[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / LiveRangeEdit.cpp
blob64a2dd2756430b33440a7c2b13556c243f93067f
1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LiveRangeEdit class represents changes done to a virtual register when it
10 // is spilled or split.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/LiveRangeEdit.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/CodeGen/CalcSpillWeights.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/TargetInstrInfo.h"
19 #include "llvm/CodeGen/VirtRegMap.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/raw_ostream.h"
23 using namespace llvm;
25 #define DEBUG_TYPE "regalloc"
27 STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE");
28 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
29 STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE");
31 void LiveRangeEdit::Delegate::anchor() { }
33 LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(Register OldReg,
34 bool createSubRanges) {
35 Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
36 if (VRM)
37 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
39 LiveInterval &LI = LIS.createEmptyInterval(VReg);
40 if (Parent && !Parent->isSpillable())
41 LI.markNotSpillable();
42 if (createSubRanges) {
43 // Create empty subranges if the OldReg's interval has them. Do not create
44 // the main range here---it will be constructed later after the subranges
45 // have been finalized.
46 LiveInterval &OldLI = LIS.getInterval(OldReg);
47 VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator();
48 for (LiveInterval::SubRange &S : OldLI.subranges())
49 LI.createSubRange(Alloc, S.LaneMask);
51 return LI;
54 Register LiveRangeEdit::createFrom(Register OldReg) {
55 Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
56 if (VRM) {
57 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
59 // FIXME: Getting the interval here actually computes it.
60 // In theory, this may not be what we want, but in practice
61 // the createEmptyIntervalFrom API is used when this is not
62 // the case. Generally speaking we just want to annotate the
63 // LiveInterval when it gets created but we cannot do that at
64 // the moment.
65 if (Parent && !Parent->isSpillable())
66 LIS.getInterval(VReg).markNotSpillable();
67 return VReg;
70 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
71 const MachineInstr *DefMI,
72 AAResults *aa) {
73 assert(DefMI && "Missing instruction");
74 ScannedRemattable = true;
75 if (!TII.isTriviallyReMaterializable(*DefMI, aa))
76 return false;
77 Remattable.insert(VNI);
78 return true;
81 void LiveRangeEdit::scanRemattable(AAResults *aa) {
82 for (VNInfo *VNI : getParent().valnos) {
83 if (VNI->isUnused())
84 continue;
85 unsigned Original = VRM->getOriginal(getReg());
86 LiveInterval &OrigLI = LIS.getInterval(Original);
87 VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
88 if (!OrigVNI)
89 continue;
90 MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def);
91 if (!DefMI)
92 continue;
93 checkRematerializable(OrigVNI, DefMI, aa);
95 ScannedRemattable = true;
98 bool LiveRangeEdit::anyRematerializable(AAResults *aa) {
99 if (!ScannedRemattable)
100 scanRemattable(aa);
101 return !Remattable.empty();
104 /// allUsesAvailableAt - Return true if all registers used by OrigMI at
105 /// OrigIdx are also available with the same value at UseIdx.
106 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
107 SlotIndex OrigIdx,
108 SlotIndex UseIdx) const {
109 OrigIdx = OrigIdx.getRegSlot(true);
110 UseIdx = UseIdx.getRegSlot(true);
111 for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
112 const MachineOperand &MO = OrigMI->getOperand(i);
113 if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
114 continue;
116 // We can't remat physreg uses, unless it is a constant or target wants
117 // to ignore this use.
118 if (Register::isPhysicalRegister(MO.getReg())) {
119 if (MRI.isConstantPhysReg(MO.getReg()) || TII.isIgnorableUse(MO))
120 continue;
121 return false;
124 LiveInterval &li = LIS.getInterval(MO.getReg());
125 const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
126 if (!OVNI)
127 continue;
129 // Don't allow rematerialization immediately after the original def.
130 // It would be incorrect if OrigMI redefines the register.
131 // See PR14098.
