1 //===- IfConversion.cpp - Machine code if conversion pass -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the machine instruction level if-conversion pass, which
10 // tries to convert conditional branches into predicated instructions.
12 //===----------------------------------------------------------------------===//
14 #include "BranchFolding.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/MBFIWrapper.h"
35 #include "llvm/CodeGen/TargetInstrInfo.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSchedule.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/MC/MCRegisterInfo.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/BranchProbability.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/raw_ostream.h"
60 #define DEBUG_TYPE "if-converter"
62 // Hidden options for help debugging.
63 static cl::opt
<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden
);
64 static cl::opt
<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden
);
65 static cl::opt
<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden
);
66 static cl::opt
<bool> DisableSimple("disable-ifcvt-simple",
67 cl::init(false), cl::Hidden
);
68 static cl::opt
<bool> DisableSimpleF("disable-ifcvt-simple-false",
69 cl::init(false), cl::Hidden
);
70 static cl::opt
<bool> DisableTriangle("disable-ifcvt-triangle",
71 cl::init(false), cl::Hidden
);
72 static cl::opt
<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
73 cl::init(false), cl::Hidden
);
74 static cl::opt
<bool> DisableTriangleF("disable-ifcvt-triangle-false",
75 cl::init(false), cl::Hidden
);
76 static cl::opt
<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
77 cl::init(false), cl::Hidden
);
78 static cl::opt
<bool> DisableDiamond("disable-ifcvt-diamond",
79 cl::init(false), cl::Hidden
);
80 static cl::opt
<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
81 cl::init(false), cl::Hidden
);
82 static cl::opt
<bool> IfCvtBranchFold("ifcvt-branch-fold",
83 cl::init(true), cl::Hidden
);
85 STATISTIC(NumSimple
, "Number of simple if-conversions performed");
86 STATISTIC(NumSimpleFalse
, "Number of simple (F) if-conversions performed");
87 STATISTIC(NumTriangle
, "Number of triangle if-conversions performed");
88 STATISTIC(NumTriangleRev
, "Number of triangle (R) if-conversions performed");
89 STATISTIC(NumTriangleFalse
,"Number of triangle (F) if-conversions performed");
90 STATISTIC(NumTriangleFRev
, "Number of triangle (F/R) if-conversions performed");
91 STATISTIC(NumDiamonds
, "Number of diamond if-conversions performed");
92 STATISTIC(NumForkedDiamonds
, "Number of forked-diamond if-conversions performed");
93 STATISTIC(NumIfConvBBs
, "Number of if-converted blocks");
94 STATISTIC(NumDupBBs
, "Number of duplicated blocks");
95 STATISTIC(NumUnpred
, "Number of true blocks of diamonds unpredicated");
99 class IfConverter
: public MachineFunctionPass
{
101 ICNotClassfied
, // BB data valid, but not classified.
102 ICSimpleFalse
, // Same as ICSimple, but on the false path.
103 ICSimple
, // BB is entry of an one split, no rejoin sub-CFG.
104 ICTriangleFRev
, // Same as ICTriangleFalse, but false path rev condition.
105 ICTriangleRev
, // Same as ICTriangle, but true path rev condition.
106 ICTriangleFalse
, // Same as ICTriangle, but on the false path.
107 ICTriangle
, // BB is entry of a triangle sub-CFG.
108 ICDiamond
, // BB is entry of a diamond sub-CFG.
109 ICForkedDiamond
// BB is entry of an almost diamond sub-CFG, with a
110 // common tail that can be shared.
113 /// One per MachineBasicBlock, this is used to cache the result
114 /// if-conversion feasibility analysis. This includes results from
115 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
116 /// classification, and common tail block of its successors (if it's a
117 /// diamond shape), its size, whether it's predicable, and whether any
118 /// instruction can clobber the 'would-be' predicate.
120 /// IsDone - True if BB is not to be considered for ifcvt.
121 /// IsBeingAnalyzed - True if BB is currently being analyzed.
122 /// IsAnalyzed - True if BB has been analyzed (info is still valid).
123 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed.
124 /// IsBrAnalyzable - True if analyzeBranch() returns false.
125 /// HasFallThrough - True if BB may fallthrough to the following BB.
126 /// IsUnpredicable - True if BB is known to be unpredicable.
127 /// ClobbersPred - True if BB could modify predicates (e.g. has
129 /// NonPredSize - Number of non-predicated instructions.
130 /// ExtraCost - Extra cost for multi-cycle instructions.
131 /// ExtraCost2 - Some instructions are slower when predicated
132 /// BB - Corresponding MachineBasicBlock.
133 /// TrueBB / FalseBB- See analyzeBranch().
134 /// BrCond - Conditions for end of block conditional branches.
135 /// Predicate - Predicate used in the BB.
138 bool IsBeingAnalyzed
: 1;
141 bool IsBrAnalyzable
: 1;
142 bool IsBrReversible
: 1;
143 bool HasFallThrough
: 1;
144 bool IsUnpredicable
: 1;
145 bool CannotBeCopied
: 1;
146 bool ClobbersPred
: 1;
147 unsigned NonPredSize
= 0;
148 unsigned ExtraCost
= 0;
149 unsigned ExtraCost2
= 0;
150 MachineBasicBlock
*BB
= nullptr;
151 MachineBasicBlock
*TrueBB
= nullptr;
152 MachineBasicBlock
*FalseBB
= nullptr;
153 SmallVector
<MachineOperand
, 4> BrCond
;
154 SmallVector
<MachineOperand
, 4> Predicate
;
156 BBInfo() : IsDone(false), IsBeingAnalyzed(false),
157 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
158 IsBrReversible(false), HasFallThrough(false),
159 IsUnpredicable(false), CannotBeCopied(false),
160 ClobbersPred(false) {}
163 /// Record information about pending if-conversions to attempt:
164 /// BBI - Corresponding BBInfo.
165 /// Kind - Type of block. See IfcvtKind.
166 /// NeedSubsumption - True if the to-be-predicated BB has already been
168 /// NumDups - Number of instructions that would be duplicated due
169 /// to this if-conversion. (For diamonds, the number of
170 /// identical instructions at the beginnings of both
172 /// NumDups2 - For diamonds, the number of identical instructions
173 /// at the ends of both paths.
179 bool NeedSubsumption
: 1;
180 bool TClobbersPred
: 1;
181 bool FClobbersPred
: 1;
183 IfcvtToken(BBInfo
&b
, IfcvtKind k
, bool s
, unsigned d
, unsigned d2
= 0,
184 bool tc
= false, bool fc
= false)
185 : BBI(b
), Kind(k
), NumDups(d
), NumDups2(d2
), NeedSubsumption(s
),
186 TClobbersPred(tc
), FClobbersPred(fc
) {}
189 /// Results of if-conversion feasibility analysis indexed by basic block
191 std::vector
<BBInfo
> BBAnalysis
;
192 TargetSchedModel SchedModel
;
194 const TargetLoweringBase
*TLI
;
195 const TargetInstrInfo
*TII
;
196 const TargetRegisterInfo
*TRI
;
197 const MachineBranchProbabilityInfo
*MBPI
;
198 MachineRegisterInfo
*MRI
;
205 std::function
<bool(const MachineFunction
&)> PredicateFtor
;
210 IfConverter(std::function
<bool(const MachineFunction
&)> Ftor
= nullptr)
211 : MachineFunctionPass(ID
), PredicateFtor(std::move(Ftor
)) {
212 initializeIfConverterPass(*PassRegistry::getPassRegistry());
215 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
216 AU
.addRequired
<MachineBlockFrequencyInfo
>();
217 AU
.addRequired
<MachineBranchProbabilityInfo
>();
218 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
219 MachineFunctionPass::getAnalysisUsage(AU
);
222 bool runOnMachineFunction(MachineFunction
&MF
) override
;
224 MachineFunctionProperties
getRequiredProperties() const override
{
225 return MachineFunctionProperties().set(
226 MachineFunctionProperties::Property::NoVRegs
);
230 bool reverseBranchCondition(BBInfo
&BBI
) const;
231 bool ValidSimple(BBInfo
&TrueBBI
, unsigned &Dups
,
232 BranchProbability Prediction
) const;
233 bool ValidTriangle(BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
234 bool FalseBranch
, unsigned &Dups
,
235 BranchProbability Prediction
) const;
236 bool CountDuplicatedInstructions(
237 MachineBasicBlock::iterator
&TIB
, MachineBasicBlock::iterator
&FIB
,
238 MachineBasicBlock::iterator
&TIE
, MachineBasicBlock::iterator
&FIE
,
239 unsigned &Dups1
, unsigned &Dups2
,
240 MachineBasicBlock
&TBB
, MachineBasicBlock
&FBB
,
241 bool SkipUnconditionalBranches
) const;
242 bool ValidDiamond(BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
243 unsigned &Dups1
, unsigned &Dups2
,
244 BBInfo
&TrueBBICalc
, BBInfo
&FalseBBICalc
) const;
245 bool ValidForkedDiamond(BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
246 unsigned &Dups1
, unsigned &Dups2
,
247 BBInfo
&TrueBBICalc
, BBInfo
&FalseBBICalc
) const;
248 void AnalyzeBranches(BBInfo
&BBI
);
249 void ScanInstructions(BBInfo
&BBI
,
250 MachineBasicBlock::iterator
&Begin
,
251 MachineBasicBlock::iterator
&End
,
252 bool BranchUnpredicable
= false) const;
253 bool RescanInstructions(
254 MachineBasicBlock::iterator
&TIB
, MachineBasicBlock::iterator
&FIB
,
255 MachineBasicBlock::iterator
&TIE
, MachineBasicBlock::iterator
&FIE
,
256 BBInfo
&TrueBBI
, BBInfo
&FalseBBI
) const;
257 void AnalyzeBlock(MachineBasicBlock
&MBB
,
258 std::vector
<std::unique_ptr
<IfcvtToken
>> &Tokens
);
259 bool FeasibilityAnalysis(BBInfo
&BBI
, SmallVectorImpl
<MachineOperand
> &Pred
,
260 bool isTriangle
= false, bool RevBranch
= false,
261 bool hasCommonTail
= false);
262 void AnalyzeBlocks(MachineFunction
&MF
,
263 std::vector
<std::unique_ptr
<IfcvtToken
>> &Tokens
);
264 void InvalidatePreds(MachineBasicBlock
&MBB
);
265 bool IfConvertSimple(BBInfo
&BBI
, IfcvtKind Kind
);
266 bool IfConvertTriangle(BBInfo
&BBI
, IfcvtKind Kind
);
267 bool IfConvertDiamondCommon(BBInfo
&BBI
, BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
268 unsigned NumDups1
, unsigned NumDups2
,
269 bool TClobbersPred
, bool FClobbersPred
,
270 bool RemoveBranch
, bool MergeAddEdges
);
271 bool IfConvertDiamond(BBInfo
&BBI
, IfcvtKind Kind
,
272 unsigned NumDups1
, unsigned NumDups2
,
273 bool TClobbers
, bool FClobbers
);
274 bool IfConvertForkedDiamond(BBInfo
&BBI
, IfcvtKind Kind
,
275 unsigned NumDups1
, unsigned NumDups2
,
276 bool TClobbers
, bool FClobbers
);
277 void PredicateBlock(BBInfo
&BBI
,
278 MachineBasicBlock::iterator E
,
279 SmallVectorImpl
<MachineOperand
> &Cond
,
280 SmallSet
<MCPhysReg
, 4> *LaterRedefs
= nullptr);
281 void CopyAndPredicateBlock(BBInfo
&ToBBI
, BBInfo
&FromBBI
,
282 SmallVectorImpl
<MachineOperand
> &Cond
,
283 bool IgnoreBr
= false);
284 void MergeBlocks(BBInfo
&ToBBI
, BBInfo
&FromBBI
, bool AddEdges
= true);
286 bool MeetIfcvtSizeLimit(MachineBasicBlock
&BB
,
287 unsigned Cycle
, unsigned Extra
,
288 BranchProbability Prediction
) const {
289 return Cycle
> 0 && TII
->isProfitableToIfCvt(BB
, Cycle
, Extra
,
293 bool MeetIfcvtSizeLimit(BBInfo
&TBBInfo
, BBInfo
&FBBInfo
,
294 MachineBasicBlock
&CommBB
, unsigned Dups
,
295 BranchProbability Prediction
, bool Forked
) const {
296 const MachineFunction
&MF
= *TBBInfo
.BB
->getParent();
297 if (MF
.getFunction().hasMinSize()) {
298 MachineBasicBlock::iterator TIB
= TBBInfo
.BB
->begin();
299 MachineBasicBlock::iterator FIB
= FBBInfo
.BB
->begin();
300 MachineBasicBlock::iterator TIE
= TBBInfo
.BB
->end();
301 MachineBasicBlock::iterator FIE
= FBBInfo
.BB
->end();
303 unsigned Dups1
= 0, Dups2
= 0;
304 if (!CountDuplicatedInstructions(TIB
, FIB
, TIE
, FIE
, Dups1
, Dups2
,
305 *TBBInfo
.BB
, *FBBInfo
.BB
,
306 /*SkipUnconditionalBranches*/ true))
307 llvm_unreachable("should already have been checked by ValidDiamond");
309 unsigned BranchBytes
= 0;
310 unsigned CommonBytes
= 0;
312 // Count common instructions at the start of the true and false blocks.
