[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / IfConversion.cpp
blob681e2f3dc848bd114176b5c3a62d845c1fca1339
1 //===- IfConversion.cpp - Machine code if conversion pass -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the machine instruction level if-conversion pass, which
10 // tries to convert conditional branches into predicated instructions.
12 //===----------------------------------------------------------------------===//
14 #include "BranchFolding.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/MBFIWrapper.h"
35 #include "llvm/CodeGen/TargetInstrInfo.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSchedule.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/MC/MCRegisterInfo.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/BranchProbability.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <functional>
53 #include <iterator>
54 #include <memory>
55 #include <utility>
56 #include <vector>
58 using namespace llvm;
60 #define DEBUG_TYPE "if-converter"
62 // Hidden options for help debugging.
63 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
64 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
65 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
66 static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
67 cl::init(false), cl::Hidden);
68 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
69 cl::init(false), cl::Hidden);
70 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
71 cl::init(false), cl::Hidden);
72 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
73 cl::init(false), cl::Hidden);
74 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
75 cl::init(false), cl::Hidden);
76 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
77 cl::init(false), cl::Hidden);
78 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
79 cl::init(false), cl::Hidden);
80 static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
81 cl::init(false), cl::Hidden);
82 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
83 cl::init(true), cl::Hidden);
85 STATISTIC(NumSimple, "Number of simple if-conversions performed");
86 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed");
87 STATISTIC(NumTriangle, "Number of triangle if-conversions performed");
88 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed");
89 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
90 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
91 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed");
92 STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed");
93 STATISTIC(NumIfConvBBs, "Number of if-converted blocks");
94 STATISTIC(NumDupBBs, "Number of duplicated blocks");
95 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated");
97 namespace {
99 class IfConverter : public MachineFunctionPass {
100 enum IfcvtKind {
101 ICNotClassfied, // BB data valid, but not classified.
102 ICSimpleFalse, // Same as ICSimple, but on the false path.
103 ICSimple, // BB is entry of an one split, no rejoin sub-CFG.
104 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition.
105 ICTriangleRev, // Same as ICTriangle, but true path rev condition.
106 ICTriangleFalse, // Same as ICTriangle, but on the false path.
107 ICTriangle, // BB is entry of a triangle sub-CFG.
108 ICDiamond, // BB is entry of a diamond sub-CFG.
109 ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a
110 // common tail that can be shared.
113 /// One per MachineBasicBlock, this is used to cache the result
114 /// if-conversion feasibility analysis. This includes results from
115 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
116 /// classification, and common tail block of its successors (if it's a
117 /// diamond shape), its size, whether it's predicable, and whether any
118 /// instruction can clobber the 'would-be' predicate.
120 /// IsDone - True if BB is not to be considered for ifcvt.
121 /// IsBeingAnalyzed - True if BB is currently being analyzed.
122 /// IsAnalyzed - True if BB has been analyzed (info is still valid).
123 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed.
124 /// IsBrAnalyzable - True if analyzeBranch() returns false.
125 /// HasFallThrough - True if BB may fallthrough to the following BB.
126 /// IsUnpredicable - True if BB is known to be unpredicable.
127 /// ClobbersPred - True if BB could modify predicates (e.g. has
128 /// cmp, call, etc.)
129 /// NonPredSize - Number of non-predicated instructions.
130 /// ExtraCost - Extra cost for multi-cycle instructions.
131 /// ExtraCost2 - Some instructions are slower when predicated
132 /// BB - Corresponding MachineBasicBlock.
133 /// TrueBB / FalseBB- See analyzeBranch().
134 /// BrCond - Conditions for end of block conditional branches.
135 /// Predicate - Predicate used in the BB.
136 struct BBInfo {
137 bool IsDone : 1;
138 bool IsBeingAnalyzed : 1;
139 bool IsAnalyzed : 1;
140 bool IsEnqueued : 1;
141 bool IsBrAnalyzable : 1;
142 bool IsBrReversible : 1;
143 bool HasFallThrough : 1;
144 bool IsUnpredicable : 1;
145 bool CannotBeCopied : 1;
146 bool ClobbersPred : 1;
147 unsigned NonPredSize = 0;
148 unsigned ExtraCost = 0;
149 unsigned ExtraCost2 = 0;
150 MachineBasicBlock *BB = nullptr;
151 MachineBasicBlock *TrueBB = nullptr;
152 MachineBasicBlock *FalseBB = nullptr;
153 SmallVector<MachineOperand, 4> BrCond;
154 SmallVector<MachineOperand, 4> Predicate;
156 BBInfo() : IsDone(false), IsBeingAnalyzed(false),
157 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
158 IsBrReversible(false), HasFallThrough(false),
159 IsUnpredicable(false), CannotBeCopied(false),
160 ClobbersPred(false) {}
163 /// Record information about pending if-conversions to attempt:
164 /// BBI - Corresponding BBInfo.
165 /// Kind - Type of block. See IfcvtKind.
166 /// NeedSubsumption - True if the to-be-predicated BB has already been
167 /// predicated.
168 /// NumDups - Number of instructions that would be duplicated due
169 /// to this if-conversion. (For diamonds, the number of
170 /// identical instructions at the beginnings of both
171 /// paths).
172 /// NumDups2 - For diamonds, the number of identical instructions
173 /// at the ends of both paths.
174 struct IfcvtToken {
175 BBInfo &BBI;
176 IfcvtKind Kind;
177 unsigned NumDups;
178 unsigned NumDups2;
179 bool NeedSubsumption : 1;
180 bool TClobbersPred : 1;
181 bool FClobbersPred : 1;
183 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0,
184 bool tc = false, bool fc = false)
185 : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s),
186 TClobbersPred(tc), FClobbersPred(fc) {}
189 /// Results of if-conversion feasibility analysis indexed by basic block
190 /// number.
191 std::vector<BBInfo> BBAnalysis;
192 TargetSchedModel SchedModel;
194 const TargetLoweringBase *TLI;
195 const TargetInstrInfo *TII;
196 const TargetRegisterInfo *TRI;
197 const MachineBranchProbabilityInfo *MBPI;
198 MachineRegisterInfo *MRI;
200 LivePhysRegs Redefs;
202 bool PreRegAlloc;
203 bool MadeChange;
204 int FnNum = -1;
205 std::function<bool(const MachineFunction &)> PredicateFtor;
207 public:
208 static char ID;
210 IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr)
211 : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
212 initializeIfConverterPass(*PassRegistry::getPassRegistry());
215 void getAnalysisUsage(AnalysisUsage &AU) const override {
216 AU.addRequired<MachineBlockFrequencyInfo>();
217 AU.addRequired<MachineBranchProbabilityInfo>();
218 AU.addRequired<ProfileSummaryInfoWrapperPass>();
219 MachineFunctionPass::getAnalysisUsage(AU);
222 bool runOnMachineFunction(MachineFunction &MF) override;
224 MachineFunctionProperties getRequiredProperties() const override {
225 return MachineFunctionProperties().set(
226 MachineFunctionProperties::Property::NoVRegs);
229 private:
230 bool reverseBranchCondition(BBInfo &BBI) const;
231 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
232 BranchProbability Prediction) const;
233 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
234 bool FalseBranch, unsigned &Dups,
235 BranchProbability Prediction) const;
236 bool CountDuplicatedInstructions(
237 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
238 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
239 unsigned &Dups1, unsigned &Dups2,
240 MachineBasicBlock &TBB, MachineBasicBlock &FBB,
241 bool SkipUnconditionalBranches) const;
242 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
243 unsigned &Dups1, unsigned &Dups2,
244 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
245 bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
246 unsigned &Dups1, unsigned &Dups2,
247 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
248 void AnalyzeBranches(BBInfo &BBI);
249 void ScanInstructions(BBInfo &BBI,
250 MachineBasicBlock::iterator &Begin,
251 MachineBasicBlock::iterator &End,
252 bool BranchUnpredicable = false) const;
253 bool RescanInstructions(
254 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
255 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
256 BBInfo &TrueBBI, BBInfo &FalseBBI) const;
257 void AnalyzeBlock(MachineBasicBlock &MBB,
258 std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
259 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred,
260 bool isTriangle = false, bool RevBranch = false,
261 bool hasCommonTail = false);
262 void AnalyzeBlocks(MachineFunction &MF,
263 std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
264 void InvalidatePreds(MachineBasicBlock &MBB);
265 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
266 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
267 bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
268 unsigned NumDups1, unsigned NumDups2,
269 bool TClobbersPred, bool FClobbersPred,
270 bool RemoveBranch, bool MergeAddEdges);
271 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
272 unsigned NumDups1, unsigned NumDups2,
273 bool TClobbers, bool FClobbers);
274 bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind,
275 unsigned NumDups1, unsigned NumDups2,
276 bool TClobbers, bool FClobbers);
277 void PredicateBlock(BBInfo &BBI,
278 MachineBasicBlock::iterator E,
279 SmallVectorImpl<MachineOperand> &Cond,
280 SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr);
281 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
282 SmallVectorImpl<MachineOperand> &Cond,
283 bool IgnoreBr = false);
284 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
286 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
287 unsigned Cycle, unsigned Extra,
288 BranchProbability Prediction) const {
289 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
290 Prediction);
293 bool MeetIfcvtSizeLimit(BBInfo &TBBInfo, BBInfo &FBBInfo,
294 MachineBasicBlock &CommBB, unsigned Dups,
295 BranchProbability Prediction, bool Forked) const {
296 const MachineFunction &MF = *TBBInfo.BB->getParent();
297 if (MF.getFunction().hasMinSize()) {
298 MachineBasicBlock::iterator TIB = TBBInfo.BB->begin();
299 MachineBasicBlock::iterator FIB = FBBInfo.BB->begin();
300 MachineBasicBlock::iterator TIE = TBBInfo.BB->end();
301 MachineBasicBlock::iterator FIE = FBBInfo.BB->end();
303 unsigned Dups1 = 0, Dups2 = 0;
304 if (!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
305 *TBBInfo.BB, *FBBInfo.BB,
306 /*SkipUnconditionalBranches*/ true))
307 llvm_unreachable("should already have been checked by ValidDiamond");
309 unsigned BranchBytes = 0;
310 unsigned CommonBytes = 0;
312 // Count common instructions at the start of the true and false blocks.
