[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / LiveIntervals.cpp
blob23036c2b115f801116c1c4627ac7cd015e801381
1 //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LiveInterval analysis pass which is used
10 /// by the Linear Scan Register allocator. This pass linearizes the
11 /// basic blocks of the function in DFS order and computes live intervals for
12 /// each virtual and physical register.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveInterval.h"
24 #include "llvm/CodeGen/LiveIntervalCalc.h"
25 #include "llvm/CodeGen/LiveVariables.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/Passes.h"
35 #include "llvm/CodeGen/SlotIndexes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/CodeGen/VirtRegMap.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Statepoint.h"
42 #include "llvm/MC/LaneBitmask.h"
43 #include "llvm/MC/MCRegisterInfo.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/BlockFrequency.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/MathExtras.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/CodeGen/StackMaps.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstdint>
55 #include <iterator>
56 #include <tuple>
57 #include <utility>
59 using namespace llvm;
61 #define DEBUG_TYPE "regalloc"
63 char LiveIntervals::ID = 0;
64 char &llvm::LiveIntervalsID = LiveIntervals::ID;
65 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
66 "Live Interval Analysis", false, false)
67 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
68 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
69 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
70 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
71 "Live Interval Analysis", false, false)
73 #ifndef NDEBUG
74 static cl::opt<bool> EnablePrecomputePhysRegs(
75 "precompute-phys-liveness", cl::Hidden,
76 cl::desc("Eagerly compute live intervals for all physreg units."));
77 #else
78 static bool EnablePrecomputePhysRegs = false;
79 #endif // NDEBUG
81 namespace llvm {
83 cl::opt<bool> UseSegmentSetForPhysRegs(
84 "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
85 cl::desc(
86 "Use segment set for the computation of the live ranges of physregs."));
88 } // end namespace llvm
90 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
91 AU.setPreservesCFG();
92 AU.addRequired<AAResultsWrapperPass>();
93 AU.addPreserved<AAResultsWrapperPass>();
94 AU.addPreserved<LiveVariables>();
95 AU.addPreservedID(MachineLoopInfoID);
96 AU.addRequiredTransitiveID(MachineDominatorsID);
97 AU.addPreservedID(MachineDominatorsID);
98 AU.addPreserved<SlotIndexes>();
99 AU.addRequiredTransitive<SlotIndexes>();
100 MachineFunctionPass::getAnalysisUsage(AU);
103 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) {
104 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
107 LiveIntervals::~LiveIntervals() { delete LICalc; }
109 void LiveIntervals::releaseMemory() {
110 // Free the live intervals themselves.
111 for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
112 delete VirtRegIntervals[Register::index2VirtReg(i)];
113 VirtRegIntervals.clear();
114 RegMaskSlots.clear();
115 RegMaskBits.clear();
116 RegMaskBlocks.clear();
118 for (LiveRange *LR : RegUnitRanges)
119 delete LR;
120 RegUnitRanges.clear();
122 // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
123 VNInfoAllocator.Reset();
126 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
127 MF = &fn;
128 MRI = &MF->getRegInfo();
129 TRI = MF->getSubtarget().getRegisterInfo();
130 TII = MF->getSubtarget().getInstrInfo();
131 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
132 Indexes = &getAnalysis<SlotIndexes>();
133 DomTree = &getAnalysis<MachineDominatorTree>();
135 if (!LICalc)
136 LICalc = new LiveIntervalCalc();
138 // Allocate space for all virtual registers.
139 VirtRegIntervals.resize(MRI->getNumVirtRegs());
141 computeVirtRegs();
142 computeRegMasks();
143 computeLiveInRegUnits();
145 if (EnablePrecomputePhysRegs) {
146 // For stress testing, precompute live ranges of all physical register
147 // units, including reserved registers.
148 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
149 getRegUnit(i);
151 LLVM_DEBUG(dump());
152 return true;
155 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
156 OS << "********** INTERVALS **********\n";
158 // Dump the regunits.
159 for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit)
160 if (LiveRange *LR = RegUnitRanges[Unit])
161 OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n';
163 // Dump the virtregs.
164 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
165 Register Reg = Register::index2VirtReg(i);
166 if (hasInterval(Reg))
167 OS << getInterval(Reg) << '\n';
170 OS << "RegMasks:";
171 for (SlotIndex Idx : RegMaskSlots)
172 OS << ' ' << Idx;
173 OS << '\n';
175 printInstrs(OS);
178 void LiveIntervals::printInstrs(raw_ostream &OS) const {
179 OS << "********** MACHINEINSTRS **********\n";
180 MF->print(OS, Indexes);
183 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
184 LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const {
185 printInstrs(dbgs());
187 #endif
189 LiveInterval *LiveIntervals::createInterval(Register reg) {
190 float Weight = Register::isPhysicalRegister(reg) ? huge_valf : 0.0F;
191 return new LiveInterval(reg, Weight);
194 /// Compute the live interval of a virtual register, based on defs and uses.
195 bool LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
196 assert(LICalc && "LICalc not initialized.");
197 assert(LI.empty() && "Should only compute empty intervals.");
198 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
199 LICalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg()));
200 return computeDeadValues(LI, nullptr);
203 void LiveIntervals::computeVirtRegs() {
204 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
205 Register Reg = Register::index2VirtReg(i);
206 if (MRI->reg_nodbg_empty(Reg))
207 continue;
208 LiveInterval &LI = createEmptyInterval(Reg);
209 bool NeedSplit = computeVirtRegInterval(LI);
210 if (NeedSplit) {
211 SmallVector<LiveInterval*, 8> SplitLIs;
212 splitSeparateComponents(LI, SplitLIs);
217 void LiveIntervals::computeRegMasks() {
218 RegMaskBlocks.resize(MF->getNumBlockIDs());
220 // Find all instructions with regmask operands.
221 for (const MachineBasicBlock &MBB : *MF) {
222 std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
223 RMB.first = RegMaskSlots.size();
225 // Some block starts, such as EH funclets, create masks.
226 if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
227 RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
228 RegMaskBits.push_back(Mask);
231 // Unwinders may clobber additional registers.
232 // FIXME: This functionality can possibly be merged into
233 // MachineBasicBlock::getBeginClobberMask().
234 if (MBB.isEHPad())
235 if (auto *Mask = TRI->getCustomEHPadPreservedMask(*MBB.getParent())) {
236 RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
237 RegMaskBits.push_back(Mask);
240 for (const MachineInstr &MI : MBB) {
241 for (const MachineOperand &MO : MI.operands()) {
242 if (!MO.isRegMask())
243 continue;
244 RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
245 RegMaskBits.push_back(MO.getRegMask());
249 // Some block ends, such as funclet returns, create masks. Put the mask on
250 // the last instruction of the block, because MBB slot index intervals are
251 // half-open.
252 if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
253 assert(!MBB.empty() && "empty return block?");
254 RegMaskSlots.push_back(
255 Indexes->getInstructionIndex(MBB.back()).getRegSlot());
256 RegMaskBits.push_back(Mask);
259 // Compute the number of register mask instructions in this block.
260 RMB.second = RegMaskSlots.size() - RMB.first;
264 //===----------------------------------------------------------------------===//
265 // Register Unit Liveness
266 //===----------------------------------------------------------------------===//
268 // Fixed interference typically comes from ABI boundaries: Function arguments
269 // and return values are passed in fixed registers, and so are exception
270 // pointers entering landing pads. Certain instructions require values to be
271 // present in specific registers. That is also represented through fixed
272 // interference.
275 /// Compute the live range of a register unit, based on the uses and defs of
276 /// aliasing registers. The range should be empty, or contain only dead
277 /// phi-defs from ABI blocks.
