[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / GlobalISel / InlineAsmLowering.cpp
blob4ae4274849458442f5bfe594e3b20af14ab2415b
1 //===-- lib/CodeGen/GlobalISel/InlineAsmLowering.cpp ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering from LLVM IR inline asm to MIR INLINEASM
11 ///
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
15 #include "llvm/CodeGen/Analysis.h"
16 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
17 #include "llvm/CodeGen/GlobalISel/Utils.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
26 #define DEBUG_TYPE "inline-asm-lowering"
28 using namespace llvm;
30 void InlineAsmLowering::anchor() {}
32 namespace {
34 /// GISelAsmOperandInfo - This contains information for each constraint that we
35 /// are lowering.
36 class GISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
37 public:
38 /// Regs - If this is a register or register class operand, this
39 /// contains the set of assigned registers corresponding to the operand.
40 SmallVector<Register, 1> Regs;
42 explicit GISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &Info)
43 : TargetLowering::AsmOperandInfo(Info) {}
46 using GISelAsmOperandInfoVector = SmallVector<GISelAsmOperandInfo, 16>;
48 class ExtraFlags {
49 unsigned Flags = 0;
51 public:
52 explicit ExtraFlags(const CallBase &CB) {
53 const InlineAsm *IA = cast<InlineAsm>(CB.getCalledOperand());
54 if (IA->hasSideEffects())
55 Flags |= InlineAsm::Extra_HasSideEffects;
56 if (IA->isAlignStack())
57 Flags |= InlineAsm::Extra_IsAlignStack;
58 if (CB.isConvergent())
59 Flags |= InlineAsm::Extra_IsConvergent;
60 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
63 void update(const TargetLowering::AsmOperandInfo &OpInfo) {
64 // Ideally, we would only check against memory constraints. However, the
65 // meaning of an Other constraint can be target-specific and we can't easily
66 // reason about it. Therefore, be conservative and set MayLoad/MayStore
67 // for Other constraints as well.
68 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
69 OpInfo.ConstraintType == TargetLowering::C_Other) {
70 if (OpInfo.Type == InlineAsm::isInput)
71 Flags |= InlineAsm::Extra_MayLoad;
72 else if (OpInfo.Type == InlineAsm::isOutput)
73 Flags |= InlineAsm::Extra_MayStore;
74 else if (OpInfo.Type == InlineAsm::isClobber)
75 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
79 unsigned get() const { return Flags; }
82 } // namespace
84 /// Assign virtual/physical registers for the specified register operand.
85 static void getRegistersForValue(MachineFunction &MF,
86 MachineIRBuilder &MIRBuilder,
87 GISelAsmOperandInfo &OpInfo,
88 GISelAsmOperandInfo &RefOpInfo) {
90 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
91 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
93 // No work to do for memory operations.
94 if (OpInfo.ConstraintType == TargetLowering::C_Memory)
95 return;
97 // If this is a constraint for a single physreg, or a constraint for a
98 // register class, find it.
99 Register AssignedReg;
100 const TargetRegisterClass *RC;
101 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
102 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
103 // RC is unset only on failure. Return immediately.
104 if (!RC)
105 return;
107 // No need to allocate a matching input constraint since the constraint it's
108 // matching to has already been allocated.
109 if (OpInfo.isMatchingInputConstraint())
110 return;
112 // Initialize NumRegs.
113 unsigned NumRegs = 1;
114 if (OpInfo.ConstraintVT != MVT::Other)
115 NumRegs =
116 TLI.getNumRegisters(MF.getFunction().getContext(), OpInfo.ConstraintVT);
118 // If this is a constraint for a specific physical register, but the type of
119 // the operand requires more than one register to be passed, we allocate the
120 // required amount of physical registers, starting from the selected physical
121 // register.