313 for (auto &I
: make_range(TBBInfo
.BB
->begin(), TIB
)) {
314 LLVM_DEBUG(dbgs() << "Common inst: " << I
);
315 CommonBytes
+= TII
->getInstSizeInBytes(I
);
317 for (auto &I
: make_range(FBBInfo
.BB
->begin(), FIB
)) {
318 LLVM_DEBUG(dbgs() << "Common inst: " << I
);
319 CommonBytes
+= TII
->getInstSizeInBytes(I
);
322 // Count instructions at the end of the true and false blocks, after
323 // the ones we plan to predicate. Analyzable branches will be removed
324 // (unless this is a forked diamond), and all other instructions are
325 // common between the two blocks.
326 for (auto &I
: make_range(TIE
, TBBInfo
.BB
->end())) {
327 if (I
.isBranch() && TBBInfo
.IsBrAnalyzable
&& !Forked
) {
328 LLVM_DEBUG(dbgs() << "Saving branch: " << I
);
329 BranchBytes
+= TII
->predictBranchSizeForIfCvt(I
);
331 LLVM_DEBUG(dbgs() << "Common inst: " << I
);
332 CommonBytes
+= TII
->getInstSizeInBytes(I
);
335 for (auto &I
: make_range(FIE
, FBBInfo
.BB
->end())) {
336 if (I
.isBranch() && FBBInfo
.IsBrAnalyzable
&& !Forked
) {
337 LLVM_DEBUG(dbgs() << "Saving branch: " << I
);
338 BranchBytes
+= TII
->predictBranchSizeForIfCvt(I
);
340 LLVM_DEBUG(dbgs() << "Common inst: " << I
);
341 CommonBytes
+= TII
->getInstSizeInBytes(I
);
344 for (auto &I
: CommBB
.terminators()) {
346 LLVM_DEBUG(dbgs() << "Saving branch: " << I
);
347 BranchBytes
+= TII
->predictBranchSizeForIfCvt(I
);
351 // The common instructions in one branch will be eliminated, halving
355 // Count the instructions which we need to predicate.
356 unsigned NumPredicatedInstructions
= 0;
357 for (auto &I
: make_range(TIB
, TIE
)) {
358 if (!I
.isDebugInstr()) {
359 LLVM_DEBUG(dbgs() << "Predicating: " << I
);
360 NumPredicatedInstructions
++;
363 for (auto &I
: make_range(FIB
, FIE
)) {
364 if (!I
.isDebugInstr()) {
365 LLVM_DEBUG(dbgs() << "Predicating: " << I
);
366 NumPredicatedInstructions
++;
370 // Even though we're optimising for size at the expense of performance,
371 // avoid creating really long predicated blocks.
372 if (NumPredicatedInstructions
> 15)
375 // Some targets (e.g. Thumb2) need to insert extra instructions to
376 // start predicated blocks.
377 unsigned ExtraPredicateBytes
= TII
->extraSizeToPredicateInstructions(
378 MF
, NumPredicatedInstructions
);
380 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(BranchBytes=" << BranchBytes
381 << ", CommonBytes=" << CommonBytes
382 << ", NumPredicatedInstructions="
383 << NumPredicatedInstructions
384 << ", ExtraPredicateBytes=" << ExtraPredicateBytes
386 return (BranchBytes
+ CommonBytes
) > ExtraPredicateBytes
;
388 unsigned TCycle
= TBBInfo
.NonPredSize
+ TBBInfo
.ExtraCost
- Dups
;
389 unsigned FCycle
= FBBInfo
.NonPredSize
+ FBBInfo
.ExtraCost
- Dups
;
390 bool Res
= TCycle
> 0 && FCycle
> 0 &&
391 TII
->isProfitableToIfCvt(
392 *TBBInfo
.BB
, TCycle
, TBBInfo
.ExtraCost2
, *FBBInfo
.BB
,
393 FCycle
, FBBInfo
.ExtraCost2
, Prediction
);
394 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(TCycle=" << TCycle
395 << ", FCycle=" << FCycle
396 << ", TExtra=" << TBBInfo
.ExtraCost2
<< ", FExtra="
397 << FBBInfo
.ExtraCost2
<< ") = " << Res
<< "\n");
402 /// Returns true if Block ends without a terminator.
403 bool blockAlwaysFallThrough(BBInfo
&BBI
) const {
404 return BBI
.IsBrAnalyzable
&& BBI
.TrueBB
== nullptr;
407 /// Used to sort if-conversion candidates.
408 static bool IfcvtTokenCmp(const std::unique_ptr
<IfcvtToken
> &C1
,
409 const std::unique_ptr
<IfcvtToken
> &C2
) {
410 int Incr1
= (C1
->Kind
== ICDiamond
)
411 ? -(int)(C1
->NumDups
+ C1
->NumDups2
) : (int)C1
->NumDups
;
412 int Incr2
= (C2
->Kind
== ICDiamond
)
413 ? -(int)(C2
->NumDups
+ C2
->NumDups2
) : (int)C2
->NumDups
;
416 else if (Incr1
== Incr2
) {
417 // Favors subsumption.
418 if (!C1
->NeedSubsumption
&& C2
->NeedSubsumption
)
420 else if (C1
->NeedSubsumption
== C2
->NeedSubsumption
) {
421 // Favors diamond over triangle, etc.
422 if ((unsigned)C1
->Kind
< (unsigned)C2
->Kind
)
424 else if (C1
->Kind
== C2
->Kind
)
425 return C1
->BBI
.BB
->getNumber() < C2
->BBI
.BB
->getNumber();
432 } // end anonymous namespace
434 char IfConverter::ID
= 0;
436 char &llvm::IfConverterID
= IfConverter::ID
;
438 INITIALIZE_PASS_BEGIN(IfConverter
, DEBUG_TYPE
, "If Converter", false, false)
439 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
440 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
441 INITIALIZE_PASS_END(IfConverter
, DEBUG_TYPE
, "If Converter", false, false)
443 bool IfConverter::runOnMachineFunction(MachineFunction
&MF
) {
444 if (skipFunction(MF
.getFunction()) || (PredicateFtor
&& !PredicateFtor(MF
)))
447 const TargetSubtargetInfo
&ST
= MF
.getSubtarget();
448 TLI
= ST
.getTargetLowering();
449 TII
= ST
.getInstrInfo();
450 TRI
= ST
.getRegisterInfo();
451 MBFIWrapper
MBFI(getAnalysis
<MachineBlockFrequencyInfo
>());
452 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
453 ProfileSummaryInfo
*PSI
=
454 &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
455 MRI
= &MF
.getRegInfo();
456 SchedModel
.init(&ST
);
458 if (!TII
) return false;
460 PreRegAlloc
= MRI
->isSSA();
462 bool BFChange
= false;
464 // Tail merge tend to expose more if-conversion opportunities.
465 BranchFolder
BF(true, false, MBFI
, *MBPI
, PSI
);
466 BFChange
= BF
.OptimizeFunction(MF
, TII
, ST
.getRegisterInfo());
469 LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum
<< ") \'"
470 << MF
.getName() << "\'");
472 if (FnNum
< IfCvtFnStart
|| (IfCvtFnStop
!= -1 && FnNum
> IfCvtFnStop
)) {
473 LLVM_DEBUG(dbgs() << " skipped\n");
476 LLVM_DEBUG(dbgs() << "\n");
479 BBAnalysis
.resize(MF
.getNumBlockIDs());
481 std::vector
<std::unique_ptr
<IfcvtToken
>> Tokens
;
483 unsigned NumIfCvts
= NumSimple
+ NumSimpleFalse
+ NumTriangle
+
484 NumTriangleRev
+ NumTriangleFalse
+ NumTriangleFRev
+ NumDiamonds
;
485 while (IfCvtLimit
== -1 || (int)NumIfCvts
< IfCvtLimit
) {
486 // Do an initial analysis for each basic block and find all the potential
487 // candidates to perform if-conversion.
489 AnalyzeBlocks(MF
, Tokens
);
490 while (!Tokens
.empty()) {
491 std::unique_ptr
<IfcvtToken
> Token
= std::move(Tokens
.back());
493 BBInfo
&BBI
= Token
->BBI
;
494 IfcvtKind Kind
= Token
->Kind
;
495 unsigned NumDups
= Token
->NumDups
;
496 unsigned NumDups2
= Token
->NumDups2
;
498 // If the block has been evicted out of the queue or it has already been
499 // marked dead (due to it being predicated), then skip it.
501 BBI
.IsEnqueued
= false;
505 BBI
.IsEnqueued
= false;
509 default: llvm_unreachable("Unexpected!");
511 case ICSimpleFalse
: {
512 bool isFalse
= Kind
== ICSimpleFalse
;
513 if ((isFalse
&& DisableSimpleF
) || (!isFalse
&& DisableSimple
)) break;
514 LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
515 << (Kind
== ICSimpleFalse
? " false" : "")
516 << "): " << printMBBReference(*BBI
.BB
) << " ("
517 << ((Kind
== ICSimpleFalse
) ? BBI
.FalseBB
->getNumber()
518 : BBI
.TrueBB
->getNumber())
520 RetVal
= IfConvertSimple(BBI
, Kind
);
521 LLVM_DEBUG(dbgs() << (RetVal
? "succeeded!" : "failed!") << "\n");
523 if (isFalse
) ++NumSimpleFalse
;
530 case ICTriangleFalse
:
531 case ICTriangleFRev
: {
532 bool isFalse
= Kind
== ICTriangleFalse
;
533 bool isRev
= (Kind
== ICTriangleRev
|| Kind
== ICTriangleFRev
);
534 if (DisableTriangle
&& !isFalse
&& !isRev
) break;
535 if (DisableTriangleR
&& !isFalse
&& isRev
) break;
536 if (DisableTriangleF
&& isFalse
&& !isRev
) break;
537 if (DisableTriangleFR
&& isFalse
&& isRev
) break;
538 LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
540 LLVM_DEBUG(dbgs() << " false");
542 LLVM_DEBUG(dbgs() << " rev");
543 LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI
.BB
)
544 << " (T:" << BBI
.TrueBB
->getNumber()
545 << ",F:" << BBI
.FalseBB
->getNumber() << ") ");
546 RetVal
= IfConvertTriangle(BBI
, Kind
);
547 LLVM_DEBUG(dbgs() << (RetVal
? "succeeded!" : "failed!") << "\n");
550 if (isRev
) ++NumTriangleFRev
;
551 else ++NumTriangleFalse
;
553 if (isRev
) ++NumTriangleRev
;
560 if (DisableDiamond
) break;
561 LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI
.BB
)
562 << " (T:" << BBI
.TrueBB
->getNumber()
563 << ",F:" << BBI
.FalseBB
->getNumber() << ") ");
564 RetVal
= IfConvertDiamond(BBI
, Kind
, NumDups
, NumDups2
,
565 Token
->TClobbersPred
,
566 Token
->FClobbersPred
);
567 LLVM_DEBUG(dbgs() << (RetVal
? "succeeded!" : "failed!") << "\n");
568 if (RetVal
) ++NumDiamonds
;
570 case ICForkedDiamond
:
571 if (DisableForkedDiamond
) break;
572 LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
573 << printMBBReference(*BBI
.BB
)
574 << " (T:" << BBI
.TrueBB
->getNumber()
575 << ",F:" << BBI
.FalseBB
->getNumber() << ") ");
576 RetVal
= IfConvertForkedDiamond(BBI
, Kind
, NumDups
, NumDups2
,
577 Token
->TClobbersPred
,
578 Token
->FClobbersPred
);
579 LLVM_DEBUG(dbgs() << (RetVal
? "succeeded!" : "failed!") << "\n");
580 if (RetVal
) ++NumForkedDiamonds
;
584 if (RetVal
&& MRI
->tracksLiveness())
585 recomputeLivenessFlags(*BBI
.BB
);
589 NumIfCvts
= NumSimple
+ NumSimpleFalse
+ NumTriangle
+ NumTriangleRev
+
590 NumTriangleFalse
+ NumTriangleFRev
+ NumDiamonds
;
591 if (IfCvtLimit
!= -1 && (int)NumIfCvts
>= IfCvtLimit
)
597 MadeChange
|= Change
;
603 if (MadeChange
&& IfCvtBranchFold
) {
604 BranchFolder
BF(false, false, MBFI
, *MBPI
, PSI
);
605 BF
.OptimizeFunction(MF
, TII
, MF
.getSubtarget().getRegisterInfo());
608 MadeChange
|= BFChange
;
612 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
613 static MachineBasicBlock
*findFalseBlock(MachineBasicBlock
*BB
,
614 MachineBasicBlock
*TrueBB
) {
615 for (MachineBasicBlock
*SuccBB
: BB
->successors()) {
616 if (SuccBB
!= TrueBB
)
622 /// Reverse the condition of the end of the block branch. Swap block's 'true'
623 /// and 'false' successors.