278 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
279 assert(LICalc && "LICalc not initialized.");
280 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
282 // The physregs aliasing Unit are the roots and their super-registers.
283 // Create all values as dead defs before extending to uses. Note that roots
284 // may share super-registers. That's OK because createDeadDefs() is
285 // idempotent. It is very rare for a register unit to have multiple roots, so
286 // uniquing super-registers is probably not worthwhile.
287 bool IsReserved = false;
288 for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
289 bool IsRootReserved = true;
290 for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
291 Super.isValid(); ++Super) {
292 MCRegister Reg = *Super;
293 if (!MRI->reg_empty(Reg))
294 LICalc->createDeadDefs(LR, Reg);
295 // A register unit is considered reserved if all its roots and all their
296 // super registers are reserved.
297 if (!MRI->isReserved(Reg))
298 IsRootReserved = false;
300 IsReserved |= IsRootReserved;
302 assert(IsReserved == MRI->isReservedRegUnit(Unit) &&
303 "reserved computation mismatch");
305 // Now extend LR to reach all uses.
306 // Ignore uses of reserved registers. We only track defs of those.
307 if (!IsReserved) {
308 for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
309 for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
310 Super.isValid(); ++Super) {
311 MCRegister Reg = *Super;
312 if (!MRI->reg_empty(Reg))
313 LICalc->extendToUses(LR, Reg);
318 // Flush the segment set to the segment vector.
319 if (UseSegmentSetForPhysRegs)
320 LR.flushSegmentSet();
323 /// Precompute the live ranges of any register units that are live-in to an ABI
324 /// block somewhere. Register values can appear without a corresponding def when
325 /// entering the entry block or a landing pad.
326 void LiveIntervals::computeLiveInRegUnits() {
327 RegUnitRanges.resize(TRI->getNumRegUnits());
328 LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
330 // Keep track of the live range sets allocated.
331 SmallVector<unsigned, 8> NewRanges;
333 // Check all basic blocks for live-ins.
334 for (const MachineBasicBlock &MBB : *MF) {
335 // We only care about ABI blocks: Entry + landing pads.
336 if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty())
337 continue;
339 // Create phi-defs at Begin for all live-in registers.
340 SlotIndex Begin = Indexes->getMBBStartIdx(&MBB);
341 LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB));
342 for (const auto &LI : MBB.liveins()) {
343 for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) {
344 unsigned Unit = *Units;
345 LiveRange *LR = RegUnitRanges[Unit];
346 if (!LR) {
347 // Use segment set to speed-up initial computation of the live range.
348 LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
349 NewRanges.push_back(Unit);
351 VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
352 (void)VNI;
353 LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id);
356 LLVM_DEBUG(dbgs() << '\n');
358 LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
360 // Compute the 'normal' part of the ranges.
361 for (unsigned Unit : NewRanges)
362 computeRegUnitRange(*RegUnitRanges[Unit], Unit);
365 static void createSegmentsForValues(LiveRange &LR,
366 iterator_range<LiveInterval::vni_iterator> VNIs) {
367 for (VNInfo *VNI : VNIs) {
368 if (VNI->isUnused())
369 continue;
370 SlotIndex Def = VNI->def;
371 LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
375 void LiveIntervals::extendSegmentsToUses(LiveRange &Segments,
376 ShrinkToUsesWorkList &WorkList,
377 Register Reg, LaneBitmask LaneMask) {
378 // Keep track of the PHIs that are in use.
379 SmallPtrSet<VNInfo*, 8> UsedPHIs;
380 // Blocks that have already been added to WorkList as live-out.
381 SmallPtrSet<const MachineBasicBlock*, 16> LiveOut;
383 auto getSubRange = [](const LiveInterval &I, LaneBitmask M)
384 -> const LiveRange& {
385 if (M.none())
386 return I;
387 for (const LiveInterval::SubRange &SR : I.subranges()) {
388 if ((SR.LaneMask & M).any()) {
389 assert(SR.LaneMask == M && "Expecting lane masks to match exactly");
390 return SR;
393 llvm_unreachable("Subrange for mask not found");
396 const LiveInterval &LI = getInterval(Reg);
397 const LiveRange &OldRange = getSubRange(LI, LaneMask);
399 // Extend intervals to reach all uses in WorkList.
400 while (!WorkList.empty()) {
401 SlotIndex Idx = WorkList.back().first;
402 VNInfo *VNI = WorkList.back().second;
403 WorkList.pop_back();
404 const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot());
405 SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB);
407 // Extend the live range for VNI to be live at Idx.
408 if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) {
409 assert(ExtVNI == VNI && "Unexpected existing value number");
410 (void)ExtVNI;
411 // Is this a PHIDef we haven't seen before?
412 if (!VNI->isPHIDef() || VNI->def != BlockStart ||
413 !UsedPHIs.insert(VNI).second)
414 continue;
415 // The PHI is live, make sure the predecessors are live-out.
416 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
417 if (!LiveOut.insert(Pred).second)
418 continue;
419 SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
420 // A predecessor is not required to have a live-out value for a PHI.
421 if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
422 WorkList.push_back(std::make_pair(Stop, PVNI));
424 continue;
427 // VNI is live-in to MBB.
428 LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
429 Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
431 // Make sure VNI is live-out from the predecessors.
432 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
433 if (!LiveOut.insert(Pred).second)
434 continue;
435 SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
436 if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) {
437 assert(OldVNI == VNI && "Wrong value out of predecessor");
438 (void)OldVNI;
439 WorkList.push_back(std::make_pair(Stop, VNI));
440 } else {
441 #ifndef NDEBUG
442 // There was no old VNI. Verify that Stop is jointly dominated
443 // by <undef>s for this live range.
444 assert(LaneMask.any() &&
445 "Missing value out of predecessor for main range");
446 SmallVector<SlotIndex,8> Undefs;
447 LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
448 assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) &&
449 "Missing value out of predecessor for subrange");
450 #endif
456 bool LiveIntervals::shrinkToUses(LiveInterval *li,
457 SmallVectorImpl<MachineInstr*> *dead) {
458 LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n');
459 assert(Register::isVirtualRegister(li->reg()) &&
460 "Can only shrink virtual registers");
462 // Shrink subregister live ranges.
463 bool NeedsCleanup = false;
464 for (LiveInterval::SubRange &S : li->subranges()) {
465 shrinkToUses(S, li->reg());
466 if (S.empty())
467 NeedsCleanup = true;
469 if (NeedsCleanup)
470 li->removeEmptySubRanges();
472 // Find all the values used, including PHI kills.
473 ShrinkToUsesWorkList WorkList;
475 // Visit all instructions reading li->reg().
476 Register Reg = li->reg();
477 for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) {
478 if (UseMI.isDebugInstr() || !UseMI.readsVirtualRegister(Reg))
479 continue;
480 SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
481 LiveQueryResult LRQ = li->Query(Idx);
482 VNInfo *VNI = LRQ.valueIn();
483 if (!VNI) {
484 // This shouldn't happen: readsVirtualRegister returns true, but there is
485 // no live value. It is likely caused by a target getting <undef> flags
486 // wrong.
487 LLVM_DEBUG(
488 dbgs() << Idx << '\t' << UseMI
489 << "Warning: Instr claims to read non-existent value in "
490 << *li << '\n');
491 continue;
493 // Special case: An early-clobber tied operand reads and writes the
494 // register one slot early.
495 if (VNInfo *DefVNI = LRQ.valueDefined())
496 Idx = DefVNI->def;
498 WorkList.push_back(std::make_pair(Idx, VNI));
501 // Create new live ranges with only minimal live segments per def.
