMBB to NewMBB for the fall-through.
405 CurMBB.addSuccessor(NewMBB);
407 // Splice the code over.
408 NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
410 // NewMBB belongs to the same loop as CurMBB.
411 if (MLI)
412 if (MachineLoop *ML = MLI->getLoopFor(&CurMBB))
413 ML->addBasicBlockToLoop(NewMBB, MLI->getBase());
415 // NewMBB inherits CurMBB's block frequency.
416 MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));
418 if (UpdateLiveIns)
419 computeAndAddLiveIns(LiveRegs, *NewMBB);
421 // Add the new block to the EH scope.
422 const auto &EHScopeI = EHScopeMembership.find(&CurMBB);
423 if (EHScopeI != EHScopeMembership.end()) {
424 auto n = EHScopeI->second;
425 EHScopeMembership[NewMBB] = n;
428 return NewMBB;
431 /// EstimateRuntime - Make a rough estimate for how long it will take to run
432 /// the specified code.
433 static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
434 MachineBasicBlock::iterator E) {
435 unsigned Time = 0;
436 for (; I != E; ++I) {
437 if (!countsAsInstruction(*I))
438 continue;
439 if (I->isCall())
440 Time += 10;
441 else if (I->mayLoadOrStore())
442 Time += 2;
443 else
444 ++Time;
446 return Time;
449 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these
450 // branches temporarily for tail merging). In the case where CurMBB ends
451 // with a conditional branch to the next block, optimize by reversing the
452 // test and conditionally branching to SuccMBB instead.
453 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
454 const TargetInstrInfo *TII) {
455 MachineFunction *MF = CurMBB->getParent();
456 MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB));
457 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
458 SmallVector<MachineOperand, 4> Cond;
459 DebugLoc dl = CurMBB->findBranchDebugLoc();
460 if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
461 MachineBasicBlock *NextBB = &*I;
462 if (TBB == NextBB && !Cond.empty() && !FBB) {
463 if (!TII->reverseBranchCondition(Cond)) {
464 TII->removeBranch(*CurMBB);
465 TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
466 return;
470 TII->insertBranch(*CurMBB, SuccBB, nullptr,
471 SmallVector<MachineOperand, 0>(), dl);
474 bool
475 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
476 if (getHash() < o.getHash())
477 return true;
478 if (getHash() > o.getHash())
479 return false;
480 if (getBlock()->getNumber() < o.getBlock()->getNumber())
481 return true;
482 if (getBlock()->getNumber() > o.getBlock()->getNumber())
483 return false;
484 // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
485 // an object with itself.
486 #ifndef _GLIBCXX_DEBUG
487 llvm_unreachable("Predecessor appears twice");
488 #else
489 return false;
490 #endif
493 /// CountTerminators - Count the number of terminators in the given
494 /// block and set I to the position of the first non-terminator, if there
495 /// is one, or MBB->end() otherwise.
496 static unsigned CountTerminators(MachineBasicBlock *MBB,
497 MachineBasicBlock::iterator &I) {
498 I = MBB->end();
499 unsigned NumTerms = 0;
500 while (true) {
501 if (I == MBB->begin()) {
502 I = MBB->end();
503 break;
505 --I;
506 if (!I->isTerminator()) break;
507 ++NumTerms;
509 return NumTerms;
512 /// A no successor, non-return block probably ends in unreachable and is cold.
513 /// Also consider a block that ends in an indirect branch to be a return block,
514 /// since many targets use plain indirect branches to return.
515 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) {
516 if (!MBB->succ_empty())
517 return false;
518 if (MBB->empty())
519 return true;
520 return !(MBB->back().isReturn() || MBB->back().isIndirectBranch());
523 /// ProfitableToMerge - Check if two machine basic blocks have a common tail
524 /// and decide if it would be profitable to merge those tails. Return the
525 /// length of the common tail and iterators to the first common instruction
526 /// in each block.
527 /// MBB1, MBB2 The blocks to check
528 /// MinCommonTailLength Minimum size of tail block to be merged.
529 /// CommonTailLen Out parameter to record the size of the shared tail between
530 /// MBB1 and MBB2
531 /// I1, I2 Iterator references that will be changed to point to the first
532 /// instruction in the common tail shared by MBB1,MBB2
533 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form
534 /// relative to SuccBB
535 /// PredBB The layout predecessor of SuccBB, if any.
536 /// EHScopeMembership map from block to EH scope #.
537 /// AfterPlacement True if we are merging blocks after layout. Stricter
538 /// thresholds apply to prevent undoing tail-duplication.
539 static bool
540 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
541 unsigned MinCommonTailLength, unsigned &CommonTailLen,
542 MachineBasicBlock::iterator &I1,
543 MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
544 MachineBasicBlock *PredBB,
545 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership,
546 bool AfterPlacement,
547 MBFIWrapper &MBBFreqInfo,
548 ProfileSummaryInfo *PSI) {
549 // It is never profitable to tail-merge blocks from two different EH scopes.
550 if (!EHScopeMembership.empty()) {
551 auto EHScope1 = EHScopeMembership.find(MBB1);
552 assert(EHScope1 != EHScopeMembership.end());
553 auto EHScope2 = EHScopeMembership.find(MBB2);
554 assert(EHScope2 != EHScopeMembership.end());
555 if (EHScope1->second != EHScope2->second)
556 return false;
559 CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
560 if (CommonTailLen == 0)
561 return false;
562 LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1)
563 << " and " << printMBBReference(*MBB2) << " is "
564 << CommonTailLen << '\n');
566 // Move the iterators to the beginning of the MBB if we only got debug
567 // instructions before the tail. This is to avoid splitting a block when we
568 // only got debug instructions before the tail (to be invariant on -g).
569 if (skipDebugInstructionsForward(MBB1->begin(), MBB1->end(), false) == I1)
570 I1 = MBB1->begin();
571 if (skipDebugInstructionsForward(MBB2->begin(), MBB2->end(), false) == I2)
572 I2 = MBB2->begin();
574 bool FullBlockTail1 = I1 == MBB1->begin();
575 bool FullBlockTail2 = I2 == MBB2->begin();
577 // It's almost always profitable to merge any number of non-terminator
578 // instructions with the block that falls through into the common successor.
579 // This is true only for a single successor. For multiple successors, we are
580 // trading a conditional branch for an unconditional one.
581 // TODO: Re-visit successor size for non-layout tail merging.
582 if ((MBB1 == PredBB || MBB2 == PredBB) &&
583 (!AfterPlacement || MBB1->succ_size() == 1)) {
584 MachineBasicBlock::iterator I;
585 unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
586 if (CommonTailLen > NumTerms)
587 return true;
590 // If these are identical non-return blocks with no successors, merge them.
591 // Such blocks are typically cold calls to noreturn functions like abort, and
592 // are unlikely to become a fallthrough target after machine block placement.
593 // Tail merging these blocks is unlikely to create additional unconditional
594 // branches, and will reduce the size of this cold code.
595 if (FullBlockTail1 && FullBlockTail2 &&
596 blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2))
597 return true;
599 // If one of the blocks can be completely merged and happens to be in
600 // a position where the other could fall through into it, merge any number
601 // of instructions, because it can be done without a branch.
602 // TODO: If the blocks are not adjacent, move one of them so that they are?