624 bool IfConverter::reverseBranchCondition(BBInfo
&BBI
) const {
625 DebugLoc dl
; // FIXME: this is nowhere
626 if (!TII
->reverseBranchCondition(BBI
.BrCond
)) {
627 TII
->removeBranch(*BBI
.BB
);
628 TII
->insertBranch(*BBI
.BB
, BBI
.FalseBB
, BBI
.TrueBB
, BBI
.BrCond
, dl
);
629 std::swap(BBI
.TrueBB
, BBI
.FalseBB
);
635 /// Returns the next block in the function blocks ordering. If it is the end,
637 static inline MachineBasicBlock
*getNextBlock(MachineBasicBlock
&MBB
) {
638 MachineFunction::iterator I
= MBB
.getIterator();
639 MachineFunction::iterator E
= MBB
.getParent()->end();
645 /// Returns true if the 'true' block (along with its predecessor) forms a valid
646 /// simple shape for ifcvt. It also returns the number of instructions that the
647 /// ifcvt would need to duplicate if performed in Dups.
648 bool IfConverter::ValidSimple(BBInfo
&TrueBBI
, unsigned &Dups
,
649 BranchProbability Prediction
) const {
651 if (TrueBBI
.IsBeingAnalyzed
|| TrueBBI
.IsDone
)
654 if (TrueBBI
.IsBrAnalyzable
)
657 if (TrueBBI
.BB
->pred_size() > 1) {
658 if (TrueBBI
.CannotBeCopied
||
659 !TII
->isProfitableToDupForIfCvt(*TrueBBI
.BB
, TrueBBI
.NonPredSize
,
662 Dups
= TrueBBI
.NonPredSize
;
668 /// Returns true if the 'true' and 'false' blocks (along with their common
669 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
670 /// true, it checks if 'true' block's false branch branches to the 'false' block
671 /// rather than the other way around. It also returns the number of instructions
672 /// that the ifcvt would need to duplicate if performed in 'Dups'.
673 bool IfConverter::ValidTriangle(BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
674 bool FalseBranch
, unsigned &Dups
,
675 BranchProbability Prediction
) const {
677 if (TrueBBI
.BB
== FalseBBI
.BB
)
680 if (TrueBBI
.IsBeingAnalyzed
|| TrueBBI
.IsDone
)
683 if (TrueBBI
.BB
->pred_size() > 1) {
684 if (TrueBBI
.CannotBeCopied
)
687 unsigned Size
= TrueBBI
.NonPredSize
;
688 if (TrueBBI
.IsBrAnalyzable
) {
689 if (TrueBBI
.TrueBB
&& TrueBBI
.BrCond
.empty())
690 // Ends with an unconditional branch. It will be removed.
693 MachineBasicBlock
*FExit
= FalseBranch
694 ? TrueBBI
.TrueBB
: TrueBBI
.FalseBB
;
696 // Require a conditional branch
700 if (!TII
->isProfitableToDupForIfCvt(*TrueBBI
.BB
, Size
, Prediction
))
705 MachineBasicBlock
*TExit
= FalseBranch
? TrueBBI
.FalseBB
: TrueBBI
.TrueBB
;
706 if (!TExit
&& blockAlwaysFallThrough(TrueBBI
)) {
707 MachineFunction::iterator I
= TrueBBI
.BB
->getIterator();
708 if (++I
== TrueBBI
.BB
->getParent()->end())
712 return TExit
&& TExit
== FalseBBI
.BB
;
715 /// Count duplicated instructions and move the iterators to show where they
717 /// @param TIB True Iterator Begin
718 /// @param FIB False Iterator Begin
719 /// These two iterators initially point to the first instruction of the two
720 /// blocks, and finally point to the first non-shared instruction.
721 /// @param TIE True Iterator End
722 /// @param FIE False Iterator End
723 /// These two iterators initially point to End() for the two blocks() and
724 /// finally point to the first shared instruction in the tail.
725 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
727 /// @param Dups1 count of duplicated instructions at the beginning of the 2
729 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
730 /// @param SkipUnconditionalBranches if true, Don't make sure that
731 /// unconditional branches at the end of the blocks are the same. True is
732 /// passed when the blocks are analyzable to allow for fallthrough to be
734 /// @return false if the shared portion prevents if conversion.
735 bool IfConverter::CountDuplicatedInstructions(
736 MachineBasicBlock::iterator
&TIB
,
737 MachineBasicBlock::iterator
&FIB
,
738 MachineBasicBlock::iterator
&TIE
,
739 MachineBasicBlock::iterator
&FIE
,
740 unsigned &Dups1
, unsigned &Dups2
,
741 MachineBasicBlock
&TBB
, MachineBasicBlock
&FBB
,
742 bool SkipUnconditionalBranches
) const {
743 while (TIB
!= TIE
&& FIB
!= FIE
) {
744 // Skip dbg_value instructions. These do not count.
745 TIB
= skipDebugInstructionsForward(TIB
, TIE
, false);
746 FIB
= skipDebugInstructionsForward(FIB
, FIE
, false);
747 if (TIB
== TIE
|| FIB
== FIE
)
749 if (!TIB
->isIdenticalTo(*FIB
))
751 // A pred-clobbering instruction in the shared portion prevents
753 std::vector
<MachineOperand
> PredDefs
;
754 if (TII
->ClobbersPredicate(*TIB
, PredDefs
, false))
756 // If we get all the way to the branch instructions, don't count them.
757 if (!TIB
->isBranch())
763 // Check for already containing all of the block.
764 if (TIB
== TIE
|| FIB
== FIE
)
766 // Now, in preparation for counting duplicate instructions at the ends of the
767 // blocks, switch to reverse_iterators. Note that getReverse() returns an
768 // iterator that points to the same instruction, unlike std::reverse_iterator.
769 // We have to do our own shifting so that we get the same range.
770 MachineBasicBlock::reverse_iterator RTIE
= std::next(TIE
.getReverse());
771 MachineBasicBlock::reverse_iterator RFIE
= std::next(FIE
.getReverse());
772 const MachineBasicBlock::reverse_iterator RTIB
= std::next(TIB
.getReverse());
773 const MachineBasicBlock::reverse_iterator RFIB
= std::next(FIB
.getReverse());
775 if (!TBB
.succ_empty() || !FBB
.succ_empty()) {
776 if (SkipUnconditionalBranches
) {
777 while (RTIE
!= RTIB
&& RTIE
->isUnconditionalBranch())
779 while (RFIE
!= RFIB
&& RFIE
->isUnconditionalBranch())
784 // Count duplicate instructions at the ends of the blocks.
785 while (RTIE
!= RTIB
&& RFIE
!= RFIB
) {
786 // Skip dbg_value instructions. These do not count.
787 // Note that these are reverse iterators going forward.
788 RTIE
= skipDebugInstructionsForward(RTIE
, RTIB
, false);
789 RFIE
= skipDebugInstructionsForward(RFIE
, RFIB
, false);
790 if (RTIE
== RTIB
|| RFIE
== RFIB
)
792 if (!RTIE
->isIdenticalTo(*RFIE
))
794 // We have to verify that any branch instructions are the same, and then we
795 // don't count them toward the # of duplicate instructions.
796 if (!RTIE
->isBranch())
801 TIE
= std::next(RTIE
.getReverse());
802 FIE
= std::next(RFIE
.getReverse());
806 /// RescanInstructions - Run ScanInstructions on a pair of blocks.
807 /// @param TIB - True Iterator Begin, points to first non-shared instruction
808 /// @param FIB - False Iterator Begin, points to first non-shared instruction
809 /// @param TIE - True Iterator End, points past last non-shared instruction
810 /// @param FIE - False Iterator End, points past last non-shared instruction
811 /// @param TrueBBI - BBInfo to update for the true block.
812 /// @param FalseBBI - BBInfo to update for the false block.
813 /// @returns - false if either block cannot be predicated or if both blocks end
814 /// with a predicate-clobbering instruction.
815 bool IfConverter::RescanInstructions(
816 MachineBasicBlock::iterator
&TIB
, MachineBasicBlock::iterator
&FIB
,
817 MachineBasicBlock::iterator
&TIE
, MachineBasicBlock::iterator
&FIE
,
818 BBInfo
&TrueBBI
, BBInfo
&FalseBBI
) const {
819 bool BranchUnpredicable
= true;
820 TrueBBI
.IsUnpredicable
= FalseBBI
.IsUnpredicable
= false;
821 ScanInstructions(TrueBBI
, TIB
, TIE
, BranchUnpredicable
);
822 if (TrueBBI
.IsUnpredicable
)
824 ScanInstructions(FalseBBI
, FIB
, FIE
, BranchUnpredicable
);
825 if (FalseBBI
.IsUnpredicable
)
827 if (TrueBBI
.ClobbersPred
&& FalseBBI
.ClobbersPred
)
833 static void verifySameBranchInstructions(
834 MachineBasicBlock
*MBB1
,
835 MachineBasicBlock
*MBB2
) {
836 const MachineBasicBlock::reverse_iterator B1
= MBB1
->rend();
837 const MachineBasicBlock::reverse_iterator B2
= MBB2
->rend();
838 MachineBasicBlock::reverse_iterator E1
= MBB1
->rbegin();
839 MachineBasicBlock::reverse_iterator E2
= MBB2
->rbegin();
840 while (E1
!= B1
&& E2
!= B2
) {
841 skipDebugInstructionsForward(E1
, B1
, false);
842 skipDebugInstructionsForward(E2
, B2
, false);
843 if (E1
== B1
&& E2
== B2
)
847 assert(!E2
->isBranch() && "Branch mis-match, one block is empty.");
851 assert(!E1
->isBranch() && "Branch mis-match, one block is empty.");
855 if (E1
->isBranch() || E2
->isBranch())
856 assert(E1
->isIdenticalTo(*E2
) &&
857 "Branch mis-match, branch instructions don't match.");
866 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
867 /// with their common predecessor) form a diamond if a common tail block is
869 /// While not strictly a diamond, this pattern would form a diamond if
870 /// tail-merging had merged the shared tails.
876 /// FalseBB TrueBB FalseBB
877 /// Currently only handles analyzable branches.
878 /// Specifically excludes actual diamonds to avoid overlap.
879 bool IfConverter::ValidForkedDiamond(
880 BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
881 unsigned &Dups1
, unsigned &Dups2
,
882 BBInfo
&TrueBBICalc
, BBInfo
&FalseBBICalc
) const {
884 if (TrueBBI
.IsBeingAnalyzed
|| TrueBBI
.IsDone
||
885 FalseBBI
.IsBeingAnalyzed
|| FalseBBI
.IsDone
)
888 if (!TrueBBI
.IsBrAnalyzable
|| !FalseBBI
.IsBrAnalyzable
)
890 // Don't IfConvert blocks that can't be folded into their predecessor.
891 if (TrueBBI
.BB
->pred_size() > 1 || FalseBBI
.BB
->pred_size() > 1)
894 // This function is specifically looking for conditional tails, as
895 // unconditional tails are already handled by the standard diamond case.