502 LiveRange NewLR;
503 createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
504 extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone());
506 // Move the trimmed segments back.
507 li->segments.swap(NewLR.segments);
509 // Handle dead values.
510 bool CanSeparate = computeDeadValues(*li, dead);
511 LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n');
512 return CanSeparate;
515 bool LiveIntervals::computeDeadValues(LiveInterval &LI,
516 SmallVectorImpl<MachineInstr*> *dead) {
517 bool MayHaveSplitComponents = false;
518 bool HaveDeadDef = false;
520 for (VNInfo *VNI : LI.valnos) {
521 if (VNI->isUnused())
522 continue;
523 SlotIndex Def = VNI->def;
524 LiveRange::iterator I = LI.FindSegmentContaining(Def);
525 assert(I != LI.end() && "Missing segment for VNI");
527 // Is the register live before? Otherwise we may have to add a read-undef
528 // flag for subregister defs.
529 Register VReg = LI.reg();
530 if (MRI->shouldTrackSubRegLiveness(VReg)) {
531 if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
532 MachineInstr *MI = getInstructionFromIndex(Def);
533 MI->setRegisterDefReadUndef(VReg);
537 if (I->end != Def.getDeadSlot())
538 continue;
539 if (VNI->isPHIDef()) {
540 // This is a dead PHI. Remove it.
541 VNI->markUnused();
542 LI.removeSegment(I);
543 LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
544 MayHaveSplitComponents = true;
545 } else {
546 // This is a dead def. Make sure the instruction knows.
547 MachineInstr *MI = getInstructionFromIndex(Def);
548 assert(MI && "No instruction defining live value");
549 MI->addRegisterDead(LI.reg(), TRI);
550 if (HaveDeadDef)
551 MayHaveSplitComponents = true;
552 HaveDeadDef = true;
554 if (dead && MI->allDefsAreDead()) {
555 LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
556 dead->push_back(MI);
560 return MayHaveSplitComponents;
563 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, Register Reg) {
564 LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n');
565 assert(Register::isVirtualRegister(Reg) &&
566 "Can only shrink virtual registers");
567 // Find all the values used, including PHI kills.
568 ShrinkToUsesWorkList WorkList;
570 // Visit all instructions reading Reg.
571 SlotIndex LastIdx;
572 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
573 // Skip "undef" uses.
574 if (!MO.readsReg())
575 continue;
576 // Maybe the operand is for a subregister we don't care about.
577 unsigned SubReg = MO.getSubReg();
578 if (SubReg != 0) {
579 LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
580 if ((LaneMask & SR.LaneMask).none())
581 continue;
583 // We only need to visit each instruction once.
584 MachineInstr *UseMI = MO.getParent();
585 SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
586 if (Idx == LastIdx)
587 continue;
588 LastIdx = Idx;
590 LiveQueryResult LRQ = SR.Query(Idx);
591 VNInfo *VNI = LRQ.valueIn();
592 // For Subranges it is possible that only undef values are left in that
593 // part of the subregister, so there is no real liverange at the use
594 if (!VNI)
595 continue;
597 // Special case: An early-clobber tied operand reads and writes the
598 // register one slot early.
599 if (VNInfo *DefVNI = LRQ.valueDefined())
600 Idx = DefVNI->def;
602 WorkList.push_back(std::make_pair(Idx, VNI));
605 // Create a new live ranges with only minimal live segments per def.
606 LiveRange NewLR;
607 createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
608 extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask);
610 // Move the trimmed ranges back.
611 SR.segments.swap(NewLR.segments);
613 // Remove dead PHI value numbers
614 for (VNInfo *VNI : SR.valnos) {
615 if (VNI->isUnused())
616 continue;
617 const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
618 assert(Segment != nullptr && "Missing segment for VNI");
619 if (Segment->end != VNI->def.getDeadSlot())
620 continue;
621 if (VNI->isPHIDef()) {
622 // This is a dead PHI. Remove it.
623 LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def
624 << " may separate interval\n");
625 VNI->markUnused();
626 SR.removeSegment(*Segment);
630 LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n');
633 void LiveIntervals::extendToIndices(LiveRange &LR,
634 ArrayRef<SlotIndex> Indices,
635 ArrayRef<SlotIndex> Undefs) {
636 assert(LICalc && "LICalc not initialized.");
637 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
638 for (SlotIndex Idx : Indices)
639 LICalc->extend(LR, Idx, /*PhysReg=*/0, Undefs);
642 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
643 SmallVectorImpl<SlotIndex> *EndPoints) {
644 LiveQueryResult LRQ = LR.Query(Kill);
645 VNInfo *VNI = LRQ.valueOutOrDead();
646 if (!VNI)
647 return;
649 MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
650 SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
652 // If VNI isn't live out from KillMBB, the value is trivially pruned.
653 if (LRQ.endPoint() < MBBEnd) {
654 LR.removeSegment(Kill, LRQ.endPoint());
655 if (EndPoints) EndPoints->push_back(LRQ.endPoint());
656 return;
659 // VNI is live out of KillMBB.
660 LR.removeSegment(Kill, MBBEnd);
661 if (EndPoints) EndPoints->push_back(MBBEnd);
663 // Find all blocks that are reachable from KillMBB without leaving VNI's live
664 // range. It is possible that KillMBB itself is reachable, so start a DFS
665 // from each successor.
666 using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>;
667 VisitedTy Visited;
668 for (MachineBasicBlock *Succ : KillMBB->successors()) {
669 for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
670 I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited);
671 I != E;) {
672 MachineBasicBlock *MBB = *I;
674 // Check if VNI is live in to MBB.
675 SlotIndex MBBStart, MBBEnd;
676 std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
677 LiveQueryResult LRQ = LR.Query(MBBStart);
678 if (LRQ.valueIn() != VNI) {
679 // This block isn't part of the VNI segment. Prune the search.
680 I.skipChildren();
681 continue;
684 // Prune the search if VNI is killed in MBB.
685 if (LRQ.endPoint() < MBBEnd) {
686 LR.removeSegment(MBBStart, LRQ.endPoint());
687 if (EndPoints) EndPoints->push_back(LRQ.endPoint());
688 I.skipChildren();
689 continue;
692 // VNI is live through MBB.
693 LR.removeSegment(MBBStart, MBBEnd);
694 if (EndPoints) EndPoints->push_back(MBBEnd);
695 ++I;
700 //===----------------------------------------------------------------------===//
701 // Register allocator hooks.
704 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
705 // Keep track of regunit ranges.
706 SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
708 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
709 Register Reg = Register::index2VirtReg(i);
710 if (MRI->reg_nodbg_empty(Reg))
711 continue;
712 const LiveInterval &LI = getInterval(Reg);
713 if (LI.empty())
714 continue;
716 // Target may have not allocated this yet.
717 Register PhysReg = VRM->getPhys(Reg);
718 if (!PhysReg)
719 continue;
721 // Find the regunit intervals for the assigned register. They may overlap
722 // the virtual register live range, cancelling any kills.
723 RU.clear();
724 for (MCRegUnitIterator Unit(PhysReg, TRI); Unit.isValid();
725 ++Unit) {
726 const LiveRange &RURange = getRegUnit(*Unit);
727 if (RURange.empty())
728 continue;
729 RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
731 // Every instruction that kills Reg corresponds to a segment range end
732 // point.
733 for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
734 ++RI) {
735 // A block index indicates an MBB edge.
