1 //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// \file This file implements the LiveInterval analysis pass which is used
10 /// by the Linear Scan Register allocator. This pass linearizes the
11 /// basic blocks of the function in DFS order and computes live intervals for
12 /// each virtual and physical register.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveInterval.h"
24 #include "llvm/CodeGen/LiveIntervalCalc.h"
25 #include "llvm/CodeGen/LiveVariables.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/Passes.h"
35 #include "llvm/CodeGen/SlotIndexes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/CodeGen/VirtRegMap.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Statepoint.h"
42 #include "llvm/MC/LaneBitmask.h"
43 #include "llvm/MC/MCRegisterInfo.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/BlockFrequency.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/MathExtras.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/CodeGen/StackMaps.h"
61 #define DEBUG_TYPE "regalloc"
63 char LiveIntervals::ID
= 0;
64 char &llvm::LiveIntervalsID
= LiveIntervals::ID
;
65 INITIALIZE_PASS_BEGIN(LiveIntervals
, "liveintervals",
66 "Live Interval Analysis", false, false)
67 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
68 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
69 INITIALIZE_PASS_DEPENDENCY(SlotIndexes
)
70 INITIALIZE_PASS_END(LiveIntervals
, "liveintervals",
71 "Live Interval Analysis", false, false)
74 static cl::opt
<bool> EnablePrecomputePhysRegs(
75 "precompute-phys-liveness", cl::Hidden
,
76 cl::desc("Eagerly compute live intervals for all physreg units."));
78 static bool EnablePrecomputePhysRegs
= false;
83 cl::opt
<bool> UseSegmentSetForPhysRegs(
84 "use-segment-set-for-physregs", cl::Hidden
, cl::init(true),
86 "Use segment set for the computation of the live ranges of physregs."));
88 } // end namespace llvm
90 void LiveIntervals::getAnalysisUsage(AnalysisUsage
&AU
) const {
92 AU
.addRequired
<AAResultsWrapperPass
>();
93 AU
.addPreserved
<AAResultsWrapperPass
>();
94 AU
.addPreserved
<LiveVariables
>();
95 AU
.addPreservedID(MachineLoopInfoID
);
96 AU
.addRequiredTransitiveID(MachineDominatorsID
);
97 AU
.addPreservedID(MachineDominatorsID
);
98 AU
.addPreserved
<SlotIndexes
>();
99 AU
.addRequiredTransitive
<SlotIndexes
>();
100 MachineFunctionPass::getAnalysisUsage(AU
);
103 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID
) {
104 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
107 LiveIntervals::~LiveIntervals() { delete LICalc
; }
109 void LiveIntervals::releaseMemory() {
110 // Free the live intervals themselves.
111 for (unsigned i
= 0, e
= VirtRegIntervals
.size(); i
!= e
; ++i
)
112 delete VirtRegIntervals
[Register::index2VirtReg(i
)];
113 VirtRegIntervals
.clear();
114 RegMaskSlots
.clear();
116 RegMaskBlocks
.clear();
118 for (LiveRange
*LR
: RegUnitRanges
)
120 RegUnitRanges
.clear();
122 // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
123 VNInfoAllocator
.Reset();
126 bool LiveIntervals::runOnMachineFunction(MachineFunction
&fn
) {
128 MRI
= &MF
->getRegInfo();
129 TRI
= MF
->getSubtarget().getRegisterInfo();
130 TII
= MF
->getSubtarget().getInstrInfo();
131 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
132 Indexes
= &getAnalysis
<SlotIndexes
>();
133 DomTree
= &getAnalysis
<MachineDominatorTree
>();
136 LICalc
= new LiveIntervalCalc();
138 // Allocate space for all virtual registers.
139 VirtRegIntervals
.resize(MRI
->getNumVirtRegs());
143 computeLiveInRegUnits();
145 if (EnablePrecomputePhysRegs
) {
146 // For stress testing, precompute live ranges of all physical register
147 // units, including reserved registers.
148 for (unsigned i
= 0, e
= TRI
->getNumRegUnits(); i
!= e
; ++i
)
155 void LiveIntervals::print(raw_ostream
&OS
, const Module
* ) const {
156 OS
<< "********** INTERVALS **********\n";
158 // Dump the regunits.
159 for (unsigned Unit
= 0, UnitE
= RegUnitRanges
.size(); Unit
!= UnitE
; ++Unit
)
160 if (LiveRange
*LR
= RegUnitRanges
[Unit
])
161 OS
<< printRegUnit(Unit
, TRI
) << ' ' << *LR
<< '\n';
163 // Dump the virtregs.
164 for (unsigned i
= 0, e
= MRI
->getNumVirtRegs(); i
!= e
; ++i
) {
165 Register Reg
= Register::index2VirtReg(i
);
166 if (hasInterval(Reg
))
167 OS
<< getInterval(Reg
) << '\n';
171 for (SlotIndex Idx
: RegMaskSlots
)
178 void LiveIntervals::printInstrs(raw_ostream
&OS
) const {
179 OS
<< "********** MACHINEINSTRS **********\n";
180 MF
->print(OS
, Indexes
);
183 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
184 LLVM_DUMP_METHOD
void LiveIntervals::dumpInstrs() const {
189 LiveInterval
*LiveIntervals::createInterval(Register reg
) {
190 float Weight
= Register::isPhysicalRegister(reg
) ? huge_valf
: 0.0F
;
191 return new LiveInterval(reg
, Weight
);
194 /// Compute the live interval of a virtual register, based on defs and uses.
195 bool LiveIntervals::computeVirtRegInterval(LiveInterval
&LI
) {
196 assert(LICalc
&& "LICalc not initialized.");
197 assert(LI
.empty() && "Should only compute empty intervals.");
198 LICalc
->reset(MF
, getSlotIndexes(), DomTree
, &getVNInfoAllocator());
199 LICalc
->calculate(LI
, MRI
->shouldTrackSubRegLiveness(LI
.reg()));
200 return computeDeadValues(LI
, nullptr);
203 void LiveIntervals::computeVirtRegs() {
204 for (unsigned i
= 0, e
= MRI
->getNumVirtRegs(); i
!= e
; ++i
) {
205 Register Reg
= Register::index2VirtReg(i
);
206 if (MRI
->reg_nodbg_empty(Reg
))
208 LiveInterval
&LI
= createEmptyInterval(Reg
);
209 bool NeedSplit
= computeVirtRegInterval(LI
);
211 SmallVector
<LiveInterval
*, 8> SplitLIs
;
212 splitSeparateComponents(LI
, SplitLIs
);
217 void LiveIntervals::computeRegMasks() {
218 RegMaskBlocks
.resize(MF
->getNumBlockIDs());
220 // Find all instructions with regmask operands.
221 for (const MachineBasicBlock
&MBB
: *MF
) {
222 std::pair
<unsigned, unsigned> &RMB
= RegMaskBlocks
[MBB
.getNumber()];
223 RMB
.first
= RegMaskSlots
.size();
225 // Some block starts, such as EH funclets, create masks.
226 if (const uint32_t *Mask
= MBB
.getBeginClobberMask(TRI
)) {
227 RegMaskSlots
.push_back(Indexes
->getMBBStartIdx(&MBB
));
228 RegMaskBits
.push_back(Mask
);
231 // Unwinders may clobber additional registers.
232 // FIXME: This functionality can possibly be merged into
233 // MachineBasicBlock::getBeginClobberMask().
235 if (auto *Mask
= TRI
->getCustomEHPadPreservedMask(*MBB
.getParent())) {
236 RegMaskSlots
.push_back(Indexes
->getMBBStartIdx(&MBB
));
237 RegMaskBits
.push_back(Mask
);
240 for (const MachineInstr
&MI
: MBB
) {
241 for (const MachineOperand
&MO
: MI
.operands()) {
244 RegMaskSlots
.push_back(Indexes
->getInstructionIndex(MI
).getRegSlot());
245 RegMaskBits
.push_back(MO
.getRegMask());
249 // Some block ends, such as funclet returns, create masks. Put the mask on
250 // the last instruction of the block, because MBB slot index intervals are
252 if (const uint32_t *Mask
= MBB
.getEndClobberMask(TRI
)) {
253 assert(!MBB
.empty() && "empty return block?");
254 RegMaskSlots
.push_back(
255 Indexes
->getInstructionIndex(MBB
.back()).getRegSlot());
256 RegMaskBits
.push_back(Mask
);
259 // Compute the number of register mask instructions in this block.
260 RMB
.second
= RegMaskSlots
.size() - RMB
.first
;
264 //===----------------------------------------------------------------------===//
265 // Register Unit Liveness
266 //===----------------------------------------------------------------------===//
268 // Fixed interference typically comes from ABI boundaries: Function arguments
269 // and return values are passed in fixed registers, and so are exception
270 // pointers entering landing pads. Certain instructions require values to be
271 // present in specific registers. That is also represented through fixed
275 /// Compute the live range of a register unit, based on the uses and defs of
276 /// aliasing registers. The range should be empty, or contain only dead
277 /// phi-defs from ABI blocks.
278 void LiveIntervals::computeRegUnitRange(LiveRange
&LR
, unsigned Unit
) {
279 assert(LICalc
&& "LICalc not initialized.");
280 LICalc
->reset(MF
, getSlotIndexes(), DomTree
, &getVNInfoAllocator());
282 // The physregs aliasing Unit are the roots and their super-registers.