313 for (auto &I : make_range(TBBInfo.BB->begin(), TIB)) {
314 LLVM_DEBUG(dbgs() << "Common inst: " << I);
315 CommonBytes += TII->getInstSizeInBytes(I);
317 for (auto &I : make_range(FBBInfo.BB->begin(), FIB)) {
318 LLVM_DEBUG(dbgs() << "Common inst: " << I);
319 CommonBytes += TII->getInstSizeInBytes(I);
322 // Count instructions at the end of the true and false blocks, after
323 // the ones we plan to predicate. Analyzable branches will be removed
324 // (unless this is a forked diamond), and all other instructions are
325 // common between the two blocks.
326 for (auto &I : make_range(TIE, TBBInfo.BB->end())) {
327 if (I.isBranch() && TBBInfo.IsBrAnalyzable && !Forked) {
328 LLVM_DEBUG(dbgs() << "Saving branch: " << I);
329 BranchBytes += TII->predictBranchSizeForIfCvt(I);
330 } else {
331 LLVM_DEBUG(dbgs() << "Common inst: " << I);
332 CommonBytes += TII->getInstSizeInBytes(I);
335 for (auto &I : make_range(FIE, FBBInfo.BB->end())) {
336 if (I.isBranch() && FBBInfo.IsBrAnalyzable && !Forked) {
337 LLVM_DEBUG(dbgs() << "Saving branch: " << I);
338 BranchBytes += TII->predictBranchSizeForIfCvt(I);
339 } else {
340 LLVM_DEBUG(dbgs() << "Common inst: " << I);
341 CommonBytes += TII->getInstSizeInBytes(I);
344 for (auto &I : CommBB.terminators()) {
345 if (I.isBranch()) {
346 LLVM_DEBUG(dbgs() << "Saving branch: " << I);
347 BranchBytes += TII->predictBranchSizeForIfCvt(I);
351 // The common instructions in one branch will be eliminated, halving
352 // their code size.
353 CommonBytes /= 2;
355 // Count the instructions which we need to predicate.
356 unsigned NumPredicatedInstructions = 0;
357 for (auto &I : make_range(TIB, TIE)) {
358 if (!I.isDebugInstr()) {
359 LLVM_DEBUG(dbgs() << "Predicating: " << I);
360 NumPredicatedInstructions++;
363 for (auto &I : make_range(FIB, FIE)) {
364 if (!I.isDebugInstr()) {
365 LLVM_DEBUG(dbgs() << "Predicating: " << I);
366 NumPredicatedInstructions++;
370 // Even though we're optimising for size at the expense of performance,
371 // avoid creating really long predicated blocks.
372 if (NumPredicatedInstructions > 15)
373 return false;
375 // Some targets (e.g. Thumb2) need to insert extra instructions to
376 // start predicated blocks.
377 unsigned ExtraPredicateBytes = TII->extraSizeToPredicateInstructions(
378 MF, NumPredicatedInstructions);
380 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(BranchBytes=" << BranchBytes
381 << ", CommonBytes=" << CommonBytes
382 << ", NumPredicatedInstructions="
383 << NumPredicatedInstructions
384 << ", ExtraPredicateBytes=" << ExtraPredicateBytes
385 << ")\n");
386 return (BranchBytes + CommonBytes) > ExtraPredicateBytes;
387 } else {
388 unsigned TCycle = TBBInfo.NonPredSize + TBBInfo.ExtraCost - Dups;
389 unsigned FCycle = FBBInfo.NonPredSize + FBBInfo.ExtraCost - Dups;
390 bool Res = TCycle > 0 && FCycle > 0 &&
391 TII->isProfitableToIfCvt(
392 *TBBInfo.BB, TCycle, TBBInfo.ExtraCost2, *FBBInfo.BB,
393 FCycle, FBBInfo.ExtraCost2, Prediction);
394 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(TCycle=" << TCycle
395 << ", FCycle=" << FCycle
396 << ", TExtra=" << TBBInfo.ExtraCost2 << ", FExtra="
397 << FBBInfo.ExtraCost2 << ") = " << Res << "\n");
398 return Res;
402 /// Returns true if Block ends without a terminator.
403 bool blockAlwaysFallThrough(BBInfo &BBI) const {
404 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
407 /// Used to sort if-conversion candidates.
408 static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
409 const std::unique_ptr<IfcvtToken> &C2) {
410 int Incr1 = (C1->Kind == ICDiamond)
411 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
412 int Incr2 = (C2->Kind == ICDiamond)
413 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
414 if (Incr1 > Incr2)
415 return true;
416 else if (Incr1 == Incr2) {
417 // Favors subsumption.
418 if (!C1->NeedSubsumption && C2->NeedSubsumption)
419 return true;
420 else if (C1->NeedSubsumption == C2->NeedSubsumption) {
421 // Favors diamond over triangle, etc.
422 if ((unsigned)C1->Kind < (unsigned)C2->Kind)
423 return true;
424 else if (C1->Kind == C2->Kind)
425 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
428 return false;
432 } // end anonymous namespace
434 char IfConverter::ID = 0;
436 char &llvm::IfConverterID = IfConverter::ID;
438 INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false)
439 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
440 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
441 INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false)
443 bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
444 if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF)))
445 return false;
447 const TargetSubtargetInfo &ST = MF.getSubtarget();
448 TLI = ST.getTargetLowering();
449 TII = ST.getInstrInfo();
450 TRI = ST.getRegisterInfo();
451 MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
452 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
453 ProfileSummaryInfo *PSI =
454 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
455 MRI = &MF.getRegInfo();
456 SchedModel.init(&ST);
458 if (!TII) return false;
460 PreRegAlloc = MRI->isSSA();
462 bool BFChange = false;
463 if (!PreRegAlloc) {
464 // Tail merge tend to expose more if-conversion opportunities.
465 BranchFolder BF(true, false, MBFI, *MBPI, PSI);
466 BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo());
469 LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
470 << MF.getName() << "\'");
472 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
473 LLVM_DEBUG(dbgs() << " skipped\n");
474 return false;
476 LLVM_DEBUG(dbgs() << "\n");
478 MF.RenumberBlocks();
479 BBAnalysis.resize(MF.getNumBlockIDs());
481 std::vector<std::unique_ptr<IfcvtToken>> Tokens;
482 MadeChange = false;
483 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
484 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
485 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
486 // Do an initial analysis for each basic block and find all the potential
487 // candidates to perform if-conversion.
488 bool Change = false;
489 AnalyzeBlocks(MF, Tokens);
490 while (!Tokens.empty()) {
491 std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
492 Tokens.pop_back();
493 BBInfo &BBI = Token->BBI;
494 IfcvtKind Kind = Token->Kind;
495 unsigned NumDups = Token->NumDups;
496 unsigned NumDups2 = Token->NumDups2;
498 // If the block has been evicted out of the queue or it has already been
499 // marked dead (due to it being predicated), then skip it.
500 if (BBI.IsDone)
501 BBI.IsEnqueued = false;
502 if (!BBI.IsEnqueued)
503 continue;
505 BBI.IsEnqueued = false;
507 bool RetVal = false;
508 switch (Kind) {
509 default: llvm_unreachable("Unexpected!");
510 case ICSimple:
511 case ICSimpleFalse: {
512 bool isFalse = Kind == ICSimpleFalse;
513 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
514 LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
515 << (Kind == ICSimpleFalse ? " false" : "")
516 << "): " << printMBBReference(*BBI.BB) << " ("
517 << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber()
518 : BBI.TrueBB->getNumber())
519 << ") ");
520 RetVal = IfConvertSimple(BBI, Kind);
521 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
522 if (RetVal) {
523 if (isFalse) ++NumSimpleFalse;
524 else ++NumSimple;
526 break;
528 case ICTriangle:
529 case ICTriangleRev:
530 case ICTriangleFalse:
531 case ICTriangleFRev: {
532 bool isFalse = Kind == ICTriangleFalse;
533 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
534 if (DisableTriangle && !isFalse && !isRev) break;
535 if (DisableTriangleR && !isFalse && isRev) break;
536 if (DisableTriangleF && isFalse && !isRev) break;
537 if (DisableTriangleFR && isFalse && isRev) break;
538 LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
539 if (isFalse)
540 LLVM_DEBUG(dbgs() << " false");
541 if (isRev)
542 LLVM_DEBUG(dbgs() << " rev");
543 LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB)
544 << " (T:" << BBI.TrueBB->getNumber()
545 << ",F:" << BBI.FalseBB->getNumber() << ") ");
546 RetVal = IfConvertTriangle(BBI, Kind);
547 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
548 if (RetVal) {
549 if (isFalse) {
550 if (isRev) ++NumTriangleFRev;
551 else ++NumTriangleFalse;
552 } else {
553 if (isRev) ++NumTriangleRev;
554 else ++NumTriangle;
557 break;
559 case ICDiamond:
560 if (DisableDiamond) break;
561 LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB)
562 << " (T:" << BBI.TrueBB->getNumber()
563 << ",F:" << BBI.FalseBB->getNumber() << ") ");
564 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2,
565 Token->TClobbersPred,
566 Token->FClobbersPred);
567 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
568 if (RetVal) ++NumDiamonds;
569 break;
570 case ICForkedDiamond:
571 if (DisableForkedDiamond) break;
572 LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
573 << printMBBReference(*BBI.BB)
574 << " (T:" << BBI.TrueBB->getNumber()
575 << ",F:" << BBI.FalseBB->getNumber() << ") ");
576 RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2,
577 Token->TClobbersPred,
578 Token->FClobbersPred);
579 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
580 if (RetVal) ++NumForkedDiamonds;
581 break;
584 if (RetVal && MRI->tracksLiveness())
585 recomputeLivenessFlags(*BBI.BB);
587 Change |= RetVal;
589 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
590 NumTriangleFalse + NumTriangleFRev + NumDiamonds;
591 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
592 break;
595 if (!Change)
596 break;
597 MadeChange |= Change;
600 Tokens.clear();
601 BBAnalysis.clear();
603 if (MadeChange && IfCvtBranchFold) {
604 BranchFolder BF(false, false, MBFI, *MBPI, PSI);
605 BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo());
608 MadeChange |= BFChange;
609 return MadeChange;
612 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
613 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
614 MachineBasicBlock *TrueBB) {
615 for (MachineBasicBlock *SuccBB : BB->successors()) {
616 if (SuccBB != TrueBB)
617 return SuccBB;
619 return nullptr;
622 /// Reverse the condition of the end of the block branch. Swap block's 'true'
623 /// and 'false' successors.