896 if (TrueBBI
.BrCond
.size() == 0 ||
897 FalseBBI
.BrCond
.size() == 0)
900 MachineBasicBlock
*TT
= TrueBBI
.TrueBB
;
901 MachineBasicBlock
*TF
= TrueBBI
.FalseBB
;
902 MachineBasicBlock
*FT
= FalseBBI
.TrueBB
;
903 MachineBasicBlock
*FF
= FalseBBI
.FalseBB
;
906 TT
= getNextBlock(*TrueBBI
.BB
);
908 TF
= getNextBlock(*TrueBBI
.BB
);
910 FT
= getNextBlock(*FalseBBI
.BB
);
912 FF
= getNextBlock(*FalseBBI
.BB
);
917 // Check successors. If they don't match, bail.
918 if (!((TT
== FT
&& TF
== FF
) || (TF
== FT
&& TT
== FF
)))
921 bool FalseReversed
= false;
922 if (TF
== FT
&& TT
== FF
) {
923 // If the branches are opposing, but we can't reverse, don't do it.
924 if (!FalseBBI
.IsBrReversible
)
926 FalseReversed
= true;
927 reverseBranchCondition(FalseBBI
);
929 auto UnReverseOnExit
= make_scope_exit([&]() {
931 reverseBranchCondition(FalseBBI
);
934 // Count duplicate instructions at the beginning of the true and false blocks.
935 MachineBasicBlock::iterator TIB
= TrueBBI
.BB
->begin();
936 MachineBasicBlock::iterator FIB
= FalseBBI
.BB
->begin();
937 MachineBasicBlock::iterator TIE
= TrueBBI
.BB
->end();
938 MachineBasicBlock::iterator FIE
= FalseBBI
.BB
->end();
939 if(!CountDuplicatedInstructions(TIB
, FIB
, TIE
, FIE
, Dups1
, Dups2
,
940 *TrueBBI
.BB
, *FalseBBI
.BB
,
941 /* SkipUnconditionalBranches */ true))
944 TrueBBICalc
.BB
= TrueBBI
.BB
;
945 FalseBBICalc
.BB
= FalseBBI
.BB
;
946 TrueBBICalc
.IsBrAnalyzable
= TrueBBI
.IsBrAnalyzable
;
947 FalseBBICalc
.IsBrAnalyzable
= FalseBBI
.IsBrAnalyzable
;
948 if (!RescanInstructions(TIB
, FIB
, TIE
, FIE
, TrueBBICalc
, FalseBBICalc
))
951 // The size is used to decide whether to if-convert, and the shared portions
952 // are subtracted off. Because of the subtraction, we just use the size that
953 // was calculated by the original ScanInstructions, as it is correct.
954 TrueBBICalc
.NonPredSize
= TrueBBI
.NonPredSize
;
955 FalseBBICalc
.NonPredSize
= FalseBBI
.NonPredSize
;
959 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
960 /// with their common predecessor) forms a valid diamond shape for ifcvt.
961 bool IfConverter::ValidDiamond(
962 BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
963 unsigned &Dups1
, unsigned &Dups2
,
964 BBInfo
&TrueBBICalc
, BBInfo
&FalseBBICalc
) const {
966 if (TrueBBI
.IsBeingAnalyzed
|| TrueBBI
.IsDone
||
967 FalseBBI
.IsBeingAnalyzed
|| FalseBBI
.IsDone
)
970 // If the True and False BBs are equal we're dealing with a degenerate case
971 // that we don't treat as a diamond.
972 if (TrueBBI
.BB
== FalseBBI
.BB
)
975 MachineBasicBlock
*TT
= TrueBBI
.TrueBB
;
976 MachineBasicBlock
*FT
= FalseBBI
.TrueBB
;
978 if (!TT
&& blockAlwaysFallThrough(TrueBBI
))
979 TT
= getNextBlock(*TrueBBI
.BB
);
980 if (!FT
&& blockAlwaysFallThrough(FalseBBI
))
981 FT
= getNextBlock(*FalseBBI
.BB
);
984 if (!TT
&& (TrueBBI
.IsBrAnalyzable
|| FalseBBI
.IsBrAnalyzable
))
986 if (TrueBBI
.BB
->pred_size() > 1 || FalseBBI
.BB
->pred_size() > 1)
989 // FIXME: Allow true block to have an early exit?
990 if (TrueBBI
.FalseBB
|| FalseBBI
.FalseBB
)
993 // Count duplicate instructions at the beginning and end of the true and
995 // Skip unconditional branches only if we are considering an analyzable
996 // diamond. Otherwise the branches must be the same.
997 bool SkipUnconditionalBranches
=
998 TrueBBI
.IsBrAnalyzable
&& FalseBBI
.IsBrAnalyzable
;
999 MachineBasicBlock::iterator TIB
= TrueBBI
.BB
->begin();
1000 MachineBasicBlock::iterator FIB
= FalseBBI
.BB
->begin();
1001 MachineBasicBlock::iterator TIE
= TrueBBI
.BB
->end();
1002 MachineBasicBlock::iterator FIE
= FalseBBI
.BB
->end();
1003 if(!CountDuplicatedInstructions(TIB
, FIB
, TIE
, FIE
, Dups1
, Dups2
,
1004 *TrueBBI
.BB
, *FalseBBI
.BB
,
1005 SkipUnconditionalBranches
))
1008 TrueBBICalc
.BB
= TrueBBI
.BB
;
1009 FalseBBICalc
.BB
= FalseBBI
.BB
;
1010 TrueBBICalc
.IsBrAnalyzable
= TrueBBI
.IsBrAnalyzable
;
1011 FalseBBICalc
.IsBrAnalyzable
= FalseBBI
.IsBrAnalyzable
;
1012 if (!RescanInstructions(TIB
, FIB
, TIE
, FIE
, TrueBBICalc
, FalseBBICalc
))
1014 // The size is used to decide whether to if-convert, and the shared portions
1015 // are subtracted off. Because of the subtraction, we just use the size that
1016 // was calculated by the original ScanInstructions, as it is correct.
1017 TrueBBICalc
.NonPredSize
= TrueBBI
.NonPredSize
;
1018 FalseBBICalc
.NonPredSize
= FalseBBI
.NonPredSize
;
1022 /// AnalyzeBranches - Look at the branches at the end of a block to determine if
1023 /// the block is predicable.
1024 void IfConverter::AnalyzeBranches(BBInfo
&BBI
) {
1028 BBI
.TrueBB
= BBI
.FalseBB
= nullptr;
1030 BBI
.IsBrAnalyzable
=
1031 !TII
->analyzeBranch(*BBI
.BB
, BBI
.TrueBB
, BBI
.FalseBB
, BBI
.BrCond
);
1032 if (!BBI
.IsBrAnalyzable
) {
1033 BBI
.TrueBB
= nullptr;
1034 BBI
.FalseBB
= nullptr;
1038 SmallVector
<MachineOperand
, 4> RevCond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1039 BBI
.IsBrReversible
= (RevCond
.size() == 0) ||
1040 !TII
->reverseBranchCondition(RevCond
);
1041 BBI
.HasFallThrough
= BBI
.IsBrAnalyzable
&& BBI
.FalseBB
== nullptr;
1043 if (BBI
.BrCond
.size()) {
1044 // No false branch. This BB must end with a conditional branch and a
1047 BBI
.FalseBB
= findFalseBlock(BBI
.BB
, BBI
.TrueBB
);
1049 // Malformed bcc? True and false blocks are the same?
1050 BBI
.IsUnpredicable
= true;
1055 /// ScanInstructions - Scan all the instructions in the block to determine if
1056 /// the block is predicable. In most cases, that means all the instructions
1057 /// in the block are isPredicable(). Also checks if the block contains any
1058 /// instruction which can clobber a predicate (e.g. condition code register).
1059 /// If so, the block is not predicable unless it's the last instruction.
1060 void IfConverter::ScanInstructions(BBInfo
&BBI
,
1061 MachineBasicBlock::iterator
&Begin
,
1062 MachineBasicBlock::iterator
&End
,
1063 bool BranchUnpredicable
) const {
1064 if (BBI
.IsDone
|| BBI
.IsUnpredicable
)
1067 bool AlreadyPredicated
= !BBI
.Predicate
.empty();
1069 BBI
.NonPredSize
= 0;
1072 BBI
.ClobbersPred
= false;
1073 for (MachineInstr
&MI
: make_range(Begin
, End
)) {
1074 if (MI
.isDebugInstr())
1077 // It's unsafe to duplicate convergent instructions in this context, so set
1078 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the
1079 // following CFG, which is subject to our "simple" transformation.
1081 // BB0 // if (c1) goto BB1; else goto BB2;
1084 // | BB2 // if (c2) goto TBB; else goto FBB;
1093 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
1094 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
1095 // TBB contains a convergent instruction. This is safe iff doing so does
1096 // not add a control-flow dependency to the convergent instruction -- i.e.,
1097 // it's safe iff the set of control flows that leads us to the convergent
1098 // instruction does not get smaller after the transformation.
1100 // Originally we executed TBB if c1 || c2. After the transformation, there
1101 // are two copies of TBB's instructions. We get to the first if c1, and we
1102 // get to the second if !c1 && c2.
1104 // There are clearly fewer ways to satisfy the condition "c1" than
1105 // "c1 || c2". Since we've shrunk the set of control flows which lead to
1106 // our convergent instruction, the transformation is unsafe.
1107 if (MI
.isNotDuplicable() || MI
.isConvergent())
1108 BBI
.CannotBeCopied
= true;
1110 bool isPredicated
= TII
->isPredicated(MI
);
1111 bool isCondBr
= BBI
.IsBrAnalyzable
&& MI
.isConditionalBranch();
1113 if (BranchUnpredicable
&& MI
.isBranch()) {
1114 BBI
.IsUnpredicable
= true;
1118 // A conditional branch is not predicable, but it may be eliminated.
1122 if (!isPredicated
) {
1124 unsigned ExtraPredCost
= TII
->getPredicationCost(MI
);
1125 unsigned NumCycles
= SchedModel
.computeInstrLatency(&MI
, false);
1127 BBI
.ExtraCost
+= NumCycles
-1;
1128 BBI
.ExtraCost2
+= ExtraPredCost
;
1129 } else if (!AlreadyPredicated
) {
1130 // FIXME: This instruction is already predicated before the
1131 // if-conversion pass. It's probably something like a conditional move.
1132 // Mark this block unpredicable for now.
1133 BBI
.IsUnpredicable
= true;
1137 if (BBI
.ClobbersPred
&& !isPredicated
) {
1138 // Predicate modification instruction should end the block (except for
1139 // already predicated instructions and end of block branches).
1140 // Predicate may have been modified, the subsequent (currently)
1141 // unpredicated instructions cannot be correctly predicated.
1142 BBI
.IsUnpredicable
= true;
1146 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
1147 // still potentially predicable.
1148 std::vector
<MachineOperand
> PredDefs
;
1149 if (TII
->ClobbersPredicate(MI
, PredDefs
, true))
1150 BBI
.ClobbersPred
= true;
1152 if (!TII
->isPredicable(MI
)) {
1153 BBI
.IsUnpredicable
= true;
1159 /// Determine if the block is a suitable candidate to be predicated by the
1160 /// specified predicate.
1161 /// @param BBI BBInfo for the block to check
1162 /// @param Pred Predicate array for the branch that leads to BBI
1163 /// @param isTriangle true if the Analysis is for a triangle
1164 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
1166 /// @param hasCommonTail true if BBI shares a tail with a sibling block that
1167 /// contains any instruction that would make the block unpredicable.
1168 bool IfConverter::FeasibilityAnalysis(BBInfo
&BBI
,
1169 SmallVectorImpl
<MachineOperand
> &Pred
,
1170 bool isTriangle
, bool RevBranch
,
1171 bool hasCommonTail
) {
1172 // If the block is dead or unpredicable, then it cannot be predicated.
1173 // Two blocks may share a common unpredicable tail, but this doesn't prevent
1174 // them from being if-converted. The non-shared portion is assumed to have
1176 if (BBI
.IsDone
|| (BBI
.IsUnpredicable
&& !hasCommonTail
))
1179 // If it is already predicated but we couldn't analyze its terminator, the
1180 // latter might fallthrough, but we can't determine where to.
1181 // Conservatively avoid if-converting again.
1182 if (BBI
.Predicate
.size() && !BBI
.IsBrAnalyzable
)
1185 // If it is already predicated, check if the new predicate subsumes
1187 if (BBI
.Predicate
.size() && !TII
->SubsumesPredicate(Pred
, BBI
.Predicate
))
1190 if (!hasCommonTail
&& BBI
.BrCond
.size()) {
1194 // Test predicate subsumption.