283 // Create all values as dead defs before extending to uses. Note that roots
284 // may share super-registers. That's OK because createDeadDefs() is
285 // idempotent. It is very rare for a register unit to have multiple roots, so
286 // uniquing super-registers is probably not worthwhile.
287 bool IsReserved
= false;
288 for (MCRegUnitRootIterator
Root(Unit
, TRI
); Root
.isValid(); ++Root
) {
289 bool IsRootReserved
= true;
290 for (MCSuperRegIterator
Super(*Root
, TRI
, /*IncludeSelf=*/true);
291 Super
.isValid(); ++Super
) {
292 MCRegister Reg
= *Super
;
293 if (!MRI
->reg_empty(Reg
))
294 LICalc
->createDeadDefs(LR
, Reg
);
295 // A register unit is considered reserved if all its roots and all their
296 // super registers are reserved.
297 if (!MRI
->isReserved(Reg
))
298 IsRootReserved
= false;
300 IsReserved
|= IsRootReserved
;
302 assert(IsReserved
== MRI
->isReservedRegUnit(Unit
) &&
303 "reserved computation mismatch");
305 // Now extend LR to reach all uses.
306 // Ignore uses of reserved registers. We only track defs of those.
308 for (MCRegUnitRootIterator
Root(Unit
, TRI
); Root
.isValid(); ++Root
) {
309 for (MCSuperRegIterator
Super(*Root
, TRI
, /*IncludeSelf=*/true);
310 Super
.isValid(); ++Super
) {
311 MCRegister Reg
= *Super
;
312 if (!MRI
->reg_empty(Reg
))
313 LICalc
->extendToUses(LR
, Reg
);
318 // Flush the segment set to the segment vector.
319 if (UseSegmentSetForPhysRegs
)
320 LR
.flushSegmentSet();
323 /// Precompute the live ranges of any register units that are live-in to an ABI
324 /// block somewhere. Register values can appear without a corresponding def when
325 /// entering the entry block or a landing pad.
326 void LiveIntervals::computeLiveInRegUnits() {
327 RegUnitRanges
.resize(TRI
->getNumRegUnits());
328 LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
330 // Keep track of the live range sets allocated.
331 SmallVector
<unsigned, 8> NewRanges
;
333 // Check all basic blocks for live-ins.
334 for (const MachineBasicBlock
&MBB
: *MF
) {
335 // We only care about ABI blocks: Entry + landing pads.
336 if ((&MBB
!= &MF
->front() && !MBB
.isEHPad()) || MBB
.livein_empty())
339 // Create phi-defs at Begin for all live-in registers.
340 SlotIndex Begin
= Indexes
->getMBBStartIdx(&MBB
);
341 LLVM_DEBUG(dbgs() << Begin
<< "\t" << printMBBReference(MBB
));
342 for (const auto &LI
: MBB
.liveins()) {
343 for (MCRegUnitIterator
Units(LI
.PhysReg
, TRI
); Units
.isValid(); ++Units
) {
344 unsigned Unit
= *Units
;
345 LiveRange
*LR
= RegUnitRanges
[Unit
];
347 // Use segment set to speed-up initial computation of the live range.
348 LR
= RegUnitRanges
[Unit
] = new LiveRange(UseSegmentSetForPhysRegs
);
349 NewRanges
.push_back(Unit
);
351 VNInfo
*VNI
= LR
->createDeadDef(Begin
, getVNInfoAllocator());
353 LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit
, TRI
) << '#' << VNI
->id
);
356 LLVM_DEBUG(dbgs() << '\n');
358 LLVM_DEBUG(dbgs() << "Created " << NewRanges
.size() << " new intervals.\n");
360 // Compute the 'normal' part of the ranges.
361 for (unsigned Unit
: NewRanges
)
362 computeRegUnitRange(*RegUnitRanges
[Unit
], Unit
);
365 static void createSegmentsForValues(LiveRange
&LR
,
366 iterator_range
<LiveInterval::vni_iterator
> VNIs
) {
367 for (VNInfo
*VNI
: VNIs
) {
370 SlotIndex Def
= VNI
->def
;
371 LR
.addSegment(LiveRange::Segment(Def
, Def
.getDeadSlot(), VNI
));
375 void LiveIntervals::extendSegmentsToUses(LiveRange
&Segments
,
376 ShrinkToUsesWorkList
&WorkList
,
377 Register Reg
, LaneBitmask LaneMask
) {
378 // Keep track of the PHIs that are in use.
379 SmallPtrSet
<VNInfo
*, 8> UsedPHIs
;
380 // Blocks that have already been added to WorkList as live-out.
381 SmallPtrSet
<const MachineBasicBlock
*, 16> LiveOut
;
383 auto getSubRange
= [](const LiveInterval
&I
, LaneBitmask M
)
384 -> const LiveRange
& {
387 for (const LiveInterval::SubRange
&SR
: I
.subranges()) {
388 if ((SR
.LaneMask
& M
).any()) {
389 assert(SR
.LaneMask
== M
&& "Expecting lane masks to match exactly");
393 llvm_unreachable("Subrange for mask not found");
396 const LiveInterval
&LI
= getInterval(Reg
);
397 const LiveRange
&OldRange
= getSubRange(LI
, LaneMask
);
399 // Extend intervals to reach all uses in WorkList.
400 while (!WorkList
.empty()) {
401 SlotIndex Idx
= WorkList
.back().first
;
402 VNInfo
*VNI
= WorkList
.back().second
;
404 const MachineBasicBlock
*MBB
= Indexes
->getMBBFromIndex(Idx
.getPrevSlot());
405 SlotIndex BlockStart
= Indexes
->getMBBStartIdx(MBB
);
407 // Extend the live range for VNI to be live at Idx.
408 if (VNInfo
*ExtVNI
= Segments
.extendInBlock(BlockStart
, Idx
)) {
409 assert(ExtVNI
== VNI
&& "Unexpected existing value number");
411 // Is this a PHIDef we haven't seen before?
412 if (!VNI
->isPHIDef() || VNI
->def
!= BlockStart
||
413 !UsedPHIs
.insert(VNI
).second
)
415 // The PHI is live, make sure the predecessors are live-out.
416 for (const MachineBasicBlock
*Pred
: MBB
->predecessors()) {
417 if (!LiveOut
.insert(Pred
).second
)
419 SlotIndex Stop
= Indexes
->getMBBEndIdx(Pred
);
420 // A predecessor is not required to have a live-out value for a PHI.
421 if (VNInfo
*PVNI
= OldRange
.getVNInfoBefore(Stop
))
422 WorkList
.push_back(std::make_pair(Stop
, PVNI
));
427 // VNI is live-in to MBB.
428 LLVM_DEBUG(dbgs() << " live-in at " << BlockStart
<< '\n');
429 Segments
.addSegment(LiveRange::Segment(BlockStart
, Idx
, VNI
));
431 // Make sure VNI is live-out from the predecessors.
432 for (const MachineBasicBlock
*Pred
: MBB
->predecessors()) {
433 if (!LiveOut
.insert(Pred
).second
)
435 SlotIndex Stop
= Indexes
->getMBBEndIdx(Pred
);
436 if (VNInfo
*OldVNI
= OldRange
.getVNInfoBefore(Stop
)) {
437 assert(OldVNI
== VNI
&& "Wrong value out of predecessor");
439 WorkList
.push_back(std::make_pair(Stop
, VNI
));
442 // There was no old VNI. Verify that Stop is jointly dominated
443 // by <undef>s for this live range.
444 assert(LaneMask
.any() &&
445 "Missing value out of predecessor for main range");
446 SmallVector
<SlotIndex
,8> Undefs
;
447 LI
.computeSubRangeUndefs(Undefs
, LaneMask
, *MRI
, *Indexes
);
448 assert(LiveRangeCalc::isJointlyDominated(Pred
, Undefs
, *Indexes
) &&
449 "Missing value out of predecessor for subrange");
456 bool LiveIntervals::shrinkToUses(LiveInterval
*li
,
457 SmallVectorImpl
<MachineInstr
*> *dead
) {
458 LLVM_DEBUG(dbgs() << "Shrink: " << *li
<< '\n');
459 assert(Register::isVirtualRegister(li
->reg()) &&
460 "Can only shrink virtual registers");
462 // Shrink subregister live ranges.
463 bool NeedsCleanup
= false;
464 for (LiveInterval::SubRange
&S
: li
->subranges()) {
465 shrinkToUses(S
, li
->reg());
470 li
->removeEmptySubRanges();
472 // Find all the values used, including PHI kills.
473 ShrinkToUsesWorkList WorkList
;
475 // Visit all instructions reading li->reg().
476 Register Reg
= li
->reg();
477 for (MachineInstr
&UseMI
: MRI
->reg_instructions(Reg
)) {
478 if (UseMI
.isDebugInstr() || !UseMI
.readsVirtualRegister(Reg
))
480 SlotIndex Idx
= getInstructionIndex(UseMI
).getRegSlot();
481 LiveQueryResult LRQ
= li
->Query(Idx
);
482 VNInfo
*VNI
= LRQ
.valueIn();
484 // This shouldn't happen: readsVirtualRegister returns true, but there is
485 // no live value. It is likely caused by a target getting <undef> flags
488 dbgs() << Idx
<< '\t' << UseMI
489 << "Warning: Instr claims to read non-existent value in "
493 // Special case: An early-clobber tied operand reads and writes the
494 // register one slot early.