736 if (RI->end.isBlock())
737 continue;
738 MachineInstr *MI = getInstructionFromIndex(RI->end);
739 if (!MI)
740 continue;
742 // Check if any of the regunits are live beyond the end of RI. That could
743 // happen when a physreg is defined as a copy of a virtreg:
745 // %eax = COPY %5
746 // FOO %5 <--- MI, cancel kill because %eax is live.
747 // BAR killed %eax
749 // There should be no kill flag on FOO when %5 is rewritten as %eax.
750 for (auto &RUP : RU) {
751 const LiveRange &RURange = *RUP.first;
752 LiveRange::const_iterator &I = RUP.second;
753 if (I == RURange.end())
754 continue;
755 I = RURange.advanceTo(I, RI->end);
756 if (I == RURange.end() || I->start >= RI->end)
757 continue;
758 // I is overlapping RI.
759 goto CancelKill;
762 if (MRI->subRegLivenessEnabled()) {
763 // When reading a partial undefined value we must not add a kill flag.
764 // The regalloc might have used the undef lane for something else.
765 // Example:
766 // %1 = ... ; R32: %1
767 // %2:high16 = ... ; R64: %2
768 // = read killed %2 ; R64: %2
769 // = read %1 ; R32: %1
770 // The <kill> flag is correct for %2, but the register allocator may
771 // assign R0L to %1, and R0 to %2 because the low 32bits of R0
772 // are actually never written by %2. After assignment the <kill>
773 // flag at the read instruction is invalid.
774 LaneBitmask DefinedLanesMask;
775 if (LI.hasSubRanges()) {
776 // Compute a mask of lanes that are defined.
777 DefinedLanesMask = LaneBitmask::getNone();
778 for (const LiveInterval::SubRange &SR : LI.subranges())
779 for (const LiveRange::Segment &Segment : SR.segments) {
780 if (Segment.start >= RI->end)
781 break;
782 if (Segment.end == RI->end) {
783 DefinedLanesMask |= SR.LaneMask;
784 break;
787 } else
788 DefinedLanesMask = LaneBitmask::getAll();
790 bool IsFullWrite = false;
791 for (const MachineOperand &MO : MI->operands()) {
792 if (!MO.isReg() || MO.getReg() != Reg)
793 continue;
794 if (MO.isUse()) {
795 // Reading any undefined lanes?
796 unsigned SubReg = MO.getSubReg();
797 LaneBitmask UseMask = SubReg ? TRI->getSubRegIndexLaneMask(SubReg)
798 : MRI->getMaxLaneMaskForVReg(Reg);
799 if ((UseMask & ~DefinedLanesMask).any())
800 goto CancelKill;
801 } else if (MO.getSubReg() == 0) {
802 // Writing to the full register?
803 assert(MO.isDef());
804 IsFullWrite = true;
808 // If an instruction writes to a subregister, a new segment starts in
809 // the LiveInterval. But as this is only overriding part of the register
810 // adding kill-flags is not correct here after registers have been
811 // assigned.
812 if (!IsFullWrite) {
813 // Next segment has to be adjacent in the subregister write case.
814 LiveRange::const_iterator N = std::next(RI);
815 if (N != LI.end() && N->start == RI->end)
816 goto CancelKill;
820 MI->addRegisterKilled(Reg, nullptr);
821 continue;
822 CancelKill:
823 MI->clearRegisterKills(Reg, nullptr);
828 MachineBasicBlock*
829 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
830 // A local live range must be fully contained inside the block, meaning it is
831 // defined and killed at instructions, not at block boundaries. It is not
832 // live in or out of any block.
834 // It is technically possible to have a PHI-defined live range identical to a
835 // single block, but we are going to return false in that case.
837 SlotIndex Start = LI.beginIndex();
838 if (Start.isBlock())
839 return nullptr;
841 SlotIndex Stop = LI.endIndex();
842 if (Stop.isBlock())
843 return nullptr;
845 // getMBBFromIndex doesn't need to search the MBB table when both indexes
846 // belong to proper instructions.
847 MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
848 MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
849 return MBB1 == MBB2 ? MBB1 : nullptr;
852 bool
853 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
854 for (const VNInfo *PHI : LI.valnos) {
855 if (PHI->isUnused() || !PHI->isPHIDef())
856 continue;
857 const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
858 // Conservatively return true instead of scanning huge predecessor lists.
859 if (PHIMBB->pred_size() > 100)
860 return true;
861 for (const MachineBasicBlock *Pred : PHIMBB->predecessors())
862 if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred)))
863 return true;
865 return false;
868 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
869 const MachineBlockFrequencyInfo *MBFI,
870 const MachineInstr &MI) {
871 return getSpillWeight(isDef, isUse, MBFI, MI.getParent());
874 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
875 const MachineBlockFrequencyInfo *MBFI,
876 const MachineBasicBlock *MBB) {
877 return (isDef + isUse) * MBFI->getBlockFreqRelativeToEntryBlock(MBB);
880 LiveRange::Segment
881 LiveIntervals::addSegmentToEndOfBlock(Register Reg, MachineInstr &startInst) {
882 LiveInterval &Interval = createEmptyInterval(Reg);
883 VNInfo *VN = Interval.getNextValue(
884 SlotIndex(getInstructionIndex(startInst).getRegSlot()),
885 getVNInfoAllocator());
886 LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()),
887 getMBBEndIdx(startInst.getParent()), VN);
888 Interval.addSegment(S);
890 return S;
893 //===----------------------------------------------------------------------===//
894 // Register mask functions
895 //===----------------------------------------------------------------------===//
896 /// Check whether use of reg in MI is live-through. Live-through means that
897 /// the value is alive on exit from Machine instruction. The example of such
898 /// use is a deopt value in statepoint instruction.
899 static bool hasLiveThroughUse(const MachineInstr *MI, Register Reg) {
900 if (MI->getOpcode() != TargetOpcode::STATEPOINT)
901 return false;
902 StatepointOpers SO(MI);
903 if (SO.getFlags() & (uint64_t)StatepointFlags::DeoptLiveIn)
904 return false;
905 for (unsigned Idx = SO.getNumDeoptArgsIdx(), E = SO.getNumGCPtrIdx(); Idx < E;
906 ++Idx) {
907 const MachineOperand &MO = MI->getOperand(Idx);
908 if (MO.isReg() && MO.getReg() == Reg)
909 return true;
911 return false;
914 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
915 BitVector &UsableRegs) {
916 if (LI.empty())
917 return false;
918 LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
920 // Use a smaller arrays for local live ranges.
921 ArrayRef<SlotIndex> Slots;
922 ArrayRef<const uint32_t*> Bits;
923 if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
924 Slots = getRegMaskSlotsInBlock(MBB->getNumber());
925 Bits = getRegMaskBitsInBlock(MBB->getNumber());
926 } else {
927 Slots = getRegMaskSlots();
928 Bits = getRegMaskBits();
931 // We are going to enumerate all the register mask slots contained in LI.
932 // Start with a binary search of RegMaskSlots to find a starting point.
933 ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Slots, LiveI->start);
934 ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
936 // No slots in range, LI begins after the last call.
937 if (SlotI == SlotE)
938 return false;
940 bool Found = false;
941 // Utility to union regmasks.
942 auto unionBitMask = [&](unsigned Idx) {
943 if (!Found) {
944 // This is the first overlap. Initialize UsableRegs to all ones.
945 UsableRegs.clear();
946 UsableRegs.resize(TRI->getNumRegs(), true);
947 Found = true;
949 // Remove usable registers clobbered by this mask.
950 UsableRegs.clearBitsNotInMask(Bits[Idx]);
952 while (true) {
953 assert(*SlotI >= LiveI->start);
954 // Loop over all slots overlapping this segment.
