[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / LiveDebugVariables.cpp
blob54058a547928a2c1033afe379df4c674fb5265ed
1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LiveDebugVariables analysis.
11 // Remove all DBG_VALUE instructions referencing virtual registers and replace
12 // them with a data structure tracking where live user variables are kept - in a
13 // virtual register or in a stack slot.
15 // Allow the data structure to be updated during register allocation when values
16 // are moved between registers and stack slots. Finally emit new DBG_VALUE
17 // instructions after register allocation is complete.
19 //===----------------------------------------------------------------------===//
21 #include "LiveDebugVariables.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/IntervalMap.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/LexicalScopes.h"
32 #include "llvm/CodeGen/LiveInterval.h"
33 #include "llvm/CodeGen/LiveIntervals.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineDominators.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/Passes.h"
42 #include "llvm/CodeGen/SlotIndexes.h"
43 #include "llvm/CodeGen/TargetInstrInfo.h"
44 #include "llvm/CodeGen/TargetOpcodes.h"
45 #include "llvm/CodeGen/TargetPassConfig.h"
46 #include "llvm/CodeGen/TargetRegisterInfo.h"
47 #include "llvm/CodeGen/TargetSubtargetInfo.h"
48 #include "llvm/CodeGen/VirtRegMap.h"
49 #include "llvm/Config/llvm-config.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/InitializePasses.h"
55 #include "llvm/MC/MCRegisterInfo.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Target/TargetMachine.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <iterator>
65 #include <memory>
66 #include <utility>
68 using namespace llvm;
70 #define DEBUG_TYPE "livedebugvars"
72 static cl::opt<bool>
73 EnableLDV("live-debug-variables", cl::init(true),
74 cl::desc("Enable the live debug variables pass"), cl::Hidden);
76 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");
77 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted");
79 char LiveDebugVariables::ID = 0;
81 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
82 "Debug Variable Analysis", false, false)
83 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
84 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
85 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
86 "Debug Variable Analysis", false, false)
88 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
89 AU.addRequired<MachineDominatorTree>();
90 AU.addRequiredTransitive<LiveIntervals>();
91 AU.setPreservesAll();
92 MachineFunctionPass::getAnalysisUsage(AU);
95 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
96 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
99 enum : unsigned { UndefLocNo = ~0U };
101 namespace {
102 /// Describes a debug variable value by location number and expression along
103 /// with some flags about the original usage of the location.
104 class DbgVariableValue {
105 public:
106 DbgVariableValue(ArrayRef<unsigned> NewLocs, bool WasIndirect, bool WasList,
107 const DIExpression &Expr)
108 : WasIndirect(WasIndirect), WasList(WasList), Expression(&Expr) {
109 assert(!(WasIndirect && WasList) &&
110 "DBG_VALUE_LISTs should not be indirect.");
111 SmallVector<unsigned> LocNoVec;
112 for (unsigned LocNo : NewLocs) {
113 auto It = find(LocNoVec, LocNo);
114 if (It == LocNoVec.end())
115 LocNoVec.push_back(LocNo);
116 else {
117 // Loc duplicates an element in LocNos; replace references to Op
118 // with references to the duplicating element.
119 unsigned OpIdx = LocNoVec.size();
120 unsigned DuplicatingIdx = std::distance(LocNoVec.begin(), It);
121 Expression =
122 DIExpression::replaceArg(Expression, OpIdx, DuplicatingIdx);
125 // FIXME: Debug values referencing 64+ unique machine locations are rare and
126 // currently unsupported for performance reasons. If we can verify that
127 // performance is acceptable for such debug values, we can increase the
128 // bit-width of LocNoCount to 14 to enable up to 16384 unique machine
129 // locations. We will also need to verify that this does not cause issues
130 // with LiveDebugVariables' use of IntervalMap.
131 if (LocNoVec.size() < 64) {
132 LocNoCount = LocNoVec.size();
133 if (LocNoCount > 0) {
134 LocNos = std::make_unique<unsigned[]>(LocNoCount);
135 std::copy(LocNoVec.begin(), LocNoVec.end(), loc_nos_begin());
137 } else {
138 LLVM_DEBUG(dbgs() << "Found debug value with 64+ unique machine "
139 "locations, dropping...\n");
140 LocNoCount = 1;
141 // Turn this into an undef debug value list; right now, the simplest form
142 // of this is an expression with one arg, and an undef debug operand.
143 Expression =
144 DIExpression::get(Expr.getContext(), {dwarf::DW_OP_LLVM_arg, 0,
145 dwarf::DW_OP_stack_value});
146 if (auto FragmentInfoOpt = Expr.getFragmentInfo())
147 Expression = *DIExpression::createFragmentExpression(
148 Expression, FragmentInfoOpt->OffsetInBits,
149 FragmentInfoOpt->SizeInBits);
150 LocNos = std::make_unique<unsigned[]>(LocNoCount);
151 LocNos[0] = UndefLocNo;
155 DbgVariableValue() : LocNoCount(0), WasIndirect(0), WasList(0) {}
156 DbgVariableValue(const DbgVariableValue &Other)
157 : LocNoCount(Other.LocNoCount), WasIndirect(Other.getWasIndirect()),
158 WasList(Other.getWasList()), Expression(Other.getExpression()) {
159 if (Other.getLocNoCount()) {
160 LocNos.reset(new unsigned[Other.getLocNoCount()]);
161 std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin());
165 DbgVariableValue &operator=(const DbgVariableValue &Other) {
166 if (this == &Other)
167 return *this;
168 if (Other.getLocNoCount()) {
169 LocNos.reset(new unsigned[Other.getLocNoCount()]);
170 std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin());
171 } else {
172 LocNos.release();
174 LocNoCount = Other.getLocNoCount();
175 WasIndirect = Other.getWasIndirect();
176 WasList = Other.getWasList();
177 Expression = Other.getExpression();
178 return *this;
181 const DIExpression *getExpression() const { return Expression; }
182 uint8_t getLocNoCount() const { return LocNoCount; }
183 bool containsLocNo(unsigned LocNo) const {
184 return is_contained(loc_nos(), LocNo);
186 bool getWasIndirect() const { return WasIndirect; }
187 bool getWasList() const { return WasList; }
188 bool isUndef() const { return LocNoCount == 0 || containsLocNo(UndefLocNo); }
190 DbgVariableValue decrementLocNosAfterPivot(unsigned Pivot) const {
191 SmallVector<unsigned, 4> NewLocNos;
192 for (unsigned LocNo : loc_nos())
193 NewLocNos.push_back(LocNo != UndefLocNo && LocNo > Pivot ? LocNo - 1
194 : LocNo);
195 return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression);
198 DbgVariableValue remapLocNos(ArrayRef<unsigned> LocNoMap) const {
199 SmallVector<unsigned> NewLocNos;
200 for (unsigned LocNo : loc_nos())
201 // Undef values don't exist in locations (and thus not in LocNoMap
202 // either) so skip over them. See getLocationNo().
203 NewLocNos.push_back(LocNo == UndefLocNo ? UndefLocNo : LocNoMap[LocNo]);
204 return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression);
207 DbgVariableValue changeLocNo(unsigned OldLocNo, unsigned NewLocNo) const {
208 SmallVector<unsigned> NewLocNos;
209 NewLocNos.assign(loc_nos_begin(), loc_nos_end());
210 auto OldLocIt = find(NewLocNos, OldLocNo);
211 assert(OldLocIt != NewLocNos.end() && "Old location must be present.");
212 *OldLocIt = NewLocNo;
213 return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression);
216 bool hasLocNoGreaterThan(unsigned LocNo) const {
217 return any_of(loc_nos(),
218 [LocNo](unsigned ThisLocNo) { return ThisLocNo > LocNo; });
221 void printLocNos(llvm::raw_ostream &OS) const {
222 for (const unsigned &Loc : loc_nos())
223 OS << (&Loc == loc_nos_begin() ? " " : ", ") << Loc;
226 friend inline bool operator==(const DbgVariableValue &LHS,
227 const DbgVariableValue &RHS) {
228 if (std::tie(LHS.LocNoCount, LHS.WasIndirect, LHS.WasList,
229 LHS.Expression) !=
230 std::tie(RHS.LocNoCount, RHS.WasIndirect, RHS.WasList, RHS.Expression))
231 return false;
232 return std::equal(LHS.loc_nos_begin(), LHS.loc_nos_end(),
233 RHS.loc_nos_begin());
236 friend inline bool operator!=(const DbgVariableValue &LHS,
237 const DbgVariableValue &RHS) {
238 return !(LHS == RHS);
241 unsigned *loc_nos_begin() { return LocNos.get(); }
242 const unsigned *loc_nos_begin() const { return LocNos.get(); }
243 unsigned *loc_nos_end() { return LocNos.get() + LocNoCount; }
244 const unsigned *loc_nos_end() const { return LocNos.get() + LocNoCount; }
245 ArrayRef<unsigned> loc_nos() const {
246 return ArrayRef<unsigned>(LocNos.get(), LocNoCount);
249 private:
250 // IntervalMap requires the value object to be very small, to the extent
251 // that we do not have enough room for an std::vector. Using a C-style array
252 // (with a unique_ptr wrapper for convenience) allows us to optimize for this
253 // specific case by packing the array size into only 6 bits (it is highly
254 // unlikely that any debug value will need 64+ locations).