495 if (VNInfo
*DefVNI
= LRQ
.valueDefined())
498 WorkList
.push_back(std::make_pair(Idx
, VNI
));
501 // Create new live ranges with only minimal live segments per def.
503 createSegmentsForValues(NewLR
, make_range(li
->vni_begin(), li
->vni_end()));
504 extendSegmentsToUses(NewLR
, WorkList
, Reg
, LaneBitmask::getNone());
506 // Move the trimmed segments back.
507 li
->segments
.swap(NewLR
.segments
);
509 // Handle dead values.
510 bool CanSeparate
= computeDeadValues(*li
, dead
);
511 LLVM_DEBUG(dbgs() << "Shrunk: " << *li
<< '\n');
515 bool LiveIntervals::computeDeadValues(LiveInterval
&LI
,
516 SmallVectorImpl
<MachineInstr
*> *dead
) {
517 bool MayHaveSplitComponents
= false;
518 bool HaveDeadDef
= false;
520 for (VNInfo
*VNI
: LI
.valnos
) {
523 SlotIndex Def
= VNI
->def
;
524 LiveRange::iterator I
= LI
.FindSegmentContaining(Def
);
525 assert(I
!= LI
.end() && "Missing segment for VNI");
527 // Is the register live before? Otherwise we may have to add a read-undef
528 // flag for subregister defs.
529 Register VReg
= LI
.reg();
530 if (MRI
->shouldTrackSubRegLiveness(VReg
)) {
531 if ((I
== LI
.begin() || std::prev(I
)->end
< Def
) && !VNI
->isPHIDef()) {
532 MachineInstr
*MI
= getInstructionFromIndex(Def
);
533 MI
->setRegisterDefReadUndef(VReg
);
537 if (I
->end
!= Def
.getDeadSlot())
539 if (VNI
->isPHIDef()) {
540 // This is a dead PHI. Remove it.
543 LLVM_DEBUG(dbgs() << "Dead PHI at " << Def
<< " may separate interval\n");
544 MayHaveSplitComponents
= true;
546 // This is a dead def. Make sure the instruction knows.
547 MachineInstr
*MI
= getInstructionFromIndex(Def
);
548 assert(MI
&& "No instruction defining live value");
549 MI
->addRegisterDead(LI
.reg(), TRI
);
551 MayHaveSplitComponents
= true;
554 if (dead
&& MI
->allDefsAreDead()) {
555 LLVM_DEBUG(dbgs() << "All defs dead: " << Def
<< '\t' << *MI
);
560 return MayHaveSplitComponents
;
563 void LiveIntervals::shrinkToUses(LiveInterval::SubRange
&SR
, Register Reg
) {
564 LLVM_DEBUG(dbgs() << "Shrink: " << SR
<< '\n');
565 assert(Register::isVirtualRegister(Reg
) &&
566 "Can only shrink virtual registers");
567 // Find all the values used, including PHI kills.
568 ShrinkToUsesWorkList WorkList
;
570 // Visit all instructions reading Reg.
572 for (MachineOperand
&MO
: MRI
->use_nodbg_operands(Reg
)) {
573 // Skip "undef" uses.
576 // Maybe the operand is for a subregister we don't care about.
577 unsigned SubReg
= MO
.getSubReg();
579 LaneBitmask LaneMask
= TRI
->getSubRegIndexLaneMask(SubReg
);
580 if ((LaneMask
& SR
.LaneMask
).none())
583 // We only need to visit each instruction once.
584 MachineInstr
*UseMI
= MO
.getParent();
585 SlotIndex Idx
= getInstructionIndex(*UseMI
).getRegSlot();
590 LiveQueryResult LRQ
= SR
.Query(Idx
);
591 VNInfo
*VNI
= LRQ
.valueIn();
592 // For Subranges it is possible that only undef values are left in that
593 // part of the subregister, so there is no real liverange at the use
597 // Special case: An early-clobber tied operand reads and writes the
598 // register one slot early.
599 if (VNInfo
*DefVNI
= LRQ
.valueDefined())
602 WorkList
.push_back(std::make_pair(Idx
, VNI
));
605 // Create a new live ranges with only minimal live segments per def.
607 createSegmentsForValues(NewLR
, make_range(SR
.vni_begin(), SR
.vni_end()));
608 extendSegmentsToUses(NewLR
, WorkList
, Reg
, SR
.LaneMask
);
610 // Move the trimmed ranges back.
611 SR
.segments
.swap(NewLR
.segments
);
613 // Remove dead PHI value numbers
614 for (VNInfo
*VNI
: SR
.valnos
) {
617 const LiveRange::Segment
*Segment
= SR
.getSegmentContaining(VNI
->def
);
618 assert(Segment
!= nullptr && "Missing segment for VNI");
619 if (Segment
->end
!= VNI
->def
.getDeadSlot())
621 if (VNI
->isPHIDef()) {
622 // This is a dead PHI. Remove it.
623 LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI
->def
624 << " may separate interval\n");
626 SR
.removeSegment(*Segment
);
630 LLVM_DEBUG(dbgs() << "Shrunk: " << SR
<< '\n');
633 void LiveIntervals::extendToIndices(LiveRange
&LR
,
634 ArrayRef
<SlotIndex
> Indices
,
635 ArrayRef
<SlotIndex
> Undefs
) {
636 assert(LICalc
&& "LICalc not initialized.");
637 LICalc
->reset(MF
, getSlotIndexes(), DomTree
, &getVNInfoAllocator());
638 for (SlotIndex Idx
: Indices
)
639 LICalc
->extend(LR
, Idx
, /*PhysReg=*/0, Undefs
);
642 void LiveIntervals::pruneValue(LiveRange
&LR
, SlotIndex Kill
,
643 SmallVectorImpl
<SlotIndex
> *EndPoints
) {
644 LiveQueryResult LRQ
= LR
.Query(Kill
);
645 VNInfo
*VNI
= LRQ
.valueOutOrDead();
649 MachineBasicBlock
*KillMBB
= Indexes
->getMBBFromIndex(Kill
);
650 SlotIndex MBBEnd
= Indexes
->getMBBEndIdx(KillMBB
);
652 // If VNI isn't live out from KillMBB, the value is trivially pruned.
653 if (LRQ
.endPoint() < MBBEnd
) {
654 LR
.removeSegment(Kill
, LRQ
.endPoint());
655 if (EndPoints
) EndPoints
->push_back(LRQ
.endPoint());
659 // VNI is live out of KillMBB.
660 LR
.removeSegment(Kill
, MBBEnd
);
661 if (EndPoints
) EndPoints
->push_back(MBBEnd
);
663 // Find all blocks that are reachable from KillMBB without leaving VNI's live
664 // range. It is possible that KillMBB itself is reachable, so start a DFS
665 // from each successor.
666 using VisitedTy
= df_iterator_default_set
<MachineBasicBlock
*,9>;
668 for (MachineBasicBlock
*Succ
: KillMBB
->successors()) {
669 for (df_ext_iterator
<MachineBasicBlock
*, VisitedTy
>
670 I
= df_ext_begin(Succ
, Visited
), E
= df_ext_end(Succ
, Visited
);
672 MachineBasicBlock
*MBB
= *I
;
674 // Check if VNI is live in to MBB.
675 SlotIndex MBBStart
, MBBEnd
;
676 std::tie(MBBStart
, MBBEnd
) = Indexes
->getMBBRange(MBB
);
677 LiveQueryResult LRQ
= LR
.Query(MBBStart
);
678 if (LRQ
.valueIn() != VNI
) {
679 // This block isn't part of the VNI segment. Prune the search.
684 // Prune the search if VNI is killed in MBB.
685 if (LRQ
.endPoint() < MBBEnd
) {
686 LR
.removeSegment(MBBStart
, LRQ
.endPoint());
687 if (EndPoints
) EndPoints
->push_back(LRQ
.endPoint());
692 // VNI is live through MBB.
693 LR
.removeSegment(MBBStart
, MBBEnd
);
694 if (EndPoints
) EndPoints
->push_back(MBBEnd
);
700 //===----------------------------------------------------------------------===//
701 // Register allocator hooks.
704 void LiveIntervals::addKillFlags(const VirtRegMap
*VRM
) {
705 // Keep track of regunit ranges.
706 SmallVector
<std::pair
<const LiveRange
*, LiveRange::const_iterator
>, 8> RU
;
708 for (unsigned i
= 0, e
= MRI
->getNumVirtRegs(); i
!= e
; ++i
) {
709 Register Reg
= Register::index2VirtReg(i
);
710 if (MRI
->reg_nodbg_empty(Reg
))
712 const LiveInterval
&LI
= getInterval(Reg
);
716 // Target may have not allocated this yet.
717 Register PhysReg
= VRM
->getPhys(Reg
);
721 // Find the regunit intervals for the assigned register. They may overlap
722 // the virtual register live range, cancelling any kills.