955 while (*SlotI < LiveI->end) {
956 // *SlotI overlaps LI. Collect mask bits.
957 unionBitMask(SlotI - Slots.begin());
958 if (++SlotI == SlotE)
959 return Found;
961 // If segment ends with live-through use we need to collect its regmask.
962 if (*SlotI == LiveI->end)
963 if (MachineInstr *MI = getInstructionFromIndex(*SlotI))
964 if (hasLiveThroughUse(MI, LI.reg()))
965 unionBitMask(SlotI++ - Slots.begin());
966 // *SlotI is beyond the current LI segment.
967 // Special advance implementation to not miss next LiveI->end.
968 if (++LiveI == LiveE || SlotI == SlotE || *SlotI > LI.endIndex())
969 return Found;
970 while (LiveI->end < *SlotI)
971 ++LiveI;
972 // Advance SlotI until it overlaps.
973 while (*SlotI < LiveI->start)
974 if (++SlotI == SlotE)
975 return Found;
979 //===----------------------------------------------------------------------===//
980 // IntervalUpdate class.
981 //===----------------------------------------------------------------------===//
983 /// Toolkit used by handleMove to trim or extend live intervals.
984 class LiveIntervals::HMEditor {
985 private:
986 LiveIntervals& LIS;
987 const MachineRegisterInfo& MRI;
988 const TargetRegisterInfo& TRI;
989 SlotIndex OldIdx;
990 SlotIndex NewIdx;
991 SmallPtrSet<LiveRange*, 8> Updated;
992 bool UpdateFlags;
994 public:
995 HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
996 const TargetRegisterInfo& TRI,
997 SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
998 : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
999 UpdateFlags(UpdateFlags) {}
1001 // FIXME: UpdateFlags is a workaround that creates live intervals for all
1002 // physregs, even those that aren't needed for regalloc, in order to update
1003 // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
1004 // flags, and postRA passes will use a live register utility instead.
1005 LiveRange *getRegUnitLI(unsigned Unit) {
1006 if (UpdateFlags && !MRI.isReservedRegUnit(Unit))
1007 return &LIS.getRegUnit(Unit);
1008 return LIS.getCachedRegUnit(Unit);
1011 /// Update all live ranges touched by MI, assuming a move from OldIdx to
1012 /// NewIdx.
1013 void updateAllRanges(MachineInstr *MI) {
1014 LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": "
1015 << *MI);
1016 bool hasRegMask = false;
1017 for (MachineOperand &MO : MI->operands()) {
1018 if (MO.isRegMask())
1019 hasRegMask = true;
1020 if (!MO.isReg())
1021 continue;
1022 if (MO.isUse()) {
1023 if (!MO.readsReg())
1024 continue;
1025 // Aggressively clear all kill flags.
1026 // They are reinserted by VirtRegRewriter.
1027 MO.setIsKill(false);
1030 Register Reg = MO.getReg();
1031 if (!Reg)
1032 continue;
1033 if (Register::isVirtualRegister(Reg)) {
1034 LiveInterval &LI = LIS.getInterval(Reg);
1035 if (LI.hasSubRanges()) {
1036 unsigned SubReg = MO.getSubReg();
1037 LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
1038 : MRI.getMaxLaneMaskForVReg(Reg);
1039 for (LiveInterval::SubRange &S : LI.subranges()) {
1040 if ((S.LaneMask & LaneMask).none())
1041 continue;
1042 updateRange(S, Reg, S.LaneMask);
1045 updateRange(LI, Reg, LaneBitmask::getNone());
1046 // If main range has a hole and we are moving a subrange use across
1047 // the hole updateRange() cannot properly handle it since it only
1048 // gets the LiveRange and not the whole LiveInterval. As a result
1049 // we may end up with a main range not covering all subranges.
1050 // This is extremely rare case, so let's check and reconstruct the
1051 // main range.
1052 for (LiveInterval::SubRange &S : LI.subranges()) {
1053 if (LI.covers(S))
1054 continue;
1055 LI.clear();
1056 LIS.constructMainRangeFromSubranges(LI);
1057 break;
1060 continue;
1063 // For physregs, only update the regunits that actually have a
1064 // precomputed live range.
1065 for (MCRegUnitIterator Units(Reg.asMCReg(), &TRI); Units.isValid();
1066 ++Units)
1067 if (LiveRange *LR = getRegUnitLI(*Units))
1068 updateRange(*LR, *Units, LaneBitmask::getNone());
1070 if (hasRegMask)
1071 updateRegMaskSlots();
1074 private:
1075 /// Update a single live range, assuming an instruction has been moved from
1076 /// OldIdx to NewIdx.
1077 void updateRange(LiveRange &LR, Register Reg, LaneBitmask LaneMask) {
1078 if (!Updated.insert(&LR).second)
1079 return;
1080 LLVM_DEBUG({
1081 dbgs() << " ";
1082 if (Register::isVirtualRegister(Reg)) {
1083 dbgs() << printReg(Reg);
1084 if (LaneMask.any())
1085 dbgs() << " L" << PrintLaneMask(LaneMask);
1086 } else {
1087 dbgs() << printRegUnit(Reg, &TRI);
1089 dbgs() << ":\t" << LR << '\n';
1091 if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
1092 handleMoveDown(LR);
1093 else
1094 handleMoveUp(LR, Reg, LaneMask);
1095 LLVM_DEBUG(dbgs() << " -->\t" << LR << '\n');
1096 LR.verify();
1099 /// Update LR to reflect an instruction has been moved downwards from OldIdx
1100 /// to NewIdx (OldIdx < NewIdx).
1101 void handleMoveDown(LiveRange &LR) {
1102 LiveRange::iterator E = LR.end();
1103 // Segment going into OldIdx.
1104 LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1106 // No value live before or after OldIdx? Nothing to do.
1107 if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1108 return;
1110 LiveRange::iterator OldIdxOut;
1111 // Do we have a value live-in to OldIdx?
1112 if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1113 // If the live-in value already extends to NewIdx, there is nothing to do.
1114 if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end))
1115 return;
1116 // Aggressively remove all kill flags from the old kill point.
1117 // Kill flags shouldn't be used while live intervals exist, they will be
1118 // reinserted by VirtRegRewriter.
1119 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end))
1120 for (MachineOperand &MOP : mi_bundle_ops(*KillMI))
1121 if (MOP.isReg() && MOP.isUse())
1122 MOP.setIsKill(false);
1124 // Is there a def before NewIdx which is not OldIdx?
1125 LiveRange::iterator Next = std::next(OldIdxIn);
1126 if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) &&
1127 SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1128 // If we are here then OldIdx was just a use but not a def. We only have
1129 // to ensure liveness extends to NewIdx.
1130 LiveRange::iterator NewIdxIn =
1131 LR.advanceTo(Next, NewIdx.getBaseIndex());
1132 // Extend the segment before NewIdx if necessary.
1133 if (NewIdxIn == E ||
1134 !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) {
1135 LiveRange::iterator Prev = std::prev(NewIdxIn);
1136 Prev->end = NewIdx.getRegSlot();
1138 // Extend OldIdxIn.
1139 OldIdxIn->end = Next->start;
1140 return;
1143 // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
1144 // invalid by overlapping ranges.
1145 bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1146 OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber());
1147 // If this was not a kill, then there was no def and we're done.
1148 if (!isKill)
1149 return;
1151 // Did we have a Def at OldIdx?
1152 OldIdxOut = Next;
1153 if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1154 return;
1155 } else {
1156 OldIdxOut = OldIdxIn;
1159 // If we are here then there is a Definition at OldIdx. OldIdxOut points
1160 // to the segment starting there.