603 if (MBB1->isLayoutSuccessor(MBB2) && FullBlockTail2)
604 return true;
605 if (MBB2->isLayoutSuccessor(MBB1) && FullBlockTail1)
606 return true;
608 // If both blocks are identical and end in a branch, merge them unless they
609 // both have a fallthrough predecessor and successor.
610 // We can only do this after block placement because it depends on whether
611 // there are fallthroughs, and we don't know until after layout.
612 if (AfterPlacement && FullBlockTail1 && FullBlockTail2) {
613 auto BothFallThrough = [](MachineBasicBlock *MBB) {
614 if (MBB->succ_size() != 0 && !MBB->canFallThrough())
615 return false;
616 MachineFunction::iterator I(MBB);
617 MachineFunction *MF = MBB->getParent();
618 return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough();
620 if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2))
621 return true;
624 // If both blocks have an unconditional branch temporarily stripped out,
625 // count that as an additional common instruction for the following
626 // heuristics. This heuristic is only accurate for single-succ blocks, so to
627 // make sure that during layout merging and duplicating don't crash, we check
628 // for that when merging during layout.
629 unsigned EffectiveTailLen = CommonTailLen;
630 if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
631 (MBB1->succ_size() == 1 || !AfterPlacement) &&
632 !MBB1->back().isBarrier() &&
633 !MBB2->back().isBarrier())
634 ++EffectiveTailLen;
636 // Check if the common tail is long enough to be worthwhile.
637 if (EffectiveTailLen >= MinCommonTailLength)
638 return true;
640 // If we are optimizing for code size, 2 instructions in common is enough if
641 // we don't have to split a block. At worst we will be introducing 1 new
642 // branch instruction, which is likely to be smaller than the 2
643 // instructions that would be deleted in the merge.
644 MachineFunction *MF = MBB1->getParent();
645 bool OptForSize =
646 MF->getFunction().hasOptSize() ||
647 (llvm::shouldOptimizeForSize(MBB1, PSI, &MBBFreqInfo) &&
648 llvm::shouldOptimizeForSize(MBB2, PSI, &MBBFreqInfo));
649 return EffectiveTailLen >= 2 && OptForSize &&
650 (FullBlockTail1 || FullBlockTail2);
653 unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
654 unsigned MinCommonTailLength,
655 MachineBasicBlock *SuccBB,
656 MachineBasicBlock *PredBB) {
657 unsigned maxCommonTailLength = 0U;
658 SameTails.clear();
659 MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
660 MPIterator HighestMPIter = std::prev(MergePotentials.end());
661 for (MPIterator CurMPIter = std::prev(MergePotentials.end()),
662 B = MergePotentials.begin();
663 CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) {
664 for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
665 unsigned CommonTailLen;
666 if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
667 MinCommonTailLength,
668 CommonTailLen, TrialBBI1, TrialBBI2,
669 SuccBB, PredBB,
670 EHScopeMembership,
671 AfterBlockPlacement, MBBFreqInfo, PSI)) {
672 if (CommonTailLen > maxCommonTailLength) {
673 SameTails.clear();
674 maxCommonTailLength = CommonTailLen;
675 HighestMPIter = CurMPIter;
676 SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1));
678 if (HighestMPIter == CurMPIter &&
679 CommonTailLen == maxCommonTailLength)
680 SameTails.push_back(SameTailElt(I, TrialBBI2));
682 if (I == B)
683 break;
686 return maxCommonTailLength;
689 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
690 MachineBasicBlock *SuccBB,
691 MachineBasicBlock *PredBB) {
692 MPIterator CurMPIter, B;
693 for (CurMPIter = std::prev(MergePotentials.end()),
694 B = MergePotentials.begin();
695 CurMPIter->getHash() == CurHash; --CurMPIter) {
696 // Put the unconditional branch back, if we need one.
697 MachineBasicBlock *CurMBB = CurMPIter->getBlock();
698 if (SuccBB && CurMBB != PredBB)
699 FixTail(CurMBB, SuccBB, TII);
700 if (CurMPIter == B)
701 break;
703 if (CurMPIter->getHash() != CurHash)
704 CurMPIter++;
705 MergePotentials.erase(CurMPIter, MergePotentials.end());
708 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
709 MachineBasicBlock *SuccBB,
710 unsigned maxCommonTailLength,
711 unsigned &commonTailIndex) {
712 commonTailIndex = 0;
713 unsigned TimeEstimate = ~0U;
714 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
715 // Use PredBB if possible; that doesn't require a new branch.
716 if (SameTails[i].getBlock() == PredBB) {
717 commonTailIndex = i;
718 break;
720 // Otherwise, make a (fairly bogus) choice based on estimate of
721 // how long it will take the various blocks to execute.
722 unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(),
723 SameTails[i].getTailStartPos());
724 if (t <= TimeEstimate) {
725 TimeEstimate = t;
726 commonTailIndex = i;
730 MachineBasicBlock::iterator BBI =
731 SameTails[commonTailIndex].getTailStartPos();
732 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
734 LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size "
735 << maxCommonTailLength);
737 // If the split block unconditionally falls-thru to SuccBB, it will be
738 // merged. In control flow terms it should then take SuccBB's name. e.g. If
739 // SuccBB is an inner loop, the common tail is still part of the inner loop.
740 const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ?
741 SuccBB->getBasicBlock() : MBB->getBasicBlock();
742 MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB);
743 if (!newMBB) {
744 LLVM_DEBUG(dbgs() << "... failed!");
745 return false;
748 SameTails[commonTailIndex].setBlock(newMBB);
749 SameTails[commonTailIndex].setTailStartPos(newMBB->begin());
751 // If we split PredBB, newMBB is the new predecessor.
752 if (PredBB == MBB)
753 PredBB = newMBB;
755 return true;
758 static void
759 mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
760 MachineBasicBlock &MBBCommon) {
761 MachineBasicBlock *MBB = MBBIStartPos->getParent();
762 // Note CommonTailLen does not necessarily matches the size of
763 // the common BB nor all its instructions because of debug
764 // instructions differences.
765 unsigned CommonTailLen = 0;
766 for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos)
767 ++CommonTailLen;
769 MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin();
770 MachineBasicBlock::reverse_iterator MBBIE = MBB->rend();
771 MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin();
772 MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend();
774 while (CommonTailLen--) {
775 assert(MBBI != MBBIE && "Reached BB end within common tail length!");
776 (void)MBBIE;
778 if (!countsAsInstruction(*MBBI)) {
779 ++MBBI;
780 continue;
783 while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon))
784 ++MBBICommon;
786 assert(MBBICommon != MBBIECommon &&
787 "Reached BB end within common tail length!");
788 assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!");
790 // Merge MMOs from memory operations in the common block.
791 if (MBBICommon->mayLoadOrStore())
792 MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI});
793 // Drop undef flags if they aren't present in all merged instructions.