132 if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
133 return false;
135 if (OVNI != li.getVNInfoAt(UseIdx))
136 return false;
138 return true;
141 bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI,
142 SlotIndex UseIdx, bool cheapAsAMove) {
143 assert(ScannedRemattable && "Call anyRematerializable first");
145 // Use scanRemattable info.
146 if (!Remattable.count(OrigVNI))
147 return false;
149 // No defining instruction provided.
150 SlotIndex DefIdx;
151 assert(RM.OrigMI && "No defining instruction for remattable value");
152 DefIdx = LIS.getInstructionIndex(*RM.OrigMI);
154 // If only cheap remats were requested, bail out early.
155 if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI))
156 return false;
158 // Verify that all used registers are available with the same values.
159 if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
160 return false;
162 return true;
165 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
166 MachineBasicBlock::iterator MI,
167 unsigned DestReg,
168 const Remat &RM,
169 const TargetRegisterInfo &tri,
170 bool Late) {
171 assert(RM.OrigMI && "Invalid remat");
172 TII.reMaterialize(MBB, MI, DestReg, 0, *RM.OrigMI, tri);
173 // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg
174 // to false anyway in case the isDead flag of RM.OrigMI's dest register
175 // is true.
176 (*--MI).getOperand(0).setIsDead(false);
177 Rematted.insert(RM.ParentVNI);
178 return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot();
181 void LiveRangeEdit::eraseVirtReg(Register Reg) {
182 if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
183 LIS.removeInterval(Reg);
186 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
187 SmallVectorImpl<MachineInstr*> &Dead) {
188 MachineInstr *DefMI = nullptr, *UseMI = nullptr;
190 // Check that there is a single def and a single use.
191 for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg())) {
192 MachineInstr *MI = MO.getParent();
193 if (MO.isDef()) {
194 if (DefMI && DefMI != MI)
195 return false;
196 if (!MI->canFoldAsLoad())
197 return false;
198 DefMI = MI;
199 } else if (!MO.isUndef()) {
200 if (UseMI && UseMI != MI)
201 return false;
202 // FIXME: Targets don't know how to fold subreg uses.
203 if (MO.getSubReg())
204 return false;
205 UseMI = MI;
208 if (!DefMI || !UseMI)
209 return false;
211 // Since we're moving the DefMI load, make sure we're not extending any live
212 // ranges.
213 if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI),
214 LIS.getInstructionIndex(*UseMI)))
215 return false;
217 // We also need to make sure it is safe to move the load.
218 // Assume there are stores between DefMI and UseMI.
219 bool SawStore = true;
220 if (!DefMI->isSafeToMove(nullptr, SawStore))
221 return false;
223 LLVM_DEBUG(dbgs() << "Try to fold single def: " << *DefMI
224 << " into single use: " << *UseMI);
226 SmallVector<unsigned, 8> Ops;
227 if (UseMI->readsWritesVirtualRegister(LI->reg(), &Ops).second)
228 return false;
230 MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS);
231 if (!FoldMI)
232 return false;
233 LLVM_DEBUG(dbgs() << " folded: " << *FoldMI);
234 LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI);
235 // Update the call site info.
236 if (UseMI->shouldUpdateCallSiteInfo())
237 UseMI->getMF()->moveCallSiteInfo(UseMI, FoldMI);
238 UseMI->eraseFromParent();
239 DefMI->addRegisterDead(LI->reg(), nullptr);
240 Dead.push_back(DefMI);
241 ++NumDCEFoldedLoads;
242 return true;
245 bool LiveRangeEdit::useIsKill(const LiveInterval &LI,
246 const MachineOperand &MO) const {
247 const MachineInstr &MI = *MO.getParent();
248 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
249 if (LI.Query(Idx).isKill())
250 return true;
251 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
252 unsigned SubReg = MO.getSubReg();
253 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
254 for (const LiveInterval::SubRange &S : LI.subranges()) {
255 if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill())
256 return true;
258 return false;
261 /// Find all live intervals that need to shrink, then remove the instruction.