122 // For this, first retrieve a register iterator for the given register class
123 TargetRegisterClass::iterator I = RC->begin();
124 MachineRegisterInfo &RegInfo = MF.getRegInfo();
126 // Advance the iterator to the assigned register (if set)
127 if (AssignedReg) {
128 for (; *I != AssignedReg; ++I)
129 assert(I != RC->end() && "AssignedReg should be a member of provided RC");
132 // Finally, assign the registers. If the AssignedReg isn't set, create virtual
133 // registers with the provided register class
134 for (; NumRegs; --NumRegs, ++I) {
135 assert(I != RC->end() && "Ran out of registers to allocate!");
136 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
137 OpInfo.Regs.push_back(R);
141 /// Return an integer indicating how general CT is.
142 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
143 switch (CT) {
144 case TargetLowering::C_Immediate:
145 case TargetLowering::C_Other:
146 case TargetLowering::C_Unknown:
147 return 0;
148 case TargetLowering::C_Register:
149 return 1;
150 case TargetLowering::C_RegisterClass:
151 return 2;
152 case TargetLowering::C_Memory:
153 return 3;
155 llvm_unreachable("Invalid constraint type");
158 static void chooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
159 const TargetLowering *TLI) {
160 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
161 unsigned BestIdx = 0;
162 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
163 int BestGenerality = -1;
165 // Loop over the options, keeping track of the most general one.
166 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
167 TargetLowering::ConstraintType CType =
168 TLI->getConstraintType(OpInfo.Codes[i]);
170 // Indirect 'other' or 'immediate' constraints are not allowed.
171 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
172 CType == TargetLowering::C_Register ||
173 CType == TargetLowering::C_RegisterClass))
174 continue;
176 // If this is an 'other' or 'immediate' constraint, see if the operand is
177 // valid for it. For example, on X86 we might have an 'rI' constraint. If
178 // the operand is an integer in the range [0..31] we want to use I (saving a
179 // load of a register), otherwise we must use 'r'.
180 if (CType == TargetLowering::C_Other ||
181 CType == TargetLowering::C_Immediate) {
182 assert(OpInfo.Codes[i].size() == 1 &&
183 "Unhandled multi-letter 'other' constraint");
184 // FIXME: prefer immediate constraints if the target allows it
187 // Things with matching constraints can only be registers, per gcc
188 // documentation. This mainly affects "g" constraints.
189 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
190 continue;
192 // This constraint letter is more general than the previous one, use it.
193 int Generality = getConstraintGenerality(CType);
194 if (Generality > BestGenerality) {
195 BestType = CType;
196 BestIdx = i;
197 BestGenerality = Generality;
201 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
202 OpInfo.ConstraintType = BestType;
205 static void computeConstraintToUse(const TargetLowering *TLI,
206 TargetLowering::AsmOperandInfo &OpInfo) {
207 assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
209 // Single-letter constraints ('r') are very common.
210 if (OpInfo.Codes.size() == 1) {
211 OpInfo.ConstraintCode = OpInfo.Codes[0];
212 OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode);
213 } else {
214 chooseConstraint(OpInfo, TLI);
217 // 'X' matches anything.
218 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
219 // Labels and constants are handled elsewhere ('X' is the only thing
220 // that matches labels). For Functions, the type here is the type of
221 // the result, which is not what we want to look at; leave them alone.
222 Value *Val = OpInfo.CallOperandVal;
223 if (isa<BasicBlock>(Val) || isa<ConstantInt>(Val) || isa<Function>(Val))
224 return;
226 // Otherwise, try to resolve it to something we know about by looking at
227 // the actual operand type.
228 if (const char *Repl = TLI->LowerXConstraint(OpInfo.ConstraintVT)) {
229 OpInfo.ConstraintCode = Repl;
230 OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode);
235 static unsigned getNumOpRegs(const MachineInstr &I, unsigned OpIdx) {
236 unsigned Flag = I.getOperand(OpIdx).getImm();
237 return InlineAsm::getNumOperandRegisters(Flag);
240 static bool buildAnyextOrCopy(Register Dst, Register Src,
241 MachineIRBuilder &MIRBuilder) {
242 const TargetRegisterInfo *TRI =
243 MIRBuilder.getMF().getSubtarget().getRegisterInfo();
244 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
246 auto SrcTy = MRI->getType(Src);
247 if (!SrcTy.isValid()) {
248 LLVM_DEBUG(dbgs() << "Source type for copy is not valid\n");
249 return false;
251 unsigned SrcSize = TRI->getRegSizeInBits(Src, *MRI);
252 unsigned DstSize = TRI->getRegSizeInBits(Dst, *MRI);
254 if (DstSize < SrcSize) {
255 LLVM_DEBUG(dbgs() << "Input can't fit in destination reg class\n");
256 return false;
259 // Attempt to anyext small scalar sources.