794 for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) {
795 MachineOperand &MO = MBBICommon->getOperand(I);
796 if (MO.isReg() && MO.isUndef()) {
797 const MachineOperand &OtherMO = MBBI->getOperand(I);
798 if (!OtherMO.isUndef())
799 MO.setIsUndef(false);
803 ++MBBI;
804 ++MBBICommon;
808 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) {
809 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
811 std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size());
812 for (unsigned int i = 0 ; i != SameTails.size() ; ++i) {
813 if (i != commonTailIndex) {
814 NextCommonInsts[i] = SameTails[i].getTailStartPos();
815 mergeOperations(SameTails[i].getTailStartPos(), *MBB);
816 } else {
817 assert(SameTails[i].getTailStartPos() == MBB->begin() &&
818 "MBB is not a common tail only block");
822 for (auto &MI : *MBB) {
823 if (!countsAsInstruction(MI))
824 continue;
825 DebugLoc DL = MI.getDebugLoc();
826 for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) {
827 if (i == commonTailIndex)
828 continue;
830 auto &Pos = NextCommonInsts[i];
831 assert(Pos != SameTails[i].getBlock()->end() &&
832 "Reached BB end within common tail");
833 while (!countsAsInstruction(*Pos)) {
834 ++Pos;
835 assert(Pos != SameTails[i].getBlock()->end() &&
836 "Reached BB end within common tail");
838 assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!");
839 DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc());
840 NextCommonInsts[i] = ++Pos;
842 MI.setDebugLoc(DL);
845 if (UpdateLiveIns) {
846 LivePhysRegs NewLiveIns(*TRI);
847 computeLiveIns(NewLiveIns, *MBB);
848 LiveRegs.init(*TRI);
850 // The flag merging may lead to some register uses no longer using the
851 // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
852 for (MachineBasicBlock *Pred : MBB->predecessors()) {
853 LiveRegs.clear();
854 LiveRegs.addLiveOuts(*Pred);
855 MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator();
856 for (Register Reg : NewLiveIns) {
857 if (!LiveRegs.available(*MRI, Reg))
858 continue;
859 DebugLoc DL;
860 BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF),
861 Reg);
865 MBB->clearLiveIns();
866 addLiveIns(*MBB, NewLiveIns);
870 // See if any of the blocks in MergePotentials (which all have SuccBB as a
871 // successor, or all have no successor if it is null) can be tail-merged.
872 // If there is a successor, any blocks in MergePotentials that are not
873 // tail-merged and are not immediately before Succ must have an unconditional
874 // branch to Succ added (but the predecessor/successor lists need no
875 // adjustment). The lone predecessor of Succ that falls through into Succ,
876 // if any, is given in PredBB.
877 // MinCommonTailLength - Except for the special cases below, tail-merge if
878 // there are at least this many instructions in common.
879 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
880 MachineBasicBlock *PredBB,
881 unsigned MinCommonTailLength) {
882 bool MadeChange = false;
884 LLVM_DEBUG(
885 dbgs() << "\nTryTailMergeBlocks: ";
886 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs()
887 << printMBBReference(*MergePotentials[i].getBlock())
888 << (i == e - 1 ? "" : ", ");
889 dbgs() << "\n"; if (SuccBB) {
890 dbgs() << " with successor " << printMBBReference(*SuccBB) << '\n';
891 if (PredBB)
892 dbgs() << " which has fall-through from "
893 << printMBBReference(*PredBB) << "\n";
894 } dbgs() << "Looking for common tails of at least "
895 << MinCommonTailLength << " instruction"
896 << (MinCommonTailLength == 1 ? "" : "s") << '\n';);
898 // Sort by hash value so that blocks with identical end sequences sort
899 // together.
900 array_pod_sort(MergePotentials.begin(), MergePotentials.end());
902 // Walk through equivalence sets looking for actual exact matches.
903 while (MergePotentials.size() > 1) {
904 unsigned CurHash = MergePotentials.back().getHash();
906 // Build SameTails, identifying the set of blocks with this hash code
907 // and with the maximum number of instructions in common.
908 unsigned maxCommonTailLength = ComputeSameTails(CurHash,
909 MinCommonTailLength,
910 SuccBB, PredBB);
912 // If we didn't find any pair that has at least MinCommonTailLength
913 // instructions in common, remove all blocks with this hash code and retry.
914 if (SameTails.empty()) {
915 RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
916 continue;
919 // If one of the blocks is the entire common tail (and is not the entry
920 // block/an EH pad, which we can't jump to), we can treat all blocks with
921 // this same tail at once. Use PredBB if that is one of the possibilities,
922 // as that will not introduce any extra branches.
923 MachineBasicBlock *EntryBB =
924 &MergePotentials.front().getBlock()->getParent()->front();
925 unsigned commonTailIndex = SameTails.size();
926 // If there are two blocks, check to see if one can be made to fall through
927 // into the other.
928 if (SameTails.size() == 2 &&
929 SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) &&
930 SameTails[1].tailIsWholeBlock() && !SameTails[1].getBlock()->isEHPad())
931 commonTailIndex = 1;
932 else if (SameTails.size() == 2 &&
933 SameTails[1].getBlock()->isLayoutSuccessor(
934 SameTails[0].getBlock()) &&
935 SameTails[0].tailIsWholeBlock() &&
936 !SameTails[0].getBlock()->isEHPad())
937 commonTailIndex = 0;
938 else {
939 // Otherwise just pick one, favoring the fall-through predecessor if
940 // there is one.
941 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
942 MachineBasicBlock *MBB = SameTails[i].getBlock();
943 if ((MBB == EntryBB || MBB->isEHPad()) &&
944 SameTails[i].tailIsWholeBlock())
945 continue;
946 if (MBB == PredBB) {
947 commonTailIndex = i;
948 break;
950 if (SameTails[i].tailIsWholeBlock())
951 commonTailIndex = i;
955 if (commonTailIndex == SameTails.size() ||
956 (SameTails[commonTailIndex].getBlock() == PredBB &&
957 !SameTails[commonTailIndex].tailIsWholeBlock())) {
958 // None of the blocks consist entirely of the common tail.
959 // Split a block so that one does.
960 if (!CreateCommonTailOnlyBlock(PredBB, SuccBB,
961 maxCommonTailLength, commonTailIndex)) {
962 RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
963 continue;
967 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
969 // Recompute common tail MBB's edge weights and block frequency.
970 setCommonTailEdgeWeights(*MBB);
972 // Merge debug locations, MMOs and undef flags across identical instructions
973 // for common tail.
974 mergeCommonTails(commonTailIndex);
976 // MBB is common tail. Adjust all other BB's to jump to this one.
977 // Traversal must be forwards so erases work.
978 LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB)
979 << " for ");
980 for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
981 if (commonTailIndex == i)
982 continue;
983 LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock())
984 << (i == e - 1 ? "" : ", "));
985 // Hack the end off BB i, making it jump to BB commonTailIndex instead.
986 replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB);
987 // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
988 MergePotentials.erase(SameTails[i].getMPIter());
990 LLVM_DEBUG(dbgs() << "\n");
991 // We leave commonTailIndex in the worklist in case there are other blocks
992 // that match it with a smaller number of instructions.
993 MadeChange = true;
995 return MadeChange;
998 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
999 bool MadeChange = false;
1000 if (!EnableTailMerge)
1001 return MadeChange;
1003 // First find blocks with no successors.
1004 // Block placement may create new tail merging opportunities for these blocks.
1005 MergePotentials.clear();
1006 for (MachineBasicBlock &MBB : MF) {
1007 if (MergePotentials.size() == TailMergeThreshold)
1008 break;
1009 if (!TriedMerging.count(&MBB) && MBB.succ_empty())
1010 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB));
1013 // If this is a large problem, avoid visiting the same basic blocks
1014 // multiple times.
1015 if (MergePotentials.size() == TailMergeThreshold)
1016 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1017 TriedMerging.insert(MergePotentials[i].getBlock());
1019 // See if we can do any tail merging on those.