255 std::unique_ptr<unsigned[]> LocNos;
256 uint8_t LocNoCount : 6;
257 bool WasIndirect : 1;
258 bool WasList : 1;
259 const DIExpression *Expression = nullptr;
261 } // namespace
263 /// Map of where a user value is live to that value.
264 using LocMap = IntervalMap<SlotIndex, DbgVariableValue, 4>;
266 /// Map of stack slot offsets for spilled locations.
267 /// Non-spilled locations are not added to the map.
268 using SpillOffsetMap = DenseMap<unsigned, unsigned>;
270 /// Cache to save the location where it can be used as the starting
271 /// position as input for calling MachineBasicBlock::SkipPHIsLabelsAndDebug.
272 /// This is to prevent MachineBasicBlock::SkipPHIsLabelsAndDebug from
273 /// repeatedly searching the same set of PHIs/Labels/Debug instructions
274 /// if it is called many times for the same block.
275 using BlockSkipInstsMap =
276 DenseMap<MachineBasicBlock *, MachineBasicBlock::iterator>;
278 namespace {
280 class LDVImpl;
282 /// A user value is a part of a debug info user variable.
284 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
285 /// holds part of a user variable. The part is identified by a byte offset.
287 /// UserValues are grouped into equivalence classes for easier searching. Two
288 /// user values are related if they are held by the same virtual register. The
289 /// equivalence class is the transitive closure of that relation.
290 class UserValue {
291 const DILocalVariable *Variable; ///< The debug info variable we are part of.
292 /// The part of the variable we describe.
293 const Optional<DIExpression::FragmentInfo> Fragment;
294 DebugLoc dl; ///< The debug location for the variable. This is
295 ///< used by dwarf writer to find lexical scope.
296 UserValue *leader; ///< Equivalence class leader.
297 UserValue *next = nullptr; ///< Next value in equivalence class, or null.
299 /// Numbered locations referenced by locmap.
300 SmallVector<MachineOperand, 4> locations;
302 /// Map of slot indices where this value is live.
303 LocMap locInts;
305 /// Set of interval start indexes that have been trimmed to the
306 /// lexical scope.
307 SmallSet<SlotIndex, 2> trimmedDefs;
309 /// Insert a DBG_VALUE into MBB at Idx for DbgValue.
310 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
311 SlotIndex StopIdx, DbgVariableValue DbgValue,
312 ArrayRef<bool> LocSpills,
313 ArrayRef<unsigned> SpillOffsets, LiveIntervals &LIS,
314 const TargetInstrInfo &TII,
315 const TargetRegisterInfo &TRI,
316 BlockSkipInstsMap &BBSkipInstsMap);
318 /// Replace OldLocNo ranges with NewRegs ranges where NewRegs
319 /// is live. Returns true if any changes were made.
320 bool splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs,
321 LiveIntervals &LIS);
323 public:
324 /// Create a new UserValue.
325 UserValue(const DILocalVariable *var,
326 Optional<DIExpression::FragmentInfo> Fragment, DebugLoc L,
327 LocMap::Allocator &alloc)
328 : Variable(var), Fragment(Fragment), dl(std::move(L)), leader(this),
329 locInts(alloc) {}
331 /// Get the leader of this value's equivalence class.
332 UserValue *getLeader() {
333 UserValue *l = leader;
334 while (l != l->leader)
335 l = l->leader;
336 return leader = l;
339 /// Return the next UserValue in the equivalence class.
340 UserValue *getNext() const { return next; }
342 /// Merge equivalence classes.
343 static UserValue *merge(UserValue *L1, UserValue *L2) {
344 L2 = L2->getLeader();
345 if (!L1)
346 return L2;
347 L1 = L1->getLeader();
348 if (L1 == L2)
349 return L1;
350 // Splice L2 before L1's members.
351 UserValue *End = L2;
352 while (End->next) {
353 End->leader = L1;
354 End = End->next;
356 End->leader = L1;
357 End->next = L1->next;
358 L1->next = L2;
359 return L1;
362 /// Return the location number that matches Loc.
364 /// For undef values we always return location number UndefLocNo without
365 /// inserting anything in locations. Since locations is a vector and the
366 /// location number is the position in the vector and UndefLocNo is ~0,
367 /// we would need a very big vector to put the value at the right position.
368 unsigned getLocationNo(const MachineOperand &LocMO) {
369 if (LocMO.isReg()) {
370 if (LocMO.getReg() == 0)
371 return UndefLocNo;
372 // For register locations we dont care about use/def and other flags.
373 for (unsigned i = 0, e = locations.size(); i != e; ++i)
374 if (locations[i].isReg() &&
375 locations[i].getReg() == LocMO.getReg() &&
376 locations[i].getSubReg() == LocMO.getSubReg())
377 return i;
378 } else
379 for (unsigned i = 0, e = locations.size(); i != e; ++i)
380 if (LocMO.isIdenticalTo(locations[i]))
381 return i;
382 locations.push_back(LocMO);
383 // We are storing a MachineOperand outside a MachineInstr.
384 locations.back().clearParent();
385 // Don't store def operands.
386 if (locations.back().isReg()) {
387 if (locations.back().isDef())
388 locations.back().setIsDead(false);
389 locations.back().setIsUse();
391 return locations.size() - 1;
394 /// Remove (recycle) a location number. If \p LocNo still is used by the
395 /// locInts nothing is done.
396 void removeLocationIfUnused(unsigned LocNo) {
397 // Bail out if LocNo still is used.
398 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
399 const DbgVariableValue &DbgValue = I.value();
400 if (DbgValue.containsLocNo(LocNo))
401 return;
403 // Remove the entry in the locations vector, and adjust all references to
404 // location numbers above the removed entry.
405 locations.erase(locations.begin() + LocNo);
406 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
407 const DbgVariableValue &DbgValue = I.value();
408 if (DbgValue.hasLocNoGreaterThan(LocNo))
409 I.setValueUnchecked(DbgValue.decrementLocNosAfterPivot(LocNo));
413 /// Ensure that all virtual register locations are mapped.
414 void mapVirtRegs(LDVImpl *LDV);
416 /// Add a definition point to this user value.
417 void addDef(SlotIndex Idx, ArrayRef<MachineOperand> LocMOs, bool IsIndirect,
418 bool IsList, const DIExpression &Expr) {
419 SmallVector<unsigned> Locs;
420 for (MachineOperand Op : LocMOs)
421 Locs.push_back(getLocationNo(Op));
422 DbgVariableValue DbgValue(Locs, IsIndirect, IsList, Expr);
423 // Add a singular (Idx,Idx) -> value mapping.
424 LocMap::iterator I = locInts.find(Idx);
425 if (!I.valid() || I.start() != Idx)
426 I.insert(Idx, Idx.getNextSlot(), std::move(DbgValue));
427 else
428 // A later DBG_VALUE at the same SlotIndex overrides the old location.
429 I.setValue(std::move(DbgValue));
432 /// Extend the current definition as far as possible down.
434 /// Stop when meeting an existing def or when leaving the live
435 /// range of VNI. End points where VNI is no longer live are added to Kills.
437 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
438 /// data-flow analysis to propagate them beyond basic block boundaries.
440 /// \param Idx Starting point for the definition.
441 /// \param DbgValue value to propagate.
442 /// \param LiveIntervalInfo For each location number key in this map,
443 /// restricts liveness to where the LiveRange has the value equal to the\
444 /// VNInfo.
445 /// \param [out] Kills Append end points of VNI's live range to Kills.
446 /// \param LIS Live intervals analysis.
447 void extendDef(SlotIndex Idx, DbgVariableValue DbgValue,
448 SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>>
449 &LiveIntervalInfo,
450 Optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills,
451 LiveIntervals &LIS);
453 /// The value in LI may be copies to other registers. Determine if
454 /// any of the copies are available at the kill points, and add defs if
455 /// possible.
457 /// \param DbgValue Location number of LI->reg, and DIExpression.
458 /// \param LocIntervals Scan for copies of the value for each location in the
459 /// corresponding LiveInterval->reg.
460 /// \param KilledAt The point where the range of DbgValue could be extended.
461 /// \param [in,out] NewDefs Append (Idx, DbgValue) of inserted defs here.
462 void addDefsFromCopies(
463 DbgVariableValue DbgValue,
464 SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals,
465 SlotIndex KilledAt,
466 SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs,
467 MachineRegisterInfo &MRI, LiveIntervals &LIS);
469 /// Compute the live intervals of all locations after collecting all their
470 /// def points.
471 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
472 LiveIntervals &LIS, LexicalScopes &LS);
474 /// Replace OldReg ranges with NewRegs ranges where NewRegs is
475 /// live. Returns true if any changes were made.
476 bool splitRegister(Register OldReg, ArrayRef<Register> NewRegs,
477 LiveIntervals &LIS);
479 /// Rewrite virtual register locations according to the provided virtual
480 /// register map. Record the stack slot offsets for the locations that
481 /// were spilled.
482 void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
483 const TargetInstrInfo &TII,
484 const TargetRegisterInfo &TRI,
485 SpillOffsetMap &SpillOffsets);
487 /// Recreate DBG_VALUE instruction from data structures.
488 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
489 const TargetInstrInfo &TII,
490 const TargetRegisterInfo &TRI,
491 const SpillOffsetMap &SpillOffsets,
492 BlockSkipInstsMap &BBSkipInstsMap);
494 /// Return DebugLoc of this UserValue.