260 if (DstSize > SrcSize) {
261 if (!SrcTy.isScalar()) {
262 LLVM_DEBUG(dbgs() << "Can't extend non-scalar input to size of"
263 "destination register class\n");
264 return false;
266 Src = MIRBuilder.buildAnyExt(LLT::scalar(DstSize), Src).getReg(0);
269 MIRBuilder.buildCopy(Dst, Src);
270 return true;
273 bool InlineAsmLowering::lowerInlineAsm(
274 MachineIRBuilder &MIRBuilder, const CallBase &Call,
275 std::function<ArrayRef<Register>(const Value &Val)> GetOrCreateVRegs)
276 const {
277 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
279 /// ConstraintOperands - Information about all of the constraints.
280 GISelAsmOperandInfoVector ConstraintOperands;
282 MachineFunction &MF = MIRBuilder.getMF();
283 const Function &F = MF.getFunction();
284 const DataLayout &DL = F.getParent()->getDataLayout();
285 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
287 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
289 TargetLowering::AsmOperandInfoVector TargetConstraints =
290 TLI->ParseConstraints(DL, TRI, Call);
292 ExtraFlags ExtraInfo(Call);
293 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
294 unsigned ResNo = 0; // ResNo - The result number of the next output.
295 for (auto &T : TargetConstraints) {
296 ConstraintOperands.push_back(GISelAsmOperandInfo(T));
297 GISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
299 // Compute the value type for each operand.
300 if (OpInfo.Type == InlineAsm::isInput ||
301 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
303 OpInfo.CallOperandVal = const_cast<Value *>(Call.getArgOperand(ArgNo++));
305 if (isa<BasicBlock>(OpInfo.CallOperandVal)) {
306 LLVM_DEBUG(dbgs() << "Basic block input operands not supported yet\n");
307 return false;
310 Type *OpTy = OpInfo.CallOperandVal->getType();
312 // If this is an indirect operand, the operand is a pointer to the
313 // accessed type.
314 if (OpInfo.isIndirect) {
315 PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
316 if (!PtrTy)
317 report_fatal_error("Indirect operand for inline asm not a pointer!");
318 OpTy = PtrTy->getElementType();
321 // FIXME: Support aggregate input operands
322 if (!OpTy->isSingleValueType()) {
323 LLVM_DEBUG(
324 dbgs() << "Aggregate input operands are not supported yet\n");
325 return false;
328 OpInfo.ConstraintVT =
329 TLI->getAsmOperandValueType(DL, OpTy, true).getSimpleVT();
331 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
332 assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
333 if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
334 OpInfo.ConstraintVT =
335 TLI->getSimpleValueType(DL, STy->getElementType(ResNo));
336 } else {
337 assert(ResNo == 0 && "Asm only has one result!");
338 OpInfo.ConstraintVT =
339 TLI->getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
341 ++ResNo;
342 } else {
343 OpInfo.ConstraintVT = MVT::Other;
346 if (OpInfo.ConstraintVT == MVT::i64x8)
347 return false;
349 // Compute the constraint code and ConstraintType to use.
350 computeConstraintToUse(TLI, OpInfo);
352 // The selected constraint type might expose new sideeffects
353 ExtraInfo.update(OpInfo);
356 // At this point, all operand types are decided.
357 // Create the MachineInstr, but don't insert it yet since input
358 // operands still need to insert instructions before this one
359 auto Inst = MIRBuilder.buildInstrNoInsert(TargetOpcode::INLINEASM)
360 .addExternalSymbol(IA->getAsmString().c_str())
361 .addImm(ExtraInfo.get());
363 // Starting from this operand: flag followed by register(s) will be added as
364 // operands to Inst for each constraint. Used for matching input constraints.