1195 SmallVector
<MachineOperand
, 4> RevPred(Pred
.begin(), Pred
.end());
1196 SmallVector
<MachineOperand
, 4> Cond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1198 if (TII
->reverseBranchCondition(Cond
))
1201 if (TII
->reverseBranchCondition(RevPred
) ||
1202 !TII
->SubsumesPredicate(Cond
, RevPred
))
1209 /// Analyze the structure of the sub-CFG starting from the specified block.
1210 /// Record its successors and whether it looks like an if-conversion candidate.
1211 void IfConverter::AnalyzeBlock(
1212 MachineBasicBlock
&MBB
, std::vector
<std::unique_ptr
<IfcvtToken
>> &Tokens
) {
1214 BBState(MachineBasicBlock
&MBB
) : MBB(&MBB
), SuccsAnalyzed(false) {}
1215 MachineBasicBlock
*MBB
;
1217 /// This flag is true if MBB's successors have been analyzed.
1221 // Push MBB to the stack.
1222 SmallVector
<BBState
, 16> BBStack(1, MBB
);
1224 while (!BBStack
.empty()) {
1225 BBState
&State
= BBStack
.back();
1226 MachineBasicBlock
*BB
= State
.MBB
;
1227 BBInfo
&BBI
= BBAnalysis
[BB
->getNumber()];
1229 if (!State
.SuccsAnalyzed
) {
1230 if (BBI
.IsAnalyzed
|| BBI
.IsBeingAnalyzed
) {
1236 BBI
.IsBeingAnalyzed
= true;
1238 AnalyzeBranches(BBI
);
1239 MachineBasicBlock::iterator Begin
= BBI
.BB
->begin();
1240 MachineBasicBlock::iterator End
= BBI
.BB
->end();
1241 ScanInstructions(BBI
, Begin
, End
);
1243 // Unanalyzable or ends with fallthrough or unconditional branch, or if is
1244 // not considered for ifcvt anymore.
1245 if (!BBI
.IsBrAnalyzable
|| BBI
.BrCond
.empty() || BBI
.IsDone
) {
1246 BBI
.IsBeingAnalyzed
= false;
1247 BBI
.IsAnalyzed
= true;
1252 // Do not ifcvt if either path is a back edge to the entry block.
1253 if (BBI
.TrueBB
== BB
|| BBI
.FalseBB
== BB
) {
1254 BBI
.IsBeingAnalyzed
= false;
1255 BBI
.IsAnalyzed
= true;
1260 // Do not ifcvt if true and false fallthrough blocks are the same.
1262 BBI
.IsBeingAnalyzed
= false;
1263 BBI
.IsAnalyzed
= true;
1268 // Push the False and True blocks to the stack.
1269 State
.SuccsAnalyzed
= true;
1270 BBStack
.push_back(*BBI
.FalseBB
);
1271 BBStack
.push_back(*BBI
.TrueBB
);
1275 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
1276 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
1278 if (TrueBBI
.IsDone
&& FalseBBI
.IsDone
) {
1279 BBI
.IsBeingAnalyzed
= false;
1280 BBI
.IsAnalyzed
= true;
1285 SmallVector
<MachineOperand
, 4>
1286 RevCond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1287 bool CanRevCond
= !TII
->reverseBranchCondition(RevCond
);
1291 bool TNeedSub
= !TrueBBI
.Predicate
.empty();
1292 bool FNeedSub
= !FalseBBI
.Predicate
.empty();
1293 bool Enqueued
= false;
1295 BranchProbability Prediction
= MBPI
->getEdgeProbability(BB
, TrueBBI
.BB
);
1298 BBInfo TrueBBICalc
, FalseBBICalc
;
1299 auto feasibleDiamond
= [&](bool Forked
) {
1300 bool MeetsSize
= MeetIfcvtSizeLimit(TrueBBICalc
, FalseBBICalc
, *BB
,
1301 Dups
+ Dups2
, Prediction
, Forked
);
1302 bool TrueFeasible
= FeasibilityAnalysis(TrueBBI
, BBI
.BrCond
,
1303 /* IsTriangle */ false, /* RevCond */ false,
1304 /* hasCommonTail */ true);
1305 bool FalseFeasible
= FeasibilityAnalysis(FalseBBI
, RevCond
,
1306 /* IsTriangle */ false, /* RevCond */ false,
1307 /* hasCommonTail */ true);
1308 return MeetsSize
&& TrueFeasible
&& FalseFeasible
;
1311 if (ValidDiamond(TrueBBI
, FalseBBI
, Dups
, Dups2
,
1312 TrueBBICalc
, FalseBBICalc
)) {
1313 if (feasibleDiamond(false)) {
1321 // Note TailBB can be empty.
1322 Tokens
.push_back(std::make_unique
<IfcvtToken
>(
1323 BBI
, ICDiamond
, TNeedSub
| FNeedSub
, Dups
, Dups2
,
1324 (bool) TrueBBICalc
.ClobbersPred
, (bool) FalseBBICalc
.ClobbersPred
));
1327 } else if (ValidForkedDiamond(TrueBBI
, FalseBBI
, Dups
, Dups2
,
1328 TrueBBICalc
, FalseBBICalc
)) {
1329 if (feasibleDiamond(true)) {
1331 // if TBB and FBB have a common tail that includes their conditional
1332 // branch instructions, then we can If Convert this pattern.
1338 // FalseBB TrueBB FalseBB
1340 Tokens
.push_back(std::make_unique
<IfcvtToken
>(
1341 BBI
, ICForkedDiamond
, TNeedSub
| FNeedSub
, Dups
, Dups2
,
1342 (bool) TrueBBICalc
.ClobbersPred
, (bool) FalseBBICalc
.ClobbersPred
));
1348 if (ValidTriangle(TrueBBI
, FalseBBI
, false, Dups
, Prediction
) &&
1349 MeetIfcvtSizeLimit(*TrueBBI
.BB
, TrueBBI
.NonPredSize
+ TrueBBI
.ExtraCost
,
1350 TrueBBI
.ExtraCost2
, Prediction
) &&
1351 FeasibilityAnalysis(TrueBBI
, BBI
.BrCond
, true)) {
1360 std::make_unique
<IfcvtToken
>(BBI
, ICTriangle
, TNeedSub
, Dups
));
1364 if (ValidTriangle(TrueBBI
, FalseBBI
, true, Dups
, Prediction
) &&
1365 MeetIfcvtSizeLimit(*TrueBBI
.BB
, TrueBBI
.NonPredSize
+ TrueBBI
.ExtraCost
,
1366 TrueBBI
.ExtraCost2
, Prediction
) &&
1367 FeasibilityAnalysis(TrueBBI
, BBI
.BrCond
, true, true)) {
1369 std::make_unique
<IfcvtToken
>(BBI
, ICTriangleRev
, TNeedSub
, Dups
));
1373 if (ValidSimple(TrueBBI
, Dups
, Prediction
) &&
1374 MeetIfcvtSizeLimit(*TrueBBI
.BB
, TrueBBI
.NonPredSize
+ TrueBBI
.ExtraCost
,
1375 TrueBBI
.ExtraCost2
, Prediction
) &&
1376 FeasibilityAnalysis(TrueBBI
, BBI
.BrCond
)) {
1377 // Simple (split, no rejoin):
1385 std::make_unique
<IfcvtToken
>(BBI
, ICSimple
, TNeedSub
, Dups
));
1390 // Try the other path...
1391 if (ValidTriangle(FalseBBI
, TrueBBI
, false, Dups
,
1392 Prediction
.getCompl()) &&
1393 MeetIfcvtSizeLimit(*FalseBBI
.BB
,
1394 FalseBBI
.NonPredSize
+ FalseBBI
.ExtraCost
,
1395 FalseBBI
.ExtraCost2
, Prediction
.getCompl()) &&
1396 FeasibilityAnalysis(FalseBBI
, RevCond
, true)) {
1397 Tokens
.push_back(std::make_unique
<IfcvtToken
>(BBI
, ICTriangleFalse
,
1402 if (ValidTriangle(FalseBBI
, TrueBBI
, true, Dups
,
1403 Prediction
.getCompl()) &&
1404 MeetIfcvtSizeLimit(*FalseBBI
.BB
,
1405 FalseBBI
.NonPredSize
+ FalseBBI
.ExtraCost
,
1406 FalseBBI
.ExtraCost2
, Prediction
.getCompl()) &&
1407 FeasibilityAnalysis(FalseBBI
, RevCond
, true, true)) {
1409 std::make_unique
<IfcvtToken
>(BBI
, ICTriangleFRev
, FNeedSub
, Dups
));
1413 if (ValidSimple(FalseBBI
, Dups
, Prediction
.getCompl()) &&
1414 MeetIfcvtSizeLimit(*FalseBBI
.BB
,
1415 FalseBBI
.NonPredSize
+ FalseBBI
.ExtraCost
,
1416 FalseBBI
.ExtraCost2
, Prediction
.getCompl()) &&
1417 FeasibilityAnalysis(FalseBBI
, RevCond
)) {
1419 std::make_unique
<IfcvtToken
>(BBI
, ICSimpleFalse
, FNeedSub
, Dups
));
1424 BBI
.IsEnqueued
= Enqueued
;
1425 BBI
.IsBeingAnalyzed
= false;
1426 BBI
.IsAnalyzed
= true;
1431 /// Analyze all blocks and find entries for all if-conversion candidates.
1432 void IfConverter::AnalyzeBlocks(
1433 MachineFunction
&MF
, std::vector
<std::unique_ptr
<IfcvtToken
>> &Tokens
) {
1434 for (MachineBasicBlock
&MBB
: MF
)
1435 AnalyzeBlock(MBB
, Tokens
);
1437 // Sort to favor more complex ifcvt scheme.
1438 llvm::stable_sort(Tokens
, IfcvtTokenCmp
);
1441 /// Returns true either if ToMBB is the next block after MBB or that all the
1442 /// intervening blocks are empty (given MBB can fall through to its next block).
1443 static bool canFallThroughTo(MachineBasicBlock
&MBB
, MachineBasicBlock
&ToMBB
) {
1444 MachineFunction::iterator PI
= MBB
.getIterator();
1445 MachineFunction::iterator I
= std::next(PI
);
1446 MachineFunction::iterator TI
= ToMBB
.getIterator();
1447 MachineFunction::iterator E
= MBB
.getParent()->end();
1449 // Check isSuccessor to avoid case where the next block is empty, but
1450 // it's not a successor.
1451 if (I
== E
|| !I
->empty() || !PI
->isSuccessor(&*I
))
1455 // Finally see if the last I is indeed a successor to PI.
1456 return PI
->isSuccessor(&*I
);
1459 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it
1460 /// can be if-converted. If predecessor is already enqueued, dequeue it!
1461 void IfConverter::InvalidatePreds(MachineBasicBlock
&MBB
) {
1462 for (const MachineBasicBlock
*Predecessor
: MBB
.predecessors()) {
1463 BBInfo
&PBBI
= BBAnalysis
[Predecessor
->getNumber()];
1464 if (PBBI
.IsDone
|| PBBI
.BB
== &MBB
)
1466 PBBI
.IsAnalyzed
= false;
1467 PBBI
.IsEnqueued
= false;
1471 /// Inserts an unconditional branch from \p MBB to \p ToMBB.
1472 static void InsertUncondBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
&ToMBB
,
1473 const TargetInstrInfo
*TII
) {
1474 DebugLoc dl
; // FIXME: this is nowhere
1475 SmallVector
<MachineOperand
, 0> NoCond
;
1476 TII
->insertBranch(MBB
, &ToMBB
, nullptr, NoCond
, dl
);
1479 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
1480 /// values defined in MI which are also live/used by MI.
1481 static void UpdatePredRedefs(MachineInstr
&MI
, LivePhysRegs
&Redefs
) {
1482 const TargetRegisterInfo
*TRI
= MI
.getMF()->getSubtarget().getRegisterInfo();
1484 // Before stepping forward past MI, remember which regs were live
1485 // before MI. This is needed to set the Undef flag only when reg is
1487 SparseSet
<MCPhysReg
, identity
<MCPhysReg
>> LiveBeforeMI
;
1488 LiveBeforeMI
.setUniverse(TRI
->getNumRegs());
1489 for (unsigned Reg
: Redefs
)
1490 LiveBeforeMI
.insert(Reg
);
1492 SmallVector
<std::pair
<MCPhysReg
, const MachineOperand
*>, 4> Clobbers
;
1493 Redefs
.stepForward(MI
, Clobbers
);
1495 // Now add the implicit uses for each of the clobbered values.