495 const DebugLoc &getDebugLoc() { return dl; }
497 void print(raw_ostream &, const TargetRegisterInfo *);
500 /// A user label is a part of a debug info user label.
501 class UserLabel {
502 const DILabel *Label; ///< The debug info label we are part of.
503 DebugLoc dl; ///< The debug location for the label. This is
504 ///< used by dwarf writer to find lexical scope.
505 SlotIndex loc; ///< Slot used by the debug label.
507 /// Insert a DBG_LABEL into MBB at Idx.
508 void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
509 LiveIntervals &LIS, const TargetInstrInfo &TII,
510 BlockSkipInstsMap &BBSkipInstsMap);
512 public:
513 /// Create a new UserLabel.
514 UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx)
515 : Label(label), dl(std::move(L)), loc(Idx) {}
517 /// Does this UserLabel match the parameters?
518 bool matches(const DILabel *L, const DILocation *IA,
519 const SlotIndex Index) const {
520 return Label == L && dl->getInlinedAt() == IA && loc == Index;
523 /// Recreate DBG_LABEL instruction from data structures.
524 void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII,
525 BlockSkipInstsMap &BBSkipInstsMap);
527 /// Return DebugLoc of this UserLabel.
528 const DebugLoc &getDebugLoc() { return dl; }
530 void print(raw_ostream &, const TargetRegisterInfo *);
533 /// Implementation of the LiveDebugVariables pass.
534 class LDVImpl {
535 LiveDebugVariables &pass;
536 LocMap::Allocator allocator;
537 MachineFunction *MF = nullptr;
538 LiveIntervals *LIS;
539 const TargetRegisterInfo *TRI;
541 /// Position and VReg of a PHI instruction during register allocation.
542 struct PHIValPos {
543 SlotIndex SI; /// Slot where this PHI occurs.
544 Register Reg; /// VReg this PHI occurs in.
545 unsigned SubReg; /// Qualifiying subregister for Reg.
548 /// Map from debug instruction number to PHI position during allocation.
549 std::map<unsigned, PHIValPos> PHIValToPos;
550 /// Index of, for each VReg, which debug instruction numbers and corresponding
551 /// PHIs are sensitive to splitting. Each VReg may have multiple PHI defs,
552 /// at different positions.
553 DenseMap<Register, std::vector<unsigned>> RegToPHIIdx;
555 /// Record for any debug instructions unlinked from their blocks during
556 /// regalloc. Stores the instr and it's location, so that they can be
557 /// re-inserted after regalloc is over.
558 struct InstrPos {
559 MachineInstr *MI; ///< Debug instruction, unlinked from it's block.
560 SlotIndex Idx; ///< Slot position where MI should be re-inserted.
561 MachineBasicBlock *MBB; ///< Block that MI was in.
564 /// Collection of stored debug instructions, preserved until after regalloc.
565 SmallVector<InstrPos, 32> StashedDebugInstrs;
567 /// Whether emitDebugValues is called.
568 bool EmitDone = false;
570 /// Whether the machine function is modified during the pass.
571 bool ModifiedMF = false;
573 /// All allocated UserValue instances.
574 SmallVector<std::unique_ptr<UserValue>, 8> userValues;
576 /// All allocated UserLabel instances.
577 SmallVector<std::unique_ptr<UserLabel>, 2> userLabels;
579 /// Map virtual register to eq class leader.
580 using VRMap = DenseMap<unsigned, UserValue *>;
581 VRMap virtRegToEqClass;
583 /// Map to find existing UserValue instances.
584 using UVMap = DenseMap<DebugVariable, UserValue *>;
585 UVMap userVarMap;
587 /// Find or create a UserValue.
588 UserValue *getUserValue(const DILocalVariable *Var,
589 Optional<DIExpression::FragmentInfo> Fragment,
590 const DebugLoc &DL);
592 /// Find the EC leader for VirtReg or null.
593 UserValue *lookupVirtReg(Register VirtReg);
595 /// Add DBG_VALUE instruction to our maps.
597 /// \param MI DBG_VALUE instruction
598 /// \param Idx Last valid SLotIndex before instruction.
600 /// \returns True if the DBG_VALUE instruction should be deleted.
601 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);
603 /// Track variable location debug instructions while using the instruction
604 /// referencing implementation. Such debug instructions do not need to be
605 /// updated during regalloc because they identify instructions rather than
606 /// register locations. However, they needs to be removed from the
607 /// MachineFunction during regalloc, then re-inserted later, to avoid
608 /// disrupting the allocator.
610 /// \param MI Any DBG_VALUE / DBG_INSTR_REF / DBG_PHI instruction
611 /// \param Idx Last valid SlotIndex before instruction
613 /// \returns Iterator to continue processing from after unlinking.
614 MachineBasicBlock::iterator handleDebugInstr(MachineInstr &MI, SlotIndex Idx);
616 /// Add DBG_LABEL instruction to UserLabel.
618 /// \param MI DBG_LABEL instruction
619 /// \param Idx Last valid SlotIndex before instruction.
621 /// \returns True if the DBG_LABEL instruction should be deleted.
622 bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx);
624 /// Collect and erase all DBG_VALUE instructions, adding a UserValue def
625 /// for each instruction.
627 /// \param mf MachineFunction to be scanned.
628 /// \param InstrRef Whether to operate in instruction referencing mode. If
629 /// true, most of LiveDebugVariables doesn't run.
631 /// \returns True if any debug values were found.
632 bool collectDebugValues(MachineFunction &mf, bool InstrRef);
634 /// Compute the live intervals of all user values after collecting all
635 /// their def points.
636 void computeIntervals();
638 public:
639 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}
641 bool runOnMachineFunction(MachineFunction &mf, bool InstrRef);
643 /// Release all memory.
644 void clear() {
645 MF = nullptr;
646 PHIValToPos.clear();
647 RegToPHIIdx.clear();
648 StashedDebugInstrs.clear();
649 userValues.clear();
650 userLabels.clear();
651 virtRegToEqClass.clear();
652 userVarMap.clear();
653 // Make sure we call emitDebugValues if the machine function was modified.
654 assert((!ModifiedMF || EmitDone) &&
655 "Dbg values are not emitted in LDV");
656 EmitDone = false;
657 ModifiedMF = false;
660 /// Map virtual register to an equivalence class.
661 void mapVirtReg(Register VirtReg, UserValue *EC);
663 /// Replace any PHI referring to OldReg with its corresponding NewReg, if
664 /// present.
665 void splitPHIRegister(Register OldReg, ArrayRef<Register> NewRegs);
667 /// Replace all references to OldReg with NewRegs.
668 void splitRegister(Register OldReg, ArrayRef<Register> NewRegs);
670 /// Recreate DBG_VALUE instruction from data structures.
671 void emitDebugValues(VirtRegMap *VRM);
673 void print(raw_ostream&);
676 } // end anonymous namespace
678 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
679 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
680 const LLVMContext &Ctx) {
681 if (!DL)
682 return;
684 auto *Scope = cast<DIScope>(DL.getScope());
685 // Omit the directory, because it's likely to be long and uninteresting.
686 CommentOS << Scope->getFilename();
687 CommentOS << ':' << DL.getLine();
688 if (DL.getCol() != 0)
689 CommentOS << ':' << DL.getCol();
691 DebugLoc InlinedAtDL = DL.getInlinedAt();
692 if (!InlinedAtDL)
693 return;
695 CommentOS << " @[ ";
696 printDebugLoc(InlinedAtDL, CommentOS, Ctx);
697 CommentOS << " ]";
700 static void printExtendedName(raw_ostream &OS, const DINode *Node,
701 const DILocation *DL) {
702 const LLVMContext &Ctx = Node->getContext();
703 StringRef Res;
704 unsigned Line = 0;
705 if (const auto *V = dyn_cast<const DILocalVariable>(Node)) {
706 Res = V->getName();
707 Line = V->getLine();
708 } else if (const auto *L = dyn_cast<const DILabel>(Node)) {
709 Res = L->getName();
710 Line = L->getLine();
713 if (!Res.empty())
714 OS << Res << "," << Line;
715 auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr;
716 if (InlinedAt) {
717 if (DebugLoc InlinedAtDL = InlinedAt) {
718 OS << " @[";
719 printDebugLoc(InlinedAtDL, OS, Ctx);
720 OS << "]";
725 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
726 OS << "!\"";
727 printExtendedName(OS, Variable, dl);
729 OS << "\"\t";
730 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
731 OS << " [" << I.start() << ';' << I.stop() << "):";
732 if (I.value().isUndef())
733 OS << " undef";
734 else {
735 I.value().printLocNos(OS);
736 if (I.value().getWasIndirect())
737 OS << " ind";
738 else if (I.value().getWasList())
739 OS << " list";
742 for (unsigned i = 0, e = locations.size(); i != e; ++i) {
743 OS << " Loc" << i << '=';
744 locations[i].print(OS, TRI);
746 OS << '\n';
749 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
750 OS << "!\"";
751 printExtendedName(OS, Label, dl);
753 OS << "\"\t";
754 OS << loc;
755 OS << '\n';
758 void LDVImpl::print(raw_ostream &OS) {
759 OS << "********** DEBUG VARIABLES **********\n";
760 for (auto &userValue : userValues)
761 userValue->print(OS, TRI);
762 OS << "********** DEBUG LABELS **********\n";
763 for (auto &userLabel : userLabels)
764 userLabel->print(OS, TRI);
766 #endif
768 void UserValue::mapVirtRegs(LDVImpl *LDV) {
769 for (unsigned i = 0, e = locations.size(); i != e; ++i)
770 if (locations[i].isReg() &&
771 Register::isVirtualRegister(locations[i].getReg()))
772 LDV->mapVirtReg(locations[i].getReg(), this);
775 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var,
776 Optional<DIExpression::FragmentInfo> Fragment,
777 const DebugLoc &DL) {
778 // FIXME: Handle partially overlapping fragments. See
779 // https://reviews.llvm.org/D70121#1849741.