624 bool IfConverter::reverseBranchCondition(BBInfo &BBI) const {
625 DebugLoc dl; // FIXME: this is nowhere
626 if (!TII->reverseBranchCondition(BBI.BrCond)) {
627 TII->removeBranch(*BBI.BB);
628 TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
629 std::swap(BBI.TrueBB, BBI.FalseBB);
630 return true;
632 return false;
635 /// Returns the next block in the function blocks ordering. If it is the end,
636 /// returns NULL.
637 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
638 MachineFunction::iterator I = MBB.getIterator();
639 MachineFunction::iterator E = MBB.getParent()->end();
640 if (++I == E)
641 return nullptr;
642 return &*I;
645 /// Returns true if the 'true' block (along with its predecessor) forms a valid
646 /// simple shape for ifcvt. It also returns the number of instructions that the
647 /// ifcvt would need to duplicate if performed in Dups.
648 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
649 BranchProbability Prediction) const {
650 Dups = 0;
651 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
652 return false;
654 if (TrueBBI.IsBrAnalyzable)
655 return false;
657 if (TrueBBI.BB->pred_size() > 1) {
658 if (TrueBBI.CannotBeCopied ||
659 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
660 Prediction))
661 return false;
662 Dups = TrueBBI.NonPredSize;
665 return true;
668 /// Returns true if the 'true' and 'false' blocks (along with their common
669 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
670 /// true, it checks if 'true' block's false branch branches to the 'false' block
671 /// rather than the other way around. It also returns the number of instructions
672 /// that the ifcvt would need to duplicate if performed in 'Dups'.
673 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
674 bool FalseBranch, unsigned &Dups,
675 BranchProbability Prediction) const {
676 Dups = 0;
677 if (TrueBBI.BB == FalseBBI.BB)
678 return false;
680 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
681 return false;
683 if (TrueBBI.BB->pred_size() > 1) {
684 if (TrueBBI.CannotBeCopied)
685 return false;
687 unsigned Size = TrueBBI.NonPredSize;
688 if (TrueBBI.IsBrAnalyzable) {
689 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
690 // Ends with an unconditional branch. It will be removed.
691 --Size;
692 else {
693 MachineBasicBlock *FExit = FalseBranch
694 ? TrueBBI.TrueBB : TrueBBI.FalseBB;
695 if (FExit)
696 // Require a conditional branch
697 ++Size;
700 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
701 return false;
702 Dups = Size;
705 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
706 if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
707 MachineFunction::iterator I = TrueBBI.BB->getIterator();
708 if (++I == TrueBBI.BB->getParent()->end())
709 return false;
710 TExit = &*I;
712 return TExit && TExit == FalseBBI.BB;
715 /// Count duplicated instructions and move the iterators to show where they
716 /// are.
717 /// @param TIB True Iterator Begin
718 /// @param FIB False Iterator Begin
719 /// These two iterators initially point to the first instruction of the two
720 /// blocks, and finally point to the first non-shared instruction.
721 /// @param TIE True Iterator End
722 /// @param FIE False Iterator End
723 /// These two iterators initially point to End() for the two blocks() and
724 /// finally point to the first shared instruction in the tail.
725 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
726 /// two blocks.
727 /// @param Dups1 count of duplicated instructions at the beginning of the 2
728 /// blocks.
729 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
730 /// @param SkipUnconditionalBranches if true, Don't make sure that
731 /// unconditional branches at the end of the blocks are the same. True is
732 /// passed when the blocks are analyzable to allow for fallthrough to be
733 /// handled.
734 /// @return false if the shared portion prevents if conversion.
735 bool IfConverter::CountDuplicatedInstructions(
736 MachineBasicBlock::iterator &TIB,
737 MachineBasicBlock::iterator &FIB,
738 MachineBasicBlock::iterator &TIE,
739 MachineBasicBlock::iterator &FIE,
740 unsigned &Dups1, unsigned &Dups2,
741 MachineBasicBlock &TBB, MachineBasicBlock &FBB,
742 bool SkipUnconditionalBranches) const {
743 while (TIB != TIE && FIB != FIE) {
744 // Skip dbg_value instructions. These do not count.
745 TIB = skipDebugInstructionsForward(TIB, TIE, false);
746 FIB = skipDebugInstructionsForward(FIB, FIE, false);
747 if (TIB == TIE || FIB == FIE)
748 break;
749 if (!TIB->isIdenticalTo(*FIB))
750 break;
751 // A pred-clobbering instruction in the shared portion prevents
752 // if-conversion.
753 std::vector<MachineOperand> PredDefs;
754 if (TII->ClobbersPredicate(*TIB, PredDefs, false))
755 return false;
756 // If we get all the way to the branch instructions, don't count them.
757 if (!TIB->isBranch())
758 ++Dups1;
759 ++TIB;
760 ++FIB;
763 // Check for already containing all of the block.
764 if (TIB == TIE || FIB == FIE)
765 return true;
766 // Now, in preparation for counting duplicate instructions at the ends of the
767 // blocks, switch to reverse_iterators. Note that getReverse() returns an
768 // iterator that points to the same instruction, unlike std::reverse_iterator.
769 // We have to do our own shifting so that we get the same range.
770 MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse());
771 MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse());
772 const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse());
773 const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse());
775 if (!TBB.succ_empty() || !FBB.succ_empty()) {
776 if (SkipUnconditionalBranches) {
777 while (RTIE != RTIB && RTIE->isUnconditionalBranch())
778 ++RTIE;
779 while (RFIE != RFIB && RFIE->isUnconditionalBranch())
780 ++RFIE;
784 // Count duplicate instructions at the ends of the blocks.
785 while (RTIE != RTIB && RFIE != RFIB) {
786 // Skip dbg_value instructions. These do not count.
787 // Note that these are reverse iterators going forward.
788 RTIE = skipDebugInstructionsForward(RTIE, RTIB, false);
789 RFIE = skipDebugInstructionsForward(RFIE, RFIB, false);
790 if (RTIE == RTIB || RFIE == RFIB)
791 break;
792 if (!RTIE->isIdenticalTo(*RFIE))
793 break;
794 // We have to verify that any branch instructions are the same, and then we
795 // don't count them toward the # of duplicate instructions.
796 if (!RTIE->isBranch())
797 ++Dups2;
798 ++RTIE;
799 ++RFIE;
801 TIE = std::next(RTIE.getReverse());
802 FIE = std::next(RFIE.getReverse());
803 return true;
806 /// RescanInstructions - Run ScanInstructions on a pair of blocks.
807 /// @param TIB - True Iterator Begin, points to first non-shared instruction
808 /// @param FIB - False Iterator Begin, points to first non-shared instruction
809 /// @param TIE - True Iterator End, points past last non-shared instruction
810 /// @param FIE - False Iterator End, points past last non-shared instruction
811 /// @param TrueBBI - BBInfo to update for the true block.
812 /// @param FalseBBI - BBInfo to update for the false block.
813 /// @returns - false if either block cannot be predicated or if both blocks end
814 /// with a predicate-clobbering instruction.
815 bool IfConverter::RescanInstructions(
816 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
817 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
818 BBInfo &TrueBBI, BBInfo &FalseBBI) const {
819 bool BranchUnpredicable = true;
820 TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false;
821 ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable);
822 if (TrueBBI.IsUnpredicable)
823 return false;
824 ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable);
825 if (FalseBBI.IsUnpredicable)
826 return false;
827 if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)
828 return false;
829 return true;
832 #ifndef NDEBUG
833 static void verifySameBranchInstructions(
834 MachineBasicBlock *MBB1,
835 MachineBasicBlock *MBB2) {
836 const MachineBasicBlock::reverse_iterator B1 = MBB1->rend();
837 const MachineBasicBlock::reverse_iterator B2 = MBB2->rend();
838 MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin();
839 MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin();
840 while (E1 != B1 && E2 != B2) {
841 skipDebugInstructionsForward(E1, B1, false);
842 skipDebugInstructionsForward(E2, B2, false);
843 if (E1 == B1 && E2 == B2)
844 break;
846 if (E1 == B1) {
847 assert(!E2->isBranch() && "Branch mis-match, one block is empty.");
848 break;
850 if (E2 == B2) {
851 assert(!E1->isBranch() && "Branch mis-match, one block is empty.");
852 break;
855 if (E1->isBranch() || E2->isBranch())
856 assert(E1->isIdenticalTo(*E2) &&
857 "Branch mis-match, branch instructions don't match.");
858 else
859 break;
860 ++E1;
861 ++E2;
864 #endif
866 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
867 /// with their common predecessor) form a diamond if a common tail block is
868 /// extracted.
869 /// While not strictly a diamond, this pattern would form a diamond if
870 /// tail-merging had merged the shared tails.
871 /// EBB
872 /// _/ \_
873 /// | |
874 /// TBB FBB
875 /// / \ / \
876 /// FalseBB TrueBB FalseBB
877 /// Currently only handles analyzable branches.
878 /// Specifically excludes actual diamonds to avoid overlap.
879 bool IfConverter::ValidForkedDiamond(
880 BBInfo &TrueBBI, BBInfo &FalseBBI,
881 unsigned &Dups1, unsigned &Dups2,
882 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
883 Dups1 = Dups2 = 0;
884 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
885 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
886 return false;
888 if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable)
889 return false;
890 // Don't IfConvert blocks that can't be folded into their predecessor.
891 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
892 return false;
894 // This function is specifically looking for conditional tails, as
895 // unconditional tails are already handled by the standard diamond case.