1496 for (auto Clobber
: Clobbers
) {
1497 // FIXME: Const cast here is nasty, but better than making StepForward
1498 // take a mutable instruction instead of const.
1499 unsigned Reg
= Clobber
.first
;
1500 MachineOperand
&Op
= const_cast<MachineOperand
&>(*Clobber
.second
);
1501 MachineInstr
*OpMI
= Op
.getParent();
1502 MachineInstrBuilder
MIB(*OpMI
->getMF(), OpMI
);
1503 if (Op
.isRegMask()) {
1504 // First handle regmasks. They clobber any entries in the mask which
1505 // means that we need a def for those registers.
1506 if (LiveBeforeMI
.count(Reg
))
1507 MIB
.addReg(Reg
, RegState::Implicit
);
1509 // We also need to add an implicit def of this register for the later
1510 // use to read from.
1511 // For the register allocator to have allocated a register clobbered
1512 // by the call which is used later, it must be the case that
1513 // the call doesn't return.
1514 MIB
.addReg(Reg
, RegState::Implicit
| RegState::Define
);
1517 if (LiveBeforeMI
.count(Reg
))
1518 MIB
.addReg(Reg
, RegState::Implicit
);
1520 bool HasLiveSubReg
= false;
1521 for (MCSubRegIterator
S(Reg
, TRI
); S
.isValid(); ++S
) {
1522 if (!LiveBeforeMI
.count(*S
))
1524 HasLiveSubReg
= true;
1528 MIB
.addReg(Reg
, RegState::Implicit
);
1533 /// If convert a simple (split, no rejoin) sub-CFG.
1534 bool IfConverter::IfConvertSimple(BBInfo
&BBI
, IfcvtKind Kind
) {
1535 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
1536 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
1537 BBInfo
*CvtBBI
= &TrueBBI
;
1538 BBInfo
*NextBBI
= &FalseBBI
;
1540 SmallVector
<MachineOperand
, 4> Cond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1541 if (Kind
== ICSimpleFalse
)
1542 std::swap(CvtBBI
, NextBBI
);
1544 MachineBasicBlock
&CvtMBB
= *CvtBBI
->BB
;
1545 MachineBasicBlock
&NextMBB
= *NextBBI
->BB
;
1546 if (CvtBBI
->IsDone
||
1547 (CvtBBI
->CannotBeCopied
&& CvtMBB
.pred_size() > 1)) {
1548 // Something has changed. It's no longer safe to predicate this block.
1549 BBI
.IsAnalyzed
= false;
1550 CvtBBI
->IsAnalyzed
= false;
1554 if (CvtMBB
.hasAddressTaken())
1555 // Conservatively abort if-conversion if BB's address is taken.
1558 if (Kind
== ICSimpleFalse
)
1559 if (TII
->reverseBranchCondition(Cond
))
1560 llvm_unreachable("Unable to reverse branch condition!");
1564 if (MRI
->tracksLiveness()) {
1565 // Initialize liveins to the first BB. These are potentially redefined by
1566 // predicated instructions.
1567 Redefs
.addLiveInsNoPristines(CvtMBB
);
1568 Redefs
.addLiveInsNoPristines(NextMBB
);
1571 // Remove the branches from the entry so we can add the contents of the true
1573 BBI
.NonPredSize
-= TII
->removeBranch(*BBI
.BB
);
1575 if (CvtMBB
.pred_size() > 1) {
1576 // Copy instructions in the true block, predicate them, and add them to
1578 CopyAndPredicateBlock(BBI
, *CvtBBI
, Cond
);
1580 // Keep the CFG updated.
1581 BBI
.BB
->removeSuccessor(&CvtMBB
, true);
1583 // Predicate the instructions in the true block.
1584 PredicateBlock(*CvtBBI
, CvtMBB
.end(), Cond
);
1586 // Merge converted block into entry block. The BB to Cvt edge is removed
1588 MergeBlocks(BBI
, *CvtBBI
);
1591 bool IterIfcvt
= true;
1592 if (!canFallThroughTo(*BBI
.BB
, NextMBB
)) {
1593 InsertUncondBranch(*BBI
.BB
, NextMBB
, TII
);
1594 BBI
.HasFallThrough
= false;
1595 // Now ifcvt'd block will look like this:
1602 // We cannot further ifcvt this block because the unconditional branch
1603 // will have to be predicated on the new condition, that will not be
1604 // available if cmp executes.
1608 // Update block info. BB can be iteratively if-converted.
1611 InvalidatePreds(*BBI
.BB
);
1612 CvtBBI
->IsDone
= true;
1614 // FIXME: Must maintain LiveIns.
1618 /// If convert a triangle sub-CFG.
1619 bool IfConverter::IfConvertTriangle(BBInfo
&BBI
, IfcvtKind Kind
) {
1620 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
1621 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
1622 BBInfo
*CvtBBI
= &TrueBBI
;
1623 BBInfo
*NextBBI
= &FalseBBI
;
1624 DebugLoc dl
; // FIXME: this is nowhere
1626 SmallVector
<MachineOperand
, 4> Cond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1627 if (Kind
== ICTriangleFalse
|| Kind
== ICTriangleFRev
)
1628 std::swap(CvtBBI
, NextBBI
);
1630 MachineBasicBlock
&CvtMBB
= *CvtBBI
->BB
;
1631 MachineBasicBlock
&NextMBB
= *NextBBI
->BB
;
1632 if (CvtBBI
->IsDone
||
1633 (CvtBBI
->CannotBeCopied
&& CvtMBB
.pred_size() > 1)) {
1634 // Something has changed. It's no longer safe to predicate this block.
1635 BBI
.IsAnalyzed
= false;
1636 CvtBBI
->IsAnalyzed
= false;
1640 if (CvtMBB
.hasAddressTaken())
1641 // Conservatively abort if-conversion if BB's address is taken.
1644 if (Kind
== ICTriangleFalse
|| Kind
== ICTriangleFRev
)
1645 if (TII
->reverseBranchCondition(Cond
))
1646 llvm_unreachable("Unable to reverse branch condition!");
1648 if (Kind
== ICTriangleRev
|| Kind
== ICTriangleFRev
) {
1649 if (reverseBranchCondition(*CvtBBI
)) {
1650 // BB has been changed, modify its predecessors (except for this
1651 // one) so they don't get ifcvt'ed based on bad intel.
1652 for (MachineBasicBlock
*PBB
: CvtMBB
.predecessors()) {
1655 BBInfo
&PBBI
= BBAnalysis
[PBB
->getNumber()];
1656 if (PBBI
.IsEnqueued
) {
1657 PBBI
.IsAnalyzed
= false;
1658 PBBI
.IsEnqueued
= false;
1664 // Initialize liveins to the first BB. These are potentially redefined by
1665 // predicated instructions.
1667 if (MRI
->tracksLiveness()) {
1668 Redefs
.addLiveInsNoPristines(CvtMBB
);
1669 Redefs
.addLiveInsNoPristines(NextMBB
);
1672 bool HasEarlyExit
= CvtBBI
->FalseBB
!= nullptr;
1673 BranchProbability CvtNext
, CvtFalse
, BBNext
, BBCvt
;
1676 // Get probabilities before modifying CvtMBB and BBI.BB.
1677 CvtNext
= MBPI
->getEdgeProbability(&CvtMBB
, &NextMBB
);
1678 CvtFalse
= MBPI
->getEdgeProbability(&CvtMBB
, CvtBBI
->FalseBB
);
1679 BBNext
= MBPI
->getEdgeProbability(BBI
.BB
, &NextMBB
);
1680 BBCvt
= MBPI
->getEdgeProbability(BBI
.BB
, &CvtMBB
);
1683 // Remove the branches from the entry so we can add the contents of the true
1685 BBI
.NonPredSize
-= TII
->removeBranch(*BBI
.BB
);
1687 if (CvtMBB
.pred_size() > 1) {
1688 // Copy instructions in the true block, predicate them, and add them to
1690 CopyAndPredicateBlock(BBI
, *CvtBBI
, Cond
, true);
1692 // Predicate the 'true' block after removing its branch.
1693 CvtBBI
->NonPredSize
-= TII
->removeBranch(CvtMBB
);
1694 PredicateBlock(*CvtBBI
, CvtMBB
.end(), Cond
);
1696 // Now merge the entry of the triangle with the true block.
1697 MergeBlocks(BBI
, *CvtBBI
, false);
1700 // Keep the CFG updated.
1701 BBI
.BB
->removeSuccessor(&CvtMBB
, true);
1703 // If 'true' block has a 'false' successor, add an exit branch to it.
1705 SmallVector
<MachineOperand
, 4> RevCond(CvtBBI
->BrCond
.begin(),
1706 CvtBBI
->BrCond
.end());
1707 if (TII
->reverseBranchCondition(RevCond
))
1708 llvm_unreachable("Unable to reverse branch condition!");
1710 // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
1711 // NewNext = New_Prob(BBI.BB, NextMBB) =
1712 // Prob(BBI.BB, NextMBB) +
1713 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
1714 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
1715 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
1716 auto NewTrueBB
= getNextBlock(*BBI
.BB
);
1717 auto NewNext
= BBNext
+ BBCvt
* CvtNext
;
1718 auto NewTrueBBIter
= find(BBI
.BB
->successors(), NewTrueBB
);
1719 if (NewTrueBBIter
!= BBI
.BB
->succ_end())
1720 BBI
.BB
->setSuccProbability(NewTrueBBIter
, NewNext
);
1722 auto NewFalse
= BBCvt
* CvtFalse
;
1723 TII
->insertBranch(*BBI
.BB
, CvtBBI
->FalseBB
, nullptr, RevCond
, dl
);
1724 BBI
.BB
->addSuccessor(CvtBBI
->FalseBB
, NewFalse
);
1727 // Merge in the 'false' block if the 'false' block has no other
1728 // predecessors. Otherwise, add an unconditional branch to 'false'.
1729 bool FalseBBDead
= false;
1730 bool IterIfcvt
= true;
1731 bool isFallThrough
= canFallThroughTo(*BBI
.BB
, NextMBB
);
1732 if (!isFallThrough
) {
1733 // Only merge them if the true block does not fallthrough to the false
1734 // block. By not merging them, we make it possible to iteratively
1735 // ifcvt the blocks.
1736 if (!HasEarlyExit
&&
1737 NextMBB
.pred_size() == 1 && !NextBBI
->HasFallThrough
&&
1738 !NextMBB
.hasAddressTaken()) {
1739 MergeBlocks(BBI
, *NextBBI
);
1742 InsertUncondBranch(*BBI
.BB
, NextMBB
, TII
);
1743 BBI
.HasFallThrough
= false;
1745 // Mixed predicated and unpredicated code. This cannot be iteratively
1750 // Update block info. BB can be iteratively if-converted.
1753 InvalidatePreds(*BBI
.BB
);
1754 CvtBBI
->IsDone
= true;
1756 NextBBI
->IsDone
= true;
1758 // FIXME: Must maintain LiveIns.
1762 /// Common code shared between diamond conversions.
1763 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
1764 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
1766 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
1768 /// \p RemoveBranch - Remove the common branch of the two blocks before
1769 /// predicating. Only false for unanalyzable fallthrough
1770 /// cases. The caller will replace the branch if necessary.
1771 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
1772 /// unanalyzable fallthrough
1773 bool IfConverter::IfConvertDiamondCommon(
1774 BBInfo
&BBI
, BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
1775 unsigned NumDups1
, unsigned NumDups2
,
1776 bool TClobbersPred
, bool FClobbersPred
,
1777 bool RemoveBranch
, bool MergeAddEdges
) {
1779 if (TrueBBI
.IsDone
|| FalseBBI
.IsDone
||
1780 TrueBBI
.BB
->pred_size() > 1 || FalseBBI
.BB
->pred_size() > 1) {
1781 // Something has changed. It's no longer safe to predicate these blocks.
1782 BBI
.IsAnalyzed
= false;
1783 TrueBBI
.IsAnalyzed
= false;
1784 FalseBBI
.IsAnalyzed
= false;
1788 if (TrueBBI
.BB
->hasAddressTaken() || FalseBBI
.BB
->hasAddressTaken())
1789 // Conservatively abort if-conversion if either BB has its address taken.
1792 // Put the predicated instructions from the 'true' block before the
1793 // instructions from the 'false' block, unless the true block would clobber
1794 // the predicate, in which case, do the opposite.