262 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink,
263 AAResults *AA) {
264 assert(MI->allDefsAreDead() && "Def isn't really dead");
265 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
267 // Never delete a bundled instruction.
268 if (MI->isBundled()) {
269 return;
271 // Never delete inline asm.
272 if (MI->isInlineAsm()) {
273 LLVM_DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
274 return;
277 // Use the same criteria as DeadMachineInstructionElim.
278 bool SawStore = false;
279 if (!MI->isSafeToMove(nullptr, SawStore)) {
280 LLVM_DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
281 return;
284 LLVM_DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
286 // Collect virtual registers to be erased after MI is gone.
287 SmallVector<unsigned, 8> RegsToErase;
288 bool ReadsPhysRegs = false;
289 bool isOrigDef = false;
290 unsigned Dest;
291 // Only optimize rematerialize case when the instruction has one def, since
292 // otherwise we could leave some dead defs in the code. This case is
293 // extremely rare.
294 if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
295 MI->getDesc().getNumDefs() == 1) {
296 Dest = MI->getOperand(0).getReg();
297 unsigned Original = VRM->getOriginal(Dest);
298 LiveInterval &OrigLI = LIS.getInterval(Original);
299 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
300 // The original live-range may have been shrunk to
301 // an empty live-range. It happens when it is dead, but
302 // we still keep it around to be able to rematerialize
303 // other values that depend on it.
304 if (OrigVNI)
305 isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx);
308 // Check for live intervals that may shrink
309 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
310 MOE = MI->operands_end(); MOI != MOE; ++MOI) {
311 if (!MOI->isReg())
312 continue;
313 Register Reg = MOI->getReg();
314 if (!Register::isVirtualRegister(Reg)) {
315 // Check if MI reads any unreserved physregs.
316 if (Reg && MOI->readsReg() && !MRI.isReserved(Reg))
317 ReadsPhysRegs = true;
318 else if (MOI->isDef())
319 LIS.removePhysRegDefAt(Reg.asMCReg(), Idx);
320 continue;
322 LiveInterval &LI = LIS.getInterval(Reg);
324 // Shrink read registers, unless it is likely to be expensive and
325 // unlikely to change anything. We typically don't want to shrink the
326 // PIC base register that has lots of uses everywhere.
327 // Always shrink COPY uses that probably come from live range splitting.
328 if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MOI->isDef())) ||
329 (MOI->readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, *MOI))))
330 ToShrink.insert(&LI);
332 // Remove defined value.
333 if (MOI->isDef()) {
334 if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr)
335 TheDelegate->LRE_WillShrinkVirtReg(LI.reg());
336 LIS.removeVRegDefAt(LI, Idx);
337 if (LI.empty())
338 RegsToErase.push_back(Reg);
342 // Currently, we don't support DCE of physreg live ranges. If MI reads
343 // any unreserved physregs, don't erase the instruction, but turn it into
344 // a KILL instead. This way, the physreg live ranges don't end up
345 // dangling.
346 // FIXME: It would be better to have something like shrinkToUses() for
347 // physregs. That could potentially enable more DCE and it would free up
348 // the physreg. It would not happen often, though.
349 if (ReadsPhysRegs) {
350 MI->setDesc(TII.get(TargetOpcode::KILL));
351 // Remove all operands that aren't physregs.
352 for (unsigned i = MI->getNumOperands(); i; --i) {
353 const MachineOperand &MO = MI->getOperand(i-1);
354 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg()))
355 continue;
356 MI->RemoveOperand(i-1);
358 LLVM_DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
359 } else {
360 // If the dest of MI is an original reg and MI is reMaterializable,
361 // don't delete the inst. Replace the dest with a new reg, and keep
362 // the inst for remat of other siblings. The inst is saved in
363 // LiveRangeEdit::DeadRemats and will be deleted after all the
364 // allocations of the func are done.