724 for (MCRegUnitIterator
Unit(PhysReg
, TRI
); Unit
.isValid();
726 const LiveRange
&RURange
= getRegUnit(*Unit
);
729 RU
.push_back(std::make_pair(&RURange
, RURange
.find(LI
.begin()->end
)));
731 // Every instruction that kills Reg corresponds to a segment range end
733 for (LiveInterval::const_iterator RI
= LI
.begin(), RE
= LI
.end(); RI
!= RE
;
735 // A block index indicates an MBB edge.
736 if (RI
->end
.isBlock())
738 MachineInstr
*MI
= getInstructionFromIndex(RI
->end
);
742 // Check if any of the regunits are live beyond the end of RI. That could
743 // happen when a physreg is defined as a copy of a virtreg:
746 // FOO %5 <--- MI, cancel kill because %eax is live.
749 // There should be no kill flag on FOO when %5 is rewritten as %eax.
750 for (auto &RUP
: RU
) {
751 const LiveRange
&RURange
= *RUP
.first
;
752 LiveRange::const_iterator
&I
= RUP
.second
;
753 if (I
== RURange
.end())
755 I
= RURange
.advanceTo(I
, RI
->end
);
756 if (I
== RURange
.end() || I
->start
>= RI
->end
)
758 // I is overlapping RI.
762 if (MRI
->subRegLivenessEnabled()) {
763 // When reading a partial undefined value we must not add a kill flag.
764 // The regalloc might have used the undef lane for something else.
766 // %1 = ... ; R32: %1
767 // %2:high16 = ... ; R64: %2
768 // = read killed %2 ; R64: %2
769 // = read %1 ; R32: %1
770 // The <kill> flag is correct for %2, but the register allocator may
771 // assign R0L to %1, and R0 to %2 because the low 32bits of R0
772 // are actually never written by %2. After assignment the <kill>
773 // flag at the read instruction is invalid.
774 LaneBitmask DefinedLanesMask
;
775 if (LI
.hasSubRanges()) {
776 // Compute a mask of lanes that are defined.
777 DefinedLanesMask
= LaneBitmask::getNone();
778 for (const LiveInterval::SubRange
&SR
: LI
.subranges())
779 for (const LiveRange::Segment
&Segment
: SR
.segments
) {
780 if (Segment
.start
>= RI
->end
)
782 if (Segment
.end
== RI
->end
) {
783 DefinedLanesMask
|= SR
.LaneMask
;
788 DefinedLanesMask
= LaneBitmask::getAll();
790 bool IsFullWrite
= false;
791 for (const MachineOperand
&MO
: MI
->operands()) {
792 if (!MO
.isReg() || MO
.getReg() != Reg
)
795 // Reading any undefined lanes?
796 unsigned SubReg
= MO
.getSubReg();
797 LaneBitmask UseMask
= SubReg
? TRI
->getSubRegIndexLaneMask(SubReg
)
798 : MRI
->getMaxLaneMaskForVReg(Reg
);
799 if ((UseMask
& ~DefinedLanesMask
).any())
801 } else if (MO
.getSubReg() == 0) {
802 // Writing to the full register?
808 // If an instruction writes to a subregister, a new segment starts in
809 // the LiveInterval. But as this is only overriding part of the register
810 // adding kill-flags is not correct here after registers have been
813 // Next segment has to be adjacent in the subregister write case.
814 LiveRange::const_iterator N
= std::next(RI
);
815 if (N
!= LI
.end() && N
->start
== RI
->end
)
820 MI
->addRegisterKilled(Reg
, nullptr);
823 MI
->clearRegisterKills(Reg
, nullptr);
829 LiveIntervals::intervalIsInOneMBB(const LiveInterval
&LI
) const {
830 // A local live range must be fully contained inside the block, meaning it is
831 // defined and killed at instructions, not at block boundaries. It is not
832 // live in or out of any block.
834 // It is technically possible to have a PHI-defined live range identical to a
835 // single block, but we are going to return false in that case.
837 SlotIndex Start
= LI
.beginIndex();
841 SlotIndex Stop
= LI
.endIndex();
845 // getMBBFromIndex doesn't need to search the MBB table when both indexes
846 // belong to proper instructions.
847 MachineBasicBlock
*MBB1
= Indexes
->getMBBFromIndex(Start
);
848 MachineBasicBlock
*MBB2
= Indexes
->getMBBFromIndex(Stop
);
849 return MBB1
== MBB2
? MBB1
: nullptr;
853 LiveIntervals::hasPHIKill(const LiveInterval
&LI
, const VNInfo
*VNI
) const {
854 for (const VNInfo
*PHI
: LI
.valnos
) {
855 if (PHI
->isUnused() || !PHI
->isPHIDef())
857 const MachineBasicBlock
*PHIMBB
= getMBBFromIndex(PHI
->def
);
858 // Conservatively return true instead of scanning huge predecessor lists.
859 if (PHIMBB
->pred_size() > 100)
861 for (const MachineBasicBlock
*Pred
: PHIMBB
->predecessors())
862 if (VNI
== LI
.getVNInfoBefore(Indexes
->getMBBEndIdx(Pred
)))
868 float LiveIntervals::getSpillWeight(bool isDef
, bool isUse
,
869 const MachineBlockFrequencyInfo
*MBFI
,
870 const MachineInstr
&MI
) {
871 return getSpillWeight(isDef
, isUse
, MBFI
, MI
.getParent());
874 float LiveIntervals::getSpillWeight(bool isDef
, bool isUse
,
875 const MachineBlockFrequencyInfo
*MBFI
,
876 const MachineBasicBlock
*MBB
) {
877 return (isDef
+ isUse
) * MBFI
->getBlockFreqRelativeToEntryBlock(MBB
);
881 LiveIntervals::addSegmentToEndOfBlock(Register Reg
, MachineInstr
&startInst
) {
882 LiveInterval
&Interval
= createEmptyInterval(Reg
);
883 VNInfo
*VN
= Interval
.getNextValue(
884 SlotIndex(getInstructionIndex(startInst
).getRegSlot()),
885 getVNInfoAllocator());
886 LiveRange::Segment
S(SlotIndex(getInstructionIndex(startInst
).getRegSlot()),
887 getMBBEndIdx(startInst
.getParent()), VN
);
888 Interval
.addSegment(S
);
893 //===----------------------------------------------------------------------===//
894 // Register mask functions
895 //===----------------------------------------------------------------------===//
896 /// Check whether use of reg in MI is live-through. Live-through means that
897 /// the value is alive on exit from Machine instruction. The example of such
898 /// use is a deopt value in statepoint instruction.
899 static bool hasLiveThroughUse(const MachineInstr
*MI
, Register Reg
) {
900 if (MI
->getOpcode() != TargetOpcode::STATEPOINT
)
902 StatepointOpers
SO(MI
);
903 if (SO
.getFlags() & (uint64_t)StatepointFlags::DeoptLiveIn
)
905 for (unsigned Idx
= SO
.getNumDeoptArgsIdx(), E
= SO
.getNumGCPtrIdx(); Idx
< E
;
907 const MachineOperand
&MO
= MI
->getOperand(Idx
);
908 if (MO
.isReg() && MO
.getReg() == Reg
)
914 bool LiveIntervals::checkRegMaskInterference(LiveInterval
&LI
,
915 BitVector
&UsableRegs
) {
918 LiveInterval::iterator LiveI
= LI
.begin(), LiveE
= LI
.end();
920 // Use a smaller arrays for local live ranges.
921 ArrayRef
<SlotIndex
> Slots
;
922 ArrayRef
<const uint32_t*> Bits
;
923 if (MachineBasicBlock
*MBB
= intervalIsInOneMBB(LI
)) {
924 Slots
= getRegMaskSlotsInBlock(MBB
->getNumber());
925 Bits
= getRegMaskBitsInBlock(MBB
->getNumber());
927 Slots
= getRegMaskSlots();
928 Bits
= getRegMaskBits();
931 // We are going to enumerate all the register mask slots contained in LI.
932 // Start with a binary search of RegMaskSlots to find a starting point.
933 ArrayRef
<SlotIndex
>::iterator SlotI
= llvm::lower_bound(Slots
, LiveI
->start
);
934 ArrayRef
<SlotIndex
>::iterator SlotE
= Slots
.end();
936 // No slots in range, LI begins after the last call.
941 // Utility to union regmasks.
942 auto unionBitMask
= [&](unsigned Idx
) {
944 // This is the first overlap. Initialize UsableRegs to all ones.
946 UsableRegs
.resize(TRI
->getNumRegs(), true);
949 // Remove usable registers clobbered by this mask.
950 UsableRegs
.clearBitsNotInMask(Bits
[Idx
]);
953 assert(*SlotI
>= LiveI
->start
);
954 // Loop over all slots overlapping this segment.
955 while (*SlotI
< LiveI
->end
) {
956 // *SlotI overlaps LI. Collect mask bits.
957 unionBitMask(SlotI
- Slots
.begin());
958 if (++SlotI
== SlotE
)
961 // If segment ends with live-through use we need to collect its regmask.
962 if (*SlotI
== LiveI
->end
)
963 if (MachineInstr
*MI
= getInstructionFromIndex(*SlotI
))
964 if (hasLiveThroughUse(MI
, LI
.reg()))
965 unionBitMask(SlotI
++ - Slots
.begin());
966 // *SlotI is beyond the current LI segment.