780 DebugVariable ID(Var, Fragment, DL->getInlinedAt());
781 UserValue *&UV = userVarMap[ID];
782 if (!UV) {
783 userValues.push_back(
784 std::make_unique<UserValue>(Var, Fragment, DL, allocator));
785 UV = userValues.back().get();
787 return UV;
790 void LDVImpl::mapVirtReg(Register VirtReg, UserValue *EC) {
791 assert(Register::isVirtualRegister(VirtReg) && "Only map VirtRegs");
792 UserValue *&Leader = virtRegToEqClass[VirtReg];
793 Leader = UserValue::merge(Leader, EC);
796 UserValue *LDVImpl::lookupVirtReg(Register VirtReg) {
797 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
798 return UV->getLeader();
799 return nullptr;
802 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
803 // DBG_VALUE loc, offset, variable, expr
804 // DBG_VALUE_LIST variable, expr, locs...
805 if (!MI.isDebugValue()) {
806 LLVM_DEBUG(dbgs() << "Can't handle non-DBG_VALUE*: " << MI);
807 return false;
809 if (!MI.getDebugVariableOp().isMetadata()) {
810 LLVM_DEBUG(dbgs() << "Can't handle DBG_VALUE* with invalid variable: "
811 << MI);
812 return false;
814 if (MI.isNonListDebugValue() &&
815 (MI.getNumOperands() != 4 ||
816 !(MI.getDebugOffset().isImm() || MI.getDebugOffset().isReg()))) {
817 LLVM_DEBUG(dbgs() << "Can't handle malformed DBG_VALUE: " << MI);
818 return false;
821 // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual
822 // register that hasn't been defined yet. If we do not remove those here, then
823 // the re-insertion of the DBG_VALUE instruction after register allocation
824 // will be incorrect.
825 // TODO: If earlier passes are corrected to generate sane debug information
826 // (and if the machine verifier is improved to catch this), then these checks
827 // could be removed or replaced by asserts.
828 bool Discard = false;
829 for (const MachineOperand &Op : MI.debug_operands()) {
830 if (Op.isReg() && Register::isVirtualRegister(Op.getReg())) {
831 const Register Reg = Op.getReg();
832 if (!LIS->hasInterval(Reg)) {
833 // The DBG_VALUE is described by a virtual register that does not have a
834 // live interval. Discard the DBG_VALUE.
835 Discard = true;
836 LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx
837 << " " << MI);
838 } else {
839 // The DBG_VALUE is only valid if either Reg is live out from Idx, or
840 // Reg is defined dead at Idx (where Idx is the slot index for the
841 // instruction preceding the DBG_VALUE).
842 const LiveInterval &LI = LIS->getInterval(Reg);
843 LiveQueryResult LRQ = LI.Query(Idx);
844 if (!LRQ.valueOutOrDead()) {
845 // We have found a DBG_VALUE with the value in a virtual register that
846 // is not live. Discard the DBG_VALUE.
847 Discard = true;
848 LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx
849 << " " << MI);
855 // Get or create the UserValue for (variable,offset) here.
856 bool IsIndirect = MI.isDebugOffsetImm();
857 if (IsIndirect)
858 assert(MI.getDebugOffset().getImm() == 0 &&
859 "DBG_VALUE with nonzero offset");
860 bool IsList = MI.isDebugValueList();
861 const DILocalVariable *Var = MI.getDebugVariable();
862 const DIExpression *Expr = MI.getDebugExpression();
863 UserValue *UV = getUserValue(Var, Expr->getFragmentInfo(), MI.getDebugLoc());
864 if (!Discard)
865 UV->addDef(Idx,
866 ArrayRef<MachineOperand>(MI.debug_operands().begin(),
867 MI.debug_operands().end()),
868 IsIndirect, IsList, *Expr);
869 else {
870 MachineOperand MO = MachineOperand::CreateReg(0U, false);
871 MO.setIsDebug();
872 // We should still pass a list the same size as MI.debug_operands() even if
873 // all MOs are undef, so that DbgVariableValue can correctly adjust the
874 // expression while removing the duplicated undefs.
875 SmallVector<MachineOperand, 4> UndefMOs(MI.getNumDebugOperands(), MO);
876 UV->addDef(Idx, UndefMOs, false, IsList, *Expr);
878 return true;
881 MachineBasicBlock::iterator LDVImpl::handleDebugInstr(MachineInstr &MI,
882 SlotIndex Idx) {
883 assert(MI.isDebugValue() || MI.isDebugRef() || MI.isDebugPHI());
885 // In instruction referencing mode, there should be no DBG_VALUE instructions
886 // that refer to virtual registers. They might still refer to constants.
887 if (MI.isDebugValue())
888 assert(!MI.getOperand(0).isReg() || !MI.getOperand(0).getReg().isVirtual());
890 // Unlink the instruction, store it in the debug instructions collection.
891 auto NextInst = std::next(MI.getIterator());
892 auto *MBB = MI.getParent();
893 MI.removeFromParent();
894 StashedDebugInstrs.push_back({&MI, Idx, MBB});
895 return NextInst;
898 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) {
899 // DBG_LABEL label
900 if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) {
901 LLVM_DEBUG(dbgs() << "Can't handle " << MI);
902 return false;
905 // Get or create the UserLabel for label here.
906 const DILabel *Label = MI.getDebugLabel();
907 const DebugLoc &DL = MI.getDebugLoc();
908 bool Found = false;
909 for (auto const &L : userLabels) {
910 if (L->matches(Label, DL->getInlinedAt(), Idx)) {
911 Found = true;
912 break;
915 if (!Found)
916 userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx));
918 return true;
921 bool LDVImpl::collectDebugValues(MachineFunction &mf, bool InstrRef) {
922 bool Changed = false;
923 for (MachineBasicBlock &MBB : mf) {
924 for (MachineBasicBlock::iterator MBBI = MBB.begin(), MBBE = MBB.end();
925 MBBI != MBBE;) {
926 // Use the first debug instruction in the sequence to get a SlotIndex
927 // for following consecutive debug instructions.
928 if (!MBBI->isDebugOrPseudoInstr()) {
929 ++MBBI;
930 continue;
932 // Debug instructions has no slot index. Use the previous
933 // non-debug instruction's SlotIndex as its SlotIndex.
934 SlotIndex Idx =
935 MBBI == MBB.begin()
936 ? LIS->getMBBStartIdx(&MBB)
937 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
938 // Handle consecutive debug instructions with the same slot index.
939 do {
940 // In instruction referencing mode, pass each instr to handleDebugInstr
941 // to be unlinked. Ignore DBG_VALUE_LISTs -- they refer to vregs, and
942 // need to go through the normal live interval splitting process.
943 if (InstrRef && (MBBI->isNonListDebugValue() || MBBI->isDebugPHI() ||
944 MBBI->isDebugRef())) {
945 MBBI = handleDebugInstr(*MBBI, Idx);
946 Changed = true;
947 // In normal debug mode, use the dedicated DBG_VALUE / DBG_LABEL handler
948 // to track things through register allocation, and erase the instr.
949 } else if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) ||
950 (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) {
951 MBBI = MBB.erase(MBBI);
952 Changed = true;
953 } else
954 ++MBBI;
955 } while (MBBI != MBBE && MBBI->isDebugOrPseudoInstr());
958 return Changed;
961 void UserValue::extendDef(
962 SlotIndex Idx, DbgVariableValue DbgValue,
963 SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>>
964 &LiveIntervalInfo,
965 Optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills,
966 LiveIntervals &LIS) {
967 SlotIndex Start = Idx;
968 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
969 SlotIndex Stop = LIS.getMBBEndIdx(MBB);
970 LocMap::iterator I = locInts.find(Start);
972 // Limit to the intersection of the VNIs' live ranges.
973 for (auto &LII : LiveIntervalInfo) {
974 LiveRange *LR = LII.second.first;
975 assert(LR && LII.second.second && "Missing range info for Idx.");
976 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
977 assert(Segment && Segment->valno == LII.second.second &&
978 "Invalid VNInfo for Idx given?");
979 if (Segment->end < Stop) {
980 Stop = Segment->end;
981 Kills = {Stop, {LII.first}};
982 } else if (Segment->end == Stop && Kills.hasValue()) {
983 // If multiple locations end at the same place, track all of them in
984 // Kills.
985 Kills->second.push_back(LII.first);
989 // There could already be a short def at Start.
990 if (I.valid() && I.start() <= Start) {
991 // Stop when meeting a different location or an already extended interval.
992 Start = Start.getNextSlot();
993 if (I.value() != DbgValue || I.stop() != Start) {
994 // Clear `Kills`, as we have a new def available.
995 Kills = None;
996 return;
998 // This is a one-slot placeholder. Just skip it.
999 ++I;
1002 // Limited by the next def.
1003 if (I.valid() && I.start() < Stop) {
1004 Stop = I.start();
1005 // Clear `Kills`, as we have a new def available.