1161 assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1162 "No def?");
1163 VNInfo *OldIdxVNI = OldIdxOut->valno;
1164 assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1166 // If the defined value extends beyond NewIdx, just move the beginning
1167 // of the segment to NewIdx.
1168 SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1169 if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) {
1170 OldIdxVNI->def = NewIdxDef;
1171 OldIdxOut->start = OldIdxVNI->def;
1172 return;
1175 // If we are here then we have a Definition at OldIdx which ends before
1176 // NewIdx.
1178 // Is there an existing Def at NewIdx?
1179 LiveRange::iterator AfterNewIdx
1180 = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot());
1181 bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1182 if (!OldIdxDefIsDead &&
1183 SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) {
1184 // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
1185 VNInfo *DefVNI;
1186 if (OldIdxOut != LR.begin() &&
1187 !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end,
1188 OldIdxOut->start)) {
1189 // There is no gap between OldIdxOut and its predecessor anymore,
1190 // merge them.
1191 LiveRange::iterator IPrev = std::prev(OldIdxOut);
1192 DefVNI = OldIdxVNI;
1193 IPrev->end = OldIdxOut->end;
1194 } else {
1195 // The value is live in to OldIdx
1196 LiveRange::iterator INext = std::next(OldIdxOut);
1197 assert(INext != E && "Must have following segment");
1198 // We merge OldIdxOut and its successor. As we're dealing with subreg
1199 // reordering, there is always a successor to OldIdxOut in the same BB
1200 // We don't need INext->valno anymore and will reuse for the new segment
1201 // we create later.
1202 DefVNI = OldIdxVNI;
1203 INext->start = OldIdxOut->end;
1204 INext->valno->def = INext->start;
1206 // If NewIdx is behind the last segment, extend that and append a new one.
1207 if (AfterNewIdx == E) {
1208 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1209 // one position.
1210 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
1211 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
1212 std::copy(std::next(OldIdxOut), E, OldIdxOut);
1213 // The last segment is undefined now, reuse it for a dead def.
1214 LiveRange::iterator NewSegment = std::prev(E);
1215 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1216 DefVNI);
1217 DefVNI->def = NewIdxDef;
1219 LiveRange::iterator Prev = std::prev(NewSegment);
1220 Prev->end = NewIdxDef;
1221 } else {
1222 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1223 // one position.
1224 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
1225 // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
1226 std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut);
1227 LiveRange::iterator Prev = std::prev(AfterNewIdx);
1228 // We have two cases:
1229 if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) {
1230 // Case 1: NewIdx is inside a liverange. Split this liverange at
1231 // NewIdxDef into the segment "Prev" followed by "NewSegment".
1232 LiveRange::iterator NewSegment = AfterNewIdx;
1233 *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno);
1234 Prev->valno->def = NewIdxDef;
1236 *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI);
1237 DefVNI->def = Prev->start;
1238 } else {
1239 // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
1240 // turn Prev into a segment from NewIdx to AfterNewIdx->start.
1241 *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI);
1242 DefVNI->def = NewIdxDef;
1243 assert(DefVNI != AfterNewIdx->valno);
1246 return;
1249 if (AfterNewIdx != E &&
1250 SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) {
1251 // There is an existing def at NewIdx. The def at OldIdx is coalesced into
1252 // that value.
1253 assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?");
1254 LR.removeValNo(OldIdxVNI);
1255 } else {
1256 // There was no existing def at NewIdx. We need to create a dead def
1257 // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
1258 // a new segment at the place where we want to construct the dead def.
1259 // |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
1260 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
1261 assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators");
1262 std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut);
1263 // We can reuse OldIdxVNI now.
1264 LiveRange::iterator NewSegment = std::prev(AfterNewIdx);
1265 VNInfo *NewSegmentVNI = OldIdxVNI;
1266 NewSegmentVNI->def = NewIdxDef;
1267 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1268 NewSegmentVNI);
1272 /// Update LR to reflect an instruction has been moved upwards from OldIdx
1273 /// to NewIdx (NewIdx < OldIdx).
1274 void handleMoveUp(LiveRange &LR, Register Reg, LaneBitmask LaneMask) {
1275 LiveRange::iterator E = LR.end();
1276 // Segment going into OldIdx.
1277 LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1279 // No value live before or after OldIdx? Nothing to do.
1280 if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1281 return;
1283 LiveRange::iterator OldIdxOut;
1284 // Do we have a value live-in to OldIdx?
1285 if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1286 // If the live-in value isn't killed here, then we have no Def at
1287 // OldIdx, moreover the value must be live at NewIdx so there is nothing
1288 // to do.
1289 bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1290 if (!isKill)
1291 return;
1293 // At this point we have to move OldIdxIn->end back to the nearest
1294 // previous use or (dead-)def but no further than NewIdx.
1295 SlotIndex DefBeforeOldIdx
1296 = std::max(OldIdxIn->start.getDeadSlot(),
1297 NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()));
1298 OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask);
1300 // Did we have a Def at OldIdx? If not we are done now.
1301 OldIdxOut = std::next(OldIdxIn);
1302 if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1303 return;
1304 } else {
1305 OldIdxOut = OldIdxIn;
1306 OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E;
1309 // If we are here then there is a Definition at OldIdx. OldIdxOut points
1310 // to the segment starting there.
1311 assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1312 "No def?");
1313 VNInfo *OldIdxVNI = OldIdxOut->valno;
1314 assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1315 bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1317 // Is there an existing def at NewIdx?
1318 SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1319 LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot());
1320 if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) {
1321 assert(NewIdxOut->valno != OldIdxVNI &&
1322 "Same value defined more than once?");
1323 // If OldIdx was a dead def remove it.
1324 if (!OldIdxDefIsDead) {
1325 // Remove segment starting at NewIdx and move begin of OldIdxOut to
1326 // NewIdx so it can take its place.
1327 OldIdxVNI->def = NewIdxDef;
1328 OldIdxOut->start = NewIdxDef;
1329 LR.removeValNo(NewIdxOut->valno);
1330 } else {
1331 // Simply remove the dead def at OldIdx.
1332 LR.removeValNo(OldIdxVNI);
1334 } else {
1335 // Previously nothing was live after NewIdx, so all we have to do now is
1336 // move the begin of OldIdxOut to NewIdx.
1337 if (!OldIdxDefIsDead) {
1338 // Do we have any intermediate Defs between OldIdx and NewIdx?
1339 if (OldIdxIn != E &&
1340 SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) {
1341 // OldIdx is not a dead def and NewIdx is before predecessor start.
1342 LiveRange::iterator NewIdxIn = NewIdxOut;
1343 assert(NewIdxIn == LR.find(NewIdx.getBaseIndex()));
1344 const SlotIndex SplitPos = NewIdxDef;
1345 OldIdxVNI = OldIdxIn->valno;
1347 SlotIndex NewDefEndPoint = std::next(NewIdxIn)->end;
1348 LiveRange::iterator Prev = std::prev(OldIdxIn);
1349 if (OldIdxIn != LR.begin() &&
1350 SlotIndex::isEarlierInstr(NewIdx, Prev->end)) {
1351 // If the segment before OldIdx read a value defined earlier than
1352 // NewIdx, the moved instruction also reads and forwards that
1353 // value. Extend the lifetime of the new def point.
1355 // Extend to where the previous range started, unless there is
1356 // another redef first.