967 // Special advance implementation to not miss next LiveI->end.
968 if (++LiveI
== LiveE
|| SlotI
== SlotE
|| *SlotI
> LI
.endIndex())
970 while (LiveI
->end
< *SlotI
)
972 // Advance SlotI until it overlaps.
973 while (*SlotI
< LiveI
->start
)
974 if (++SlotI
== SlotE
)
979 //===----------------------------------------------------------------------===//
980 // IntervalUpdate class.
981 //===----------------------------------------------------------------------===//
983 /// Toolkit used by handleMove to trim or extend live intervals.
984 class LiveIntervals::HMEditor
{
987 const MachineRegisterInfo
& MRI
;
988 const TargetRegisterInfo
& TRI
;
991 SmallPtrSet
<LiveRange
*, 8> Updated
;
995 HMEditor(LiveIntervals
& LIS
, const MachineRegisterInfo
& MRI
,
996 const TargetRegisterInfo
& TRI
,
997 SlotIndex OldIdx
, SlotIndex NewIdx
, bool UpdateFlags
)
998 : LIS(LIS
), MRI(MRI
), TRI(TRI
), OldIdx(OldIdx
), NewIdx(NewIdx
),
999 UpdateFlags(UpdateFlags
) {}
1001 // FIXME: UpdateFlags is a workaround that creates live intervals for all
1002 // physregs, even those that aren't needed for regalloc, in order to update
1003 // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
1004 // flags, and postRA passes will use a live register utility instead.
1005 LiveRange
*getRegUnitLI(unsigned Unit
) {
1006 if (UpdateFlags
&& !MRI
.isReservedRegUnit(Unit
))
1007 return &LIS
.getRegUnit(Unit
);
1008 return LIS
.getCachedRegUnit(Unit
);
1011 /// Update all live ranges touched by MI, assuming a move from OldIdx to
1013 void updateAllRanges(MachineInstr
*MI
) {
1014 LLVM_DEBUG(dbgs() << "handleMove " << OldIdx
<< " -> " << NewIdx
<< ": "
1016 bool hasRegMask
= false;
1017 for (MachineOperand
&MO
: MI
->operands()) {
1025 // Aggressively clear all kill flags.
1026 // They are reinserted by VirtRegRewriter.
1027 MO
.setIsKill(false);
1030 Register Reg
= MO
.getReg();
1033 if (Register::isVirtualRegister(Reg
)) {
1034 LiveInterval
&LI
= LIS
.getInterval(Reg
);
1035 if (LI
.hasSubRanges()) {
1036 unsigned SubReg
= MO
.getSubReg();
1037 LaneBitmask LaneMask
= SubReg
? TRI
.getSubRegIndexLaneMask(SubReg
)
1038 : MRI
.getMaxLaneMaskForVReg(Reg
);
1039 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
1040 if ((S
.LaneMask
& LaneMask
).none())
1042 updateRange(S
, Reg
, S
.LaneMask
);
1045 updateRange(LI
, Reg
, LaneBitmask::getNone());
1046 // If main range has a hole and we are moving a subrange use across
1047 // the hole updateRange() cannot properly handle it since it only
1048 // gets the LiveRange and not the whole LiveInterval. As a result
1049 // we may end up with a main range not covering all subranges.
1050 // This is extremely rare case, so let's check and reconstruct the
1052 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
1056 LIS
.constructMainRangeFromSubranges(LI
);
1063 // For physregs, only update the regunits that actually have a
1064 // precomputed live range.
1065 for (MCRegUnitIterator
Units(Reg
.asMCReg(), &TRI
); Units
.isValid();
1067 if (LiveRange
*LR
= getRegUnitLI(*Units
))
1068 updateRange(*LR
, *Units
, LaneBitmask::getNone());
1071 updateRegMaskSlots();
1075 /// Update a single live range, assuming an instruction has been moved from
1076 /// OldIdx to NewIdx.
1077 void updateRange(LiveRange
&LR
, Register Reg
, LaneBitmask LaneMask
) {
1078 if (!Updated
.insert(&LR
).second
)
1082 if (Register::isVirtualRegister(Reg
)) {
1083 dbgs() << printReg(Reg
);
1085 dbgs() << " L" << PrintLaneMask(LaneMask
);
1087 dbgs() << printRegUnit(Reg
, &TRI
);
1089 dbgs() << ":\t" << LR
<< '\n';
1091 if (SlotIndex::isEarlierInstr(OldIdx
, NewIdx
))
1094 handleMoveUp(LR
, Reg
, LaneMask
);
1095 LLVM_DEBUG(dbgs() << " -->\t" << LR
<< '\n');
1099 /// Update LR to reflect an instruction has been moved downwards from OldIdx
1100 /// to NewIdx (OldIdx < NewIdx).
1101 void handleMoveDown(LiveRange
&LR
) {
1102 LiveRange::iterator E
= LR
.end();
1103 // Segment going into OldIdx.
1104 LiveRange::iterator OldIdxIn
= LR
.find(OldIdx
.getBaseIndex());
1106 // No value live before or after OldIdx? Nothing to do.
1107 if (OldIdxIn
== E
|| SlotIndex::isEarlierInstr(OldIdx
, OldIdxIn
->start
))
1110 LiveRange::iterator OldIdxOut
;
1111 // Do we have a value live-in to OldIdx?
1112 if (SlotIndex::isEarlierInstr(OldIdxIn
->start
, OldIdx
)) {
1113 // If the live-in value already extends to NewIdx, there is nothing to do.
1114 if (SlotIndex::isEarlierEqualInstr(NewIdx
, OldIdxIn
->end
))
1116 // Aggressively remove all kill flags from the old kill point.
1117 // Kill flags shouldn't be used while live intervals exist, they will be
1118 // reinserted by VirtRegRewriter.
1119 if (MachineInstr
*KillMI
= LIS
.getInstructionFromIndex(OldIdxIn
->end
))
1120 for (MachineOperand
&MOP
: mi_bundle_ops(*KillMI
))
1121 if (MOP
.isReg() && MOP
.isUse())
1122 MOP
.setIsKill(false);
1124 // Is there a def before NewIdx which is not OldIdx?
1125 LiveRange::iterator Next
= std::next(OldIdxIn
);
1126 if (Next
!= E
&& !SlotIndex::isSameInstr(OldIdx
, Next
->start
) &&
1127 SlotIndex::isEarlierInstr(Next
->start
, NewIdx
)) {
1128 // If we are here then OldIdx was just a use but not a def. We only have
1129 // to ensure liveness extends to NewIdx.
1130 LiveRange::iterator NewIdxIn
=
1131 LR
.advanceTo(Next
, NewIdx
.getBaseIndex());
1132 // Extend the segment before NewIdx if necessary.
1133 if (NewIdxIn
== E
||
1134 !SlotIndex::isEarlierInstr(NewIdxIn
->start
, NewIdx
)) {
1135 LiveRange::iterator Prev
= std::prev(NewIdxIn
);
1136 Prev
->end
= NewIdx
.getRegSlot();
1139 OldIdxIn
->end
= Next
->start
;
1143 // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
1144 // invalid by overlapping ranges.
1145 bool isKill
= SlotIndex::isSameInstr(OldIdx
, OldIdxIn
->end
);
1146 OldIdxIn
->end
= NewIdx
.getRegSlot(OldIdxIn
->end
.isEarlyClobber());
1147 // If this was not a kill, then there was no def and we're done.
1151 // Did we have a Def at OldIdx?
1153 if (OldIdxOut
== E
|| !SlotIndex::isSameInstr(OldIdx
, OldIdxOut
->start
))
1156 OldIdxOut
= OldIdxIn
;
1159 // If we are here then there is a Definition at OldIdx. OldIdxOut points
1160 // to the segment starting there.
1161 assert(OldIdxOut
!= E
&& SlotIndex::isSameInstr(OldIdx
, OldIdxOut
->start
) &&
1163 VNInfo
*OldIdxVNI
= OldIdxOut
->valno
;
1164 assert(OldIdxVNI
->def
== OldIdxOut
->start
&& "Inconsistent def");
1166 // If the defined value extends beyond NewIdx, just move the beginning
1167 // of the segment to NewIdx.
1168 SlotIndex NewIdxDef
= NewIdx
.getRegSlot(OldIdxOut
->start
.isEarlyClobber());
1169 if (SlotIndex::isEarlierInstr(NewIdxDef
, OldIdxOut
->end
)) {
1170 OldIdxVNI
->def
= NewIdxDef
;
1171 OldIdxOut
->start
= OldIdxVNI
->def
;
1175 // If we are here then we have a Definition at OldIdx which ends before
1178 // Is there an existing Def at NewIdx?