1020 if (MergePotentials.size() >= 2)
1021 MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);
1023 // Look at blocks (IBB) with multiple predecessors (PBB).
1024 // We change each predecessor to a canonical form, by
1025 // (1) temporarily removing any unconditional branch from the predecessor
1026 // to IBB, and
1027 // (2) alter conditional branches so they branch to the other block
1028 // not IBB; this may require adding back an unconditional branch to IBB
1029 // later, where there wasn't one coming in. E.g.
1030 // Bcc IBB
1031 // fallthrough to QBB
1032 // here becomes
1033 // Bncc QBB
1034 // with a conceptual B to IBB after that, which never actually exists.
1035 // With those changes, we see whether the predecessors' tails match,
1036 // and merge them if so. We change things out of canonical form and
1037 // back to the way they were later in the process. (OptimizeBranches
1038 // would undo some of this, but we can't use it, because we'd get into
1039 // a compile-time infinite loop repeatedly doing and undoing the same
1040 // transformations.)
1042 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1043 I != E; ++I) {
1044 if (I->pred_size() < 2) continue;
1045 SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
1046 MachineBasicBlock *IBB = &*I;
1047 MachineBasicBlock *PredBB = &*std::prev(I);
1048 MergePotentials.clear();
1049 MachineLoop *ML;
1051 // Bail if merging after placement and IBB is the loop header because
1052 // -- If merging predecessors that belong to the same loop as IBB, the
1053 // common tail of merged predecessors may become the loop top if block
1054 // placement is called again and the predecessors may branch to this common
1055 // tail and require more branches. This can be relaxed if
1056 // MachineBlockPlacement::findBestLoopTop is more flexible.
1057 // --If merging predecessors that do not belong to the same loop as IBB, the
1058 // loop info of IBB's loop and the other loops may be affected. Calling the
1059 // block placement again may make big change to the layout and eliminate the
1060 // reason to do tail merging here.
1061 if (AfterBlockPlacement && MLI) {
1062 ML = MLI->getLoopFor(IBB);
1063 if (ML && IBB == ML->getHeader())
1064 continue;
1067 for (MachineBasicBlock *PBB : I->predecessors()) {
1068 if (MergePotentials.size() == TailMergeThreshold)
1069 break;
1071 if (TriedMerging.count(PBB))
1072 continue;
1074 // Skip blocks that loop to themselves, can't tail merge these.
1075 if (PBB == IBB)
1076 continue;
1078 // Visit each predecessor only once.
1079 if (!UniquePreds.insert(PBB).second)
1080 continue;
1082 // Skip blocks which may jump to a landing pad or jump from an asm blob.
1083 // Can't tail merge these.
1084 if (PBB->hasEHPadSuccessor() || PBB->mayHaveInlineAsmBr())
1085 continue;
1087 // After block placement, only consider predecessors that belong to the
1088 // same loop as IBB. The reason is the same as above when skipping loop
1089 // header.
1090 if (AfterBlockPlacement && MLI)
1091 if (ML != MLI->getLoopFor(PBB))
1092 continue;
1094 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1095 SmallVector<MachineOperand, 4> Cond;
1096 if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) {
1097 // Failing case: IBB is the target of a cbr, and we cannot reverse the
1098 // branch.
1099 SmallVector<MachineOperand, 4> NewCond(Cond);
1100 if (!Cond.empty() && TBB == IBB) {
1101 if (TII->reverseBranchCondition(NewCond))
1102 continue;
1103 // This is the QBB case described above
1104 if (!FBB) {
1105 auto Next = ++PBB->getIterator();
1106 if (Next != MF.end())
1107 FBB = &*Next;
1111 // Remove the unconditional branch at the end, if any.
1112 if (TBB && (Cond.empty() || FBB)) {
1113 DebugLoc dl = PBB->findBranchDebugLoc();
1114 TII->removeBranch(*PBB);
1115 if (!Cond.empty())
1116 // reinsert conditional branch only, for now
1117 TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
1118 NewCond, dl);
1121 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB));
1125 // If this is a large problem, avoid visiting the same basic blocks multiple
1126 // times.
1127 if (MergePotentials.size() == TailMergeThreshold)
1128 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1129 TriedMerging.insert(MergePotentials[i].getBlock());
1131 if (MergePotentials.size() >= 2)
1132 MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);
1134 // Reinsert an unconditional branch if needed. The 1 below can occur as a
1135 // result of removing blocks in TryTailMergeBlocks.
1136 PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks
1137 if (MergePotentials.size() == 1 &&
1138 MergePotentials.begin()->getBlock() != PredBB)
1139 FixTail(MergePotentials.begin()->getBlock(), IBB, TII);
1142 return MadeChange;
1145 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
1146 SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
1147 BlockFrequency AccumulatedMBBFreq;
1149 // Aggregate edge frequency of successor edge j:
1150 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
1151 // where bb is a basic block that is in SameTails.
1152 for (const auto &Src : SameTails) {
1153 const MachineBasicBlock *SrcMBB = Src.getBlock();
1154 BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
1155 AccumulatedMBBFreq += BlockFreq;
1157 // It is not necessary to recompute edge weights if TailBB has less than two
1158 // successors.
1159 if (TailMBB.succ_size() <= 1)
1160 continue;
1162 auto EdgeFreq = EdgeFreqLs.begin();
1164 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1165 SuccI != SuccE; ++SuccI, ++EdgeFreq)
1166 *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
1169 MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);
1171 if (TailMBB.succ_size() <= 1)
1172 return;
1174 auto SumEdgeFreq =
1175 std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0))
1176 .getFrequency();
1177 auto EdgeFreq = EdgeFreqLs.begin();
1179 if (SumEdgeFreq > 0) {
1180 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1181 SuccI != SuccE; ++SuccI, ++EdgeFreq) {
1182 auto Prob = BranchProbability::getBranchProbability(
1183 EdgeFreq->getFrequency(), SumEdgeFreq);
1184 TailMBB.setSuccProbability(SuccI, Prob);
1189 //===----------------------------------------------------------------------===//
1190 // Branch Optimization
1191 //===----------------------------------------------------------------------===//
1193 bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
1194 bool MadeChange = false;
1196 // Make sure blocks are numbered in order
1197 MF.RenumberBlocks();
1198 // Renumbering blocks alters EH scope membership, recalculate it.
1199 EHScopeMembership = getEHScopeMembership(MF);
1201 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1202 I != E; ) {
1203 MachineBasicBlock *MBB = &*I++;
1204 MadeChange |= OptimizeBlock(MBB);
1206 // If it is dead, remove it.
1207 if (MBB->pred_empty()) {
1208 RemoveDeadBlock(MBB);
1209 MadeChange = true;
1210 ++NumDeadBlocks;
1214 return MadeChange;
1217 // Blocks should be considered empty if they contain only debug info;
1218 // else the debug info would affect codegen.
1219 static bool IsEmptyBlock(MachineBasicBlock *MBB) {
1220 return MBB->getFirstNonDebugInstr(true) == MBB->end();
1223 // Blocks with only debug info and branches should be considered the same
1224 // as blocks with only branches.
1225 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) {
1226 MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr();
1227 assert(I != MBB->end() && "empty block!");
1228 return I->isBranch();
1231 /// IsBetterFallthrough - Return true if it would be clearly better to
1232 /// fall-through to MBB1 than to fall through into MBB2. This has to return
1233 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
1234 /// result in infinite loops.