365 unsigned StartIdx = Inst->getNumOperands();
367 // Collects the output operands for later processing
368 GISelAsmOperandInfoVector OutputOperands;
370 for (auto &OpInfo : ConstraintOperands) {
371 GISelAsmOperandInfo &RefOpInfo =
372 OpInfo.isMatchingInputConstraint()
373 ? ConstraintOperands[OpInfo.getMatchedOperand()]
374 : OpInfo;
376 // Assign registers for register operands
377 getRegistersForValue(MF, MIRBuilder, OpInfo, RefOpInfo);
379 switch (OpInfo.Type) {
380 case InlineAsm::isOutput:
381 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
382 unsigned ConstraintID =
383 TLI->getInlineAsmMemConstraint(OpInfo.ConstraintCode);
384 assert(ConstraintID != InlineAsm::Constraint_Unknown &&
385 "Failed to convert memory constraint code to constraint id.");
387 // Add information to the INLINEASM instruction to know about this
388 // output.
389 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
390 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
391 Inst.addImm(OpFlags);
392 ArrayRef<Register> SourceRegs =
393 GetOrCreateVRegs(*OpInfo.CallOperandVal);
394 assert(
395 SourceRegs.size() == 1 &&
396 "Expected the memory output to fit into a single virtual register");
397 Inst.addReg(SourceRegs[0]);
398 } else {
399 // Otherwise, this outputs to a register (directly for C_Register /
400 // C_RegisterClass. Find a register that we can use.
401 assert(OpInfo.ConstraintType == TargetLowering::C_Register ||
402 OpInfo.ConstraintType == TargetLowering::C_RegisterClass);
404 if (OpInfo.Regs.empty()) {
405 LLVM_DEBUG(dbgs()
406 << "Couldn't allocate output register for constraint\n");
407 return false;
410 // Add information to the INLINEASM instruction to know that this
411 // register is set.
412 unsigned Flag = InlineAsm::getFlagWord(
413 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
414 : InlineAsm::Kind_RegDef,
415 OpInfo.Regs.size());
416 if (OpInfo.Regs.front().isVirtual()) {
417 // Put the register class of the virtual registers in the flag word.
418 // That way, later passes can recompute register class constraints for
419 // inline assembly as well as normal instructions. Don't do this for
420 // tied operands that can use the regclass information from the def.
421 const TargetRegisterClass *RC = MRI->getRegClass(OpInfo.Regs.front());
422 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
425 Inst.addImm(Flag);
427 for (Register Reg : OpInfo.Regs) {
428 Inst.addReg(Reg,
429 RegState::Define | getImplRegState(Reg.isPhysical()) |
430 (OpInfo.isEarlyClobber ? RegState::EarlyClobber : 0));
433 // Remember this output operand for later processing
434 OutputOperands.push_back(OpInfo);
437 break;
438 case InlineAsm::isInput: {
439 if (OpInfo.isMatchingInputConstraint()) {
440 unsigned DefIdx = OpInfo.getMatchedOperand();
441 // Find operand with register def that corresponds to DefIdx.
442 unsigned InstFlagIdx = StartIdx;
443 for (unsigned i = 0; i < DefIdx; ++i)
444 InstFlagIdx += getNumOpRegs(*Inst, InstFlagIdx) + 1;
445 assert(getNumOpRegs(*Inst, InstFlagIdx) == 1 && "Wrong flag");
447 unsigned MatchedOperandFlag = Inst->getOperand(InstFlagIdx).getImm();
448 if (InlineAsm::isMemKind(MatchedOperandFlag)) {
449 LLVM_DEBUG(dbgs() << "Matching input constraint to mem operand not "
450 "supported. This should be target specific.\n");
451 return false;
453 if (!InlineAsm::isRegDefKind(MatchedOperandFlag) &&
454 !InlineAsm::isRegDefEarlyClobberKind(MatchedOperandFlag)) {
455 LLVM_DEBUG(dbgs() << "Unknown matching constraint\n");
456 return false;
459 // We want to tie input to register in next operand.