1179 LiveRange::iterator AfterNewIdx
1180 = LR
.advanceTo(OldIdxOut
, NewIdx
.getRegSlot());
1181 bool OldIdxDefIsDead
= OldIdxOut
->end
.isDead();
1182 if (!OldIdxDefIsDead
&&
1183 SlotIndex::isEarlierInstr(OldIdxOut
->end
, NewIdxDef
)) {
1184 // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
1186 if (OldIdxOut
!= LR
.begin() &&
1187 !SlotIndex::isEarlierInstr(std::prev(OldIdxOut
)->end
,
1188 OldIdxOut
->start
)) {
1189 // There is no gap between OldIdxOut and its predecessor anymore,
1191 LiveRange::iterator IPrev
= std::prev(OldIdxOut
);
1193 IPrev
->end
= OldIdxOut
->end
;
1195 // The value is live in to OldIdx
1196 LiveRange::iterator INext
= std::next(OldIdxOut
);
1197 assert(INext
!= E
&& "Must have following segment");
1198 // We merge OldIdxOut and its successor. As we're dealing with subreg
1199 // reordering, there is always a successor to OldIdxOut in the same BB
1200 // We don't need INext->valno anymore and will reuse for the new segment
1203 INext
->start
= OldIdxOut
->end
;
1204 INext
->valno
->def
= INext
->start
;
1206 // If NewIdx is behind the last segment, extend that and append a new one.
1207 if (AfterNewIdx
== E
) {
1208 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1210 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
1211 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
1212 std::copy(std::next(OldIdxOut
), E
, OldIdxOut
);
1213 // The last segment is undefined now, reuse it for a dead def.
1214 LiveRange::iterator NewSegment
= std::prev(E
);
1215 *NewSegment
= LiveRange::Segment(NewIdxDef
, NewIdxDef
.getDeadSlot(),
1217 DefVNI
->def
= NewIdxDef
;
1219 LiveRange::iterator Prev
= std::prev(NewSegment
);
1220 Prev
->end
= NewIdxDef
;
1222 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1224 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
1225 // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
1226 std::copy(std::next(OldIdxOut
), std::next(AfterNewIdx
), OldIdxOut
);
1227 LiveRange::iterator Prev
= std::prev(AfterNewIdx
);
1228 // We have two cases:
1229 if (SlotIndex::isEarlierInstr(Prev
->start
, NewIdxDef
)) {
1230 // Case 1: NewIdx is inside a liverange. Split this liverange at
1231 // NewIdxDef into the segment "Prev" followed by "NewSegment".
1232 LiveRange::iterator NewSegment
= AfterNewIdx
;
1233 *NewSegment
= LiveRange::Segment(NewIdxDef
, Prev
->end
, Prev
->valno
);
1234 Prev
->valno
->def
= NewIdxDef
;
1236 *Prev
= LiveRange::Segment(Prev
->start
, NewIdxDef
, DefVNI
);
1237 DefVNI
->def
= Prev
->start
;
1239 // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
1240 // turn Prev into a segment from NewIdx to AfterNewIdx->start.
1241 *Prev
= LiveRange::Segment(NewIdxDef
, AfterNewIdx
->start
, DefVNI
);
1242 DefVNI
->def
= NewIdxDef
;
1243 assert(DefVNI
!= AfterNewIdx
->valno
);
1249 if (AfterNewIdx
!= E
&&
1250 SlotIndex::isSameInstr(AfterNewIdx
->start
, NewIdxDef
)) {
1251 // There is an existing def at NewIdx. The def at OldIdx is coalesced into
1253 assert(AfterNewIdx
->valno
!= OldIdxVNI
&& "Multiple defs of value?");
1254 LR
.removeValNo(OldIdxVNI
);
1256 // There was no existing def at NewIdx. We need to create a dead def
1257 // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
1258 // a new segment at the place where we want to construct the dead def.
1259 // |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
1260 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
1261 assert(AfterNewIdx
!= OldIdxOut
&& "Inconsistent iterators");
1262 std::copy(std::next(OldIdxOut
), AfterNewIdx
, OldIdxOut
);
1263 // We can reuse OldIdxVNI now.
1264 LiveRange::iterator NewSegment
= std::prev(AfterNewIdx
);
1265 VNInfo
*NewSegmentVNI
= OldIdxVNI
;
1266 NewSegmentVNI
->def
= NewIdxDef
;
1267 *NewSegment
= LiveRange::Segment(NewIdxDef
, NewIdxDef
.getDeadSlot(),
1272 /// Update LR to reflect an instruction has been moved upwards from OldIdx
1273 /// to NewIdx (NewIdx < OldIdx).
1274 void handleMoveUp(LiveRange
&LR
, Register Reg
, LaneBitmask LaneMask
) {
1275 LiveRange::iterator E
= LR
.end();
1276 // Segment going into OldIdx.
1277 LiveRange::iterator OldIdxIn
= LR
.find(OldIdx
.getBaseIndex());
1279 // No value live before or after OldIdx? Nothing to do.
1280 if (OldIdxIn
== E
|| SlotIndex::isEarlierInstr(OldIdx
, OldIdxIn
->start
))
1283 LiveRange::iterator OldIdxOut
;
1284 // Do we have a value live-in to OldIdx?
1285 if (SlotIndex::isEarlierInstr(OldIdxIn
->start
, OldIdx
)) {
1286 // If the live-in value isn't killed here, then we have no Def at
1287 // OldIdx, moreover the value must be live at NewIdx so there is nothing
1289 bool isKill
= SlotIndex::isSameInstr(OldIdx
, OldIdxIn
->end
);
1293 // At this point we have to move OldIdxIn->end back to the nearest
1294 // previous use or (dead-)def but no further than NewIdx.
1295 SlotIndex DefBeforeOldIdx
1296 = std::max(OldIdxIn
->start
.getDeadSlot(),
1297 NewIdx
.getRegSlot(OldIdxIn
->end
.isEarlyClobber()));
1298 OldIdxIn
->end
= findLastUseBefore(DefBeforeOldIdx
, Reg
, LaneMask
);
1300 // Did we have a Def at OldIdx? If not we are done now.
1301 OldIdxOut
= std::next(OldIdxIn
);
1302 if (OldIdxOut
== E
|| !SlotIndex::isSameInstr(OldIdx
, OldIdxOut
->start
))
1305 OldIdxOut
= OldIdxIn
;
1306 OldIdxIn
= OldIdxOut
!= LR
.begin() ? std::prev(OldIdxOut
) : E
;
1309 // If we are here then there is a Definition at OldIdx. OldIdxOut points
1310 // to the segment starting there.
1311 assert(OldIdxOut
!= E
&& SlotIndex::isSameInstr(OldIdx
, OldIdxOut
->start
) &&
1313 VNInfo
*OldIdxVNI
= OldIdxOut
->valno
;
1314 assert(OldIdxVNI
->def
== OldIdxOut
->start
&& "Inconsistent def");
1315 bool OldIdxDefIsDead
= OldIdxOut
->end
.isDead();
1317 // Is there an existing def at NewIdx?
1318 SlotIndex NewIdxDef
= NewIdx
.getRegSlot(OldIdxOut
->start
.isEarlyClobber());
1319 LiveRange::iterator NewIdxOut
= LR
.find(NewIdx
.getRegSlot());
1320 if (SlotIndex::isSameInstr(NewIdxOut
->start
, NewIdx
)) {
1321 assert(NewIdxOut
->valno
!= OldIdxVNI
&&
1322 "Same value defined more than once?");
1323 // If OldIdx was a dead def remove it.
1324 if (!OldIdxDefIsDead
) {
1325 // Remove segment starting at NewIdx and move begin of OldIdxOut to
1326 // NewIdx so it can take its place.
1327 OldIdxVNI
->def
= NewIdxDef
;
1328 OldIdxOut
->start
= NewIdxDef
;
1329 LR
.removeValNo(NewIdxOut
->valno
);
1331 // Simply remove the dead def at OldIdx.
1332 LR
.removeValNo(OldIdxVNI
);
1335 // Previously nothing was live after NewIdx, so all we have to do now is
1336 // move the begin of OldIdxOut to NewIdx.
1337 if (!OldIdxDefIsDead
) {
1338 // Do we have any intermediate Defs between OldIdx and NewIdx?
1339 if (OldIdxIn
!= E
&&
1340 SlotIndex::isEarlierInstr(NewIdxDef
, OldIdxIn
->start
)) {
1341 // OldIdx is not a dead def and NewIdx is before predecessor start.
1342 LiveRange::iterator NewIdxIn
= NewIdxOut
;
1343 assert(NewIdxIn
== LR
.find(NewIdx
.getBaseIndex()));
1344 const SlotIndex SplitPos
= NewIdxDef
;
1345 OldIdxVNI
= OldIdxIn
->valno
;
1347 SlotIndex NewDefEndPoint
= std::next(NewIdxIn
)->end
;
1348 LiveRange::iterator Prev
= std::prev(OldIdxIn
);
1349 if (OldIdxIn
!= LR
.begin() &&
1350 SlotIndex::isEarlierInstr(NewIdx
, Prev
->end
)) {
1351 // If the segment before OldIdx read a value defined earlier than
1352 // NewIdx, the moved instruction also reads and forwards that
1353 // value. Extend the lifetime of the new def point.
1355 // Extend to where the previous range started, unless there is
1356 // another redef first.
1357 NewDefEndPoint
= std::min(OldIdxIn
->start
,
1358 std::next(NewIdxOut
)->start
);
1361 // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
1362 OldIdxOut
->valno
->def
= OldIdxIn
->start
;
1363 *OldIdxOut
= LiveRange::Segment(OldIdxIn
->start
, OldIdxOut
->end
,
1365 // OldIdxIn and OldIdxVNI are now undef and can be overridden.
1366 // We Slide [NewIdxIn, OldIdxIn) down one position.