1006 Kills = None;
1009 if (Start < Stop) {
1010 DbgVariableValue ExtDbgValue(DbgValue);
1011 I.insert(Start, Stop, std::move(ExtDbgValue));
1015 void UserValue::addDefsFromCopies(
1016 DbgVariableValue DbgValue,
1017 SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals,
1018 SlotIndex KilledAt,
1019 SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs,
1020 MachineRegisterInfo &MRI, LiveIntervals &LIS) {
1021 // Don't track copies from physregs, there are too many uses.
1022 if (any_of(LocIntervals, [](auto LocI) {
1023 return !Register::isVirtualRegister(LocI.second->reg());
1025 return;
1027 // Collect all the (vreg, valno) pairs that are copies of LI.
1028 SmallDenseMap<unsigned,
1029 SmallVector<std::pair<LiveInterval *, const VNInfo *>, 4>>
1030 CopyValues;
1031 for (auto &LocInterval : LocIntervals) {
1032 unsigned LocNo = LocInterval.first;
1033 LiveInterval *LI = LocInterval.second;
1034 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg())) {
1035 MachineInstr *MI = MO.getParent();
1036 // Copies of the full value.
1037 if (MO.getSubReg() || !MI->isCopy())
1038 continue;
1039 Register DstReg = MI->getOperand(0).getReg();
1041 // Don't follow copies to physregs. These are usually setting up call
1042 // arguments, and the argument registers are always call clobbered. We are
1043 // better off in the source register which could be a callee-saved
1044 // register, or it could be spilled.
1045 if (!Register::isVirtualRegister(DstReg))
1046 continue;
1048 // Is the value extended to reach this copy? If not, another def may be
1049 // blocking it, or we are looking at a wrong value of LI.
1050 SlotIndex Idx = LIS.getInstructionIndex(*MI);
1051 LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
1052 if (!I.valid() || I.value() != DbgValue)
1053 continue;
1055 if (!LIS.hasInterval(DstReg))
1056 continue;
1057 LiveInterval *DstLI = &LIS.getInterval(DstReg);
1058 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
1059 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
1060 CopyValues[LocNo].push_back(std::make_pair(DstLI, DstVNI));
1064 if (CopyValues.empty())
1065 return;
1067 #if !defined(NDEBUG)
1068 for (auto &LocInterval : LocIntervals)
1069 LLVM_DEBUG(dbgs() << "Got " << CopyValues[LocInterval.first].size()
1070 << " copies of " << *LocInterval.second << '\n');
1071 #endif
1073 // Try to add defs of the copied values for the kill point. Check that there
1074 // isn't already a def at Idx.
1075 LocMap::iterator I = locInts.find(KilledAt);
1076 if (I.valid() && I.start() <= KilledAt)
1077 return;
1078 DbgVariableValue NewValue(DbgValue);
1079 for (auto &LocInterval : LocIntervals) {
1080 unsigned LocNo = LocInterval.first;
1081 bool FoundCopy = false;
1082 for (auto &LIAndVNI : CopyValues[LocNo]) {
1083 LiveInterval *DstLI = LIAndVNI.first;
1084 const VNInfo *DstVNI = LIAndVNI.second;
1085 if (DstLI->getVNInfoAt(KilledAt) != DstVNI)
1086 continue;
1087 LLVM_DEBUG(dbgs() << "Kill at " << KilledAt << " covered by valno #"
1088 << DstVNI->id << " in " << *DstLI << '\n');
1089 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
1090 assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
1091 unsigned NewLocNo = getLocationNo(CopyMI->getOperand(0));
1092 NewValue = NewValue.changeLocNo(LocNo, NewLocNo);
1093 FoundCopy = true;
1094 break;
1096 // If there are any killed locations we can't find a copy for, we can't
1097 // extend the variable value.
1098 if (!FoundCopy)
1099 return;
1101 I.insert(KilledAt, KilledAt.getNextSlot(), NewValue);
1102 NewDefs.push_back(std::make_pair(KilledAt, NewValue));
1105 void UserValue::computeIntervals(MachineRegisterInfo &MRI,
1106 const TargetRegisterInfo &TRI,
1107 LiveIntervals &LIS, LexicalScopes &LS) {
1108 SmallVector<std::pair<SlotIndex, DbgVariableValue>, 16> Defs;
1110 // Collect all defs to be extended (Skipping undefs).
1111 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
1112 if (!I.value().isUndef())
1113 Defs.push_back(std::make_pair(I.start(), I.value()));
1115 // Extend all defs, and possibly add new ones along the way.
1116 for (unsigned i = 0; i != Defs.size(); ++i) {
1117 SlotIndex Idx = Defs[i].first;
1118 DbgVariableValue DbgValue = Defs[i].second;
1119 SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> LIs;
1120 SmallVector<const VNInfo *, 4> VNIs;
1121 bool ShouldExtendDef = false;
1122 for (unsigned LocNo : DbgValue.loc_nos()) {
1123 const MachineOperand &LocMO = locations[LocNo];
1124 if (!LocMO.isReg() || !Register::isVirtualRegister(LocMO.getReg())) {
1125 ShouldExtendDef |= !LocMO.isReg();
1126 continue;
1128 ShouldExtendDef = true;
1129 LiveInterval *LI = nullptr;
1130 const VNInfo *VNI = nullptr;
1131 if (LIS.hasInterval(LocMO.getReg())) {
1132 LI = &LIS.getInterval(LocMO.getReg());
1133 VNI = LI->getVNInfoAt(Idx);
1135 if (LI && VNI)
1136 LIs[LocNo] = {LI, VNI};
1138 if (ShouldExtendDef) {
1139 Optional<std::pair<SlotIndex, SmallVector<unsigned>>> Kills;
1140 extendDef(Idx, DbgValue, LIs, Kills, LIS);
1142 if (Kills) {
1143 SmallVector<std::pair<unsigned, LiveInterval *>, 2> KilledLocIntervals;
1144 bool AnySubreg = false;
1145 for (unsigned LocNo : Kills->second) {
1146 const MachineOperand &LocMO = this->locations[LocNo];
1147 if (LocMO.getSubReg()) {
1148 AnySubreg = true;
1149 break;
1151 LiveInterval *LI = &LIS.getInterval(LocMO.getReg());
1152 KilledLocIntervals.push_back({LocNo, LI});
1155 // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that
1156 // if the original location for example is %vreg0:sub_hi, and we find a
1157 // full register copy in addDefsFromCopies (at the moment it only
1158 // handles full register copies), then we must add the sub1 sub-register
1159 // index to the new location. However, that is only possible if the new
1160 // virtual register is of the same regclass (or if there is an
1161 // equivalent sub-register in that regclass). For now, simply skip
1162 // handling copies if a sub-register is involved.
1163 if (!AnySubreg)
1164 addDefsFromCopies(DbgValue, KilledLocIntervals, Kills->first, Defs,
1165 MRI, LIS);
1169 // For physregs, we only mark the start slot idx. DwarfDebug will see it
1170 // as if the DBG_VALUE is valid up until the end of the basic block, or
1171 // the next def of the physical register. So we do not need to extend the
1172 // range. It might actually happen that the DBG_VALUE is the last use of
1173 // the physical register (e.g. if this is an unused input argument to a
1174 // function).
1177 // The computed intervals may extend beyond the range of the debug
1178 // location's lexical scope. In this case, splitting of an interval
1179 // can result in an interval outside of the scope being created,
1180 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
1181 // this, trim the intervals to the lexical scope in the case of inlined
1182 // variables, since heavy inlining may cause production of dramatically big
1183 // number of DBG_VALUEs to be generated.
1184 if (!dl.getInlinedAt())
1185 return;
1187 LexicalScope *Scope = LS.findLexicalScope(dl);
1188 if (!Scope)
1189 return;
1191 SlotIndex PrevEnd;
1192 LocMap::iterator I = locInts.begin();
1194 // Iterate over the lexical scope ranges. Each time round the loop
1195 // we check the intervals for overlap with the end of the previous
1196 // range and the start of the next. The first range is handled as
1197 // a special case where there is no PrevEnd.
1198 for (const InsnRange &Range : Scope->getRanges()) {
1199 SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
1200 SlotIndex REnd = LIS.getInstructionIndex(*Range.second);
1202 // Variable locations at the first instruction of a block should be
1203 // based on the block's SlotIndex, not the first instruction's index.
1204 if (Range.first == Range.first->getParent()->begin())
1205 RStart = LIS.getSlotIndexes()->getIndexBefore(*Range.first);
1207 // At the start of each iteration I has been advanced so that
1208 // I.stop() >= PrevEnd. Check for overlap.
1209 if (PrevEnd && I.start() < PrevEnd) {
1210 SlotIndex IStop = I.stop();
1211 DbgVariableValue DbgValue = I.value();
1213 // Stop overlaps previous end - trim the end of the interval to
1214 // the scope range.
1215 I.setStopUnchecked(PrevEnd);
1216 ++I;
1218 // If the interval also overlaps the start of the "next" (i.e.
1219 // current) range create a new interval for the remainder (which
1220 // may be further trimmed).
1221 if (RStart < IStop)
1222 I.insert(RStart, IStop, DbgValue);
1225 // Advance I so that I.stop() >= RStart, and check for overlap.
1226 I.advanceTo(RStart);
1227 if (!I.valid())
1228 return;
1230 if (I.start() < RStart) {
1231 // Interval start overlaps range - trim to the scope range.
1232 I.setStartUnchecked(RStart);
1233 // Remember that this interval was trimmed.