1357 NewDefEndPoint = std::min(OldIdxIn->start,
1358 std::next(NewIdxOut)->start);
1361 // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
1362 OldIdxOut->valno->def = OldIdxIn->start;
1363 *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end,
1364 OldIdxOut->valno);
1365 // OldIdxIn and OldIdxVNI are now undef and can be overridden.
1366 // We Slide [NewIdxIn, OldIdxIn) down one position.
1367 // |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
1368 // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
1369 std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut);
1370 // NewIdxIn is now considered undef so we can reuse it for the moved
1371 // value.
1372 LiveRange::iterator NewSegment = NewIdxIn;
1373 LiveRange::iterator Next = std::next(NewSegment);
1374 if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1375 // There is no gap between NewSegment and its predecessor.
1376 *NewSegment = LiveRange::Segment(Next->start, SplitPos,
1377 Next->valno);
1379 *Next = LiveRange::Segment(SplitPos, NewDefEndPoint, OldIdxVNI);
1380 Next->valno->def = SplitPos;
1381 } else {
1382 // There is a gap between NewSegment and its predecessor
1383 // Value becomes live in.
1384 *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI);
1385 NewSegment->valno->def = SplitPos;
1387 } else {
1388 // Leave the end point of a live def.
1389 OldIdxOut->start = NewIdxDef;
1390 OldIdxVNI->def = NewIdxDef;
1391 if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end))
1392 OldIdxIn->end = NewIdxDef;
1394 } else if (OldIdxIn != E
1395 && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx)
1396 && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) {
1397 // OldIdxVNI is a dead def that has been moved into the middle of
1398 // another value in LR. That can happen when LR is a whole register,
1399 // but the dead def is a write to a subreg that is dead at NewIdx.
1400 // The dead def may have been moved across other values
1401 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1402 // down one position.
1403 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1404 // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1405 std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1406 // Modify the segment at NewIdxOut and the following segment to meet at
1407 // the point of the dead def, with the following segment getting
1408 // OldIdxVNI as its value number.
1409 *NewIdxOut = LiveRange::Segment(
1410 NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno);
1411 *(NewIdxOut + 1) = LiveRange::Segment(
1412 NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI);
1413 OldIdxVNI->def = NewIdxDef;
1414 // Modify subsequent segments to be defined by the moved def OldIdxVNI.
1415 for (auto Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx)
1416 Idx->valno = OldIdxVNI;
1417 // Aggressively remove all dead flags from the former dead definition.
1418 // Kill/dead flags shouldn't be used while live intervals exist; they
1419 // will be reinserted by VirtRegRewriter.
1420 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx))
1421 for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
1422 if (MO->isReg() && !MO->isUse())
1423 MO->setIsDead(false);
1424 } else {
1425 // OldIdxVNI is a dead def. It may have been moved across other values
1426 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1427 // down one position.
1428 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1429 // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1430 std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1431 // OldIdxVNI can be reused now to build a new dead def segment.
1432 LiveRange::iterator NewSegment = NewIdxOut;
1433 VNInfo *NewSegmentVNI = OldIdxVNI;
1434 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1435 NewSegmentVNI);
1436 NewSegmentVNI->def = NewIdxDef;
1441 void updateRegMaskSlots() {
1442 SmallVectorImpl<SlotIndex>::iterator RI =
1443 llvm::lower_bound(LIS.RegMaskSlots, OldIdx);
1444 assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
1445 "No RegMask at OldIdx.");
1446 *RI = NewIdx.getRegSlot();
1447 assert((RI == LIS.RegMaskSlots.begin() ||
1448 SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
1449 "Cannot move regmask instruction above another call");
1450 assert((std::next(RI) == LIS.RegMaskSlots.end() ||
1451 SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
1452 "Cannot move regmask instruction below another call");
1455 // Return the last use of reg between NewIdx and OldIdx.
1456 SlotIndex findLastUseBefore(SlotIndex Before, Register Reg,
1457 LaneBitmask LaneMask) {
1458 if (Register::isVirtualRegister(Reg)) {
1459 SlotIndex LastUse = Before;
1460 for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
1461 if (MO.isUndef())
1462 continue;
1463 unsigned SubReg = MO.getSubReg();
1464 if (SubReg != 0 && LaneMask.any()
1465 && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none())
1466 continue;
1468 const MachineInstr &MI = *MO.getParent();
1469 SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1470 if (InstSlot > LastUse && InstSlot < OldIdx)
1471 LastUse = InstSlot.getRegSlot();
1473 return LastUse;
1476 // This is a regunit interval, so scanning the use list could be very
1477 // expensive. Scan upwards from OldIdx instead.
1478 assert(Before < OldIdx && "Expected upwards move");
1479 SlotIndexes *Indexes = LIS.getSlotIndexes();
1480 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before);
1482 // OldIdx may not correspond to an instruction any longer, so set MII to
1483 // point to the next instruction after OldIdx, or MBB->end().
1484 MachineBasicBlock::iterator MII = MBB->end();
1485 if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1486 Indexes->getNextNonNullIndex(OldIdx)))
1487 if (MI->getParent() == MBB)
1488 MII = MI;
1490 MachineBasicBlock::iterator Begin = MBB->begin();
1491 while (MII != Begin) {
1492 if ((--MII)->isDebugOrPseudoInstr())
1493 continue;
1494 SlotIndex Idx = Indexes->getInstructionIndex(*MII);
1496 // Stop searching when Before is reached.
1497 if (!SlotIndex::isEarlierInstr(Before, Idx))
1498 return Before;
1500 // Check if MII uses Reg.
1501 for (MIBundleOperands MO(*MII); MO.isValid(); ++MO)
1502 if (MO->isReg() && !MO->isUndef() &&
1503 Register::isPhysicalRegister(MO->getReg()) &&
1504 TRI.hasRegUnit(MO->getReg(), Reg))
1505 return Idx.getRegSlot();
1507 // Didn't reach Before. It must be the first instruction in the block.
1508 return Before;
1512 void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) {
1513 // It is fine to move a bundle as a whole, but not an individual instruction
1514 // inside it.
1515 assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) &&
1516 "Cannot move instruction in bundle");
1517 SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1518 Indexes->removeMachineInstrFromMaps(MI);
1519 SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1520 assert(getMBBStartIdx(MI.getParent()) <= OldIndex &&
1521 OldIndex < getMBBEndIdx(MI.getParent()) &&
1522 "Cannot handle moves across basic block boundaries.");
1524 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1525 HME.updateAllRanges(&MI);
1528 void LiveIntervals::handleMoveIntoNewBundle(MachineInstr &BundleStart,
1529 bool UpdateFlags) {
1530 assert((BundleStart.getOpcode() == TargetOpcode::BUNDLE) &&
1531 "Bundle start is not a bundle");
1532 SmallVector<SlotIndex, 16> ToProcess;
1533 const SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(BundleStart);
1534 auto BundleEnd = getBundleEnd(BundleStart.getIterator());
1536 auto I = BundleStart.getIterator();
1537 I++;
1538 while (I != BundleEnd) {
1539 if (!Indexes->hasIndex(*I))
1540 continue;
1541 SlotIndex OldIndex = Indexes->getInstructionIndex(*I, true);
1542 ToProcess.push_back(OldIndex);
1543 Indexes->removeMachineInstrFromMaps(*I, true);
1544 I++;
1546 for (SlotIndex OldIndex : ToProcess) {
1547 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1548 HME.updateAllRanges(&BundleStart);
1551 // Fix up dead defs
1552 const SlotIndex Index = getInstructionIndex(BundleStart);
1553 for (unsigned Idx = 0, E = BundleStart.getNumOperands(); Idx != E; ++Idx) {
1554 MachineOperand &MO = BundleStart.getOperand(Idx);
1555 if (!MO.isReg())
1556 continue;
1557 Register Reg = MO.getReg();
1558 if (Reg.isVirtual() && hasInterval(Reg) && !MO.isUndef()) {
1559 LiveInterval &LI = getInterval(Reg);
1560 LiveQueryResult LRQ = LI.Query(Index);
1561 if (LRQ.isDeadDef())
1562 MO.setIsDead();
1567 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
1568 const MachineBasicBlock::iterator End,
1569 const SlotIndex EndIdx, LiveRange &LR,
1570 const Register Reg,
1571 LaneBitmask LaneMask) {
1572 LiveInterval::iterator LII = LR.find(EndIdx);
1573 SlotIndex lastUseIdx;
1574 if (LII == LR.begin()) {
1575 // This happens when the function is called for a subregister that only
1576 // occurs _after_ the range that is to be repaired.