1367 // |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
1368 // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
1369 std::copy_backward(NewIdxIn
, OldIdxIn
, OldIdxOut
);
1370 // NewIdxIn is now considered undef so we can reuse it for the moved
1372 LiveRange::iterator NewSegment
= NewIdxIn
;
1373 LiveRange::iterator Next
= std::next(NewSegment
);
1374 if (SlotIndex::isEarlierInstr(Next
->start
, NewIdx
)) {
1375 // There is no gap between NewSegment and its predecessor.
1376 *NewSegment
= LiveRange::Segment(Next
->start
, SplitPos
,
1379 *Next
= LiveRange::Segment(SplitPos
, NewDefEndPoint
, OldIdxVNI
);
1380 Next
->valno
->def
= SplitPos
;
1382 // There is a gap between NewSegment and its predecessor
1383 // Value becomes live in.
1384 *NewSegment
= LiveRange::Segment(SplitPos
, Next
->start
, OldIdxVNI
);
1385 NewSegment
->valno
->def
= SplitPos
;
1388 // Leave the end point of a live def.
1389 OldIdxOut
->start
= NewIdxDef
;
1390 OldIdxVNI
->def
= NewIdxDef
;
1391 if (OldIdxIn
!= E
&& SlotIndex::isEarlierInstr(NewIdx
, OldIdxIn
->end
))
1392 OldIdxIn
->end
= NewIdxDef
;
1394 } else if (OldIdxIn
!= E
1395 && SlotIndex::isEarlierInstr(NewIdxOut
->start
, NewIdx
)
1396 && SlotIndex::isEarlierInstr(NewIdx
, NewIdxOut
->end
)) {
1397 // OldIdxVNI is a dead def that has been moved into the middle of
1398 // another value in LR. That can happen when LR is a whole register,
1399 // but the dead def is a write to a subreg that is dead at NewIdx.
1400 // The dead def may have been moved across other values
1401 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1402 // down one position.
1403 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1404 // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1405 std::copy_backward(NewIdxOut
, OldIdxOut
, std::next(OldIdxOut
));
1406 // Modify the segment at NewIdxOut and the following segment to meet at
1407 // the point of the dead def, with the following segment getting
1408 // OldIdxVNI as its value number.
1409 *NewIdxOut
= LiveRange::Segment(
1410 NewIdxOut
->start
, NewIdxDef
.getRegSlot(), NewIdxOut
->valno
);
1411 *(NewIdxOut
+ 1) = LiveRange::Segment(
1412 NewIdxDef
.getRegSlot(), (NewIdxOut
+ 1)->end
, OldIdxVNI
);
1413 OldIdxVNI
->def
= NewIdxDef
;
1414 // Modify subsequent segments to be defined by the moved def OldIdxVNI.
1415 for (auto Idx
= NewIdxOut
+ 2; Idx
<= OldIdxOut
; ++Idx
)
1416 Idx
->valno
= OldIdxVNI
;
1417 // Aggressively remove all dead flags from the former dead definition.
1418 // Kill/dead flags shouldn't be used while live intervals exist; they
1419 // will be reinserted by VirtRegRewriter.
1420 if (MachineInstr
*KillMI
= LIS
.getInstructionFromIndex(NewIdx
))
1421 for (MIBundleOperands
MO(*KillMI
); MO
.isValid(); ++MO
)
1422 if (MO
->isReg() && !MO
->isUse())
1423 MO
->setIsDead(false);
1425 // OldIdxVNI is a dead def. It may have been moved across other values
1426 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1427 // down one position.
1428 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1429 // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1430 std::copy_backward(NewIdxOut
, OldIdxOut
, std::next(OldIdxOut
));
1431 // OldIdxVNI can be reused now to build a new dead def segment.
1432 LiveRange::iterator NewSegment
= NewIdxOut
;
1433 VNInfo
*NewSegmentVNI
= OldIdxVNI
;
1434 *NewSegment
= LiveRange::Segment(NewIdxDef
, NewIdxDef
.getDeadSlot(),
1436 NewSegmentVNI
->def
= NewIdxDef
;
1441 void updateRegMaskSlots() {
1442 SmallVectorImpl
<SlotIndex
>::iterator RI
=
1443 llvm::lower_bound(LIS
.RegMaskSlots
, OldIdx
);
1444 assert(RI
!= LIS
.RegMaskSlots
.end() && *RI
== OldIdx
.getRegSlot() &&
1445 "No RegMask at OldIdx.");
1446 *RI
= NewIdx
.getRegSlot();
1447 assert((RI
== LIS
.RegMaskSlots
.begin() ||
1448 SlotIndex::isEarlierInstr(*std::prev(RI
), *RI
)) &&
1449 "Cannot move regmask instruction above another call");
1450 assert((std::next(RI
) == LIS
.RegMaskSlots
.end() ||
1451 SlotIndex::isEarlierInstr(*RI
, *std::next(RI
))) &&
1452 "Cannot move regmask instruction below another call");
1455 // Return the last use of reg between NewIdx and OldIdx.
1456 SlotIndex
findLastUseBefore(SlotIndex Before
, Register Reg
,
1457 LaneBitmask LaneMask
) {
1458 if (Register::isVirtualRegister(Reg
)) {
1459 SlotIndex LastUse
= Before
;
1460 for (MachineOperand
&MO
: MRI
.use_nodbg_operands(Reg
)) {
1463 unsigned SubReg
= MO
.getSubReg();
1464 if (SubReg
!= 0 && LaneMask
.any()
1465 && (TRI
.getSubRegIndexLaneMask(SubReg
) & LaneMask
).none())
1468 const MachineInstr
&MI
= *MO
.getParent();
1469 SlotIndex InstSlot
= LIS
.getSlotIndexes()->getInstructionIndex(MI
);
1470 if (InstSlot
> LastUse
&& InstSlot
< OldIdx
)
1471 LastUse
= InstSlot
.getRegSlot();
1476 // This is a regunit interval, so scanning the use list could be very
1477 // expensive. Scan upwards from OldIdx instead.
1478 assert(Before
< OldIdx
&& "Expected upwards move");
1479 SlotIndexes
*Indexes
= LIS
.getSlotIndexes();
1480 MachineBasicBlock
*MBB
= Indexes
->getMBBFromIndex(Before
);
1482 // OldIdx may not correspond to an instruction any longer, so set MII to
1483 // point to the next instruction after OldIdx, or MBB->end().
1484 MachineBasicBlock::iterator MII
= MBB
->end();
1485 if (MachineInstr
*MI
= Indexes
->getInstructionFromIndex(
1486 Indexes
->getNextNonNullIndex(OldIdx
)))
1487 if (MI
->getParent() == MBB
)
1490 MachineBasicBlock::iterator Begin
= MBB
->begin();
1491 while (MII
!= Begin
) {
1492 if ((--MII
)->isDebugOrPseudoInstr())
1494 SlotIndex Idx
= Indexes
->getInstructionIndex(*MII
);
1496 // Stop searching when Before is reached.
1497 if (!SlotIndex::isEarlierInstr(Before
, Idx
))
1500 // Check if MII uses Reg.
1501 for (MIBundleOperands
MO(*MII
); MO
.isValid(); ++MO
)
1502 if (MO
->isReg() && !MO
->isUndef() &&
1503 Register::isPhysicalRegister(MO
->getReg()) &&
1504 TRI
.hasRegUnit(MO
->getReg(), Reg
))
1505 return Idx
.getRegSlot();
1507 // Didn't reach Before. It must be the first instruction in the block.
1512 void LiveIntervals::handleMove(MachineInstr
&MI
, bool UpdateFlags
) {
1513 // It is fine to move a bundle as a whole, but not an individual instruction
1515 assert((!MI
.isBundled() || MI
.getOpcode() == TargetOpcode::BUNDLE
) &&
1516 "Cannot move instruction in bundle");
1517 SlotIndex OldIndex
= Indexes
->getInstructionIndex(MI
);
1518 Indexes
->removeMachineInstrFromMaps(MI
);
1519 SlotIndex NewIndex
= Indexes
->insertMachineInstrInMaps(MI
);
1520 assert(getMBBStartIdx(MI
.getParent()) <= OldIndex
&&
1521 OldIndex
< getMBBEndIdx(MI
.getParent()) &&
1522 "Cannot handle moves across basic block boundaries.");
1524 HMEditor
HME(*this, *MRI
, *TRI
, OldIndex
, NewIndex
, UpdateFlags
);
1525 HME
.updateAllRanges(&MI
);
1528 void LiveIntervals::handleMoveIntoNewBundle(MachineInstr
&BundleStart
,
1530 assert((BundleStart
.getOpcode() == TargetOpcode::BUNDLE
) &&
1531 "Bundle start is not a bundle");
1532 SmallVector
<SlotIndex
, 16> ToProcess
;
1533 const SlotIndex NewIndex
= Indexes
->insertMachineInstrInMaps(BundleStart
);
1534 auto BundleEnd
= getBundleEnd(BundleStart
.getIterator());
1536 auto I
= BundleStart
.getIterator();
1538 while (I
!= BundleEnd
) {
1539 if (!Indexes
->hasIndex(*I
))
1541 SlotIndex OldIndex
= Indexes
->getInstructionIndex(*I
, true);
1542 ToProcess
.push_back(OldIndex
);
1543 Indexes
->removeMachineInstrFromMaps(*I
, true);
1546 for (SlotIndex OldIndex
: ToProcess
) {
1547 HMEditor
HME(*this, *MRI
, *TRI
, OldIndex
, NewIndex
, UpdateFlags
);
1548 HME
.updateAllRanges(&BundleStart
);
1552 const SlotIndex Index
= getInstructionIndex(BundleStart
);
1553 for (unsigned Idx
= 0, E
= BundleStart
.getNumOperands(); Idx
!= E
; ++Idx
) {
1554 MachineOperand
&MO
= BundleStart
.getOperand(Idx
);
1557 Register Reg
= MO
.getReg();
1558 if (Reg
.isVirtual() && hasInterval(Reg
) && !MO
.isUndef()) {
1559 LiveInterval
&LI
= getInterval(Reg
);
1560 LiveQueryResult LRQ
= LI
.Query(Index
);
1561 if (LRQ
.isDeadDef())
1567 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin
,
1568 const MachineBasicBlock::iterator End
,
1569 const SlotIndex EndIdx
, LiveRange
&LR
,
1571 LaneBitmask LaneMask
) {
1572 LiveInterval::iterator LII
= LR
.find(EndIdx
);
1573 SlotIndex lastUseIdx
;
1574 if (LII
== LR
.begin()) {
1575 // This happens when the function is called for a subregister that only
1576 // occurs _after_ the range that is to be repaired.