1235 static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
1236 MachineBasicBlock *MBB2) {
1237 assert(MBB1 && MBB2 && "Unknown MachineBasicBlock");
1239 // Right now, we use a simple heuristic. If MBB2 ends with a call, and
1240 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to
1241 // optimize branches that branch to either a return block or an assert block
1242 // into a fallthrough to the return.
1243 MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr();
1244 MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr();
1245 if (MBB1I == MBB1->end() || MBB2I == MBB2->end())
1246 return false;
1248 // If there is a clear successor ordering we make sure that one block
1249 // will fall through to the next
1250 if (MBB1->isSuccessor(MBB2)) return true;
1251 if (MBB2->isSuccessor(MBB1)) return false;
1253 return MBB2I->isCall() && !MBB1I->isCall();
1256 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
1257 /// instructions on the block.
1258 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) {
1259 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1260 if (I != MBB.end() && I->isBranch())
1261 return I->getDebugLoc();
1262 return DebugLoc();
1265 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII,
1266 MachineBasicBlock &MBB,
1267 MachineBasicBlock &PredMBB) {
1268 auto InsertBefore = PredMBB.getFirstTerminator();
1269 for (MachineInstr &MI : MBB.instrs())
1270 if (MI.isDebugInstr()) {
1271 TII->duplicate(PredMBB, InsertBefore, MI);
1272 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
1273 << MI);
1277 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII,
1278 MachineBasicBlock &MBB,
1279 MachineBasicBlock &SuccMBB) {
1280 auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin());
1281 for (MachineInstr &MI : MBB.instrs())
1282 if (MI.isDebugInstr()) {
1283 TII->duplicate(SuccMBB, InsertBefore, MI);
1284 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
1285 << MI);
1289 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
1290 // a basic block is removed we would lose the debug information unless we have
1291 // copied the information to a predecessor/successor.
1293 // TODO: This function only handles some simple cases. An alternative would be
1294 // to run a heavier analysis, such as the LiveDebugValues pass, before we do
1295 // branch folding.
1296 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII,
1297 MachineBasicBlock &MBB) {
1298 assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info).");
1299 // If this MBB is the only predecessor of a successor it is legal to copy
1300 // DBG_VALUE instructions to the beginning of the successor.
1301 for (MachineBasicBlock *SuccBB : MBB.successors())
1302 if (SuccBB->pred_size() == 1)
1303 copyDebugInfoToSuccessor(TII, MBB, *SuccBB);
1304 // If this MBB is the only successor of a predecessor it is legal to copy the
1305 // DBG_VALUE instructions to the end of the predecessor (just before the
1306 // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
1307 for (MachineBasicBlock *PredBB : MBB.predecessors())
1308 if (PredBB->succ_size() == 1)
1309 copyDebugInfoToPredecessor(TII, MBB, *PredBB);
1312 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
1313 bool MadeChange = false;
1314 MachineFunction &MF = *MBB->getParent();
1315 ReoptimizeBlock:
1317 MachineFunction::iterator FallThrough = MBB->getIterator();
1318 ++FallThrough;
1320 // Make sure MBB and FallThrough belong to the same EH scope.
1321 bool SameEHScope = true;
1322 if (!EHScopeMembership.empty() && FallThrough != MF.end()) {
1323 auto MBBEHScope = EHScopeMembership.find(MBB);
1324 assert(MBBEHScope != EHScopeMembership.end());
1325 auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough);
1326 assert(FallThroughEHScope != EHScopeMembership.end());
1327 SameEHScope = MBBEHScope->second == FallThroughEHScope->second;
1330 // Analyze the branch in the current block. As a side-effect, this may cause
1331 // the block to become empty.
1332 MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr;
1333 SmallVector<MachineOperand, 4> CurCond;
1334 bool CurUnAnalyzable =
1335 TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
1337 // If this block is empty, make everyone use its fall-through, not the block
1338 // explicitly. Landing pads should not do this since the landing-pad table
1339 // points to this block. Blocks with their addresses taken shouldn't be
1340 // optimized away.
1341 if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() &&
1342 SameEHScope) {
1343 salvageDebugInfoFromEmptyBlock(TII, *MBB);
1344 // Dead block? Leave for cleanup later.
1345 if (MBB->pred_empty()) return MadeChange;
1347 if (FallThrough == MF.end()) {
1348 // TODO: Simplify preds to not branch here if possible!
1349 } else if (FallThrough->isEHPad()) {
1350 // Don't rewrite to a landing pad fallthough. That could lead to the case
1351 // where a BB jumps to more than one landing pad.
1352 // TODO: Is it ever worth rewriting predecessors which don't already
1353 // jump to a landing pad, and so can safely jump to the fallthrough?
1354 } else if (MBB->isSuccessor(&*FallThrough)) {
1355 // Rewrite all predecessors of the old block to go to the fallthrough
1356 // instead.
1357 while (!MBB->pred_empty()) {
1358 MachineBasicBlock *Pred = *(MBB->pred_end()-1);
1359 Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough);
1361 // If MBB was the target of a jump table, update jump tables to go to the
1362 // fallthrough instead.
1363 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1364 MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough);
1365 MadeChange = true;
1367 return MadeChange;
1370 // Check to see if we can simplify the terminator of the block before this
1371 // one.
1372 MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB));
1374 MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
1375 SmallVector<MachineOperand, 4> PriorCond;
1376 bool PriorUnAnalyzable =
1377 TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
1378 if (!PriorUnAnalyzable) {
1379 // If the previous branch is conditional and both conditions go to the same
1380 // destination, remove the branch, replacing it with an unconditional one or
1381 // a fall-through.
1382 if (PriorTBB && PriorTBB == PriorFBB) {
1383 DebugLoc dl = getBranchDebugLoc(PrevBB);
1384 TII->removeBranch(PrevBB);
1385 PriorCond.clear();
1386 if (PriorTBB != MBB)
1387 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1388 MadeChange = true;
1389 ++NumBranchOpts;
1390 goto ReoptimizeBlock;
1393 // If the previous block unconditionally falls through to this block and
1394 // this block has no other predecessors, move the contents of this block
1395 // into the prior block. This doesn't usually happen when SimplifyCFG
1396 // has been used, but it can happen if tail merging splits a fall-through
1397 // predecessor of a block.
1398 // This has to check PrevBB->succ_size() because EH edges are ignored by
1399 // analyzeBranch.
1400 if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
1401 PrevBB.succ_size() == 1 &&
1402 !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1403 LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
1404 << "From MBB: " << *MBB);
1405 // Remove redundant DBG_VALUEs first.
1406 if (!PrevBB.empty()) {
1407 MachineBasicBlock::iterator PrevBBIter = PrevBB.end();
1408 --PrevBBIter;
1409 MachineBasicBlock::iterator MBBIter = MBB->begin();
1410 // Check if DBG_VALUE at the end of PrevBB is identical to the
1411 // DBG_VALUE at the beginning of MBB.
1412 while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end()
1413 && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) {
1414 if (!MBBIter->isIdenticalTo(*PrevBBIter))
1415 break;
1416 MachineInstr &DuplicateDbg = *MBBIter;
1417 ++MBBIter; -- PrevBBIter;
1418 DuplicateDbg.eraseFromParent();
1421 PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
1422 PrevBB.removeSuccessor(PrevBB.succ_begin());
1423 assert(PrevBB.succ_empty());
1424 PrevBB.transferSuccessors(MBB);
1425 MadeChange = true;
1426 return MadeChange;
1429 // If the previous branch *only* branches to *this* block (conditional or
1430 // not) remove the branch.