896 if (TrueBBI.BrCond.size() == 0 ||
897 FalseBBI.BrCond.size() == 0)
898 return false;
900 MachineBasicBlock *TT = TrueBBI.TrueBB;
901 MachineBasicBlock *TF = TrueBBI.FalseBB;
902 MachineBasicBlock *FT = FalseBBI.TrueBB;
903 MachineBasicBlock *FF = FalseBBI.FalseBB;
905 if (!TT)
906 TT = getNextBlock(*TrueBBI.BB);
907 if (!TF)
908 TF = getNextBlock(*TrueBBI.BB);
909 if (!FT)
910 FT = getNextBlock(*FalseBBI.BB);
911 if (!FF)
912 FF = getNextBlock(*FalseBBI.BB);
914 if (!TT || !TF)
915 return false;
917 // Check successors. If they don't match, bail.
918 if (!((TT == FT && TF == FF) || (TF == FT && TT == FF)))
919 return false;
921 bool FalseReversed = false;
922 if (TF == FT && TT == FF) {
923 // If the branches are opposing, but we can't reverse, don't do it.
924 if (!FalseBBI.IsBrReversible)
925 return false;
926 FalseReversed = true;
927 reverseBranchCondition(FalseBBI);
929 auto UnReverseOnExit = make_scope_exit([&]() {
930 if (FalseReversed)
931 reverseBranchCondition(FalseBBI);
934 // Count duplicate instructions at the beginning of the true and false blocks.
935 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
936 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
937 MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
938 MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
939 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
940 *TrueBBI.BB, *FalseBBI.BB,
941 /* SkipUnconditionalBranches */ true))
942 return false;
944 TrueBBICalc.BB = TrueBBI.BB;
945 FalseBBICalc.BB = FalseBBI.BB;
946 TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable;
947 FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable;
948 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
949 return false;
951 // The size is used to decide whether to if-convert, and the shared portions
952 // are subtracted off. Because of the subtraction, we just use the size that
953 // was calculated by the original ScanInstructions, as it is correct.
954 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
955 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
956 return true;
959 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
960 /// with their common predecessor) forms a valid diamond shape for ifcvt.
961 bool IfConverter::ValidDiamond(
962 BBInfo &TrueBBI, BBInfo &FalseBBI,
963 unsigned &Dups1, unsigned &Dups2,
964 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
965 Dups1 = Dups2 = 0;
966 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
967 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
968 return false;
970 // If the True and False BBs are equal we're dealing with a degenerate case
971 // that we don't treat as a diamond.
972 if (TrueBBI.BB == FalseBBI.BB)
973 return false;
975 MachineBasicBlock *TT = TrueBBI.TrueBB;
976 MachineBasicBlock *FT = FalseBBI.TrueBB;
978 if (!TT && blockAlwaysFallThrough(TrueBBI))
979 TT = getNextBlock(*TrueBBI.BB);
980 if (!FT && blockAlwaysFallThrough(FalseBBI))
981 FT = getNextBlock(*FalseBBI.BB);
982 if (TT != FT)
983 return false;
984 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
985 return false;
986 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
987 return false;
989 // FIXME: Allow true block to have an early exit?
990 if (TrueBBI.FalseBB || FalseBBI.FalseBB)
991 return false;
993 // Count duplicate instructions at the beginning and end of the true and
994 // false blocks.
995 // Skip unconditional branches only if we are considering an analyzable
996 // diamond. Otherwise the branches must be the same.
997 bool SkipUnconditionalBranches =
998 TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable;
999 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
1000 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
1001 MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
1002 MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
1003 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
1004 *TrueBBI.BB, *FalseBBI.BB,
1005 SkipUnconditionalBranches))
1006 return false;
1008 TrueBBICalc.BB = TrueBBI.BB;
1009 FalseBBICalc.BB = FalseBBI.BB;
1010 TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable;
1011 FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable;
1012 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
1013 return false;
1014 // The size is used to decide whether to if-convert, and the shared portions
1015 // are subtracted off. Because of the subtraction, we just use the size that
1016 // was calculated by the original ScanInstructions, as it is correct.
1017 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
1018 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
1019 return true;
1022 /// AnalyzeBranches - Look at the branches at the end of a block to determine if
1023 /// the block is predicable.
1024 void IfConverter::AnalyzeBranches(BBInfo &BBI) {
1025 if (BBI.IsDone)
1026 return;
1028 BBI.TrueBB = BBI.FalseBB = nullptr;
1029 BBI.BrCond.clear();
1030 BBI.IsBrAnalyzable =
1031 !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
1032 if (!BBI.IsBrAnalyzable) {
1033 BBI.TrueBB = nullptr;
1034 BBI.FalseBB = nullptr;
1035 BBI.BrCond.clear();
1038 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1039 BBI.IsBrReversible = (RevCond.size() == 0) ||
1040 !TII->reverseBranchCondition(RevCond);
1041 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
1043 if (BBI.BrCond.size()) {
1044 // No false branch. This BB must end with a conditional branch and a
1045 // fallthrough.
1046 if (!BBI.FalseBB)
1047 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
1048 if (!BBI.FalseBB) {
1049 // Malformed bcc? True and false blocks are the same?
1050 BBI.IsUnpredicable = true;
1055 /// ScanInstructions - Scan all the instructions in the block to determine if
1056 /// the block is predicable. In most cases, that means all the instructions
1057 /// in the block are isPredicable(). Also checks if the block contains any
1058 /// instruction which can clobber a predicate (e.g. condition code register).
1059 /// If so, the block is not predicable unless it's the last instruction.
1060 void IfConverter::ScanInstructions(BBInfo &BBI,
1061 MachineBasicBlock::iterator &Begin,
1062 MachineBasicBlock::iterator &End,
1063 bool BranchUnpredicable) const {
1064 if (BBI.IsDone || BBI.IsUnpredicable)
1065 return;
1067 bool AlreadyPredicated = !BBI.Predicate.empty();
1069 BBI.NonPredSize = 0;
1070 BBI.ExtraCost = 0;
1071 BBI.ExtraCost2 = 0;
1072 BBI.ClobbersPred = false;
1073 for (MachineInstr &MI : make_range(Begin, End)) {
1074 if (MI.isDebugInstr())
1075 continue;
1077 // It's unsafe to duplicate convergent instructions in this context, so set
1078 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the
1079 // following CFG, which is subject to our "simple" transformation.
1081 // BB0 // if (c1) goto BB1; else goto BB2;
1082 // / \
1083 // BB1 |
1084 // | BB2 // if (c2) goto TBB; else goto FBB;
1085 // | / |
1086 // | / |
1087 // TBB |
1088 // | |
1089 // | FBB
1090 // |
1091 // exit
1093 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
1094 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
1095 // TBB contains a convergent instruction. This is safe iff doing so does
1096 // not add a control-flow dependency to the convergent instruction -- i.e.,
1097 // it's safe iff the set of control flows that leads us to the convergent
1098 // instruction does not get smaller after the transformation.
1100 // Originally we executed TBB if c1 || c2. After the transformation, there
1101 // are two copies of TBB's instructions. We get to the first if c1, and we
1102 // get to the second if !c1 && c2.
1104 // There are clearly fewer ways to satisfy the condition "c1" than
1105 // "c1 || c2". Since we've shrunk the set of control flows which lead to
1106 // our convergent instruction, the transformation is unsafe.
1107 if (MI.isNotDuplicable() || MI.isConvergent())
1108 BBI.CannotBeCopied = true;
1110 bool isPredicated = TII->isPredicated(MI);
1111 bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
1113 if (BranchUnpredicable && MI.isBranch()) {
1114 BBI.IsUnpredicable = true;
1115 return;
1118 // A conditional branch is not predicable, but it may be eliminated.
1119 if (isCondBr)
1120 continue;
1122 if (!isPredicated) {
1123 BBI.NonPredSize++;
1124 unsigned ExtraPredCost = TII->getPredicationCost(MI);
1125 unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
1126 if (NumCycles > 1)
1127 BBI.ExtraCost += NumCycles-1;
1128 BBI.ExtraCost2 += ExtraPredCost;
1129 } else if (!AlreadyPredicated) {
1130 // FIXME: This instruction is already predicated before the
1131 // if-conversion pass. It's probably something like a conditional move.
1132 // Mark this block unpredicable for now.
1133 BBI.IsUnpredicable = true;
1134 return;
1137 if (BBI.ClobbersPred && !isPredicated) {
1138 // Predicate modification instruction should end the block (except for
1139 // already predicated instructions and end of block branches).
1140 // Predicate may have been modified, the subsequent (currently)
1141 // unpredicated instructions cannot be correctly predicated.
1142 BBI.IsUnpredicable = true;
1143 return;
1146 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
1147 // still potentially predicable.
1148 std::vector<MachineOperand> PredDefs;
1149 if (TII->ClobbersPredicate(MI, PredDefs, true))
1150 BBI.ClobbersPred = true;
1152 if (!TII->isPredicable(MI)) {
1153 BBI.IsUnpredicable = true;
1154 return;
1159 /// Determine if the block is a suitable candidate to be predicated by the
1160 /// specified predicate.
1161 /// @param BBI BBInfo for the block to check
1162 /// @param Pred Predicate array for the branch that leads to BBI
1163 /// @param isTriangle true if the Analysis is for a triangle
1164 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
1165 /// case
1166 /// @param hasCommonTail true if BBI shares a tail with a sibling block that
1167 /// contains any instruction that would make the block unpredicable.
1168 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
1169 SmallVectorImpl<MachineOperand> &Pred,
1170 bool isTriangle, bool RevBranch,
1171 bool hasCommonTail) {
1172 // If the block is dead or unpredicable, then it cannot be predicated.
1173 // Two blocks may share a common unpredicable tail, but this doesn't prevent
1174 // them from being if-converted. The non-shared portion is assumed to have
1175 // been checked
1176 if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail))
1177 return false;
1179 // If it is already predicated but we couldn't analyze its terminator, the
1180 // latter might fallthrough, but we can't determine where to.
1181 // Conservatively avoid if-converting again.