1579 if (LII
!= LR
.end() && LII
->start
< EndIdx
)
1580 lastUseIdx
= LII
->end
;
1584 for (MachineBasicBlock::iterator I
= End
; I
!= Begin
;) {
1586 MachineInstr
&MI
= *I
;
1587 if (MI
.isDebugOrPseudoInstr())
1590 SlotIndex instrIdx
= getInstructionIndex(MI
);
1591 bool isStartValid
= getInstructionFromIndex(LII
->start
);
1592 bool isEndValid
= getInstructionFromIndex(LII
->end
);
1594 // FIXME: This doesn't currently handle early-clobber or multiple removed
1595 // defs inside of the region to repair.
1596 for (MachineInstr::mop_iterator OI
= MI
.operands_begin(),
1597 OE
= MI
.operands_end();
1599 const MachineOperand
&MO
= *OI
;
1600 if (!MO
.isReg() || MO
.getReg() != Reg
)
1603 unsigned SubReg
= MO
.getSubReg();
1604 LaneBitmask Mask
= TRI
->getSubRegIndexLaneMask(SubReg
);
1605 if ((Mask
& LaneMask
).none())
1609 if (!isStartValid
) {
1610 if (LII
->end
.isDead()) {
1611 SlotIndex prevStart
;
1612 if (LII
!= LR
.begin())
1613 prevStart
= std::prev(LII
)->start
;
1615 // FIXME: This could be more efficient if there was a
1616 // removeSegment method that returned an iterator.
1617 LR
.removeSegment(*LII
, true);
1618 if (prevStart
.isValid())
1619 LII
= LR
.find(prevStart
);
1623 LII
->start
= instrIdx
.getRegSlot();
1624 LII
->valno
->def
= instrIdx
.getRegSlot();
1625 if (MO
.getSubReg() && !MO
.isUndef())
1626 lastUseIdx
= instrIdx
.getRegSlot();
1628 lastUseIdx
= SlotIndex();
1633 if (!lastUseIdx
.isValid()) {
1634 VNInfo
*VNI
= LR
.getNextValue(instrIdx
.getRegSlot(), VNInfoAllocator
);
1635 LiveRange::Segment
S(instrIdx
.getRegSlot(),
1636 instrIdx
.getDeadSlot(), VNI
);
1637 LII
= LR
.addSegment(S
);
1638 } else if (LII
->start
!= instrIdx
.getRegSlot()) {
1639 VNInfo
*VNI
= LR
.getNextValue(instrIdx
.getRegSlot(), VNInfoAllocator
);
1640 LiveRange::Segment
S(instrIdx
.getRegSlot(), lastUseIdx
, VNI
);
1641 LII
= LR
.addSegment(S
);
1644 if (MO
.getSubReg() && !MO
.isUndef())
1645 lastUseIdx
= instrIdx
.getRegSlot();
1647 lastUseIdx
= SlotIndex();
1648 } else if (MO
.isUse()) {
1649 // FIXME: This should probably be handled outside of this branch,
1650 // either as part of the def case (for defs inside of the region) or
1651 // after the loop over the region.
1652 if (!isEndValid
&& !LII
->end
.isBlock())
1653 LII
->end
= instrIdx
.getRegSlot();
1654 if (!lastUseIdx
.isValid())
1655 lastUseIdx
= instrIdx
.getRegSlot();
1662 LiveIntervals::repairIntervalsInRange(MachineBasicBlock
*MBB
,
1663 MachineBasicBlock::iterator Begin
,
1664 MachineBasicBlock::iterator End
,
1665 ArrayRef
<Register
> OrigRegs
) {
1666 // Find anchor points, which are at the beginning/end of blocks or at
1667 // instructions that already have indexes.
1668 while (Begin
!= MBB
->begin() && !Indexes
->hasIndex(*Begin
))
1670 while (End
!= MBB
->end() && !Indexes
->hasIndex(*End
))
1674 if (End
== MBB
->end())
1675 EndIdx
= getMBBEndIdx(MBB
).getPrevSlot();
1677 EndIdx
= getInstructionIndex(*End
);
1679 Indexes
->repairIndexesInRange(MBB
, Begin
, End
);
1681 for (MachineBasicBlock::iterator I
= End
; I
!= Begin
;) {
1683 MachineInstr
&MI
= *I
;
1684 if (MI
.isDebugOrPseudoInstr())
1686 for (MachineInstr::const_mop_iterator MOI
= MI
.operands_begin(),
1687 MOE
= MI
.operands_end();
1688 MOI
!= MOE
; ++MOI
) {
1689 if (MOI
->isReg() && Register::isVirtualRegister(MOI
->getReg()) &&
1690 !hasInterval(MOI
->getReg())) {
1691 createAndComputeVirtRegInterval(MOI
->getReg());
1696 for (Register Reg
: OrigRegs
) {
1697 if (!Reg
.isVirtual())
1700 LiveInterval
&LI
= getInterval(Reg
);
1701 // FIXME: Should we support undefs that gain defs?
1702 if (!LI
.hasAtLeastOneValue())
1705 for (LiveInterval::SubRange
&S
: LI
.subranges())
1706 repairOldRegInRange(Begin
, End
, EndIdx
, S
, Reg
, S
.LaneMask
);
1708 repairOldRegInRange(Begin
, End
, EndIdx
, LI
, Reg
);
1712 void LiveIntervals::removePhysRegDefAt(MCRegister Reg
, SlotIndex Pos
) {
1713 for (MCRegUnitIterator
Unit(Reg
, TRI
); Unit
.isValid(); ++Unit
) {
1714 if (LiveRange
*LR
= getCachedRegUnit(*Unit
))
1715 if (VNInfo
*VNI
= LR
->getVNInfoAt(Pos
))
1716 LR
->removeValNo(VNI
);
1720 void LiveIntervals::removeVRegDefAt(LiveInterval
&LI
, SlotIndex Pos
) {
1721 // LI may not have the main range computed yet, but its subranges may
1723 VNInfo
*VNI
= LI
.getVNInfoAt(Pos
);
1724 if (VNI
!= nullptr) {
1725 assert(VNI
->def
.getBaseIndex() == Pos
.getBaseIndex());
1726 LI
.removeValNo(VNI
);
1729 // Also remove the value defined in subranges.
1730 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
1731 if (VNInfo
*SVNI
= S
.getVNInfoAt(Pos
))
1732 if (SVNI
->def
.getBaseIndex() == Pos
.getBaseIndex())
1733 S
.removeValNo(SVNI
);
1735 LI
.removeEmptySubRanges();
1738 void LiveIntervals::splitSeparateComponents(LiveInterval
&LI
,
1739 SmallVectorImpl
<LiveInterval
*> &SplitLIs
) {
1740 ConnectedVNInfoEqClasses
ConEQ(*this);
1741 unsigned NumComp
= ConEQ
.Classify(LI
);
1744 LLVM_DEBUG(dbgs() << " Split " << NumComp
<< " components: " << LI
<< '\n');
1745 Register Reg
= LI
.reg();
1746 const TargetRegisterClass
*RegClass
= MRI
->getRegClass(Reg
);
1747 for (unsigned I
= 1; I
< NumComp
; ++I
) {
1748 Register NewVReg
= MRI
->createVirtualRegister(RegClass
);
1749 LiveInterval
&NewLI
= createEmptyInterval(NewVReg
);
1750 SplitLIs
.push_back(&NewLI
);
1752 ConEQ
.Distribute(LI
, SplitLIs
.data(), *MRI
);
1755 void LiveIntervals::constructMainRangeFromSubranges(LiveInterval
&LI
) {
1756 assert(LICalc
&& "LICalc not initialized.");
1757 LICalc
->reset(MF
, getSlotIndexes(), DomTree
, &getVNInfoAllocator());
1758 LICalc
->constructMainRangeFromSubranges(LI
);