1795 BBInfo
*BBI1
= &TrueBBI
;
1796 BBInfo
*BBI2
= &FalseBBI
;
1797 SmallVector
<MachineOperand
, 4> RevCond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1798 if (TII
->reverseBranchCondition(RevCond
))
1799 llvm_unreachable("Unable to reverse branch condition!");
1800 SmallVector
<MachineOperand
, 4> *Cond1
= &BBI
.BrCond
;
1801 SmallVector
<MachineOperand
, 4> *Cond2
= &RevCond
;
1803 // Figure out the more profitable ordering.
1804 bool DoSwap
= false;
1805 if (TClobbersPred
&& !FClobbersPred
)
1807 else if (!TClobbersPred
&& !FClobbersPred
) {
1808 if (TrueBBI
.NonPredSize
> FalseBBI
.NonPredSize
)
1810 } else if (TClobbersPred
&& FClobbersPred
)
1811 llvm_unreachable("Predicate info cannot be clobbered by both sides.");
1813 std::swap(BBI1
, BBI2
);
1814 std::swap(Cond1
, Cond2
);
1817 // Remove the conditional branch from entry to the blocks.
1818 BBI
.NonPredSize
-= TII
->removeBranch(*BBI
.BB
);
1820 MachineBasicBlock
&MBB1
= *BBI1
->BB
;
1821 MachineBasicBlock
&MBB2
= *BBI2
->BB
;
1823 // Initialize the Redefs:
1824 // - BB2 live-in regs need implicit uses before being redefined by BB1
1826 // - BB1 live-out regs need implicit uses before being redefined by BB2
1827 // instructions. We start with BB1 live-ins so we have the live-out regs
1828 // after tracking the BB1 instructions.
1830 if (MRI
->tracksLiveness()) {
1831 Redefs
.addLiveInsNoPristines(MBB1
);
1832 Redefs
.addLiveInsNoPristines(MBB2
);
1835 // Remove the duplicated instructions at the beginnings of both paths.
1836 // Skip dbg_value instructions.
1837 MachineBasicBlock::iterator DI1
= MBB1
.getFirstNonDebugInstr(false);
1838 MachineBasicBlock::iterator DI2
= MBB2
.getFirstNonDebugInstr(false);
1839 BBI1
->NonPredSize
-= NumDups1
;
1840 BBI2
->NonPredSize
-= NumDups1
;
1842 // Skip past the dups on each side separately since there may be
1843 // differing dbg_value entries. NumDups1 can include a "return"
1844 // instruction, if it's not marked as "branch".
1845 for (unsigned i
= 0; i
< NumDups1
; ++DI1
) {
1846 if (DI1
== MBB1
.end())
1848 if (!DI1
->isDebugInstr())
1851 while (NumDups1
!= 0) {
1852 // Since this instruction is going to be deleted, update call
1853 // site info state if the instruction is call instruction.
1854 if (DI2
->shouldUpdateCallSiteInfo())
1855 MBB2
.getParent()->eraseCallSiteInfo(&*DI2
);
1858 if (DI2
== MBB2
.end())
1860 if (!DI2
->isDebugInstr())
1864 if (MRI
->tracksLiveness()) {
1865 for (const MachineInstr
&MI
: make_range(MBB1
.begin(), DI1
)) {
1866 SmallVector
<std::pair
<MCPhysReg
, const MachineOperand
*>, 4> Dummy
;
1867 Redefs
.stepForward(MI
, Dummy
);
1871 BBI
.BB
->splice(BBI
.BB
->end(), &MBB1
, MBB1
.begin(), DI1
);
1872 MBB2
.erase(MBB2
.begin(), DI2
);
1874 // The branches have been checked to match, so it is safe to remove the
1875 // branch in BB1 and rely on the copy in BB2. The complication is that
1876 // the blocks may end with a return instruction, which may or may not
1877 // be marked as "branch". If it's not, then it could be included in
1878 // "dups1", leaving the blocks potentially empty after moving the common
1881 // Unanalyzable branches must match exactly. Check that now.
1882 if (!BBI1
->IsBrAnalyzable
)
1883 verifySameBranchInstructions(&MBB1
, &MBB2
);
1885 // Remove duplicated instructions from the tail of MBB1: any branch
1886 // instructions, and the common instructions counted by NumDups2.
1888 while (DI1
!= MBB1
.begin()) {
1889 MachineBasicBlock::iterator Prev
= std::prev(DI1
);
1890 if (!Prev
->isBranch() && !Prev
->isDebugInstr())
1894 for (unsigned i
= 0; i
!= NumDups2
; ) {
1895 // NumDups2 only counted non-dbg_value instructions, so this won't
1896 // run off the head of the list.
1897 assert(DI1
!= MBB1
.begin());
1901 // Since this instruction is going to be deleted, update call
1902 // site info state if the instruction is call instruction.
1903 if (DI1
->shouldUpdateCallSiteInfo())
1904 MBB1
.getParent()->eraseCallSiteInfo(&*DI1
);
1906 // skip dbg_value instructions
1907 if (!DI1
->isDebugInstr())
1910 MBB1
.erase(DI1
, MBB1
.end());
1912 DI2
= BBI2
->BB
->end();
1913 // The branches have been checked to match. Skip over the branch in the false
1914 // block so that we don't try to predicate it.
1916 BBI2
->NonPredSize
-= TII
->removeBranch(*BBI2
->BB
);
1918 // Make DI2 point to the end of the range where the common "tail"
1919 // instructions could be found.
1920 while (DI2
!= MBB2
.begin()) {
1921 MachineBasicBlock::iterator Prev
= std::prev(DI2
);
1922 if (!Prev
->isBranch() && !Prev
->isDebugInstr())
1927 while (NumDups2
!= 0) {
1928 // NumDups2 only counted non-dbg_value instructions, so this won't
1929 // run off the head of the list.
1930 assert(DI2
!= MBB2
.begin());
1932 // skip dbg_value instructions
1933 if (!DI2
->isDebugInstr())
1937 // Remember which registers would later be defined by the false block.
1938 // This allows us not to predicate instructions in the true block that would
1939 // later be re-defined. That is, rather than
1945 SmallSet
<MCPhysReg
, 4> RedefsByFalse
;
1946 SmallSet
<MCPhysReg
, 4> ExtUses
;
1947 if (TII
->isProfitableToUnpredicate(MBB1
, MBB2
)) {
1948 for (const MachineInstr
&FI
: make_range(MBB2
.begin(), DI2
)) {
1949 if (FI
.isDebugInstr())
1951 SmallVector
<MCPhysReg
, 4> Defs
;
1952 for (const MachineOperand
&MO
: FI
.operands()) {
1955 Register Reg
= MO
.getReg();
1959 Defs
.push_back(Reg
);
1960 } else if (!RedefsByFalse
.count(Reg
)) {
1961 // These are defined before ctrl flow reach the 'false' instructions.
1962 // They cannot be modified by the 'true' instructions.
1963 for (MCSubRegIterator
SubRegs(Reg
, TRI
, /*IncludeSelf=*/true);
1964 SubRegs
.isValid(); ++SubRegs
)
1965 ExtUses
.insert(*SubRegs
);
1969 for (MCPhysReg Reg
: Defs
) {
1970 if (!ExtUses
.count(Reg
)) {
1971 for (MCSubRegIterator
SubRegs(Reg
, TRI
, /*IncludeSelf=*/true);
1972 SubRegs
.isValid(); ++SubRegs
)
1973 RedefsByFalse
.insert(*SubRegs
);
1979 // Predicate the 'true' block.
1980 PredicateBlock(*BBI1
, MBB1
.end(), *Cond1
, &RedefsByFalse
);
1982 // After predicating BBI1, if there is a predicated terminator in BBI1 and
1983 // a non-predicated in BBI2, then we don't want to predicate the one from
1984 // BBI2. The reason is that if we merged these blocks, we would end up with
1985 // two predicated terminators in the same block.
1986 // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
1987 // predicate them either. They were checked to be identical, and so the
1988 // same branch would happen regardless of which path was taken.
1989 if (!MBB2
.empty() && (DI2
== MBB2
.end())) {
1990 MachineBasicBlock::iterator BBI1T
= MBB1
.getFirstTerminator();
1991 MachineBasicBlock::iterator BBI2T
= MBB2
.getFirstTerminator();
1992 bool BB1Predicated
= BBI1T
!= MBB1
.end() && TII
->isPredicated(*BBI1T
);
1993 bool BB2NonPredicated
= BBI2T
!= MBB2
.end() && !TII
->isPredicated(*BBI2T
);
1994 if (BB2NonPredicated
&& (BB1Predicated
|| !BBI2
->IsBrAnalyzable
))
1998 // Predicate the 'false' block.
1999 PredicateBlock(*BBI2
, DI2
, *Cond2
);
2001 // Merge the true block into the entry of the diamond.
2002 MergeBlocks(BBI
, *BBI1
, MergeAddEdges
);
2003 MergeBlocks(BBI
, *BBI2
, MergeAddEdges
);
2007 /// If convert an almost-diamond sub-CFG where the true
2008 /// and false blocks share a common tail.
2009 bool IfConverter::IfConvertForkedDiamond(
2010 BBInfo
&BBI
, IfcvtKind Kind
,
2011 unsigned NumDups1
, unsigned NumDups2
,
2012 bool TClobbersPred
, bool FClobbersPred
) {
2013 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
2014 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
2016 // Save the debug location for later.
2018 MachineBasicBlock::iterator TIE
= TrueBBI
.BB
->getFirstTerminator();
2019 if (TIE
!= TrueBBI
.BB
->end())
2020 dl
= TIE
->getDebugLoc();
2021 // Removing branches from both blocks is safe, because we have already
2022 // determined that both blocks have the same branch instructions. The branch
2023 // will be added back at the end, unpredicated.
2024 if (!IfConvertDiamondCommon(
2025 BBI
, TrueBBI
, FalseBBI
,
2027 TClobbersPred
, FClobbersPred
,
2028 /* RemoveBranch */ true, /* MergeAddEdges */ true))
2031 // Add back the branch.
2032 // Debug location saved above when removing the branch from BBI2
2033 TII
->insertBranch(*BBI
.BB
, TrueBBI
.TrueBB
, TrueBBI
.FalseBB
,
2034 TrueBBI
.BrCond
, dl
);
2036 // Update block info.
2037 BBI
.IsDone
= TrueBBI
.IsDone
= FalseBBI
.IsDone
= true;
2038 InvalidatePreds(*BBI
.BB
);
2040 // FIXME: Must maintain LiveIns.
2044 /// If convert a diamond sub-CFG.
2045 bool IfConverter::IfConvertDiamond(BBInfo
&BBI
, IfcvtKind Kind
,
2046 unsigned NumDups1
, unsigned NumDups2
,
2047 bool TClobbersPred
, bool FClobbersPred
) {
2048 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
2049 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
2050 MachineBasicBlock
*TailBB
= TrueBBI
.TrueBB
;
2052 // True block must fall through or end with an unanalyzable terminator.
2054 if (blockAlwaysFallThrough(TrueBBI
))
2055 TailBB
= FalseBBI
.TrueBB
;
2056 assert((TailBB
|| !TrueBBI
.IsBrAnalyzable
) && "Unexpected!");
2059 if (!IfConvertDiamondCommon(
2060 BBI
, TrueBBI
, FalseBBI
,
2062 TClobbersPred
, FClobbersPred
,
2063 /* RemoveBranch */ TrueBBI
.IsBrAnalyzable
,
2064 /* MergeAddEdges */ TailBB
== nullptr))
2067 // If the if-converted block falls through or unconditionally branches into
2068 // the tail block, and the tail block does not have other predecessors, then
2069 // fold the tail block in as well. Otherwise, unless it falls through to the
2070 // tail, add a unconditional branch to it.
2072 // We need to remove the edges to the true and false blocks manually since
2073 // we didn't let IfConvertDiamondCommon update the CFG.
2074 BBI
.BB
->removeSuccessor(TrueBBI
.BB
);
2075 BBI
.BB
->removeSuccessor(FalseBBI
.BB
, true);
2077 BBInfo
&TailBBI
= BBAnalysis
[TailBB
->getNumber()];
2078 bool CanMergeTail
= !TailBBI
.HasFallThrough
&&
2079 !TailBBI
.BB
->hasAddressTaken();
2080 // The if-converted block can still have a predicated terminator
2081 // (e.g. a predicated return). If that is the case, we cannot merge
2082 // it with the tail block.