1182 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
1183 return false;
1185 // If it is already predicated, check if the new predicate subsumes
1186 // its predicate.
1187 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
1188 return false;
1190 if (!hasCommonTail && BBI.BrCond.size()) {
1191 if (!isTriangle)
1192 return false;
1194 // Test predicate subsumption.
1195 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
1196 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1197 if (RevBranch) {
1198 if (TII->reverseBranchCondition(Cond))
1199 return false;
1201 if (TII->reverseBranchCondition(RevPred) ||
1202 !TII->SubsumesPredicate(Cond, RevPred))
1203 return false;
1206 return true;
1209 /// Analyze the structure of the sub-CFG starting from the specified block.
1210 /// Record its successors and whether it looks like an if-conversion candidate.
1211 void IfConverter::AnalyzeBlock(
1212 MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1213 struct BBState {
1214 BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {}
1215 MachineBasicBlock *MBB;
1217 /// This flag is true if MBB's successors have been analyzed.
1218 bool SuccsAnalyzed;
1221 // Push MBB to the stack.
1222 SmallVector<BBState, 16> BBStack(1, MBB);
1224 while (!BBStack.empty()) {
1225 BBState &State = BBStack.back();
1226 MachineBasicBlock *BB = State.MBB;
1227 BBInfo &BBI = BBAnalysis[BB->getNumber()];
1229 if (!State.SuccsAnalyzed) {
1230 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
1231 BBStack.pop_back();
1232 continue;
1235 BBI.BB = BB;
1236 BBI.IsBeingAnalyzed = true;
1238 AnalyzeBranches(BBI);
1239 MachineBasicBlock::iterator Begin = BBI.BB->begin();
1240 MachineBasicBlock::iterator End = BBI.BB->end();
1241 ScanInstructions(BBI, Begin, End);
1243 // Unanalyzable or ends with fallthrough or unconditional branch, or if is
1244 // not considered for ifcvt anymore.
1245 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
1246 BBI.IsBeingAnalyzed = false;
1247 BBI.IsAnalyzed = true;
1248 BBStack.pop_back();
1249 continue;
1252 // Do not ifcvt if either path is a back edge to the entry block.
1253 if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
1254 BBI.IsBeingAnalyzed = false;
1255 BBI.IsAnalyzed = true;
1256 BBStack.pop_back();
1257 continue;
1260 // Do not ifcvt if true and false fallthrough blocks are the same.
1261 if (!BBI.FalseBB) {
1262 BBI.IsBeingAnalyzed = false;
1263 BBI.IsAnalyzed = true;
1264 BBStack.pop_back();
1265 continue;
1268 // Push the False and True blocks to the stack.
1269 State.SuccsAnalyzed = true;
1270 BBStack.push_back(*BBI.FalseBB);
1271 BBStack.push_back(*BBI.TrueBB);
1272 continue;
1275 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1276 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1278 if (TrueBBI.IsDone && FalseBBI.IsDone) {
1279 BBI.IsBeingAnalyzed = false;
1280 BBI.IsAnalyzed = true;
1281 BBStack.pop_back();
1282 continue;
1285 SmallVector<MachineOperand, 4>
1286 RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1287 bool CanRevCond = !TII->reverseBranchCondition(RevCond);
1289 unsigned Dups = 0;
1290 unsigned Dups2 = 0;
1291 bool TNeedSub = !TrueBBI.Predicate.empty();
1292 bool FNeedSub = !FalseBBI.Predicate.empty();
1293 bool Enqueued = false;
1295 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
1297 if (CanRevCond) {
1298 BBInfo TrueBBICalc, FalseBBICalc;
1299 auto feasibleDiamond = [&](bool Forked) {
1300 bool MeetsSize = MeetIfcvtSizeLimit(TrueBBICalc, FalseBBICalc, *BB,
1301 Dups + Dups2, Prediction, Forked);
1302 bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond,
1303 /* IsTriangle */ false, /* RevCond */ false,
1304 /* hasCommonTail */ true);
1305 bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond,
1306 /* IsTriangle */ false, /* RevCond */ false,
1307 /* hasCommonTail */ true);
1308 return MeetsSize && TrueFeasible && FalseFeasible;
1311 if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1312 TrueBBICalc, FalseBBICalc)) {
1313 if (feasibleDiamond(false)) {
1314 // Diamond:
1315 // EBB
1316 // / \_
1317 // | |
1318 // TBB FBB
1319 // \ /
1320 // TailBB
1321 // Note TailBB can be empty.
1322 Tokens.push_back(std::make_unique<IfcvtToken>(
1323 BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1324 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1325 Enqueued = true;
1327 } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1328 TrueBBICalc, FalseBBICalc)) {
1329 if (feasibleDiamond(true)) {
1330 // ForkedDiamond:
1331 // if TBB and FBB have a common tail that includes their conditional
1332 // branch instructions, then we can If Convert this pattern.
1333 // EBB
1334 // _/ \_
1335 // | |
1336 // TBB FBB
1337 // / \ / \
1338 // FalseBB TrueBB FalseBB
1340 Tokens.push_back(std::make_unique<IfcvtToken>(
1341 BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1342 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1343 Enqueued = true;
1348 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
1349 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1350 TrueBBI.ExtraCost2, Prediction) &&
1351 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
1352 // Triangle:
1353 // EBB
1354 // | \_
1355 // | |
1356 // | TBB
1357 // | /
1358 // FBB
1359 Tokens.push_back(
1360 std::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
1361 Enqueued = true;
1364 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
1365 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1366 TrueBBI.ExtraCost2, Prediction) &&
1367 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
1368 Tokens.push_back(
1369 std::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
1370 Enqueued = true;
1373 if (ValidSimple(TrueBBI, Dups, Prediction) &&
1374 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1375 TrueBBI.ExtraCost2, Prediction) &&
1376 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
1377 // Simple (split, no rejoin):
1378 // EBB
1379 // | \_
1380 // | |
1381 // | TBB---> exit
1382 // |
1383 // FBB
1384 Tokens.push_back(
1385 std::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
1386 Enqueued = true;
1389 if (CanRevCond) {
1390 // Try the other path...
1391 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
1392 Prediction.getCompl()) &&
1393 MeetIfcvtSizeLimit(*FalseBBI.BB,
1394 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1395 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1396 FeasibilityAnalysis(FalseBBI, RevCond, true)) {
1397 Tokens.push_back(std::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
1398 FNeedSub, Dups));
1399 Enqueued = true;
1402 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
1403 Prediction.getCompl()) &&
1404 MeetIfcvtSizeLimit(*FalseBBI.BB,
1405 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1406 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1407 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
1408 Tokens.push_back(
1409 std::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
1410 Enqueued = true;
1413 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
1414 MeetIfcvtSizeLimit(*FalseBBI.BB,
1415 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1416 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1417 FeasibilityAnalysis(FalseBBI, RevCond)) {
1418 Tokens.push_back(
1419 std::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
1420 Enqueued = true;
1424 BBI.IsEnqueued = Enqueued;
1425 BBI.IsBeingAnalyzed = false;
1426 BBI.IsAnalyzed = true;
1427 BBStack.pop_back();
1431 /// Analyze all blocks and find entries for all if-conversion candidates.
1432 void IfConverter::AnalyzeBlocks(
1433 MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1434 for (MachineBasicBlock &MBB : MF)
1435 AnalyzeBlock(MBB, Tokens);
1437 // Sort to favor more complex ifcvt scheme.
1438 llvm::stable_sort(Tokens, IfcvtTokenCmp);
1441 /// Returns true either if ToMBB is the next block after MBB or that all the
1442 /// intervening blocks are empty (given MBB can fall through to its next block).
1443 static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
1444 MachineFunction::iterator PI = MBB.getIterator();
1445 MachineFunction::iterator I = std::next(PI);
1446 MachineFunction::iterator TI = ToMBB.getIterator();
1447 MachineFunction::iterator E = MBB.getParent()->end();
1448 while (I != TI) {
1449 // Check isSuccessor to avoid case where the next block is empty, but
1450 // it's not a successor.
1451 if (I == E || !I->empty() || !PI->isSuccessor(&*I))
1452 return false;
1453 PI = I++;
1455 // Finally see if the last I is indeed a successor to PI.
1456 return PI->isSuccessor(&*I);
1459 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it
1460 /// can be if-converted. If predecessor is already enqueued, dequeue it!
1461 void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
1462 for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
1463 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
1464 if (PBBI.IsDone || PBBI.BB == &MBB)
1465 continue;
1466 PBBI.IsAnalyzed = false;
1467 PBBI.IsEnqueued = false;
1471 /// Inserts an unconditional branch from \p MBB to \p ToMBB.
1472 static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
1473 const TargetInstrInfo *TII) {
1474 DebugLoc dl; // FIXME: this is nowhere
1475 SmallVector<MachineOperand, 0> NoCond;
1476 TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
1479 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
1480 /// values defined in MI which are also live/used by MI.
1481 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
1482 const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo();
1484 // Before stepping forward past MI, remember which regs were live
1485 // before MI. This is needed to set the Undef flag only when reg is
1486 // dead.
1487 SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI;
1488 LiveBeforeMI.setUniverse(TRI->getNumRegs());
1489 for (unsigned Reg : Redefs)
1490 LiveBeforeMI.insert(Reg);
1492 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers;
1493 Redefs.stepForward(MI, Clobbers);
1495 // Now add the implicit uses for each of the clobbered values.
1496 for (auto Clobber : Clobbers) {
1497 // FIXME: Const cast here is nasty, but better than making StepForward
1498 // take a mutable instruction instead of const.
1499 unsigned Reg = Clobber.first;
1500 MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
1501 MachineInstr *OpMI = Op.getParent();
1502 MachineInstrBuilder MIB(*OpMI->getMF(), OpMI);
1503 if (Op.isRegMask()) {
1504 // First handle regmasks. They clobber any entries in the mask which
1505 // means that we need a def for those registers.
1506 if (LiveBeforeMI.count(Reg))
1507 MIB.addReg(Reg, RegState::Implicit);
1509 // We also need to add an implicit def of this register for the later
1510 // use to read from.