1234 trimmedDefs.insert(RStart);
1237 // The end of a lexical scope range is the last instruction in the
1238 // range. To convert to an interval we need the index of the
1239 // instruction after it.
1240 REnd = REnd.getNextIndex();
1242 // Advance I to first interval outside current range.
1243 I.advanceTo(REnd);
1244 if (!I.valid())
1245 return;
1247 PrevEnd = REnd;
1250 // Check for overlap with end of final range.
1251 if (PrevEnd && I.start() < PrevEnd)
1252 I.setStopUnchecked(PrevEnd);
1255 void LDVImpl::computeIntervals() {
1256 LexicalScopes LS;
1257 LS.initialize(*MF);
1259 for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
1260 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
1261 userValues[i]->mapVirtRegs(this);
1265 bool LDVImpl::runOnMachineFunction(MachineFunction &mf, bool InstrRef) {
1266 clear();
1267 MF = &mf;
1268 LIS = &pass.getAnalysis<LiveIntervals>();
1269 TRI = mf.getSubtarget().getRegisterInfo();
1270 LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
1271 << mf.getName() << " **********\n");
1273 bool Changed = collectDebugValues(mf, InstrRef);
1274 computeIntervals();
1275 LLVM_DEBUG(print(dbgs()));
1277 // Collect the set of VReg / SlotIndexs where PHIs occur; index the sensitive
1278 // VRegs too, for when we're notified of a range split.
1279 SlotIndexes *Slots = LIS->getSlotIndexes();
1280 for (const auto &PHIIt : MF->DebugPHIPositions) {
1281 const MachineFunction::DebugPHIRegallocPos &Position = PHIIt.second;
1282 MachineBasicBlock *MBB = Position.MBB;
1283 Register Reg = Position.Reg;
1284 unsigned SubReg = Position.SubReg;
1285 SlotIndex SI = Slots->getMBBStartIdx(MBB);
1286 PHIValPos VP = {SI, Reg, SubReg};
1287 PHIValToPos.insert(std::make_pair(PHIIt.first, VP));
1288 RegToPHIIdx[Reg].push_back(PHIIt.first);
1291 ModifiedMF = Changed;
1292 return Changed;
1295 static void removeDebugInstrs(MachineFunction &mf) {
1296 for (MachineBasicBlock &MBB : mf) {
1297 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
1298 if (!MBBI->isDebugInstr()) {
1299 ++MBBI;
1300 continue;
1302 MBBI = MBB.erase(MBBI);
1307 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
1308 if (!EnableLDV)
1309 return false;
1310 if (!mf.getFunction().getSubprogram()) {
1311 removeDebugInstrs(mf);
1312 return false;
1315 // Have we been asked to track variable locations using instruction
1316 // referencing?
1317 bool InstrRef = false;
1318 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1319 if (TPC) {
1320 auto &TM = TPC->getTM<TargetMachine>();
1321 InstrRef = TM.Options.ValueTrackingVariableLocations;
1324 if (!pImpl)
1325 pImpl = new LDVImpl(this);
1326 return static_cast<LDVImpl *>(pImpl)->runOnMachineFunction(mf, InstrRef);
1329 void LiveDebugVariables::releaseMemory() {
1330 if (pImpl)
1331 static_cast<LDVImpl*>(pImpl)->clear();
1334 LiveDebugVariables::~LiveDebugVariables() {
1335 if (pImpl)
1336 delete static_cast<LDVImpl*>(pImpl);
1339 //===----------------------------------------------------------------------===//
1340 // Live Range Splitting
1341 //===----------------------------------------------------------------------===//
1343 bool
1344 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs,
1345 LiveIntervals& LIS) {
1346 LLVM_DEBUG({
1347 dbgs() << "Splitting Loc" << OldLocNo << '\t';
1348 print(dbgs(), nullptr);
1350 bool DidChange = false;
1351 LocMap::iterator LocMapI;
1352 LocMapI.setMap(locInts);
1353 for (unsigned i = 0; i != NewRegs.size(); ++i) {
1354 LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
1355 if (LI->empty())
1356 continue;
1358 // Don't allocate the new LocNo until it is needed.
1359 unsigned NewLocNo = UndefLocNo;
1361 // Iterate over the overlaps between locInts and LI.
1362 LocMapI.find(LI->beginIndex());
1363 if (!LocMapI.valid())
1364 continue;
1365 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
1366 LiveInterval::iterator LIE = LI->end();
1367 while (LocMapI.valid() && LII != LIE) {
1368 // At this point, we know that LocMapI.stop() > LII->start.
1369 LII = LI->advanceTo(LII, LocMapI.start());
1370 if (LII == LIE)
1371 break;
1373 // Now LII->end > LocMapI.start(). Do we have an overlap?
1374 if (LocMapI.value().containsLocNo(OldLocNo) &&
1375 LII->start < LocMapI.stop()) {
1376 // Overlapping correct location. Allocate NewLocNo now.
1377 if (NewLocNo == UndefLocNo) {
1378 MachineOperand MO = MachineOperand::CreateReg(LI->reg(), false);
1379 MO.setSubReg(locations[OldLocNo].getSubReg());
1380 NewLocNo = getLocationNo(MO);
1381 DidChange = true;
1384 SlotIndex LStart = LocMapI.start();
1385 SlotIndex LStop = LocMapI.stop();
1386 DbgVariableValue OldDbgValue = LocMapI.value();
1388 // Trim LocMapI down to the LII overlap.
1389 if (LStart < LII->start)
1390 LocMapI.setStartUnchecked(LII->start);
1391 if (LStop > LII->end)
1392 LocMapI.setStopUnchecked(LII->end);
1394 // Change the value in the overlap. This may trigger coalescing.
1395 LocMapI.setValue(OldDbgValue.changeLocNo(OldLocNo, NewLocNo));
1397 // Re-insert any removed OldDbgValue ranges.
1398 if (LStart < LocMapI.start()) {
1399 LocMapI.insert(LStart, LocMapI.start(), OldDbgValue);
1400 ++LocMapI;
1401 assert(LocMapI.valid() && "Unexpected coalescing");
1403 if (LStop > LocMapI.stop()) {
1404 ++LocMapI;
1405 LocMapI.insert(LII->end, LStop, OldDbgValue);
1406 --LocMapI;
1410 // Advance to the next overlap.
1411 if (LII->end < LocMapI.stop()) {
1412 if (++LII == LIE)
1413 break;
1414 LocMapI.advanceTo(LII->start);
1415 } else {
1416 ++LocMapI;
1417 if (!LocMapI.valid())
1418 break;
1419 LII = LI->advanceTo(LII, LocMapI.start());
1424 // Finally, remove OldLocNo unless it is still used by some interval in the
1425 // locInts map. One case when OldLocNo still is in use is when the register
1426 // has been spilled. In such situations the spilled register is kept as a
1427 // location until rewriteLocations is called (VirtRegMap is mapping the old
1428 // register to the spill slot). So for a while we can have locations that map
1429 // to virtual registers that have been removed from both the MachineFunction
1430 // and from LiveIntervals.
1432 // We may also just be using the location for a value with a different
1433 // expression.
1434 removeLocationIfUnused(OldLocNo);
1436 LLVM_DEBUG({
1437 dbgs() << "Split result: \t";
1438 print(dbgs(), nullptr);
1440 return DidChange;
1443 bool
1444 UserValue::splitRegister(Register OldReg, ArrayRef<Register> NewRegs,
1445 LiveIntervals &LIS) {
1446 bool DidChange = false;
1447 // Split locations referring to OldReg. Iterate backwards so splitLocation can
1448 // safely erase unused locations.
1449 for (unsigned i = locations.size(); i ; --i) {
1450 unsigned LocNo = i-1;
1451 const MachineOperand *Loc = &locations[LocNo];
1452 if (!Loc->isReg() || Loc->getReg() != OldReg)
1453 continue;
1454 DidChange |= splitLocation(LocNo, NewRegs, LIS);
1456 return DidChange;
1459 void LDVImpl::splitPHIRegister(Register OldReg, ArrayRef<Register> NewRegs) {
1460 auto RegIt = RegToPHIIdx.find(OldReg);
1461 if (RegIt == RegToPHIIdx.end())
1462 return;
1464 std::vector<std::pair<Register, unsigned>> NewRegIdxes;
1465 // Iterate over all the debug instruction numbers affected by this split.
1466 for (unsigned InstrID : RegIt->second) {
1467 auto PHIIt = PHIValToPos.find(InstrID);
1468 assert(PHIIt != PHIValToPos.end());
1469 const SlotIndex &Slot = PHIIt->second.SI;
1470 assert(OldReg == PHIIt->second.Reg);
1472 // Find the new register that covers this position.
1473 for (auto NewReg : NewRegs) {
1474 const LiveInterval &LI = LIS->getInterval(NewReg);
1475 auto LII = LI.find(Slot);
1476 if (LII != LI.end() && LII->start <= Slot) {
1477 // This new register covers this PHI position, record this for indexing.
1478 NewRegIdxes.push_back(std::make_pair(NewReg, InstrID));
1479 // Record that this value lives in a different VReg now.
1480 PHIIt->second.Reg = NewReg;
1481 break;
1485 // If we do not find a new register covering this PHI, then register
1486 // allocation has dropped its location, for example because it's not live.
1487 // The old VReg will not be mapped to a physreg, and the instruction
1488 // number will have been optimized out.