1577 return;
1579 if (LII != LR.end() && LII->start < EndIdx)
1580 lastUseIdx = LII->end;
1581 else
1582 --LII;
1584 for (MachineBasicBlock::iterator I = End; I != Begin;) {
1585 --I;
1586 MachineInstr &MI = *I;
1587 if (MI.isDebugOrPseudoInstr())
1588 continue;
1590 SlotIndex instrIdx = getInstructionIndex(MI);
1591 bool isStartValid = getInstructionFromIndex(LII->start);
1592 bool isEndValid = getInstructionFromIndex(LII->end);
1594 // FIXME: This doesn't currently handle early-clobber or multiple removed
1595 // defs inside of the region to repair.
1596 for (MachineInstr::mop_iterator OI = MI.operands_begin(),
1597 OE = MI.operands_end();
1598 OI != OE; ++OI) {
1599 const MachineOperand &MO = *OI;
1600 if (!MO.isReg() || MO.getReg() != Reg)
1601 continue;
1603 unsigned SubReg = MO.getSubReg();
1604 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
1605 if ((Mask & LaneMask).none())
1606 continue;
1608 if (MO.isDef()) {
1609 if (!isStartValid) {
1610 if (LII->end.isDead()) {
1611 SlotIndex prevStart;
1612 if (LII != LR.begin())
1613 prevStart = std::prev(LII)->start;
1615 // FIXME: This could be more efficient if there was a
1616 // removeSegment method that returned an iterator.
1617 LR.removeSegment(*LII, true);
1618 if (prevStart.isValid())
1619 LII = LR.find(prevStart);
1620 else
1621 LII = LR.begin();
1622 } else {
1623 LII->start = instrIdx.getRegSlot();
1624 LII->valno->def = instrIdx.getRegSlot();
1625 if (MO.getSubReg() && !MO.isUndef())
1626 lastUseIdx = instrIdx.getRegSlot();
1627 else
1628 lastUseIdx = SlotIndex();
1629 continue;
1633 if (!lastUseIdx.isValid()) {
1634 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1635 LiveRange::Segment S(instrIdx.getRegSlot(),
1636 instrIdx.getDeadSlot(), VNI);
1637 LII = LR.addSegment(S);
1638 } else if (LII->start != instrIdx.getRegSlot()) {
1639 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1640 LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1641 LII = LR.addSegment(S);
1644 if (MO.getSubReg() && !MO.isUndef())
1645 lastUseIdx = instrIdx.getRegSlot();
1646 else
1647 lastUseIdx = SlotIndex();
1648 } else if (MO.isUse()) {
1649 // FIXME: This should probably be handled outside of this branch,
1650 // either as part of the def case (for defs inside of the region) or
1651 // after the loop over the region.
1652 if (!isEndValid && !LII->end.isBlock())
1653 LII->end = instrIdx.getRegSlot();
1654 if (!lastUseIdx.isValid())
1655 lastUseIdx = instrIdx.getRegSlot();
1661 void
1662 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1663 MachineBasicBlock::iterator Begin,
1664 MachineBasicBlock::iterator End,
1665 ArrayRef<Register> OrigRegs) {
1666 // Find anchor points, which are at the beginning/end of blocks or at
1667 // instructions that already have indexes.
1668 while (Begin != MBB->begin() && !Indexes->hasIndex(*Begin))
1669 --Begin;
1670 while (End != MBB->end() && !Indexes->hasIndex(*End))
1671 ++End;
1673 SlotIndex EndIdx;
1674 if (End == MBB->end())
1675 EndIdx = getMBBEndIdx(MBB).getPrevSlot();
1676 else
1677 EndIdx = getInstructionIndex(*End);
1679 Indexes->repairIndexesInRange(MBB, Begin, End);
1681 for (MachineBasicBlock::iterator I = End; I != Begin;) {
1682 --I;
1683 MachineInstr &MI = *I;
1684 if (MI.isDebugOrPseudoInstr())
1685 continue;
1686 for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
1687 MOE = MI.operands_end();
1688 MOI != MOE; ++MOI) {
1689 if (MOI->isReg() && Register::isVirtualRegister(MOI->getReg()) &&
1690 !hasInterval(MOI->getReg())) {
1691 createAndComputeVirtRegInterval(MOI->getReg());
1696 for (Register Reg : OrigRegs) {
1697 if (!Reg.isVirtual())
1698 continue;
1700 LiveInterval &LI = getInterval(Reg);
1701 // FIXME: Should we support undefs that gain defs?
1702 if (!LI.hasAtLeastOneValue())
1703 continue;
1705 for (LiveInterval::SubRange &S : LI.subranges())
1706 repairOldRegInRange(Begin, End, EndIdx, S, Reg, S.LaneMask);
1708 repairOldRegInRange(Begin, End, EndIdx, LI, Reg);
1712 void LiveIntervals::removePhysRegDefAt(MCRegister Reg, SlotIndex Pos) {
1713 for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) {
1714 if (LiveRange *LR = getCachedRegUnit(*Unit))
1715 if (VNInfo *VNI = LR->getVNInfoAt(Pos))
1716 LR->removeValNo(VNI);
1720 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
1721 // LI may not have the main range computed yet, but its subranges may
1722 // be present.
1723 VNInfo *VNI = LI.getVNInfoAt(Pos);
1724 if (VNI != nullptr) {
1725 assert(VNI->def.getBaseIndex() == Pos.getBaseIndex());
1726 LI.removeValNo(VNI);
1729 // Also remove the value defined in subranges.
1730 for (LiveInterval::SubRange &S : LI.subranges()) {
1731 if (VNInfo *SVNI = S.getVNInfoAt(Pos))
1732 if (SVNI->def.getBaseIndex() == Pos.getBaseIndex())
1733 S.removeValNo(SVNI);
1735 LI.removeEmptySubRanges();
1738 void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
1739 SmallVectorImpl<LiveInterval*> &SplitLIs) {
1740 ConnectedVNInfoEqClasses ConEQ(*this);
1741 unsigned NumComp = ConEQ.Classify(LI);
1742 if (NumComp <= 1)
1743 return;
1744 LLVM_DEBUG(dbgs() << " Split " << NumComp << " components: " << LI << '\n');
1745 Register Reg = LI.reg();
1746 const TargetRegisterClass *RegClass = MRI->getRegClass(Reg);
1747 for (unsigned I = 1; I < NumComp; ++I) {
1748 Register NewVReg = MRI->createVirtualRegister(RegClass);
1749 LiveInterval &NewLI = createEmptyInterval(NewVReg);
1750 SplitLIs.push_back(&NewLI);
1752 ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
1755 void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) {
1756 assert(LICalc && "LICalc not initialized.");
1757 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
1758 LICalc->constructMainRangeFromSubranges(LI);