460 unsigned DefRegIdx = InstFlagIdx + 1;
461 Register Def = Inst->getOperand(DefRegIdx).getReg();
463 ArrayRef<Register> SrcRegs = GetOrCreateVRegs(*OpInfo.CallOperandVal);
464 assert(SrcRegs.size() == 1 && "Single register is expected here");
466 // When Def is physreg: use given input.
467 Register In = SrcRegs[0];
468 // When Def is vreg: copy input to new vreg with same reg class as Def.
469 if (Def.isVirtual()) {
470 In = MRI->createVirtualRegister(MRI->getRegClass(Def));
471 if (!buildAnyextOrCopy(In, SrcRegs[0], MIRBuilder))
472 return false;
475 // Add Flag and input register operand (In) to Inst. Tie In to Def.
476 unsigned UseFlag = InlineAsm::getFlagWord(InlineAsm::Kind_RegUse, 1);
477 unsigned Flag = InlineAsm::getFlagWordForMatchingOp(UseFlag, DefIdx);
478 Inst.addImm(Flag);
479 Inst.addReg(In);
480 Inst->tieOperands(DefRegIdx, Inst->getNumOperands() - 1);
481 break;
484 if (OpInfo.ConstraintType == TargetLowering::C_Other &&
485 OpInfo.isIndirect) {
486 LLVM_DEBUG(dbgs() << "Indirect input operands with unknown constraint "
487 "not supported yet\n");
488 return false;
491 if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
492 OpInfo.ConstraintType == TargetLowering::C_Other) {
494 std::vector<MachineOperand> Ops;
495 if (!lowerAsmOperandForConstraint(OpInfo.CallOperandVal,
496 OpInfo.ConstraintCode, Ops,
497 MIRBuilder)) {
498 LLVM_DEBUG(dbgs() << "Don't support constraint: "
499 << OpInfo.ConstraintCode << " yet\n");
500 return false;
503 assert(Ops.size() > 0 &&
504 "Expected constraint to be lowered to at least one operand");
506 // Add information to the INLINEASM node to know about this input.
507 unsigned OpFlags =
508 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
509 Inst.addImm(OpFlags);
510 Inst.add(Ops);
511 break;
514 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
516 if (!OpInfo.isIndirect) {
517 LLVM_DEBUG(dbgs()
518 << "Cannot indirectify memory input operands yet\n");
519 return false;
522 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
524 unsigned ConstraintID =
525 TLI->getInlineAsmMemConstraint(OpInfo.ConstraintCode);
526 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
527 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
528 Inst.addImm(OpFlags);
529 ArrayRef<Register> SourceRegs =
530 GetOrCreateVRegs(*OpInfo.CallOperandVal);
531 assert(
532 SourceRegs.size() == 1 &&
533 "Expected the memory input to fit into a single virtual register");
534 Inst.addReg(SourceRegs[0]);
535 break;
538 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
539 OpInfo.ConstraintType == TargetLowering::C_Register) &&
540 "Unknown constraint type!");
542 if (OpInfo.isIndirect) {
543 LLVM_DEBUG(dbgs() << "Can't handle indirect register inputs yet "
544 "for constraint '"
545 << OpInfo.ConstraintCode << "'\n");
546 return false;
549 // Copy the input into the appropriate registers.
550 if (OpInfo.Regs.empty()) {
551 LLVM_DEBUG(
552 dbgs()
553 << "Couldn't allocate input register for register constraint\n");
554 return false;
557 unsigned NumRegs = OpInfo.Regs.size();
558 ArrayRef<Register> SourceRegs = GetOrCreateVRegs(*OpInfo.CallOperandVal);
559 assert(NumRegs == SourceRegs.size() &&
560 "Expected the number of input registers to match the number of "
561 "source registers");
563 if (NumRegs > 1) {
564 LLVM_DEBUG(dbgs() << "Input operands with multiple input registers are "
565 "not supported yet\n");
566 return false;
569 unsigned Flag = InlineAsm::getFlagWord(InlineAsm::Kind_RegUse, NumRegs);
570 if (OpInfo.Regs.front().isVirtual()) {
571 // Put the register class of the virtual registers in the flag word.