1511 // For the register allocator to have allocated a register clobbered
1512 // by the call which is used later, it must be the case that
1513 // the call doesn't return.
1514 MIB.addReg(Reg, RegState::Implicit | RegState::Define);
1515 continue;
1517 if (LiveBeforeMI.count(Reg))
1518 MIB.addReg(Reg, RegState::Implicit);
1519 else {
1520 bool HasLiveSubReg = false;
1521 for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) {
1522 if (!LiveBeforeMI.count(*S))
1523 continue;
1524 HasLiveSubReg = true;
1525 break;
1527 if (HasLiveSubReg)
1528 MIB.addReg(Reg, RegState::Implicit);
1533 /// If convert a simple (split, no rejoin) sub-CFG.
1534 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
1535 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1536 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1537 BBInfo *CvtBBI = &TrueBBI;
1538 BBInfo *NextBBI = &FalseBBI;
1540 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1541 if (Kind == ICSimpleFalse)
1542 std::swap(CvtBBI, NextBBI);
1544 MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1545 MachineBasicBlock &NextMBB = *NextBBI->BB;
1546 if (CvtBBI->IsDone ||
1547 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1548 // Something has changed. It's no longer safe to predicate this block.
1549 BBI.IsAnalyzed = false;
1550 CvtBBI->IsAnalyzed = false;
1551 return false;
1554 if (CvtMBB.hasAddressTaken())
1555 // Conservatively abort if-conversion if BB's address is taken.
1556 return false;
1558 if (Kind == ICSimpleFalse)
1559 if (TII->reverseBranchCondition(Cond))
1560 llvm_unreachable("Unable to reverse branch condition!");
1562 Redefs.init(*TRI);
1564 if (MRI->tracksLiveness()) {
1565 // Initialize liveins to the first BB. These are potentially redefined by
1566 // predicated instructions.
1567 Redefs.addLiveInsNoPristines(CvtMBB);
1568 Redefs.addLiveInsNoPristines(NextMBB);
1571 // Remove the branches from the entry so we can add the contents of the true
1572 // block to it.
1573 BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1575 if (CvtMBB.pred_size() > 1) {
1576 // Copy instructions in the true block, predicate them, and add them to
1577 // the entry block.
1578 CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
1580 // Keep the CFG updated.
1581 BBI.BB->removeSuccessor(&CvtMBB, true);
1582 } else {
1583 // Predicate the instructions in the true block.
1584 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1586 // Merge converted block into entry block. The BB to Cvt edge is removed
1587 // by MergeBlocks.
1588 MergeBlocks(BBI, *CvtBBI);
1591 bool IterIfcvt = true;
1592 if (!canFallThroughTo(*BBI.BB, NextMBB)) {
1593 InsertUncondBranch(*BBI.BB, NextMBB, TII);
1594 BBI.HasFallThrough = false;
1595 // Now ifcvt'd block will look like this:
1596 // BB:
1597 // ...
1598 // t, f = cmp
1599 // if t op
1600 // b BBf
1602 // We cannot further ifcvt this block because the unconditional branch
1603 // will have to be predicated on the new condition, that will not be
1604 // available if cmp executes.
1605 IterIfcvt = false;
1608 // Update block info. BB can be iteratively if-converted.
1609 if (!IterIfcvt)
1610 BBI.IsDone = true;
1611 InvalidatePreds(*BBI.BB);
1612 CvtBBI->IsDone = true;
1614 // FIXME: Must maintain LiveIns.
1615 return true;
1618 /// If convert a triangle sub-CFG.
1619 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
1620 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1621 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1622 BBInfo *CvtBBI = &TrueBBI;
1623 BBInfo *NextBBI = &FalseBBI;
1624 DebugLoc dl; // FIXME: this is nowhere
1626 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1627 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1628 std::swap(CvtBBI, NextBBI);
1630 MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1631 MachineBasicBlock &NextMBB = *NextBBI->BB;
1632 if (CvtBBI->IsDone ||
1633 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1634 // Something has changed. It's no longer safe to predicate this block.
1635 BBI.IsAnalyzed = false;
1636 CvtBBI->IsAnalyzed = false;
1637 return false;
1640 if (CvtMBB.hasAddressTaken())
1641 // Conservatively abort if-conversion if BB's address is taken.
1642 return false;
1644 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1645 if (TII->reverseBranchCondition(Cond))
1646 llvm_unreachable("Unable to reverse branch condition!");
1648 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
1649 if (reverseBranchCondition(*CvtBBI)) {
1650 // BB has been changed, modify its predecessors (except for this
1651 // one) so they don't get ifcvt'ed based on bad intel.
1652 for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
1653 if (PBB == BBI.BB)
1654 continue;
1655 BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
1656 if (PBBI.IsEnqueued) {
1657 PBBI.IsAnalyzed = false;
1658 PBBI.IsEnqueued = false;
1664 // Initialize liveins to the first BB. These are potentially redefined by
1665 // predicated instructions.
1666 Redefs.init(*TRI);
1667 if (MRI->tracksLiveness()) {
1668 Redefs.addLiveInsNoPristines(CvtMBB);
1669 Redefs.addLiveInsNoPristines(NextMBB);
1672 bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
1673 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
1675 if (HasEarlyExit) {
1676 // Get probabilities before modifying CvtMBB and BBI.BB.
1677 CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
1678 CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
1679 BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
1680 BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
1683 // Remove the branches from the entry so we can add the contents of the true
1684 // block to it.
1685 BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1687 if (CvtMBB.pred_size() > 1) {
1688 // Copy instructions in the true block, predicate them, and add them to
1689 // the entry block.
1690 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
1691 } else {
1692 // Predicate the 'true' block after removing its branch.
1693 CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB);
1694 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1696 // Now merge the entry of the triangle with the true block.
1697 MergeBlocks(BBI, *CvtBBI, false);
1700 // Keep the CFG updated.
1701 BBI.BB->removeSuccessor(&CvtMBB, true);
1703 // If 'true' block has a 'false' successor, add an exit branch to it.
1704 if (HasEarlyExit) {
1705 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
1706 CvtBBI->BrCond.end());
1707 if (TII->reverseBranchCondition(RevCond))
1708 llvm_unreachable("Unable to reverse branch condition!");
1710 // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
1711 // NewNext = New_Prob(BBI.BB, NextMBB) =
1712 // Prob(BBI.BB, NextMBB) +
1713 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
1714 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
1715 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
1716 auto NewTrueBB = getNextBlock(*BBI.BB);
1717 auto NewNext = BBNext + BBCvt * CvtNext;
1718 auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
1719 if (NewTrueBBIter != BBI.BB->succ_end())
1720 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
1722 auto NewFalse = BBCvt * CvtFalse;
1723 TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
1724 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
1727 // Merge in the 'false' block if the 'false' block has no other
1728 // predecessors. Otherwise, add an unconditional branch to 'false'.
1729 bool FalseBBDead = false;
1730 bool IterIfcvt = true;
1731 bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
1732 if (!isFallThrough) {
1733 // Only merge them if the true block does not fallthrough to the false
1734 // block. By not merging them, we make it possible to iteratively
1735 // ifcvt the blocks.
1736 if (!HasEarlyExit &&
1737 NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
1738 !NextMBB.hasAddressTaken()) {
1739 MergeBlocks(BBI, *NextBBI);
1740 FalseBBDead = true;
1741 } else {
1742 InsertUncondBranch(*BBI.BB, NextMBB, TII);
1743 BBI.HasFallThrough = false;
1745 // Mixed predicated and unpredicated code. This cannot be iteratively
1746 // predicated.
1747 IterIfcvt = false;
1750 // Update block info. BB can be iteratively if-converted.
1751 if (!IterIfcvt)
1752 BBI.IsDone = true;
1753 InvalidatePreds(*BBI.BB);
1754 CvtBBI->IsDone = true;
1755 if (FalseBBDead)
1756 NextBBI->IsDone = true;
1758 // FIXME: Must maintain LiveIns.
1759 return true;
1762 /// Common code shared between diamond conversions.
1763 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
1764 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
1765 /// and FalseBBI
1766 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
1767 /// and \p FalseBBI
1768 /// \p RemoveBranch - Remove the common branch of the two blocks before
1769 /// predicating. Only false for unanalyzable fallthrough
1770 /// cases. The caller will replace the branch if necessary.
1771 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
1772 /// unanalyzable fallthrough
1773 bool IfConverter::IfConvertDiamondCommon(
1774 BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
1775 unsigned NumDups1, unsigned NumDups2,
1776 bool TClobbersPred, bool FClobbersPred,
1777 bool RemoveBranch, bool MergeAddEdges) {
1779 if (TrueBBI.IsDone || FalseBBI.IsDone ||
1780 TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) {
1781 // Something has changed. It's no longer safe to predicate these blocks.
1782 BBI.IsAnalyzed = false;
1783 TrueBBI.IsAnalyzed = false;
1784 FalseBBI.IsAnalyzed = false;
1785 return false;
1788 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
1789 // Conservatively abort if-conversion if either BB has its address taken.
1790 return false;
1792 // Put the predicated instructions from the 'true' block before the
1793 // instructions from the 'false' block, unless the true block would clobber
1794 // the predicate, in which case, do the opposite.
1795 BBInfo *BBI1 = &TrueBBI;
1796 BBInfo *BBI2 = &FalseBBI;
1797 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1798 if (TII->reverseBranchCondition(RevCond))
1799 llvm_unreachable("Unable to reverse branch condition!");
1800 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
1801 SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
1803 // Figure out the more profitable ordering.
1804 bool DoSwap = false;
1805 if (TClobbersPred && !FClobbersPred)
1806 DoSwap = true;
1807 else if (!TClobbersPred && !FClobbersPred) {
1808 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
1809 DoSwap = true;
1810 } else if (TClobbersPred && FClobbersPred)
1811 llvm_unreachable("Predicate info cannot be clobbered by both sides.");
1812 if (DoSwap) {
1813 std::swap(BBI1, BBI2);
1814 std::swap(Cond1, Cond2);
1817 // Remove the conditional branch from entry to the blocks.