2083 MachineBasicBlock::const_iterator TI
= BBI
.BB
->getFirstTerminator();
2084 if (TI
!= BBI
.BB
->end() && TII
->isPredicated(*TI
))
2085 CanMergeTail
= false;
2086 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
2087 // check if there are any other predecessors besides those.
2088 unsigned NumPreds
= TailBB
->pred_size();
2090 CanMergeTail
= false;
2091 else if (NumPreds
== 1 && CanMergeTail
) {
2092 MachineBasicBlock::pred_iterator PI
= TailBB
->pred_begin();
2093 if (*PI
!= TrueBBI
.BB
&& *PI
!= FalseBBI
.BB
)
2094 CanMergeTail
= false;
2097 MergeBlocks(BBI
, TailBBI
);
2098 TailBBI
.IsDone
= true;
2100 BBI
.BB
->addSuccessor(TailBB
, BranchProbability::getOne());
2101 InsertUncondBranch(*BBI
.BB
, *TailBB
, TII
);
2102 BBI
.HasFallThrough
= false;
2106 // Update block info.
2107 BBI
.IsDone
= TrueBBI
.IsDone
= FalseBBI
.IsDone
= true;
2108 InvalidatePreds(*BBI
.BB
);
2110 // FIXME: Must maintain LiveIns.
2114 static bool MaySpeculate(const MachineInstr
&MI
,
2115 SmallSet
<MCPhysReg
, 4> &LaterRedefs
) {
2116 bool SawStore
= true;
2117 if (!MI
.isSafeToMove(nullptr, SawStore
))
2120 for (const MachineOperand
&MO
: MI
.operands()) {
2123 Register Reg
= MO
.getReg();
2126 if (MO
.isDef() && !LaterRedefs
.count(Reg
))
2133 /// Predicate instructions from the start of the block to the specified end with
2134 /// the specified condition.
2135 void IfConverter::PredicateBlock(BBInfo
&BBI
,
2136 MachineBasicBlock::iterator E
,
2137 SmallVectorImpl
<MachineOperand
> &Cond
,
2138 SmallSet
<MCPhysReg
, 4> *LaterRedefs
) {
2139 bool AnyUnpred
= false;
2140 bool MaySpec
= LaterRedefs
!= nullptr;
2141 for (MachineInstr
&I
: make_range(BBI
.BB
->begin(), E
)) {
2142 if (I
.isDebugInstr() || TII
->isPredicated(I
))
2144 // It may be possible not to predicate an instruction if it's the 'true'
2145 // side of a diamond and the 'false' side may re-define the instruction's
2147 if (MaySpec
&& MaySpeculate(I
, *LaterRedefs
)) {
2151 // If any instruction is predicated, then every instruction after it must
2154 if (!TII
->PredicateInstruction(I
, Cond
)) {
2156 dbgs() << "Unable to predicate " << I
<< "!\n";
2158 llvm_unreachable(nullptr);
2161 // If the predicated instruction now redefines a register as the result of
2162 // if-conversion, add an implicit kill.
2163 UpdatePredRedefs(I
, Redefs
);
2166 BBI
.Predicate
.append(Cond
.begin(), Cond
.end());
2168 BBI
.IsAnalyzed
= false;
2169 BBI
.NonPredSize
= 0;
2176 /// Copy and predicate instructions from source BB to the destination block.
2177 /// Skip end of block branches if IgnoreBr is true.
2178 void IfConverter::CopyAndPredicateBlock(BBInfo
&ToBBI
, BBInfo
&FromBBI
,
2179 SmallVectorImpl
<MachineOperand
> &Cond
,
2181 MachineFunction
&MF
= *ToBBI
.BB
->getParent();
2183 MachineBasicBlock
&FromMBB
= *FromBBI
.BB
;
2184 for (MachineInstr
&I
: FromMBB
) {
2185 // Do not copy the end of the block branches.
2186 if (IgnoreBr
&& I
.isBranch())
2189 MachineInstr
*MI
= MF
.CloneMachineInstr(&I
);
2190 // Make a copy of the call site info.
2191 if (I
.isCandidateForCallSiteEntry())
2192 MF
.copyCallSiteInfo(&I
, MI
);
2194 ToBBI
.BB
->insert(ToBBI
.BB
->end(), MI
);
2195 ToBBI
.NonPredSize
++;
2196 unsigned ExtraPredCost
= TII
->getPredicationCost(I
);
2197 unsigned NumCycles
= SchedModel
.computeInstrLatency(&I
, false);
2199 ToBBI
.ExtraCost
+= NumCycles
-1;
2200 ToBBI
.ExtraCost2
+= ExtraPredCost
;
2202 if (!TII
->isPredicated(I
) && !MI
->isDebugInstr()) {
2203 if (!TII
->PredicateInstruction(*MI
, Cond
)) {
2205 dbgs() << "Unable to predicate " << I
<< "!\n";
2207 llvm_unreachable(nullptr);
2211 // If the predicated instruction now redefines a register as the result of
2212 // if-conversion, add an implicit kill.
2213 UpdatePredRedefs(*MI
, Redefs
);
2217 std::vector
<MachineBasicBlock
*> Succs(FromMBB
.succ_begin(),
2218 FromMBB
.succ_end());
2219 MachineBasicBlock
*NBB
= getNextBlock(FromMBB
);
2220 MachineBasicBlock
*FallThrough
= FromBBI
.HasFallThrough
? NBB
: nullptr;
2222 for (MachineBasicBlock
*Succ
: Succs
) {
2223 // Fallthrough edge can't be transferred.
2224 if (Succ
== FallThrough
)
2226 ToBBI
.BB
->addSuccessor(Succ
);
2230 ToBBI
.Predicate
.append(FromBBI
.Predicate
.begin(), FromBBI
.Predicate
.end());
2231 ToBBI
.Predicate
.append(Cond
.begin(), Cond
.end());
2233 ToBBI
.ClobbersPred
|= FromBBI
.ClobbersPred
;
2234 ToBBI
.IsAnalyzed
= false;
2239 /// Move all instructions from FromBB to the end of ToBB. This will leave
2240 /// FromBB as an empty block, so remove all of its successor edges and move it
2241 /// to the end of the function. If AddEdges is true, i.e., when FromBBI's
2242 /// branch is being moved, add those successor edges to ToBBI and remove the old
2243 /// edge from ToBBI to FromBBI.
2244 void IfConverter::MergeBlocks(BBInfo
&ToBBI
, BBInfo
&FromBBI
, bool AddEdges
) {
2245 MachineBasicBlock
&FromMBB
= *FromBBI
.BB
;
2246 assert(!FromMBB
.hasAddressTaken() &&
2247 "Removing a BB whose address is taken!");
2249 // In case FromMBB contains terminators (e.g. return instruction),
2250 // first move the non-terminator instructions, then the terminators.
2251 MachineBasicBlock::iterator FromTI
= FromMBB
.getFirstTerminator();
2252 MachineBasicBlock::iterator ToTI
= ToBBI
.BB
->getFirstTerminator();
2253 ToBBI
.BB
->splice(ToTI
, &FromMBB
, FromMBB
.begin(), FromTI
);
2255 // If FromBB has non-predicated terminator we should copy it at the end.
2256 if (FromTI
!= FromMBB
.end() && !TII
->isPredicated(*FromTI
))
2257 ToTI
= ToBBI
.BB
->end();
2258 ToBBI
.BB
->splice(ToTI
, &FromMBB
, FromTI
, FromMBB
.end());
2260 // Force normalizing the successors' probabilities of ToBBI.BB to convert all
2261 // unknown probabilities into known ones.
2262 // FIXME: This usage is too tricky and in the future we would like to
2263 // eliminate all unknown probabilities in MBB.
2264 if (ToBBI
.IsBrAnalyzable
)
2265 ToBBI
.BB
->normalizeSuccProbs();
2267 SmallVector
<MachineBasicBlock
*, 4> FromSuccs(FromMBB
.successors());
2268 MachineBasicBlock
*NBB
= getNextBlock(FromMBB
);
2269 MachineBasicBlock
*FallThrough
= FromBBI
.HasFallThrough
? NBB
: nullptr;
2270 // The edge probability from ToBBI.BB to FromMBB, which is only needed when
2271 // AddEdges is true and FromMBB is a successor of ToBBI.BB.
2272 auto To2FromProb
= BranchProbability::getZero();
2273 if (AddEdges
&& ToBBI
.BB
->isSuccessor(&FromMBB
)) {
2274 // Remove the old edge but remember the edge probability so we can calculate
2275 // the correct weights on the new edges being added further down.
2276 To2FromProb
= MBPI
->getEdgeProbability(ToBBI
.BB
, &FromMBB
);
2277 ToBBI
.BB
->removeSuccessor(&FromMBB
);
2280 for (MachineBasicBlock
*Succ
: FromSuccs
) {
2281 // Fallthrough edge can't be transferred.
2282 if (Succ
== FallThrough
) {
2283 FromMBB
.removeSuccessor(Succ
);
2287 auto NewProb
= BranchProbability::getZero();
2289 // Calculate the edge probability for the edge from ToBBI.BB to Succ,
2290 // which is a portion of the edge probability from FromMBB to Succ. The
2291 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
2292 // FromBBI is a successor of ToBBI.BB. See comment below for exception).
2293 NewProb
= MBPI
->getEdgeProbability(&FromMBB
, Succ
);
2295 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
2296 // only happens when if-converting a diamond CFG and FromMBB is the
2297 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we
2298 // could just use the probabilities on FromMBB's out-edges when adding
2300 if (!To2FromProb
.isZero())
2301 NewProb
*= To2FromProb
;
2304 FromMBB
.removeSuccessor(Succ
);
2307 // If the edge from ToBBI.BB to Succ already exists, update the
2308 // probability of this edge by adding NewProb to it. An example is shown
2309 // below, in which A is ToBBI.BB and B is FromMBB. In this case we
2310 // don't have to set C as A's successor as it already is. We only need to
2311 // update the edge probability on A->C. Note that B will not be
2312 // immediately removed from A's successors. It is possible that B->D is
2313 // not removed either if D is a fallthrough of B. Later the edge A->D
2314 // (generated here) and B->D will be combined into one edge. To maintain
2315 // correct edge probability of this combined edge, we need to set the edge
2316 // probability of A->B to zero, which is already done above. The edge
2317 // probability on A->D is calculated by scaling the original probability
2318 // on A->B by the probability of B->D.
2320 // Before ifcvt: After ifcvt (assume B->D is kept):
2329 if (ToBBI
.BB
->isSuccessor(Succ
))
2330 ToBBI
.BB
->setSuccProbability(
2331 find(ToBBI
.BB
->successors(), Succ
),
2332 MBPI
->getEdgeProbability(ToBBI
.BB
, Succ
) + NewProb
);
2334 ToBBI
.BB
->addSuccessor(Succ
, NewProb
);
2338 // Move the now empty FromMBB out of the way to the end of the function so
2339 // it doesn't interfere with fallthrough checks done by canFallThroughTo().
2340 MachineBasicBlock
*Last
= &*FromMBB
.getParent()->rbegin();
2341 if (Last
!= &FromMBB
)
2342 FromMBB
.moveAfter(Last
);
2344 // Normalize the probabilities of ToBBI.BB's successors with all adjustment
2345 // we've done above.
2346 if (ToBBI
.IsBrAnalyzable
&& FromBBI
.IsBrAnalyzable
)
2347 ToBBI
.BB
->normalizeSuccProbs();
2349 ToBBI
.Predicate
.append(FromBBI
.Predicate
.begin(), FromBBI
.Predicate
.end());
2350 FromBBI
.Predicate
.clear();
2352 ToBBI
.NonPredSize
+= FromBBI
.NonPredSize
;
2353 ToBBI
.ExtraCost
+= FromBBI
.ExtraCost
;
2354 ToBBI
.ExtraCost2
+= FromBBI
.ExtraCost2
;
2355 FromBBI
.NonPredSize
= 0;
2356 FromBBI
.ExtraCost
= 0;
2357 FromBBI
.ExtraCost2
= 0;
2359 ToBBI
.ClobbersPred
|= FromBBI
.ClobbersPred
;
2360 ToBBI
.HasFallThrough
= FromBBI
.HasFallThrough
;
2361 ToBBI
.IsAnalyzed
= false;
2362 FromBBI
.IsAnalyzed
= false;
2366 llvm::createIfConverter(std::function
<bool(const MachineFunction
&)> Ftor
) {
2367 return new IfConverter(std::move(Ftor
));