1431 if (PriorTBB == MBB && !PriorFBB) {
1432 TII->removeBranch(PrevBB);
1433 MadeChange = true;
1434 ++NumBranchOpts;
1435 goto ReoptimizeBlock;
1438 // If the prior block branches somewhere else on the condition and here if
1439 // the condition is false, remove the uncond second branch.
1440 if (PriorFBB == MBB) {
1441 DebugLoc dl = getBranchDebugLoc(PrevBB);
1442 TII->removeBranch(PrevBB);
1443 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1444 MadeChange = true;
1445 ++NumBranchOpts;
1446 goto ReoptimizeBlock;
1449 // If the prior block branches here on true and somewhere else on false, and
1450 // if the branch condition is reversible, reverse the branch to create a
1451 // fall-through.
1452 if (PriorTBB == MBB) {
1453 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1454 if (!TII->reverseBranchCondition(NewPriorCond)) {
1455 DebugLoc dl = getBranchDebugLoc(PrevBB);
1456 TII->removeBranch(PrevBB);
1457 TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl);
1458 MadeChange = true;
1459 ++NumBranchOpts;
1460 goto ReoptimizeBlock;
1464 // If this block has no successors (e.g. it is a return block or ends with
1465 // a call to a no-return function like abort or __cxa_throw) and if the pred
1466 // falls through into this block, and if it would otherwise fall through
1467 // into the block after this, move this block to the end of the function.
1469 // We consider it more likely that execution will stay in the function (e.g.
1470 // due to loops) than it is to exit it. This asserts in loops etc, moving
1471 // the assert condition out of the loop body.
1472 if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB &&
1473 MachineFunction::iterator(PriorTBB) == FallThrough &&
1474 !MBB->canFallThrough()) {
1475 bool DoTransform = true;
1477 // We have to be careful that the succs of PredBB aren't both no-successor
1478 // blocks. If neither have successors and if PredBB is the second from
1479 // last block in the function, we'd just keep swapping the two blocks for
1480 // last. Only do the swap if one is clearly better to fall through than
1481 // the other.
1482 if (FallThrough == --MF.end() &&
1483 !IsBetterFallthrough(PriorTBB, MBB))
1484 DoTransform = false;
1486 if (DoTransform) {
1487 // Reverse the branch so we will fall through on the previous true cond.
1488 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1489 if (!TII->reverseBranchCondition(NewPriorCond)) {
1490 LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
1491 << "To make fallthrough to: " << *PriorTBB << "\n");
1493 DebugLoc dl = getBranchDebugLoc(PrevBB);
1494 TII->removeBranch(PrevBB);
1495 TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl);
1497 // Move this block to the end of the function.
1498 MBB->moveAfter(&MF.back());
1499 MadeChange = true;
1500 ++NumBranchOpts;
1501 return MadeChange;
1507 bool OptForSize =
1508 MF.getFunction().hasOptSize() ||
1509 llvm::shouldOptimizeForSize(MBB, PSI, &MBBFreqInfo);
1510 if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && OptForSize) {
1511 // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch
1512 // direction, thereby defeating careful block placement and regressing
1513 // performance. Therefore, only consider this for optsize functions.
1514 MachineInstr &TailCall = *MBB->getFirstNonDebugInstr();
1515 if (TII->isUnconditionalTailCall(TailCall)) {
1516 MachineBasicBlock *Pred = *MBB->pred_begin();
1517 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1518 SmallVector<MachineOperand, 4> PredCond;
1519 bool PredAnalyzable =
1520 !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);
1522 if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
1523 PredTBB != PredFBB) {
1524 // The predecessor has a conditional branch to this block which consists
1525 // of only a tail call. Try to fold the tail call into the conditional
1526 // branch.
1527 if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
1528 // TODO: It would be nice if analyzeBranch() could provide a pointer
1529 // to the branch instruction so replaceBranchWithTailCall() doesn't
1530 // have to search for it.
1531 TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
1532 ++NumTailCalls;
1533 Pred->removeSuccessor(MBB);
1534 MadeChange = true;
1535 return MadeChange;
1538 // If the predecessor is falling through to this block, we could reverse
1539 // the branch condition and fold the tail call into that. However, after
1540 // that we might have to re-arrange the CFG to fall through to the other
1541 // block and there is a high risk of regressing code size rather than
1542 // improving it.
1546 if (!CurUnAnalyzable) {
1547 // If this is a two-way branch, and the FBB branches to this block, reverse
1548 // the condition so the single-basic-block loop is faster. Instead of:
1549 // Loop: xxx; jcc Out; jmp Loop
1550 // we want:
1551 // Loop: xxx; jncc Loop; jmp Out
1552 if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
1553 SmallVector<MachineOperand, 4> NewCond(CurCond);
1554 if (!TII->reverseBranchCondition(NewCond)) {
1555 DebugLoc dl = getBranchDebugLoc(*MBB);
1556 TII->removeBranch(*MBB);
1557 TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl);
1558 MadeChange = true;
1559 ++NumBranchOpts;
1560 goto ReoptimizeBlock;
1564 // If this branch is the only thing in its block, see if we can forward
1565 // other blocks across it.
1566 if (CurTBB && CurCond.empty() && !CurFBB &&
1567 IsBranchOnlyBlock(MBB) && CurTBB != MBB &&
1568 !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1569 DebugLoc dl = getBranchDebugLoc(*MBB);
1570 // This block may contain just an unconditional branch. Because there can
1571 // be 'non-branch terminators' in the block, try removing the branch and
1572 // then seeing if the block is empty.
1573 TII->removeBranch(*MBB);
1574 // If the only things remaining in the block are debug info, remove these
1575 // as well, so this will behave the same as an empty block in non-debug
1576 // mode.
1577 if (IsEmptyBlock(MBB)) {
1578 // Make the block empty, losing the debug info (we could probably
1579 // improve this in some cases.)
1580 MBB->erase(MBB->begin(), MBB->end());
1582 // If this block is just an unconditional branch to CurTBB, we can
1583 // usually completely eliminate the block. The only case we cannot
1584 // completely eliminate the block is when the block before this one
1585 // falls through into MBB and we can't understand the prior block's branch
1586 // condition.
1587 if (MBB->empty()) {
1588 bool PredHasNoFallThrough = !PrevBB.canFallThrough();
1589 if (PredHasNoFallThrough || !PriorUnAnalyzable ||
1590 !PrevBB.isSuccessor(MBB)) {
1591 // If the prior block falls through into us, turn it into an
1592 // explicit branch to us to make updates simpler.
1593 if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
1594 PriorTBB != MBB && PriorFBB != MBB) {
1595 if (!PriorTBB) {
1596 assert(PriorCond.empty() && !PriorFBB &&
1597 "Bad branch analysis");
1598 PriorTBB = MBB;
1599 } else {
1600 assert(!PriorFBB && "Machine CFG out of date!");
1601 PriorFBB = MBB;
1603 DebugLoc pdl = getBranchDebugLoc(PrevBB);
1604 TII->removeBranch(PrevBB);
1605 TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl);
1608 // Iterate through all the predecessors, revectoring each in-turn.