365 if (isOrigDef && DeadRemats && TII.isTriviallyReMaterializable(*MI, AA)) {
366 LiveInterval &NewLI = createEmptyIntervalFrom(Dest, false);
367 VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
368 NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI));
369 pop_back();
370 DeadRemats->insert(MI);
371 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
372 MI->substituteRegister(Dest, NewLI.reg(), 0, TRI);
373 MI->getOperand(0).setIsDead(true);
374 } else {
375 if (TheDelegate)
376 TheDelegate->LRE_WillEraseInstruction(MI);
377 LIS.RemoveMachineInstrFromMaps(*MI);
378 MI->eraseFromParent();
379 ++NumDCEDeleted;
383 // Erase any virtregs that are now empty and unused. There may be <undef>
384 // uses around. Keep the empty live range in that case.
385 for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
386 Register Reg = RegsToErase[i];
387 if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
388 ToShrink.remove(&LIS.getInterval(Reg));
389 eraseVirtReg(Reg);
394 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead,
395 ArrayRef<Register> RegsBeingSpilled,
396 AAResults *AA) {
397 ToShrinkSet ToShrink;
399 for (;;) {
400 // Erase all dead defs.
401 while (!Dead.empty())
402 eliminateDeadDef(Dead.pop_back_val(), ToShrink, AA);
404 if (ToShrink.empty())
405 break;
407 // Shrink just one live interval. Then delete new dead defs.
408 LiveInterval *LI = ToShrink.back();
409 ToShrink.pop_back();
410 if (foldAsLoad(LI, Dead))
411 continue;
412 unsigned VReg = LI->reg();
413 if (TheDelegate)
414 TheDelegate->LRE_WillShrinkVirtReg(VReg);
415 if (!LIS.shrinkToUses(LI, &Dead))
416 continue;
418 // Don't create new intervals for a register being spilled.
419 // The new intervals would have to be spilled anyway so its not worth it.
420 // Also they currently aren't spilled so creating them and not spilling
421 // them results in incorrect code.
422 bool BeingSpilled = false;
423 for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
424 if (VReg == RegsBeingSpilled[i]) {
425 BeingSpilled = true;
426 break;
430 if (BeingSpilled) continue;
432 // LI may have been separated, create new intervals.
433 LI->RenumberValues();
434 SmallVector<LiveInterval*, 8> SplitLIs;
435 LIS.splitSeparateComponents(*LI, SplitLIs);
436 if (!SplitLIs.empty())
437 ++NumFracRanges;
439 Register Original = VRM ? VRM->getOriginal(VReg) : Register();
440 for (const LiveInterval *SplitLI : SplitLIs) {
441 // If LI is an original interval that hasn't been split yet, make the new
442 // intervals their own originals instead of referring to LI. The original
443 // interval must contain all the split products, and LI doesn't.
444 if (Original != VReg && Original != 0)
445 VRM->setIsSplitFromReg(SplitLI->reg(), Original);
446 if (TheDelegate)
447 TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg(), VReg);
452 // Keep track of new virtual registers created via
453 // MachineRegisterInfo::createVirtualRegister.
454 void
455 LiveRangeEdit::MRI_NoteNewVirtualRegister(Register VReg) {
456 if (VRM)
457 VRM->grow();
459 NewRegs.push_back(VReg);
462 void LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
463 VirtRegAuxInfo &VRAI) {
464 for (unsigned I = 0, Size = size(); I < Size; ++I) {
465 LiveInterval &LI = LIS.getInterval(get(I));
466 if (MRI.recomputeRegClass(LI.reg()))
467 LLVM_DEBUG({
468 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
469 dbgs() << "Inflated " << printReg(LI.reg()) << " to "
470 << TRI->getRegClassName(MRI.getRegClass(LI.reg())) << '\n';
472 VRAI.calculateSpillWeightAndHint(LI);