1818 BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1820 MachineBasicBlock &MBB1 = *BBI1->BB;
1821 MachineBasicBlock &MBB2 = *BBI2->BB;
1823 // Initialize the Redefs:
1824 // - BB2 live-in regs need implicit uses before being redefined by BB1
1825 // instructions.
1826 // - BB1 live-out regs need implicit uses before being redefined by BB2
1827 // instructions. We start with BB1 live-ins so we have the live-out regs
1828 // after tracking the BB1 instructions.
1829 Redefs.init(*TRI);
1830 if (MRI->tracksLiveness()) {
1831 Redefs.addLiveInsNoPristines(MBB1);
1832 Redefs.addLiveInsNoPristines(MBB2);
1835 // Remove the duplicated instructions at the beginnings of both paths.
1836 // Skip dbg_value instructions.
1837 MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr(false);
1838 MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr(false);
1839 BBI1->NonPredSize -= NumDups1;
1840 BBI2->NonPredSize -= NumDups1;
1842 // Skip past the dups on each side separately since there may be
1843 // differing dbg_value entries. NumDups1 can include a "return"
1844 // instruction, if it's not marked as "branch".
1845 for (unsigned i = 0; i < NumDups1; ++DI1) {
1846 if (DI1 == MBB1.end())
1847 break;
1848 if (!DI1->isDebugInstr())
1849 ++i;
1851 while (NumDups1 != 0) {
1852 // Since this instruction is going to be deleted, update call
1853 // site info state if the instruction is call instruction.
1854 if (DI2->shouldUpdateCallSiteInfo())
1855 MBB2.getParent()->eraseCallSiteInfo(&*DI2);
1857 ++DI2;
1858 if (DI2 == MBB2.end())
1859 break;
1860 if (!DI2->isDebugInstr())
1861 --NumDups1;
1864 if (MRI->tracksLiveness()) {
1865 for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
1866 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy;
1867 Redefs.stepForward(MI, Dummy);
1871 BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
1872 MBB2.erase(MBB2.begin(), DI2);
1874 // The branches have been checked to match, so it is safe to remove the
1875 // branch in BB1 and rely on the copy in BB2. The complication is that
1876 // the blocks may end with a return instruction, which may or may not
1877 // be marked as "branch". If it's not, then it could be included in
1878 // "dups1", leaving the blocks potentially empty after moving the common
1879 // duplicates.
1880 #ifndef NDEBUG
1881 // Unanalyzable branches must match exactly. Check that now.
1882 if (!BBI1->IsBrAnalyzable)
1883 verifySameBranchInstructions(&MBB1, &MBB2);
1884 #endif
1885 // Remove duplicated instructions from the tail of MBB1: any branch
1886 // instructions, and the common instructions counted by NumDups2.
1887 DI1 = MBB1.end();
1888 while (DI1 != MBB1.begin()) {
1889 MachineBasicBlock::iterator Prev = std::prev(DI1);
1890 if (!Prev->isBranch() && !Prev->isDebugInstr())
1891 break;
1892 DI1 = Prev;
1894 for (unsigned i = 0; i != NumDups2; ) {
1895 // NumDups2 only counted non-dbg_value instructions, so this won't
1896 // run off the head of the list.
1897 assert(DI1 != MBB1.begin());
1899 --DI1;
1901 // Since this instruction is going to be deleted, update call
1902 // site info state if the instruction is call instruction.
1903 if (DI1->shouldUpdateCallSiteInfo())
1904 MBB1.getParent()->eraseCallSiteInfo(&*DI1);
1906 // skip dbg_value instructions
1907 if (!DI1->isDebugInstr())
1908 ++i;
1910 MBB1.erase(DI1, MBB1.end());
1912 DI2 = BBI2->BB->end();
1913 // The branches have been checked to match. Skip over the branch in the false
1914 // block so that we don't try to predicate it.
1915 if (RemoveBranch)
1916 BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB);
1917 else {
1918 // Make DI2 point to the end of the range where the common "tail"
1919 // instructions could be found.
1920 while (DI2 != MBB2.begin()) {
1921 MachineBasicBlock::iterator Prev = std::prev(DI2);
1922 if (!Prev->isBranch() && !Prev->isDebugInstr())
1923 break;
1924 DI2 = Prev;
1927 while (NumDups2 != 0) {
1928 // NumDups2 only counted non-dbg_value instructions, so this won't
1929 // run off the head of the list.
1930 assert(DI2 != MBB2.begin());
1931 --DI2;
1932 // skip dbg_value instructions
1933 if (!DI2->isDebugInstr())
1934 --NumDups2;
1937 // Remember which registers would later be defined by the false block.
1938 // This allows us not to predicate instructions in the true block that would
1939 // later be re-defined. That is, rather than
1940 // subeq r0, r1, #1
1941 // addne r0, r1, #1
1942 // generate:
1943 // sub r0, r1, #1
1944 // addne r0, r1, #1
1945 SmallSet<MCPhysReg, 4> RedefsByFalse;
1946 SmallSet<MCPhysReg, 4> ExtUses;
1947 if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
1948 for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
1949 if (FI.isDebugInstr())
1950 continue;
1951 SmallVector<MCPhysReg, 4> Defs;
1952 for (const MachineOperand &MO : FI.operands()) {
1953 if (!MO.isReg())
1954 continue;
1955 Register Reg = MO.getReg();
1956 if (!Reg)
1957 continue;
1958 if (MO.isDef()) {
1959 Defs.push_back(Reg);
1960 } else if (!RedefsByFalse.count(Reg)) {
1961 // These are defined before ctrl flow reach the 'false' instructions.
1962 // They cannot be modified by the 'true' instructions.
1963 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1964 SubRegs.isValid(); ++SubRegs)
1965 ExtUses.insert(*SubRegs);
1969 for (MCPhysReg Reg : Defs) {
1970 if (!ExtUses.count(Reg)) {
1971 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1972 SubRegs.isValid(); ++SubRegs)
1973 RedefsByFalse.insert(*SubRegs);
1979 // Predicate the 'true' block.
1980 PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);
1982 // After predicating BBI1, if there is a predicated terminator in BBI1 and
1983 // a non-predicated in BBI2, then we don't want to predicate the one from
1984 // BBI2. The reason is that if we merged these blocks, we would end up with
1985 // two predicated terminators in the same block.
1986 // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
1987 // predicate them either. They were checked to be identical, and so the
1988 // same branch would happen regardless of which path was taken.
1989 if (!MBB2.empty() && (DI2 == MBB2.end())) {
1990 MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
1991 MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
1992 bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T);
1993 bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T);
1994 if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable))
1995 --DI2;
1998 // Predicate the 'false' block.
1999 PredicateBlock(*BBI2, DI2, *Cond2);
2001 // Merge the true block into the entry of the diamond.
2002 MergeBlocks(BBI, *BBI1, MergeAddEdges);
2003 MergeBlocks(BBI, *BBI2, MergeAddEdges);
2004 return true;
2007 /// If convert an almost-diamond sub-CFG where the true
2008 /// and false blocks share a common tail.
2009 bool IfConverter::IfConvertForkedDiamond(
2010 BBInfo &BBI, IfcvtKind Kind,
2011 unsigned NumDups1, unsigned NumDups2,
2012 bool TClobbersPred, bool FClobbersPred) {
2013 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
2014 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
2016 // Save the debug location for later.
2017 DebugLoc dl;
2018 MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator();
2019 if (TIE != TrueBBI.BB->end())
2020 dl = TIE->getDebugLoc();
2021 // Removing branches from both blocks is safe, because we have already
2022 // determined that both blocks have the same branch instructions. The branch
2023 // will be added back at the end, unpredicated.
2024 if (!IfConvertDiamondCommon(
2025 BBI, TrueBBI, FalseBBI,
2026 NumDups1, NumDups2,
2027 TClobbersPred, FClobbersPred,
2028 /* RemoveBranch */ true, /* MergeAddEdges */ true))
2029 return false;
2031 // Add back the branch.
2032 // Debug location saved above when removing the branch from BBI2
2033 TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB,
2034 TrueBBI.BrCond, dl);
2036 // Update block info.
2037 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
2038 InvalidatePreds(*BBI.BB);
2040 // FIXME: Must maintain LiveIns.
2041 return true;
2044 /// If convert a diamond sub-CFG.
2045 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
2046 unsigned NumDups1, unsigned NumDups2,
2047 bool TClobbersPred, bool FClobbersPred) {
2048 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
2049 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
2050 MachineBasicBlock *TailBB = TrueBBI.TrueBB;
2052 // True block must fall through or end with an unanalyzable terminator.
2053 if (!TailBB) {
2054 if (blockAlwaysFallThrough(TrueBBI))
2055 TailBB = FalseBBI.TrueBB;
2056 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
2059 if (!IfConvertDiamondCommon(
2060 BBI, TrueBBI, FalseBBI,
2061 NumDups1, NumDups2,
2062 TClobbersPred, FClobbersPred,
2063 /* RemoveBranch */ TrueBBI.IsBrAnalyzable,
2064 /* MergeAddEdges */ TailBB == nullptr))
2065 return false;
2067 // If the if-converted block falls through or unconditionally branches into
2068 // the tail block, and the tail block does not have other predecessors, then
2069 // fold the tail block in as well. Otherwise, unless it falls through to the
2070 // tail, add a unconditional branch to it.
2071 if (TailBB) {
2072 // We need to remove the edges to the true and false blocks manually since
2073 // we didn't let IfConvertDiamondCommon update the CFG.
2074 BBI.BB->removeSuccessor(TrueBBI.BB);
2075 BBI.BB->removeSuccessor(FalseBBI.BB, true);
2077 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
2078 bool CanMergeTail = !TailBBI.HasFallThrough &&
2079 !TailBBI.BB->hasAddressTaken();
2080 // The if-converted block can still have a predicated terminator
2081 // (e.g. a predicated return). If that is the case, we cannot merge
2082 // it with the tail block.
2083 MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
2084 if (TI != BBI.BB->end() && TII->isPredicated(*TI))
2085 CanMergeTail = false;
2086 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
2087 // check if there are any other predecessors besides those.