1609 size_t PI = 0;
1610 bool DidChange = false;
1611 bool HasBranchToSelf = false;
1612 while(PI != MBB->pred_size()) {
1613 MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
1614 if (PMBB == MBB) {
1615 // If this block has an uncond branch to itself, leave it.
1616 ++PI;
1617 HasBranchToSelf = true;
1618 } else {
1619 DidChange = true;
1620 PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
1621 // If this change resulted in PMBB ending in a conditional
1622 // branch where both conditions go to the same destination,
1623 // change this to an unconditional branch.
1624 MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr;
1625 SmallVector<MachineOperand, 4> NewCurCond;
1626 bool NewCurUnAnalyzable = TII->analyzeBranch(
1627 *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
1628 if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
1629 DebugLoc pdl = getBranchDebugLoc(*PMBB);
1630 TII->removeBranch(*PMBB);
1631 NewCurCond.clear();
1632 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl);
1633 MadeChange = true;
1634 ++NumBranchOpts;
1639 // Change any jumptables to go to the new MBB.
1640 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1641 MJTI->ReplaceMBBInJumpTables(MBB, CurTBB);
1642 if (DidChange) {
1643 ++NumBranchOpts;
1644 MadeChange = true;
1645 if (!HasBranchToSelf) return MadeChange;
1650 // Add the branch back if the block is more than just an uncond branch.
1651 TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl);
1655 // If the prior block doesn't fall through into this block, and if this
1656 // block doesn't fall through into some other block, see if we can find a
1657 // place to move this block where a fall-through will happen.
1658 if (!PrevBB.canFallThrough()) {
1659 // Now we know that there was no fall-through into this block, check to
1660 // see if it has a fall-through into its successor.
1661 bool CurFallsThru = MBB->canFallThrough();
1663 if (!MBB->isEHPad()) {
1664 // Check all the predecessors of this block. If one of them has no fall
1665 // throughs, and analyzeBranch thinks it _could_ fallthrough to this
1666 // block, move this block right after it.
1667 for (MachineBasicBlock *PredBB : MBB->predecessors()) {
1668 // Analyze the branch at the end of the pred.
1669 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1670 SmallVector<MachineOperand, 4> PredCond;
1671 if (PredBB != MBB && !PredBB->canFallThrough() &&
1672 !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) &&
1673 (PredTBB == MBB || PredFBB == MBB) &&
1674 (!CurFallsThru || !CurTBB || !CurFBB) &&
1675 (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
1676 // If the current block doesn't fall through, just move it.
1677 // If the current block can fall through and does not end with a
1678 // conditional branch, we need to append an unconditional jump to
1679 // the (current) next block. To avoid a possible compile-time
1680 // infinite loop, move blocks only backward in this case.
1681 // Also, if there are already 2 branches here, we cannot add a third;
1682 // this means we have the case
1683 // Bcc next
1684 // B elsewhere
1685 // next:
1686 if (CurFallsThru) {
1687 MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
1688 CurCond.clear();
1689 TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
1691 MBB->moveAfter(PredBB);
1692 MadeChange = true;
1693 goto ReoptimizeBlock;
1698 if (!CurFallsThru) {
1699 // Check analyzable branch-successors to see if we can move this block
1700 // before one.
1701 if (!CurUnAnalyzable) {
1702 for (MachineBasicBlock *SuccBB : {CurFBB, CurTBB}) {
1703 if (!SuccBB)
1704 continue;
1705 // Analyze the branch at the end of the block before the succ.
1706 MachineFunction::iterator SuccPrev = --SuccBB->getIterator();
1708 // If this block doesn't already fall-through to that successor, and
1709 // if the succ doesn't already have a block that can fall through into
1710 // it, we can arrange for the fallthrough to happen.
1711 if (SuccBB != MBB && &*SuccPrev != MBB &&
1712 !SuccPrev->canFallThrough()) {
1713 MBB->moveBefore(SuccBB);
1714 MadeChange = true;
1715 goto ReoptimizeBlock;
1720 // Okay, there is no really great place to put this block. If, however,
1721 // the block before this one would be a fall-through if this block were
1722 // removed, move this block to the end of the function. There is no real
1723 // advantage in "falling through" to an EH block, so we don't want to
1724 // perform this transformation for that case.
1726 // Also, Windows EH introduced the possibility of an arbitrary number of
1727 // successors to a given block. The analyzeBranch call does not consider
1728 // exception handling and so we can get in a state where a block
1729 // containing a call is followed by multiple EH blocks that would be
1730 // rotated infinitely at the end of the function if the transformation
1731 // below were performed for EH "FallThrough" blocks. Therefore, even if
1732 // that appears not to be happening anymore, we should assume that it is
1733 // possible and not remove the "!FallThrough()->isEHPad" condition below.
1734 MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
1735 SmallVector<MachineOperand, 4> PrevCond;
1736 if (FallThrough != MF.end() &&
1737 !FallThrough->isEHPad() &&
1738 !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
1739 PrevBB.isSuccessor(&*FallThrough)) {
1740 MBB->moveAfter(&MF.back());
1741 MadeChange = true;
1742 return MadeChange;
1747 return MadeChange;
1750 //===----------------------------------------------------------------------===//
1751 // Hoist Common Code
1752 //===----------------------------------------------------------------------===//
1754 bool BranchFolder::HoistCommonCode(MachineFunction &MF) {
1755 bool MadeChange = false;
1756 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) {
1757 MachineBasicBlock *MBB = &*I++;
1758 MadeChange |= HoistCommonCodeInSuccs(MBB);
1761 return MadeChange;
1764 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
1765 /// its 'true' successor.
1766 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
1767 MachineBasicBlock *TrueBB) {
1768 for (MachineBasicBlock *SuccBB : BB->successors())
1769 if (SuccBB != TrueBB)
1770 return SuccBB;
1771 return nullptr;
1774 template <class Container>
1775 static void addRegAndItsAliases(Register Reg, const TargetRegisterInfo *TRI,
1776 Container &Set) {
1777 if (Reg.isPhysical()) {
1778 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
1779 Set.insert(*AI);
1780 } else {
1781 Set.insert(Reg);
1785 /// findHoistingInsertPosAndDeps - Find the location to move common instructions
1786 /// in successors to. The location is usually just before the terminator,
1787 /// however if the terminator is a conditional branch and its previous
1788 /// instruction is the flag setting instruction, the previous instruction is
1789 /// the preferred location. This function also gathers uses and defs of the
1790 /// instructions from the insertion point to the end of the block. The data is
1791 /// used by HoistCommonCodeInSuccs to ensure safety.
1792 static
1793 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
1794 const TargetInstrInfo *TII,
1795 const TargetRegisterInfo *TRI,
1796 SmallSet<Register, 4> &Uses,
1797 SmallSet<Register, 4> &Defs) {
1798 MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
1799 if (!TII->isUnpredicatedTerminator(*Loc))
1800 return MBB->end();
1802 for (const MachineOperand &MO : Loc->operands()) {
1803 if (!MO.isReg())
1804 continue;
1805 Register Reg = MO.getReg();
1806 if (!Reg)
1807 continue;
1808 if (MO.isUse()) {
1809 addRegAndItsAliases(Reg, TRI, Uses);
1810 } else {
1811 if (!MO.isDead())
1812 // Don't try to hoist code in the rare case the terminator defines a
1813 // register that is later used.