1491 // Re-create register index using the new register numbers.
1492 RegToPHIIdx.erase(RegIt);
1493 for (auto &RegAndInstr : NewRegIdxes)
1494 RegToPHIIdx[RegAndInstr.first].push_back(RegAndInstr.second);
1497 void LDVImpl::splitRegister(Register OldReg, ArrayRef<Register> NewRegs) {
1498 // Consider whether this split range affects any PHI locations.
1499 splitPHIRegister(OldReg, NewRegs);
1501 // Check whether any intervals mapped by a DBG_VALUE were split and need
1502 // updating.
1503 bool DidChange = false;
1504 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
1505 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);
1507 if (!DidChange)
1508 return;
1510 // Map all of the new virtual registers.
1511 UserValue *UV = lookupVirtReg(OldReg);
1512 for (unsigned i = 0; i != NewRegs.size(); ++i)
1513 mapVirtReg(NewRegs[i], UV);
1516 void LiveDebugVariables::
1517 splitRegister(Register OldReg, ArrayRef<Register> NewRegs, LiveIntervals &LIS) {
1518 if (pImpl)
1519 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
1522 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
1523 const TargetInstrInfo &TII,
1524 const TargetRegisterInfo &TRI,
1525 SpillOffsetMap &SpillOffsets) {
1526 // Build a set of new locations with new numbers so we can coalesce our
1527 // IntervalMap if two vreg intervals collapse to the same physical location.
1528 // Use MapVector instead of SetVector because MapVector::insert returns the
1529 // position of the previously or newly inserted element. The boolean value
1530 // tracks if the location was produced by a spill.
1531 // FIXME: This will be problematic if we ever support direct and indirect
1532 // frame index locations, i.e. expressing both variables in memory and
1533 // 'int x, *px = &x'. The "spilled" bit must become part of the location.
1534 MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations;
1535 SmallVector<unsigned, 4> LocNoMap(locations.size());
1536 for (unsigned I = 0, E = locations.size(); I != E; ++I) {
1537 bool Spilled = false;
1538 unsigned SpillOffset = 0;
1539 MachineOperand Loc = locations[I];
1540 // Only virtual registers are rewritten.
1541 if (Loc.isReg() && Loc.getReg() &&
1542 Register::isVirtualRegister(Loc.getReg())) {
1543 Register VirtReg = Loc.getReg();
1544 if (VRM.isAssignedReg(VirtReg) &&
1545 Register::isPhysicalRegister(VRM.getPhys(VirtReg))) {
1546 // This can create a %noreg operand in rare cases when the sub-register
1547 // index is no longer available. That means the user value is in a
1548 // non-existent sub-register, and %noreg is exactly what we want.
1549 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
1550 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
1551 // Retrieve the stack slot offset.
1552 unsigned SpillSize;
1553 const MachineRegisterInfo &MRI = MF.getRegInfo();
1554 const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg);
1555 bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize,
1556 SpillOffset, MF);
1558 // FIXME: Invalidate the location if the offset couldn't be calculated.
1559 (void)Success;
1561 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
1562 Spilled = true;
1563 } else {
1564 Loc.setReg(0);
1565 Loc.setSubReg(0);
1569 // Insert this location if it doesn't already exist and record a mapping
1570 // from the old number to the new number.
1571 auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}});
1572 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
1573 LocNoMap[I] = NewLocNo;
1576 // Rewrite the locations and record the stack slot offsets for spills.
1577 locations.clear();
1578 SpillOffsets.clear();
1579 for (auto &Pair : NewLocations) {
1580 bool Spilled;
1581 unsigned SpillOffset;
1582 std::tie(Spilled, SpillOffset) = Pair.second;
1583 locations.push_back(Pair.first);
1584 if (Spilled) {
1585 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
1586 SpillOffsets[NewLocNo] = SpillOffset;
1590 // Update the interval map, but only coalesce left, since intervals to the
1591 // right use the old location numbers. This should merge two contiguous
1592 // DBG_VALUE intervals with different vregs that were allocated to the same
1593 // physical register.
1594 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
1595 I.setValueUnchecked(I.value().remapLocNos(LocNoMap));
1596 I.setStart(I.start());
1600 /// Find an iterator for inserting a DBG_VALUE instruction.
1601 static MachineBasicBlock::iterator
1602 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, LiveIntervals &LIS,
1603 BlockSkipInstsMap &BBSkipInstsMap) {
1604 SlotIndex Start = LIS.getMBBStartIdx(MBB);
1605 Idx = Idx.getBaseIndex();
1607 // Try to find an insert location by going backwards from Idx.
1608 MachineInstr *MI;
1609 while (!(MI = LIS.getInstructionFromIndex(Idx))) {
1610 // We've reached the beginning of MBB.
1611 if (Idx == Start) {
1612 // Retrieve the last PHI/Label/Debug location found when calling
1613 // SkipPHIsLabelsAndDebug last time. Start searching from there.
1615 // Note the iterator kept in BBSkipInstsMap is one step back based
1616 // on the iterator returned by SkipPHIsLabelsAndDebug last time.
1617 // One exception is when SkipPHIsLabelsAndDebug returns MBB->begin(),
1618 // BBSkipInstsMap won't save it. This is to consider the case that
1619 // new instructions may be inserted at the beginning of MBB after
1620 // last call of SkipPHIsLabelsAndDebug. If we save MBB->begin() in
1621 // BBSkipInstsMap, after new non-phi/non-label/non-debug instructions
1622 // are inserted at the beginning of the MBB, the iterator in
1623 // BBSkipInstsMap won't point to the beginning of the MBB anymore.
1624 // Therefore The next search in SkipPHIsLabelsAndDebug will skip those
1625 // newly added instructions and that is unwanted.
1626 MachineBasicBlock::iterator BeginIt;
1627 auto MapIt = BBSkipInstsMap.find(MBB);
1628 if (MapIt == BBSkipInstsMap.end())
1629 BeginIt = MBB->begin();
1630 else
1631 BeginIt = std::next(MapIt->second);
1632 auto I = MBB->SkipPHIsLabelsAndDebug(BeginIt);
1633 if (I != BeginIt)
1634 BBSkipInstsMap[MBB] = std::prev(I);
1635 return I;
1637 Idx = Idx.getPrevIndex();
1640 // Don't insert anything after the first terminator, though.
1641 return MI->isTerminator() ? MBB->getFirstTerminator() :
1642 std::next(MachineBasicBlock::iterator(MI));
1645 /// Find an iterator for inserting the next DBG_VALUE instruction
1646 /// (or end if no more insert locations found).
1647 static MachineBasicBlock::iterator
1648 findNextInsertLocation(MachineBasicBlock *MBB, MachineBasicBlock::iterator I,
1649 SlotIndex StopIdx, ArrayRef<MachineOperand> LocMOs,
1650 LiveIntervals &LIS, const TargetRegisterInfo &TRI) {
1651 SmallVector<Register, 4> Regs;
1652 for (const MachineOperand &LocMO : LocMOs)
1653 if (LocMO.isReg())
1654 Regs.push_back(LocMO.getReg());
1655 if (Regs.empty())
1656 return MBB->instr_end();
1658 // Find the next instruction in the MBB that define the register Reg.
1659 while (I != MBB->end() && !I->isTerminator()) {
1660 if (!LIS.isNotInMIMap(*I) &&
1661 SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I)))
1662 break;
1663 if (any_of(Regs, [&I, &TRI](Register &Reg) {
1664 return I->definesRegister(Reg, &TRI);
1666 // The insert location is directly after the instruction/bundle.
1667 return std::next(I);
1668 ++I;
1670 return MBB->end();
1673 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
1674 SlotIndex StopIdx, DbgVariableValue DbgValue,
1675 ArrayRef<bool> LocSpills,
1676 ArrayRef<unsigned> SpillOffsets,
1677 LiveIntervals &LIS, const TargetInstrInfo &TII,
1678 const TargetRegisterInfo &TRI,
1679 BlockSkipInstsMap &BBSkipInstsMap) {
1680 SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB);
1681 // Only search within the current MBB.
1682 StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx;
1683 MachineBasicBlock::iterator I =
1684 findInsertLocation(MBB, StartIdx, LIS, BBSkipInstsMap);
1685 // Undef values don't exist in locations so create new "noreg" register MOs
1686 // for them. See getLocationNo().
1687 SmallVector<MachineOperand, 8> MOs;
1688 if (DbgValue.isUndef()) {
1689 MOs.assign(DbgValue.loc_nos().size(),
1690 MachineOperand::CreateReg(
1691 /* Reg */ 0, /* isDef */ false, /* isImp */ false,
1692 /* isKill */ false, /* isDead */ false,
1693 /* isUndef */ false, /* isEarlyClobber */ false,
1694 /* SubReg */ 0, /* isDebug */ true));
1695 } else {
1696 for (unsigned LocNo : DbgValue.loc_nos())
1697 MOs.push_back(locations[LocNo]);
1700 ++NumInsertedDebugValues;
1702 assert(cast<DILocalVariable>(Variable)
1703 ->isValidLocationForIntrinsic(getDebugLoc()) &&
1704 "Expected inlined-at fields to agree");
1706 // If the location was spilled, the new DBG_VALUE will be indirect. If the
1707 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
1708 // that the original virtual register was a pointer. Also, add the stack slot
1709 // offset for the spilled register to the expression.