2088 unsigned NumPreds = TailBB->pred_size();
2089 if (NumPreds > 1)
2090 CanMergeTail = false;
2091 else if (NumPreds == 1 && CanMergeTail) {
2092 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
2093 if (*PI != TrueBBI.BB && *PI != FalseBBI.BB)
2094 CanMergeTail = false;
2096 if (CanMergeTail) {
2097 MergeBlocks(BBI, TailBBI);
2098 TailBBI.IsDone = true;
2099 } else {
2100 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
2101 InsertUncondBranch(*BBI.BB, *TailBB, TII);
2102 BBI.HasFallThrough = false;
2106 // Update block info.
2107 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
2108 InvalidatePreds(*BBI.BB);
2110 // FIXME: Must maintain LiveIns.
2111 return true;
2114 static bool MaySpeculate(const MachineInstr &MI,
2115 SmallSet<MCPhysReg, 4> &LaterRedefs) {
2116 bool SawStore = true;
2117 if (!MI.isSafeToMove(nullptr, SawStore))
2118 return false;
2120 for (const MachineOperand &MO : MI.operands()) {
2121 if (!MO.isReg())
2122 continue;
2123 Register Reg = MO.getReg();
2124 if (!Reg)
2125 continue;
2126 if (MO.isDef() && !LaterRedefs.count(Reg))
2127 return false;
2130 return true;
2133 /// Predicate instructions from the start of the block to the specified end with
2134 /// the specified condition.
2135 void IfConverter::PredicateBlock(BBInfo &BBI,
2136 MachineBasicBlock::iterator E,
2137 SmallVectorImpl<MachineOperand> &Cond,
2138 SmallSet<MCPhysReg, 4> *LaterRedefs) {
2139 bool AnyUnpred = false;
2140 bool MaySpec = LaterRedefs != nullptr;
2141 for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
2142 if (I.isDebugInstr() || TII->isPredicated(I))
2143 continue;
2144 // It may be possible not to predicate an instruction if it's the 'true'
2145 // side of a diamond and the 'false' side may re-define the instruction's
2146 // defs.
2147 if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
2148 AnyUnpred = true;
2149 continue;
2151 // If any instruction is predicated, then every instruction after it must
2152 // be predicated.
2153 MaySpec = false;
2154 if (!TII->PredicateInstruction(I, Cond)) {
2155 #ifndef NDEBUG
2156 dbgs() << "Unable to predicate " << I << "!\n";
2157 #endif
2158 llvm_unreachable(nullptr);
2161 // If the predicated instruction now redefines a register as the result of
2162 // if-conversion, add an implicit kill.
2163 UpdatePredRedefs(I, Redefs);
2166 BBI.Predicate.append(Cond.begin(), Cond.end());
2168 BBI.IsAnalyzed = false;
2169 BBI.NonPredSize = 0;
2171 ++NumIfConvBBs;
2172 if (AnyUnpred)
2173 ++NumUnpred;
2176 /// Copy and predicate instructions from source BB to the destination block.
2177 /// Skip end of block branches if IgnoreBr is true.
2178 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
2179 SmallVectorImpl<MachineOperand> &Cond,
2180 bool IgnoreBr) {
2181 MachineFunction &MF = *ToBBI.BB->getParent();
2183 MachineBasicBlock &FromMBB = *FromBBI.BB;
2184 for (MachineInstr &I : FromMBB) {
2185 // Do not copy the end of the block branches.
2186 if (IgnoreBr && I.isBranch())
2187 break;
2189 MachineInstr *MI = MF.CloneMachineInstr(&I);
2190 // Make a copy of the call site info.
2191 if (I.isCandidateForCallSiteEntry())
2192 MF.copyCallSiteInfo(&I, MI);
2194 ToBBI.BB->insert(ToBBI.BB->end(), MI);
2195 ToBBI.NonPredSize++;
2196 unsigned ExtraPredCost = TII->getPredicationCost(I);
2197 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
2198 if (NumCycles > 1)
2199 ToBBI.ExtraCost += NumCycles-1;
2200 ToBBI.ExtraCost2 += ExtraPredCost;
2202 if (!TII->isPredicated(I) && !MI->isDebugInstr()) {
2203 if (!TII->PredicateInstruction(*MI, Cond)) {
2204 #ifndef NDEBUG
2205 dbgs() << "Unable to predicate " << I << "!\n";
2206 #endif
2207 llvm_unreachable(nullptr);
2211 // If the predicated instruction now redefines a register as the result of
2212 // if-conversion, add an implicit kill.
2213 UpdatePredRedefs(*MI, Redefs);
2216 if (!IgnoreBr) {
2217 std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
2218 FromMBB.succ_end());
2219 MachineBasicBlock *NBB = getNextBlock(FromMBB);
2220 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2222 for (MachineBasicBlock *Succ : Succs) {
2223 // Fallthrough edge can't be transferred.
2224 if (Succ == FallThrough)
2225 continue;
2226 ToBBI.BB->addSuccessor(Succ);
2230 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2231 ToBBI.Predicate.append(Cond.begin(), Cond.end());
2233 ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2234 ToBBI.IsAnalyzed = false;
2236 ++NumDupBBs;
2239 /// Move all instructions from FromBB to the end of ToBB. This will leave
2240 /// FromBB as an empty block, so remove all of its successor edges and move it
2241 /// to the end of the function. If AddEdges is true, i.e., when FromBBI's
2242 /// branch is being moved, add those successor edges to ToBBI and remove the old
2243 /// edge from ToBBI to FromBBI.
2244 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
2245 MachineBasicBlock &FromMBB = *FromBBI.BB;
2246 assert(!FromMBB.hasAddressTaken() &&
2247 "Removing a BB whose address is taken!");
2249 // In case FromMBB contains terminators (e.g. return instruction),
2250 // first move the non-terminator instructions, then the terminators.
2251 MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
2252 MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
2253 ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);
2255 // If FromBB has non-predicated terminator we should copy it at the end.
2256 if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
2257 ToTI = ToBBI.BB->end();
2258 ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());
2260 // Force normalizing the successors' probabilities of ToBBI.BB to convert all
2261 // unknown probabilities into known ones.
2262 // FIXME: This usage is too tricky and in the future we would like to
2263 // eliminate all unknown probabilities in MBB.
2264 if (ToBBI.IsBrAnalyzable)
2265 ToBBI.BB->normalizeSuccProbs();
2267 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.successors());
2268 MachineBasicBlock *NBB = getNextBlock(FromMBB);
2269 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2270 // The edge probability from ToBBI.BB to FromMBB, which is only needed when
2271 // AddEdges is true and FromMBB is a successor of ToBBI.BB.
2272 auto To2FromProb = BranchProbability::getZero();
2273 if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
2274 // Remove the old edge but remember the edge probability so we can calculate
2275 // the correct weights on the new edges being added further down.
2276 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
2277 ToBBI.BB->removeSuccessor(&FromMBB);
2280 for (MachineBasicBlock *Succ : FromSuccs) {
2281 // Fallthrough edge can't be transferred.
2282 if (Succ == FallThrough) {
2283 FromMBB.removeSuccessor(Succ);
2284 continue;
2287 auto NewProb = BranchProbability::getZero();
2288 if (AddEdges) {
2289 // Calculate the edge probability for the edge from ToBBI.BB to Succ,
2290 // which is a portion of the edge probability from FromMBB to Succ. The
2291 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
2292 // FromBBI is a successor of ToBBI.BB. See comment below for exception).
2293 NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);
2295 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
2296 // only happens when if-converting a diamond CFG and FromMBB is the
2297 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we
2298 // could just use the probabilities on FromMBB's out-edges when adding
2299 // new successors.
2300 if (!To2FromProb.isZero())
2301 NewProb *= To2FromProb;
2304 FromMBB.removeSuccessor(Succ);
2306 if (AddEdges) {
2307 // If the edge from ToBBI.BB to Succ already exists, update the
2308 // probability of this edge by adding NewProb to it. An example is shown
2309 // below, in which A is ToBBI.BB and B is FromMBB. In this case we
2310 // don't have to set C as A's successor as it already is. We only need to
2311 // update the edge probability on A->C. Note that B will not be
2312 // immediately removed from A's successors. It is possible that B->D is
2313 // not removed either if D is a fallthrough of B. Later the edge A->D
2314 // (generated here) and B->D will be combined into one edge. To maintain
2315 // correct edge probability of this combined edge, we need to set the edge
2316 // probability of A->B to zero, which is already done above. The edge
2317 // probability on A->D is calculated by scaling the original probability
2318 // on A->B by the probability of B->D.
2320 // Before ifcvt: After ifcvt (assume B->D is kept):
2322 // A A
2323 // /| /|\
2324 // / B / B|
2325 // | /| | ||
2326 // |/ | | |/
2327 // C D C D
2329 if (ToBBI.BB->isSuccessor(Succ))
2330 ToBBI.BB->setSuccProbability(
2331 find(ToBBI.BB->successors(), Succ),
2332 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
2333 else
2334 ToBBI.BB->addSuccessor(Succ, NewProb);
2338 // Move the now empty FromMBB out of the way to the end of the function so
2339 // it doesn't interfere with fallthrough checks done by canFallThroughTo().
2340 MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin();
2341 if (Last != &FromMBB)
2342 FromMBB.moveAfter(Last);
2344 // Normalize the probabilities of ToBBI.BB's successors with all adjustment
2345 // we've done above.
2346 if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable)
2347 ToBBI.BB->normalizeSuccProbs();
2349 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2350 FromBBI.Predicate.clear();
2352 ToBBI.NonPredSize += FromBBI.NonPredSize;
2353 ToBBI.ExtraCost += FromBBI.ExtraCost;
2354 ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
2355 FromBBI.NonPredSize = 0;
2356 FromBBI.ExtraCost = 0;
2357 FromBBI.ExtraCost2 = 0;
2359 ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2360 ToBBI.HasFallThrough = FromBBI.HasFallThrough;
2361 ToBBI.IsAnalyzed = false;
2362 FromBBI.IsAnalyzed = false;
2365 FunctionPass *
2366 llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) {
2367 return new IfConverter(std::move(Ftor));