1814 return MBB->end();
1816 // If the terminator defines a register, make sure we don't hoist
1817 // the instruction whose def might be clobbered by the terminator.
1818 addRegAndItsAliases(Reg, TRI, Defs);
1822 if (Uses.empty())
1823 return Loc;
1824 // If the terminator is the only instruction in the block and Uses is not
1825 // empty (or we would have returned above), we can still safely hoist
1826 // instructions just before the terminator as long as the Defs/Uses are not
1827 // violated (which is checked in HoistCommonCodeInSuccs).
1828 if (Loc == MBB->begin())
1829 return Loc;
1831 // The terminator is probably a conditional branch, try not to separate the
1832 // branch from condition setting instruction.
1833 MachineBasicBlock::iterator PI = prev_nodbg(Loc, MBB->begin());
1835 bool IsDef = false;
1836 for (const MachineOperand &MO : PI->operands()) {
1837 // If PI has a regmask operand, it is probably a call. Separate away.
1838 if (MO.isRegMask())
1839 return Loc;
1840 if (!MO.isReg() || MO.isUse())
1841 continue;
1842 Register Reg = MO.getReg();
1843 if (!Reg)
1844 continue;
1845 if (Uses.count(Reg)) {
1846 IsDef = true;
1847 break;
1850 if (!IsDef)
1851 // The condition setting instruction is not just before the conditional
1852 // branch.
1853 return Loc;
1855 // Be conservative, don't insert instruction above something that may have
1856 // side-effects. And since it's potentially bad to separate flag setting
1857 // instruction from the conditional branch, just abort the optimization
1858 // completely.
1859 // Also avoid moving code above predicated instruction since it's hard to
1860 // reason about register liveness with predicated instruction.
1861 bool DontMoveAcrossStore = true;
1862 if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI))
1863 return MBB->end();
1865 // Find out what registers are live. Note this routine is ignoring other live
1866 // registers which are only used by instructions in successor blocks.
1867 for (const MachineOperand &MO : PI->operands()) {
1868 if (!MO.isReg())
1869 continue;
1870 Register Reg = MO.getReg();
1871 if (!Reg)
1872 continue;
1873 if (MO.isUse()) {
1874 addRegAndItsAliases(Reg, TRI, Uses);
1875 } else {
1876 if (Uses.erase(Reg)) {
1877 if (Register::isPhysicalRegister(Reg)) {
1878 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
1879 Uses.erase(*SubRegs); // Use sub-registers to be conservative
1882 addRegAndItsAliases(Reg, TRI, Defs);
1886 return PI;
1889 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
1890 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1891 SmallVector<MachineOperand, 4> Cond;
1892 if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty())
1893 return false;
1895 if (!FBB) FBB = findFalseBlock(MBB, TBB);
1896 if (!FBB)
1897 // Malformed bcc? True and false blocks are the same?
1898 return false;
1900 // Restrict the optimization to cases where MBB is the only predecessor,
1901 // it is an obvious win.
1902 if (TBB->pred_size() > 1 || FBB->pred_size() > 1)
1903 return false;
1905 // Find a suitable position to hoist the common instructions to. Also figure
1906 // out which registers are used or defined by instructions from the insertion
1907 // point to the end of the block.
1908 SmallSet<Register, 4> Uses, Defs;
1909 MachineBasicBlock::iterator Loc =
1910 findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs);
1911 if (Loc == MBB->end())
1912 return false;
1914 bool HasDups = false;
1915 SmallSet<Register, 4> ActiveDefsSet, AllDefsSet;
1916 MachineBasicBlock::iterator TIB = TBB->begin();
1917 MachineBasicBlock::iterator FIB = FBB->begin();
1918 MachineBasicBlock::iterator TIE = TBB->end();
1919 MachineBasicBlock::iterator FIE = FBB->end();
1920 while (TIB != TIE && FIB != FIE) {
1921 // Skip dbg_value instructions. These do not count.
1922 TIB = skipDebugInstructionsForward(TIB, TIE, false);
1923 FIB = skipDebugInstructionsForward(FIB, FIE, false);
1924 if (TIB == TIE || FIB == FIE)
1925 break;
1927 if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
1928 break;
1930 if (TII->isPredicated(*TIB))
1931 // Hard to reason about register liveness with predicated instruction.
1932 break;
1934 bool IsSafe = true;
1935 for (MachineOperand &MO : TIB->operands()) {
1936 // Don't attempt to hoist instructions with register masks.
1937 if (MO.isRegMask()) {
1938 IsSafe = false;
1939 break;
1941 if (!MO.isReg())
1942 continue;
1943 Register Reg = MO.getReg();
1944 if (!Reg)
1945 continue;
1946 if (MO.isDef()) {
1947 if (Uses.count(Reg)) {
1948 // Avoid clobbering a register that's used by the instruction at
1949 // the point of insertion.
1950 IsSafe = false;
1951 break;
1954 if (Defs.count(Reg) && !MO.isDead()) {
1955 // Don't hoist the instruction if the def would be clobber by the
1956 // instruction at the point insertion. FIXME: This is overly
1957 // conservative. It should be possible to hoist the instructions
1958 // in BB2 in the following example:
1959 // BB1:
1960 // r1, eflag = op1 r2, r3
1961 // brcc eflag
1963 // BB2:
1964 // r1 = op2, ...
1965 // = op3, killed r1
1966 IsSafe = false;
1967 break;
1969 } else if (!ActiveDefsSet.count(Reg)) {
1970 if (Defs.count(Reg)) {
1971 // Use is defined by the instruction at the point of insertion.
1972 IsSafe = false;
1973 break;
1976 if (MO.isKill() && Uses.count(Reg))
1977 // Kills a register that's read by the instruction at the point of
1978 // insertion. Remove the kill marker.
1979 MO.setIsKill(false);
1982 if (!IsSafe)
1983 break;
1985 bool DontMoveAcrossStore = true;
1986 if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore))
1987 break;
1989 // Remove kills from ActiveDefsSet, these registers had short live ranges.
1990 for (const MachineOperand &MO : TIB->operands()) {
1991 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1992 continue;
1993 Register Reg = MO.getReg();
1994 if (!Reg)
1995 continue;
1996 if (!AllDefsSet.count(Reg)) {
1997 continue;
1999 if (Reg.isPhysical()) {
2000 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
2001 ActiveDefsSet.erase(*AI);
2002 } else {
2003 ActiveDefsSet.erase(Reg);
2007 // Track local defs so we can update liveins.
2008 for (const MachineOperand &MO : TIB->operands()) {
2009 if (!MO.isReg() || !MO.isDef() || MO.isDead())
2010 continue;
2011 Register Reg = MO.getReg();
2012 if (!Reg || Reg.isVirtual())
2013 continue;
2014 addRegAndItsAliases(Reg, TRI, ActiveDefsSet);
2015 addRegAndItsAliases(Reg, TRI, AllDefsSet);
2018 HasDups = true;
2019 ++TIB;
2020 ++FIB;
2023 if (!HasDups)
2024 return false;
2026 MBB->splice(Loc, TBB, TBB->begin(), TIB);
2027 FBB->erase(FBB->begin(), FIB);
2029 if (UpdateLiveIns) {
2030 recomputeLiveIns(*TBB);
2031 recomputeLiveIns(*FBB);
2034 ++NumHoist;
2035 return true;