572 const TargetRegisterClass *RC = MRI->getRegClass(OpInfo.Regs.front());
573 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
575 Inst.addImm(Flag);
576 if (!buildAnyextOrCopy(OpInfo.Regs[0], SourceRegs[0], MIRBuilder))
577 return false;
578 Inst.addReg(OpInfo.Regs[0]);
579 break;
582 case InlineAsm::isClobber: {
584 unsigned NumRegs = OpInfo.Regs.size();
585 if (NumRegs > 0) {
586 unsigned Flag =
587 InlineAsm::getFlagWord(InlineAsm::Kind_Clobber, NumRegs);
588 Inst.addImm(Flag);
590 for (Register Reg : OpInfo.Regs) {
591 Inst.addReg(Reg, RegState::Define | RegState::EarlyClobber |
592 getImplRegState(Reg.isPhysical()));
595 break;
600 if (const MDNode *SrcLoc = Call.getMetadata("srcloc"))
601 Inst.addMetadata(SrcLoc);
603 // All inputs are handled, insert the instruction now
604 MIRBuilder.insertInstr(Inst);
606 // Finally, copy the output operands into the output registers
607 ArrayRef<Register> ResRegs = GetOrCreateVRegs(Call);
608 if (ResRegs.size() != OutputOperands.size()) {
609 LLVM_DEBUG(dbgs() << "Expected the number of output registers to match the "
610 "number of destination registers\n");
611 return false;
613 for (unsigned int i = 0, e = ResRegs.size(); i < e; i++) {
614 GISelAsmOperandInfo &OpInfo = OutputOperands[i];
616 if (OpInfo.Regs.empty())
617 continue;
619 switch (OpInfo.ConstraintType) {
620 case TargetLowering::C_Register:
621 case TargetLowering::C_RegisterClass: {
622 if (OpInfo.Regs.size() > 1) {
623 LLVM_DEBUG(dbgs() << "Output operands with multiple defining "
624 "registers are not supported yet\n");
625 return false;
628 Register SrcReg = OpInfo.Regs[0];
629 unsigned SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
630 if (MRI->getType(ResRegs[i]).getSizeInBits() < SrcSize) {
631 // First copy the non-typed virtual register into a generic virtual
632 // register
633 Register Tmp1Reg =
634 MRI->createGenericVirtualRegister(LLT::scalar(SrcSize));
635 MIRBuilder.buildCopy(Tmp1Reg, SrcReg);
636 // Need to truncate the result of the register
637 MIRBuilder.buildTrunc(ResRegs[i], Tmp1Reg);
638 } else {
639 MIRBuilder.buildCopy(ResRegs[i], SrcReg);
641 break;
643 case TargetLowering::C_Immediate:
644 case TargetLowering::C_Other:
645 LLVM_DEBUG(
646 dbgs() << "Cannot lower target specific output constraints yet\n");
647 return false;
648 case TargetLowering::C_Memory:
649 break; // Already handled.
650 case TargetLowering::C_Unknown:
651 LLVM_DEBUG(dbgs() << "Unexpected unknown constraint\n");
652 return false;
656 return true;
659 bool InlineAsmLowering::lowerAsmOperandForConstraint(
660 Value *Val, StringRef Constraint, std::vector<MachineOperand> &Ops,
661 MachineIRBuilder &MIRBuilder) const {
662 if (Constraint.size() > 1)
663 return false;
665 char ConstraintLetter = Constraint[0];
666 switch (ConstraintLetter) {
667 default:
668 return false;
669 case 'i': // Simple Integer or Relocatable Constant
670 case 'n': // immediate integer with a known value.
671 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
672 assert(CI->getBitWidth() <= 64 &&
673 "expected immediate to fit into 64-bits");
674 // Boolean constants should be zero-extended, others are sign-extended
675 bool IsBool = CI->getBitWidth() == 1;
676 int64_t ExtVal = IsBool ? CI->getZExtValue() : CI->getSExtValue();
677 Ops.push_back(MachineOperand::CreateImm(ExtVal));
678 return true;
680 return false;