1710 const DIExpression *Expr = DbgValue.getExpression();
1711 bool IsIndirect = DbgValue.getWasIndirect();
1712 bool IsList = DbgValue.getWasList();
1713 for (unsigned I = 0, E = LocSpills.size(); I != E; ++I) {
1714 if (LocSpills[I]) {
1715 if (!IsList) {
1716 uint8_t DIExprFlags = DIExpression::ApplyOffset;
1717 if (IsIndirect)
1718 DIExprFlags |= DIExpression::DerefAfter;
1719 Expr = DIExpression::prepend(Expr, DIExprFlags, SpillOffsets[I]);
1720 IsIndirect = true;
1721 } else {
1722 SmallVector<uint64_t, 4> Ops;
1723 DIExpression::appendOffset(Ops, SpillOffsets[I]);
1724 Ops.push_back(dwarf::DW_OP_deref);
1725 Expr = DIExpression::appendOpsToArg(Expr, Ops, I);
1729 assert((!LocSpills[I] || MOs[I].isFI()) &&
1730 "a spilled location must be a frame index");
1733 unsigned DbgValueOpcode =
1734 IsList ? TargetOpcode::DBG_VALUE_LIST : TargetOpcode::DBG_VALUE;
1735 do {
1736 BuildMI(*MBB, I, getDebugLoc(), TII.get(DbgValueOpcode), IsIndirect, MOs,
1737 Variable, Expr);
1739 // Continue and insert DBG_VALUES after every redefinition of a register
1740 // associated with the debug value within the range
1741 I = findNextInsertLocation(MBB, I, StopIdx, MOs, LIS, TRI);
1742 } while (I != MBB->end());
1745 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
1746 LiveIntervals &LIS, const TargetInstrInfo &TII,
1747 BlockSkipInstsMap &BBSkipInstsMap) {
1748 MachineBasicBlock::iterator I =
1749 findInsertLocation(MBB, Idx, LIS, BBSkipInstsMap);
1750 ++NumInsertedDebugLabels;
1751 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL))
1752 .addMetadata(Label);
1755 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
1756 const TargetInstrInfo &TII,
1757 const TargetRegisterInfo &TRI,
1758 const SpillOffsetMap &SpillOffsets,
1759 BlockSkipInstsMap &BBSkipInstsMap) {
1760 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();
1762 for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
1763 SlotIndex Start = I.start();
1764 SlotIndex Stop = I.stop();
1765 DbgVariableValue DbgValue = I.value();
1767 SmallVector<bool> SpilledLocs;
1768 SmallVector<unsigned> LocSpillOffsets;
1769 for (unsigned LocNo : DbgValue.loc_nos()) {
1770 auto SpillIt =
1771 !DbgValue.isUndef() ? SpillOffsets.find(LocNo) : SpillOffsets.end();
1772 bool Spilled = SpillIt != SpillOffsets.end();
1773 SpilledLocs.push_back(Spilled);
1774 LocSpillOffsets.push_back(Spilled ? SpillIt->second : 0);
1777 // If the interval start was trimmed to the lexical scope insert the
1778 // DBG_VALUE at the previous index (otherwise it appears after the
1779 // first instruction in the range).
1780 if (trimmedDefs.count(Start))
1781 Start = Start.getPrevIndex();
1783 LLVM_DEBUG(auto &dbg = dbgs(); dbg << "\t[" << Start << ';' << Stop << "):";
1784 DbgValue.printLocNos(dbg));
1785 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1786 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);
1788 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1789 insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs, LocSpillOffsets,
1790 LIS, TII, TRI, BBSkipInstsMap);
1791 // This interval may span multiple basic blocks.
1792 // Insert a DBG_VALUE into each one.
1793 while (Stop > MBBEnd) {
1794 // Move to the next block.
1795 Start = MBBEnd;
1796 if (++MBB == MFEnd)
1797 break;
1798 MBBEnd = LIS.getMBBEndIdx(&*MBB);
1799 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1800 insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs,
1801 LocSpillOffsets, LIS, TII, TRI, BBSkipInstsMap);
1803 LLVM_DEBUG(dbgs() << '\n');
1804 if (MBB == MFEnd)
1805 break;
1807 ++I;
1811 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII,
1812 BlockSkipInstsMap &BBSkipInstsMap) {
1813 LLVM_DEBUG(dbgs() << "\t" << loc);
1814 MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator();
1816 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB));
1817 insertDebugLabel(&*MBB, loc, LIS, TII, BBSkipInstsMap);
1819 LLVM_DEBUG(dbgs() << '\n');
1822 void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
1823 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
1824 if (!MF)
1825 return;
1827 BlockSkipInstsMap BBSkipInstsMap;
1828 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1829 SpillOffsetMap SpillOffsets;
1830 for (auto &userValue : userValues) {
1831 LLVM_DEBUG(userValue->print(dbgs(), TRI));
1832 userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets);
1833 userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets,
1834 BBSkipInstsMap);
1836 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n");
1837 for (auto &userLabel : userLabels) {
1838 LLVM_DEBUG(userLabel->print(dbgs(), TRI));
1839 userLabel->emitDebugLabel(*LIS, *TII, BBSkipInstsMap);
1842 LLVM_DEBUG(dbgs() << "********** EMITTING DEBUG PHIS **********\n");
1844 auto Slots = LIS->getSlotIndexes();
1845 for (auto &It : PHIValToPos) {
1846 // For each ex-PHI, identify its physreg location or stack slot, and emit
1847 // a DBG_PHI for it.
1848 unsigned InstNum = It.first;
1849 auto Slot = It.second.SI;
1850 Register Reg = It.second.Reg;
1851 unsigned SubReg = It.second.SubReg;
1853 MachineBasicBlock *OrigMBB = Slots->getMBBFromIndex(Slot);
1854 if (VRM->isAssignedReg(Reg) &&
1855 Register::isPhysicalRegister(VRM->getPhys(Reg))) {
1856 unsigned PhysReg = VRM->getPhys(Reg);
1857 if (SubReg != 0)
1858 PhysReg = TRI->getSubReg(PhysReg, SubReg);
1860 auto Builder = BuildMI(*OrigMBB, OrigMBB->begin(), DebugLoc(),
1861 TII->get(TargetOpcode::DBG_PHI));
1862 Builder.addReg(PhysReg);
1863 Builder.addImm(InstNum);
1864 } else if (VRM->getStackSlot(Reg) != VirtRegMap::NO_STACK_SLOT) {
1865 const MachineRegisterInfo &MRI = MF->getRegInfo();
1866 const TargetRegisterClass *TRC = MRI.getRegClass(Reg);
1867 unsigned SpillSize, SpillOffset;
1869 // Test whether this location is legal with the given subreg.
1870 bool Success =
1871 TII->getStackSlotRange(TRC, SubReg, SpillSize, SpillOffset, *MF);
1873 if (Success) {
1874 auto Builder = BuildMI(*OrigMBB, OrigMBB->begin(), DebugLoc(),
1875 TII->get(TargetOpcode::DBG_PHI));
1876 Builder.addFrameIndex(VRM->getStackSlot(Reg));
1877 Builder.addImm(InstNum);
1880 // If there was no mapping for a value ID, it's optimized out. Create no
1881 // DBG_PHI, and any variables using this value will become optimized out.
1883 MF->DebugPHIPositions.clear();
1885 LLVM_DEBUG(dbgs() << "********** EMITTING INSTR REFERENCES **********\n");
1887 // Re-insert any debug instrs back in the position they were. Ordering
1888 // is preserved by vector. We must re-insert in the same order to ensure that
1889 // debug instructions don't swap, which could re-order assignments.
1890 for (auto &P : StashedDebugInstrs) {
1891 SlotIndex Idx = P.Idx;
1893 // Start block index: find the first non-debug instr in the block, and
1894 // insert before it.
1895 if (Idx == Slots->getMBBStartIdx(P.MBB)) {
1896 MachineBasicBlock::iterator InsertPos =
1897 findInsertLocation(P.MBB, Idx, *LIS, BBSkipInstsMap);
1898 P.MBB->insert(InsertPos, P.MI);
1899 continue;
1902 if (MachineInstr *Pos = Slots->getInstructionFromIndex(Idx)) {
1903 // Insert at the end of any debug instructions.
1904 auto PostDebug = std::next(Pos->getIterator());
1905 PostDebug = skipDebugInstructionsForward(PostDebug, P.MBB->instr_end());
1906 P.MBB->insert(PostDebug, P.MI);
1907 } else {
1908 // Insert position disappeared; walk forwards through slots until we
1909 // find a new one.
1910 SlotIndex End = Slots->getMBBEndIdx(P.MBB);
1911 for (; Idx < End; Idx = Slots->getNextNonNullIndex(Idx)) {
1912 Pos = Slots->getInstructionFromIndex(Idx);
1913 if (Pos) {
1914 P.MBB->insert(Pos->getIterator(), P.MI);
1915 break;
1919 // We have reached the end of the block and didn't find anywhere to
1920 // insert! It's not safe to discard any debug instructions; place them
1921 // in front of the first terminator, or in front of end().
1922 if (Idx >= End) {
1923 auto TermIt = P.MBB->getFirstTerminator();
1924 P.MBB->insert(TermIt, P.MI);
1929 EmitDone = true;
1930 BBSkipInstsMap.clear();
1933 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
1934 if (pImpl)
1935 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
1938 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1939 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
1940 if (pImpl)
1941 static_cast<LDVImpl*>(pImpl)->print(dbgs());
1943 #endif